8000 Fix failure in svd-based ridge solver w/ old numpy. · scikit-learn/scikit-learn@163a68e · GitHub
[go: up one dir, main page]

Skip to content

Commit 163a68e

Browse files
committed
Fix failure in svd-based ridge solver w/ old numpy.
1 parent 6e1ca5d commit 163a68e

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

sklearn/linear_model/ridge.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -157,12 +157,12 @@ def _solve_dense_cholesky_kernel(K, y, alpha, sample_weight=None):
157157
def _solve_svd(X, y, alpha):
158158
U, s, Vt = linalg.svd(X, full_matrices=False)
159159
idx = s <= 1e-15 # same default value as scipy.linalg.pinv
160-
UTy = U.T.dot(y)
160+
UTy = np.dot(U.T, y)
161161
s[idx] = 0.
162162
d = s[:, np.newaxis] / (s[:, np.newaxis] ** 2 + alpha)
163163

164164
d_UT_y = d * UTy
165-
return Vt.T.dot(d_UT_y).T
165+
return np.dot(Vt.T, d_UT_y).T
166166

167167

168168
def ridge_regression(X, y, alpha, sample_weight=1.0, solver='auto',

0 commit comments

Comments
 (0)
0