@@ -214,12 +214,12 @@ persistence model, namely `pickle <https://docs.python.org/2/library/pickle.html
214
214
215
215
>>> from sklearn import svm
216
216
>>> from sklearn import datasets
217
- >>> clf = svm.SVC(gamma='auto ')
217
+ >>> clf = svm.SVC(gamma='scale ')
218
218
>>> iris = datasets.load_iris()
219
219
>>> X, y = iris.data, iris.target
220
220
>>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE
221
221
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
222
- decision_function_shape='ovr', degree=3, gamma='auto ', kernel='rbf',
222
+ decision_function_shape='ovr', degree=3, gamma='scale ', kernel='rbf',
223
223
max_iter=-1, probability=False, random_state=None, shrinking=True,
224
224
tol=0.001, verbose=False)
225
225
@@ -290,10 +290,10 @@ maintained::
290
290
>>> from sklearn import datasets
291
291
>>> from sklearn.svm import SVC
292
292
>>> iris = datasets.load_iris()
293
- >>> clf = SVC()
293
+ >>> clf = SVC(gamma='scale' )
294
294
>>> clf.fit(iris.data, iris.target) # doctest: +NORMALIZE_WHITESPACE
295
295
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
296
- decision_function_shape='ovr', degree=3, gamma='auto ', kernel='rbf',
296
+ decision_function_shape='ovr', degree=3, gamma='scale ', kernel='rbf',
297
297
max_iter=-1, probability=False, random_state=None, shrinking=True,
298
298
tol=0.001, verbose=False)
299
299
@@ -302,7 +302,7 @@ maintained::
302
302
303
303
>>> clf.fit(iris.data, iris.target_names[iris.target]) # doctest: +NORMALIZE_WHITESPACE
304
304
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
305
- decision_function_shape='ovr', degree=3, gamma='auto ', kernel='rbf',
305
+ decision_function_shape='ovr', degree=3, gamma='scale ', kernel='rbf',
306
306
max_iter=-1, probability=False, random_state=None, shrinking=True,
307
307
tol=0.001, verbose=False)
308
308
@@ -328,25 +328,25 @@ more than once will overwrite what was learned by any previous ``fit()``::
328
328
>>> y = rng.binomial(1, 0.5, 100)
329
329
>>> X_test = rng.rand(5, 10)
330
330
331
- >>> clf = SVC()
331
+ >>> clf = SVC(gamma='scale' )
332
332
>>> clf.set_params(kernel='linear').fit(X, y) # doctest: +NORMALIZE_WHITESPACE
333
333
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
334
- decision_function_shape='ovr', degree=3, gamma='auto ', kernel='linear',
334
+ decision_function_shape='ovr', degree=3, gamma='scale ', kernel='linear',
335
335
max_iter=-1, probability=False, random_state=None, shrinking=True,
336
336
tol=0.001, verbose=False)
337
337
>>> clf.predict(X_test)
338
338
array([1, 0, 1, 1, 0])
339
339
340
340
>>> clf.set_params(kernel='rbf').fit(X, y) # doctest: +NORMALIZE_WHITESPACE
341
341
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
342
- decision_function_shape='ovr', degree=3, gamma='auto ', kernel='rbf',
342
+ decision_function_shape='ovr', degree=3, gamma='scale ', kernel='rbf',
343
343
max_iter=-1, probability=False, random_state=None, shrinking=True,
344
344
tol=0.001, verbose=False)
345
345
>>> clf.predict(X_test)
346
346
array([0, 0, 0, 1, 0])
347
347
348
348
Here, the default kernel ``rbf `` is first changed to ``linear `` after the
349
- estimator has been constructed via ``SVC() ``, and changed back to ``rbf `` to
349
+ estimator has been constructed via ``SVC(gamma='scale' ) ``, and changed back to ``rbf `` to
350
350
refit the estimator and to make a second prediction.
351
351
352
352
Multiclass vs. multilabel fitting
@@ -363,7 +363,8 @@ the target data fit upon::
363
363
>>> X = [[1, 2], [2, 4], [4, 5], [3, 2], [3, 1]]
364
364
>>> y = [0, 0, 1, 1, 2]
365
365
366
- >>> classif = OneVsRestClassifier(estimator=SVC(random_state=0))
366
+ >>> classif = OneVsRestClassifier(estimator=SVC(gamma='scale',
367
+ ... random_state=0))
367
368
>>> classif.fit(X, y).predict(X)
368
369
array([0, 0, 1, 1, 2])
369
370
0 commit comments