@@ -837,10 +837,12 @@ class FeatureUnion(TransformerMixin, _BaseComposition):
837
837
838
838
Parameters
839
839
----------
840
- transformer_list : list of (string, transformer) tuples
841
- List of transformer objects to be applied to the data. The first
842
- half of each tuple is the name of the transformer. The tranformer can
843
- be 'drop' for it to be ignored.
840
+ transformer_list : list of tuple
841
+ List of tuple containing `(str, transformer)`. The first element
842
+ of the tuple is name affected to the transformer while the
843
+ second element is a scikit-learn transformer instance.
844
+ The transformer instance can also be `"drop"` for it to be
845
+ ignored.
844
846
845
847
.. versionchanged:: 0.22
846
848
Deprecated `None` as a transformer in favor of 'drop'.
@@ -927,9 +929,17 @@ def set_params(self, **kwargs):
927
929
you can directly set the parameters of the estimators contained in
928
930
`tranformer_list`.
929
931
932
+ Parameters
933
+ ----------
934
+ **kwargs : dict
935
+ Parameters of this estimator or parameters of estimators contained
936
+ in `transform_list`. Parameters of the transformers may be set
937
+ using its name and the parameter name separated by a '__'.
938
+
930
939
Returns
931
940
-------
932
- self
941
+ self : object
942
+ FeatureUnion class instance.
933
943
"""
934
944
self ._set_params ("transformer_list" , ** kwargs )
935
945
return self
@@ -1005,10 +1015,13 @@ def fit(self, X, y=None, **fit_params):
1005
1015
y : array-like of shape (n_samples, n_outputs), default=None
1006
1016
Targets for supervised learning.
1007
1017
1018
+ **fit_params : dict, default=None
1019
+ Parameters to pass to the fit method of the estimator.
1020
+
1008
1021
Returns
1009
1022
-------
1010
- self : FeatureUnion
1011
- This estimator
1023
+ self : object
1024
+ FeatureUnion class instance.
1012
1025
"""
1013
1026
transformers = self ._parallel_func (X , y , fit_params , _fit_one )
1014
1027
if not transformers :
@@ -1029,12 +1042,15 @@ def fit_transform(self, X, y=None, **fit_params):
1029
1042
y : array-like of shape (n_samples, n_outputs), default=None
1030
1043
Targe
103A5
ts for supervised learning.
1031
1044
1045
+ **fit_params : dict, default=None
1046
+ Parameters to pass to the fit method of the estimator.
1047
+
1032
1048
Returns
1033
1049
-------
1034
1050
X_t : array-like or sparse matrix of \
1035
1051
shape (n_samples, sum_n_components)
1036
- hstack of results of transformers. sum_n_components is the
1037
- sum of n_components (output dimension) over transformers.
1052
+ The ` hstack` of results of transformers. ` sum_n_components` is the
1053
+ sum of ` n_components` (output dimension) over transformers.
1038
1054
"""
1039
1055
results = self ._parallel_func (X , y , fit_params , _fit_transform_one )
1040
1056
if not results :
@@ -1083,8 +1099,8 @@ def transform(self, X):
1083
1099
-------
1084
1100
X_t : array-like or sparse matrix of \
1085
1101
shape (n_samples, sum_n_components)
1086
- hstack of results of transformers. sum_n_components is the
1087
- sum of n_components (output dimension) over transformers.
1102
+ The ` hstack` of results of transformers. ` sum_n_components` is the
1103
+ sum of ` n_components` (output dimension) over transformers.
1088
1104
"""
1089
1105
Xs = Parallel (n_jobs = self .n_jobs )(
1090
1106
delayed (_transform_one )(trans , X , None , weight )
@@ -1112,6 +1128,8 @@ def _update_transformer_list(self, transformers):
1112
1128
1113
1129
@property
1114
1130
def n_features_in_ (self ):
1131
+ """Number of features seen during :term:`fit`."""
1132
+
1115
1133
# X is passed to all transformers so we just delegate to the first one
1116
1134
return self .transformer_list [0 ][1 ].n_features_in_
1117
1135
0 commit comments