
EBGeometry

Aug 26, 2024

CONTENTS

1 Introduction 3
1.1 Requirements . 3
1.2 Quickstart . 3
1.3 Third-party examples . 3

2 Concepts 5
2.1 Geometry representations . 5
2.2 DCEL . 6
2.3 Bounding volume hierarchies . 8
2.4 Octree . 11
2.5 Constructive solid geometry . 11

3 Implementation 13
3.1 Overview . 13
3.2 Vector types . 13
3.3 Geometry representation . 14
3.4 DCEL . 19
3.5 BVH . 20
3.6 Octree . 26
3.7 Reading data . 28

4 Examples 33
4.1 EBGeometry . 33
4.2 AMReX . 33
4.3 Chombo3 . 33

Bibliography 35

i

ii

EBGeometry

This is the user documentation for EBGeometry, a small C++ package for efficiently representing implicit functions
and signed distance fields for complex geometries. Although EBGeometry is a self-contained package, it is was origi-
nally written for usage with embedded boundary (EB) and immersed boundary (IB) codes. EBGeometry provides the
geometry representation through an implicit or signed distance function, but does not provide the discrete geometry
generation, i.e. the generation of cut-cells for a given geometry.

The basic features of EBGeometry are as follows:

• Representation of water-tight surface grids as signed distance fields.

• Many analytic distance functions and transformations.

• Bounding volume hierarchies (BVHs) for use as acceleration structures for polygon or full object lookup. The
BVHs can be represented in full or compact (i.e., linearized) forms.

• Support for both conventional and accelerated (using BVHs) constructive solid geometry (CSG).

• Examples of how to couple EBGeometry to AMReX and Chombo.

Important: This is the user documentation for EBGeometry. The source code is found at https://github.com/
rmrsk/EBGeometry and a separate Doxygen-generated API of EBGeometry is available at https://rmrsk.github.io/
EBGeometry/doxygen/html/index.html.

CONTENTS 1

https://github.com/rmrsk/EBGeometry
https://github.com/rmrsk/EBGeometry
https://rmrsk.github.io/EBGeometry/doxygen/html/index.html
https://rmrsk.github.io/EBGeometry/doxygen/html/index.html

EBGeometry

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 Requirements

• A C++ compiler which supports C++14.

EBGeometry is a header-only library and is comparatively simple to set up and use. To use it, make EBGeometry.hpp
(stored at the top level) visible to your code and include it.

1.2 Quickstart

To obtain EBGeometry, clone the code from github:

git clone git@github.com:rmrsk/EBGeometry.git

To compile the EBGeometry example codes, navigate to the EBGeometry/Examples folder. Folders that are named
EBGeometry_<something> are pure EBGeometry examples and can be compiled without any third-party dependen-
cies.

To run the EBGeometry examples, navigate to one of the folders in EBGeometry/Examples/EBGeometry_* and
execute

g++ -O3 main.cpp && ./a.out

All EBGeometry examples can be run using this command. README files present in each folder provide more infor-
mation regarding the functionality and usage of each example code.

1.3 Third-party examples

Exapmle folders that begin with e.g. AMReX_ or Chombo3_ are application code examples and require the user to install
additional third-party software.

3

https://github.com/rmrsk/EBGeometry

EBGeometry

4 Chapter 1. Introduction

CHAPTER

TWO

CONCEPTS

2.1 Geometry representations

2.1.1 Signed distance fields

The signed distance function is defined as a function 𝑆 : R3 → R, and returns the signed distance to the object. It has
the additional property

|∇𝑆(x)| = 1 everywhere. (2.1)

The normal vector is always

n = ∇𝑆 (x) .

EBGeometry uses the following convention for the sign:

𝑆(x) =

{︃
> 0, for points outside the object,
< 0, for points inside the object,

which means that the normal vector n points away from the object.

2.1.2 Implicit functions

Like distance functions, implicit functions also determine whether or not a point x is inside or outside an object. Signed
distance functions are also implicit functions, but not vice versa. For example, the signed distance function for a sphere
with center x0 and radius 𝑅 can be written

𝑆sph (x) = |x− x0| −𝑅.

An example of an implicit function for the same sphere is

𝐼sph (x) = |x− x0|2 −𝑅2.

An important difference between these is the Eikonal property in Eq. 2.1, ensuring that the signed distance function
always returns the exact distance to the object. Signed distance functions are more useful objects, but many operations
(e.g. CSG unions) do not preserve the signed distance property (but still provide bounds for the signed distance).

5

EBGeometry

2.2 DCEL

2.2.1 Principle

EBGeometry uses a doubly-connected edge list (DCEL) structure for storing surface meshes. The DCEL structures
consist of the following objects:

• Planar polygons (facets).

• Half-edges.

• Vertices.

As shown in Fig. 2.1, half-edges circulate the inside of the facet, with pointer access to the next half-edge. A half-
edge also stores a reference to its starting vertex, as well as a reference to its pair-edge. From the DCEL structure
we can obtain all edges or vertices belonging to a single facet by iterating through the half-edges, and also jump to a
neighboring facet by fetching the pair edge.

Fig. 2.1: DCEL mesh structure. Each half-edge stores references to next half-edge, the pair edge, and the starting
vertex. Vertices store a coordinate as well as a reference to one of the outgoing half-edges.

In EBGeometry the half-edge data structure is implemented in its own namespace. This is a comparatively standard
implementation of the DCEL structure, supplemented by functions that permit signed distance computations to various
features on such a mesh.

6 Chapter 2. Concepts

EBGeometry

Important: A signed distance field requires a watertight and orientable surface mesh. If the surface mesh consists of
holes or flipped facets, neither the signed distance or implicit function exist.

2.2.2 Signed distance

The signed distance to a surface mesh is equivalent to the signed distance to the closest polygon face in the mesh. When
computing the signed distance from a point x to a polygon face (e.g., a triangle), the closest feature on the polygon can
be one of the vertices, edges, or the interior of the polygon face, see Fig. 2.2.

Fig. 2.2: Possible closest-feature cases after projecting a point x to the plane of a polygon face.

Three cases can be distinguished:

1. Facet/Polygon face.

When computing the distance from a point x to the polygon face we first determine if the projection of x to
the face plane lies inside or outside the face. This is more involved than one might think, and it is done by
first computing the two-dimensional projection of the polygon face, ignoring one of the coordinates. Next, we
determine, using 2D algorithms, if the projected point lies inside the embedded 2D representation of the polygon
face. Various algorithms for this are available, such as computing the winding number, the crossing number, or
the subtended angle between the projected point and the 2D polygon.

Tip: EBGeometry uses the crossing number algorithm by default.

If the point projects to the inside of the face, the signed distance is just n𝑓 · (x− x𝑓) where n𝑓 is the face normal
and x𝑓 is a point on the face plane (e.g., a vertex). If the point projects to outside the polygon face, the closest
feature is either an edge or a vertex.

2. Edge.

When computing the signed distance to an edge, the edge is parametrized as e(𝑡) = x0 +(x1 − x0) 𝑡, where x0

and x1 are the starting and ending vertex coordinates. The point x is projected to this line, and if the projection
yields 𝑡′ ∈ [0, 1] then the edge is the closest point. In that case the signed distance is the projected distance and
the sign is given by the sign of n𝑒 · (x− x0) where n𝑒 is the pseudonormal vector of the edge. Otherwise, the
closest point is one of the vertices.

3. Vertex.

2.2. DCEL 7

EBGeometry

If the closest point is a vertex then the signed distance is simplyn𝑣 ·(x− x𝑣)wheren𝑣 is the vertex pseudonormal
and x𝑣 is the vertex position.

