8000 DOC Use :doi: and :arxiv: directives for references (#21099) · scikit-learn/scikit-learn@337e0d2 · GitHub
[go: up one dir, main page]

Skip to content

Commit 337e0d2

Browse files
authored
DOC Use :doi: and :arxiv: directives for references (#21099)
1 parent 948582d commit 337e0d2

14 files changed

+93
-47
lines changed

doc/about.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -85,8 +85,8 @@ citations to the following paper:
8585
If you want to cite scikit-learn for its API or design, you may also want to consider the
8686
following paper:
8787

88-
`API design for machine learning software: experiences from the scikit-learn
89-
project <https://arxiv.org/abs/1309.0238>`_, Buitinck *et al.*, 2013.
88+
:arxiv:`API design for machine learning software: experiences from the scikit-learn
89+
project <1309.0238>`, Buitinck *et al.*, 2013.
9090

9191
Bibtex entry::
9292

doc/conf.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -48,6 +48,7 @@
4848
"add_toctree_functions",
4949
"sphinx-prompt",
5050
"sphinxext.opengraph",
51+
"doi_role",
5152
]
5253

5354
# Support for `plot::` directives in sphinx 3.2 requires matplotlib 3.1.0 or newer

doc/modules/clustering.rst

Lines changed: 8 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -545,9 +545,9 @@ graph, and SpectralClustering is initialized with `affinity='precomputed'`::
545545
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100>`_
546546
Andrew Y. Ng, Michael I. Jordan, Yair Weiss, 2001
547547

548-
* `"Preconditioned Spectral Clustering for Stochastic
548+
* :arxiv:`"Preconditioned Spectral Clustering for Stochastic
549549
Block Partition Streaming Graph Challenge"
550-
<https://arxiv.org/abs/1708.07481>`_
550+
<1309.0238>`
551551
David Zhuzhunashvili, Andrew Knyazev
552552

553553
.. _hierarchical_clustering:
@@ -1703,10 +1703,9 @@ cluster analysis.
17031703

17041704
.. topic:: References
17051705

1706-
* Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the
1707-
Interpretation and Validation of Cluster Analysis". Computational
1708-
and Applied Mathematics 20: 53–65.
1709-
`doi:10.1016/0377-0427(87)90125-7 <https://doi.org/10.1016/0377-0427(87)90125-7>`_.
1706+
* Peter J. Rousseeuw (1987). :doi:`"Silhouettes: a Graphical Aid to the
1707+
Interpretation and Validation of Cluster Analysis"<10.1016/0377-0427(87)90125-7>`
1708+
. Computational and Applied Mathematics 20: 53–65.
17101709

17111710

17121711
Advantages
@@ -1805,8 +1804,7 @@ number of points in cluster :math:`q`.
18051804
* Caliński, T., & Harabasz, J. (1974).
18061805
`"A Dendrite Method for Cluster Analysis"
18071806
<https://www.researchgate.net/publication/233096619_A_Dendrite_Method_for_Cluster_Analysis>`_.
1808-
Communications in Statistics-theory and Methods 3: 1-27.
1809-
`doi:10.1080/03610927408827101 <https://doi.org/10.1080/03610927408827101>`_.
1807+
:doi:`Communications in Statistics-theory and Methods 3: 1-27 <10.1080/03610927408827101>`.
18101808

18111809

18121810
.. _davies-bouldin_index:
@@ -1881,15 +1879,13 @@ Then the Davies-Bouldin index is defined as:
18811879
.. topic:: References
18821880

18831881
* Davies, David L.; Bouldin, Donald W. (1979).
1884-
"A Cluster Separation Measure"
1882+
:doi:`"A Cluster Separation Measure" <10.1109/TPAMI.1979.4766909>`
18851883
IEEE Transactions on Pattern Analysis and Machine Intelligence.
18861884
PAMI-1 (2): 224-227.
1887-
`doi:10.1109/TPAMI.1979.4766909 <https://doi.org/10.1109/TPAMI.1979.4766909>`_.
18881885

