@@ -68,8 +68,9 @@ full covariance.
68
68
* See :ref: `sphx_glr_auto_examples_mixture_plot_gmm_pdf.py ` for an example on plotting the
69
69
density estimation.
70
70
71
- Pros and cons of class :class: `GaussianMixture `
72
- -----------------------------------------------
71
+ |details-start |
72
+ **Pros and cons of class GaussianMixture **
73
+ |details-split |
73
74
74
75
Pros
75
76
....
93
94
or information theoretical criteria to decide how many components to use
94
95
in the absence of external cues.
95
96
96
- Selecting the number of components in a classical Gaussian Mixture Model
97
- ------------------------------------------------------------------------
97
+ |details-end |
98
+
99
+
100
+ |details-start |
101
+ **Selecting the number of components in a classical Gaussian Mixture model **
102
+ |details-split |
98
103
99
104
The BIC criterion can be used to select the number of components in a Gaussian
100
105
Mixture in an efficient way. In theory, it recovers the true number of
@@ -116,8 +121,11 @@ model.
116
121
117
122
.. _expectation_maximization :
118
123
119
- Estimation algorithm Expectation-maximization
120
- -----------------------------------------------
124
+ |details-end |
125
+
126
+ |details-start |
127
+ **Estimation algorithm expectation-maximization **
128
+ |details-split |
121
129
122
130
The main difficulty in learning Gaussian mixture models from unlabeled
123
131
data is that one usually doesn't know which points came from
@@ -135,8 +143,11 @@ parameters to maximize the likelihood of the data given those
135
143
assignments. Repeating this process is guaranteed to always converge
136
144
to a local optimum.
137
145
138
- Choice of the Initialization Method
139
- -----------------------------------
146
+ |details-end |
147
+
148
+ |details-start |
149
+ **Choice of the Initialization method **
150
+ |details-split |
140
151
141
152
There is a choice of four initialization methods (as well as inputting user defined
142
153
initial means) to generate the initial centers for the model components:
@@ -174,6 +185,8 @@ random
174
185
175
186
.. _bgmm :
176
187
188
+ |details-end |
189
+
177
190
Variational Bayesian Gaussian Mixture
178
191
=====================================
179
192
@@ -183,8 +196,7 @@ similar to the one defined by :class:`GaussianMixture`.
183
196
184
197
.. _variational_inference :
185
198
186
- Estimation algorithm: variational inference
187
- ---------------------------------------------
199
+ **Estimation algorithm: variational inference **
188
200
189
201
Variational inference is an extension of expectation-maximization that
190
202
maximizes a lower bound on model evidence (including
@@ -282,9 +294,9 @@ from the two resulting mixtures.
282
294
``weight_concentration_prior_type `` for different values of the parameter
283
295
``weight_concentration_prior ``.
284
296
285
-
286
- Pros and cons of variational inference with :class: ` BayesianGaussianMixture `
287
- ----------------------------------------------------------------------------
297
+ | details-start |
298
+ ** Pros and cons of variational inference with BayesianGaussianMixture **
299
+ | details-split |
288
300
289
301
Pros
290
302
.....
@@ -324,11 +336,13 @@ Cons
324
336
these biases and the data it might be possible to fit better models using a
325
337
finite mixture.
326
338
339
+ |details-end |
327
340
328
341
.. _dirichlet_process :
329
342
330
- The Dirichlet Process
331
- ---------------------
343
+ |details-start |
344
+ **The Dirichlet Process **
345
+ |details-split |
332
346
333
347
Here we describe variational inference algorithms on Dirichlet process
334
348
mixture. The Dirichlet process is a prior probability distribution on
@@ -361,3 +375,5 @@ use, one just specifies the concentration parameter and an upper bound
361
375
on the number of mixture components (this upper bound, assuming it is
362
376
higher than the "true" number of components, affects only algorithmic
363
377
complexity, not the actual number of components used).
378
+
379
+ |details-end |
0 commit comments