@@ -810,10 +810,9 @@ class GridSearchCV(BaseSearchCV):
810
810
scoring=..., verbose=...)
811
811
>>> sorted(clf.cv_results_.keys())
812
812
... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
813
- ['mean_test_score', 'mean_test_time', 'mean_train_score',...
814
- 'param_C', 'param_kernel', 'params', 'rank_test_score',...
815
- 'split0_test_score', 'split1_test_score',...
816
- 'split2_test_score', 'std_test_score', 'std_test_time'...]
813
+ ['mean_test_score', 'mean_time', 'param_C', 'param_kernel',...
814
+ 'params', 'rank_test_score', 'split0_test_score', 'split1_test_score',...
815
+ 'split2_test_score', 'std_test_score', 'std_time'...]
817
816
818
817
Attributes
819
818
----------
@@ -852,17 +851,17 @@ class GridSearchCV(BaseSearchCV):
852
851
'split0_train_score': [0.9, 0.8, 0.85, 1.]
853
852
'split1_train_score': [0.95, 0.7, 0.8, 0.8]
854
853
'mean_train_score' : [0.93, 0.75, 0.83, 0.9]
855
- 'std_train_score' : [0.02, 0.01, 0.03, 0.03],
856
- 'rank_train_score' : [2, 4, 3, 1],
857
- 'mean_test_time' : [0.00073, 0.00063, 0.00043, 0.00049]
858
- 'std_test_time' : [1.62e-4, 3.37e-5, 1.42e-5, 1.1e-5]
854
+ 'std_train_score' : [0.02, 0.01, 0.03, 0.03],
855
+ 'rank_train_score' : [2, 4, 3, 1],
856
+ 'mean_time' : [0.00073, 0.00063, 0.00043, 0.00049]
857
+ 'std_time' : [1.62e-4, 3.37e-5, 1.42e-5, 1.1e-5]
859
858
'params' : [{'kernel': 'poly', 'degree': 2}, ...],
860
859
}
861
860
862
861
NOTE that the key ``'params'`` is used to store a list of parameter
863
862
settings dict for all the parameter candidates. Besides,
864
- ``'train_mean_score '``, ``'train_split*_score '``, ... will be present
865
- when ``return_train_score= True``.
863
+ ``'mean_train_score '``, ``'split*_train_score '``, ... will be present
864
+ when ``return_train_score`` is set to `` True``.
866
865
867
866
best_es
BC8B
timator_ : estimator
868
867
Estimator that was chosen by the search, i.e. estimator
@@ -1098,17 +1097,15 @@ class RandomizedSearchCV(BaseSearchCV):
1098
1097
'mean_train_score' : [0.81, 0.7, 0.7],
1099
1098
'std_train_score' : [0.00073, 0.00063, 0.00043]
1100
1099
'rank_train_score' : [1.62e-4, 3.37e-5, 1.1e-5]
1101
- 'test_mean_time' : [0.00073, 0.00063, 0.00043]
1102
- 'test_std_time' : [1.62e-4, 3.37e-5, 1.1e-5]
1103
- 'test_std_score' : [0.02, 0.2, 0.],
1104
- 'test_rank_score' : [3, 1, 1],
1100
+ 'mean_time' : [0.00073, 0.00063, 0.00043]
1101
+ 'std_time' : [1.62e-4, 3.37e-5, 1.1e-5]
1105
1102
'params' : [{'kernel' : 'rbf', 'gamma' : 0.1}, ...],
1106
1103
}
1107
1104
1108
1105
NOTE that the key ``'params'`` is used to store a list of parameter
1109
1106
settings dict for all the parameter candidates. Besides,
1110
- 'train_mean_score', 'train_split*_score' , ... will be present when
1111
- return_train_score is set to True.
1107
+ ``'mean_train_score'``, ``'split*_train_score'`` , ... will be present
1108
+ when `` return_train_score`` is set to `` True`` .
1112
1109
1113
1110
best_estimator_ : estimator
1114
1111
Estimator that was chosen by the search, i.e. estimator
0 commit comments