2.2.3 Normal vectors

The normal vectors for edges n𝑒 and vertices n𝑣 are, unlike the facet normal, not uniquely defined. For both edges and
vertices we use the pseudonormals from [1]:

n𝑒 =
1

2
(n𝑓 + n𝑓 ′) .

where 𝑓 and 𝑓 ′ are the two faces connecting the edge. The vertex pseudonormal is given by

n𝑣 =

∑︀
𝑖 𝛼𝑖n𝑓𝑖

|
∑︀

𝑖 𝛼𝑖|
,

where the sum runs over all faces which share 𝑣 as a vertex, and where 𝛼𝑖 is the subtended angle of the face 𝑓𝑖, see Fig.
2.3.

Fig. 2.3: Edge and vertex pseudonormals.

2.3 Bounding volume hierarchies

Bounding volume hierarchies (BVHs) are tree structures where the regular nodes are bounding volumes that enclose
all geometric primitives (e.g. polygon faces or implicit functions) further down in the hierarchy. This means that every
node in a BVH is associated with a bounding volume. The bounding volume can, in principle, be any type of volume.
There are two types of nodes in a BVH:

• Regular/interior nodes. These do not contain any of the primitives/objects, but store references to subtrees (aka
child nodes).

• Leaf nodes. These lie at the bottom of the BVH tree and each of them contains a subset of the geometric
primitives.

8 Chapter 2. Concepts

EBGeometry

Fig. 2.4 shows a concept of BVH partitioning of a set of triangles. Here, 𝑃 is a regular node whose bounding volume
encloses all geometric primitives in its subtree. Its bounding volume, an axis-aligned bounding box or AABB for
short, is illustrated by a dashed rectangle. The interior node 𝑃 stores references to the leaf nodes 𝐿 and 𝑅. As shown
in Fig. 2.4, 𝐿 contains 5 triangles enclosed by another AABB. The other child node 𝑅 contains 6 triangles that are also
enclosed by an AABB. Note that the bounding volume for 𝑃 encloses the bounding volumes of 𝐿 and 𝑅 and that the
bounding volumes for 𝐿 and 𝑅 contain a small overlap.

Fig. 2.4: Example of BVH partitioning for enclosing triangles. The regular node 𝑃 contains two leaf nodes 𝐿 and 𝑅
which contain the primitives (triangles).

There is no fundamental limitation to what type of primitives/objects can be enclosed in BVHs, which makes BVHs
useful beyond triangulated data sets. For example, analytic signed distance functions can also be embedded in BVHs,
provided that we can construct bounding volumes that enclose them.

Important: EBGeometry is not limited to binary trees, but supports 𝑘 -ary trees where each regular node has 𝑘 child
nodes.

2.3.1 Construction

BVH construction is fairly flexible. For example, the child nodes 𝐿 and 𝑅 in Fig. 2.4 could be partitioned in any number
of ways, with the only requirement being that each child node gets at least one triangle/primitive.

Although the rules for BVH construction are highly flexible, performant BVHs are completely reliant on having bal-
anced trees with the following heuristic properties:

• Tight bounding volumes that enclose the primitives as tightly as possible.

• Minimal overlap between the bounding volumes.

• Balanced, in the sense that the tree depth does not vary greatly through the tree, and there is approximately the
same number of primitives in each leaf node.

Construction of a BVH is usually done recursively, from top to bottom (so-called top-down construction). Alternative
construction methods also exist, but are not used in EBGeometry. In this case one can represent the BVH construction
of a 𝑘 -ary tree is done through a single function:

Partition
(︁
�⃗�
)︁
: �⃗� →

(︁
�⃗�1, �⃗�2, . . . , �⃗�𝑘

)︁
, (2.2)

where �⃗� is an input a list of objects/primitives, which is partitioned into 𝑘 new list of primitives. Note that the lists �⃗�𝑖

do not contain duplicates, there is a unique set of primitives associated in each new leaf node. Top-down construction
can thus be illustrated as a recursive procedure:

2.3. Bounding volume hierarchies 9

EBGeometry

topDownConstruction(Objects):
partitionedObjects = Partition(Objects)

forall p in partitionedObjects:
child = insertChildNode(newObjects)

if(enoughPrimitives(child)):
child.topDownConstruction(child.objects)

In practice, the above procedure is supplemented by more sophisticated criteria for terminating the recursion, as well
as routines for creating the bounding volumes around the newly inserted nodes.

Bottom-up construction is also possible, in which case one constructs the leaf nodes first, and then merge the nodes
upward until one reaches a root node. In EBGeometry, bottom-up construction is done by means of space-filling curves
(e.g., Morton codes).

2.3.2 Tree traversal

When computing the signed distance function to objects embedded in a BVH, one takes advantage of the hierarchical
embedding of the primitives. Consider the case in Fig. 2.5, where the goal of the BVH traversal is to minimize the
number of branches and nodes that are visited. For the traversal algorithm we consider the following steps:

• When descending from node 𝑃 we determine that we first investigate the left subtree (node 𝐴) since its bounding
volume is closer than the bounding volumes for the other subtree. The other subtree will is investigated after we
have recursed to the bottom of the 𝐴 subtree.

• Since 𝐴 is a leaf node, we compute the signed distance from x to the primitives in 𝐴. This requires us to iterate
over all the triangles in 𝐴.

• When investigating the other child node of 𝑃 , we find that the distance to the primitives in 𝐴 is shorter than the
distance from x to the bounding volume that encloses nodes 𝐵 and 𝐶. This immediately permits us to prune the
entire subtree containing 𝐵 and 𝐶.

Fig. 2.5: Example of BVH tree pruning.

Warning: BVH traversal has log𝑁 complexity on average. However in the worst case the traversal algorithm
may have linear complexity if the primitives are all at approximately the same distance from the query point. For
example, it is necessary to traverse almost the entire tree when one tries to compute the signed distance at the origin
of a tessellated sphere since all triangles and their bounding volumes are approximately at the same distance from
the center.

10 Chapter 2. Concepts

EBGeometry

Other types of tree traversal (that do not compute the signed distance) are also possible. EBGeometry supports a fairly
flexible approach to the tree traversal and update algorithms such that the user is permitted to use the hierarhical traversal
algorithm also for other types of operations (e.g., for finding all facets within a specified distance from a point).

2.4 Octree

Octrees are tree-structures where each interior node has exactly eight children. Such trees are usually used for spatial
partitioning. Unlike BVH trees, the eight child nodes have no spatial overlap.

Octree construction can be done in (at least) two ways:

1. In depth-first order where entire sub-trees are built first.

2. In breadth-first order where tree levels are added one at a time.

EBGeometry supports both of these methods. Octree traversal is generally speaking quite similar to the traversal
algorithms used for BVH trees.

2.5 Constructive solid geometry

2.5.1 Basic transformations

Implicit functions, and by extension also signed distance fields, can be manipulated using basic transformations (like
rotations). EBGeometry supports many of these:

• Rotations.

• Translations.

• Surface offsets.

• Shell extraction.

• Mollification (e.g., smoothing)

• . . . and others.

Warning: Some of these operations preserve the signed distance property, and others do not.

2.5.2 Combining objects

EBGeometry supports standard operations in which implicit functions can be combined:

• Union.

• Intersection.

• Difference.

Some of these CSG operations also have smooth equivalents, i.e. for smoothing the transition between combined
objects. Fast CSG operations are also supported by EBGeometry, e.g. the BVH-accelerated CSG union where one
uses the BVH when searching for the relevant geometric primitive(s). This functionality is motivated by the fact that
a CSG union is normally implemented as min (𝐼1, 𝐼2, 𝐼3, . . . , 𝐼𝑁), which has 𝒪 (𝑁) complexity when there are 𝑁
objects. BVH trees can reduce this to 𝒪 (log𝑁) complexity.

