@@ -301,7 +301,7 @@ def fit(self, X, y, coef_init=None, intercept_init=None):
301
301
302
302
303
303
class PassiveAggressiveRegressor (BaseSGDRegressor ):
304
- """Passive Aggressive Regressor
304
+ """Passive Aggressive Regressor.
305
305
306
306
Read more in the :ref:`User Guide <passive_aggressive>`.
307
307
@@ -352,7 +352,7 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):
352
352
shuffle : bool, default=True
353
353
Whether or not the training data should be shuffled after each epoch.
354
354
355
- verbose : integer , default=0
355
+ verbose : int , default=0
356
356
The verbosity level.
357
357
358
358
loss : str, default="epsilon_insensitive"
@@ -416,6 +416,17 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):
416
416
Number of weight updates performed during training.
417
417
Same as ``(n_iter_ * n_samples)``.
418
418
419
+ See Also
420
+ --------
421
+ SGDRegressor : Linear model fitted by minimizing a regularized
422
+ empirical loss with SGD.
423
+
424
+ References
425
+ ----------
426
+ Online Passive-Aggressive Algorithms
427
+ <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
428
+ K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006).
429
+
419
430
Examples
420
431
--------
421
432
>>> from sklearn.linear_model import PassiveAggressiveRegressor
@@ -432,18 +443,6 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):
432
443
[-0.02306214]
433
444
>>> print(regr.predict([[0, 0, 0, 0]]))
434
445
[-0.02306214]
435
-
436
- See Also
437
- --------
438
- SGDRegressor : Linear model fitted by minimizing a regularized
439
- empirical loss with SGD.
440
-
441
- References
442
- ----------
443
- Online Passive-Aggressive Algorithms
444
- <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
445
- K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006).
446
-
447
446
"""
448
447
449
448
def __init__ (
0 commit comments