@@ -741,12 +741,12 @@ def mutual_info_score(labels_true, labels_pred, *, contingency=None):
741
741
Parameters
742
742
----------
743
743
labels_true : int array, shape = [n_samples]
744
- A clustering of the data into disjoint subsets, called :math:`U` in the
745
- above formula.
744
+ A clustering of the data into disjoint subsets, called :math:`U` in
745
+ the above formula.
746
746
747
747
labels_pred : int array-like of shape (n_samples,)
748
- A clustering of the data into disjoint subsets, called :math:`V` in the
749
- above formula.
748
+ A clustering of the data into disjoint subsets, called :math:`V` in
749
+ the above formula.
750
750
751
751
contingency : {ndarray, sparse matrix} of shape \
752
752
(n_classes_true, n_classes_pred), default=None
@@ -833,12 +833,12 @@ def adjusted_mutual_info_score(labels_true, labels_pred, *,
833
833
Parameters
834
834
----------
835
835
labels_true : int array, shape = [n_samples]
836
- A clustering of the data into disjoint subsets, called :math:`U` in the
837
- above formula.
836
+ A clustering of the data into disjoint subsets, called :math:`U` in
837
+ the above formula.
838
838
839
839
labels_pred : int array-like of shape (n_samples,)
840
- A clustering of the data into disjoint subsets, called :math:`V` in the
841
- above formula.
840
+ A clustering of the data into disjoint subsets, called :math:`V` in
841
+ the above formula.
842
842
843
843
average_method : str, default='arithmetic'
844
844
How to compute the normalizer in the denominator. Possible options
0 commit comments