2.4. Octree 11

EBGeometry

12 Chapter 2. Concepts

CHAPTER

THREE

IMPLEMENTATION

3.1 Overview

Here, we consider the basic EBGeometry API. EBGeometry is a header-only library, implemented under its own
namespace (EBGeometry). Various major components, like BVHs and DCEL, are implemented under namespaces
EBGeometry::BVH and EBGeometry::DCEL. Below, we consider a brief introduction to the API and implementation
details of EBGeometry.

3.2 Vector types

EBGeometry implements its own 2D and 3D vector types Vec2T and Vec3T.

Vec2T is a two-dimensional Cartesian vector. It is templated as

namespace EBGeometry {
template<class T>
class Vec2T {
public:

T x; // First component.
T y; // Second component.

};
}

Most of EBGeometry is written as three-dimensional code, but Vec2T is needed for DCEL functionality when de-
termining if a point projects onto the interior or exterior of a planar polygon, see DCEL. Vec2T has “most” common
arithmetic operators like the dot product, length, multiplication operators and so on.

Vec3T is a three-dimensional Cartesian vector type with precision T. It is templated as

namespace EBGeometry {
template<class T>
class Vec3T {
public:

T[3] x;
};

}

Like Vec2T, Vec3T has numerous routines for performing most vector-related operations like addition, subtraction, dot
products and so on.

13

EBGeometry

3.3 Geometry representation

3.3.1 Implicit functions

EBGeometry implements implement functions and signed distance functions through virtual classes

template <class T>
class ImplicitFunction
{
public:
/*!
@brief Disallowed, use the full constructor

*/
ImplicitFunction() = default;

/*!
@brief Destructor (does nothing)

*/
virtual ~ImplicitFunction() = default;

/*!
@brief Value function. Points are outside the object if value > 0.0 and inside
if value < 0.0
@param[in] a_point 3D point.

*/
virtual T
value(const Vec3T<T>& a_point) const noexcept = 0;

/*!
@brief Alternative signature for the value function.
@param[in] a_point 3D point.

*/
T
operator()(const Vec3T<T>& a_point) const noexcept;

/*!
@brief Compute an approximation to the bounding volume for the implicit surface, using octrees.
@details This routine will try to compute a bonding using octree subdivision of the implicit function. This routine will
characterize a cubic region in space as being 'inside', 'outside', or intersected by computing the value function at the
center of the cube. If the value function is larger than the extents of the cube, we assume that there is no intersection
inside the cube. The success of this algorithm therefore relies on the implicit function also being a signed distance
function, or at the very least not being horrendously far from being an SDF. If octree subdivision fails, this will return
the maximally representable bounding volume.
@param[in] a_initialLowCorner Initial low corner.
@param[in] a_initialHighCorner Initial high corner.
@param[in] a_maxTreeDepth Maximum permitted octree depth.
@param[in] a_safety Safety factor when determining intersection. a_safety=1 sets safety factor to cube width, a_safety=2␣

→˓sets twice the cube width, etc.
@note The bounding volume type BV MUST have a constructor BV(std::vector<Vec3T<T>>).

*/
template <class BV>
inline BV
approximateBoundingVolumeOctree(const Vec3T<T>& a_initialLowCorner,

const Vec3T<T>& a_initialHighCorner,
const unsigned int a_maxTreeDepth,
const T& a_safety = 0.0) const noexcept;

};

Signed distance fields inherit from implicit functions as follows:

template <class T>
class SignedDistanceFunction : public ImplicitFunction<T>
{
public:
/*!
@brief Disallowed, use the full constructor

*/
SignedDistanceFunction() = default;

/*!
@brief Destructor (does nothing)

*/
virtual ~SignedDistanceFunction() = default;

/*!

(continues on next page)

14 Chapter 3. Implementation

EBGeometry

(continued from previous page)
@brief Implementation of ImplicitFunction::value
@param[in] a_point 3D point.

*/
virtual T
value(const Vec3T<T>& a_point) const noexcept override final;

/*!
@brief Signed distance function.
@param[in] a_point 3D point.

*/
virtual T
signedDistance(const Vec3T<T>& a_point) const noexcept = 0;

/*!
@brief Signed distance normal vector.
@details Computed using finite differences with step a_delta
@param[in] a_point 3D point
@param[in] a_delta Finite difference step

*/
inline virtual Vec3T<T>
normal(const Vec3T<T>& a_point, const T& a_delta) const noexcept;

};

Note that T is a floating point precision, which is supported because DCEL meshes can take up quite a bit of computer
memory. These declarations are found in

• Source/EBGeometry_ImplicitFunction.hpp for implicit functions.

• Source/EBGeometry_SignedDistanceFunction.hpp for signed distance field.

Various useful implementations of implicit functions and distance fields are found in:

• Source/EBGeometry_AnalyticDistanceFields.hpp for various pre-defined analytic distance fields.

• Source/EBGeometry_MeshDistanceFields.hpp for various distance field representations for DCEL meshes.

3.3.2 Transformations

Various transformations for implicit functions are defined in Source/EBGeometry_Transform.hpp, such as rota-
tions, translations, etc. These are also available through functions that automatically cast the resulting implicit function
to ImplicitFunction<T>:

/*!
@brief Convenience function for taking the complement of an implicit function
@param[in] a_implicitFunction Input implicit function

*/
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Complement(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction) noexcept;

/*!
@brief Convenience function for translating an implicit function
@param[in] a_implicitFunction Input implicit function to be translated
@param[in] a_shift Distance to shift

*/
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Translate(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction, const Vec3T<T>& a_shift) noexcept;

/*!
@brief Convenience function for rotating an implicit function.
@param[in] a_implicitFunction Input implicit function to be rotated.
@param[in] a_angle Angle to be rotated by (in degrees)
@param[in] a_axis Axis to rotate about

*/
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Rotate(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction, const T a_angle, const size_t a_axis) noexcept;

/*!
@brief Convenience function for scaling an implicit function.

(continues on next page)

3.3. Geometry representation 15

EBGeometry

(continued from previous page)
@param[in] a_implicitFunction Input implicit function to be scaled.
@param[in] a_scale Scaling factor

*/
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Scale(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction, const T a_scale) noexcept;

/*!
@brief Convenience function for offsetting an implicit function
@param[in] a_implicitFunction Input implicit function to be offset
@param[in] a_offset Offset distance

*/
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Offset(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction, const T a_offset) noexcept;

/*!
@brief Convenience function for creating a shell out of an implicit function
@param[in] a_implicitFunction Input implicit function to be shelled.
@param[in] a_delta Shell thickness

*/
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Annular(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction, const T a_delta) noexcept;

/*!
@brief Convenience function for blurring an implicit function
@param[in] a_implicitFunction Input implicit function to be blurred
@param[in] a_blurDistance Smoothing distance

*/
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Blur(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction, const T a_blurDistance) noexcept;

/*!
@brief Convenience function for mollification with an input sphere.
@param[in] a_implicitFunction Input implicit function to be mollifier
@param[in] a_dist Mollification distance.
@param[in] a_mollifierSamples Number of samples for the mollifier

*/
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Mollify(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction,

const T a_dist,
const size_t a_mollifierSamples = 2) noexcept;

/*!
@brief Convenience function for elongating (stretching) an implicit function
@param[in] a_implicitFunction Implicit function to be elongated
@param[in] a_elongation Elongation

*/
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Elongate(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction, const Vec3T<T>& a_elongation) noexcept;

/*!
@brief Convenience function for reflecting an implicit function
@param[in] a_implicitFunction Implicit function to be reflected
@param[in] a_reflectPlane Plane to reflect across (0=yz-plane, 1=xz-plane, 2=xy-plane).

