@@ -49,6 +49,8 @@ class Hyperparameter(namedtuple('Hyperparameter',
49
49
'n_elements' , 'fixed' ))):
50
50
"""A kernel hyperparameter's specification in form of a namedtuple.
51
51
52
+ .. versionadded:: 0.18
53
+
52
54
Attributes
53
55
----------
54
56
name : string
@@ -77,7 +79,6 @@ class Hyperparameter(namedtuple('Hyperparameter',
77
79
changed during hyperparameter tuning. If None is passed, the "fixed" is
78
80
derived based on the given bounds.
79
81
80
- .. versionadded:: 0.18
81
82
"""
82
83
# A raw namedtuple is very memory efficient as it packs the attributes
83
84
# in a struct to get rid of the __dict__ of attributes in particular it
@@ -636,6 +637,8 @@ class Sum(KernelOperator):
636
637
The resulting kernel is defined as
637
638
k_sum(X, Y) = k1(X, Y) + k2(X, Y)
638
639
640
+ .. versionadded:: 0.18
641
+
639
642
Parameters
640
643
----------
641
644
k1 : Kernel object
@@ -644,7 +647,6 @@ class Sum(KernelOperator):
644
647
k2 : Kernel object
645
648
The second base-kernel of the sum-kernel
646
649
647
- .. versionadded:: 0.18
648
650
"""
649
651
650
652
def __call__ (self , X , Y = None , eval_gradient = False ):
@@ -709,6 +711,8 @@ class Product(KernelOperator):
709
711
The resulting kernel is defined as
710
712
k_prod(X, Y) = k1(X, Y) * k2(X, Y)
711
713
714
+ .. versionadded:: 0.18
715
+
712
716
Parameters
713
717
----------
714
718
k1 : Kernel object
@@ -717,7 +721,6 @@ class Product(KernelOperator):
717
721
k2 : Kernel object
718
722
The second base-kernel of the product-kernel
719
723
720
- .. versionadded:: 0.18
721
724
"""
722
725
723
726
def __call__ (self , X , Y = None , eval_gradient = False ):
@@ -783,6 +786,8 @@ class Exponentiation(Kernel):
783
786
The resulting kernel is defined as
784
787
k_exp(X, Y) = k(X, Y) ** exponent
785
788
789
+ .. versionadded:: 0.18
790
+
786
791
Parameters
787
792
----------
788
793
kernel : Kernel object
@@ -791,7 +796,6 @@ class Exponentiation(Kernel):
791
796
exponent : float
792
797
The exponent for the base kernel
793
798
794
- .. versionadded:: 0.18
795
799
"""
796
800
def __init__ (self , kernel , exponent ):
797
801
self .kernel = kernel
@@ -942,6 +946,8 @@ class ConstantKernel(StationaryKernelMixin, Kernel):
942
946
943
947
k(x_1, x_2) = constant_value for all x_1, x_2
944
948
949
+ .. versionadded:: 0.18
950
+
945
951
Parameters
946
952
----------
947
953
constant_value : float, default: 1.0
@@ -951,7 +957,6 @@ class ConstantKernel(StationaryKernelMixin, Kernel):
951
957
constant_value_bounds : pair of floats >= 0, default: (1e-5, 1e5)
952
958
The lower and upper bound on constant_value
953
959
954
- .. versionadded:: 0.18
955
960
"""
956
961
def __init__ (self , constant_value = 1.0 , constant_value_bounds = (1e-5 , 1e5 )):
957
962
self .constant_value = constant_value
@@ -1036,6 +1041,8 @@ class WhiteKernel(StationaryKernelMixin, Kernel):
1036
1041
1037
1042
k(x_1, x_2) = noise_level if x_1 == x_2 else 0
1038
1043
1044
+ .. versionadded:: 0.18
1045
+
1039
1046
Parameters
1040
1047
----------
1041
1048
noise_level : float, default: 1.0
@@ -1044,7 +1051,6 @@ class WhiteKernel(StationaryKernelMixin, Kernel):
1044
1051
noise_level_bounds : pair of floats >= 0, default: (1e-5, 1e5)
1045
1052
The lower and upper bound on noise_level
1046
1053
1047
- .. versionadded:: 0.18
1048
1054
"""
1049
1055
def __init__ (self , noise_level = 1.0 , noise_level_bounds = (1e-5 , 1e5 )):
1050
1056
self .noise_level = noise_level
@@ -1137,6 +1143,8 @@ class RBF(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
1137
1143
kernel as covariance function have mean square derivatives of all orders,
1138
1144
and are thus very smooth.
