8000 DOC: Clarify the scoring in Logistic Regression · raghavrv/scikit-learn@6d3e87a · GitHub
[go: up one dir, main page]

Skip to content

Commit 6d3e87a

Browse files
committed
DOC: Clarify the scoring in Logistic Regression
Clarifies the allowed parameters for scoring in LogisticRegressionCV fixes scikit-learn#6480 [skip ci]
1 parent d7d0ae6 commit 6d3e87a

File tree

1 file changed

+6
-4
lines changed

1 file changed

+6
-4
lines changed

sklearn/linear_model/logistic.py

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -796,10 +796,12 @@ def _log_reg_scoring_path(X, y, train, test, pos_class=None, Cs=10,
796796
values are chosen in a logarithmic scale between 1e-4 and 1e4.
797797
If not provided, then a fixed set of values for Cs are used.
798798
799-
scoring : callable
800-
For a list of scoring functions that can be used, look at
801-
:mod:`sklearn.metrics`. The default scoring option used is
802-
accuracy_score.
799+
scoring : callable or None, optional, default: None
800+
A string (see model evaluation documentation) or
801+
a scorer callable object / function with signature
802+
``scorer(estimator, X, y)``. For a list of scoring functions
803+
that can be used, look at :mod:`sklearn.metrics`. The
804+
default scoring option used is accuracy_score.
803805
804806
fit_intercept : bool
805807
If False, then the bias term is set to zero. Else the last

0 commit comments

Comments
 (0)
0