@@ -242,51 +242,51 @@ class AffinityPropagation(ClusterMixin, BaseEstimator):
242
242
243
243
Parameters
244
244
----------
245
- damping : float, optional, default: 0.5
245
+ damping : float, default= 0.5
246
246
Damping factor (between 0.5 and 1) is the extent to
247
247
which the current value is maintained relative to
248
248
incoming values (weighted 1 - damping). This in order
249
249
to avoid numerical oscillations when updating these
250
250
8000
values (messages).
251
251
252
- max_iter : int, optional, default: 200
252
+ max_iter : int, default= 200
253
253
Maximum number of iterations.
254
254
255
- convergence_iter : int, optional, default: 15
255
+ convergence_iter : int, default= 15
256
256
Number of iterations with no change in the number
257
257
of estimated clusters that stops the convergence.
258
258
259
- copy : boolean, optional, default: True
259
+ copy : bool, default= True
260
260
Make a copy of input data.
261
261
262
- preference : array-like, shape (n_samples,) or float, optional
262
+ preference : array-like of shape (n_samples,) or float, default=None
263
263
Preferences for each point - points with larger values of
264
264
preferences are more likely to be chosen as exemplars. The number
265
265
of exemplars, ie of clusters, is influenced by the input
266
266
preferences value. If the preferences are not passed as arguments,
267
267
they will be set to the median of the input similarities.
268
268
269
- affinity : string, optional , default=`` euclidean``
270
- Which affinity to use. At the moment `` precomputed`` and
271
- ``euclidean`` are supported. `` euclidean`` uses the
269
+ affinity : {'euclidean', 'precomputed'} , default=' euclidean'
270
+ Which affinity to use. At the moment ' precomputed' and
271
+ ``euclidean`` are supported. ' euclidean' uses the
272
272
negative squared euclidean distance between points.
273
273
274
- verbose : boolean, optional, default: False
274
+ verbose : bool, default= False
275
275
Whether to be verbose.
276
276
277
277
278
278
Attributes
279
279
----------
280
- cluster_centers_indices_ : array, shape (n_clusters,)
280
+ cluster_centers_indices_ : ndarray of shape (n_clusters,)
281
281
Indices of cluster centers
282
282
283
- cluster_centers_ : array, shape (n_clusters, n_features)
283
+ cluster_centers_ : ndarray of shape (n_clusters, n_features)
284
284
Cluster centers (if affinity != ``precomputed``).
285
285
286
- labels_ : array, shape (n_samples,)
286
+ labels_ : ndarray of shape (n_samples,)
287
287
Labels of each point
288
288
289
- affinity_matrix_ : array, shape (n_samples, n_samples)
289
+ affinity_matrix_ : ndarray of shape (n_samples, n_samples)
290
290
Stores the affinity matrix used in ``fit``.
291
291
292
292
n_iter_ : int
0 commit comments