1139
1145
1146
+ .. versionadded:: 0.18
1147
+
1140
1148
Parameters
1141
1149
-----------
1142
1150
length_scale : float or array with shape (n_features,), default: 1.0
@@ -1147,7 +1155,6 @@ class RBF(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
1147
1155
length_scale_bounds : pair of floats >= 0, default: (1e-5, 1e5)
1148
1156
The lower and upper bound on length_scale
1149
1157
1150
- .. versionadded:: 0.18
1151
1158
"""
1152
1159
def __init__ (self , length_scale = 1.0 , length_scale_bounds = (1e-5 , 1e5 )):
1153
1160
self .length_scale = length_scale
@@ -1249,6 +1256,8 @@ class Matern(RBF):
1249
1256
See Rasmussen and Williams 2006, pp84 for details regarding the
1250
1257
different variants of the Matern kernel.
1251
1258
1259
+ .. versionadded:: 0.18
1260
+
1252
1261
Parameters
1253
1262
-----------
1254
1263
length_scale : float or array with shape (n_features,), default: 1.0
@@ -1271,7 +1280,6 @@ class Matern(RBF):
1271
1280
Bessel function. Furthermore, in contrast to l, nu is kept fixed to
1272
1281
its initial value and not optimized.
1273
1282
1274
- .. versionadded:: 0.18
1275
1283
"""
1276
1284
def __init__ (self , length_scale = 1.0 , length_scale_bounds = (1e-5 , 1e5 ),
1277
1285
nu = 1.5 ):
@@ -1395,6 +1403,8 @@ class RationalQuadratic(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
1395
1403
1396
1404
k(x_i, x_j) = (1 + d(x_i, x_j)^2 / (2*alpha * length_scale^2))^-alpha
1397
1405
1406
+ .. versionadded:: 0.18
1407
+
1398
1408
Parameters
1399
1409
----------
1400
1410
length_scale : float > 0, default: 1.0
@@ -1409,7 +1419,6 @@ class RationalQuadratic(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
1409
1419
alpha_bounds : pair of floats >= 0, default: (1e-5, 1e5)
1410
1420
The lower and upper bound on alpha
1411
1421
1412
- .. versionadded:: 0.18
1413
1422
"""
1414
1423
def __init__ (self , length_scale = 1.0 , alpha = 1.0 ,
1415
1424
length_scale_bounds = (1e-5 , 1e5 ), alpha_bounds = (1e-5 , 1e5 )):
@@ -1505,6 +1514,8 @@ class ExpSineSquared(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
1505
1514
1506
1515
k(x_i, x_j) = exp(-2 sin(\pi / periodicity * d(x_i, x_j)) / length_scale)^2
1507
1516
1517
+ .. versionadded:: 0.18
1518
+
1508
1519
Parameters
1509
1520
----------
1510
1521
length_scale : float > 0, default: 1.0
@@ -1519,7 +1530,6 @@ class ExpSineSquared(StationaryKernelMixin, NormalizedKernelMixin, Kernel):
1519
1530
periodicity_bounds : pair of floats >= 0, default: (1e-5, 1e5)
1520
1531
The lower and upper bound on periodicity
1521
1532
1522
- .. versionadded:: 0.18
1523
1533
"""
1524
1534
def __init__ (self , length_scale = 1.0 , periodicity = 1.0 ,
1525
1535
length_scale_bounds = (1e-5 , 1e5 ),
@@ -1621,6 +1631,8 @@ class DotProduct(Kernel):
1621
1631
1622
1632
The DotProduct kernel is commonly combined with exponentiation.
1623
1633
1634
+ .. versionadded:: 0.18
1635
+
1624
1636
Parameters
1625
1637
----------
1626
1638
sigma_0 : float >= 0, default: 1.0
@@ -1630,7 +1642,6 @@ class DotProduct(Kernel):
1630
1642
sigma_0_bounds : pair of floats >= 0, default: (1e-5, 1e5)
1631
1643
The lower and upper bound on l
1632
1644
1633
- .. versionadded:: 0.18
1634
1645
"""
1635
1646
1636
1647
def __init__ (self , sigma_0 = 1.0 , sigma_0_bounds = (1e-5 , 1e5 )):
@@ -1739,6 +1750,8 @@ class PairwiseKernel(Kernel):
1739
1750
kernel parameters are set directly at initialization and are kept
1740
1751
fixed.
1741
1752
1753
+ .. versionadded:: 0.18
1754
+
1742
1755
Parameters
1743
1756
----------
1744
1757
gamma: float >= 0, default: 1.0
@@ -1761,7 +1774,6 @@ class PairwiseKernel(Kernel):
1761
1774
All entries of this dict (if any) are passed as keyword arguments to
1762
1775
the pairwise kernel function.
1763
1776
1764
- .. versionadded:: 0.18
1765
1777
"""
1766
1778
1767
1779
def __init__ (self , gamma = 1.0 , gamma_bounds = (1e-5 , 1e5 ), metric = "linear" ,
0 commit comments