35
35
Real ,
36
36
Hidden ,
37
37
MissingValues ,
38
+ StrOptions ,
38
39
)
39
40
40
41
from ._pairwise_distances_reduction import ArgKmin
@@ -904,6 +905,13 @@ def haversine_distances(X, Y=None):
904
905
return DistanceMetric .get_metric ("haversine" ).pairwise (X , Y )
905
906
906
907
908
+ @validate_params (
909
+ {
910
+ "X" : ["array-like" , "sparse matrix" ],
911
+ "Y" : ["array-like" , "sparse matrix" , None ],
912
+ "sum_over_features" : ["boolean" , Hidden (StrOptions ({"deprecated" }))],
913
+ }
914
+ )
907
915
def manhattan_distances (X , Y = None , * , sum_over_features = "deprecated" ):
908
916
"""Compute the L1 distances between the vectors in X and Y.
909
917
@@ -914,10 +922,10 @@ def manhattan_distances(X, Y=None, *, sum_over_features="deprecated"):
914
922
915
923
Parameters
916
924
----------
917
- X : array-like of shape (n_samples_X, n_features)
925
+ X : { array-like, sparse matrix} of shape (n_samples_X, n_features)
918
926
An array where each row is a sample and each column is a feature.
919
927
920
- Y : array-like of shape (n_samples_Y, n_features), default=None
928
+ Y : { array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
921
929
An array where each row is a sample and each column is a feature.
922
930
If `None`, method uses `Y=X`.
923
931
0 commit comments