@@ -39,7 +39,7 @@ def test_distribution():
3939 samples = [[1. , 0. ], [0. , 1. ], [1. , 1. ]]
4040 labels = [0 , 1 , - 1 ]
4141 for estimator , parameters in ESTIMATORS :
42- clf = assert_no_warnings ( estimator (** parameters ).fit , samples , labels )
42+ clf = estimator (** parameters ).fit ( samples , labels )
4343 if parameters ['kernel' ] == 'knn' :
4444 continue # unstable test; changes in k-NN ordering break it
4545 assert_array_almost_equal (clf .predict_proba ([[1. , 0.0 ]]),
@@ -53,15 +53,15 @@ def test_predict():
5353 samples = [[1. , 0. ], [0. , 2. ], [1. , 3. ]]
5454 labels = [0 , 1 , - 1 ]
5555 for estimator , parameters in ESTIMATORS :
56- clf = assert_no_warnings ( estimator (** parameters ).fit , samples , labels )
56+ clf = estimator (** parameters ).fit ( samples , labels )
5757 assert_array_equal (clf .predict ([[0.5 , 2.5 ]]), np .array ([1 ]))
5858
5959
6060def test_predict_proba ():
6161 samples = [[1. , 0. ], [0. , 1. ], [1. , 2.5 ]]
6262 labels = [0 , 1 , - 1 ]
6363 for estimator , parameters in ESTIMATORS :
64- clf = assert_no_warnings ( estimator (** parameters ).fit , samples , labels )
64+ clf = estimator (** parameters ).fit ( samples , labels )
6565 assert_array_almost_equal (clf .predict_proba ([[1. , 1. ]]),
6666 np .array ([[0.5 , 0.5 ]]))
6767
@@ -71,7 +71,7 @@ def test_alpha_deprecation():
7171 y [::3 ] = - 1
7272
7373 lp_default = label_propagation .LabelPropagation (kernel = 'rbf' , gamma = 0.1 )
74- lp_default_y = assert_no_warnings ( lp_default .fit , X , y ).transduction_
74+ lp_default_y = lp_default .fit ( X , y ).transduction_
7575
7676 lp_0 = label_propagation .LabelPropagation (alpha = 0 , kernel = 'rbf' , gamma = 0.1 )
7777 lp_0_y = assert_warns (DeprecationWarning , lp_0 .fit , X , y ).transduction_
@@ -94,7 +94,7 @@ def test_label_spreading_closed_form():
9494 expected = np .dot (np .linalg .inv (np .eye (len (S )) - alpha * S ), Y )
9595 expected /= expected .sum (axis = 1 )[:, np .newaxis ]
9696 clf = label_propagation .LabelSpreading (max_iter = 10000 , alpha = alpha )
97- assert_no_warnings ( clf .fit , X , y )
97+ clf .fit ( X , y )
9898 assert_array_almost_equal (expected , clf .label_distributions_ , 4 )
9999
100100
@@ -110,7 +110,7 @@ def test_label_propagation_closed_form():
110110
111111 clf = label_propagation .LabelPropagation (max_iter = 10000 ,
112112 gamma = 0.1 )
113- assert_no_warnings ( clf .fit , X , y )
113+ clf .fit ( X , y )
114114 # adopting notation from Zhu et al 2002
115115 T_bar = clf ._build_graph ()
116116 Tuu = T_bar [np .meshgrid (unlabelled_idx , unlabelled_idx , indexing = 'ij' )]
@@ -141,8 +141,7 @@ def test_convergence_speed():
141141 # This is a non-regression test for #5774
142142 X = np .array ([[1. , 0. ], [0. , 1. ], [1. , 2.5 ]])
143143 y = np .array ([0 , 1 , - 1 ])
144- mdl = assert_no_warnings (label_propagation .LabelSpreading , kernel = 'rbf' ,
145- max_iter = 5000 )
144+ mdl = label_propagation .LabelSpreading (kernel = 'rbf' , max_iter = 5000 )
146145 mdl .fit (X , y )
147146
148147 # this should converge quickly:
@@ -154,5 +153,14 @@ def test_convergence_warning():
154153 # This is a non-regression test for #5774
155154 X = np .array ([[1. , 0. ], [0. , 1. ], [1. , 2.5 ]])
156155 y = np .array ([0 , 1 , - 1 ])
157- mdl = label_propagation .LabelSpreading (kernel = 'rbf' , max_iter = 5 )
156+ mdl = label_propagation .LabelSpreading (kernel = 'rbf' , max_iter = 1 )
158157 assert_warns (ConvergenceWarning , mdl .fit , X , y )
158+
159+ mdl = label_propagation .LabelPropagation (kernel = 'rbf' , max_iter = 1 )
160+ assert_warns (ConvergenceWarning , mdl .fit , X , y )
161+
162+ mdl = label_propagation .LabelSpreading (kernel = 'rbf' , max_iter = 500 )
163+ assert_no_warnings (mdl .fit , X , y )
164+
165+ mdl = label_propagation .LabelPropagation (kernel = 'rbf' , max_iter = 500 )
166+ assert_no_warnings (mdl .fit , X , y )
0 commit comments