diff --git a/.github/workflows/pypi.yml b/.github/workflows/pypi.yml index 7cd9c3ec..e0059f85 100644 --- a/.github/workflows/pypi.yml +++ b/.github/workflows/pypi.yml @@ -5,22 +5,46 @@ on: types: [published] jobs: - deploy: + build: + name: build runs-on: ubuntu-latest steps: - - uses: actions/checkout@v4 - - name: Set up Python - uses: actions/setup-python@v5 - with: - python-version: '3.9' - - name: Install dependencies - run: | - pip install --upgrade pip uv - uv pip install build twine - - name: Build and publish - env: - TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }} - TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }} - run: | - python -m build - twine upload dist/* + - name: Clone repo + uses: actions/checkout@v4.2.2 + + - name: Set up python + uses: actions/setup-python@v5.6.0 + with: + python-version: '3.13' + + - name: Install pip dependencies + run: pip install build + + - name: List pip dependencies + run: pip list + + - name: Build project + run: python3 -m build + + - name: Upload artifacts + uses: actions/upload-artifact@v4.6.2 + with: + name: pypi-dist + path: dist/ + + pypi: + name: pypi + needs: + - build + permissions: + id-token: write + runs-on: ubuntu-latest + steps: + - name: Download artifacts + uses: actions/download-artifact@v4.3.0 + with: + name: pypi-dist + path: dist/ + + - name: Publish to PyPI + uses: pypa/gh-action-pypi-publish@v1.12.4 diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index bf04ab0a..fbce9a45 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -51,7 +51,7 @@ jobs: run: uv pip list - name: Test with PyTest - run: uv run pytest -v -rsx -n 2 --cov=segmentation_models_pytorch --cov-report=xml --cov-config=pyproject.toml -k "not logits_match" + run: uv run pytest -v -rsx -n 2 --cov=segmentation_models_pytorch --cov-report=xml --cov-config=pyproject.toml --non-marked-only - name: Upload coverage reports to Codecov uses: codecov/codecov-action@v5 @@ -73,7 +73,52 @@ jobs: - name: Show installed packages run: uv pip list - name: Test with PyTest - run: RUN_SLOW=1 uv run pytest -v -rsx -n 2 -k "logits_match" + run: RUN_SLOW=1 uv run pytest -v -rsx -n 2 -m "logits_match" + + test_torch_compile: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + - name: Set up Python + uses: astral-sh/setup-uv@v5 + with: + python-version: "3.10" + - name: Install dependencies + run: uv pip install -r requirements/required.txt -r requirements/test.txt + - name: Show installed packages + run: uv pip list + - name: Test with PyTest + run: uv run pytest -v -rsx -n 2 -m "compile" + + test_torch_export: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + - name: Set up Python + uses: astral-sh/setup-uv@v5 + with: + python-version: "3.10" + - name: Install dependencies + run: uv pip install -r requirements/required.txt -r requirements/test.txt + - name: Show installed packages + run: uv pip list + - name: Test with PyTest + run: uv run pytest -v -rsx -n 2 -m "torch_export" + + test_torch_script: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + - name: Set up Python + uses: astral-sh/setup-uv@v5 + with: + python-version: "3.10" + - name: Install dependencies + run: uv pip install -r requirements/required.txt -r requirements/test.txt + - name: Show installed packages + run: uv pip list + - name: Test with PyTest + run: uv run pytest -v -rsx -n 2 -m "torch_script" minimum: runs-on: ubuntu-latest @@ -88,4 +133,4 @@ jobs: - name: Show installed packages run: uv pip list - name: Test with pytest - run: uv run pytest -v -rsx -n 2 -k "not logits_match" + run: uv run pytest -v -rsx -n 2 --non-marked-only diff --git a/Makefile b/Makefile index a58d230f..9cbf9bdc 100644 --- a/Makefile +++ b/Makefile @@ -1,26 +1,39 @@ -.PHONY: test +.PHONY: test # Declare the 'test' target as phony to avoid conflicts with files named 'test' +# Variables to store the paths of the python, pip, pytest, and ruff executables +PYTHON := $(shell which python) +PIP := $(shell which pip) +PYTEST := $(shell which pytest) +RUFF := $(shell which ruff) + +# Target to create a Python virtual environment .venv: - python3 -m venv .venv + $(PYTHON) -m venv $(shell dirname $(PYTHON)) +# Target to install development dependencies in the virtual environment install_dev: .venv - .venv/bin/pip install -e ".[test]" + $(PIP) install -e ".[test]" +# Target to run tests with pytest, using 2 parallel processes and only non-marked tests test: .venv - .venv/bin/pytest -v -rsx -n 2 tests/ -k "not logits_match" + $(PYTEST) -v -rsx -n 2 tests/ --non-marked-only +# Target to run all tests with pytest, including slow tests, using 2 parallel processes test_all: .venv - RUN_SLOW=1 .venv/bin/pytest -v -rsx -n 2 tests/ + RUN_SLOW=1 $(PYTEST) -v -rsx -n 2 tests/ +# Target to generate a table by running a Python script table: - .venv/bin/python misc/generate_table.py + $(PYTHON) misc/generate_table.py +# Target to generate a table for timm by running a Python script table_timm: - .venv/bin/python misc/generate_table_timm.py + $(PYTHON) misc/generate_table_timm.py +# Target to fix and format code using ruff fixup: - .venv/bin/ruff check --fix - .venv/bin/ruff format + $(RUFF) check --fix + $(RUFF) format +# Target to run code formatting and tests all: fixup test - diff --git a/README.md b/README.md index b3a0b3ff..df00ff8c 100644 --- a/README.md +++ b/README.md @@ -1,28 +1,51 @@
![logo](https://i.ibb.co/dc1XdhT/Segmentation-Models-V2-Side-1-1.png) -**Python library with Neural Networks for Image +**Python library with Neural Networks for Image Semantic Segmentation based on [PyTorch](https://pytorch.org/).** -[![Generic badge](https://img.shields.io/badge/License-MIT-.svg?style=for-the-badge)](https://github.com/qubvel/segmentation_models.pytorch/blob/main/LICENSE) + [![GitHub Workflow Status (branch)](https://img.shields.io/github/actions/workflow/status/qubvel/segmentation_models.pytorch/tests.yml?branch=main&style=for-the-badge)](https://github.com/qubvel/segmentation_models.pytorch/actions/workflows/tests.yml) +![Codecov](https://img.shields.io/codecov/c/github/qubvel-org/segmentation_models.pytorch?style=for-the-badge) [![Read the Docs](https://img.shields.io/readthedocs/smp?style=for-the-badge&logo=readthedocs&logoColor=white)](https://smp.readthedocs.io/en/latest/)
-[![PyPI](https://img.shields.io/pypi/v/segmentation-models-pytorch?color=blue&style=for-the-badge&logo=pypi&logoColor=white)](https://pypi.org/project/segmentation-models-pytorch/) -[![PyPI - Downloads](https://img.shields.io/pypi/dm/segmentation-models-pytorch?style=for-the-badge&color=blue)](https://pepy.tech/project/segmentation-models-pytorch) -
-[![PyTorch - Version](https://img.shields.io/badge/PYTORCH-1.4+-red?style=for-the-badge&logo=pytorch)](https://pepy.tech/project/segmentation-models-pytorch) +[![PyPI](https://img.shields.io/pypi/v/segmentation-models-pytorch?color=red&style=for-the-badge&logo=pypi&logoColor=white)](https://pypi.org/project/segmentation-models-pytorch/) +[![PyTorch - Version](https://img.shields.io/badge/PYTORCH-1.9+-red?style=for-the-badge&logo=pytorch)](https://pepy.tech/project/segmentation-models-pytorch) [![Python - Version](https://img.shields.io/badge/PYTHON-3.9+-red?style=for-the-badge&logo=python&logoColor=white)](https://pepy.tech/project/segmentation-models-pytorch) +
+[![Generic badge](https://img.shields.io/badge/License-MIT-.svg?style=for-the-badge&color=blue)](https://github.com/qubvel/segmentation_models.pytorch/blob/main/LICENSE) +[![PyPI - Downloads](https://img.shields.io/pypi/dm/segmentation-models-pytorch?style=for-the-badge&color=blue)](https://pepy.tech/project/segmentation-models-pytorch)
-The main features of this library are: - - - High-level API (just two lines to create a neural network) - - 11 models architectures for binary and multi class segmentation (including legendary Unet) - - 124 available encoders (and 500+ encoders from [timm](https://github.com/rwightman/pytorch-image-models)) - - All encoders have pre-trained weights for faster and better convergence - - Popular metrics and losses for training routines +The main features of the library are: + + - Super simple high-level API (just two lines to create a neural network) + - 12 encoder-decoder model architectures (Unet, Unet++, Segformer, DPT, ...) + - 800+ **pretrained** convolution- and transform-based encoders, including [timm](https://github.com/huggingface/pytorch-image-models) support + - Popular metrics and losses for training routines (Dice, Jaccard, Tversky, ...) + - ONNX export and torch script/trace/compile friendly + +### Community-Driven Project, Supported By + + + + + +
+ + withoutBG API Logo + + + withoutBG API +
+ https://withoutbg.com +
+

+ High-quality background removal API +
+

+
### [πŸ“š Project Documentation πŸ“š](http://smp.readthedocs.io/) @@ -31,21 +54,18 @@ Visit [Read The Docs Project Page](https://smp.readthedocs.io/) or read the foll ### πŸ“‹ Table of content 1. [Quick start](#start) 2. [Examples](#examples) - 3. [Models](#models) - 1. [Architectures](#architectures) - 2. [Encoders](#encoders) - 3. [Timm Encoders](#timm) + 3. [Models and encoders](#models-and-encoders) 4. [Models API](#api) 1. [Input channels](#input-channels) 2. [Auxiliary classification output](#auxiliary-classification-output) 3. [Depth](#depth) 5. [Installation](#installation) - 6. [Competitions won with the library](#competitions-won-with-the-library) + 6. [Competitions won with the library](#competitions) 7. [Contributing](#contributing) 8. [Citing](#citing) 9. [License](#license) -### ⏳ Quick start +## ⏳ Quick start #### 1. Create your first Segmentation model with SMP @@ -76,361 +96,71 @@ preprocess_input = get_preprocessing_fn('resnet18', pretrained='imagenet') Congratulations! You are done! Now you can train your model with your favorite framework! -### πŸ’‘ Examples - - Training model for pets binary segmentation with Pytorch-Lightning [notebook](https://github.com/qubvel/segmentation_models.pytorch/blob/main/examples/binary_segmentation_intro.ipynb) and [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/binary_segmentation_intro.ipynb) - - Training model for cars segmentation on CamVid dataset [here](https://github.com/qubvel/segmentation_models.pytorch/blob/main/examples/cars%20segmentation%20(camvid).ipynb). - - Training SMP model with [Catalyst](https://github.com/catalyst-team/catalyst) (high-level framework for PyTorch), [TTAch](https://github.com/qubvel/ttach) (TTA library for PyTorch) and [Albumentations](https://github.com/albu/albumentations) (fast image augmentation library) - [here](https://github.com/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catalyst-team/catalyst/blob/v21.02rc0/examples/notebooks/segmentation-tutorial.ipynb) - - Training SMP model with [Pytorch-Lightning](https://pytorch-lightning.readthedocs.io) framework - [here](https://github.com/ternaus/cloths_segmentation) (clothes binary segmentation by [@ternaus](https://github.com/ternaus)). - - Export trained model to ONNX - [notebook](https://github.com/qubvel/segmentation_models.pytorch/blob/main/examples/convert_to_onnx.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/convert_to_onnx.ipynb) - -### πŸ“¦ Models - -#### Architectures - - Unet [[paper](https://arxiv.org/abs/1505.04597)] [[docs](https://smp.readthedocs.io/en/latest/models.html#unet)] - - Unet++ [[paper](https://arxiv.org/pdf/1807.10165.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id2)] - - MAnet [[paper](https://ieeexplore.ieee.org/abstract/document/9201310)] [[docs](https://smp.readthedocs.io/en/latest/models.html#manet)] - - Linknet [[paper](https://arxiv.org/abs/1707.03718)] [[docs](https://smp.readthedocs.io/en/latest/models.html#linknet)] - - FPN [[paper](http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf)] [[docs](https://smp.readthedocs.io/en/latest/models.html#fpn)] - - PSPNet [[paper](https://arxiv.org/abs/1612.01105)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pspnet)] - - PAN [[paper](https://arxiv.org/abs/1805.10180)] [[docs](https://smp.readthedocs.io/en/latest/models.html#pan)] - - DeepLabV3 [[paper](https://arxiv.org/abs/1706.05587)] [[docs](https://smp.readthedocs.io/en/latest/models.html#deeplabv3)] - - DeepLabV3+ [[paper](https://arxiv.org/abs/1802.02611)] [[docs](https://smp.readthedocs.io/en/latest/models.html#id9)] - - UPerNet [[paper](https://arxiv.org/abs/1807.10221)] [[docs](https://smp.readthedocs.io/en/latest/models.html#upernet)] - - Segformer [[paper](https://arxiv.org/abs/2105.15203)] [[docs](https://smp.readthedocs.io/en/latest/models.html#segformer)] - -#### Encoders - -The following is a list of supported encoders in the SMP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (`encoder_name` and `encoder_weights` parameters). - -
-ResNet -
- -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|resnet18 |imagenet / ssl / swsl |11M | -|resnet34 |imagenet |21M | -|resnet50 |imagenet / ssl / swsl |23M | -|resnet101 |imagenet |42M | -|resnet152 |imagenet |58M | - -
-
- -
-ResNeXt -
- -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|resnext50_32x4d |imagenet / ssl / swsl |22M | -|resnext101_32x4d |ssl / swsl |42M | -|resnext101_32x8d |imagenet / instagram / ssl / swsl|86M | -|resnext101_32x16d |instagram / ssl / swsl |191M | -|resnext101_32x32d |instagram |466M | -|resnext101_32x48d |instagram |826M | - -
-
- -
-ResNeSt -
- -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|timm-resnest14d |imagenet |8M | -|timm-resnest26d |imagenet |15M | -|timm-resnest50d |imagenet |25M | -|timm-resnest101e |imagenet |46M | -|timm-resnest200e |imagenet |68M | -|timm-resnest269e |imagenet |108M | -|timm-resnest50d_4s2x40d |imagenet |28M | -|timm-resnest50d_1s4x24d |imagenet |23M | - -
-
- -
-Res2Ne(X)t -
- -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|timm-res2net50_26w_4s |imagenet |23M | -|timm-res2net101_26w_4s |imagenet |43M | -|timm-res2net50_26w_6s |imagenet |35M | -|timm-res2net50_26w_8s |imagenet |46M | -|timm-res2net50_48w_2s |imagenet |23M | -|timm-res2net50_14w_8s |imagenet |23M | -|timm-res2next50 |imagenet |22M | - -
-
- -
-RegNet(x/y) -
- -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|timm-regnetx_002 |imagenet |2M | -|timm-regnetx_004 |imagenet |4M | -|timm-regnetx_006 |imagenet |5M | -|timm-regnetx_008 |imagenet |6M | -|timm-regnetx_016 |imagenet |8M | -|timm-regnetx_032 |imagenet |14M | -|timm-regnetx_040 |imagenet |20M | -|timm-regnetx_064 |imagenet |24M | -|timm-regnetx_080 |imagenet |37M | -|timm-regnetx_120 |imagenet |43M | -|timm-regnetx_160 |imagenet |52M | -|timm-regnetx_320 |imagenet |105M | -|timm-regnety_002 |imagenet |2M | -|timm-regnety_004 |imagenet |3M | -|timm-regnety_006 |imagenet |5M | -|timm-regnety_008 |imagenet |5M | -|timm-regnety_016 |imagenet |10M | -|timm-regnety_032 |imagenet |17M | -|timm-regnety_040 |imagenet |19M | -|timm-regnety_064 |imagenet |29M | -|timm-regnety_080 |imagenet |37M | -|timm-regnety_120 |imagenet |49M | -|timm-regnety_160 |imagenet |80M | -|timm-regnety_320 |imagenet |141M | - -
-
- -
-GERNet -
- -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|timm-gernet_s |imagenet |6M | -|timm-gernet_m |imagenet |18M | -|timm-gernet_l |imagenet |28M | - -
