8000 Validate sample weight with check_sample weight in kernel_ridge (#16154) · scikit-learn/scikit-learn@00fe3d6 · GitHub
[go: up one dir, main page]

Skip to content

Commit 00fe3d6

Browse files
lithomas1jeremiedbb
authored andcommitted
Validate sample weight with check_sample weight in kernel_ridge (#16154)
1 parent 882a675 commit 00fe3d6

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

sklearn/kernel_ridge.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,8 +9,8 @@
99
from .base import BaseEstimator, RegressorMixin, MultiOutputMixin
1010
from .metrics.pairwise import pairwise_kernels
1111
from .linear_model._ridge import _solve_cholesky_kernel
12-
from .utils import check_array, check_X_y
13-
from .utils.validation import check_is_fitted
12+
from .utils import check_X_y
13+
from .utils.validation import check_is_fitted, _check_sample_weight
1414

1515

1616
class KernelRidge(MultiOutputMixin, RegressorMixin, BaseEstimator):
@@ -151,7 +151,7 @@ def fit(self, X, y=None, sample_weight=None):
151151
X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True,
152152
y_numeric=True)
153153
if sample_weight is not None and not isinstance(sample_weight, float):
154-
sample_weight = check_array(sample_weight, ensure_2d=False)
154+
sample_weight = _check_sample_weight(sample_weight, X)
155155

156156
K = self._get_kernel(X)
157157
alpha = np.atleast_1d(self.alpha)

0 commit comments

Comments
 (0)
0