|
| 1 | +""" |
| 2 | +Tests for sklearn.cluster._feature_agglomeration |
| 3 | +""" |
| 4 | +# Authors: Sergul Aydore 2017 |
| 5 | +import numpy as np |
| 6 | +from sklearn.cluster import FeatureAgglomeration |
| 7 | +from sklearn.utils.testing import assert_true |
| 8 | +from sklearn.utils.testing import assert_array_almost_equal |
| 9 | + |
| 10 | + |
| 11 | +def test_feature_agglomeration(): |
| 12 | + n_clusters = 1 |
| 13 | + X = np.array([0, 0, 1]).reshape(1, 3) # (n_samples, n_features) |
| 14 | + |
| 15 | + agglo_mean = FeatureAgglomeration(n_clusters=n_clusters, |
| 16 | + pooling_func=np.mean) |
| 17 | + agglo_median = FeatureAgglomeration(n_clusters=n_clusters, |
| 18 | + pooling_func=np.median) |
| 19 | + agglo_mean.fit(X) |
| 20 | + agglo_median.fit(X) |
| 21 | + assert_true(np.size(np.unique(agglo_mean.labels_)) == n_clusters) |
| 22 | + assert_true(np.size(np.unique(agglo_median.labels_)) == n_clusters) |
| 23 | + assert_true(np.size(agglo_mean.labels_) == X.shape[1]) |
| 24 | + assert_true(np.size(agglo_median.labels_) == X.shape[1]) |
| 25 | + |
| 26 | + # Test transform |
| 27 | + Xt_mean = agglo_mean.transform(X) |
| 28 | + Xt_median = agglo_median.transform(X) |
| 29 | + assert_true(Xt_mean.shape[1] == n_clusters) |
| 30 | + assert_true(Xt_median.shape[1] == n_clusters) |
| 31 | + assert_true(Xt_mean == np.array([1 / 3.])) |
| 32 | + assert_true(Xt_median == np.array([0.])) |
| 33 | + |
| 34 | + # Test inverse transform |
| 35 | + X_full_mean = agglo_mean.inverse_transform(Xt_mean) |
| 36 | + X_full_median = agglo_median.inverse_transform(Xt_median) |
| 37 | + assert_true(np.unique(X_full_mean[0]).size == n_clusters) |
| 38 | + assert_true(np.unique(X_full_median[0]).size == n_clusters) |
| 39 | + |
| 40 | + assert_array_almost_equal(agglo_mean.transform(X_full_mean), |
| 41 | + Xt_mean) |
| 42 | + assert_array_almost_equal(agglo_median.transform(X_full_median), |
| 43 | + Xt_median) |
0 commit comments