*/
template <class T>
std::shared_ptr<ImplicitFunction<T>>
Reflect(const std::shared_ptr<ImplicitFunction<T>>& a_implicitFunction, const size_t& a_reflectPlane) noexcept;

16 Chapter 3. Implementation

EBGeometry

3.3.3 CSG operations

CSG operations for implicit functions are defined in Source/EBGeometry_CSG.hpp. These also include accelerated
variants that take advantage of BVH partitioning of the objects.

/*!
@brief Convenience function for taking the union of a bunch of a implicit functions
@param[in] a_implicitFunctions Implicit functions
@note P must derive from ImplicitFunction<T>

*/
template <class T, class P = ImplicitFunction<T>>
std::shared_ptr<ImplicitFunction<T>>
Union(const std::vector<std::shared_ptr<P>>& a_implicitFunctions) noexcept;

/*!
@brief Convenience function for taking the union of two implicit functions
@param[in] a_implicitFunctionA First implicit function.
@param[in] a_implicitFunctionB Second implicit function.
@note P1 and P2 must derive from ImplicitFunction<T>

*/
template <class T, class P1, class P2>
std::shared_ptr<ImplicitFunction<T>>
Union(const std::shared_ptr<P1>& a_implicitFunctionA, const std::shared_ptr<P2>& a_implicitFunctionB) noexcept;

/*!
@brief Convenience function for taking the union of a bunch of a implicit functions
@param[in] a_implicitFunctions Implicit functions
@param[in] a_smooth Smoothing distance.
@note P must derive from ImplicitFunction<T>

*/
template <class T, class P = ImplicitFunction<T>>
std::shared_ptr<ImplicitFunction<T>>
SmoothUnion(const std::vector<std::shared_ptr<P>>& a_implicitFunctions, const T a_smooth) noexcept;

/*!
@brief Convenience function for taking the union of two implicit functions
@param[in] a_implicitFunctionA First implicit function.
@param[in] a_implicitFunctionB Second implicit function.
@param[in] a_smooth Smoothing distance.
@note P1 and P2 must derive from ImplicitFunction<T>

*/
template <class T, class P1, class P2>
std::shared_ptr<ImplicitFunction<T>>
SmoothUnion(const std::shared_ptr<P1>& a_implicitFunctionA,

const std::shared_ptr<P2>& a_implicitFunctionB,
const T a_smooth) noexcept;

/*!
@brief Convenience function for taking the BVH-accelerated union of a bunch of a implicit functions
@param[in] a_implicitFunctions Implicit functions
@param[in] a_boundingVolumes Bounding volumes for implicit functions.
@note P must derive from ImplicitFunction<T>

*/
template <class T, class P, class BV, size_t K>
std::shared_ptr<ImplicitFunction<T>>
FastUnion(const std::vector<std::shared_ptr<P>>& a_implicitFunctions,

const std::vector<BV>& a_boundingVolumes) noexcept;

/*!
@brief Convenience function for taking the BVH-accelerated union of a bunch of a implicit functions
@param[in] a_implicitFunctions Implicit functions
@param[in] a_boundingVolumes Bounding volumes for the implicit functions.
@param[in] a_smoothLen Smoothing length
@note P must derive from ImplicitFunction<T>

*/
template <class T, class P, class BV, size_t K>
std::shared_ptr<ImplicitFunction<T>>
FastSmoothUnion(const std::vector<std::shared_ptr<P>>& a_implicitFunctions,

const std::vector<BV>& a_boundingVolumes,
const T a_smoothLen) noexcept;

/*!
@brief Convenience function for taking the intersection of a bunch of a implicit functions
@param[in] a_implicitFunctions Implicit functions
@note P must derive from ImplicitFunction<T>

*/
template <class T, class P>
std::shared_ptr<ImplicitFunction<T>>

(continues on next page)

3.3. Geometry representation 17

EBGeometry

(continued from previous page)
Intersection(const std::vector<std::shared_ptr<P>>& a_implicitFunctions) noexcept;

/*!
@brief Convenience function for taking the intersection of two implicit functions
@param[in] a_implicitFunctionA First implicit function.
@param[in] a_implicitFunctionB Second implicit function.
@note P1 and P2 must derive from ImplicitFunction<T>

*/
template <class T, class P1, class P2>
std::shared_ptr<ImplicitFunction<T>>
Intersection(const std::shared_ptr<std::shared_ptr<P1>>& a_implicitFunctionA,

const std::shared_ptr<std::shared_ptr<P2>>& a_implicitFunctionB) noexcept;

/*!
@brief Convenience function for taking the smooth intersection of a bunch of a implicit functions
@param[in] a_implicitFunctions Implicit functions
@param[in] a_smooth Smoothing distance.
@note P must derive from ImplicitFunction<T>

*/
template <class T, class P>
std::shared_ptr<ImplicitFunction<T>>
SmoothIntersection(const std::vector<std::shared_ptr<P>>& a_implicitFunctions, const T a_smooth) noexcept;

/*!
@brief Convenience function for taking the smooth intersection of two implicit functions
@param[in] a_implicitFunctionA First implicit function.
@param[in] a_implicitFunctionB Second implicit function.
@param[in] a_smooth Smoothing distance.
@note P1 and P2 must derive from ImplicitFunction<T>

*/
template <class T, class P1, class P2>
std::shared_ptr<ImplicitFunction<T>>
SmoothIntersection(const std::shared_ptr<P1>& a_implicitFunctionA,

const std::shared_ptr<P2>& a_implicitFunctionB,
const T a_smooth) noexcept;

/*!
@brief Convenience function for taking the CSG difference.
@param[in] a_implicitFunctionA Implicit function.
@param[in] a_implicitFunctionB Implicit function to subtract.
@note P1 and P2 must derive from ImplicitFunction<T>

*/
template <class T, class P1 = ImplicitFunction<T>, class P2 = ImplicitFunction<T>>
std::shared_ptr<ImplicitFunction<T>>
Difference(const std::shared_ptr<P1>& a_implicitFunctionA, const std::shared_ptr<P2>& a_implicitFunctionB) noexcept;

/*!
@brief Convenience function for taking the smooth CSG difference.
@param[in] a_implicitFunctionA Implicit function.
@param[in] a_implicitFunctionB Implicit function to subtract.
@param[in] a_smoothLen Smoothing length.
@note P1 and P2 must derive from ImplicitFunction<T>. This uses the default smoothMax function.

*/
template <class T, class P1 = ImplicitFunction<T>, class P2 = ImplicitFunction<T>>
std::shared_ptr<ImplicitFunction<T>>
SmoothDifference(const std::shared_ptr<P1>& a_implicitFunctionA,

const std::shared_ptr<P2>& a_implicitFunctionB,
const T a_smoothLen) noexcept;

3.3.4 Bounding volumes

For simple shapes, bounding volumes can be directly constructed given an implicit function. E.g. one can easily
find the bounding volume for a sphere with a known center and radius, or for a DCEL mesh. However, more com-
plicated implicit functions require us to compute the bounding volume, or at the very least an approximation to it.
ImplicitFunction<T> has a member function that uses spatial subdivision (based on octrees) for doing this:

// Compute an approximate bounding volume BV.
template <class BV>
inline BV
approximateBoundingVolumeOctree(const Vec3T<T>& a_initialLowCorner,

const Vec3T<T>& a_initialHighCorner,
const unsigned int a_maxTreeDepth,
const T& a_safety = 0.0) const noexcept;

18 Chapter 3. Implementation

EBGeometry

This function initializes a cubic region in space and uses octree refinement near the implicit surface. At the end of the
octree recusion the vertices of the octree leaves are collected and a bounding volume of type BV that encloses them is
computed. The success of this method relies on the implicit function being a signed distance function (or at least an
approximation to it).