-
- -
-SE-Net -
- -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|senet154 |imagenet |113M | -|se_resnet50 |imagenet |26M | -|se_resnet101 |imagenet |47M | -|se_resnet152 |imagenet |64M | -|se_resnext50_32x4d |imagenet |25M | -|se_resnext101_32x4d |imagenet |46M | +## πŸ’‘ Examples -
-
- -
-SK-ResNe(X)t -
+| Name | Link | Colab | +|-------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------| +| **Train** pets binary segmentation on OxfordPets | [Notebook](https://github.com/qubvel/segmentation_models.pytorch/blob/main/examples/binary_segmentation_intro.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/binary_segmentation_intro.ipynb) | +| **Train** cars binary segmentation on CamVid | [Notebook](https://github.com/qubvel/segmentation_models.pytorch/blob/main/examples/cars%20segmentation%20(camvid).ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/cars%20segmentation%20(camvid).ipynb) | +| **Train** multiclass segmentation on CamVid | [Notebook](https://github.com/qubvel-org/segmentation_models.pytorch/blob/main/examples/camvid_segmentation_multiclass.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel-org/segmentation_models.pytorch/blob/main/examples/camvid_segmentation_multiclass.ipynb) | +| **Train** clothes binary segmentation by @ternaus | [Repo](https://github.com/ternaus/cloths_segmentation) | | +| **Load and inference** pretrained Segformer | [Notebook](https://github.com/qubvel-org/segmentation_models.pytorch/blob/main/examples/segformer_inference_pretrained.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/segformer_inference_pretrained.ipynb) | +| **Load and inference** pretrained DPT | [Notebook](https://github.com/qubvel-org/segmentation_models.pytorch/blob/main/examples/dpt_inference_pretrained.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/dpt_inference_pretrained.ipynb) | +| **Load and inference** pretrained UPerNet | [Notebook](https://github.com/qubvel-org/segmentation_models.pytorch/blob/main/examples/upernet_inference_pretrained.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/upernet_inference_pretrained.ipynb) | +| **Save and load** models locally / to HuggingFace Hub |[Notebook](https://github.com/qubvel-org/segmentation_models.pytorch/blob/main/examples/save_load_model_and_share_with_hf_hub.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/save_load_model_and_share_with_hf_hub.ipynb) +| **Export** trained model to ONNX | [Notebook](https://github.com/qubvel/segmentation_models.pytorch/blob/main/examples/convert_to_onnx.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/convert_to_onnx.ipynb) | -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|timm-skresnet18 |imagenet |11M | -|timm-skresnet34 |imagenet |21M | -|timm-skresnext50_32x4d |imagenet |25M | -
-
+## πŸ“¦ Models and encoders -
-DenseNet -
+### Architectures +| Architecture | Paper | Documentation | Checkpoints | +|--------------|-------|---------------|------------| +| Unet | [paper](https://arxiv.org/abs/1505.04597) | [docs](https://smp.readthedocs.io/en/latest/models.html#unet) | | +| Unet++ | [paper](https://arxiv.org/pdf/1807.10165.pdf) | [docs](https://smp.readthedocs.io/en/latest/models.html#unetplusplus) | | +| MAnet | [paper](https://ieeexplore.ieee.org/abstract/document/9201310) | [docs](https://smp.readthedocs.io/en/latest/models.html#manet) | | +| Linknet | [paper](https://arxiv.org/abs/1707.03718) | [docs](https://smp.readthedocs.io/en/latest/models.html#linknet) | | +| FPN | [paper](http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf) | [docs](https://smp.readthedocs.io/en/latest/models.html#fpn) | | +| PSPNet | [paper](https://arxiv.org/abs/1612.01105) | [docs](https://smp.readthedocs.io/en/latest/models.html#pspnet) | | +| PAN | [paper](https://arxiv.org/abs/1805.10180) | [docs](https://smp.readthedocs.io/en/latest/models.html#pan) | | +| DeepLabV3 | [paper](https://arxiv.org/abs/1706.05587) | [docs](https://smp.readthedocs.io/en/latest/models.html#deeplabv3) | | +| DeepLabV3+ | [paper](https://arxiv.org/abs/1802.02611) | [docs](https://smp.readthedocs.io/en/latest/models.html#deeplabv3plus) | | +| UPerNet | [paper](https://arxiv.org/abs/1807.10221) | [docs](https://smp.readthedocs.io/en/latest/models.html#upernet) | [checkpoints](https://huggingface.co/collections/smp-hub/upernet-67fadcdbe08418c6ea94f768) | +| Segformer | [paper](https://arxiv.org/abs/2105.15203) | [docs](https://smp.readthedocs.io/en/latest/models.html#segformer) | [checkpoints](https://huggingface.co/collections/smp-hub/segformer-6749eb4923dea2c355f29a1f) | +| DPT | [paper](https://arxiv.org/abs/2103.13413) | [docs](https://smp.readthedocs.io/en/latest/models.html#dpt) | [checkpoints](https://huggingface.co/collections/smp-hub/dpt-67f30487327c0599a0c62d68) | -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|densenet121 |imagenet |6M | -|densenet169 |imagenet |12M | -|densenet201 |imagenet |18M | -|densenet161 |imagenet |26M | +### Encoders -
-
+The library provides a wide range of **pretrained** encoders (also known as backbones) for segmentation models. Instead of using features from the final layer of a classification model, we extract **intermediate features** and feed them into the decoder for segmentation tasks. -
-Inception -
+All encoders come with **pretrained weights**, which help achieve **faster and more stable convergence** when training segmentation models. -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|inceptionresnetv2 |imagenet / imagenet+background |54M | -|inceptionv4 |imagenet / imagenet+background |41M | -|xception |imagenet |22M | +Given the extensive selection of supported encoders, you can choose the best one for your specific use case, for example: +- **Lightweight encoders** for low-latency applications or real-time inference on edge devices (mobilenet/mobileone). +- **High-capacity architectures** for complex tasks involving a large number of segmented classes, providing superior accuracy (convnext/swin/mit). -
-
- -
-EfficientNet -
- -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|efficientnet-b0 |imagenet |4M | -|efficientnet-b1 |imagenet |6M | -|efficientnet-b2 |imagenet |7M | -|efficientnet-b3 |imagenet |10M | -|efficientnet-b4 |imagenet |17M | -|efficientnet-b5 |imagenet |28M | -|efficientnet-b6 |imagenet |40M | -|efficientnet-b7 |imagenet |63M | -|timm-efficientnet-b0 |imagenet / advprop / noisy-student|4M | -|timm-efficientnet-b1 |imagenet / advprop / noisy-student|6M | -|timm-efficientnet-b2 |imagenet / advprop / noisy-student|7M | -|timm-efficientnet-b3 |imagenet / advprop / noisy-student|10M | -|timm-efficientnet-b4 |imagenet / advprop / noisy-student|17M | -|timm-efficientnet-b5 |imagenet / advprop / noisy-student|28M | -|timm-efficientnet-b6 |imagenet / advprop / noisy-student|40M | -|timm-efficientnet-b7 |imagenet / advprop / noisy-student|63M | -|timm-efficientnet-b8 |imagenet / advprop |84M | -|timm-efficientnet-l2 |noisy-student |474M | -|timm-efficientnet-lite0 |imagenet |4M | -|timm-efficientnet-lite1 |imagenet |5M | -|timm-efficientnet-lite2 |imagenet |6M | -|timm-efficientnet-lite3 |imagenet |8M | -|timm-efficientnet-lite4 |imagenet |13M | +By selecting the right encoder, you can balance **efficiency, performance, and model complexity** to suit your project needs. -
-
- -
-MobileNet -
- -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|mobilenet_v2 |imagenet |2M | -|timm-mobilenetv3_large_075 |imagenet |1.78M | -|timm-mobilenetv3_large_100 |imagenet |2.97M | -|timm-mobilenetv3_large_minimal_100|imagenet |1.41M | -|timm-mobilenetv3_small_075 |imagenet |0.57M | -|timm-mobilenetv3_small_100 |imagenet |0.93M | -|timm-mobilenetv3_small_minimal_100|imagenet |0.43M | +All encoders and corresponding pretrained weight are listed in the documentation: + - [table](https://smp.readthedocs.io/en/latest/encoders.html) with natively ported encoders + - [table](https://smp.readthedocs.io/en/latest/encoders_timm.html) with [timm](https://github.com/huggingface/pytorch-image-models) encoders supported -
-
+## πŸ” Models API -
-DPN -
+### Input channels -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|dpn68 |imagenet |11M | -|dpn68b |imagenet+5k |11M | -|dpn92 |imagenet+5k |34M | -|dpn98 |imagenet |58M | -|dpn107 |imagenet+5k |84M | -|dpn131 |imagenet |76M | +The input channels parameter allows you to create a model that can process a tensor with an arbitrary number of channels. +If you use pretrained weights from ImageNet, the weights of the first convolution will be reused: + - For the 1-channel case, it would be a sum of the weights of the first convolution layer. + - Otherwise, channels would be populated with weights like `new_weight[:, i] = pretrained_weight[:, i % 3]`, and then scaled with `new_weight * 3 / new_in_channels`. -
-
- -
-VGG -
- -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|vgg11 |imagenet |9M | -|vgg11_bn |imagenet |9M | -|vgg13 |imagenet |9M | -|vgg13_bn |imagenet |9M | -|vgg16 |imagenet |14M | -|vgg16_bn |imagenet |14M | -|vgg19 |imagenet |20M | -|vgg19_bn |imagenet |20M | - -
-
- -
-Mix Vision Transformer -
- -Backbone from SegFormer pretrained on Imagenet! Can be used with other decoders from package, you can combine Mix Vision Transformer with Unet, FPN and others! - -Limitations: - - - encoder is **not** supported by Linknet, Unet++ - - encoder is supported by FPN only for encoder **depth = 5** - -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|mit_b0 |imagenet |3M | -|mit_b1 |imagenet |13M | -|mit_b2 |imagenet |24M | -|mit_b3 |imagenet |44M | -|mit_b4 |imagenet |60M | -|mit_b5 |imagenet |81M | - -
-
- -
-MobileOne -
- -Apple's "sub-one-ms" Backbone pretrained on Imagenet! Can be used with all decoders. - -Note: In the official github repo the s0 variant has additional num_conv_branches, leading to more params than s1. - -|Encoder |Weights |Params, M | -|--------------------------------|:------------------------------:|:------------------------------:| -|mobileone_s0 |imagenet |4.6M | -|mobileone_s1 |imagenet |4.0M | -|mobileone_s2 |imagenet |6.5M | -|mobileone_s3 |imagenet |8.8M | -|mobileone_s4 |imagenet |13.6M | - -
-
- - -\* `ssl`, `swsl` - semi-supervised and weakly-supervised learning on ImageNet ([repo](https://github.com/facebookresearch/semi-supervised-ImageNet1K-models)). - -#### Timm Encoders - -[docs](https://smp.readthedocs.io/en/latest/encoders_timm.html) - -Pytorch Image Models (a.k.a. timm) has a lot of pretrained models and interface which allows using these models as encoders in smp, however, not all models are supported - - - not all transformer models have ``features_only`` functionality implemented that is required for encoder - - some models have inappropriate strides - -Total number of supported encoders: 549 - - [table with available encoders](https://smp.readthedocs.io/en/latest/encoders_timm.html) - -### πŸ” Models API - - - `model.encoder` - pretrained backbone to extract features of different spatial resolution - - `model.decoder` - depends on models architecture (`Unet`/`Linknet`/`PSPNet`/`FPN`) - - `model.segmentation_head` - last block to produce required number of mask channels (include also optional upsampling and activation) - - `model.classification_head` - optional block which create classification head on top of encoder - - `model.forward(x)` - sequentially pass `x` through model\`s encoder, decoder and segmentation head (and classification head if specified) - -##### Input channels -Input channels parameter allows you to create models, which process tensors with arbitrary number of channels. -If you use pretrained weights from imagenet - weights of first convolution will be reused. For -1-channel case it would be a sum of weights of first convolution layer, otherwise channels would be -populated with weights like `new_weight[:, i] = pretrained_weight[:, i % 3]` and than scaled with `new_weight * 3 / new_in_channels`. ```python model = smp.FPN('resnet34', in_channels=1) mask = model(torch.ones([1, 1, 64, 64])) ``` -##### Auxiliary classification output +### Auxiliary classification output + All models support `aux_params` parameters, which is default set to `None`. If `aux_params = None` then classification auxiliary output is not created, else model produce not only `mask`, but also `label` output with shape `NC`. @@ -447,50 +177,54 @@ model = smp.Unet('resnet34', classes=4, aux_params=aux_params) mask, label = model(x) ``` -##### Depth +### Depth + Depth parameter specify a number of downsampling operations in encoder, so you can make your model lighter if specify smaller `depth`. ```python model = smp.Unet('resnet34', encoder_depth=4) ``` - -### πŸ›  Installation +## πŸ›  Installation PyPI version: + ```bash $ pip install segmentation-models-pytorch ```` -Latest version from source: + +The latest version from GitHub: + ```bash $ pip install git+https://github.com/qubvel/segmentation_models.pytorch ```` -### πŸ† Competitions won with the library +## πŸ† Competitions won with the library -`Segmentation Models` package is widely used in the image segmentation competitions. +`Segmentation Models` package is widely used in image segmentation competitions. [Here](https://github.com/qubvel/segmentation_models.pytorch/blob/main/HALLOFFAME.md) you can find competitions, names of the winners and links to their solutions. -### 🀝 Contributing +## 🀝 Contributing -#### Install SMP +1. Install SMP in dev mode ```bash -make install_dev # create .venv, install SMP in dev mode +make install_dev # Create .venv, install SMP in dev mode ``` -#### Run tests and code checks +2. Run tests and code checks ```bash +make test # Run tests suite with pytest make fixup # Ruff for formatting and lint checks ``` -#### Update table with encoders +3. Update a table (in case you added an encoder) ```bash -make table # generate a table with encoders and print to stdout +make table # Generates a table with encoders and print to stdout ``` -### πŸ“ Citing +## πŸ“ Citing ``` @misc{Iakubovskii:2019, Author = {Pavel Iakubovskii}, @@ -502,5 +236,5 @@ make table # generate a table with encoders and print to stdout } ``` -### πŸ›‘οΈ License +## πŸ›‘οΈ License The project is primarily distributed under [MIT License](https://github.com/qubvel/segmentation_models.pytorch/blob/main/LICENSE), while some files are subject to other licenses. Please refer to [LICENSES](licenses/LICENSES.md) and license statements in each file for careful check, especially for commercial use. diff --git a/docs/conf.py b/docs/conf.py index c7dde9e5..4cc70a6b 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -100,9 +100,7 @@ def get_version(): "timm", "cv2", "PIL", - "pretrainedmodels", "torchvision", - "efficientnet-pytorch", "segmentation_models_pytorch.encoders", "segmentation_models_pytorch.utils", # 'segmentation_models_pytorch.base', diff --git a/docs/encoders.rst b/docs/encoders.rst index 652745b7..2de35dec 100644 --- a/docs/encoders.rst +++ b/docs/encoders.rst @@ -1,363 +1,141 @@ πŸ” Available Encoders ===================== -ResNet -~~~~~~ - -+-------------+-------------------------+-------------+ -| Encoder | Weights | Params, M | -+=============+=========================+=============+ -| resnet18 | imagenet / ssl / swsl | 11M | -+-------------+-------------------------+-------------+ -| resnet34 | imagenet | 21M | -+-------------+-------------------------+-------------+ -| resnet50 | imagenet / ssl / swsl | 23M | -+-------------+-------------------------+-------------+ -| resnet101 | imagenet | 42M | -+-------------+-------------------------+-------------+ -| resnet152 | imagenet | 58M | -+-------------+-------------------------+-------------+ - -ResNeXt -~~~~~~~ - -+----------------------+-------------------------------------+-------------+ -| Encoder | Weights | Params, M | -+======================+=====================================+=============+ -| resnext50\_32x4d | imagenet / ssl / swsl | 22M | -+----------------------+-------------------------------------+-------------+ -| resnext101\_32x4d | ssl / swsl | 42M | -+----------------------+-------------------------------------+-------------+ -| resnext101\_32x8d | imagenet / instagram / ssl / swsl | 86M | -+----------------------+-------------------------------------+-------------+ -| resnext101\_32x16d | instagram / ssl / swsl | 191M | -+----------------------+-------------------------------------+-------------+ -| resnext101\_32x32d | instagram | 466M | -+----------------------+-------------------------------------+-------------+ -| resnext101\_32x48d | instagram | 826M | -+----------------------+-------------------------------------+-------------+ - -ResNeSt -~~~~~~~ - -+----------------------------+------------+-------------+ -| Encoder | Weights | Params, M | -+============================+============+=============+ -| timm-resnest14d | imagenet | 8M | -+----------------------------+------------+-------------+ -| timm-resnest26d | imagenet | 15M | -+----------------------------+------------+-------------+ -| timm-resnest50d | imagenet | 25M | -+----------------------------+------------+-------------+ -| timm-resnest101e | imagenet | 46M | -+----------------------------+------------+-------------+ -| timm-resnest200e | imagenet | 68M | -+----------------------------+------------+-------------+ -| timm-resnest269e | imagenet | 108M | -+----------------------------+------------+-------------+ -| timm-resnest50d\_4s2x40d | imagenet | 28M | -+----------------------------+------------+-------------+ -| timm-resnest50d\_1s4x24d | imagenet | 23M | -+----------------------------+------------+-------------+ - -Res2Ne(X)t -~~~~~~~~~~ - -+----------------------------+------------+-------------+ -| Encoder | Weights | Params, M | -+============================+============+=============+ -| timm-res2net50\_26w\_4s | imagenet | 23M | -+----------------------------+------------+-------------+ -| timm-res2net101\_26w\_4s | imagenet | 43M | -+----------------------------+------------+-------------+ -| timm-res2net50\_26w\_6s | imagenet | 35M | -+----------------------------+------------+-------------+ -| timm-res2net50\_26w\_8s | imagenet | 46M | -+----------------------------+------------+-------------+ -| timm-res2net50\_48w\_2s | imagenet | 23M | -+----------------------------+------------+-------------+ -| timm-res2net50\_14w\_8s | imagenet | 23M | -+----------------------------+------------+-------------+ -| timm-res2next50 | imagenet | 22M | -+----------------------------+------------+-------------+ - -RegNet(x/y) -~~~~~~~~~~ - -+---------------------+------------+-------------+ -| Encoder | Weights | Params, M | -+=====================+============+=============+ -| timm-regnetx\_002 | imagenet | 2M | -+---------------------+------------+-------------+ -| timm-regnetx\_004 | imagenet | 4M | -+---------------------+------------+-------------+ -| timm-regnetx\_006 | imagenet | 5M | -+---------------------+------------+-------------+ -| timm-regnetx\_008 | imagenet | 6M | -+---------------------+------------+-------------+ -| timm-regnetx\_016 | imagenet | 8M | -+---------------------+------------+-------------+ -| timm-regnetx\_032 | imagenet | 14M | -+---------------------+------------+-------------+ -| timm-regnetx\_040 | imagenet | 20M | -+---------------------+------------+-------------+ -| timm-regnetx\_064 | imagenet | 24M | -+---------------------+------------+-------------+ -| timm-regnetx\_080 | imagenet | 37M | -+---------------------+------------+-------------+ -| timm-regnetx\_120 | imagenet | 43M | -+---------------------+------------+-------------+ -| timm-regnetx\_160 | imagenet | 52M | -+---------------------+------------+-------------+ -| timm-regnetx\_320 | imagenet | 105M | -+---------------------+------------+-------------+ -| timm-regnety\_002 | imagenet | 2M | -+---------------------+------------+-------------+ -| timm-regnety\_004 | imagenet | 3M | -+---------------------+------------+-------------+ -| timm-regnety\_006 | imagenet | 5M | -+---------------------+------------+-------------+ -| timm-regnety\_008 | imagenet | 5M | -+---------------------+------------+-------------+ -| timm-regnety\_016 | imagenet | 10M | -+---------------------+------------+-------------+ -| timm-regnety\_032 | imagenet | 17M | -+---------------------+------------+-------------+ -| timm-regnety\_040 | imagenet | 19M | -+---------------------+------------+-------------+ -| timm-regnety\_064 | imagenet | 29M | -+---------------------+------------+-------------+ -| timm-regnety\_080 | imagenet | 37M | -+---------------------+------------+-------------+ -| timm-regnety\_120 | imagenet | 49M | -+---------------------+------------+-------------+ -| timm-regnety\_160 | imagenet | 80M | -+---------------------+------------+-------------+ -| timm-regnety\_320 | imagenet | 141M | -+---------------------+------------+-------------+ - -GERNet -~~~~~~ - -+-------------------------+------------+-------------+ -| Encoder | Weights | Params, M | -+=========================+============+=============+ -| timm-gernet\_s | imagenet | 6M | -+-------------------------+------------+-------------+ -| timm-gernet\_m | imagenet | 18M | -+-------------------------+------------+-------------+ -| timm-gernet\_l | imagenet | 28M | -+-------------------------+------------+-------------+ - -SE-Net -~~~~~~ - -+-------------------------+------------+-------------+ -| Encoder | Weights | Params, M | -+=========================+============+=============+ -| senet154 | imagenet | 113M | -+-------------------------+------------+-------------+ -| se\_resnet50 | imagenet | 26M | -+-------------------------+------------+-------------+ -| se\_resnet101 | imagenet | 47M | -+-------------------------+------------+-------------+ -| se\_resnet152 | imagenet | 64M | -+-------------------------+------------+-------------+ -| se\_resnext50\_32x4d | imagenet | 25M | -+-------------------------+------------+-------------+ -| se\_resnext101\_32x4d | imagenet | 46M | -+-------------------------+------------+-------------+ - -SK-ResNe(X)t -~~~~~~~~~~~~ - -+---------------------------+------------+-------------+ -| Encoder | Weights | Params, M | -+===========================+============+=============+ -| timm-skresnet18 | imagenet | 11M | -+---------------------------+------------+-------------+ -| timm-skresnet34 | imagenet | 21M | -+---------------------------+------------+-------------+ -| timm-skresnext50\_32x4d | imagenet | 25M | -+---------------------------+------------+-------------+ - -DenseNet -~~~~~~~~ - -+---------------+------------+-------------+ -| Encoder | Weights | Params, M | -+===============+============+=============+ -| densenet121 | imagenet | 6M | -+---------------+------------+-------------+ -| densenet169 | imagenet | 12M | -+---------------+------------+-------------+ -| densenet201 | imagenet | 18M | -+---------------+------------+-------------+ -| densenet161 | imagenet | 26M | -+---------------+------------+-------------+ - -Inception -~~~~~~~~~ - -+---------------------+----------------------------------+-------------+ -| Encoder | Weights | Params, M | -+=====================+==================================+=============+ -| inceptionresnetv2 | imagenet / imagenet+background | 54M | -+---------------------+----------------------------------+-------------+ -| inceptionv4 | imagenet / imagenet+background | 41M | -+---------------------+----------------------------------+-------------+ -| xception | imagenet | 22M | -+---------------------+----------------------------------+-------------+ - -EfficientNet -~~~~~~~~~~~~ - -+------------------------+--------------------------------------+-------------+ -| Encoder | Weights | Params, M | -+========================+======================================+=============+ -| efficientnet-b0 | imagenet | 4M | -+------------------------+--------------------------------------+-------------+ -| efficientnet-b1 | imagenet | 6M | -+------------------------+--------------------------------------+-------------+ -| efficientnet-b2 | imagenet | 7M | -+------------------------+--------------------------------------+-------------+ -| efficientnet-b3 | imagenet | 10M | -+------------------------+--------------------------------------+-------------+ -| efficientnet-b4 | imagenet | 17M | -+------------------------+--------------------------------------+-------------+ -| efficientnet-b5 | imagenet | 28M | -+------------------------+--------------------------------------+-------------+ -| efficientnet-b6 | imagenet | 40M | -+------------------------+--------------------------------------+-------------+ -| efficientnet-b7 | imagenet | 63M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-b0 | imagenet / advprop / noisy-student | 4M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-b1 | imagenet / advprop / noisy-student | 6M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-b2 | imagenet / advprop / noisy-student | 7M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-b3 | imagenet / advprop / noisy-student | 10M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-b4 | imagenet / advprop / noisy-student | 17M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-b5 | imagenet / advprop / noisy-student | 28M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-b6 | imagenet / advprop / noisy-student | 40M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-b7 | imagenet / advprop / noisy-student | 63M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-b8 | imagenet / advprop | 84M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-l2 | noisy-student / noisy-student-475 | 474M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-lite0| imagenet | 4M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-lite1| imagenet | 4M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-lite2| imagenet | 6M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-lite3| imagenet | 8M | -+------------------------+--------------------------------------+-------------+ -| timm-efficientnet-lite4| imagenet | 13M | -+------------------------+--------------------------------------+-------------+ - -MobileNet -~~~~~~~~~ - -+---------------------------------------+------------+-------------+ -| Encoder | Weights | Params, M | -+=======================================+============+=============+ -| mobilenet\_v2 | imagenet | 2M | -+---------------------------------------+------------+-------------+ -| timm-mobilenetv3\_large\_075 | imagenet | 1.78M | -+---------------------------------------+------------+-------------+ -| timm-mobilenetv3\_large\_100 | imagenet | 2.97M | -+---------------------------------------+------------+-------------+ -| timm-mobilenetv3\_large\_minimal\_100 | imagenet | 1.41M | -+---------------------------------------+------------+-------------+ -| timm-mobilenetv3\_small\_075 | imagenet | 0.57M | -+---------------------------------------+------------+-------------+ -| timm-mobilenetv3\_small\_100 | imagenet | 0.93M | -+---------------------------------------+------------+-------------+ -| timm-mobilenetv3\_small\_minimal\_100 | imagenet | 0.43M | -+---------------------------------------+------------+-------------+ - -DPN -~~~ - -+-----------+---------------+-------------+ -| Encoder | Weights | Params, M | -+===========+===============+=============+ -| dpn68 | imagenet | 11M | -+-----------+---------------+-------------+ -| dpn68b | imagenet+5k | 11M | -+-----------+---------------+-------------+ -| dpn92 | imagenet+5k | 34M | -+-----------+---------------+-------------+ -| dpn98 | imagenet | 58M | -+-----------+---------------+-------------+ -| dpn107 | imagenet+5k | 84M | -+-----------+---------------+-------------+ -| dpn131 | imagenet | 76M | -+-----------+---------------+-------------+ - -VGG -~~~ - -+-------------+------------+-------------+ -| Encoder | Weights | Params, M | -+=============+============+=============+ -| vgg11 | imagenet | 9M | -+-------------+------------+-------------+ -| vgg11\_bn | imagenet | 9M | -+-------------+------------+-------------+ -| vgg13 | imagenet | 9M | -+-------------+------------+-------------+ -| vgg13\_bn | imagenet | 9M | -+-------------+------------+-------------+ -| vgg16 | imagenet | 14M | -+-------------+------------+-------------+ -| vgg16\_bn | imagenet | 14M | -+-------------+------------+-------------+ -| vgg19 | imagenet | 20M | -+-------------+------------+-------------+ -| vgg19\_bn | imagenet | 20M | -+-------------+------------+-------------+ - - -Mix Visual Transformer -~~~~~~~~~~~~~~~~~~~~~ - -+-----------+----------+------------+ -| Encoder | Weights | Params, M | -+===========+==========+============+ -| mit\_b0 | imagenet | 3M | -+-----------+----------+------------+ -| mit\_b1 | imagenet | 13M | -+-----------+----------+------------+ -| mit\_b2 | imagenet | 24M | -+-----------+----------+------------+ -| mit\_b3 | imagenet | 44M | -+-----------+----------+------------+ -| mit\_b4 | imagenet | 60M | -+-----------+----------+------------+ -| mit\_b5 | imagenet | 81M | -+-----------+----------+------------+ - -MobileOne -~~~~~~~~~~~~~~~~~~~~~ - -+-----------------+----------+------------+ -| Encoder | Weights | Params, M | -+=================+==========+============+ -| mobileone\_s0 | imagenet | 4.6M | -+-----------------+----------+------------+ -| mobileone\_s1 | imagenet | 4.0M | -+-----------------+----------+------------+ -| mobileone\_s2 | imagenet | 6.5M | -+-----------------+----------+------------+ -| mobileone\_s3 | imagenet | 8.8M | -+-----------------+----------+------------+ -| mobileone\_s4 | imagenet | 13.6M | -+-----------------+----------+------------+ +**Segmentation Models PyTorch** provides support for a wide range of encoders. +This flexibility allows you to use these encoders with any model in the library by +specifying the encoder name in the ``encoder_name`` parameter during model initialization. + +Here’s a quick example of using a ResNet34 encoder with the ``Unet`` model: + +.. code-block:: python + + from segmentation_models_pytorch import Unet + + # Initialize Unet with ResNet34 encoder pre-trained on ImageNet + model = Unet(encoder_name="resnet34", encoder_weights="imagenet") + + +The following encoder families are supported by the