8000 DOC Fix some example refs due to renaming examples (#11214) · scikit-learn/scikit-learn@1c61b8a · GitHub
[go: up one dir, main page]

Skip to content

Commit 1c61b8a

Browse files
lesteveqinhanmin2014
authored andcommitted
DOC Fix some example refs due to renaming examples (#11214)
1 parent b9f3758 commit 1c61b8a

File tree

10 files changed

+14
-14
lines changed

10 files changed

+14
-14
lines changed

doc/datasets/twenty_newsgroups.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -135,7 +135,7 @@ which is fast to train and achieves a decent F-score::
135135
>>> metrics.f1_score(newsgroups_test.target, pred, average='macro')
136136
0.88213592402729568
137137

138-
(The example :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py` shuffles
138+
(The example :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` shuffles
139139
the training and test data, instead of segmenting by time, and in that case
140140
multinomial Naive Bayes gets a much higher F-score of 0.88. Are you suspicious
141141
yet of what's going on inside this classifier?)
@@ -215,4 +215,4 @@ the ``--filter`` option to compare the results.
215215

216216
* :ref:`sphx_glr_auto_examples_model_selection_grid_search_text_feature_extraction.py`
217217

218-
* :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
218+
* :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`

doc/modules/clustering.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -271,7 +271,7 @@ small, as shown in the example and cited reference.
271271
* :ref:`sphx_glr_auto_examples_cluster_plot_mini_batch_kmeans.py`: Comparison of KMeans and
272272
MiniBatchKMeans
273273

274-
* :ref:`sphx_glr_auto_examples_text_document_clustering.py`: Document clustering using sparse
274+
* :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`: Document clustering using sparse
275275
MiniBatchKMeans
276276

277277
* :ref:`sphx_glr_auto_examples_cluster_plot_dict_face_patches.py`

doc/modules/decomposition.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -347,7 +347,7 @@ compensating for LSA's erroneous assumptions about textual data.
347347

348348
.. topic:: Examples:
349349

350-
* :ref:`sphx_glr_auto_examples_text_document_clustering.py`
350+
* :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`
351351

352352
.. topic:: References:
353353

doc/modules/feature_extraction.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -657,12 +657,12 @@ In particular in a **supervised setting** it can be successfully combined
657657
with fast and scalable linear models to train **document classifiers**,
658658
for instance:
659659

660-
* :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
660+
* :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
661661

662662
In an **unsupervised setting** it can be used to group similar documents
663663
together by applying clustering algorithms such as :ref:`k_means`:
664664

665-
* :ref:`sphx_glr_auto_examples_text_document_clustering.py`
665+
* :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py`
666666

667667
Finally it is possible to discover the main topics of a corpus by
668668
relaxing the hard assignment constraint of clustering, for instance by

doc/modules/feature_selection.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -198,7 +198,7 @@ alpha parameter, the fewer features selected.
198198

199199
.. topic:: Examples:
200200

201-
* :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`: Comparison
201+
* :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`: Comparison
202202
of different algorithms for document classification including L1-based
203203
feature selection.
204204

doc/modules/linear_model.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -114,7 +114,7 @@ its ``coef_`` member::
114114
.. topic:: Examples:
115115

116116< 8000 /code>
* :ref:`sphx_glr_auto_examples_linear_model_plot_ridge_path.py`
117-
* :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
117+
* :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
118118

119119

120120
Ridge Complexity

doc/modules/model_evaluation.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -565,7 +565,7 @@ false negatives and true positives as follows::
565565
for an example of using a confusion matrix to classify
566566
hand-written digits.
567567

568-
* See :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
568+
* See :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
569569
for an example of using a confusion matrix to classify text
570570
documents.
571571

@@ -598,7 +598,7 @@ and inferred labels::
598598
for an example of classification report usage for
599599
hand-written digits.
600600

601-
* See :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
601+
* See :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
602602
for an example of classification report usage for text
603603
documents.
604604

@@ -749,7 +749,7 @@ binary classification and multilabel indicator format.
749749

750750
.. topic:: Examples:
751751

752-
* See :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
752+
* See :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
753753
for an example of :func:`f1_score` usage to classify text
754754
documents.
755755

doc/modules/sgd.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -218,7 +218,7 @@ matrix format as defined in `scipy.sparse.csr_matrix
218218

219219
.. topic:: Examples:
220220

221-
- :ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
221+
- :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
222222

223223
Complexity
224224
==========

doc/tutorial/text_analytics/working_with_text_data.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -554,7 +554,7 @@ upon the completion of this tutorial:
554554
:class:`CountVectorizer`.
555555

556556
* If you don't have labels, try using
557-
:ref:`Clustering <sphx_glr_auto_examples_text_document_clustering.py>`
557+
:ref:`Clustering <sphx_glr_auto_examples_text_plot_document_clustering.py>`
558558
on your problem.
559559

560560
* If you have multiple labels per document, e.g categories, have a look

doc/whats_new/older_versions.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1273,7 +1273,7 @@ Examples
12731273

12741274
- new examples using some of the mlcomp datasets:
12751275
``sphx_glr_auto_examples_mlcomp_sparse_document_classification.py`` (since removed) and
1276-
:ref:`sphx_glr_auto_examples_text_document_classification_20newsgroups.py`
1276+
:ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
12771277

12781278
- Many more examples. `See here
12791279
<http://scikit-learn.org/stable/auto_examples/index.html>`_

0 commit comments

Comments
 (0)
0