8000 DOC Ensures that PassiveAggressiveRegressor passes numpydoc validatio… · scikit-learn/scikit-learn@14fda2f · GitHub
[go: up one dir, main page]

Skip to content

Commit 14fda2f

Browse files
g4brielvsglemaitre
andcommitted
DOC Ensures that PassiveAggressiveRegressor passes numpydoc validation (#21413)
Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com>
1 parent 112ae4e commit 14fda2f

File tree

2 files changed

+13
-15
lines changed

2 files changed

+13
-15
lines changed

maint_tools/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,6 @@
1111
DOCSTRING_IGNORE_LIST = [
1212
"LabelSpreading",
1313
"MultiTaskElasticNetCV",
14-
"PassiveAggressiveRegressor",
1514
"SpectralCoclustering",
1615
"SpectralEmbedding",
1716
"StackingRegressor",

sklearn/linear_model/_passive_aggressive.py

Lines changed: 13 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -301,7 +301,7 @@ def fit(self, X, y, coef_init=None, intercept_init=None):
301301

302302

303303
class PassiveAggressiveRegressor(BaseSGDRegressor):
304-
"""Passive Aggressive Regressor
304+
"""Passive Aggressive Regressor.
305305
306306
Read more in the :ref:`User Guide <passive_aggressive>`.
307307
@@ -352,7 +352,7 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):
352352
shuffle : bool, default=True
353353
Whether or not the training data should be shuffled after each epoch.
354354
355-
verbose : integer, default=0
355+
verbose : int, default=0
356356
The verbosity level.
357357
358358
loss : str, default="epsilon_insensitive"
@@ -416,6 +416,17 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):
416416
Number of weight updates performed during training.
417417
Same as ``(n_iter_ * n_samples)``.
418418
419+
See Also
420+
--------
421+
SGDRegressor : Linear model fitted by minimizing a regularized
422+
empirical loss with SGD.
423+
424+
References
425+
----------
426+
Online Passive-Aggressive Algorithms
427+
<http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
428+
K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006).
429+
419430
Examples
420431
--------
421432
>>> from sklearn.linear_model import PassiveAggressiveRegressor
@@ -432,18 +443,6 @@ class PassiveAggressiveRegressor(BaseSGDRegressor):
432443
[-0.02306214]
433444
>>> print(regr.predict([[0, 0, 0, 0]]))
434445
[-0.02306214]
435-
436-
See Also
437-
--------
438-
SGDRegressor : Linear model fitted by minimizing a regularized
439-
empirical loss with SGD.
440-
441-
References
442-
----------
443-
Online Passive-Aggressive Algorithms
444-
<http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf>
445-
K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006).
446-
447446
"""
448447

449448
def __init__(

0 commit comments

Comments
 (0)
0