@@ -836,34 +836,26 @@ def test_ridge_fit_intercept_sparse():
836
836
assert_array_almost_equal (dense .coef_ , sparse .coef_ )
837
837
838
838
839
- @pytest .mark .parametrize ('return_intercept' , [True , False ])
840
- @pytest .mark .parametrize ('sample_weight' , [None , np .random . rand (1000 )])
839
+ @pytest .mark .parametrize ('return_intercept' , [False , True ])
840
+ @pytest .mark .parametrize ('sample_weight' , [None , np .ones (1000 )])
841
841
@pytest .mark .parametrize ('arr_type' , [np .array , sp .csr_matrix ])
842
842
def test_ridge_check_auto_modes (return_intercept , sample_weight , arr_type ):
843
- X , y = make_regression (n_samples = 1000 , n_features = 2 , n_informative = 2 ,
844
- bias = 10. , random_state = 42 )
845
-
846
- X_target = arr_type (X )
847
-
848
- ref_model = ridge_regression (X , y , 1 ,
849
- solver = 'cholesky' ,
850
- sample_weight = sample_weight ,
851
- return_intercept = return_intercept
852
- )
843
+ X = np .random .rand (1000 , 3 )
844
+ true_coefs = [1 , 2 , 0.1 ]
845
+ y = np .dot (X , true_coefs )
846
+ X_testing = arr_type (X )
853
847
854
- tested = ridge_regression (X , y , 1 ,
848
+ target = ridge_regression (X_testing , y , 1 ,
855
849
solver = 'auto' ,
856
850
sample_weight = sample_weight ,
857
851
return_intercept = return_intercept
858
852
)
859
853
try :
860
- assert_array_almost_equal (ref_model [0 ], tested [0 ])
861
- assert_almost_equal (ref_model [1 ], tested [1 ])
862
- except IndexError :
863
- assert_array_almost_equal (ref_model [0 ], tested [0 ])
864
-
865
-
866
-
854
+ coef , intercept = target
855
+ assert_array_almost_equal (coef , true_coefs , decimal = 1 )
856
+ assert_array_almost_equal (intercept , 0 , decimal = 1 )
857
+ except ValueError :
858
+ assert_array_almost_equal (target , true_coefs , decimal = 1 )
867
859
868
860
869
861
def test_errors_and_values_helper ():
0 commit comments