@@ -1155,7 +1155,8 @@ def pairwise_distances_blockwise(X, Y=None, metric='euclidean', n_jobs=1,
1155
1155
Array of pairwise distances between samples, or a feature array.
1156
1156
1157
1157
Y : array [n_samples_b, n_features], optional
1158
- An optional second feature array. Only allowed if metric != "precomputed".
1158
+ An optional second feature array. Only allowed if
1159
+ metric != "precomputed".
1159
1160
1160
1161
metric : string, or callable
1161
1162
The metric to use when calculating distance between instances in a
@@ -1190,10 +1191,10 @@ def pairwise_distances_blockwise(X, Y=None, metric='euclidean', n_jobs=1,
1190
1191
Returns
1191
1192
-------
1192
1193
D : generator of blocks based on the ``block_size`` parameter. The blocks,
1193
- when concatenated, produce a distance matrix D such that D_{i, j} is the
1194
- distance between the ith and jth vectors of the given matrix X, if Y is
1195
- None. If Y is not None, then D_{i, j} is the distance between the ith
1196
- array from X and the jth array from Y.
1194
+ when concatenated, produce a distance matrix D such that D_{i, j} is
1195
+ the distance between the ith and jth vectors of the given matrix X, if
1196
+ Y is None. If Y is not None, then D_{i, j} is the distance between the
1197
+ ith array from X and the jth array from Y.
1197
1198
1198
1199
"""
1199
1200
n_samples = X .shape [0 ]
@@ -1253,7 +1254,8 @@ def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds):
1253
1254
Array of pairwise distances between samples, or a feature array.
1254
1255
1255
1256
Y : array [n_samples_b, n_features], optional
1256
- An optional second feature array. Only allowed if metric != "precomputed".
1257
+ An optional second feature array. Only allowed if
1258
+ metric != "precomputed".
1257
1259
1258
1260
metric : string, or callable
1259
1261
The metric to use when calculating distance between instances in a
0 commit comments