|
1 | 1 | {
|
2 | 2 | "metadata": {
|
3 | 3 | "name": "",
|
4 |
| - "signature": "sha256:c69dee8958d58e899a12b80810cc37f7abd7a90f9b76135251a76499ed8aeb2a" |
| 4 | + "signature": "sha256:3155cd3fa2449393a467f91f3cdbb32eeac212db664843ef30f96b635dbfc06d" |
5 | 5 | },
|
6 | 6 | "nbformat": 3,
|
7 | 7 | "nbformat_minor": 0,
|
|
1722 | 1722 | "input": [
|
1723 | 1723 | "# Filling cells with data\n",
|
1724 | 1724 | "\n",
|
1725 |
| - "df.loc[df.index[-1], 'player'] = 'New Player'\n", |
| 1725 | + "df.loc[df.index[-1], 'player'] = 'new player'\n", |
1726 | 1726 | "df.loc[df.index[-1], 'salary'] = 12.3\n",
|
1727 | 1727 | "df.tail(3)"
|
1728 | 1728 | ],
|
|
1777 | 1777 | " </tr>\n",
|
1778 | 1778 | " <tr>\n",
|
1779 | 1779 | " <th>10</th>\n",
|
1780 |
| - " <td> New Player</td>\n", |
| 1780 | + " <td> new player</td>\n", |
1781 | 1781 | " <td> 12.3</td>\n",
|
1782 | <
10000
code>1782 | " <td>NaN</td>\n",
|
1783 | 1783 | " <td>NaN</td>\n",
|
|
1799 | 1799 | " player salary games goals assists shots_on_target \\\n",
|
1800 | 1800 | "8 saido berahino 13.8 21 9 0 20 \n",
|
1801 | 1801 | "9 steven gerrard 13.8 20 5 1 11 \n",
|
1802 |
| - "10 New Player 12.3 NaN NaN NaN NaN \n", |
| 1802 | + "10 new player 12.3 NaN NaN NaN NaN \n", |
1803 | 1803 | "\n",
|
1804 | 1804 | " points_per_game points position team \n",
|
1805 | 1805 | "8 7.02 147.43 forward west brom \n",
|
|
2548 | 2548 | "input": [
|
2549 | 2549 | "# Selecting only those players that either playing for Arsenal or Chelsea\n",
|
2550 | 2550 | "\n",
|
2551 |
| - "df[ (df['team'] == 'Arsenal') | (df['team'] == 'Chelsea') ]" |
| 2551 | + "df[ (df['team'] == 'arsenal') | (df['team'] == 'chelsea') ]" |
2552 | 2552 | ],
|
2553 | 2553 | "language": "python",
|
2554 | 2554 | "metadata": {},
|
|
2573 | 2573 | " </tr>\n",
|
2574 | 2574 | " </thead>\n",
|
2575 | 2575 | " <tbody>\n",
|
| 2576 | + " <tr>\n", |
| 2577 | + " <th>1</th>\n", |
| 2578 | + " <td> alexis s\u00e1nchez</td>\n", |
| 2579 | + " <td> 15</td>\n", |
| 2580 | + " <td> 0</td>\n", |
| 2581 | + " <td> 12</td>\n", |
| 2582 | + " <td> 7</td>\n", |
| 2583 | + " <td> 29</td>\n", |
| 2584 | + " <td> 11.19</td>\n", |
| 2585 | + " <td> 223.86</td>\n", |
| 2586 | + " <td> forward</td>\n", |
| 2587 | + " <td> arsenal</td>\n", |
| 2588 | + " </tr>\n", |
| 2589 | + " <tr>\n", |
| 2590 | + " <th>3</th>\n", |
| 2591 | + " <td> eden hazard</td>\n", |
| 2592 | + " <td> 18.9</td>\n", |
| 2593 | + " <td> 21</td>\n", |
| 2594 | + " <td> 8</td>\n", |
| 2595 | + " <td> 4</td>\n", |
| 2596 | + " <td> 17</td>\n", |
| 2597 | + " <td> 13.05</td>\n", |
| 2598 | + " <td> 274.04</td>\n", |
| 2599 | + " <td> midfield</td>\n", |
| 2600 | + " <td> chelsea</td>\n", |
| 2601 | + " </tr>\n", |
| 2602 | + " <tr>\n", |
| 2603 | + " <th>7</th>\n", |
| 2604 | + " <td> santiago cazorla</td>\n", |
| 2605 | + " <td> 14.8</td>\n", |
| 2606 | + " <td> 20</td>\n", |
| 2607 | + " <td> 4</td>\n", |
| 2608 | + " <td> 0</td>\n", |
| 2609 | + " <td> 20</td>\n", |
| 2610 | + " <td> 9.97</td>\n", |
| 2611 | + " <td> 0.00</td>\n", |
| 2612 | + " <td> midfield</td>\n", |
