6
6
from numpy .testing import assert_array_equal
7
7
import scipy .sparse as sp
8
8
9
- from sklearn .utils .seq_dataset import ArrayDataset64 as ArrayDataset
10
- from sklearn .utils .seq_dataset import CSRDataset64 as CSRDataset
9
+ from sklearn .utils .seq_dataset import ArrayDataset64
10
+ from sklearn .utils .seq_dataset import CSRDataset64
11
11
from sklearn .utils .seq_dataset import ArrayDataset32
12
12
13
13
from sklearn .datasets import load_iris
@@ -35,8 +35,8 @@ def assert_csr_equal(X, Y):
35
35
36
36
37
37
def test_seq_dataset ():
38
- dataset1 = ArrayDataset (X , y , sample_weight , seed = 42 )
39
- dataset2 = CSRDataset (X_csr .data , X_csr .indptr , X_csr .indices ,
38
+ dataset1 = ArrayDataset64 (X , y , sample_weight , seed = 42 )
39
+ dataset2 = CSRDataset64 (X_csr .data , X_csr .indptr , X_csr .indices ,
40
40
y , sample_weight , seed = 42 )
41
41
42
42
for dataset in (dataset1 , dataset2 ):
@@ -59,8 +59,8 @@ def test_seq_dataset():
59
59
60
60
61
61
def test_seq_dataset_shuffle ():
62
- dataset1 = ArrayDataset (X , y , sample_weight , seed = 42 )
63
- dataset2 = CSRDataset (X_csr .data , X_csr .indptr , X_csr .indices ,
62
+ dataset1 = ArrayDataset64 (X , y , sample_weight , seed = 42 )
63
+ dataset2 = CSRDataset64 (X_csr .data , X_csr .indptr , X_csr .indices ,
64
64
y , sample_weight , seed = 42 )
65
65
66
66
# not shuffled
@@ -91,7 +91,7 @@ def test_seq_dataset_shuffle():
91
91
92
92
def test_fused_types_consistency ():
93
93
dataset32 = ArrayDataset32 (X32 , y32 , sample_weight32 , seed = 42 )
94
- dataset64 = ArrayDataset (X , y , sample_weight , seed = 42 )
94
+ dataset64 = ArrayDataset64 (X , y , sample_weight , seed = 42 )
95
95
96
96
for i in range (5 ):
97
97
# next sample
0 commit comments