8000
We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent fcb485b commit 4872b71Copy full SHA for 4872b71
sklearn/decomposition/_incremental_pca.py
@@ -410,12 +410,13 @@ def transform(self, X):
410
"""
411
if sparse.issparse(X):
412
n_samples = X.shape[0]
413
- output = [
414
- super().transform(X[batch].toarray())
415
- for batch in gen_batches(
416
- n_samples, self.batch_size_, min_batch_size=self.n_components or 0
+ output = []
+ for batch in gen_batches(
+ n_samples, self.batch_size_, min_batch_size=self.n_components or 0
+ ):
417
+ output.append( # noqa: PERF401 # FIXME
418
+ super().transform(X[batch].toarray())
419
)
- ]
420
return np.vstack(output)
421
else:
422
return super().transform(X)
0 commit comments