@@ -153,6 +153,27 @@ Changelog
153153- |Enhancement | Added the parameter `fill_value ` to :class: `impute.IterativeImputer `.
154154 :pr: `25232 ` by :user: `Thijs van Weezel <ValueInvestorThijs> `.
155155
156+ :mod: `sklearn.linear_model `
157+ ...........................
158+
159+ - |Enhancement | :class: `linear_model.LogisticRegression `,
160+ :class: `linear_model.LogisticRegressionCV `, :class: `linear_model.GammaRegressor `,
161+ :class: `linear_model.PoissonRegressor ` and :class: `linear_model.TweedieRegressor ` got
162+ a new solver `solver="newton-lsmr" `. This is a 2nd order (Newton) optimisation
163+ routine that uses the iterative LSMR algorithm: To find the Newton direction in each
164+ step, the 2nd order equation is cast as a least squares problem and solved
165+ iteratively, therefore called iteratively reweighted least squares (IRLS), via LSMR.
166+ Due to using LSMR, only matrix-vector multiplications are used and sparse matrices
167+ are supported as well. Especially for multiclass problems it might be worth a try.
168+ :pr: `25462 ` by :user: `Christian Lorentzen <lorentzenchr> `.
169+
170+ - |Enhancement | :class: `linear_model.GammaRegressor `,
171+ :class: `linear_model.PoissonRegressor ` and :class: `linear_model.TweedieRegressor `
172+ as well as :class: `linear_model.LogisticRegression ` and
173+ :class: `linear_model.LogisticRegressionCV ` can reach higher precision with the lbfgs solver, in particular when `tol ` is set
174+ to a tiny value. Moreover, `verbose ` is now properly propagated to L-BFGS-B.
175+ :pr: `23619 ` by :user: `Christian Lorentzen <lorentzenchr> `.
176+
156177:mod: `sklearn.metrics `
157178......................
158179
0 commit comments