File tree 1 file changed +0
-12
lines changed
1 file changed +0
-12
lines changed Original file line number Diff line number Diff line change @@ -157,9 +157,6 @@ class labels known to the classifier
157
157
epsilon_ : float
158
158
absolute additive value to variances
159
159
160
- classes_ : array-like, shape (n_classes,)
161
- Unique class labels.
162
-
163
160
Examples
164
161
--------
165
162
>>> import numpy as np
@@ -718,9 +715,6 @@ class MultinomialNB(_BaseDiscreteNB):
718
715
n_features_ : int
719
716
Number of features of each sample.
720
717
721
- classes_ : array-like, shape (n_classes,)
722
- Unique class labels.
723
-
724
718
Examples
725
719
--------
726
720
>>> import numpy as np
@@ -828,9 +822,6 @@ class ComplementNB(_BaseDiscreteNB):
828
822
Number of samples encountered for each feature during fitting. This
829
823
value is weighted by the sample weight when provided.
830
824
831
- classes_ : array of shape (n_classes,)
832
- The classes labels.
833
-
834
825
Examples
835
826
--------
836
827
>>> import numpy as np
@@ -939,9 +930,6 @@ class BernoulliNB(_BaseDiscreteNB):
939
930
n_features_ : int
940
931
Number of features of each sample.
941
932
942
- classes_ : array of shape (n_classes,)
943
- The classes labels.
944
-
945
933
See Also
946
934
----------
947
935
MultinomialNB: The multinomial Naive Bayes classifier is \
You can’t perform that action at this time.
0 commit comments