library, enabling you to choose the one that best fits your use case: + +- **Mix Vision Transformer (mit)** +- **MobileOne** +- **MobileNet** +- **EfficientNet** +- **ResNet** +- **ResNeXt** +- **SENet** +- **DPN** +- **VGG** +- **DenseNet** +- **Xception** +- **Inception** + +Choosing the Right Encoder +-------------------------- + +1. **Small Models for Edge Devices** + Consider encoders like **MobileNet** or **MobileOne**, which have a smaller parameter count and are optimized for lightweight deployment. + +2. **High Performance** + If you require state-of-the-art accuracy **Mix Vision Transformer (mit)**, **EfficientNet** families offer excellent balance between performance and computational efficiency. + +For each encoder, the table below provides detailed information: + +1. **Pretrained Weights** + Specifies the available pretrained weights (e.g., ``imagenet``, ``imagenet21k``). + +2. **Params, M**: + The total number of parameters in the encoder, measured in millions. This metric helps you assess the model's size and computational requirements. + +3. **Script**: + Indicates whether the encoder can be scripted with ``torch.jit.script``. + +4. **Compile**: + Indicates whether the encoder is compatible with ``torch.compile(model, fullgraph=True, dynamic=True, backend="eager")``. + You may still get some issues with another backends, such as ``inductor``, depending on the torch/cuda/... dependencies version, + but most of the time it will work. + +5. **Export**: + Indicates whether the encoder can be exported using ``torch.export.export``, making it suitable for deployment in different environments (e.g., ONNX). + + +============================ ==================================== =========== ======== ========= ======== +Encoder Pretrained weights Params, M Script Compile Export +============================ ==================================== =========== ======== ========= ======== +resnet18 imagenet / ssl / swsl 11M βœ… βœ… βœ… +resnet34 imagenet 21M βœ… βœ… βœ… +resnet50 imagenet / ssl / swsl 23M βœ… βœ… βœ… +resnet101 imagenet 42M βœ… βœ… βœ… +resnet152 imagenet 58M βœ… βœ… βœ… +resnext50_32x4d imagenet / ssl / swsl 22M βœ… βœ… βœ… +resnext101_32x4d ssl / swsl 42M βœ… βœ… βœ… +resnext101_32x8d imagenet / instagram / ssl / swsl 86M βœ… βœ… βœ… +resnext101_32x16d instagram / ssl / swsl 191M βœ… βœ… βœ… +resnext101_32x32d instagram 466M βœ… βœ… βœ… +resnext101_32x48d instagram 826M βœ… βœ… βœ… +dpn68 imagenet 11M ❌ βœ… βœ… +dpn68b imagenet+5k 11M ❌ βœ… βœ… +dpn92 imagenet+5k 34M ❌ βœ… βœ… +dpn98 imagenet 58M ❌ βœ… βœ… +dpn107 imagenet+5k 84M ❌ βœ… βœ… +dpn131 imagenet 76M ❌ βœ… βœ… +vgg11 imagenet 9M βœ… βœ… βœ… +vgg11_bn imagenet 9M βœ… βœ… βœ… +vgg13 imagenet 9M βœ… βœ… βœ… +vgg13_bn imagenet 9M βœ… βœ… βœ… +vgg16 imagenet 14M βœ… βœ… βœ… +vgg16_bn imagenet 14M βœ… βœ… βœ… +vgg19 imagenet 20M βœ… βœ… βœ… +vgg19_bn imagenet 20M βœ… βœ… βœ… +senet154 imagenet 113M βœ… βœ… βœ… +se_resnet50 imagenet 26M βœ… βœ… βœ… +se_resnet101 imagenet 47M βœ… βœ… βœ… +se_resnet152 imagenet 64M βœ… βœ… βœ… +se_resnext50_32x4d imagenet 25M βœ… βœ… βœ… +se_resnext101_32x4d imagenet 46M βœ… βœ… βœ… +densenet121 imagenet 6M βœ… βœ… βœ… +densenet169 imagenet 12M βœ… βœ… βœ… +densenet201 imagenet 18M βœ… βœ… βœ… +densenet161 imagenet 26M βœ… βœ… βœ… +inceptionresnetv2 imagenet / imagenet+background 54M βœ… βœ… βœ… +inceptionv4 imagenet / imagenet+background 41M βœ… βœ… βœ… +efficientnet-b0 imagenet / advprop 4M βœ… βœ… βœ… +efficientnet-b1 imagenet / advprop 6M βœ… βœ… βœ… +efficientnet-b2 imagenet / advprop 7M βœ… βœ… βœ… +efficientnet-b3 imagenet / advprop 10M βœ… βœ… βœ… +efficientnet-b4 imagenet / advprop 17M βœ… βœ… βœ… +efficientnet-b5 imagenet / advprop 28M βœ… βœ… βœ… +efficientnet-b6 imagenet / advprop 40M βœ… βœ… βœ… +efficientnet-b7 imagenet / advprop 63M βœ… βœ… βœ… +mobilenet_v2 imagenet 2M βœ… βœ… βœ… +xception imagenet 20M βœ… βœ… βœ… +timm-efficientnet-b0 imagenet / advprop / noisy-student 4M βœ… βœ… βœ… +timm-efficientnet-b1 imagenet / advprop / noisy-student 6M βœ… βœ… βœ… +timm-efficientnet-b2 imagenet / advprop / noisy-student 7M βœ… βœ… βœ… +timm-efficientnet-b3 imagenet / advprop / noisy-student 10M βœ… βœ… βœ… +timm-efficientnet-b4 imagenet / advprop / noisy-student 17M βœ… βœ… βœ… +timm-efficientnet-b5 imagenet / advprop / noisy-student 28M βœ… βœ… βœ… +timm-efficientnet-b6 imagenet / advprop / noisy-student 40M βœ… βœ… βœ… +timm-efficientnet-b7 imagenet / advprop / noisy-student 63M βœ… βœ… βœ… +timm-efficientnet-b8 imagenet / advprop 84M βœ… βœ… βœ… +timm-efficientnet-l2 noisy-student / noisy-student-475 474M βœ… βœ… βœ… +timm-tf_efficientnet_lite0 imagenet 3M βœ… βœ… βœ… +timm-tf_efficientnet_lite1 imagenet 4M βœ… βœ… βœ… +timm-tf_efficientnet_lite2 imagenet 4M βœ… βœ… βœ… +timm-tf_efficientnet_lite3 imagenet 6M βœ… βœ… βœ… +timm-tf_efficientnet_lite4 imagenet 11M βœ… βœ… βœ… +timm-skresnet18 imagenet 11M βœ… βœ… βœ… +timm-skresnet34 imagenet 21M βœ… βœ… βœ… +timm-skresnext50_32x4d imagenet 23M βœ… βœ… βœ… +mit_b0 imagenet 3M βœ… βœ… βœ… +mit_b1 imagenet 13M βœ… βœ… βœ… +mit_b2 imagenet 24M βœ… βœ… βœ… +mit_b3 imagenet 44M βœ… βœ… βœ… +mit_b4 imagenet 60M βœ… βœ… βœ… +mit_b5 imagenet 81M βœ… βœ… βœ… +mobileone_s0 imagenet 4M βœ… βœ… βœ… +mobileone_s1 imagenet 3M βœ… βœ… βœ… +mobileone_s2 imagenet 5M βœ… βœ… βœ… +mobileone_s3 imagenet 8M βœ… βœ… βœ… +mobileone_s4 imagenet 12M βœ… βœ… βœ… +============================ ==================================== =========== ======== ========= ======== diff --git a/docs/encoders_dpt.rst b/docs/encoders_dpt.rst new file mode 100644 index 00000000..9ce3af31 --- /dev/null +++ b/docs/encoders_dpt.rst @@ -0,0 +1,461 @@ +.. _dpt-encoders: + +DPT Encoders +============ + +This is a list of Vision Transformer encoders that are compatible with the DPT architecture. +While other Vision Transformer encoders from timm may also be compatible, the ones listed below are tested to work properly. + +.. list-table:: Encoder Name + :widths: 100 + :header-rows: 0 + + * - tu-fastvit_ma36.apple_dist_in1k + * - tu-fastvit_ma36.apple_in1k + * - tu-fastvit_mci0.apple_mclip + * - tu-fastvit_mci1.apple_mclip + * - tu-fastvit_mci2.apple_mclip + * - tu-fastvit_s12.apple_dist_in1k + * - tu-fastvit_s12.apple_in1k + * - tu-fastvit_sa12.apple_dist_in1k + * - tu-fastvit_sa12.apple_in1k + * - tu-fastvit_sa24.apple_dist_in1k + * - tu-fastvit_sa24.apple_in1k + * - tu-fastvit_sa36.apple_dist_in1k + * - tu-fastvit_sa36.apple_in1k + * - tu-fastvit_t8.apple_dist_in1k + * - tu-fastvit_t8.apple_in1k + * - tu-fastvit_t12.apple_dist_in1k + * - tu-fastvit_t12.apple_in1k + * - tu-flexivit_base.300ep_in1k + * - tu-flexivit_base.300ep_in21k + * - tu-flexivit_base.600ep_in1k + * - tu-flexivit_base.1000ep_in21k + * - tu-flexivit_base.1200ep_in1k + * - tu-flexivit_base.patch16_in21k + * - tu-flexivit_base.patch30_in21k + * - tu-flexivit_large.300ep_in1k + * - tu-flexivit_large.600ep_in1k + * - tu-flexivit_large.1200ep_in1k + * - tu-flexivit_small.300ep_in1k + * - tu-flexivit_small.600ep_in1k + * - tu-flexivit_small.1200ep_in1k + * - tu-maxvit_base_tf_224.in1k + * - tu-maxvit_base_tf_224.in21k + * - tu-maxvit_base_tf_384.in1k + * - tu-maxvit_base_tf_384.in21k_ft_in1k + * - tu-maxvit_base_tf_512.in1k + * - tu-maxvit_base_tf_512.in21k_ft_in1k + * - tu-maxvit_large_tf_224.in1k + * - tu-maxvit_large_tf_224.in21k + * - tu-maxvit_large_tf_384.in1k + * - tu-maxvit_large_tf_384.in21k_ft_in1k + * - tu-maxvit_large_tf_512.in1k + * - tu-maxvit_large_tf_512.in21k_ft_in1k + * - tu-maxvit_nano_rw_256.sw_in1k + * - tu-maxvit_rmlp_base_rw_224.sw_in12k + * - tu-maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k + * - tu-maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k + * - tu-maxvit_rmlp_nano_rw_256.sw_in1k + * - tu-maxvit_rmlp_pico_rw_256.sw_in1k + * - tu-maxvit_rmlp_small_rw_224.sw_in1k + * - tu-maxvit_rmlp_tiny_rw_256.sw_in1k + * - tu-maxvit_small_tf_224.in1k + * - tu-maxvit_small_tf_384.in1k + * - tu-maxvit_small_tf_512.in1k + * - tu-maxvit_tiny_rw_224.sw_in1k + * - tu-maxvit_tiny_tf_224.in1k + * - tu-maxvit_tiny_tf_384.in1k + * - tu-maxvit_tiny_tf_512.in1k + * - tu-maxvit_xlarge_tf_224.in21k + * - tu-maxvit_xlarge_tf_384.in21k_ft_in1k + * - tu-maxvit_xlarge_tf_512.in21k_ft_in1k + * - tu-maxxvit_rmlp_nano_rw_256.sw_in1k + * - tu-maxxvit_rmlp_small_rw_256.sw_in1k + * - tu-maxxvitv2_nano_rw_256.sw_in1k + * - tu-maxxvitv2_rmlp_base_rw_224.sw_in12k + * - tu-maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k + * - tu-maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k + * - tu-mobilevit_s.cvnets_in1k + * - tu-mobilevit_xs.cvnets_in1k + * - tu-mobilevit_xxs.cvnets_in1k + * - tu-mobilevitv2_050.cvnets_in1k + * - tu-mobilevitv2_075.cvnets_in1k + * - tu-mobilevitv2_100.cvnets_in1k + * - tu-mobilevitv2_125.cvnets_in1k + * - tu-mobilevitv2_150.cvnets_in1k + * - tu-mobilevitv2_150.cvnets_in22k_ft_in1k + * - tu-mobilevitv2_150.cvnets_in22k_ft_in1k_384 + * - tu-mobilevitv2_175.cvnets_in1k + * - tu-mobilevitv2_175.cvnets_in22k_ft_in1k + * - tu-mobilevitv2_175.cvnets_in22k_ft_in1k_384 + * - tu-mobilevitv2_200.cvnets_in1k + * - tu-mobilevitv2_200.cvnets_in22k_ft_in1k + * - tu-mobilevitv2_200.cvnets_in22k_ft_in1k_384 + * - tu-mvitv2_base.fb_in1k + * - tu-mvitv2_base_cls.fb_inw21k + * - tu-mvitv2_huge_cls.fb_inw21k + * - tu-mvitv2_large.fb_in1k + * - tu-mvitv2_large_cls.fb_inw21k + * - tu-mvitv2_small.fb_in1k + * - tu-mvitv2_tiny.fb_in1k + * - tu-samvit_base_patch16.sa1b + * - tu-samvit_huge_patch16.sa1b + * - tu-samvit_large_patch16.sa1b + * - tu-test_vit2.r160_in1k + * - tu-test_vit3.r160_in1k + * - tu-test_vit.r160_in1k + * - tu-vit_base_mci_224.apple_mclip + * - tu-vit_base_mci_224.apple_mclip_lt + * - tu-vit_base_patch8_224.augreg2_in21k_ft_in1k + * - tu-vit_base_patch8_224.augreg_in21k + * - tu-vit_base_patch8_224.augreg_in21k_ft_in1k + * - tu-vit_base_patch8_224.dino + * - tu-vit_base_patch16_224.augreg2_in21k_ft_in1k + * - tu-vit_base_patch16_224.augreg_in1k + * - tu-vit_base_patch16_224.augreg_in21k + * - tu-vit_base_patch16_224.augreg_in21k_ft_in1k + * - tu-vit_base_patch16_224.dino + * - tu-vit_base_patch16_224.mae + * - tu-vit_base_patch16_224.orig_in21k + * - tu-vit_base_patch16_224.orig_in21k_ft_in1k + * - tu-vit_base_patch16_224.sam_in1k + * - tu-vit_base_patch16_224_miil.in21k + * - tu-vit_base_patch16_224_miil.in21k_ft_in1k + * - tu-vit_base_patch16_384.augreg_in1k + * - tu-vit_base_patch16_384.augreg_in21k_ft_in1k + * - tu-vit_base_patch16_384.orig_in21k_ft_in1k + * - tu-vit_base_patch16_clip_224.datacompxl + * - tu-vit_base_patch16_clip_224.dfn2b + * - tu-vit_base_patch16_clip_224.laion2b + * - tu-vit_base_patch16_clip_224.laion2b_ft_in1k + * - tu-vit_base_patch16_clip_224.laion2b_ft_in12k + * - tu-vit_base_patch16_clip_224.laion2b_ft_in12k_in1k + * - tu-vit_base_patch16_clip_224.laion400m_e32 + * - tu-vit_base_patch16_clip_224.metaclip_2pt5b + * - tu-vit_base_patch16_clip_224.metaclip_400m + * - tu-vit_base_patch16_clip_224.openai + * - tu-vit_base_patch16_clip_224.openai_ft_in1k + * - tu-vit_base_patch16_clip_224.openai_ft_in12k + * - tu-vit_base_patch16_clip_224.openai_ft_in12k_in1k + * - tu-vit_base_patch16_clip_384.laion2b_ft_in1k + * - tu-vit_base_patch16_clip_384.laion2b_ft_in12k_in1k + * - tu-vit_base_patch16_clip_384.openai_ft_in1k + * - tu-vit_base_patch16_clip_384.openai_ft_in12k_in1k + * - tu-vit_base_patch16_clip_quickgelu_224.metaclip_2pt5b + * - tu-vit_base_patch16_clip_quickgelu_224.metaclip_400m + * - tu-vit_base_patch16_clip_quickgelu_224.openai + * - tu-vit_base_patch16_plus_clip_240.laion400m_e32 + * - tu-vit_base_patch16_rope_reg1_gap_256.sbb_in1k + * - tu-vit_base_patch16_rpn_224.sw_in1k + * - tu-vit_base_patch16_siglip_224.v2_webli + * - tu-vit_base_patch16_siglip_224.webli + * - tu-vit_base_patch16_siglip_256.v2_webli + * - tu-vit_base_patch16_siglip_256.webli + * - tu-vit_base_patch16_siglip_256.webli_i18n + * - tu-vit_base_patch16_siglip_384.v2_webli + * - tu-vit_base_patch16_siglip_384.webli + * - tu-vit_base_patch16_siglip_512.v2_webli + * - tu-vit_base_patch16_siglip_512.webli + * - tu-vit_base_patch16_siglip_gap_224.v2_webli + * - tu-vit_base_patch16_siglip_gap_224.webli + * - tu-vit_base_patch16_siglip_gap_256.v2_webli + * - tu-vit_base_patch16_siglip_gap_256.webli + * - tu-vit_base_patch16_siglip_gap_256.webli_i18n + * - tu-vit_base_patch16_siglip_gap_384.v2_webli + * - tu-vit_base_patch16_siglip_gap_384.webli + * - tu-vit_base_patch16_siglip_gap_512.v2_webli + * - tu-vit_base_patch16_siglip_gap_512.webli + * - tu-vit_base_patch32_224.augreg_in1k + * - tu-vit_base_patch32_224.augreg_in21k + * - tu-vit_base_patch32_224.augreg_in21k_ft_in1k + * - tu-vit_base_patch32_224.orig_in21k + * - tu-vit_base_patch32_224.sam_in1k + * - tu-vit_base_patch32_384.augreg_in1k + * - tu-vit_base_patch32_384.augreg_in21k_ft_in1k + * - tu-vit_base_patch32_clip_224.datacompxl + * - tu-vit_base_patch32_clip_224.laion2b + * - tu-vit_base_patch32_clip_224.laion2b_ft_in1k + * - tu-vit_base_patch32_clip_224.laion2b_ft_in12k_in1k + * - tu-vit_base_patch32_clip_224.laion400m_e32 + * - tu-vit_base_patch32_clip_224.metaclip_2pt5b + * - tu-vit_base_patch32_clip_224.metaclip_400m + * - tu-vit_base_patch32_clip_224.openai + * - tu-vit_base_patch32_clip_224.openai_ft_in1k + * - tu-vit_base_patch32_clip_256.datacompxl + * - tu-vit_base_patch32_clip_384.laion2b_ft_in12k_in1k + * - tu-vit_base_patch32_clip_384.openai_ft_in12k_in1k + * - tu-vit_base_patch32_clip_448.laion2b_ft_in12k_in1k + * - tu-vit_base_patch32_clip_quickgelu_224.laion400m_e32 + * - tu-vit_base_patch32_clip_quickgelu_224.metaclip_2pt5b + * - tu-vit_base_patch32_clip_quickgelu_224.metaclip_400m + * - tu-vit_base_patch32_clip_quickgelu_224.openai + * - tu-vit_base_patch32_siglip_256.v2_webli + * - tu-vit_base_patch32_siglip_gap_256.v2_webli + * - tu-vit_base_r50_s16_224.orig_in21k + * - tu-vit_base_r50_s16_384.orig_in21k_ft_in1k + * - tu-vit_betwixt_patch16_reg1_gap_256.sbb_in1k + * - tu-vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k + * - tu-vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k + * - tu-vit_betwixt_patch16_reg4_gap_256.sbb_in1k + * - tu-vit_betwixt_patch16_reg4_gap_256.sbb_in12k + * - tu-vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k + * - tu-vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k + * - tu-vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k + * - tu-vit_betwixt_patch32_clip_224.tinyclip_laion400m + * - tu-vit_giant_patch16_gap_224.in22k_ijepa + * - tu-vit_giantopt_patch16_siglip_256.v2_webli + * - tu-vit_giantopt_patch16_siglip_384.v2_webli + * - tu-vit_giantopt_patch16_siglip_gap_256.v2_webli + * - tu-vit_giantopt_patch16_siglip_gap_384.v2_webli + * - tu-vit_huge_patch16_gap_448.in1k_ijepa + * - tu-vit_large_patch16_224.augreg_in21k + * - tu-vit_large_patch16_224.augreg_in21k_ft_in1k + * - tu-vit_large_patch16_224.mae + * - tu-vit_large_patch16_224.orig_in21k + * - tu-vit_large_patch16_384.augreg_in21k_ft_in1k + * - tu-vit_large_patch16_siglip_256.v2_webli + * - tu-vit_large_patch16_siglip_256.webli + * - tu-vit_large_patch16_siglip_384.v2_webli + * - tu-vit_large_patch16_siglip_384.webli + * - tu-vit_large_patch16_siglip_512.v2_webli + * - tu-vit_large_patch16_siglip_gap_256.v2_webli + * - tu-vit_large_patch16_siglip_gap_256.webli + * - tu-vit_large_patch16_siglip_gap_384.v2_webli + * - tu-vit_large_patch16_siglip_gap_384.webli + * - tu-vit_large_patch16_siglip_gap_512.v2_webli + * - tu-vit_large_patch32_224.orig_in21k + * - tu-vit_large_patch32_384.orig_in21k_ft_in1k + * - tu-vit_large_r50_s32_224.augreg_in21k + * - tu-vit_large_r50_s32_224.augreg_in21k_ft_in1k + * - tu-vit_large_r50_s32_384.augreg_in21k_ft_in1k + * - tu-vit_little_patch16_reg1_gap_256.sbb_in12k + * - tu-vit_little_patch16_reg1_gap_256.sbb_in12k_ft_in1k + * - tu-vit_little_patch16_reg4_gap_256.sbb_in1k + * - tu-vit_medium_patch16_clip_224.tinyclip_yfcc15m + * - tu-vit_medium_patch16_gap_240.sw_in12k + * - tu-vit_medium_patch16_gap_256.sw_in12k_ft_in1k + * - tu-vit_medium_patch16_gap_384.sw_in12k_ft_in1k + * - tu-vit_medium_patch16_reg1_gap_256.sbb_in1k + * - tu-vit_medium_patch16_reg4_gap_256.sbb_in1k + * - tu-vit_medium_patch16_reg4_gap_256.sbb_in12k + * - tu-vit_medium_patch16_reg4_gap_256.sbb_in12k_ft_in1k + * - tu-vit_medium_patch16_rope_reg1_gap_256.sbb_in1k + * - tu-vit_medium_patch32_clip_224.tinyclip_laion400m + * - tu-vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k + * - tu-vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k + * - tu-vit_mediumd_patch16_reg4_gap_256.sbb_in12k + * - tu-vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k + * - tu-vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k + * - tu-vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k + * - tu-vit_pwee_patch16_reg1_gap_256.sbb_in1k + * - tu-vit_relpos_base_patch16_224.sw_in1k + * - tu-vit_relpos_base_patch16_clsgap_224.sw_in1k + * - tu-vit_relpos_base_patch32_plus_rpn_256.sw_in1k + * - tu-vit_relpos_medium_patch16_224.sw_in1k + * - tu-vit_relpos_medium_patch16_cls_224.sw_in1k + * - tu-vit_relpos_medium_patch16_rpn_224.sw_in1k + * - tu-vit_relpos_small_patch16_224.sw_in1k + * - tu-vit_small_patch8_224.dino + * - tu-vit_small_patch16_224.augreg_in1k + * - tu-vit_small_patch16_224.augreg_in21k + * - tu-vit_small_patch16_224.augreg_in21k_ft_in1k + * - tu-vit_small_patch16_224.dino + * - tu-vit_small_patch16_384.augreg_in1k + * - tu-vit_small_patch16_384.augreg_in21k_ft_in1k + * - tu-vit_small_patch32_224.augreg_in21k + * - tu-vit_small_patch32_224.augreg_in21k_ft_in1k + * - tu-vit_small_patch32_384.augreg_in21k_ft_in1k + * - tu-vit_small_r26_s32_224.augreg_in21k + * - tu-vit_small_r26_s32_224.augreg_in21k_ft_in1k + * - tu-vit_small_r26_s32_384.augreg_in21k_ft_in1k + * - tu-vit_so150m2_patch16_reg1_gap_256.sbb_e200_in12k + * - tu-vit_so150m2_patch16_reg1_gap_256.sbb_e200_in12k_ft_in1k + * - tu-vit_so150m2_patch16_reg1_gap_384.sbb_e200_in12k_ft_in1k + * - tu-vit_so150m2_patch16_reg1_gap_448.sbb_e200_in12k_ft_in1k + * - tu-vit_so150m_patch16_reg4_gap_256.sbb_e250_in12k + * - tu-vit_so150m_patch16_reg4_gap_256.sbb_e250_in12k_ft_in1k + * - tu-vit_so150m_patch16_reg4_gap_384.sbb_e250_in12k_ft_in1k + * - tu-vit_so400m_patch16_siglip_256.v2_webli + * - tu-vit_so400m_patch16_siglip_256.webli_i18n + * - tu-vit_so400m_patch16_siglip_384.v2_webli + * - tu-vit_so400m_patch16_siglip_512.v2_webli + * - tu-vit_so400m_patch16_siglip_gap_256.v2_webli + * - tu-vit_so400m_patch16_siglip_gap_256.webli_i18n + * - tu-vit_so400m_patch16_siglip_gap_384.v2_webli + * - tu-vit_so400m_patch16_siglip_gap_512.v2_webli + * - tu-vit_srelpos_medium_patch16_224.sw_in1k + * - tu-vit_srelpos_small_patch16_224.sw_in1k + * - tu-vit_tiny_patch16_224.augreg_in21k + * - tu-vit_tiny_patch16_224.augreg_in21k_ft_in1k + * - tu-vit_tiny_patch16_384.augreg_in21k_ft_in1k + * - tu-vit_tiny_r_s16_p8_224.augreg_in21k + * - tu-vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k + * - tu-vit_tiny_r_s16_p8_384.augreg_in21k_ft_in1k + * - tu-vit_wee_patch16_reg1_gap_256.sbb_in1k + * - tu-vit_xsmall_patch16_clip_224.tinyclip_yfcc15m + * - tu-vitamin_base_224.datacomp1b_clip + * - tu-vitamin_base_224.datacomp1b_clip_ltt + * - tu-vitamin_large2_224.datacomp1b_clip + * - tu-vitamin_large2_256.datacomp1b_clip + * - tu-vitamin_large2_336.datacomp1b_clip + * - tu-vitamin_large2_384.datacomp1b_clip + * - tu-vitamin_large_224.datacomp1b_clip + * - tu-vitamin_large_256.datacomp1b_clip + * - tu-vitamin_large_336.datacomp1b_clip + * - tu-vitamin_large_384.datacomp1b_clip + * - tu-vitamin_small_224.datacomp1b_clip + * - tu-vitamin_small_224.datacomp1b_clip_ltt + * - tu-vitamin_xlarge_256.datacomp1b_clip + * - tu-vitamin_xlarge_336.datacomp1b_clip + * - tu-vitamin_xlarge_384.datacomp1b_clip + * - tu-hiera_small_abswin_256.sbb2_e200_in12k + * - tu-hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k + * - tu-hiera_small_abswin_256.sbb2_pd_e200_in12k + * - tu-hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k + * - tu-swin_base_patch4_window7_224.ms_in1k + * - tu-swin_base_patch4_window7_224.ms_in22k + * - tu-swin_base_patch4_window7_224.ms_in22k_ft_in1k + * - tu-swin_base_patch4_window12_384.ms_in1k + * - tu-swin_base_patch4_window12_384.ms_in22k + * - tu-swin_base_patch4_window12_384.ms_in22k_ft_in1k + * - tu-swin_large_patch4_window7_224.ms_in22k + * - tu-swin_large_patch4_window7_224.ms_in22k_ft_in1k + * - tu-swin_large_patch4_window12_384.ms_in22k + * - tu-swin_large_patch4_window12_384.ms_in22k_ft_in1k + * - tu-swin_s3_base_224.ms_in1k + * - tu-swin_s3_small_224.ms_in1k + * - tu-swin_s3_tiny_224.ms_in1k + * - tu-swin_small_patch4_window7_224.ms_in1k + * - tu-swin_small_patch4_window7_224.ms_in22k + * - tu-swin_small_patch4_window7_224.ms_in22k_ft_in1k + * - tu-swin_tiny_patch4_window7_224.ms_in1k + * - tu-swin_tiny_patch4_window7_224.ms_in22k + * - tu-swin_tiny_patch4_window7_224.ms_in22k_ft_in1k + * - tu-swinv2_base_window8_256.ms_in1k + * - tu-swinv2_base_window12_192.ms_in22k + * - tu-swinv2_base_window12to16_192to256.ms_in22k_ft_in1k + * - tu-swinv2_base_window12to24_192to384.ms_in22k_ft_in1k + * - tu-swinv2_base_window16_256.ms_in1k + * - tu-swinv2_cr_small_224.sw_in1k + * - tu-swinv2_cr_small_ns_224.sw_in1k + * - tu-swinv2_cr_tiny_ns_224.sw_in1k + * - tu-swinv2_large_window12_192.ms_in22k + * - tu-swinv2_large_window12to16_192to256.ms_in22k_ft_in1k + * - tu-swinv2_large_window12to24_192to384.ms_in22k_ft_in1k + * - tu-swinv2_small_window8_256.ms_in1k + * - tu-swinv2_small_window16_256.ms_in1k + * - tu-swinv2_tiny_window8_256.ms_in1k + * - tu-swinv2_tiny_window16_256.ms_in1k + * - tu-efficientformer_l1.snap_dist_in1k + * - tu-efficientformer_l3.snap_dist_in1k + * - tu-efficientformer_l7.snap_dist_in1k + * - tu-beit_base_patch16_224.in22k_ft_in22k + * - tu-beit_base_patch16_224.in22k_ft_in22k_in1k + * - tu-beit_base_patch16_384.in22k_ft_in22k_in1k + * - tu-beit_large_patch16_224.in22k_ft_in22k + * - tu-beit_large_patch16_224.in22k_ft_in22k_in1k + * - tu-beit_large_patch16_384.in22k_ft_in22k_in1k + * - tu-beit_large_patch16_512.in22k_ft_in22k_in1k + * - tu-beitv2_base_patch16_224.in1k_ft_in1k + * - tu-beitv2_base_patch16_224.in1k_ft_in22k + * - tu-beitv2_base_patch16_224.in1k_ft_in22k_in1k + * - tu-beitv2_large_patch16_224.in1k_ft_in1k + * - tu-beitv2_large_patch16_224.in1k_ft_in22k + * - tu-beitv2_large_patch16_224.in1k_ft_in22k_in1k + * - tu-cait_m36_384.fb_dist_in1k + * - tu-cait_m48_448.fb_dist_in1k + * - tu-cait_s24_224.fb_dist_in1k + * - tu-cait_s24_384.fb_dist_in1k + * - tu-cait_s36_384.fb_dist_in1k + * - tu-cait_xs24_384.fb_dist_in1k + * - tu-cait_xxs24_224.fb_dist_in1k + * - tu-cait_xxs24_384.fb_dist_in1k + * - tu-cait_xxs36_224.fb_dist_in1k + * - tu-cait_xxs36_384.fb_dist_in1k + * - tu-coatnet_0_rw_224.sw_in1k + * - tu-coatnet_1_rw_224.sw_in1k + * - tu-coatnet_2_rw_224.sw_in12k + * - tu-coatnet_2_rw_224.sw_in12k_ft_in1k + * - tu-coatnet_3_rw_224.sw_in12k + * - tu-coatnet_bn_0_rw_224.sw_in1k + * - tu-coatnet_nano_rw_224.sw_in1k + * - tu-coatnet_rmlp_1_rw2_224.sw_in12k + * - tu-coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k + * - tu-coatnet_rmlp_1_rw_224.sw_in1k + * - tu-coatnet_rmlp_2_rw_224.sw_in1k + * - tu-coatnet_rmlp_2_rw_224.sw_in12k + * - tu-coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k + * - tu-coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k + * - tu-coatnet_rmlp_nano_rw_224.sw_in1k + * - tu-deit3_base_patch16_224.fb_in1k + * - tu-deit3_base_patch16_224.fb_in22k_ft_in1k + * - tu-deit3_base_patch16_384.fb_in1k + * - tu-deit3_base_patch16_384.fb_in22k_ft_in1k + * - tu-deit3_large_patch16_224.fb_in1k + * - tu-deit3_large_patch16_224.fb_in22k_ft_in1k + * - tu-deit3_large_patch16_384.fb_in1k + * - tu-deit3_large_patch16_384.fb_in22k_ft_in1k + * - tu-deit3_medium_patch16_224.fb_in1k + * - tu-deit3_medium_patch16_224.fb_in22k_ft_in1k + * - tu-deit3_small_patch16_224.fb_in1k + * - tu-deit3_small_patch16_224.fb_in22k_ft_in1k + * - tu-deit3_small_patch16_384.fb_in1k + * - tu-deit3_small_patch16_384.fb_in22k_ft_in1k + * - tu-deit_base_distilled_patch16_224.fb_in1k + * - tu-deit_base_distilled_patch16_384.fb_in1k + * - tu-deit_base_patch16_224.fb_in1k + * - tu-deit_base_patch16_384.fb_in1k + * - tu-deit_small_distilled_patch16_224.fb_in1k + * - tu-deit_small_patch16_224.fb_in1k + * - tu-deit_tiny_distilled_patch16_224.fb_in1k + * - tu-deit_tiny_patch16_224.fb_in1k + * - tu-regnety_160.deit_in1k + * - tu-twins_pcpvt_base.in1k + * - tu-twins_pcpvt_large.in1k + * - tu-twins_pcpvt_small.in1k + * - tu-twins_svt_base.in1k + * - tu-twins_svt_large.in1k + * - tu-twins_svt_small.in1k + * - tu-xcit_large_24_p8_224.fb_dist_in1k + * - tu-xcit_large_24_p8_224.fb_in1k + * - tu-xcit_large_24_p8_384.fb_dist_in1k + * - tu-xcit_large_24_p16_224.fb_dist_in1k + * - tu-xcit_large_24_p16_224.fb_in1k + * - tu-xcit_large_24_p16_384.fb_dist_in1k + * - tu-xcit_medium_24_p8_224.fb_dist_in1k + * - tu-xcit_medium_24_p8_224.fb_in1k + * - tu-xcit_medium_24_p8_384.fb_dist_in1k + * - tu-xcit_medium_24_p16_224.fb_dist_in1k + * - tu-xcit_medium_24_p16_224.fb_in1k + * - tu-xcit_medium_24_p16_384.fb_dist_in1k + * - tu-xcit_nano_12_p8_224.fb_dist_in1k + * - tu-xcit_nano_12_p8_224.fb_in1k + * - tu-xcit_nano_12_p8_384.fb_dist_in1k + * - tu-xcit_nano_12_p16_224.fb_dist_in1k + * - tu-xcit_nano_12_p16_224.fb_in1k + * - tu-xcit_nano_12_p16_384.fb_dist_in1k + * - tu-xcit_small_12_p8_224.fb_dist_in1k + * - tu-xcit_small_12_p8_224.fb_in1k + * - tu-xcit_small_12_p8_384.fb_dist_in1k + * - tu-xcit_small_12_p16_224.fb_dist_in1k + * - tu-xcit_small_12_p16_224.fb_in1k + * - tu-xcit_small_12_p16_384.fb_dist_in1k + * - tu-xcit_small_24_p8_224.fb_dist_in1k + * - tu-xcit_small_24_p8_224.fb_in1k + * - tu-xcit_small_24_p8_384.fb_dist_in1k + * - tu-xcit_small_24_p16_224.fb_dist_in1k + * - tu-xcit_small_24_p16_224.fb_in1k + * - tu-xcit_small_24_p16_384.fb_dist_in1k + * - tu-xcit_tiny_12_p8_224.fb_dist_in1k + * - tu-xcit_tiny_12_p8_224.fb_in1k + * - tu-xcit_tiny_12_p8_384.fb_dist_in1k + * - tu-xcit_tiny_12_p16_224.fb_dist_in1k + * - tu-xcit_tiny_12_p16_224.fb_in1k + * - tu-xcit_tiny_12_p16_384.fb_dist_in1k + * - tu-xcit_tiny_24_p8_224.fb_dist_in1k + * - tu-xcit_tiny_24_p8_224.fb_in1k + * - tu-xcit_tiny_24_p8_384.fb_dist_in1k + * - tu-xcit_tiny_24_p16_224.fb_dist_in1k + * - tu-xcit_tiny_24_p16_224.fb_in1k + * - tu-xcit_tiny_24_p16_384.fb_dist_in1k \ No newline at end of file diff --git a/docs/models.rst b/docs/models.rst index c2037afb..ab04bb5e 100644 --- a/docs/models.rst +++ b/docs/models.rst @@ -81,3 +81,18 @@ Segformer ~~~~~~~~~ .. autoclass:: segmentation_models_pytorch.Segformer + +.. _dpt: + +DPT +~~~ + +.. note:: + + See full list of DPT-compatible timm encoders in :ref:`dpt-encoders`. + +.. note:: + + For some encoders, the model requires ``dynamic_img_size=True`` to be passed in order to work with resolutions different from what the encoder was trained for. + +.. autoclass:: segmentation_models_pytorch.DPT diff --git a/docs/quickstart.rst b/docs/quickstart.rst index 7fc04dd7..e6627b83 100644 --- a/docs/quickstart.rst +++ b/docs/quickstart.rst @@ -53,7 +53,7 @@ You are done! Now you can train your model with your favorite framework, or as s for images, gt_masks in dataloader: - predicted_mask = model(image) + predicted_mask = model(images) loss = loss_fn(predicted_mask, gt_masks) loss.backward() diff --git a/docs/save_load.rst b/docs/save_load.rst index e90e4eba..15434eb6 100644 --- a/docs/save_load.rst +++ b/docs/save_load.rst @@ -40,6 +40,14 @@ For example: # Alternatively, load the model directly from the Hugging Face Hub model = smp.from_pretrained('username/my-model') +Loading pre-trained model with different number of classes for fine-tuning: + +.. code:: python + + import segmentation_models_pytorch as smp + + model = smp.from_pretrained('', classes=5, strict=False) + Saving model Metrics and Dataset Name ------------------------------------- diff --git a/examples/binary_segmentation_buildings.py b/examples/binary_segmentation_buildings.py new file mode 100644 index 00000000..1dd2cf0a --- /dev/null +++ b/examples/binary_segmentation_buildings.py @@ -0,0 +1,498 @@ +""" +This script demonstrates how to train a binary segmentation model using the +CamVid dataset and segmentation_models_pytorch. The CamVid dataset is a +collection of videos with pixel-level annotations for semantic segmentation. +The dataset includes 367 training images, 101 validation images, and 233 test. +Each training image has a corresponding mask that labels each pixel as belonging +to these classes with the numerical labels as follows: +- Sky: 0 +- Building: 1 +- Pole: 2 +- Road: 3 +- Pavement: 4 +- Tree: 5 +- SignSymbol: 6 +- Fence: 7 +- Car: 8 +- Pedestrian: 9 +- Bicyclist: 10 +- Unlabelled: 11 + +In this script, we focus on binary segmentation, where the goal is to classify +each pixel as whether belonging to a certain class (Foregorund) or +not (Background). + +Class Labels: +- 0: Background +- 1: Foreground + +The script includes the following steps: +1. Set the device to GPU if available, otherwise use CPU. +2. Download the CamVid dataset if it is not already present. +3. Define hyperparameters for training. +4. Define a custom dataset class for loading and preprocessing the CamVid + dataset. +5. Define a function to visualize images and masks. +6. Create datasets and dataloaders for training, validation, and testing. +7. Define a model class for the segmentation task. +8. Train the model using the training and validation datasets. +9. Evaluate the model using the test dataset and save the output masks and + metrics. +""" + +import logging +import os + +import cv2 +import matplotlib.pyplot as plt +import numpy as np +import torch +from torch.optim import lr_scheduler +from torch.utils.data import DataLoader +from torch.utils.data import Dataset as BaseDataset +from tqdm import tqdm + +import segmentation_models_pytorch as smp + +logging.basicConfig( + level=logging.INFO, + format="%(asctime)s - %(message)s", + datefmt="%d:%m:%Y %H:%M:%S", +) + +# ---------------------------- +# Set the device to GPU if available +# ---------------------------- +device = "cuda" if torch.cuda.is_available() else "cpu" +logging.info(f"Using device: {device}") +if device == "cpu": + os.system("export OMP_NUM_THREADS=64") + torch.set_num_threads(os.cpu_count()) + +# ---------------------------- +# Download the CamVid dataset, if needed +# ---------------------------- +# Change