8000 Rename clf to reg · raghavrv/scikit-learn@26653db · GitHub
[go: up one dir, main page]

Skip to content

Commit 26653db

Browse files
yang-zhangjnothman
authored andcommitted
Rename clf to reg
1 parent 06d0e0d commit 26653db

File tree

1 file changed

+9
-9
lines changed

1 file changed

+9
-9
lines changed

sklearn/linear_model/least_angle.py

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -570,13 +570,13 @@ class Lars(LinearModel, RegressorMixin):
570570
Examples
571571
--------
572572
>>> from sklearn import linear_model
573-
>>> clf = linear_model.Lars(n_nonzero_coefs=1)
574-
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
573+
>>> reg = linear_model.Lars(n_nonzero_coefs=1)
574+
>>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
575575
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
576576
Lars(copy_X=True, eps=..., fit_intercept=True, fit_path=True,
577577
n_nonzero_coefs=1, normalize=True, positive=False, precompute='auto',
578578
verbose=False)
579-
>>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
579+
>>> print(reg.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
580580
[ 0. -1.11...]
581581
582582
See also
@@ -805,13 +805,13 @@ class LassoLars(Lars):
805805
Examples
806806
--------
807807
>>> from sklearn import linear_model
808-
>>> clf = linear_model.LassoLars(alpha=0.01)
809-
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1])
808+
>>> reg = linear_model.LassoLars(alpha=0.01)
809+
>>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1])
810810
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
811811
LassoLars(alpha=0.01, copy_X=True, eps=..., fit_intercept=True,
812812
fit_path=True, max_iter=500, normalize=True, positive=False,
813813
precompute='auto', verbose=False)
814-
>>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
814+
>>> print(reg.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
815815
[ 0. -0.963257...]
816816
817817
See also
@@ -1408,13 +1408,13 @@ class LassoLarsIC(LassoLars):
14081408
Examples
14091409
--------
14101410
>>> from sklearn import linear_model
1411-
>>> clf = linear_model.LassoLarsIC(criterion='bic')
1412-
>>> clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
1411+
>>> reg = linear_model.LassoLarsIC(criterion='bic')
1412+
>>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
14131413
... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
14141414
LassoLarsIC(copy_X=True, criterion='bic', eps=..., fit_intercept=True,
14151415
max_iter=500, normalize=True, positive=False, precompute='auto',
14161416
verbose=False)
1417-
>>> print(clf.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
1417+
>>> print(reg.coef_) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
14181418
[ 0. -1.11...]
14191419
14201420
Notes

0 commit comments

Comments
 (0)
0