|
43 | 43 | # Create figure
|
44 | 44 | fig = plt.figure(figsize=(15, 8))
|
45 | 45 | fig.suptitle(
|
46 |
| - "Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14 |
| 46 | + "Manifold Learning with %i points, %i neighbors" % (n_points, n_neighbors), |
| 47 | + fontsize=14, |
47 | 48 | )
|
48 | 49 |
|
49 | 50 | # Add 3d scatter plot
|
|
57 | 58 | n_neighbors=n_neighbors,
|
58 | 59 | n_components=n_components,
|
59 | 60 | eigen_solver="auto",
|
| 61 | + random_state=0, |
60 | 62 | )
|
61 | 63 |
|
62 | 64 | methods = OrderedDict()
|
|
65 | 67 | methods["Hessian LLE"] = LLE(method="hessian")
|
66 | 68 | methods["Modified LLE"] = LLE(method="modified")
|
67 | 69 | methods["Isomap"] = manifold.Isomap(n_neighbors=n_neighbors, n_components=n_components)
|
68 |
| -methods["MDS"] = manifold.MDS(n_components, max_iter=100, n_init=1) |
| 70 | +methods["MDS"] = manifold.MDS(n_components, max_iter=50, n_init=1, random_state=0) |
69 | 71 | methods["SE"] = manifold.SpectralEmbedding(
|
70 |
| - n_components=n_components, n_neighbors=n_neighbors |
| 72 | + n_components=n_components, n_neighbors=n_neighbors, random_state=0 |
| 73 | +) |
| 74 | +methods["t-SNE"] = manifold.TSNE( |
| 75 | + n_components=n_components, perplexity=30, n_iter=250, init="pca", random_state=0 |
71 | 76 | )
|
72 |
| -methods["t-SNE"] = manifold.TSNE(n_components=n_components, init="pca", random_state=0) |
73 | 77 |
|
74 | 78 | # Plot results
|
75 | 79 | for i, (label, method) in enumerate(methods.items()):
|
|
0 commit comments