8000
We read every piece of feedback, and take your input very seriously.
1 parent 812e637 commit 5048c92Copy full SHA for 5048c92
sklearn/calibration.py
@@ -148,6 +148,12 @@ class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator)
148
149
.. versionadded:: 0.24
150
151
+ feature_names_in_ : ndarray of shape (`n_features_in_`,)
152
+ Names of features seen during :term:`fit`. Only defined if the
153
+ underlying base_estimator exposes such an attribute when fit.
154
+
155
+ .. versionadded:: 1.0
156
157
calibrated_classifiers_ : list (len() equal to cv or 1 if `cv="prefit"` \
158
or `ensemble=False`)
159
The list of classifier and calibrator pairs.
sklearn/cluster/_affinity_propagation.py
@@ -332,6 +332,12 @@ class AffinityPropagation(ClusterMixin, BaseEstimator):
332
333
334
335
336
+ Names of features seen during :term:`fit`. Defined only when `X`
337
+ has feature names that are all strings.
338
339
340
341
See Also
342
--------
343
AgglomerativeClustering : Recursively merges the pair of
sklearn/cluster/_agglomerative.py
@@ -812,6 +812,12 @@ class AgglomerativeClustering(ClusterMixin, BaseEstimator):
812
813
814
815
816
817
818
819
820
821
children_ : array-like of shape (n_samples-1, 2)
822
The children of each non-leaf node. Values less than `n_samples`
823
correspond to leaves of the tree which are the original samples.
@@ -1098,6 +1104,12 @@ class FeatureAgglomeration(AgglomerativeClustering, AgglomerationTransform):
1098
1104
1099
1105
1100
1106
1107
1108
1109
1110
1111
1112
1101
1113
children_ : array-like of shape (n_nodes-1, 2)
1102
1114
The children of each non-leaf node. Values less than `n_features`
1103
1115
sklearn/cluster/_bicluster.py
@@ -278,6 +278,12 @@ class SpectralCoclustering(BaseSpectral):
278
279
280
281
282
283
284
285
286
287
Examples
288
289
>>> from sklearn.cluster import SpectralCoclustering
@@ -427,6 +433,12 @@ class SpectralBiclustering(BaseSpectral):
427
433
428
434
429
435
436
437
438
439
440
441
430
442
431
443
432
444
>>> from sklearn.cluster import SpectralBiclustering
sklearn/cluster/_birch.py
@@ -416,6 +416,12 @@ class Birch(ClusterMixin, TransformerMixin, BaseEstimator):
416
417
418
419
420
421
422
423
424
425
426
MiniBatchKMeans : Alternative implementation that does incremental updates
sklearn/cluster/_dbscan.py
@@ -239,6 +239,12 @@ class DBSCAN(ClusterMixin, BaseEstimator):
239
240
241
242
243
244
245
246
247
248
249
250
OPTICS : A similar clustering at multiple values of eps. Our implementation
sklearn/cluster/_kmeans.py
@@ -856,6 +856,12 @@ class KMeans(TransformerMixin, ClusterMixin, BaseEstimator):
856
857
858
859
860
861
862
863
864
865
866
867
MiniBatchKMeans : Alternative online implementation that does incremental
@@ -1620,6 +1626,12 @@ class MiniBatchKMeans(KMeans):
1620
1626
1621
1627
1622
1628
1629
1630
1631
1632
1633
1634
1623
1635
1624
1636
1625
1637
KMeans : The classic implementation of the clustering method based on the
sklearn/cluster/_mean_shift.py
@@ -331,6 +331,12 @@ class MeanShift(ClusterMixin, BaseEstimator):
331
>>> from sklearn.cluster import MeanShift
sklearn/cluster/_optics.py
@@ -189,6 +189,12 @@ class OPTICS(ClusterMixin, BaseEstimator):
189
190
191
192
193
194
195
196
197
198
199
200
DBSCAN : A similar clustering for a specified neighborhood radius (eps).
sklearn/cluster/_spectral.py
@@ -447,6 +447,12 @@ class SpectralClustering(ClusterMixin, BaseEstimator):
447
448
449
450
451
452
453
454
455
456
457
458
>>> from sklearn.cluster import SpectralClustering