@@ -1270,6 +1270,39 @@ def test_normalize():
1270
1270
assert_raises (ValueError , normalize , [[0 ]], norm = 'l3' )
1271
1271
1272
1272
1273
+ def test_normalize_l1 ():
1274
+ rs = np .random .RandomState (0 )
1275
+ X_dense = rs .rand (10 , 5 )
1276
+ X_sparse = sparse .csr_matrix (X_dense )
1277
+ ones = np .ones ((10 ))
1278
+ for X in (X_dense , X_sparse ):
1279
+ for dtype in (np .float32 , np .float64 ):
1280
+ X = X .astype (dtype )
1281
+ X_norm = normalize (X , norm = 'l1' )
1282
+ assert_equal (X_norm .dtype , dtype )
1283
+
1284
+ X_norm = toarray (X_norm )
1285
+ row_sums = np .abs (X_norm ).sum (axis = 1 )
1286
+ assert_array_almost_equal (row_sums , ones )
1287
+
1288
+
1289
+ def test_normalize_l2 ():
1290
+ rs = np .random .RandomState (0 )
1291
+ X_dense = rs .rand (10 , 5 )
1292
+ X_sparse = sparse .csr_matrix (X_dense )
1293
+ ones = np .ones ((10 ))
1294
+ for X in (X_dense , X_sparse ):
1295
+ for dtype in (np .float32 , np .float64 ):
1296
+ X = X .astype (dtype )
1297
+ X_norm = normalize (X , norm = 'l2' )
1298
+ assert_equal (X_norm .dtype , dtype )
1299
+
1300
+ X_norm = toarray (X_norm )
1301
+ X_norm_squared = X_norm ** 2
1302
+ row_sums = X_norm_squared .sum (axis = 1 )
1303
+ assert_array_almost_equal (row_sums , ones )
1304
+
1305
+
1273
1306
def test_binarizer ():
1274
1307
X_ = np .array ([[1 , 0 , 5 ], [2 , 3 , - 1 ]])
1275
1308
0 commit comments