@@ -1611,7 +1611,8 @@ class MultiTaskElasticNet(Lasso):
1611
1611
1612
1612
coef_ : array, shape (n_tasks, n_features)
1613
1613
Parameter vector (W in the cost function formula). If a 1D y is \
1614
- passed in at fit (non multi-task usage), ``coef_`` is then a 1D array
1614
+ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array.
1615
+ Note that ``coef_`` stores the transpose of ``W``, ``W.T``.
1615
1616
1616
1617
n_iter_ : int
1617
1618
number of iterations run by the coordinate descent solver to reach
@@ -1792,7 +1793,8 @@ class MultiTaskLasso(MultiTaskElasticNet):
1792
1793
Attributes
1793
1794
----------
1794
1795
coef_ : array, shape (n_tasks, n_features)
1795
- parameter vector (W in the cost function formula)
1796
+ Parameter vector (W in the cost function formula).
1797
+ Note that ``coef_`` stores the transpose of ``W``, ``W.T``.
1796
1798
1797
1799
intercept_ : array, shape (n_tasks,)
1798
1800
independent term in decision function.
@@ -1950,6 +1952,7 @@ class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin):
1950
1952
1951
1953
coef_ : array, shape (n_tasks, n_features)
1952
1954
Parameter vector (W in the cost function formula).
1955
+ Note that ``coef_`` stores the transpose of ``W``, ``W.T``.
1953
1956
1954
1957
alpha_ : float
1955
1958
The amount of penalization chosen by cross validation
@@ -2115,6 +2118,7 @@ class MultiTaskLassoCV(LinearModelCV, RegressorMixin):
2115
2118
2116
2119
coef_ : array, shape (n_tasks, n_features)
2117
2120
Parameter vector (W in the cost function formula).
2121
+ Note that ``coef_`` stores the transpose of ``W``, ``W.T``.
2118
2122
2119
2123
alpha_ : float
2120
2124
The amount of penalization chosen by cross validation
0 commit comments