@@ -1308,7 +1308,7 @@ class RandomForestClassifier(ForestClassifier):
1308
1308
When set to ``True``, reuse the solution of the previous call to fit
1309
1309
and add more estimators to the ensemble, otherwise, just fit a whole
1310
1310
new forest. See :term:`Glossary <warm_start>` and
1311
- :ref:`gradient_boosting_warm_start ` for details.
1311
+ :ref:`tree_ensemble_warm_start ` for details.
1312
1312
1313
1313
class_weight : {"balanced", "balanced_subsample"}, dict or list of dicts, \
1314
1314
default=None
@@ -1710,7 +1710,7 @@ class RandomForestRegressor(ForestRegressor):
1710
1710
When set to ``True``, reuse the solution of the previous call to fit
1711
1711
and add more estimators to the ensemble, otherwise, just fit a whole
1712
1712
new forest. See :term:`Glossary <warm_start>` and
1713
- :ref:`gradient_boosting_warm_start ` for details.
1713
+ :ref:`tree_ensemble_warm_start ` for details.
1714
1714
1715
1715
ccp_alpha : non-negative float, default=0.0
1716
1716
Complexity parameter used for Minimal Cost-Complexity Pruning. The
@@ -2049,7 +2049,7 @@ class ExtraTreesClassifier(ForestClassifier):
2049
2049
When set to ``True``, reuse the solution of the previous call to fit
2050
2050
and add more estimators to the ensemble, otherwise, just fit a whole
2051
2051
new forest. See :term:`Glossary <warm_start>` and
2052
- :ref:`gradient_boosting_warm_start ` for details.
2052
+ :ref:`tree_ensemble_warm_start ` for details.
2053
2053
2054
2054
class_weight : {"balanced", "balanced_subsample"}, dict or list of dicts, \
2055
2055
default=None
@@ -2434,7 +2434,7 @@ class ExtraTreesRegressor(ForestRegressor):
2434
2434
When set to ``True``, reuse the solution of the previous call to fit
2435
2435
and add more estimators to the ensemble, otherwise, just fit a whole
2436
2436
new forest. See :term:`Glossary <warm_start>` and
2437
- :ref:`gradient_boosting_warm_start ` for details.
2437
+ :ref:`tree_ensemble_warm_start ` for details.
2438
2438
2439
2439
ccp_alpha : non-negative float, default=0.0
2440
2440
Complexity parameter used for Minimal Cost-Complexity Pruning. The
@@ -2727,7 +2727,7 @@ class RandomTreesEmbedding(TransformerMixin, BaseForest):
2727
2727
When set to ``True``, reuse the solution of the previous call to fit
2728
2728
and add more estimators to the ensemble, otherwise, just fit a whole
2729
2729
new forest. See :term:`Glossary <warm_start>` and
2730
- :ref:`gradient_boosting_warm_start ` for details.
2730
+ :ref:`tree_ensemble_warm_start ` for details.
2731
2731
2732
2732
Attributes
2733
2733
----------
0 commit comments