this to your desired directory +main_dir = "./examples/binary_segmentation_data/" + +data_dir = os.path.join(main_dir, "dataset") +if not os.path.exists(data_dir): + logging.info("Loading data...") + os.system(f"git clone https://github.com/alexgkendall/SegNet-Tutorial {data_dir}") + logging.info("Done!") + +# Create a directory to store the output masks +output_dir = os.path.join(main_dir, "output_images") +os.makedirs(output_dir, exist_ok=True) + +# ---------------------------- +# Define the hyperparameters +# ---------------------------- +epochs_max = 200 # Number of epochs to train the model +adam_lr = 2e-4 # Learning rate for the Adam optimizer +eta_min = 1e-5 # Minimum learning rate for the scheduler +batch_size = 8 # Batch size for training +input_image_reshape = (320, 320) # Desired shape for the input images and masks +foreground_class = 1 # 1 for binary segmentation + + +# ---------------------------- +# Define a custom dataset class for the CamVid dataset +# ---------------------------- +class Dataset(BaseDataset): + """ + A custom dataset class for binary segmentation tasks. + + Parameters: + ---------- + + - images_dir (str): Directory containing the input images. + - masks_dir (str): Directory containing the corresponding masks. + - input_image_reshape (tuple, optional): Desired shape for the input + images and masks. Default is (320, 320). + - foreground_class (int, optional): The class value in the mask to be + considered as the foreground. Default is 1. + - augmentation (callable, optional): A function/transform to apply to the + images and masks for data augmentation. + """ + + def __init__( + self, + images_dir, + masks_dir, + input_image_reshape=(320, 320), + foreground_class=1, + augmentation=None, + ): + self.ids = os.listdir(images_dir) + self.images_filepaths = [ + os.path.join(images_dir, image_id) for image_id in self.ids + ] + self.masks_filepaths = [ + os.path.join(masks_dir, image_id) for image_id in self.ids + ] + + self.input_image_reshape = input_image_reshape + self.foreground_class = foreground_class + self.augmentation = augmentation + + def __getitem__(self, i): + """ + Retrieves the image and corresponding mask at index `i`. + + Parameters: + ---------- + + - i (int): Index of the image and mask to retrieve. + Returns: + - A tuple containing: + - image (torch.Tensor): The preprocessed image tensor of shape + (1, input_image_reshape) - e.g., (1, 320, 320) - normalized to [0, 1]. + - mask_remap (torch.Tensor): The preprocessed mask tensor of + shape input_image_reshape with values 0 or 1. + """ + # Read the image + image = cv2.imread( + self.images_filepaths[i], cv2.IMREAD_GRAYSCALE + ) # Read image as grayscale + image = np.expand_dims(image, axis=-1) # Add channel dimension + + # resize image to input_image_reshape + image = cv2.resize(image, self.input_image_reshape) + + # Read the mask in grayscale mode + mask = cv2.imread(self.masks_filepaths[i], 0) + + # Update the mask: Set foreground_class to 1 and the rest to 0 + mask_remap = np.where(mask == self.foreground_class, 1, 0).astype(np.uint8) + + # resize mask to input_image_reshape + mask_remap = cv2.resize(mask_remap, self.input_image_reshape) + + if self.augmentation: + sample = self.augmentation(image=image, mask=mask_remap) + image, mask_remap = sample["image"], sample["mask"] + + # Convert to PyTorch tensors + # Add channel dimension if missing + if image.ndim == 2: + image = np.expand_dims(image, axis=-1) + + # HWC -> CHW and normalize to [0, 1] + image = torch.tensor(image).float().permute(2, 0, 1) / 255.0 + + # Ensure mask is LongTensor + mask_remap = torch.tensor(mask_remap).long() + + return image, mask_remap + + def __len__(self): + return len(self.ids) + + +# Define a class for the CamVid model +class CamVidModel(torch.nn.Module): + """ + A PyTorch model for binary segmentation using the Segmentation Models + PyTorch library. + + Parameters: + ---------- + + - arch (str): The architecture name of the segmentation model + (e.g., 'Unet', 'FPN'). + - encoder_name (str): The name of the encoder to use + (e.g., 'resnet34', 'vgg16'). + - in_channels (int, optional): Number of input channels (e.g., 3 for RGB). + - out_classes (int, optional): Number of output classes (e.g., 1 for binary) + **kwargs: Additional keyword arguments to pass to the model + creation function. + """ + + def __init__(self, arch, encoder_name, in_channels=3, out_classes=1, **kwargs): + super().__init__() + self.mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device) + self.std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device) + self.model = smp.create_model( + arch, + encoder_name=encoder_name, + in_channels=in_channels, + classes=out_classes, + **kwargs, + ) + + def forward(self, image): + # Normalize image + image = (image - self.mean) / self.std + mask = self.model(image) + return mask + + +def visualize(output_dir, image_filename, **images): + """PLot images in one row.""" + n = len(images) + plt.figure(figsize=(16, 5)) + for i, (name, image) in enumerate(images.items()): + plt.subplot(1, n, i + 1) + plt.xticks([]) + plt.yticks([]) + plt.title(" ".join(name.split("_")).title()) + plt.imshow(image) + plt.show() + plt.savefig(os.path.join(output_dir, image_filename)) + plt.close() + + +# Use multiple CPUs in parallel +def train_and_evaluate_one_epoch( + model, train_dataloader, valid_dataloader, optimizer, scheduler, loss_fn, device +): + # Set the model to training mode + model.train() + train_loss = 0 + for batch in tqdm(train_dataloader, desc="Training"): + images, masks = batch + images, masks = images.to(device), masks.to(device) + + optimizer.zero_grad() + outputs = model(images) + + loss = loss_fn(outputs, masks) + loss.backward() + optimizer.step() + + train_loss += loss.item() + + scheduler.step() + avg_train_loss = train_loss / len(train_dataloader) + + # Set the model to evaluation mode + model.eval() + val_loss = 0 + with torch.inference_mode(): + for batch in tqdm(valid_dataloader, desc="Evaluating"): + images, masks = batch + images, masks = images.to(device), masks.to(device) + + outputs = model(images) + loss = loss_fn(outputs, masks) + + val_loss += loss.item() + + avg_val_loss = val_loss / len(valid_dataloader) + return avg_train_loss, avg_val_loss + + +def train_model( + model, + train_dataloader, + valid_dataloader, + optimizer, + scheduler, + loss_fn, + device, + epochs, +): + train_losses = [] + val_losses = [] + + for epoch in range(epochs): + avg_train_loss, avg_val_loss = train_and_evaluate_one_epoch( + model, + train_dataloader, + valid_dataloader, + optimizer, + scheduler, + loss_fn, + device, + ) + train_losses.append(avg_train_loss) + val_losses.append(avg_val_loss) + + logging.info( + f"Epoch {epoch + 1}/{epochs}, Training Loss: {avg_train_loss:.2f}, Validation Loss: {avg_val_loss:.2f}" + ) + + history = { + "train_losses": train_losses, + "val_losses": val_losses, + } + return history + + +def test_model(model, output_dir, test_dataloader, loss_fn, device): + # Set the model to evaluation mode + model.eval() + test_loss = 0 + tp, fp, fn, tn = 0, 0, 0, 0 + with torch.inference_mode(): + for batch in tqdm(test_dataloader, desc="Evaluating"): + images, masks = batch + images, masks = images.to(device), masks.to(device) + + outputs = model(images) + loss = loss_fn(outputs, masks) + + for i, output in enumerate(outputs): + input = images[i].cpu().numpy().transpose(1, 2, 0) + output = output.squeeze().cpu().numpy() + + visualize( + output_dir, + f"output_{i}.png", + input_image=input, + output_mask=output, + binary_mask=output > 0.5, + ) + + test_loss += loss.item() + + prob_mask = outputs.sigmoid().squeeze(1) + pred_mask = (prob_mask > 0.5).long() + batch_tp, batch_fp, batch_fn, batch_tn = smp.metrics.get_stats( + pred_mask, masks, mode="binary" + ) + tp += batch_tp.sum().item() + fp += batch_fp.sum().item() + fn += batch_fn.sum().item() + tn += batch_tn.sum().item() + + test_loss_mean = test_loss / len(test_dataloader) + logging.info(f"Test Loss: {test_loss_mean:.2f}") + + iou_score = smp.metrics.iou_score( + torch.tensor([tp]), + torch.tensor([fp]), + torch.tensor([fn]), + torch.tensor([tn]), + reduction="micro", + ) + + return test_loss_mean, iou_score.item() + + +# ---------------------------- +# Define the data directories and create the datasets +# ---------------------------- +x_train_dir = os.path.join(data_dir, "CamVid", "train") +y_train_dir = os.path.join(data_dir, "CamVid", "trainannot") + +x_val_dir = os.path.join(data_dir, "CamVid", "val") +y_val_dir = os.path.join(data_dir, "CamVid", "valannot") + +x_test_dir = os.path.join(data_dir, "CamVid", "test") +y_test_dir = os.path.join(data_dir, "CamVid", "testannot") + +train_dataset = Dataset( + x_train_dir, + y_train_dir, + input_image_reshape=input_image_reshape, + foreground_class=foreground_class, +) +valid_dataset = Dataset( + x_val_dir, + y_val_dir, + input_image_reshape=input_image_reshape, + foreground_class=foreground_class, +) +test_dataset = Dataset( + x_test_dir, + y_test_dir, + input_image_reshape=input_image_reshape, + foreground_class=foreground_class, +) + +image, mask = train_dataset[0] +logging.info(f"Unique values in mask: {np.unique(mask)}") +logging.info(f"Image shape: {image.shape}") +logging.info(f"Mask shape: {mask.shape}") + +# ---------------------------- +# Create the dataloaders using the datasets +# ---------------------------- +logging.info(f"Train size: {len(train_dataset)}") +logging.info(f"Valid size: {len(valid_dataset)}") +logging.info(f"Test size: {len(test_dataset)}") + +train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) +valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False) +test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) + +# ---------------------------- +# Lets look at some samples +# ---------------------------- +# Visualize and save train sample +sample = train_dataset[0] +visualize( + output_dir, + "train_sample.png", + train_image=sample[0].numpy().transpose(1, 2, 0), + train_mask=sample[1].squeeze(), +) + +# Visualize and save validation sample +sample = valid_dataset[0] +visualize( + output_dir, + "validation_sample.png", + validation_image=sample[0].numpy().transpose(1, 2, 0), + validation_mask=sample[1].squeeze(), +) + +# Visualize and save test sample +sample = test_dataset[0] +visualize( + output_dir, + "test_sample.png", + test_image=sample[0].numpy().transpose(1, 2, 0), + test_mask=sample[1].squeeze(), +) + +# ---------------------------- +# Create and train the model +# ---------------------------- +max_iter = epochs_max * len(train_dataloader) # Total number of iterations + +model = CamVidModel("Unet", "resnet34", in_channels=3, out_classes=1) + +# Training loop +model = model.to(device) + +# Define the Adam optimizer +optimizer = torch.optim.Adam(model.parameters(), lr=adam_lr) + +# Define the learning rate scheduler +scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=max_iter, eta_min=eta_min) + +# Define the loss function +loss_fn = smp.losses.DiceLoss(smp.losses.BINARY_MODE, from_logits=True) + +# Train the model +history = train_model( + model, + train_dataloader, + valid_dataloader, + optimizer, + scheduler, + loss_fn, + device, + epochs_max, +) + +# Visualize the training and validation losses +plt.figure(figsize=(10, 5)) +plt.plot(history["train_losses"], label="Train Loss") +plt.plot(history["val_losses"], label="Validation Loss") +plt.xlabel("Epochs") +plt.ylabel("Loss") +plt.title("Training and Validation Losses") +plt.legend() +plt.savefig(os.path.join(output_dir, "train_val_losses.png")) +plt.close() + + +# Evaluate the model +test_loss = test_model(model, output_dir, test_dataloader, loss_fn, device) + +logging.info(f"Test Loss: {test_loss[0]}, IoU Score: {test_loss[1]}") +logging.info(f"The output masks are saved in {output_dir}.") diff --git a/examples/binary_segmentation_intro.ipynb b/examples/binary_segmentation_intro.ipynb index 3c5b6175..bbdf329d 100644 --- a/examples/binary_segmentation_intro.ipynb +++ b/examples/binary_segmentation_intro.ipynb @@ -1,4211 +1,1094 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/binary_segmentation_intro.ipynb)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "U3WUb8t2P2e5" - }, - "source": [ - "πŸ‡­ πŸ‡ͺ πŸ‡± πŸ‡± πŸ‡΄ πŸ‘‹\n", - "\n", - "This example shows how to use `segmentation-models-pytorch` for **binary** semantic segmentation. We will use the [The Oxford-IIIT Pet Dataset](https://www.robots.ox.ac.uk/~vgg/data/pets/) (this is an adopted example from Albumentations package [docs](https://albumentations.ai/docs/examples/pytorch_semantic_segmentation/), which is strongly recommended to read, especially if you never used this package for augmentations before). \n", - "\n", - "The task will be to classify each pixel of an input image either as pet 🐢🐱 or as a background.\n", - "\n", - "\n", - "What we are going to overview in this example: \n", - "\n", - " - πŸ“œ `Datasets` and `DataLoaders` preparation (with predefined dataset class). \n", - " - πŸ“¦ `LightningModule` preparation: defining training, validation and test routines. \n", - " - πŸ“ˆ Writing `IoU` metric inside the `LightningModule` for measuring quality of segmentation. \n", - " - 🐢 Results visualization.\n", - "\n", - "\n", - "> It is expected you are familiar with Python, PyTorch and have some experience with training neural networks before!" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "execution": { - "iopub.execute_input": "2024-08-18T04:37:36.751747Z", - "iopub.status.busy": "2024-08-18T04:37:36.750812Z", - "iopub.status.idle": "2024-08-18T04:38:26.758872Z", - "shell.execute_reply": "2024-08-18T04:38:26.757586Z", - "shell.execute_reply.started": "2024-08-18T04:37:36.751710Z" - }, - "id": "DYNdz8s56qOu", - "outputId": "7f343747-532d-417c-fc72-fda5c713d4e3", - "trusted": true - }, - "outputs": [], - "source": [ - "%%capture\n", - "!pip install -U git+https://github.com/qubvel-org/segmentation_models.pytorch\n", - "!pip install lightning albumentations" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "execution": { - "iopub.execute_input": "2024-08-18T04:38:26.761388Z", - "iopub.status.busy": "2024-08-18T04:38:26.761047Z", - "iopub.status.idle": "2024-08-18T04:38:37.024102Z", - "shell.execute_reply": "2024-08-18T04:38:37.023281Z", - "shell.execute_reply.started": "2024-08-18T04:38:26.761357Z" - }, - "id": "iKiMzw2t6ika", - "trusted": true - }, - "outputs": [], - "source": [ - "import os\n", - "\n", - "import torch\n", - "import matplotlib.pyplot as plt\n", - "import pytorch_lightning as pl\n", - "from torch.optim import lr_scheduler\n", - "import segmentation_models_pytorch as smp\n", - "from torch.utils.data import DataLoader" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "H4RKHF535Twz" - }, - "source": [ - "## Dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "lkghwALE5fIc" - }, - "source": [ - "In this example we will use predefined `Dataset` class for simplicity. The dataset actually read pairs of images and masks from disk and return `sample` - dictionary with keys `image`, `mask` and others (not relevant for this example).