@@ -68,8 +68,9 @@ full covariance.
68
68
* See :ref: `sphx_glr_auto_examples_mixture_plot_gmm_pdf.py ` for an example on plotting the
69
69
density estimation.
70
70
71
- Pros and cons of class :class: `GaussianMixture `
72
- -----------------------------------------------
71
+ |details-start |
72
+ **Pros and cons of class :class:`GaussianMixture` **
73
+ |details-split |
73
74
74
75
Pros
75
76
....
93
94
or information theoretical criteria to decide how many components to use
94
95
in the absence of external cues.
95
96
96
- Selecting the number of components in a classical Gaussian Mixture Model
97
- ------------------------------------------------------------------------
97
+ |details-end |
98
+
99
+ |details-start |
100
+ **Selecting the number of components in a classical Gaussian Mixture model **
101
+ |details-split |
98
102
99
103
The BIC criterion can be used to select the number of components in a Gaussian
100
104
Mixture in an efficient way. In theory, it recovers the true number of
@@ -116,8 +120,11 @@ model.
116
120
117
121
.. _expectation_maximization :
118
122
119
- Estimation algorithm Expectation-maximization
120
- -----------------------------------------------
10000
123
+ |details-end |
124
+
125
+ |details-start |
126
+ **Estimation algorithm expectation-maximization **
127
+ |details-split |
121
128
122
129
The main difficulty in learning Gaussian mixture models from unlabeled
123
130
data is that one usually doesn't know which points came from
@@ -135,8 +142,11 @@ parameters to maximize the likelihood of the data given those
135
142
assignments. Repeating this process is guaranteed to always converge
136
143
to a local optimum.
137
144
138
- Choice of the Initialization Method
139
- -----------------------------------
145
+ |details-end |
146
+
147
+ |details-start |
148
+ **Choice of the Initialization method **
149
+ |details-split |
140
150
141
151
There is a choice of four initialization methods (as well as inputting user defined
142
152
initial means) to generate the initial centers for the model components:
@@ -174,6 +184,8 @@ random
174
184
175
185
.. _bgmm :
176
186
187
+ |details-end |
188
+
177
189
Variational Bayesian Gaussian Mixture
178
190
=====================================
179
191
@@ -183,8 +195,9 @@ similar to the one defined by :class:`GaussianMixture`.
183
195
184
196
.. _variational_inference :
185
197
186
- Estimation algorithm: variational inference
187
- ---------------------------------------------
198
+ |details-start |
199
+ **Estimation algorithm: variational inference **
200
+ |details-split |
188
201
189
202
Variational inference is an extension of expectation-maximization that
190
203
maximizes a lower bound on model evidence (including
@@ -282,9 +295,11 @@ from the two resulting mixtures.
282
295
``weight_concentration_prior_type `` for different values of the parameter
283
296
``weight_concentration_prior ``.
284
297
298
+ |details-end |
285
299
286
- Pros and cons of variational inference with :class: `BayesianGaussianMixture `
287
- ----------------------------------------------------------------------------
300
+ |details-start |
301
+ **Pros and cons of variational inference with :class:`BayesianGaussianMixture` **
302
+ |details-split |
288
303
289
304
Pros
290
305
.....
@@ -324,11 +339,13 @@ Cons
324
339
these biases and the data it might be possible to fit better models using a
325
340
finite mixture.
326
341
342
+ |details-end |
327
343
328
344
.. _dirichlet_process :
329
345
330
- The Dirichlet Process
331
- ---------------------
346
+ |details-start |
347
+ **The Dirichlet Process **
348
+ |details-split |
332
349
333
350
Here we describe variational inference algorithms on Dirichlet process
334
351
mixture. The Dirichlet process is a prior probability distribution on
@@ -361,3 +378,5 @@ use, one just specifies the concentration parameter and an upper bound
361
378
on the number of mixture components (this upper bound, assuming it is
362
379
higher than the "true" number of components, affects only algorithmic
363
380
complexity, not the actual number of components used).
381
+
382
+ |details-end |
0 commit comments