8000
We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 2ff74a8 commit 3c9930bCopy full SHA for 3c9930b
sklearn/linear_model/_stochastic_gradient.py
@@ -332,12 +332,12 @@ def loss_function_(self):
332
return self._loss_function_
333
334
335
-def _prepare_fit_binary(est, y, i, input_dtye):
+def _prepare_fit_binary(est, y, i, input_dtype):
336
"""Initialization for fit_binary.
337
338
Returns y, coef, intercept, average_coef, average_intercept.
339
"""
340
- y_i = np.ones(y.shape, dtype=input_dtye, order="C")
+ y_i = np.ones(y.shape, dtype=input_dtype, order="C")
341
y_i[y != est.classes_[i]] = -1.0
342
average_intercept = 0
343
average_coef = None
@@ -432,7 +432,7 @@ def fit_binary(
432
# if average is not true, average_coef, and average_intercept will be
433
# unused
434
y_i, coef, intercept, average_coef, average_intercept = _prepare_fit_binary(
435
- est, y, i, input_dtye=X.dtype
+ est, y, i, input_dtype=X.dtype
436
)
437
assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0]
438
0 commit comments