8000 Shrink precision_recall_fscore_support's doc again · scikit-learn/scikit-learn@1250974 · GitHub
[go: up one dir, main page]

Skip to content

Commit 1250974

Browse files
committed
Shrink precision_recall_fscore_support's doc again
1 parent b649df6 commit 1250974

File tree

1 file changed

+2
-7
lines changed

1 file changed

+2
-7
lines changed

sklearn/metrics/classification.py

Lines changed: 2 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -822,14 +822,9 @@ def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None,
822822
>>> precision_recall_fscore_support(y_true, y_pred, average='weighted')
823823
... # doctest: +ELLIPSIS
824824
(0.22..., 0.33..., 0.26..., None)
825-
>>> precision_recall_fscore_support(y_true, y_pred, average=None)
826-
... # doctest: +ELLIPSIS,+NORMALIZE_WHITESPACE
827-
(array([ 0.66..., 0. , 0. ]),
828-
array([ 1., 0., 0.]),
829-
array([ 0.8, 0. , 0. ]),
830-
array([2, 2, 2]))
831825
832-
You can also specify an order for labels:
826+
It is possible to compute per-label precisions, recalls, F1-scores and
827+
supports instead of averaging:
833828
>>> precision_recall_fscore_support(y_true, y_pred, average=None,
834829
... labels=['pig', 'dog', 'cat'])
835830
... # doctest: +ELLIPSIS,+NORMALIZE_WHITESPACE

0 commit comments

Comments
 (0)
0