3.4 DCEL

The DCEL functionality exists under the namespace EBGeometry::DCEL and contains the following functionality:

• Fundamental data types like vertices, half-edges, polygons, and entire surface grids.

• BVH functionality for putting DCEL grids into bounding volume hierarchies.

Important: The DCEL functionality is not restricted to triangles, but supports N-sided polygons, including meta-data
attached to the vertices, edges, and facets. The latter is particularly useful in case on wants to associate e.g. boundary
conditions to specific triangles.

3.4.1 Main types

The main DCEL functionality (vertices, edges, faces) is provided by the following classes:

• Vertices are implemented as a template EBGeometry::DCEL::EdgeT

template <class T, class Meta>
class VertexT

The DCEL vertex class stores the vertex position, normal vector, and the outgoing half-edge from the
vertex. Note that the class has member functions for computing the vertex pseudonormal, see Normal
vectors.

The full API is given in the doxygen documentation here.

• Edges are implemented as a template EBGeometry::DCEL::EdgeT

template <class T, class Meta>
class EdgeT

The half-edges store a reference to their face, as well as pointers to the next edge, pair edge, and starting
vertex.

The full API is given in the doxygen documentation here.

• Faces are implemented as a template EBGeometry::DCEL::FaceT

template <class T, class Meta>
class FaceT

Faces also store

• The normal vector.

• A 2D embedding of the polygon face.

• Centroid position.

The normal vector and 2D embedding of the facet exist because the signed distance computation requires
them. The centroid position exists only because BVH partitioners will use it for partitioning the surface
mesh.

3.4. DCEL 19

doxygen/html/classDCEL_1_1VertexT.html
doxygen/html/classDCEL_1_1EdgeT.html

EBGeometry

The full API is given in the doxygen documentation here.

• Mesh is implemented as a template EBGeometry::DCEL::MeshT

template <class T, class Meta>
class MeshT : public SignedDistanceFunction<T>

The mesh stores all the vertices, half-edges, and faces, and if it is watertight and orientable it is also a
signed distance function. Typically, the mesh is not created by the user but automatically created when
reading the mesh from an input file.

The above DCEL classes have member functions of the type:

T signedDistance(const Vec3T<T>& a_point) const noexcept;
T unsignedDistance2(const Vec3T<T>& a_point) const noexcept;

which can be used to compute the distance to the various features on the mesh.

Meta-data can be attached to the DCEL primitives by selecting an appropriate type for Meta above.

3.4.2 BVH integration

DCEL grids can easily be embedded in BVHs by enclosing bounding volumes around the polygons (e.g., triangles).
Partitioning and bounding volume constructors are provided in Source/EBGeometry_MeshDistanceFunctions.
hpp.

3.5 BVH

The BVH functionality is encapsulated in the namespace EBGeometry::BVH. For the full API, see the doxygen API.
There are two types of BVHs supported.

• Full BVHs where the nodes are stored in build order and contain references to their children.

• Compact BVHs where the nodes are stored in depth-first order and contain index offsets to children and primi-
tives.

The full BVH is encapsulated by a class

template <class T, class P, class BV, size_t K>
class NodeT;

The above template parameters are:

• T Floating-point precision.

• P Primitive type to be partitioned.

• BV Bounding volume type.

• K BVH degree. K=2 will yield a binary tree, K=3 yields a tertiary tree and so on.

NodeT describes regular and leaf nodes in the BVH, and has member functions for setting primitives, bounding volumes,
and so on. Importantly, NodeT is the BVH builder node, i.e. it is the class through which we recursively build the BVH,
see Construction. The compact BVH is discussed below in Compact form.

20 Chapter 3. Implementation

doxygen/html/classDCEL_1_1FaceT.html
doxygen/html/namespaceBVH.html

EBGeometry

3.5.1 Bounding volumes

EBGeometry supports the following bounding volumes, which are defined in EBGeometry_BoundingVolumes.hpp:

• BoundingSphere, templated as EBGeometry::BoundingVolumes::BoundingSphereT<T> and describes a
bounding sphere. Various constructors are available.

• Axis-aligned bounding box, which is templated as EBGeometry::BoundingVolumes::AABBT<T>.

For full API details, see the doxygen API. Other types of bounding volumes can in principle be added, with the only
requirement being that they conform to the same interface as the AABB and BoundingSphere volumes.

3.5.2 Construction

Constructing a BVH is done by:

1. Creating a root node and providing it with the geometric primitives and their bounding volumes.

2. Partitioning the BVH by providing a partitioning function.

The first step is usually a matter of simply constructing the root node using the full constructor, which takes a list
of primitives and their associated bounding volumes. The second step is to recursively build the BVH. We currently
support top-down and bottom-up construction (using space-filling curves).

Tip: The default construction methods performs the hierarchical subdivision by only considering the bounding vol-
umes. Consequently, the build process is identical regardless of what type of primitives (e.g., triangles or analytic
spheres) are contained in the BVH.

Top-down construction

Top-down construction is done through the function topDownSortAndPartition(), see the doxygen API for the
BVH implementation.

The optional input arguments to topDownSortAndPartition are polymorphic functions of type indicated above, and
have the following responsibilities:

• PartitionerT is the partitioner function when splitting a leaf node into K new leaves. The function takes a list
of primitives which it partitions into K new lists of primitives.

• StopFunctionT simply takes a NodeT as input argument and determines if the node should be partitioned
further.

Default arguments for these are provided, bubt users are free to partition their BVHs in their own way should they
choose.

Bottom-up construction

The bottom-up construction uses a space-filling curve (e.g., a Morton curve) for first building the leaf nodes. This
construction is done such that each leaf node contains approximately the number of primitives, and all leaf nodes exist
on the same level. To use bottom-up construction, one may use the member function

/*!
@brief Function for doing bottom-up construction using a specified space-filling curve.
@details The template parameter is the space-filling curve type. This function will partition the BVH
by first sorting the bounding volume centroids along the space-filling curve. The tree is then constructed
by placing at least K primitives in each leaf, and the leaves are then merged upwards until we reach the

(continues on next page)

3.5. BVH 21

doxygen/html/namespaceBoundingVolumes.html
doxygen/html/doxygen/html/classBVH_1_1NodeT.html
doxygen/html/doxygen/html/classBVH_1_1NodeT.html

EBGeometry

(continued from previous page)
root node.
@note S must have an encode and decode function which returns an SFC index. See the SFC namespace for
examples for Morton and Nested indices.

*/
template <typename S>
inline void
bottomUpSortAndPartition() noexcept;

The template argument is the space-filling curve that the user wants to apply. Currently, we support Morton codes
and nested indices. For Morton curves, one would e.g. call bottomUpSortAndPartition<SFC::Morton> while for
nested indices (which are not recommended) the signature is likewise bottomUpSortAndPartition<SFC::Nested.

Build times for SFC-based bottom-up construction are generally speaking faster than top-down construction, but tends
to produce worse trees such that traversal becomes slower.

3.5.3 Compact form

In addition to the standard BVH node NodeT<T, P, BV, K>, EBGeometry provides a more compact formulation
of the BVH hierarchy where the nodes are stored in depth-first order. The “linearized” BVH can be automatically
constructed from the standard BVH but not vice versa.