18891886
* Halkidi, Maria; Batistakis, Yannis; Vazirgiannis, Michalis (2001).
1890-
"On Clustering Validation Techniques"
1887+
:doi:`"On Clustering Validation Techniques" <10.1023/A:1012801612483>`
18911888
Journal of Intelligent Information Systems, 17(2-3), 107-145.
1892-
`doi:10.1023/A:1012801612483 <https://doi.org/10.1023/A:1012801612483>`_.
18931889

18941890
* `Wikipedia entry for Davies-Bouldin index
18951891
<https://en.wikipedia.org/wiki/Davies–Bouldin_index>`_.

doc/modules/decomposition.rst

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -167,9 +167,9 @@ Note: the implementation of ``inverse_transform`` in :class:`PCA` with
167167
.. topic:: References:
168168

169169
* Algorithm 4.3 in
170-
`"Finding structure with randomness: Stochastic algorithms for
170+
:arxiv:`"Finding structure with randomness: Stochastic algorithms for
171171
constructing approximate matrix decompositions"
172-
<https://arxiv.org/abs/0909.4061>`_
172+
<0909.4061>`
173173
Halko, et al., 2009
174174

175175
* `"An implementation of a randomized algorithm for principal component
@@ -341,13 +341,13 @@ components is less than 10 (strict) and the number of samples is more than 200
341341

342342
* *randomized* solver:
343343

344-
- Algorithm 4.3 in
345-
`"Finding structure with randomness: Stochastic algorithms for
344+
* Algorithm 4.3 in
345+
:arxiv:`"Finding structure with randomness: Stochastic algorithms for
346346
constructing approximate matrix decompositions"
347-
<https://arxiv.org/abs/0909.4061>`_
347+
<0909.4061>`
348348
Halko, et al., 2009
349349

350-
- `"An implementation of a randomized algorithm for principal component
350+
* `"An implementation of a randomized algorithm for principal component
351351
analysis"
352352
<https://arxiv.org/pdf/1412.3510.pdf>`_
353353
A. Szlam et al. 2014

doc/modules/ensemble.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1210,8 +1210,8 @@ Finally, many parts of the implementation of
12101210
<https://statweb.stanford.edu/~jhf/ftp/stobst.pdf>`_
12111211
.. [R2007] G. Ridgeway, "Generalized Boosted Models: A guide to the gbm
12121212
package", 2007
1213-
.. [XGBoost] Tianqi Chen, Carlos Guestrin, `"XGBoost: A Scalable Tree
1214-
Boosting System" <https://arxiv.org/abs/1603.02754>`_
1213+
.. [XGBoost] Tianqi Chen, Carlos Guestrin, :arxiv:`"XGBoost: A Scalable Tree
1214+
Boosting System" <1603.02754>`
12151215
.. [LightGBM] Ke et. al. `"LightGBM: A Highly Efficient Gradient
12161216
BoostingDecision Tree" <https://papers.nips.cc/paper/
12171217
6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree>`_

doc/modules/grid_search.rst

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -538,9 +538,8 @@ since it has reached the last iteration (3) with the highest score:
538538
Optimization <http://proceedings.mlr.press/v51/jamieson16.html>`_, in
539539
proc. of Machine Learning Research, 2016.
540540
.. [2] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar,
541-
`Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
542-
<https://arxiv.org/abs/1603.06560>`_, in Machine Learning Research
543-
18, 2018.
541+
:arxiv:`Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
542+
<1603.06560>`, in Machine Learning Research 18, 2018.
544543
545544
.. _grid_search_tips:
546545

