@@ -184,9 +184,9 @@ def _iter(self, with_final=True):
184
184
if not with_final :
185
185
stop -= 1
186
186
187
- for name , trans in islice (self .steps , 0 , stop ):
187
+ for idx , ( name , trans ) in enumerate ( islice (self .steps , 0 , stop ) ):
188
188
if trans is not None and trans != 'passthrough' :
189
- yield name , trans
189
+ yield idx , name , trans
190
190
191
191
@property
192
192
def _estimator_type (self ):
@@ -219,8 +219,7 @@ def _fit(self, X, y=None, **fit_params):
219
219
step , param = pname .split ('__' , 1 )
220
220
fit_params_steps [step ][param ] = pval
221
221
Xt = X
222
- for step_idx , (name , transformer ) in enumerate (
223
- self ._iter (with_final = False )):
222
+ for step_idx , name , transformer in self ._iter (with_final = False ):
224
223
if hasattr (memory , 'location' ):
225
224
# joblib >= 0.12
226
225
if memory .location is None :
@@ -341,7 +340,7 @@ def predict(self, X, **predict_params):
341
340
y_pred : array-like
342
341
"""
343
342
Xt = X
344
- for name , transform in self ._iter (with_final = False ):
343
+ for _ , name , transform in self ._iter (with_final = False ):
345
344
Xt = transform .transform (Xt )
346
345
return self .steps [- 1 ][- 1 ].predict (Xt , ** predict_params )
347
346
@@ -390,7 +389,7 @@ def predict_proba(self, X):
390
389
y_proba : array-like, shape = [n_samples, n_classes]
391
390
"""
392
391
Xt = X
393
- for name , transform in self ._iter (with_final = False ):
392
+ for _ , name , transform in self ._iter (with_final = False ):
394
393
Xt = transform .transform (Xt )
395
394
return self .steps [- 1 ][- 1 ].predict_proba (Xt )
396
395
@@ -409,7 +408,7 @@ def decision_function(self, X):
409
408
y_score : array-like, shape = [n_samples, n_classes]
410
409
"""
411
410
Xt = X
412
- for name , transform in self ._iter (with_final = False ):
411
+ for _ , name , transform in self ._iter (with_final = False ):
413
412
Xt = transform .transform (Xt )
414
413
return self .steps [- 1 ][- 1 ].decision_function (Xt )
415
414
@@ -428,7 +427,7 @@ def predict_log_proba(self, X):
428
427
y_score : array-like, shape = [n_samples, n_classes]
429
428
"""
430
429
Xt = X
431
- for name , transform in self ._iter (with_final = False ):
430
+ for _ , name , transform in self ._iter (with_final = False ):
432
431
Xt = transform .transform (Xt )
433
432
return self .steps [- 1 ][- 1 ].predict_log_proba (Xt )
434
433
@@ -457,7 +456,7 @@ def transform(self):
457
456
458
457
def _transform (self , X ):
459
458
Xt = X
460
- for _ , transform in self ._iter ():
459
+ for _ , _ , transform in self ._iter ():
461
460
Xt = transform .transform (Xt )
462
461
return Xt
463
462
@@ -481,14 +480,14 @@ def inverse_transform(self):
481
480
"""
482
481
# raise AttributeError if necessary for hasattr behaviour
483
482
# XXX: Handling the None case means we can't use if_delegate_has_method
484
- for _ , transform in self ._iter ():
483
+ for _ , _ , transform in self ._iter ():
485
484
transform .inverse_transform
486
485
return self ._inverse_transform
487
486
488
487
def _inverse_transform (self , X ):
489
488
Xt = X
490
489
reverse_iter = reversed (list (self ._iter ()))
491
- for _ , transform in reverse_iter :
490
+ for _ , _ , transform in reverse_iter :
492
491
Xt = transform .inverse_transform (Xt )
493
492
return Xt
494
493
@@ -515,7 +514,7 @@ def score(self, X, y=None, sample_weight=None):
515
514
score : float
516
515
"""
517
516
Xt = X
518
- for name , transform in self ._iter (with_final = False ):
517
+ for _ , name , transform in self ._iter (with_final = False ):
519
518
Xt = transform .transform (Xt )
520
519
score_params = {}
521
520
if sample_weight is not None :
0 commit comments