Fig. 3.1: Compact BVH representation. The original BVH is traversed from top-to-bottom along the branches and laid
out in linear memory. Each interior node gets a reference (index offset) to their children nodes.

The rationale for reorganizing the BVH in compact form is it’s tighter memory footprint and depth-first ordering which
occasionally allows a more efficient traversal downwards in the BVH tree, particularly if the geometric primitives are
sorted in the same order. To encapsulate the compact BVH we provide two classes:

• LinearNodeT which encapsulates a node, but rather than storing the primitives and pointers to child nodes it
stores offsets along the 1D arrays. Just like NodeT the class is templated:

22 Chapter 3. Implementation

EBGeometry

template <class T, class P, class BV, size_t K>
class LinearNodeT

LinearNodeT has a smaller memory footprint and should fit in one CPU word in floating-point precision and
two CPU words in double point precision. The performance benefits of further memory alignment have not been
investigated.

Note that LinearNodeT only stores offsets to child nodes and primitives, which are assumed to be stored (some-
where) as

std::vector<std::shared_ptr<LinearNodeT<T, P, BV, K> > > linearNodes;
std::vector<std::shared_ptr<const P> > primitives;

Thus, for a given node we can check if it is a leaf node (m_numPrimitives > 0) and if it is we can get the children
through the m_childOffsets array. Primitives can likewise be obtained; they are stored in the primitives array
from index m_primitivesOffset to m_primitivesOffset + m_numPrimities - 1.

• LinearBVH which stores the compact BVH and primitives as class members. That is, LinearBVH contains the
nodes and primitives as class members.

template <class T, class P, class BV, size_t K>
class LinearBVH
{
public:

protected:

std::vector<std::shared_ptr<const LinearNodeT<T, P, BV, K>>> m_linearNodes;
std::vector<std::shared_ptr<const P>> m_primitives;

};

The root node is, of course, found at the front of the m_linearNodes vector. Note that the list of primitives
m_primitives is stored in the order in which the leaf nodes appear in m_linearNodes.

Constructing the compact BVH is simply a matter of letting NodeT aggregate the nodes and primitives into arrays, and
return a LinearBVH. This is done by calling the NodeT member function flattenTree():

template <class T, class P, class BV, size_t K>
class NodeT
{
public:

inline std::shared_ptr<LinearBVH<T, P, BV, K>>
flattenTree() const noexcept;

};

which returns a pointer to a LinearBVH. For example:

// Assume that we have built the conventional BVH already
std::shared_ptr<EBGeometry::BVH::NodeT<T, P, BV, K> > builderBVH;

// Flatten the tree.
std::shared_ptr<LinearBVH> compactBVH = builderBVH->flattenTree();

// Release the original BVH.
builderBVH = nullptr;

Warning: When calling flattenTree, the original BVH tree is not destroyed. To release the memory, deallocate
the original BVH tree. E.g., the set pointer to the root node to nullptr or ensure correct scoping.

3.5. BVH 23

EBGeometry

3.5.4 Tree traversal

Both NodeT (full BVH) and LinearBVH (flattened BVH) include routines for traversing the BVH with user-specified
criteria. For both BVH representations, tree traversal is done using a routine

template <class Meta>
inline void
traverse(const BVH::Updater<P>& a_updater,

const BVH::Visiter<LinearNode, Meta>& a_visiter,
const BVH::Sorter<LinearNode, Meta, K>& a_sorter,
const BVH::MetaUpdater<LinearNode, Meta>& a_metaUpdater) const noexcept;

The BVH trees use a stack-based traversal pattern based on visit-sort rules supplied by the user.

Node visit

Here, a_visiter is a lambda function for determining if the node/subtree should be investigated or pruned from the
traversal. This function has a signature

template <class NodeType, class Meta>
using Visiter = std::function<bool(const NodeType& a_node, const Meta a_meta)>;

where NodeType is the type of node (which is different for full/flat BVHs), and the Meta template parameter is discussed
below. If this function returns true, the node will be visisted and if the function returns false then the node will be pruned
from the tree traversal. Typically, the Meta parameter will contain the necessary information that determines whether
or not to visit the subtree.

Traversal pattern

If a subtree is visited in the traversal, there is a question of which of the child nodes to visit first. The a_sorter
argument determines the order by letting the user sort the nodes based on order of importance. Note that a correct
visitation pattern can yield large performance benefits. The user is given the option to sort the child nodes based on
what he/she thinks is a good order, which is done by supplying a lambda which sorts the children. This function has
the signature:

template <class NodeType, class Meta, size_t K>
using Sorter = std::function<void(std::array<std::pair<std::shared_ptr<const NodeType>, Meta>, K>& a_children)>;

Sorting the child nodes is completely optional. The user can leave this function empty if it does not matter which
subtrees are visited first.

Update rule

If a leaf node is visited in the traversal, distance or other types of queries to the geometric primitive(s) in the nodes are
usually made. These are done by a user-supplied update-rule:

template <class P>
using Updater = std::function<void(const PrimitiveListT<P>& a_primitives)>;

Typically, the Updater will modify parameters that appear in a local scope outside of the tree traversal (e.g. updating
the minimum distance to a DCEL mesh).

24 Chapter 3. Implementation

EBGeometry

Meta-data

During the traversal, it might be necessary to compute meta-data that is helpful during the traversal, and this meta-data
is attached to each node that is queried. This meta-data is usually, but not necessarily, equal to the distance to the nodes’
bounding volumes. The signature for meta-data construction is

template <class NodeType, class Meta>
using MetaUpdater = std::function<Meta(const NodeType& a_node)>;

The biggest difference between Updater and MetaUpdater is that Updater is only called on leaf nodes whereas
MetaUpdater is also called for internal nodes. One typical example for DCEL meshes is that Updater computes the
distance from an input point to the triangles in a leaf node, whereas MetaUpdater computes the distance from the
input point to the bounding volumes of a child nodes. This information is then used in Sorter in order to determine a
preferred child visit pattern when descending along subtrees.

Traversal algorithm

The code-block below shows the implementation of the BVH traversal. The implementation uses a non-recursive
queue-based formulation when descending along subtrees. Observe that each entry in the stack contains both the node
itself and any meta-data we want to attach to the node. If the traversal decides to visit a node, it immediately computes
the specified meta-data of the node, and the user can then sort the children based on that data.

Listing 3.1: Tree traversal algorithm for the BVH tree.
template <class T, class P, class BV, size_t K>
template <class Meta>
inline void
NodeT<T, P, BV, K>::traverse(const BVH::Updater<P>& a_updater,

const BVH::Visiter<Node, Meta>& a_visiter,
const BVH::Sorter<Node, Meta, K>& a_sorter,
const BVH::MetaUpdater<Node, Meta>& a_metaUpdater) const noexcept

{
std::array<std::pair<std::shared_ptr<const Node>, Meta>, K> children;
std::stack<std::pair<std::shared_ptr<const Node>, Meta>> q;

q.emplace(this->shared_from_this(), a_metaUpdater(*this));

while (!(q.empty())) {
const auto& node = q.top().first;
const auto& meta = q.top().second;

q.pop();

if (a_visiter(*node, meta)) {
if (node->isLeaf()) {

a_updater(node->getPrimitives());
}
else {
for (size_t k = 0; k < K; k++) {

children[k].first = node->getChildren()[k];
children[k].second = a_metaUpdater(*children[k].first);

}

// User-based visit pattern.
a_sorter(children);

for (const auto& child : children) {
q.push(child);

}
}

}
}

3.5. BVH 25

EBGeometry

Traversal examples

The DCEL mesh distance fields use a traversal pattern based on

• Only visit bounding volumes that are closer than the minimum distance computed (so far).

