34
34
35
35
36
36
def test_multi_target_regression ():
37
- X , y = datasets .make_regression (n_targets = 3 )
37
+ X , y = datasets .make_regression (n_targets = 3 , random_state = 0 )
38
38
X_train , y_train = X [:50 ], y [:50 ]
39
39
X_test , y_test = X [50 :], y [50 :]
40
40
@@ -52,7 +52,7 @@ def test_multi_target_regression():
52
52
53
53
54
54
def test_multi_target_regression_partial_fit ():
55
- X , y = datasets .make_regression (n_targets = 3 )
55
+ X , y = datasets .make_regression (n_targets = 3 , random_state = 0 )
56
56
X_train , y_train = X [:50 ], y [:50 ]
57
57
X_test , y_test = X [50 :], y [50 :]
58
58
@@ -76,15 +76,15 @@ def test_multi_target_regression_partial_fit():
76
76
77
77
def test_multi_target_regression_one_target ():
78
78
# Test multi target regression raises
79
- X , y = datasets .make_regression (n_targets = 1 )
79
+ X , y = datasets .make_regression (n_targets = 1 , random_state = 0 )
80
80
rgr = MultiOutputRegressor (GradientBoostingRegressor (random_state = 0 ))
81
81
msg = "at least two dimensions"
82
82
with pytest .raises (ValueError , match = msg ):
83
83
rgr .fit (X , y )
84
84
85
85
86
86
def test_multi_target_sparse_regression ():
87
- X , y = datasets .make_regression (n_targets = 3 )
87
+ X , y = datasets .make_regression (n_targets = 3 , random_state = 0 )
88
88
X_train , y_train = X [:50 ], y [:50 ]
89
89
X_test = X [50 :]
90
90
@@ -601,7 +601,7 @@ def fit(self, X, y, sample_weight=None, **fit_params):
601
601
),
602
602
(
603
603
MultiOutputRegressor (DummyRegressorWithFitParams ()),
604
- datasets .make_regression (n_targets = 3 ),
604
+ datasets .make_regression (n_targets = 3 , random_state = 0 ),
605
605
),
606
606
],
607
607
)
@@ -616,7 +616,7 @@ def test_multioutput_estimator_with_fit_params(estimator, dataset):
616
616
def test_regressor_chain_w_fit_params ():
617
617
# Make sure fit_params are properly propagated to the sub-estimators
618
618
rng = np .random .RandomState (0 )
619
- X , y = datasets .make_regression (n_targets = 3 )
619
+ X , y = datasets .make_regression (n_targets = 3 , random_state = 0 )
620
620
weight = rng .rand (y .shape [0 ])
621
621
622
622
class MySGD (SGDRegressor ):
0 commit comments