doc/modules/kernel_approximation.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -246,8 +246,8 @@ or store training examples.
246246
.. [VVZ2010] `"Generalized RBF feature maps for Efficient Detection"
247247
<https://www.robots.ox.ac.uk/~vgg/publications/2010/Sreekanth10/sreekanth10.pdf>`_
248248
Vempati, S. and Vedaldi, A. and Zisserman, A. and Jawahar, CV - 2010
249-
.. [PP2013] `"Fast and scalable polynomial kernels via explicit feature maps"
250-
<https://doi.org/10.1145/2487575.2487591>`_
249+
.. [PP2013] :doi:`"Fast and scalable polynomial kernels via explicit feature maps"
250+
<10.1145/2487575.2487591>`
251251
Pham, N., & Pagh, R. - 2013
252252
.. [CCF2002] `"Finding frequent items in data streams"
253253
<http://www.cs.princeton.edu/courses/archive/spring04/cos598B/bib/CharikarCF.pdf>`_

doc/modules/linear_model.rst

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -934,7 +934,9 @@ to warm-starting (see :term:`Glossary <warm_start>`).
934934
935935
.. [6] Mark Schmidt, Nicolas Le Roux, and Francis Bach: `Minimizing Finite Sums with the Stochastic Average Gradient. <https://hal.inria.fr/hal-00860051/document>`_
936936
937-
.. [7] Aaron Defazio, Francis Bach, Simon Lacoste-Julien: `SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. <https://arxiv.org/abs/1407.0202>`_
937+
.. [7] Aaron Defazio, Francis Bach, Simon Lacoste-Julien:
938+
:arxiv:`SAGA: A Fast Incremental Gradient Method With Support for
939+
Non-Strongly Convex Composite Objectives. <1407.0202>`
938940
939941
.. [8] https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
940942
@@ -1492,12 +1494,12 @@ problem. The current implementation is based on
14921494
<https://gib.people.uic.edu/RQ.pdf>`_
14931495
Econometrica: journal of the Econometric Society, 33-50.
14941496

1495-
* Portnoy, S., & Koenker, R. (1997). The Gaussian hare and the Laplacian
1497+
* Portnoy, S., & Koenker, R. (1997). :doi:`The Gaussian hare and the Laplacian
14961498
tortoise: computability of squared-error versus absolute-error estimators.
1497-
Statistical Science, 12, 279-300. https://doi.org/10.1214/ss/1030037960
1499+
Statistical Science, 12, 279-300 <10.1214/ss/1030037960>`.
14981500

1499-
* Koenker, R. (2005). Quantile Regression.
1500-
Cambridge University Press. https://doi.org/10.1017/CBO9780511754098
1501+
* Koenker, R. (2005). :doi:`Quantile Regression <10.1017/CBO9780511754098>`.
1502+
Cambridge University Press.
15011503

15021504

15031505
.. _polynomial_regression:

doc/modules/model_evaluation.rst

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -563,8 +563,9 @@ or *informedness*.
563563
Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples,
564564
and Case Studies <https://mitpress.mit.edu/books/fundamentals-machine-learning-predictive-data-analytics>`_,
565565
2015.
566-
.. [Urbanowicz2015] Urbanowicz R.J., Moore, J.H. `ExSTraCS 2.0: description and evaluation of a scalable learning
567-
classifier system <https://doi.org/10.1007/s12065-015-0128-8>`_, Evol. Intel. (2015) 8: 89.
566+
.. [Urbanowicz2015] Urbanowicz R.J., Moore, J.H. :doi:`ExSTraCS 2.0: description
567+
and evaluation of a scalable learning classifier
568+
system <10.1007/s12065-015-0128-8>`, Evol. Intel. (2015) 8: 89.
568569
569570
.. _cohen_kappa:
570571

doc/modules/neural_networks_supervised.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -184,7 +184,7 @@ Algorithms
184184

185185
MLP trains using `Stochastic Gradient Descent
186186
<https://en.wikipedia.org/wiki/Stochastic_gradient_descent>`_,
187-
`Adam <https://arxiv.org/abs/1412.6980>`_, or
187+
:arxiv:`Adam <1412.6980>`, or
188188
`L-BFGS <https://en.wikipedia.org/wiki/Limited-memory_BFGS>`__.
189189
Stochastic Gradient Descent (SGD) updates parameters using the gradient of the
190190
loss function with respect to a parameter that needs adaptation, i.e.

0 commit comments

Comments
 (0)
0