@@ -798,17 +798,21 @@ def __init__(
798798 vocab_only: Only load the vocabulary no weights.
799799 use_mmap: Use mmap if possible.
800800 use_mlock: Force the system to keep the model in RAM.
801- seed: Random seed. -1 for random.
802- n_ctx: Context size.
803- n_batch: Batch size for prompt processing (must be >= 32 to use BLAS)
804- n_threads: Number of threads to use. If None, the number of threads is automatically determined.
805- n_threads_batch: Number of threads to use for batch processing. If None, use n_threads.
806- rope_scaling_type: Type of rope scaling to use.
807- rope_freq_base: Base frequency for rope sampling.
808- rope_freq_scale: Scale factor for rope sampling.
809- mul_mat_q: if true, use experimental mul_mat_q kernels
810- f16_kv: Use half-precision for key/value cache.
811- logits_all: Return logits for all tokens, not just the last token.
801+ seed: RNG seed, -1 for random
802+ n_ctx: Text context, 0 = from model
803+ n_batch: Prompt processing maximum batch size
804+ n_threads: Number of threads to use for generation
805+ n_threads_batch: Number of threads to use for batch processing
806+ rope_scaling_type: RoPE scaling type, from `enum llama_rope_scaling_type`. ref: https://github.com/ggerganov/llama.cpp/pull/2054
807+ rope_freq_base: RoPE base frequency, 0 = from model
808+ rope_freq_scale: RoPE frequency scaling factor, 0 = from model
809+ yarn_ext_factor: YaRN extrapolation mix factor, negative = from model
810+ yarn_attn_factor: YaRN magnitude scaling factor
811+ yarn_beta_fast: YaRN low correction dim
812+ yarn_beta_slow: YaRN high correction dim
813+ yarn_orig_ctx: YaRN original context size
814+ f16_kv: Use fp16 for KV cache, fp32 otherwise
815+ logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.
812816 embedding: Embedding mode only.
813817 last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
814818 lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
0 commit comments