8000 Use empty_like in PolynomialFeatures for nep18 compatibility · scikit-learn/scikit-learn@1183d81 · GitHub
[go: up one dir, main page]

Skip to content

Commit 1183d81

Browse files
Use empty_like in PolynomialFeatures for nep18 compatibility
1 parent 1bb56c3 commit 1183d81

File tree

1 file changed

+3
-2
lines changed

1 file changed

+3
-2
lines changed

sklearn/pr 8000 eprocessing/_data.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,7 @@
2323
from ..utils import check_array
2424
from ..utils.extmath import row_norms
2525
from ..utils.extmath import _incremental_mean_and_var
26+
from ..utils.fixes import empty_like
2627
from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1,
2728
inplace_csr_row_normalize_l2)
2829
from ..utils.sparsefuncs import (inplace_column_scale,
@@ -1585,8 +1586,8 @@ def transform(self, X):
15851586
columns.append(bias)
15861587
XP = sparse.hstack(columns, dtype=X.dtype).tocsc()
15871588
else:
1588-
XP = np.empty((n_samples, self.n_output_features_),
1589-
dtype=X.dtype, order=self.order)
1589+
XP = empty_like(X, order=self.order,
1590+
shape=(n_samples, self.n_output_features_))
15901591

15911592
# What follows is a faster implementation of:
15921593
# for i, comb in enumerate(combinations):

0 commit comments

Comments
 (0)
0