@@ -114,25 +114,34 @@ def _check_estimator(estimator):
114
114
class _ConstantPredictor (BaseEstimator ):
115
115
116
116
def fit (self , X , y ):
117
- self ._check_n_features (X , reset = True )
117
+ check_params = dict (force_all_finite = False , dtype = None ,
118
+ ensure_2d = False , accept_sparse = True )
119
+ self ._validate_data (X , y , reset = True ,
120
+ validate_separately = (check_params , check_params ))
118
121
self .y_ = y
119
122
return self
120
123
121
124
def predict (self , X ):
122
125
check_is_fitted (self )
123
- self ._check_n_features (X , reset = True )
126
+ self ._validate_data (X , force_all_finite = False , dtype = None ,
127
+ accept_sparse = True ,
128
+ ensure_2d = False , reset = False )
124
129
125
130
return np .repeat (self .y_ , _num_samples (X ))
126
131
127
132
def decision_function (self , X ):
128
133
check_is_fitted (self )
129
- self ._check_n_features (X , reset = True )
134
+ self ._validate_data (X , force_all_finite = False , dtype = None ,
135
+ accept_sparse = True ,
136
+ ensure_2d = False , reset = False )
130
137
131
138
return np .repeat (self .y_ , _num_samples (X ))
132
139
133
140
def predict_proba (self , X ):
134
141
check_is_fitted (self )
135
- self ._check_n_features (X , reset = True )
142
+ self ._validate_data (X , force_all_finite = False , dtype = None ,
143
+ accept_sparse = True ,
144
+ ensure_2d = False , reset = False )
136
145
137
146
return np .repeat ([np .hstack ([1 - self .y_ , self .y_ ])],
138
147
_num_samples (X ), axis = 0 )
0 commit comments