8000 MAINT Parameters validation for sklearn.metrics.pairwise.manhattan_di… · scikit-learn/scikit-learn@523c135 · GitHub
[go: up one dir, main page]

Skip to content

Commit 523c135

Browse files
authored
MAINT Parameters validation for sklearn.metrics.pairwise.manhattan_distances (#26122)
1 parent ea5a254 commit 523c135

File tree

2 files changed

+11
-2
lines changed

2 files changed

+11
-2
lines changed

sklearn/metrics/pairwise.py

Lines changed: 10 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -35,6 +35,7 @@
3535
Real,
3636
Hidden,
3737
MissingValues,
38+
StrOptions,
3839
)
3940

4041
from ._pairwise_distances_reduction import ArgKmin
@@ -904,6 +905,13 @@ def haversine_distances(X, Y=None):
904905
return DistanceMetric.get_metric("haversine").pairwise(X, Y)
905906

906907

908+
@validate_params(
909+
{
910+
"X": ["array-like", "sparse matrix"],
911+
"Y": ["array-like", "sparse matrix", None],
912+
"sum_over_features": ["boolean", Hidden(StrOptions({"deprecated"}))],
913+
}
914+
)
907915
def manhattan_distances(X, Y=None, *, sum_over_features="deprecated"):
908916
"""Compute the L1 distances between the vectors in X and Y.
909917
@@ -914,10 +922,10 @@ def manhattan_distances(X, Y=None, *, sum_over_features="deprecated"):
914922
915923
Parameters
916924
----------
917-
X : array-like of shape (n_samples_X, n_features)
925+
X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
918926
An array where each row is a sample and each column is a feature.
919927
920-
Y : array-like of shape (n_samples_Y, n_features), default=None
928+
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
921929
An array where each row is a sample and each column is a feature.
922930
If `None`, method uses `Y=X`.
923931

sklearn/tests/test_public_functions.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -237,6 +237,7 @@ def _check_function_param_validation(
237237
"sklearn.metrics.pairwise.haversine_distances",
238238
"sklearn.metrics.pairwise.laplacian_kernel",
239239
"sklearn.metrics.pairwise.linear_kernel",
240+
"sklearn.metrics.pairwise.manhattan_distances",
240241
"sklearn.metrics.pairwise.nan_euclidean_distances",
241242
"sklearn.metrics.pairwise.paired_cosine_distances",
242243
"sklearn.metrics.pairwise.paired_euclidean_distances",

0 commit comments

Comments
 (0)
0