@@ -255,7 +255,7 @@ class TheilSenRegressor(RegressorMixin, LinearModel):
255
255
A random number generator instance to define the state of the random
256
256
permutations generator. Pass an int for reproducible output across
257
257
multiple function calls.
258
- See :term:`Glossary <random_state>`
258
+ See :term:`Glossary <random_state>`.
259
259
260
260
n_jobs : int, default=None
261
261
Number of CPUs to use during the cross validation.
@@ -295,6 +295,18 @@ class TheilSenRegressor(RegressorMixin, LinearModel):
295
295
296
296
.. versionadded:: 1.0
297
297
298
+ See Also
299
+ --------
300
+ HuberRegressor : Linear regression model that is robust to outliers.
301
+ RANSACRegressor : RANSAC (RANdom SAmple Consensus) algorithm.
302
+ SGDRegressor : Fitted by minimizing a regularized empirical loss with SGD.
303
+
304
+ References
305
+ ----------
306
+ - Theil-Sen Estimators in a Multiple Linear Regression Model, 2009
307
+ Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang
308
+ http://home.olemiss.edu/~xdang/papers/MTSE.pdf
309
+
298
310
Examples
299
311
--------
300
312
>>> from sklearn.linear_model import TheilSenRegressor
@@ -306,12 +318,6 @@ class TheilSenRegressor(RegressorMixin, LinearModel):
306
318
0.9884...
307
319
>>> reg.predict(X[:1,])
308
320
array([-31.5871...])
309
-
310
- References
311
- ----------
312
- - Theil-Sen Estimators in a Multiple Linear Regression Model, 2009
313
- Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang
314
- http://home.olemiss.edu/~xdang/papers/MTSE.pdf
315
321
"""
316
322
317
323
def __init__ (
@@ -394,6 +400,7 @@ def fit(self, X, y):
394
400
Returns
395
401
-------
396
402
self : returns an instance of self.
403
+ Fitted `TheilSenRegressor` estimator.
397
404
"""
398
405
random_state = check_random_state (self .random_state )
399
406
X , y = self ._validate_data (X , y , y_numeric = True )
0 commit comments