| 2613 | + " <td> arsenal</td>\n", |
| 2614 | + " </tr>\n", |
| 2615 | + " <tr>\n", |
| 2616 | + " <th>9</th>\n", |
| 2617 | + " <td> cesc f\u00e0bregas</td>\n", |
| 2618 | + " <td> 14.0</td>\n", |
| 2619 | + " <td> 20</td>\n", |
| 2620 | + " <td> 2</td>\n", |
| 2621 | + " <td> 14</td>\n", |
| 2622 | + " <td> 10</td>\n", |
| 2623 | + " <td> 10.47</td>\n", |
| 2624 | + " <td> 209.49</td>\n", |
| 2625 | + " <td> midfield</td>\n", |
| 2626 | + " <td> chelsea</td>\n", |
| 2627 | + " </tr>\n", |
2576 | 2628 | " </tbody>\n",
|
2577 | 2629 | "</table>\n",
|
2578 | 2630 | "</div>"
|
|
2581 | 2633 | "output_type": "pyout",
|
2582 | 2634 | "prompt_number": 21,
|
2583 | 2635 | "text": [
|
2584 |
| - "Empty DataFrame\n", |
2585 |
| - "Columns: [player, salary, games, goals, assists, shots_on_target, points_per_game, points, position, team]\n", |
2586 |
| - "Index: []" |
| 2636 | + " player salary games goals assists shots_on_target \\\n", |
| 2637 | + &quo
F438
t;1 alexis s\u00e1nchez 15 0 12 7 29 \n", |
| 2638 | + "3 eden hazard 18.9 21 8 4 17 \n", |
| 2639 | + "7 santiago cazorla 14.8 20 4 0 20 \n", |
| 2640 | + "9 cesc f\u00e0bregas 14.0 20 2 14 10 \n", |
| 2641 | + "\n", |
| 2642 | + " points_per_game points position team \n", |
| 2643 | + "1 11.19 223.86 forward arsenal \n", |
| 2644 | + "3 13.05 274.04 midfield chelsea \n", |
| 2645 | + "7 9.97 0.00 midfield arsenal \n", |
| 2646 | + "9 10.47 209.49 midfield chelsea " |
2587 | 2647 | ]
|
2588 | 2648 | }
|
2589 | 2649 | ],
|
|
2595 | 2655 | "input": [
|
2596 | 2656 | "# Selecting forwards from Arsenal only\n",
|
2597 | 2657 | "\n",
|
2598 |
| - "df[ (df['team'] == 'Arsenal') & (df['position'] == 'Forward') ]" |
| 2658 | + "df[ (df['team'] == 'arsenal') & (df['position'] == 'forward') ]" |
2599 | 2659 | ],
|
2600 | 2660 | "language": "python",
|
2601 | 2661 | "metadata": {},
|
|
2620 | 2680 | " </tr>\n",
|
2621 | 2681 | " </thead>\n",
|
2622 | 2682 | " <tbody>\n",
|
| 2683 | + " <tr>\n", |
| 2684 | + " <th>1</th>\n", |
| 2685 | + " <td> alexis s\u00e1nchez</td>\n", |
| 2686 | + " <td> 15</td>\n", |
| 2687 | + " <td> 0</td>\n", |
| 2688 | + " <td> 12</td>\n", |
| 2689 | + " <td> 7</td>\n", |
| 2690 | + " <td> 29</td>\n", |
| 2691 | + " <td> 11.19</td>\n", |
| 2692 | + " <td> 223.86</td>\n", |
| 2693 | + " <td> forward</td>\n", |
| 2694 | + " <td> arsenal</td>\n", |
| 2695 | + " </tr>\n", |
2623 | 2696 | " </tbody>\n",
|
2624 | 2697 | "</table>\n",
|
2625 | 2698 | "</div>"
|
|
2628 | 2701 | "output_type": "pyout",
|
2629 | 2702 | "prompt_number": 22,
|
2630 | 2703 | "text": [
|
2631 |
| - "Empty DataFrame\n", |
2632 |
| - "Columns: [player, salary, games, goals, assists, shots_on_target, points_per_game, points, position, team]\n", |
2633 |
| - "Index: []" |
| 2704 | + " player salary games goals assists shots_on_target \\\n", |
| 2705 | + "1 alexis s\u00e1nchez 15 0 12 7 29 \n", |
| 2706 | + "\n", |
| 2707 | + " points_per_game points position team \n", |
| 2708 | + "1 11.19 223.86 forward arsenal " |
2634 | 2709 | ]
|
2635 | 2710 | }
|
2636 | 2711 | ],
|
|
0 commit comments