• When visiting a subtree, investigate the closest bounding volume first.

• When visiting a leaf node, check if the primitives are closer than the minimum distance computed so far.

These rules are given below.

Listing 3.2: Tree traversal criterion for computing the signed dis-
tance to a DCEL mesh using the BVH accelerator. See Source/
EBGeometry_MeshDistanceFunctionsImplem.hpp for details.

template <class T, class Meta, class BV, size_t K>
T
FastMeshSDF<T, Meta, BV, K>::signedDistance(const Vec3T<T>& a_point) const noexcept
{

T minDist = std::numeric_limits<T>::infinity();

BVH::Updater<Face> updater = [&minDist,
&a_point](const std::vector<std::shared_ptr<const Face>>& faces) noexcept -> void {

for (const auto& f : faces) {
const T curDist = f->signedDistance(a_point);

minDist = std::abs(curDist) < std::abs(minDist) ? curDist : minDist;
}

};

BVH::Visiter<Node, T> visiter = [&minDist, &a_point](const Node& a_node, const T& a_bvDist) noexcept -> bool {
return a_bvDist <= std::abs(minDist);

};

BVH::Sorter<Node, T, K> sorter =
[&a_point](std::array<std::pair<std::shared_ptr<const Node>, T>, K>& a_leaves) noexcept -> void {
std::sort(

a_leaves.begin(),
a_leaves.end(),
[&a_point](const std::pair<std::shared_ptr<const Node>, T>& n1,

const std::pair<std::shared_ptr<const Node>, T>& n2) -> bool { return n1.second > n2.second; });
};

BVH::MetaUpdater<Node, T> metaUpdater = [&a_point](const Node& a_node) noexcept -> T {
return a_node.getDistanceToBoundingVolume(a_point);

};

// Traverse the tree.
m_bvh->traverse(updater, visiter, sorter, metaUpdater);

return minDist;

3.6 Octree

The octree functionality is encapsulated in the namespace EBGeometry::Octree. For the full API, see the doxygen
API. Currently, only full octrees are supported (i.e., using a pointer-based representation).

Octrees are encapsulated by a class

template <typename Meta, typename Data = void>
class Node : public std::enable_shared_from_this<Node<Meta, Data>>

where the template parameters are:

• Meta Meta-information contained in the node (e.g. upper/lower corners).

• Data Data contained in the node.

26 Chapter 3. Implementation

doxygen/html/namespaceOctree.html
doxygen/html/namespaceOctree.html

EBGeometry

Node describes both regular and leaf nodes in the octree.

Warning: Octree::Node<Meta, Data> should only be used as std::shared_ptr<Octree::Node<Meta,
Data>>.

3.6.1 Construction

Constructing the octree is done by first initializing the root node and then building it in either depth-first or breadth-first
ordering.

template <typename Meta, typename Data = void>
class Node : public std::enable_shared_from_this<Node<Meta, Data>>
{
using StopFunction = std::function<bool(const Node<Meta, Data>& a_node)>;
using MetaConstructor = std::function<Meta(const OctantIndex& a_index, const Meta& a_parentMeta)>;
using DataConstructor =

std::function<std::shared_ptr<Data>(const OctantIndex& a_index, const std::shared_ptr<Data>& a_parentData)>;
using Updater = std::function<void(const Node<Meta, Data>& a_node)>;
using Visiter = std::function<bool(const Node<Meta, Data>& a_node)>;
using Sorter = std::function<void(std::array<std::shared_ptr<const Node<Meta, Data>>, 8>& a_children)>;

inline void
buildDepthFirst(const StopFunction& a_stopFunction,

const MetaConstructor& a_metaConstructor,
const DataConstructor& a_dataConstructor) noexcept;

inline void
buildBreadthFirst(const StopFunction& a_stopFunction,

const MetaConstructor& a_metaConstructor,
const DataConstructor& a_dataConstructor) noexcept;

};
} // namespace Octree

The input functions to buildDepthFirst and buildBreadthFirst are as follows:

1. StopFunction determines if the node should be split or not. If it returns true, the node will not be split.

2. MetaConstructor constructs meta-data in the child nodes. This can/should include the physical corners of the
node, but this is not a requirement.

3. DataConstructor constructs data in the child node. This can e.g. be a partitioning of the parent data.

3.6.2 Tree traversal

template <typename Meta, typename Data = void>
class Node : public std::enable_shared_from_this<Node<Meta, Data>>
{
inline void
traverse(
const Updater& a_updater,
const Visiter& a_visiter,
const Sorter& a_sorter = [](std::array<std::shared_ptr<const Node<Meta, Data>>, 8>& a_children) -> void {
return;

}) const noexcept;

The input functions to traverse are as follows:

1. Updater executes a user-specified update rule when visiting a leaf node.

2. Visiter determines if the node should be visited during the traversal or not.

3. Sorter permits the user to sort the nodes in the current subtrees and visit them in a specified pattern. By default,
no sorting is done and the nodes are visited in lexicographical order.

3.6. Octree 27

EBGeometry

3.6.3 Example

An example of how to use the Octree functionality is given in EBGeometry_ImplicitFunctionImplem.hpp where
the octree functionality is used for spatial partitioning of an implicit function. This includes both the octree construction
and traversal.

3.7 Reading data

Routines for parsing surface files from grids into EBGeometry’s DCEL grids are given in the namespace
EBGeometry::Parser. The source code is implemented in Source/EBGeometry_Parser.hpp.

Warning: EBGeometry is currently limited to reading binary and ASCII STL files and reconstructing DCEL
grids from those. However, it is a simple matter to also reconstructor DCEL grids from triangle soups read using
third-party codes (see Using third-party sources).

3.7.1 Quickstart

If you have one of multiple STL files, you can quickly turn them into implicit functions with

std::vector<std::string> files; // <---- List of file names.

const auto distanceFields = EBGeometry::Parser::readIntoLinearBVH<float>(files);

See DCEL mesh SDF with compact BVH for further details.

3.7.2 Reading STL files

EBGeometry supports a native parser for binary and ASCII STL files, which can be read into a few different represen-
tations:

1. Into a DCEL mesh, see DCEL.

2. Into a signed distance function representation of a DCEL mesh, see Geometry representation.

3. Into a signed distance function representation of a DCEL mesh, but using a BVH accelerator in full representation.

4. Into a signed distance function representation of a DCEL mesh, but using a BVH accelerator in compact repre-
sentation.

DCEL representation

To read one or multiple STL files and turn it into DCEL meshes, use

/*!
@brief Read a file containing a single watertight object and return it as a DCEL mesh
@param[in] a_filename File name

*/
template <typename T, typename Meta = DCEL::DefaultMetaData>
inline static std::shared_ptr<EBGeometry::DCEL::MeshT<T, Meta>>
readIntoDCEL(const std::string a_filename) noexcept;

/*!
@brief Read multiple files containing single watertight objects and return them as DCEL meshes
@param[in] a_files File names

*/

(continues on next page)

28 Chapter 3. Implementation

EBGeometry

(continued from previous page)
template <typename T, typename Meta = DCEL::DefaultMetaData>
inline static std::vector<std::shared_ptr<EBGeometry::DCEL::MeshT<T, Meta>>>
readIntoDCEL(const std::vector<std::string> a_files) noexcept;

Note that this will only expose the DCEL mesh, but not include any signed distance functionality.

