@@ -47,7 +47,7 @@ enhance the functionality of scikit-learn's estimators.
47
47
the objects that EvalML creates use an sklearn-compatible API.
48
48
49
49
- `MLJAR AutoML <https://github.com/mljar/mljar-supervised >`_
50
- Python package for AutoML on Tabular Data with Feature Engineering,
50
+ Python package for AutoML on Tabular Data with Feature Engineering,
51
51
Hyper-Parameters Tuning, Explanations and Automatic Documentation.
52
52
53
53
**Experimentation and model registry frameworks **
@@ -74,11 +74,6 @@ enhance the functionality of scikit-learn's estimators.
74
74
- `dtreeviz <https://github.com/parrt/dtreeviz/ >`_ A python library for
75
75
decision tree visualization and model interpretation.
76
76
77
- - `sklearn-evaluation <https://github.com/ploomber/sklearn-evaluation >`_
78
- Machine learning model evaluation made easy: plots, tables, HTML reports,
79
- experiment tracking and Jupyter notebook analysis. Visual analysis, model
80
- selection, evaluation and diagnostics.
81
-
82
77
- `yellowbrick <https://github.com/DistrictDataLabs/yellowbrick >`_ A suite of
83
78
custom matplotlib visualizers for scikit-learn estimators to support visual feature
84
79
analysis, model selection, evaluation, and diagnostics.
@@ -121,7 +116,7 @@ enhance the functionality of scikit-learn's estimators.
121
116
122
117
- `BiocSklearn <https://bioconductor.org/packages/BiocSklearn >`_
123
118
Exposes a small number of dimension reduction facilities as an illustration
124
- of the basilisk protocol for interfacing python with R. Intended as a
119
+ of the basilisk protocol for interfacing python with R. Intended as a
125
120
springboard for more complete interop.
126
121
127
122
@@ -206,9 +201,6 @@ Note scikit-learn own modern gradient boosting estimators
206
201
207
202
**Other regression and classification **
208
203
209
- - `py-earth <https://github.com/scikit-learn-contrib/py-earth >`_ Multivariate
210
- adaptive regression splines
211
-
212
204
- `gplearn <https://github.com/trevorstephens/gplearn >`_ Genetic Programming
213
205
for symbolic regression tasks.
214
206
0 commit comments