E56B DOC Ensures that AdaBoostClassifier passes numpydoc validation (#20374) · samronsin/scikit-learn@b11b1fc · GitHub
[go: up one dir, main page]

Skip to content

Commit b11b1fc

Browse files
j3nnn1glemaitre
authored andcommitted
DOC Ensures that AdaBoostClassifier passes numpydoc validation (scikit-learn#20374)
Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com>
1 parent cad1277 commit b11b1fc

File tree

2 files changed

+1
-2
lines changed

2 files changed

+1
-2
lines changed

maint_tools/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,6 @@
1010
# List of modules ignored when checking for numpydoc validation.
1111
DOCSTRING_IGNORE_LIST = [
1212
"ARDRegression",
13-
"AdaBoostClassifier",
1413
"AdaBoostRegressor",
1514
"AdditiveChi2Sampler",
1615
"AffinityPropagation",

sklearn/ensemble/_weight_boosting.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -328,7 +328,7 @@ class AdaBoostClassifier(ClassifierMixin, BaseWeightBoosting):
328328
The maximum number of estimators at which boosting is terminated.
329329
In case of perfect fit, the learning procedure is stopped early.
330330
331-
learning_rate : float, default=1.
331+
learning_rate : float, default=1.0
332332
Weight applied to each classifier at each boosting iteration. A higher
333333
learning rate increases the contribution of each classifier. There is
334334
a trade-off between the `learning_rate` and `n_estimators` parameters.

0 commit comments

Comments
 (0)
0