DCEL mesh SDF

To read one or multiple STL files and also turn it into signed distance representations, use

/*!
@brief Read a file containing a single watertight object and return it as an implicit function.
@param[in] a_filename File name

*/
template <typename T, typename Meta = DCEL::DefaultMetaData>
inline static std::shared_ptr<MeshSDF<T, Meta>>
readIntoMesh(const std::string a_filename) noexcept;

/*!
@brief Read multiple files containing single watertight objects and return them as an implicit functions.
@param[in] a_files File names

*/
template <typename T, typename Meta = DCEL::DefaultMetaData>
inline static std::vector<std::shared_ptr<MeshSDF<T, Meta>>>
readIntoMesh(const std::vector<std::string> a_files) noexcept;

DCEL mesh SDF with full BVH

To read one or multiple STL files and turn it into signed distance representations using a full BVH representation, use

/*!
@brief Read a file containing a single watertight object and return it as a DCEL mesh enclosed in a full BVH.
@param[in] a_filename File name

*/
template <typename T,

typename Meta = DCEL::DefaultMetaData,
typename BV = EBGeometry::BoundingVolumes::AABBT<T>,
size_t K = 4>

inline static std::shared_ptr<FastMeshSDF<T, Meta, BV, K>>
readIntoFullBVH(const std::string a_filename) noexcept;

/*!
@brief Read multiple files containing single watertight objects and return them as DCEL meshes enclosed in BVHs.
@param[in] a_files File names

*/
template <typename T,

typename Meta = DCEL::DefaultMetaData,
typename BV = EBGeometry::BoundingVolumes::AABBT<T>,
size_t K = 4>

inline static std::vector<std::shared_ptr<FastMeshSDF<T, Meta, BV, K>>>
readIntoFullBVH(const std::vector<std::string> a_files) noexcept;

DCEL mesh SDF with compact BVH

To read one or multiple STL files and turn it into signed distance representations using a compact BVH representation,
use

/*!
@brief Read a file containing a single watertight object and return it as a DCEL mesh enclosed in a linearized BVH
@param[in] a_filename File name

*/
template <typename T,

typename Meta = DCEL::DefaultMetaData,
typename BV = EBGeometry::BoundingVolumes::AABBT<T>,
size_t K = 4>

(continues on next page)

3.7. Reading data 29

EBGeometry

(continued from previous page)
inline static std::shared_ptr<FastCompactMeshSDF<T, Meta, BV, K>>
readIntoLinearBVH(const std::string a_filename) noexcept;

/*!
@brief Read multiple files containing single watertight objects and return them as DCEL meshes enclosed in linearized BVHs.
@param[in] a_files File names

*/
template <typename T,

typename Meta = DCEL::DefaultMetaData,
typename BV = EBGeometry::BoundingVolumes::AABBT<T>,
size_t K = 4>

inline static std::vector<std::shared_ptr<FastCompactMeshSDF<T, Meta, BV, K>>>
readIntoLinearBVH(const std::vector<std::string> a_files) noexcept;

3.7.3 From soups to DCEL

EBGeometry also supports the creation of DCEL grids from polygon soups, which can then be later turned into an SDF
representation. A triangle soup is represented as

std::vector<Vec3T<T>> vertices;
std::vector<std::vector<size_t>> faces;

Here, vertices contains the 𝑥, 𝑦, 𝑧 coordinates of each vertex, while each entry faces contains a list of vertices for
the face.

To turn this into a DCEL mesh, one should compress the triangle soup (get rid of duplicate vertices) and then construct
the DCEL mesh:

/*!
@brief Compress triangle soup (removes duplicate vertices)
@param[out] a_vertices Vertices
@param[out] a_facets STL facets

*/
template <typename T>
inline static void
compress(std::vector<EBGeometry::Vec3T<T>>& a_vertices, std::vector<std::vector<size_t>>& a_facets) noexcept;

/*!
@brief Turn raw vertices into DCEL vertices.
@param[out] a_verticesDCEL DCEL vertices
@param[in] a_verticesRaw Raw vertices
@param[in] a_facets Facets

*/
template <typename T, typename Meta>
inline static void
soupToDCEL(EBGeometry::DCEL::MeshT<T, Meta>& a_mesh,

const std::vector<EBGeometry::Vec3T<T>>& a_vertices,
const std::vector<std::vector<size_t>>& a_facets) noexcept;

The compress function will discard duplicate vertices from the soup, while the soupToDCEL will simply turn the
remaining polygon soup into a DCEL mesh. This function will also compute the vertex and edge normal vectors.

Warning: soupToDCEL will issue plenty of warnings if the polygon soup is not watertight and orientable.

30 Chapter 3. Implementation

EBGeometry

3.7.4 Using third-party sources

By design, EBGeometry does not include much functionality for parsing files into polygon soups. There are many open
source third-party codes for achieving this (and we have tested several of them):

1. happly or miniply for Stanford PLY files.

2. stl_reader for STL files.

3. tinyobjloader for OBJ files.

In almost every case, the above codes can be read into polygon soups, and one can then turn the soup into a DCEL
mesh as described in From soups to DCEL.

3.7. Reading data 31

https://github.com/nmwsharp/happly
https://github.com/vilya/miniply
https://github.com/sreiter/stl_reader
https://github.com/tinyobjloader/tinyobjloader

EBGeometry

32 Chapter 3. Implementation

CHAPTER

FOUR

EXAMPLES

Below, we consider a few examples that show how to use EBGeometry. All the examples are located in the Examples
folder. For instructions on how to compile and run the examples, refer to the README file in the example folder.

4.1 EBGeometry

EBGeometry-specified examples are given in Examples/EBGeometry_<something>. These examples display most
of the EBGeometry functionality:

• Generating analytic implicit or signed distance functions.

• Representation of surface grids as signed distance functions.

• Using BVH-acceleration when combining multiple analytically defined implicit functions with CSG.

• Using BVH-acceleration when combining multiple surface grids functions with CSG.

Note that these examples do not provide any output for visualization.

4.2 AMReX

The AMReX examples are given in Examples/AMReX_<something>. These examples are intended to expose the
same features as the EBGeometry-specific examples.

4.3 Chombo3

The Chombo-3 examples are given in Examples/Chombo3_<something>. These examples are intended to expose
the same features as the EBGeometry-specific examples.

33

EBGeometry

34 Chapter 4. Examples

BIBLIOGRAPHY

[1] J.A. Baerentzen and H. Aanaes. Signed distance computation using the angle weighted pseudonormal. IEEE Trans-
actions on Visualization and Computer Graphics, 11(3):243–253, 2005. doi:10.1109/TVCG.2005.49.

35

https://doi.org/10.1109/TVCG.2005.49

	Introduction
	Requirements
	Quickstart
	Third-party examples

	Concepts
	Geometry representations
	Signed distance fields
	Implicit functions

	DCEL
	Principle
	Signed distance
	Normal vectors

	Bounding volume hierarchies
	Construction
	Tree traversal

	Octree
	Constructive solid geometry
	Basic transformations
	Combining objects

	Implementation
	Overview
	Vector types
	Geometry representation
	Implicit functions
	Transformations
	CSG operations
	Bounding volumes

	DCEL
	Main types
	BVH integration

	BVH
	Bounding volumes
	Construction
	Top-down construction
	Bottom-up construction

	Compact form
	Tree traversal
	Node visit
	Traversal pattern
	Update rule
	Meta-data
	Traversal algorithm
	Traversal examples

	Octree
	Construction
	Tree traversal
	Example

	Reading data
	Quickstart
	Reading STL files
	DCEL representation
	DCEL mesh SDF
	DCEL mesh SDF with full BVH
	DCEL mesh SDF with compact BVH

	From soups to DCEL
	Using third-party sources

	Examples
	EBGeometry
	AMReX
	Chombo3

	Bibliography

