@@ -570,13 +570,13 @@ class Lars(LinearModel, RegressorMixin):
570
570
Examples
571
571
--------
572
572
>>> from sklearn import linear_model
573
- >>> clf = linear_model.Lars(n_nonzero_coefs=1)
574
- >>> clf .fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
573
+ >>> reg = linear_model.Lars(n_nonzero_coefs=1)
574
+ >>> reg .fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
575
575
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
576
576
Lars(copy_X=True, eps=..., fit_intercept=True, fit_path=True,
577
577
n_nonzero_coefs=1, normalize=True, positive=False, precompute='auto',
578
578
verbose=False)
579
- >>> print(clf .coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
579
+ >>> print(reg .coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
580
580
[ 0. -1.11...]
581
581
582
582
See also
@@ -805,13 +805,13 @@ class LassoLars(Lars):
805
805
Examples
806
806
--------
807
807
>>> from sklearn import linear_model
808
- >>> clf = linear_model.LassoLars(alpha=0.01)
809
- >>> clf .fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1])
808
+ >>> reg = linear_model.LassoLars(alpha=0.01)
809
+ >>> reg .fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1])
810
810
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
811
811
LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True,
812
812
fit_path=True, max_iter=500, normalize=True, positive=False,
813
813
precompute='auto', verbose=False)
814
- >>> print(clf .coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
814
+ >>> print(reg .coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
815
815
[ 0. -0.963257...]
816
816
817
817
See also
@@ -1408,13 +1408,13 @@ class LassoLarsIC(LassoLars):
1408
1408
Examples
1409
1409
--------
1410
1410
>>> from sklearn import linear_model
1411
- >>> clf = linear_model.LassoLarsIC(criterion='bic')
1412
- >>> clf .fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
1411
+ >>> reg = linear_model.LassoLarsIC(criterion='bic')
1412
+ >>> reg .fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
1413
1413
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
1414
1414
LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True,
1415
1415
max_iter=500, normalize=True, positive=False, precompute='auto',
1416
1416
verbose=False)
1417
- >>> print(clf .coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
1417
+ >>> print(reg .coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
1418
1418
[ 0. -1.11...]
1419
1419
1420
1420
Notes
0 commit comments