8000 DOC Ensure TheilSenRegressor passes numpydoc validation (#21087) · scikit-learn/scikit-learn@07f4e4c · GitHub
[go: up one dir, main page]

Skip to content

Commit 07f4e4c

Browse files
DOC Ensure TheilSenRegressor passes numpydoc validation (#21087)
Co-authored-by: frellwan <frellwan@hotmail.com>
1 parent dfa83e0 commit 07f4e4c

File tree

2 files changed

+14
-8
lines changed

2 files changed

+14
-8
lines changed

maint_tools/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,6 @@
4545
"SplineTransformer",
4646
"StackingClassifier",
4747
"StackingRegressor",
48-
"TheilSenRegressor",
4948
"TransformedTargetRegressor",
5049
"TweedieRegressor",
5150
]

sklearn/linear_model/_theil_sen.py

Lines changed: 14 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -255,7 +255,7 @@ class TheilSenRegressor(RegressorMixin, LinearModel):
255255
A random number generator instance to define the state of the random
256256
permutations generator. Pass an int for reproducible output across
257257
multiple function calls.
258-
See :term:`Glossary <random_state>`
258+
See :term:`Glossary <random_state>`.
259259
260260
n_jobs : int, default=None
261261
Number of CPUs to use during the cross validation.
@@ -295,6 +295,18 @@ class TheilSenRegressor(RegressorMixin, LinearModel):
295295
296296
.. versionadded:: 1.0
297297
298+
See Also
299+
--------
300+
HuberRegressor : Linear regression model that is robust to outliers.
301+
RANSACRegressor : RANSAC (RANdom SAmple Consensus) algorithm.
302+
SGDRegressor : Fitted by minimizing a regularized empirical loss with SGD.
303+
304+
References
305+
----------
306+
- Theil-Sen Estimators in a Multiple Linear Regression Model, 2009
307+
Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang
308+
http://home.olemiss.edu/~xdang/papers/MTSE.pdf
309+
298310
Examples
299311
--------
300312
>>> from sklearn.linear_model import TheilSenRegressor
@@ -306,12 +318,6 @@ class TheilSenRegressor(RegressorMixin, LinearModel):
306318
0.9884...
307319
>>> reg.predict(X[:1,])
308320
array([-31.5871...])
309-
310-
References
311-
----------
312-
- Theil-Sen Estimators in a Multiple Linear Regression Model, 2009
313-
Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang
314-
http://home.olemiss.edu/~xdang/papers/MTSE.pdf
315321
"""
316322

317323
def __init__(
@@ -394,6 +400,7 @@ def fit(self, X, y):
394400
Returns
395401
-------
396402
self : returns an instance of self.
403+
Fitted `TheilSenRegressor` estimator.
397404
"""
398405
random_state = check_random_state(self.random_state)
399406
X, y = self._validate_data(X, y, y_numeric=True)

0 commit comments

Comments
 (0)
0