@@ -1741,6 +1741,16 @@ class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting):
1741
1741
split. To obtain a deterministic behaviour during fitting,
1742
1742
``random_state`` has to be fixed.
1743
1743
1744
+ References
1745
+ ----------
1746
+ J. Friedman, Greedy Function Approximation: A Gradient Boosting
1747
+ Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
1748
+
1749
+ J. Friedman, Stochastic Gradient Boosting, 1999
1750
+
1751
+ T. Hastie, R. Tibshirani and J. Friedman.
1752
+ Elements of Statistical Learning Ed. 2, Springer, 2009.
1753
+
1744
1754
Examples
1745
1755
--------
1746
1756
>>> from sklearn.datasets import make_regression
@@ -1756,16 +1766,6 @@ class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting):
1756
1766
array([-61...])
1757
1767
>>> reg.score(X_test, y_test)
1758
1768
0.4...
1759
-
1760
- References
1761
- ----------
1762
- J. Friedman, Greedy Function Approximation: A Gradient Boosting
1763
- Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
1764
-
1765
- J. Friedman, Stochastic Gradient Boosting, 1999
1766
-
1767
- T. Hastie, R. Tibshirani and J. Friedman.
1768
- Elements of Statistical Learning Ed. 2, Springer, 2009.
1769
1769
"""
1770
1770
1771
1771
# TODO: remove "ls" in verion 1.2
@@ -1877,8 +1877,8 @@ def staged_predict(self, X):
1877
1877
``dtype=np.float32`` and if a sparse matrix is provided
1878
1878
to a sparse ``csr_matrix``.
1879
1879
1880
- Returns
1881
- -------
1880
+ Yields
1881
+ ------
1882
1882
y : generator of ndarray of shape (n_samples,)
1883
1883
The predicted value of the input samples.
1884
1884
"""
0 commit comments