\n", - "\n", - "⚠️ **Dataset preparation checklist** ⚠️\n", - "\n", - "In case you writing your own dataset, please, make sure that:\n", - "\n", - "1. **Images** πŸ–Ό \n", - " βœ… Images from dataset have **the same size**, required for packing images to a batch. \n", - " βœ… Images height and width are **divisible by 32**. This step is important for segmentation, because almost all models have skip-connections between encoder and decoder and all encoders have 5 downsampling stages (2 ^ 5 = 32). Very likely you will face with error when model will try to concatenate encoder and decoder features if height or width is not divisible by 32. \n", - " βœ… Images have **correct axes order**. PyTorch works with CHW order, we read images in HWC [height, width, channels], don`t forget to transpose image.\n", - "2. **Masks** πŸ”³ \n", - " βœ… Masks have **the same sizes** as images. \n", - " βœ… Masks have only `0` - background and `1` - target class values (for binary segmentation). \n", - " βœ… Even if mask don`t have channels, you need it. Convert each mask from **HW to 1HW** format for binary segmentation (expand the first dimension).\n", - "\n", - "Some of these checks are included in LightningModule below during the training.\n", - "\n", - "❗️ And the main rule: your train, validation and test sets are not intersects with each other!" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "execution": { - "iopub.execute_input": "2024-08-18T04:38:37.025511Z", - "iopub.status.busy": "2024-08-18T04:38:37.025197Z", - "iopub.status.idle": "2024-08-18T04:38:37.029876Z", - "shell.execute_reply": "2024-08-18T04:38:37.028922Z", - "shell.execute_reply.started": "2024-08-18T04:38:37.025486Z" - }, - "id": "NP_DttTvvyQN", - "trusted": true - }, - "outputs": [], - "source": [ - "from segmentation_models_pytorch.datasets import SimpleOxfordPetDataset" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "execution": { - "iopub.execute_input": "2024-08-18T04:38:37.032330Z", - "iopub.status.busy": "2024-08-18T04:38:37.032035Z", - "iopub.status.idle": "2024-08-18T04:39:42.743994Z", - "shell.execute_reply": "2024-08-18T04:39:42.743179Z", - "shell.execute_reply.started": "2024-08-18T04:38:37.032282Z" - }, - "id": "OVHVkntIS6Cr", - "trusted": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "images.tar.gz: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 755M/755M [00:51<00:00, 15.5MB/s] \n", - "annotations.tar.gz: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 18.3M/18.3M [00:05<00:00, 3.44MB/s] \n" - ] - } - ], - "source": [ - "# download data\n", - "root = \".\"\n", - "SimpleOxfordPetDataset.download(root)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "execution": { - "iopub.execute_input": "2024-08-18T04:39:42.745259Z", - "iopub.status.busy": "2024-08-18T04:39:42.744995Z", - "iopub.status.idle": "2024-08-18T04:39:42.761041Z", - "shell.execute_reply": "2024-08-18T04:39:42.760018Z", - "shell.execute_reply.started": "2024-08-18T04:39:42.745236Z" - }, - "id": "5Qyuw1YA5b7y", - "outputId": "1d60699d-9dab-44d4-ba4c-fc0182b4a5d8", - "trusted": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Train size: 3312\n", - "Valid size: 368\n", - "Test size: 3669\n" - ] - } - ], - "source": [ - "# init train, val, test sets\n", - "train_dataset = SimpleOxfordPetDataset(root, \"train\")\n", - "valid_dataset = SimpleOxfordPetDataset(root, \"valid\")\n", - "test_dataset = SimpleOxfordPetDataset(root, \"test\")\n", - "\n", - "# It is a good practice to check datasets don`t intersects with each other\n", - "assert set(test_dataset.filenames).isdisjoint(set(train_dataset.filenames))\n", - "assert set(test_dataset.filenames).isdisjoint(set(valid_dataset.filenames))\n", - "assert set(train_dataset.filenames).isdisjoint(set(valid_dataset.filenames))\n", - "\n", - "print(f\"Train size: {len(train_dataset)}\")\n", - "print(f\"Valid size: {len(valid_dataset)}\")\n", - "print(f\"Test size: {len(test_dataset)}\")\n", - "\n", - "n_cpu = os.cpu_count()\n", - "train_dataloader = DataLoader(\n", - " train_dataset, batch_size=64, shuffle=True, num_workers=n_cpu\n", - ")\n", - "valid_dataloader = DataLoader(\n", - " valid_dataset, batch_size=64, shuffle=False, num_workers=n_cpu\n", - ")\n", - "test_dataloader = DataLoader(\n", - " test_dataset, batch_size=64, shuffle=False, num_workers=n_cpu\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "execution": { - "iopub.execute_input": "2024-08-18T04:39:42.762445Z", - "iopub.status.busy": "2024-08-18T04:39:42.762171Z", - "iopub.status.idle": "2024-08-18T04:39:44.501060Z", - "shell.execute_reply": "2024-08-18T04:39:44.500156Z", - "shell.execute_reply.started": "2024-08-18T04:39:42.762422Z" - }, - "id": "O4nq08ILaYhn", - "outputId": "d8adb583-a5b1-4b7d-aab8-ea5e60381e14", - "trusted": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAESCAYAAADXBC7TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9edQtWXrWif3evWM40zfc+ebNoTKlGhEaQEhFCdFMRcsSizZQ7RZqGrSEGBvJy1SLNvLyQojFsuymTWEsCdGNWqw2sCSBG7ARIEMZMAgVAs1jzUNOd77fdIaI2Hu//mPvHRHny0xRpcrMm1d13lwnz/nOiROxI07c2E887/M+r6iqsotd7GIXu9jFLnbxBgrzsAewi13sYhe72MUudnE+dgBlF7vYxS52sYtdvOFiB1B2sYtd7GIXu9jFGy52AGUXu9jFLnaxi1284WIHUHaxi13sYhe72MUbLnYAZRe72MUudrGLXbzhYgdQdrGLXexiF7vYxRsudgBlF7vYxS52sYtdvOFiB1B2sYtd7GIXu9jFGy52AGUXu9jFLnaxi1284eKhApTv+q7v4umnn2YymfDOd76TH/uxH3uYw9nFLnbxCMTuurGLXXxuxEMDKD/wAz/Ae9/7Xr7t276Nn/iJn+CLv/iL+aqv+ipu3779sIa0i13s4g0eu+vGLnbxuRPysJoFvvOd7+TLvuzL+M7v/E4AQgg8+eSTfPM3fzN/9s/+2YcxpF3sYhdv8NhdN3axi8+dKB7GRtu25cd//Mf51m/91v49Ywzvfve7+dEf/dGXLN80DU3T9H+HELh//z6XLl1CRF6XMe9iF7vYDlXl9PSUGzduYMxrT8Z+ptcN2F07drGLN1p8JteNhwJQ7t69i/eea9eubb1/7do1fumXfukly3/Hd3wH3/7t3/56DW8Xu9jFZxDPPvssTzzxxGu+nc/0ugG7a8cudvFGjU/nuvFQAMpnGt/6rd/Ke9/73v7v4+NjnnrqKX76X/9/2V8sQAN4hzoH6hFVVAOigGp8EEADoh5CAPVoCOBbcB3qOtRt0LYhNBu0W+ObBt9u6FyLdy3Be4IKQQAxYAsoCsSWmKJEihIpbPq7QMoSivgQYxFbINaCKcBaxFpUCkQsWIOKBbFgbFy/WFQkvRZAUECFtI8KxAyd9s/xfyJpt1URNH2ueXFQ7b+T/2ZYw8u8H7eZP5bwyplB6f8/PGT8mQ5L9Z+pIufXIWlfRktvb2fY0naY0VbTpzpaSoT4n4lLpWMr6ViLDO8hAiYe//y+Ish4udHvI2LS1wQx0n8vbir9Del3lTg8k/ZDZDj6AkoYfq78+6bfPWdmQ1DQgGrY+iw/QoifQejXE/9JvNLvp+deb59j+Sj64Dg7O+Urf+tXs7e39wrrevjxSteOr+RrKCgf4sh2sYvPzXB0/Bv+8ad13XgoAOXy5ctYa7l169bW+7du3eL69esvWb6ua+q6fsn7+3sHzOcTRDVO2N6Ddz0gkTRbC/EiDoqEBFRCBCgaOsQ7cB10Ldo1hGZN6Db4do1vNrh2g3cdwTl8iNNGkAgotCiQokIKiykiYKEsMbbAlCVSVmBLxEaQgi0QW8RJL/2NWMRYNAMTYxJQMSAGxfSTWT9d6DDZa57KhC1AEZcb7/92bAOU/n/n5qhhihwA37D98US3BUJ6AJBfDyvuoYJK+kSH9ed967GFIDr6zijy/vdgZgRItsAJguj2+wIRTOR3twBGekbASASXAJgEOkyfHsjL9wDFpMcIoMSvpm31oAY0A5PRcvkQiIBKhpUDIHkpCIkAJIR4fm8Dk/ScwPn59bzkeOb38g+RAbDo1nkVgidoAdqlsb4+qZLP9LoBr3ztKCgpZAdQdrGL1z3yZebTuG48lCqeqqr40i/9Ut7//vf374UQeP/738+73vWuT3s9YgzWFIAQVCI7UUR2omcpTAEmggJji8hy2BLKGsoKU9aYahIfkxlmMsdMF9jJgmKyoJwuqKYLqsmccjKnrKeU1ZSynFIUE6ydYGyN2Alqa9TWYGqwE9TUqFTx79GzSkVID5USTIGaAqRA88PYxKBERkXHD4nPQSzB2PhdUyRQE9elkv+2qCQwdO4hphgedvu1SX/Tr7sAbHxO69bzD2xchmGZ7Uex9ZD0vuTXeVw2Paf3xYyYpVd6SN6n/JsPLFR8mLguTAJOCYCMWZ6eFTH9azCJfTFpsfH3TIK/6R9aRD0vWW+PLM+Bppc9pxkxKZn96/FCgisj9iy+zp9nsOKHZzyqnpBATH6oamQSxw9NQFY9qEM1fdf7nqHx3hHUAyEykK9jvFrXjV3sYhePRjy0FM973/tevv7rv57f8Bt+A1/+5V/OX/krf4Xlcsk3fMM3fPorMXEyMcbi1eODJsASIPh0GxrStGDija4G1MSLcZ6IMCEyFcamO1xGE1Wc9IwpMdZhvIsXeRUCBm8swRZomtBVCsSUYMo0EZfxYWI6p59M07rza5Uxe5ImURk/BJU0WWW2IFEIqiBj2iO+kRiSQAQN2ymUc1xGuoEfpYEURBRGqRzJd9IyXseIdelXN0qPnEvcSFpQVOP6XiFRc54L6ef4rVDk/DbjiXF+7+JvGtKw8ppfCUzkb5rM8OR0zCgVlJJEioz2YHsftg7JLxM909VvA4a7jPhHn2RJTGAGJ8PrsMWcZLCi5PQPjFND8hIGJW1DFA0h/TbxO3F/Fe99/L4ktib4T2PvXt14Va4bu9jFLh6JeGgA5Wu/9mu5c+cOf+7P/Tlu3rzJl3zJl/BP/+k/fYkA7pcL6ScOg5FAEInzpy1GN6pmpEOJf0u+yJsAwUIIiDE9ra8IKlEnIP2jQGyHdR0+KF4haPxOsIaQWZAipm3URKZGTYmacwyBsYgxaErlKLYHJJIBSc8ASK9XiNqFKFnI2Zaegh+hhn7S1pCOkQ7Hq4/x9Jk/Cf1nWbIhRJCiEOf9fCxTOknk3KpU+0k7QyLTAwIYrXgLmqgOQOT8r/zSV3n84zCjvUppIRn2Dx2N/2UASf5vzI6gg7ZkvNx4JAMFOYJZaRN9yiphyfMjFk1alPFendMCZYiZgegYaGwDEiWE+BiDk5z6CSGDzxEjMz6WkoBOGJ0DPYiHtu3SoYjMSwY+r3e8GteNXexiF49GPDQflM8mTk5OODg44JM/9zPsL+aE4HuK2vvInNg0Gb10Koo0dg9SQv7bR9YlCWZxDdq10DaEtkW7FnUdwXX44PEhTqpODF4MaguCsfiyiLoSm1iUIv9tYurBDgCl16GISe/ZNCcOTIqOAEo/MY7mtPFddP6oBy5Zf8L2TPlyXMXwnfisad0S4nr6VIIOy4xQ0mhYPUQg/2kSg9FDkszOMJrgdWslI+h0bof791/utE1Lq4xHADpst9esvASUDMd9EMgO4thBJGuGNQv9BJ6FtD3DMvpeXC4+D5hn+GyQ6kh/3OMmIgAI/e+RWRJ/DqT4Leakf40fvTcAlKzNGiIwPkD5nMolgM654cCp70W3p6dn/Ibf9Ls4Pj5mf3//ZX6PN17ka8dv5X+906DsYhcPIZx2/Ev+4ad13XgkqnheKWQ0sYhAUI+1Fuc9ToXSFph+ok40vyqCTaAk35+GNHMkTYS1PbuBWEzWdtgOYx0SPBJCyn7EScubIk1wJWpL1G5rNwJxfYJJ+pDM2OQUTnwPQNMk2FfwjNMM54+BnAMoPbsRJ8UelI0mpKFaZJicR8mCuJBqJBz6e/jRnf1oMpPETuSaoHP1OmkOzhN3HhdbSw6La79c/yfD8tvx8gClJ5P0/PIDC5X1IGPGpAclKigjkDJmWFS216V5cEIv+M3iWQDMiEV5Gail6WBoGq72B6cHfppZj0zBnLuf0J4dfGnaB5UI3PMh6U+DvFxmQMKIBUtnRhqHc+3oo6xFGbQuu9jFLnbxWsUjDVBiZF0DGGNRVYrCJDGgYqx5yWwX/xTQkP426XWId8JhSFFoP4FZsBY1XUwJhUDogU/8PPRApoy6FGMjUBGbKjVsD1h6kWZK6aiRpKkRNDEn/R18nvheVvUc+vlLRhChn+T7d8YTm/QTUAQXkufJeLeuihmnAcQMd/XjFISM7/b13OQ5rL8fyGiCH8/Dw9iH0eZVjPd4W/X9csfi/HbG6Zz8/vA9VdOvV3UMUsaLSQ9oFNP/FtLrXNL50aeuhuVB4++YMygDEhktO6qlSn/3Q08vtK+cSmdk0AGYaBa3Dr9L/C/0pejSp3YS65KqesbAlqRvUsAYQQl0revTOnoOnKABDe6Vf4Nd7GIXu/gs4xEHKHGiUGKufCzoK0xBUE8Iii3sCGqkb2pIwCSVKGcQEACKiCFIsgWIn3VpGk0AJZa/DtUfGaAEUyYwY1LVTdKXmKF0eCx+JZeZ9mkCk97bvpN/uSlZM0Ai9MAkfjAwFoPuIu37yG9j+GT0/0g1kTUm/Y19GFI/W9/Y0nW87CDJrMP4txt/feu3ebn1yEuTOi+7tZewJ/F1BCOJ9RiBjvjZOW1JAizkw3CeZSEDmrytyHZJnyIbH1dN60uKnKBbtXM9a6VEIDDsLoz2+HzlDpr0IoMwZaRPCenvcelxIORSex3rR8bARjBWCBrwziH5uyEgklNHA0AJfseg7GIXu3jt4hEHKCnNkO9S+zkvTiYGIRDz8WKzeVdKXWiSbqa7UAM9S6HiE5sBfc4+MRtiDeI8JihBFa/5O5I0JEXUk4glGNOXBGdvk9DrHLIGJYIswSA6Yk7y3Xo/MW6naPL+S5rhx5oLyYmaTG7I9pSvZNYgHzPZ0peM+YcxcDkPEJSscTm37jQyk7UfYbTSTIsMC47WPWK3RgORc+DkPDDZ2lcdHYmXpHnSt0fgZETcbL9QopZF8rik17a8Elgc2JcMTYbfR4XIokEEwZKqshICPj/UIcEzKivWwVxvACthC7zk81XDwLBkUBFPZ89QCbR9KETAe08IbrSt9P0QAY4mH6H4XveyR2EXu9jFLl6NeKQBSn+3j8aL/2gWy9U3BkOsZlCstdEvK4QkdkwXcx0meWxKswQPdkSdS5qWxIDxaNCeQlcMVgzBGGwqSxYZgRSTHWFtSuGklFFmSUxOGWRQMn4dNy79Do/2PT1ngDb+LIOx/ttpztdz63klVmILnJzL3kRwk3QLOqx4e9oevhsn7gy26NmCDCoyBBozOXkUvSHa+VFmHJHRSQJZcRI+ByD6cSa2Jn0nPkm/HU1MUH+8Aum3Orf9tKGxWLZnkbI2Zfx+1pkE+pQJoqhRCAmojPZyrDuJnyRAsQVKxixI1FFFRm87/ROBRPItgS1wEgmg9FokpUU76Ct0ttkYDT6uM4GVHYOyi13s4rWMRx6g9LqLcaktA0ARURCLSaI+MRZji0RbJ+YlAD0boAmEKKhFbL5zTVs0Brz0AMWoxhQORazMIVfgRNGsmAhSAmO79FF1SAIpcZtp/Wki39Jc5BRCGsdQxJvel9Hr/Dy6LY+i27ifw9Hbhid5e0Nhl6T0F5msGpYd3/L3ZMdLaQDdglnj55f7xrZXy3nNyGigad2jfcmplZ5JGcYw1r7krZz3AQmpkEUM4yPYMz1BGI7zCMWJYWBEckosfx76oY72cPRX0J5FGbJkem6pDILjeRgII4CyzaCc9z+BMZBJAKX/IRP/lcYcQiC4rt8+jNYfFFUHyQAuppd8fG8Xu9jFLl6jeMQBynhCG4SXMAAUUIxIcmMVnPOYwlBaSwg+SlXN4JWSQUq+qZX+Yp7e8GnOMnF5oxCrPgpyGggTK388khxRo1V6MCaOJVus9wDFjsBKZhpkG6CMpvrMmuSJeCsVNQIpW6zJORAxsAfb7Eg/fwUZiIGQAMkIpOjo9eiGfxjfaH1pj4atC71+Z3vDMowrHYqXMjdjaLX9fU3rzEzIdionPzOwZqPodUjQg4xRJi0yHulg9yXDPTjO/XnY7rGTPfoldUMyMlrf8LkqYOK4VYYDmwFlBBxE5oJtUBKCkv1OtgBK6jUV3WS3Acq4h5O1Bu893jskW+Jnmilovw7yOjW6zmZH2l3sYhe7eK3ikQYow6RMPw8NPVIEY4TsohqBiqEsTbTrxlCYkcNqyAAF+rJLlKyWjdvJfVcMJuQ7WzAYgsQ0j6ZHLE8eHGJNmtjUZBVMHHMvoE2C2JxSyBNf3rV+Yu93N41VMqiS/v3xxD1Mu9t38qIjO3UATROkDm9lTcoYtGwxE2l2HZevvhSY0E/mETwM+GwMamBwys1M0RiEZHASv7e9j3ESl2Hi1RG4yisaV8eMWZXRa0mTf/yZM+hILsOaQcMAHuM2BsCCyAB2E8iJQCekTJL0YGccSjy28ZCOWwTSA6NBZ3KOMUnpy7EmJahPDEdmUXz6DcKQ/hEwxuBSE8z4C+V+PTGFSQjgx8LYaJlPZlV2KZ5d7GIXr2E80gAlToCjyeocSOmX61mJNLFbS9B4X2klqRTzHbNK1LMEQ9YKIBoN1YCefheiloUIUDBR4GpkJIZNqZwgEZSogUAEI3EdaUITAU0VO+cED70SJd1Nj+/qhyZ6w51/H6r9kemnu54VSs9jcHL+4IZz4EQTMNDxXTiDFX6fBkvrDnlA6RdKTMGYFZGtAY6+3b8cjsVQoZW//5IR95+JRr5AtkBIehESWMrpI5W+S3NkL0yf/otpsSF9KOOdyI/xmBMI6MfJuMBb46Qfy6F6lmhI7+hWCi4XCw/HdQAk20zJkO7p2Zbz5cBJj5LXEU8xoW2bON6kZYkMycDQxIaa+cf3vUFcr0PZMSi72MUuXsN4pAHKudt5ehBybu7Yeh8iuwG966yxJoln05QiJs6wSbwaL/Q2bUl7oDPYlCcgYkw0dcvgJK3LiMVLmrAyw5Imv5zW0ZDvzGE8MfcsRP4rTURmxD5sw7Fhzt96Pj//j9iG4XU6BipJdzCwI1lbOb5777c9Ylr68SbWQkeDkNF+kStzdBuonN+XcYym6pfgk/Mpp7jPwxh7TJNYstgsT0bgJUO9EN17YUiznXvE31B7NqXvVAzgNbnFytCtuN+0juz2R+Awp3ryc/5vC19ld1iN1TSjLsa5105vpJY7dSdxbXSUDT2LBYLzHRocvSYlNxcMmaUZAZvsRJvSPFGDsvNB2cUudvHaxqMNUFLJ49Cufpv6HwtN+1JdGRwvxFh8iLR1dIsFEm3dd7IVTRNQnEmzQVc2yIqfmMicmAQ+jEExiAqm70qcsADbAKWfxMaTHGTeJO/o1l+9tOFlkzcvja2UTVq7JoM37RmQfhcjOAk53aO9DkU1llZzHqAkkfEWbsigpN9kZhVSxYwkoJD3QvOnDFVJuQS3RxxbWGKY48epKBiEvRABAOOZflhWfdyXQbsznCuRTBtcZcWAmuTwm38qkxgWzfsk/T4rgoSIgTJAzhUz/ehEeqGsJGYlpAM6nC/xG9lATxmlcRLbkfvtkFM7GbSQQIckNiUdBudcAhqhBy6xfDiBjy0GJn82lBf3y+wAyi52sYvXMB5tgJLpZhUEuwVGMjgZp3tkVAkj+W8bQYqXEHuPmBCdOsl3/CPqJbnMxoobIjWetAomJvUJ6Q7bJLv6mOohgRJiuienPhKropk1eZkQGWb9AWPlqTR5W4R+/h8dl/EqR8hB4/deQqmMmBLNE/nodQYr9A+Ggo+8vX5F0o9zmGJJBmXp+5mNyKCkX4g++9GLNftjNHwOGQjkVerWe30KSuln+swkSRh5haR9HGBrPtAjMWz6nQjxHAma0zjD+RGB5sjHRekBCz3QkMiwSAZiaRkDuaw35BLkvB+SmBPJyxAZlHQctWc2IrsRgYvvWRYkVa+lc8a5jhBGJmyawUcCOJk5SaXE+d9YPAd8aiao/bZ2sYtd7OK1ikcaoEhydAWDmIDIoBM5P+FvMSijCV8AsRYXAt47bN8sLqD4qFUQg0pImgQD4vPsEj1PspYha1By2qafwEyauoc0zoh/YJtqYHgvcwyjiX6YRkepii0AEumOXKmSJ/4+LZIBRY4eeOSbZO2Zlaix7Gd8sigYVSRID2KG7Y+BCj1bEgeuA/Loya4RiNj6vXL6LAGUnAMagxQGJmJsBd+vbvxePkTpWRJzku1FIiDNbQVIBm05fWPps34icYJOeiPRqCHSdE6piUBKlGTKtn0OjiQ/EbRkMe3oJw9ZD5LFsbnseHT8M3DoBa0JWGRxbFCfjo3Hp/ppTe6wuSInjNiQfM7E3z6ncOJ7/e+eU0cjXcvD6Ga8i13s4nMnHm2Aoi5a1mcdhQZIJb1bKREZAYF8K02cILLmw5pUbhli1YbJt87nvjoIP+NF3OaJK2/UGMQMLrDGQE4MBQQj0ZR+y+SL0SS1Fbr9rOO/R4AjsxADnUCalba+J6qpWGlIgWhK3fSgZARUSAAlvz+sj77qaXhfB0Yl7ZcmUBEPcQYaDMhwa/HREUhiVM3fGz2/VJfBaNs63nzah5SO0gRMA+BDv3wEKSlNk1M8ZA2KiWZqNp8LEtM6aYySvzdK1SVqLo4rsypmGPdw7jGkfHq/lKwIiWMOI5pKE1U2rt7JFTo9axJy6mf4TBCCakzreAcaK3ZI5cn5t4uaksH8TXoNSk4jDeCEVNYcdgBlF7vYxWsYjzRAIQTIHVWFbfOwc+md9NY54JK/mpqwGYv3ARcCpUl3wSFT9/E2WoymO0nFdy6+V6S7b2MwxsROyHmtSY+Sx9i/TpNgul9mK4dBYh9GbERu+CY9JZLAQZpkpAck488YpToyiBmBlK1nohByC6QAI7ahZyoY3Xj7BE7SsHIaJQITfcnELJJ/iEG/oRIn0e3lRsXGMgiSMwRJyok+1TEcFh1Wk9gfzYAqNa4Wn8rIsyxDib4vKhFTJAYlSECNjaLhNG5T2B6rIoLJ1VdKD2j7BtQZ1KTjMVB22i/eV++M30/MSegHn/c7A5eRWJUIUII6NOgIoOR/F0rXdem4RCAjIf+GL1+VM6R/FBLwGdJBQxpId1U8n1aYyQSs5X/8xR9mcu6a9MvFV/3Fb+Hy//CB0Y3JLnbxuRWPNEAxvkOCjyAhkNIIAdFBcLqlS2FU+JmYk35CTcsUVvDO47xSmH6miZUZPqZ4VD1+s6FZrij9jGIxT3b1EjUKkvr89AgoxFJkJJqOjjQVWTMhsn0d6tM4mZ1If9OXfY4OhDLQ7b2V+bZuZJzxyE3tstFXZkRENeK9nmnQgUEJaVSqRM+R1HgusAWI8s/Qszr98U+l1clsNwMtTXoUzfsq2fhsACLjSTyzC/2O58mUnJbQtI/0KZye8Ql5P2OqRr1iApgETlTBI+n3k2TwF2L/JWPAgs/prVyBlRs7hth7SE129h00LGHoOJmaWGtPcOXKnUjY+X6x4VwIfS1OX2acq3KS0NXj+r81VeDE5plC1zZxOTSmd/D9OdGzIyO2RLJ4eiSKzYAkjPrwkAS4u/jlo3j8Bl/zz36WP3X4LLD4jL7749/213j3B/8w9l/+xGsytl3s4o0ejzhA8ZjgkxlanqDjbBAFrANb0U9m9PPBVqpjPCuIESQozvvYzw+TePh4oe6altMHz7M5PWEy2WfBY9jpHFMLIkXM9Ej0PyHpUMaphz5blDc9Ig/6EWU0wblJdwucjAHLsCw6msT7fdTRx+fASxg/6FM8cf4bWJUwnvDThCl5YsszK8NwehIhJhoiCDPS6zn6b5xDZ5mdiM9hmLQJgzaj307YOmbaj4sBaPWpHE0MSt6/tF9+nIFK6TmJAEWMID4DFEFsFEqLiYxZUJN6Oxp8/r0T4szuwP1vLyQLlBGzZEasUBad9gAtaU7I7EdmMrLGxBHU9RU+PfgAvI+aKu1BSSwhVqJuK/924749GbCMOyL3201MmjKq6NkxKL9s2C94G9e/9/kETn5lcfvXT7iw+HIm/+jHXsWR7WIXj0Y80gBFvEe8B3HxQh8KRHw/MUV8IjmvsPVdHU2I/frShd6QJ594UQ9iiL0IHeoamtUnOVt+CNd6umaB+I5q7zKzi1fA1inlM0y+Q9cc+uc+TUCupn0ZZmQEONKgR8vkO948OQ13xZFFSuvs38urkFHqY1RGmgFKvCmP7qSZOfGZ8k/AI4Gn8+LUHrzo+GhnoMGQ4kgi4i2WCYY0z+hgBZPgleiYSxgdodEkSwado5RXHv9I8CtZY5PelwRa4mYjQBn8Twxi4/kg3iCFIMEkoJXASvqcxKJpLnvP4tneul9T+bD2OAYFTO/h2qe28vkQJJuwxbTNuNeOMlTs5GMnEn8757oRkIh+J2H0e2s6d9BYOj6A1eQqOwYoIfmg9OdTypXtUg+vGOZLfg2874jvferffFbr+Zlv+W4AvuT//F9z7a/+21djaLvYxSMTjzRA0dBB6CLl7kc4JOsAwmhCJF/AR0BFz78YJnwRxRjB+0RtGxBKmtXH+NiH388nn/0EmJqrFx6jaR8wWV4leEd95UnKwxJFkwU+verEp4nbjDedZ/MRMzHMXMQJBs1iFfqGhj0wiGXRPXPCiOrogURIf0qvJYmYJvSW5hqU4MMWQAlpEs8MyhgvDXfeDCAoxInVnBeeEJkUkyqk1DCAlcwLDT9BD0A0+4KIJtYhTd15kifvX04x5Ql3SGNl3UlmgjJAyfslSa4huaIn/yeCEjtOS0gdp40gajDBINYM+hQVxMbUT1BBbTLcM5Fd6Y+djNiTgcaLh25o/sQAwnJKJxAIiGY2ZPAv8b0JGxgpCN7RjcFJ0qqMGZJeOLwFYBN7ErLANi2LHx3jdL7l7e9SPC8b9gveBu874h+/7R+/auv8V//t/5V3Xn4vb/pzP/qqrXMXu3ijxyMNUIx3GOd6hmJ8l97rPIyNE3a+I85A5fzNX19yme500x2mlagCCD4gruGFZ/89P/FT/5YXby/p1HD5wou86fp1nrz2DIVVGt9yOP81mLLqhxT1FbmSZxhqnkNz6ibOsT1SGViKESjJE1dfhdLf0eowqYTQryukFE7e3xCy2VoCKiEQfEp3hID6QNJCpj4s2k/wUeORWYHheMU7b4a0CsNEn0OM4MWntEdMgY3gC0PzPu3/n1mFDFCyFiX0Hv8Dq5OPUQYrgwZFtwFKiOm7MTjBa58hjM2FkyFbdhP2EZCIjQBFVZBgERNIJ1kELqM+S1l30vc8ggiUVVEzxqCaDG2VIUOUAWY6ApJBiGdweY2fRSO26L3jfYf3HdlwrS8THlXo9CmxkAFIBqwZyI7Ppbye0WepnLkHN7t4SSyfOeBfve0HXtV1Hpgp/+Tr/xJf/84/yNEPP8Zjf3nHpuziV3882gDFOYzr4tSUwIkmYzTI7p3Rrp741pi6GGKk2RgYigQECNhUbXJ6/5f46Ed/hgcnQuuUtnO8cPM+m9WGzrUU1nN9UeGOLlNfeAwtbJqDhsm3L+rQoYvQFpvCSD+SmZHMjmS9R152rBXoqfsBOGQ2ZcvnJE9GQVNH2vTaK977CFR8fM/7xMb01aU6GuZw5y2j93vRb6QLeqFoxIfD674qZ5ipGfJiCXhI5hKi9gSTAEpiUbJ0RVV7IDh2lY1lxXnfE1BLjAohID6BlSwM1gGgxPPHRdO9rDsJNrIpKhjjkcKmc8siNhBSxZdq1NmkPpMokX1RT9SkZMCMptTVcB7GgWSNSRxQUA/q0v5lkJB+VwERG/UmPjrEDm6vif1LXihhdH5IAjBD2fI4rZO+1/ug+ARyM8Dx8bfaAZSXRPH0U3zjf/+/vCbrfqZc8P/7wr/PM8/9ER57Tbawi128seKRBih4B74F0WR3n2zmgxB5+ywjSFNmdoEFtmBBf+efdAAjrYeQ5rjmlNsf+zGe+9gnsWafxVTw5ZoQPJtmyYc/8nHWp2s63/J0NaEqSti7CGVJTuqMWZsxX3C+vw3pvTwB9GxLP7FAnlwiQxB6X5Kx8FEyuxJG6w9p0vGZUYgTV3CJPfGRUQneR2alL80dxqNx88P4QgYrcWQG4rFOgx962pDSbZFB6deVWZecAunzIUQNxog9UclKlAGg5N9qa8JURYP0eoueHctgy6WJO8S0V2S4YiWPyRoUjeBWQkzrmNyrSQ2hMFgGhxs09nSKGZGhLD0ClozaojqGlLaC0f7150TuoZPeV4/i47ujyprI9EVjQOcc3ntEsuZER8uNUnxjMDvyMxmDzbxdJSS6b1gmrzf96D0Ds4shtK74Q/t3X9Nt/Pv/9P/Gb3/vn+Gx9/3oDiTu4ld1PNoAxXXgHL3oRAxYg/jx5EicHHLflIQ6XvLPepRK2RJdIgieZvkin/zIz3N694wWx97hBUSmoCvEK2ebludeuIPFELzhbfWE0hrs7BLBKtGNNo1LhzVLTmOMtqsQ77I1WbKP6Pp8Z5z/k0Tf9x15dTwhR8BB8m1RNLH0IQlEA9FYNKawvEtAJYQRm0ISkoZeYwJslfBKf7wkMSpx/u3ZolQN06ffJE/g9EcAHTREQfqtJPIp9GkdTRO19p+ln/ocQBl0NqNjGzRW8HhQr8mJOK5I0iOuS/pWBWhM8ZjCYkIEIlJYDBbVkABKBCJGM1sn2w+hByb5MA3GcxpTSejA3hGixT2DGDaM2BNNB8aWBV3XEbyLx7pP4+jWI6b88u8f+nOD3j12ABsRmOQUk47Ajk+/f0AICQjvAMrDiMt2zk/+N99J+G+Ur/n9fwTzr3/yYQ9pF7t4TeLRBijBgeuGahAjiBsMvno9rNHojZIt6PPt95bsIU1uI5o7viWo6zi6/SHu3XyBsPEENkjXcnDpAGtn4DfM3IblWeD45JgP/9LPM5ksePrtc4yp0ekiNkNOpc/9nX+eUHvGY9CO9BPEiI4fxLAjl8/em2IEFLIOxacKjFxiqtqLX4OP6R3v42vnIzjJzIn3PjIvLoIUwhgs0QORnrkIWbcj5FSJQASFZmQdnx5GsuX/CGVk8Jj7MWZxLPmZZFKWf69tmDnuv5OP47jSqK/eCRBcnGRjyicBFKKWQzT6oZispFGTAIMlanBiiiWyLhGgCCZCTp+ee+MWSb+9RJO/3M047XYYGhoRWb8EUFLeKfSMSgISRLArtqBtWzT4eN5kbREjcMLArL2czqT3MRlrU5IINoIU6cFL7o7cs4u8jI5rF69bWDFY4J/9wPfx7j/wh7H/4ice9pB2sYtXPR5pgKKi4F3vN4HLTEq8TR0qdhSMRjrfDIbm591b+7vt9JXMZoT2lPu3PkqzavCtp5qUWF1hwpzZ3gVEGqbdhnnd0rYOCcKnPvYhFvsXuWQN1nwepp73moqMnCRvU8+NIU34QyUGff6/T+mMafl+ufy91NE2ARSC70WRmoBJBCkQvMe5CEi88wTnI3jxUZeiLuSb+tizRrfHKCNw0h9TZXD1NRGMGJMYLpNdWumBZW9alxiXnNLJqxvu/wc2abB7JwGSPjE0/JR5+SwSTqsNQdHe7p5tgJKASVQjjQSwohhyWwVJQlqTmkHG1/n/OvJSyfaAUQYVRgxK+js9R9fdnq4ii6OTFLZnriRpq3zXEHxiXvpjIUkUnQFsPE/6EuGehRmzJiMAM6rQIaWF+hwfo3MRhnN5F0MYy/Nfc/V13+wP/a2/zm/5338zkwee+of+/eu+/V0MYeZzHvzeL3zZzw7+1gde59E8+vFIAxSsjXx90uxFFsWk+d8Ml888ocoIlJgsnB1AypAmSJNdiCt2mxOO7t6kaYTgwQQfJzHXIK5jsreP1AvazTHTuqNpHJ1fc+eFDzGbTpkFi1x4BqmmPY2vmY3o5w7t73YjM5ImqzSOsX6EbJClYfQd39/pxrJh37MohMSgpFSO+oBP7Il3kT3xzvePDFCiJkVHItlhnD3FPxq3atZt5AqexJyYWOEiJrUEEJPM2thmspJB2eCuqhnvJNv3NGXn9FWflsgAZWDNVJPepGen8oKSDmHYes+o6XUzGaD0cMUKBh+Bio3jDy6BlwRgRA0Gg1HbMyg5RTQ8wlDBI4pIBh46ABRJlTqZB9SRiNYYrDGpI7Ef/GiECEzSsQmjFE0GI/mgjJ1hhx+WPpUTRmCELTCjPeoLEEvJd/hkK8yk5qf/zHe/7tutpeQD/9338A+WC/7sl/8hHvvRjuqf7oDK6xX3/ui7OHsiXju6/cBHv/Z7Xna5t73tT/bXmKs/6Zj+g5353n8sHm2AUlVRAOs96iN7Ihl4jPM31gI2zYhmSKNslbomu/X8WS9uVLrNCacnxyxXjs6FeNDUYFRR16Kdp5hNmBcHuGZNUXmadcPZ6QPuvfARKluD1NhLT0NhRxOm9iMdO3j2WoLg42cpjZNZlVw1I70A1o+WGdiTDFC894QQgYcfPZyPIKVzDu+i7sR1GaAM4GRse58ZH+mb8CWTsGyZn9kDcmrHYI0l9M6qpn+/1wj1ACXP5dp/Nih0MjgJiTQaMyiDiVufNkpsiYZhYgUgSE9aSdKpCLHyJjMpQYkgSgagYlQwWILmNFDSnYhNyxoUG8chMS2UGZTxuRhPrYSeCH1KJ/Ykin9rHjwkZiMxUAiuc2hwaV0jEJN2ahtMjNiU/hwbpTCTBqVnUUhsWGJapBfVjsS2aY8iwN8hlDdS/J75Gb/nj343b178CT7/nz7s0XxuxO1v+gr++z/91/kd0/+4J9AHv/Gv9a+f+Sd/hLf+g9dwYL9K4tEGKJMJioOmQYNDggE/lBnHyHfQAYyNgtK+adtohuxrVuO3JN/FBmiWJ5yerlivHSFAYSoKU4DaOOF1LX4NdjKlmlZYt8Ko0rYNt27fxNYzbtQLdLVPWFxKfVLShBsYnDyJd799W/sRVZ+9LCRoIheiWFRiniYtGwFKCCGBtoB6l3QlfgAmLuCDp/MhApTOxfecxzkftSguCShjxiF5h9BX7KjPE+Ag2h3gnumZExFLMD5NsNGsDWMwYnrDMun1KDpoUHrQMqR3Qg/A8k81gJRhDKT0kYzKorcBCpm9Sr+0KITECMS2BmByjXAaczCCSRUuRk0vlA0SEkCxGPHpHEzsS0jpH5E+zRREo3/KSGciyYRFBcRksJGAgxistYgIXdv2aZkhlZWARmKwzoOQAbDQf3d4zpVlWYMCvYdKPr4jJoUEUAbWcQdQdvG5G3f/2Ls+bXByPr7zt/wt/sIf+gYO/+ed8d4vF480QNHpHOhiyqPtwHexUkaJs1wu4TEBDRaM78W0uVeKysukeoh33tGNVmmbFatVS9MqqEGDwXeAWixFFEt2gUBHNZ1S15ZWhNaswXvu377FhQv7zMoZppqgVWwaJqOJM1PzGiKYyCmeKOr0g9YDRlU7Id5NZ/Yka0x8Fz0xXAQoPpWhxofifKBzHuc9nQu49Np1HpfBifdxtSMjs3jTnybPrEd52YgsgzFRzBny63TMjbWpTxHpt0jfSo30svwhHaQhhZNYpQGgwGBqNjAtwyh0C4jE1UlfKRsPfNynXFkUNPqcBHzPoASNDIoHxBqcA4vFSNGzJ4KPKhQZpbF8QlqqiIkPehPAzJ5E1+JI+oQoSk7HD8Cmsuxms4YRGBuELDnNNQKL57QlGahlBqoHP6O00KBZCXltDLqT/Fk+YLt4I8c/fM/7+MM/9V4O/x+7ye+1iuV73sn3/R/exxdVk1/R93/XbMN/+7hw+OoO61ddPNoApZyhpkPaLvpaaIjeKGTwoaAF2DTThnj3njrYJXGjJKHmkGfoL8FpQtbg8Kr4dKF3LrBuW8qmYzJVKrWIKTDqcZsz/KSmqvewtsBtNmi35sELn2I6P4DjPcLhM2hZjeh1EthIBl2JLYmAYzDJIgz9U2LZZ9ovH3qQEoGJJ/gWTekA5zJIiWmdCFAcXRfovKdL2hPnAq7zeBciuFGNAMWlDr7aa1dfNsbpjJzyiGXdFtXIAhhj4oSXS4/TXCupb81YtpEnypgNS6msNOHGquc0ieZjSH7S0WP8fkrZpDxwxi5Rk5tHr6nkOC8egYsPaf8UHIGKisIoYiwSIluiwSDBRgZFpAcrJI2JibkxVEJ6W3N+L20r9GNSsVhboKo0zYaeyuozVoOfj44AWmY6hrLyMbDY9oTJx67vv0NmSTKwGwOUcx2lFHo91y7eUPEF1ZT/z3f8ZX7P7W+m+uH/8LCH86sqpK7xX/YO/t9/5X1csLPPal1qGZj7XbxsPNoApajRokQmLjYNbDex9Lifr9IFN9jYO8XayKz0JmJRt0JKMQCDw+lW2sfjneJVsYXBW8UBTdexXm2wCHZW4CcFRV2DOlynWFuD8Xi34YVPPMt0scfhtQmUc9i/3jM1IYlXQy4X7VmUQUsiYbjzlaxPyQAlC2O9TwDFEXz0x1DXJfDhElMS6BKD0nbx0XmHd56ui4/gdAugRPZEkssqvYkZ+TX0r/M0H4EIiM2sQUythTAImSVkfxR6diVrLzW9l8tfI8OUU19jBsX3KYwIBca1Jbo1xnESKmtP0KwySfvQV+okBiYBXSORWWnbDo+CjaXKNmlQjDGRpfNJ2CwDYzT4hkS2JLvivgREyXAMi6IAAm3bRUFv8h/RHgTm7w0iWNX8t+9ZkbG4tUc3WTx7jlHJVTyZedF0oPu2R4Ax+d9OYn528YaMAzPlX3zf3+B3fcV/hvvEpx72cB75KJ58Ap3W/MN/8YOU8u+Azw6cAPzCf/3dfOUv/XHmf+/fffYD/FUajzRACWWJry34aHkfnWWbCFKy6DV4sHnyMLE3TwImOtagmFFZcv9sQAPdZkOzCXROMJXBi9IR6FTpnKdrWloUq0JRBgoDagKmnFJSxA4qRced559jPptTlguCrQmTg8ii+Og/guqgF3FuELr2ACWXlSbgoin1k1JC6n0EJ67rAUpI7EnXRZDSOk+bwEjrPE3naV1H17ohxePDVqdfQ6xwsTKeyE1/vPKkOkzIJgk3SR4i2ykejAx/BwaQgvT6kwTFAO1t3aPg05MrcbZ7yyTAIWN4klQpQk84yNZdf6q2SfsVNRmZKUpwJ/uvJO+TTddiCkNRmThBG0WMQY3p9ShI9OORvH4TMDanczJrMaaiMkCOnZCtLfAh4LsuubiGaJWvgISUsUl6kJ7t0O1jMgIm41YAMmJJQp8ajECvR35p2ZxiTIRXAoyp4/IOmzwSce833eBgB1A+q5Av/QK+9m//cHIItv/R5Xfx6sUjDVAoLFpUhHqKeIe4DkkpjuiPEhLtblCTJg/r6F1ne+Mwk5xmAUbARRSCo9msaDsXJ05r8UZwQOs9rXNoVRPUwqajJRCmFRSCyoa6mmLNAWVR0i1Pufvsx7jIBGvmOFOhpoi+HBq9SIIf9CLBdVE/MCoblqw1CS46oeaJ27kokHUdoYtN44Lr8D5EEWzX0TlH4zxN29F0MbWz6Rxt5+g6h0/pnTxXCZk1iRoMK+MCXNOLjc0ImORnYwzGBkQLlLAFUMQIapINmpF4Vy6JvQoafwtGHIHm3jOpaimkSp6st1DtQUuvZ8n/y2W9Wd85SkPlJfM+aqZu0sYlgaPOd6yaJatuxapbc7jYo5oYjE3HKUT3YMmdj0M6Qj51gcpVNjbrTTLwGRieeOoVWKliGqlb98wIRM+aPG7tCZQRZxTzYD3zscWc6HA0s8V9rysJ25oTTfs9fCcDoEEYKyn9tos3fnzgL30P/6sf/HK0ax/2UB7ZWP2fVq95+4JdvHyY//gin1n8+T//54eJKD3e/va3959vNhv+1J/6U1y6dInFYsF73vMebt269SvaVkiOmlpNCJMZTGdoWSVg0UWXWR/t8KVroWugbeJz10DXxodLz138Dj6yMeI9dC2u2SACtjQYGxkYReh8YNN2NE2DbxtCF+jWHrdxhI2nO1uyOTuJk4ud4I3l+OiY1b3nKJrnMZu7kfFQjw8e7x0uPSLr4ei6Dtd1uK7FdS1d19G1La7t4uv0cF1H17R0bUvbNrRNQ9N0bJqOddOyalqWm5blpuGsaTht1pysV5yt1pytNixXG87WG1brhvWmpWlb2vzoWjrX0bqWbvRwvktj7vDBpX3YfoTgIhsQfP+IFUUOF9K+eo/Ly/jwMusYyqQjwxTw3uG9I/T6mQTs3EgUnL1d8nrSuvv1jR7e5/F1+BD3rXUdy80ZNx+8yCdvfYTn7n6ITftJ4B7eL7eOgQ9dP6a4fYf3Ld418Tl/Nlpm2K+YkolpIqVtN3jXot4NFVrp+IRU0RUbPfqecdMsrM5l5v0yWVjsU2VX3l5k4GKJuk/i7Lxs6P+Oy26zMpmRGaf3Ptt4Pa8bn2vx4f/Lr3/YQ3jkwv6at/Lhv/pOPvxX38l/9dQuBfOw4jVhUL7gC76Af/7P//mwkWLYzJ/+03+aH/qhH+Lv/t2/y8HBAd/0Td/E7/t9v48f+ZEf+Yy3oyKotYhWhCogkwbpNohvEN9EJsWkZm5mzJiAih36w6S0jySxrIhBjYApoGvx3Sbd6RtIBmdGFG8CbWhZCxSqTOsaocRvOqhKitLimw7DmmAK7OSA5vQ+d+/eZLK/oNSadlbiJ/tp4kxaFOdxLk54kQ1Kk0kqHx5MtELPsJDSOcF1uC5OgC6VDzcuTrZN59h0HZu2pWkdTedoGxd9ULpYXkzI9mNEbU1WP0hyShWJ8gliczwj8b0QDNak1A+QO+0qsVBH1fRsS3wjsS/ZT0Nlq0MxjFUWSRcRcqWTjlI+edKMy2ZdhOZ0hEoq6JKRrmV8FuVUTNqWag+GVs2SB6c3OWnuMl0EruwLT16bs9ibsGyUbuNwvsBaMCGyP8bHFcW9yj4ruVsPfU8hSayHimBMgTUV6hXnl/SC1LQPuRIpyJAKymONKZdYqp5bEfQMSlxokBoHIFnnSxLQatgu06YXcOnWttHckFPJTQBe7Xi9rhufa/Gz/8Vf5Qsu/Ene+g0//rCH8khE8fgNLvyN23zs6R982EP5nI/XBKAURcH169df8v7x8THf+73fy9/5O3+H3/7bfzsA3/d938c73vEOPvCBD/Abf+Nv/Iy2EyyEVMpKUWGqGVInZqRN7EmX3TkHQWzUOQypHWz0sdCxNsWYWFXRtnTNJt6lex+b67k0rVnBoWy8o/AOEyyFg6qsKespdlpiCnDB0Z48QEzFhQvXoFtydPcWl8sZJTWdPEXQMrq7uhEL4DLocEkYm7UnuconNQv0EcT4BFIyMOm6kNI6EZw0rmPddKzbjqbpaLukPUkW9wRNhmSCBbyAFaHAxMlRJVUFp2Z6PgIUK4I1FlQQUYxEkBNUUuGJJk+U6H2iOkr15ElwVPo95vXCWLSZegiN+8qEbLevGRRlrUduDkkPhgZt0bZBXxhELwQNtO2adXPC/dNPUc82fP6TFZcuzdifTdi7MGP/4CJ37025+RwETW0EfDxuPhnQBZRsZRYhcl/T1KcPRQVsrNbpXBdZEDoUxUjs+7MVvdh3/I8gDMLudEzGBdex6mnwaeg7JfdOutqLkIfXMRUk4y0lwXKfJEupvFczXq/rxudazEzFT7z7/86X/s/fxFv+0E887OG8ocNMJvyOH/4l3nvxYw97KLvgNQIoH/7wh7lx4waTyYR3vetdfMd3fAdPPfUUP/7jP07Xdbz73e/ul33729/OU089xY/+6I++4oWmaRqapun/Pjk5AUDFEGx2+iwI5QQmc0zXxRROFs4C2TxMjSR9BSA2Tow+ihzB9E6niAWrkCpcXIiX9sJaiqLAFqYfgwNW3qGdsCgKKlvgGkdoHWKVzrU06zPONg1d67h4eMiDkzNM8QJXqinOCK68gQ8G50NK6XSRVeki6EAV71zqXuxTs7oonvUueqHEvjoxrdE5R+scnetYdZ6u69h0jk3TsWk72rajayNACc4n63ftmROPUEhMowVCz6qIyMCkGJuqXAyqgjWeXOCjxqCp4U5kD+KkaSSzBqYX1mrSkMCo9DhFyAZ0JKlJGABKSNVLIYwn0jCsM7MxCZyM0wfjST5A2qZn3aw4ObvFanOb2f6ap585ZP+whKJlpQFxJRessjcpuSUdzjvUR1CrGDBZyJxhQmRsJMk6RIjnIGBsSVUUdF2D77rENEX/FZ8oncykyHlwklisQSCbWaRBPxKfBh1Lb7yWXXcD2wAlH2Sy2NYzpHEEkfHl4tVnUF7t6wa88rXjcy0u2Blf8vSzLB/2QN7A8Rt/uuM/2/8xvrSuHvZQdpHiVQco73znO/mbf/Nv8ra3vY0XX3yRb//2b+c3/+bfzM/93M9x8+ZNqqri8PBw6zvXrl3j5s2br7jO7/iO7+Dbv/3bX/J+nhzFKqghlJYQJlg3w3YrZL0a0iCEIbVAyp+bNDEGk6o9zJAKMj5V2MRqFK+CKSxFVVJUFmtMnBwJtD5EbOOFsuvQ9RprGgQhhEA9qaj3rzK9GPCrM1Ynx5RVzdnZhsXpbWpbsQxTPHO8N7gEMHzXJWYjYK1Nd9nJt0JHbrMuvs66C+ccjXN91c6qbSOT0uYUT4fv4udZA5LN3wQICZwgBkuIrBJRdyMSJ91gDIUCiRcIeIg6UDQxIyHE7rwiJqUSQjq2sconlhknoBIig2Jid8CRQDb3lokRyGmegUXSEUBRQp/JI2eSEiuTK3bMVil5nJNDCDTdkvtHn8LJHfYueB5/fM58T3CibFrAFuyZinKyhy5rAi2q0dCOxBRF2iRgbByAEjNwxkbQItaARtbP2JKm7fBdi+B7B1wVg4gfBMmJDdrGBBnIjYzW0vHqnezSXsaU0RiIjAzf0iP0KaCxB0oU9W413cxbz8f1VYrX4roBr3zt+FyM/+XN/4w3/+1v4M1/+BfQEWj7XA0pK8zBHgCP/9CGb7/yI8AOnLyR4lUHKF/91V/dv/6iL/oi3vnOd/KmN72JH/zBH2Q6nf6K1vmt3/qtvPe97+3/Pjk54cknnyQkC/JowAZiC6Qo8dUEmcyxkw20bSo9JvbrMbkSIqcUsplWBiemn0RREOdiukIEnzwxhFxZE3Aa0NQhuTSWddfSqTJbLJjv76c0TYcUFdO9mpOm4e6DBxS2YD7fQ7nFjaJib79m4x/DuxqXy4I7j08izImpUQPtxg0AJUSw4hOr4n0yW3OO1nWxpLjrWLcx7dN0EaTEdbvEtkSxZjaDMwmIZP+PEKfOmMZJOhQVwQRwpMNp0v15UFSiHiOyJpJ8P+grfhQhJBNVMYLJ6Z+kbAhhmIhVc4nvIM4MQaPTbRJtDj2BsgilJxfSz6qp6iWBIcm+HslzRUF9oGmW3F++wKp7gUtXhatXF1y4fIA3kU2yYUpZTxBjmE0v8sAGgiZX2+hhH0uInZCQWywc0nQqKViTfExsSWUtrmtwXRMBjcmwQTBpzOPS7aHj8wAKBi3NOQYkC1pzN8QesEj/WdT6nEvthJjCySDHpGSRiIAd0nGaWLBXE6C8FtcNeOVrx+dqfOS3fR+f95f+OG//P/4i/nOUTcJY5Ne/g2f/031+/pte/+aO4zh90rKo6x1gfIV4zcuMDw8Peetb38pHPvIRfufv/J20bcvR0dHW3dCtW7deNveco65r6rp+yfu6NZkKYmwUvJYVoZ5hJhtoV4hrEdfFa7RPF/tkpJV1J71GxSSBbDD51prKFliRWAXSeZwFa23UWqSLtHOeFQ2b1mHMhnXT0gZl72CfojScnT7gwb01bduCBuaTijZ47t/bMJne43o9Ya+acOYOaTulSxU73jlC5/Gdp64tnTpC5/pUx1YlSki29W32O+louo6mjemeNlf9uG7kLpuqNjQ3rEvpj6RYNUSNCekePPIlZlCzihLUI6kJY0itpTWJbbPuREy2QzNZ9ZEcXSWu0SSh5zidoYobpyyyiDgM5cXqU0+i8yeHkHQeCXPG/Ak+pBQTERE4dZwu73O2uYUtTtk/8Cz2K/YvLjD1hHXbsNp0rM7O6G7f57ELM/SJJp5HIXmSBIVg0iEZ0lZpCPQNDlUxpqQsLV07gBMRRQcEEhmWkR5qCwiMAUrazwGckIDc4JcT3x83DByBGckAJS6Tmapt51gIEjAJJKmJG42uwK9+mifHq3HdgFe+dnwux8f+87/OWzZ/krf8xZ//nAQpd//Il/Pjf/6v/ccXfB3ip//Md/PV7//96M/80sMeyhsyXnOAcnZ2xkc/+lH+4B/8g3zpl34pZVny/ve/n/e85z0AfPCDH+RTn/oU73rXuz7jdatEZgNN2hJiGsaEEuopfjpHuiW2bdCuSxUw+Q7dD2xJZlBSRY+IoDYDFKUwlsKA+IBrPEVhsCWxiiUqK1EVnB8as7Vth0spoNn+HLUGdcLZ/WVMu0w7rl5WNptA84mWyaRg/8YBE1FO24K2VVrnCF1IgEQJFKhVmpTqyd4gGZyEoHgXEjhx0S3WOVoftSid63B+KKl16XtDjiIJJIEoHhl3hs66jsRWJaFpnJ/TJJpSCRCGyp38WwWJODCBEGNsn0pIioyeacgKkSiRiMBEUmonhAxQEnuSwFW2LcuR2RNSyij+L4qiYweD6A1ztHzA7ZNPcPWS5/qVimp2wP7lA6rZlC4I6w5O1x1HD85ojjfs+45udUbXVHjnk/7UoD7uhxpBvPQtAUQVE2kWMAWFKSM4cU0ELOl0FBOPpqRzWtJ5KGKS8bFsgbdxuqX3QRlpUoY+RGG0zKBT6augRg0Vx0BKRPE6APDMsvRng8T9fq3itbxu7AI+/F/9Nb767/yX8FO/8LCH8rrF7W/6CjaX4ef+6HfyWp67u3j14lUHKN/yLd/C7/7dv5s3velNvPDCC3zbt30b1lq+7uu+joODA77xG7+R9773vVy8eJH9/X2++Zu/mXe9612/IiV+EMEnYNLT9saihcX4Cqln2MkC3WygaZEkJh0mMp/u8JNgIelKMIKoTRNcfDIpjeO7eNcsRhAbdQ35ou6T66YGxatgnWd1tkZVqSZ1bMzXeowtcUE4Ojml9IEH9x5wsD9levCAS2XgxFvWXU3XaWre51AfaJcd9aTEA51zqQty8sPIAMX71F8n0Caw4nx69Jb3DufjZO9D7l6bSk/HACXR+baveMqcFXmJmAYT09+tx7lUIdiYDkvdeyW50ULqDhzSse/TNyF2FO4nW3oxbeddrzWJDrWDYRshVfqQUkF5bLkcWjXe9Sd5SNZtbLoVtx7c5Gh1i729hhvXL3Dp4pTp4R5UNV0QPLHBX3AtrgXphBJDCMJq3eCciyBMtCc2op2+YDT19LHxmJrCItZGzxzfAg5JKTQjggnJUj85GovGYzY4HGdGJdXRpIOvI6ASNIPE0AOVLbZkC4xE87hcZjykhjIQVYzG/FTun2TSLyxklmfY9mcbr+d1Yxcxbn574PrXzQir1cMeymsS5kt+DR/6loE9+/tf+ZdTc78dOHlU4lUHKM899xxf93Vfx71797hy5Qpf+ZVfyQc+8AGuXLkCwPve9z6MMbznPe+haRq+6qu+iu/+7l9ZHjDeHGcX06QpMYZgDFiLKWu0nqOTNWw20DRIcPFOtxcq6HDBD0Ks7DGoSchEDDZV9uTcPZb4eZo4InkQJwXv40RrjMHbAofgW6UNG8TA4ZULdMFjpjV1WWLXazand/nER5/n8pULXHp8yuVZwWbd0PqCrmVgDRIBZKoCt2lTyW1I7ElIJmcuApQRKPH9c4hVQr0Z2nYn21zFE5BxJiHzJ+k5pOZ6SWMhmUHJvVmyFbsM3wsmlR9L9AEJg/9JnkiDgoRBkKnENJoYE6t0MlPiA8GnFEQCKRmgnDs78EHJxbBiBJ+aMW7cihfvPcfNB89zcOC5dnmP/cMJs8N96r19WjUYJ5QGJr5gUSkrznA0LKY1xkxZb47wPpXvntdiaM5+Rc+QsiwQa+mahs51gI/H0WTBrkSWxCiq2XE3Oh9nzQ8pXZbPt1wqrSNQpunE7oWy+XPRTHVtpXhCGBg/EtuSwXbulihJpGyyJov82766GpTX87qxixg/+WXfz9fUvw1eJYBy+5u+grf8/g9+Wsu6YFj+J3dele2+XBRvepJf9zd/ln9y9WdH7/7KOg/v4uHFqw5Qvv/7v/+X/XwymfBd3/VdfNd3fddnv7F0oU6sNUDvYRIKiVb41QQ7nWM3K1ivoG1RP4gG+6aACeSoCbGqRyzY6GZhMBSFEBSK0mBtnkS1v2jLaHIQDJPZguneHicnJ2w2HVcfu86kgM3RMZuzFWHjWDx5laIWLk9vcOtjz/Nz/+FnedpZbjzzZlzb4l3HOgjOGRwBDZawapnMarCGrnXEKhJPSHqUni3Jbq3ZVTWE4TkEXPDRwyNT/QmgIFEl4lWTHX00XjMSj0UATE4HJG8MFUnsR8j310AqaNGsOY7alahkGXXt1fzbJZYghQK2sFEA7GO3Xe+zQ2pCAD6nKLRPYWSwEH/S7OkBRgXvPQ9WR9w8fZH7q7tMa8fTjx9y5eqccloj1YQgBWCTnjQQWsWvOyYUmKpkfzrBdYZm1UYPFgmxnDqfEYnFiIyDUNUlxlhWqw3Bt0DXT+xZGCskE0CjsZ+PyWXcpgcs8QhlgCJ9yfxWhZOQPGH6gxpBTAgvASUiDMex18kkcKnZkj/99jnVp/l8zwDlV/Bv9hXidb1u7OJVDf2KL+brv+8f8YV1Zig+vfjbH7zE//Tsb6J496vbK8hMJvzRf/4v+D3zs1d1vbt4/eOR7sUTNJadar67TNUkBosJMdVDVeEnC5huKFbLyKR0Ln5ZoTfuEEY9eAQRH4GKsfEG1IBaG5kTogGZSXexSHTZFJHUzVZpztZ4F5gu5hS25PT4GF8arAjTg0Nm+/ucnSy5f/smVWG4cPGQmzdvsvmx/4D1HdefegbfONatp+kM6oskglXESuzOrBB8TOs4VbRnRlwCJx2qofdG6d1qVXsdByFbmcdJXpSeug8a4qSXdBEmHd2QAEeQDEhyqiEnAYAMRGJiLLJKqliTC6kEM8zrfeTKHUQpKmF93KRqpR6BJj3KkPKJ4Ko/K3qBbEgABQmICRyt7/OJe59i6Y65emXKxcWE69f2uXhxH1NPKMopRTFltVzRblq65Zr12RK3XFM6x6w07E/n+G5D03SE4FDswEBksiIoWlqKcoJiWJ6dRXBiQjq30mnnMxsCRgPiE6NnwBibvOvyuRU9VvpqY+3Lfuh766RfQrIgtkftDA0Xs4g2ma5pSCAz6XxSBiw+G01WQSY3zM7CILK/yy4e7fgrP/WP+OY3/abP6DtSFGAtUhT89V/8YSbyI1y1cz5ThuIP7N3jv3jH3+fL/+Ef4Orv/fCWoeCvJKQo+H0/+wJfM/8QTxSLz2pdu3hjxCMNUCKoiBNhtg7P70sssYm3qUUJkyk6maHrJXQNEjwSNK8kfW+kRTEB1MbmlT6k9EOcrGNfF+0Nt9B4EbcCLvmRdO2a1dmSB/ceINZwcPGQ6fWr3L97k/mkgq5gWlnme3scHZ8QdM388JB6UvOJj3yE+eFFLl64SLM+xnfC0SYQpESD4DaOYlqiRawq8okFGbQoYaDvGdJP40ec1JIJWlpOxjPOlsbBjB4pssZB0vxM1DSYlO4KqVpHAdFYvp0BS7ah16AR8CVQ0h9OBVtZyrqma4+2KmFCCBEEZi1KAgRBc/4h9FxM8AGnG7yuWXZnPHt0m3urI556bM5bnjjk4HDKYm/GZO+QarZAVeg6ZV4vKPyajXVsghLaFu06bK0URUXnA52PrJXiU3PgkMBJdBiuTAEK6/US75o4rpwWTKdmsn6J52uImhmxxAqjfDqb6BFjTEyNiUlW8zIwJwN7lH64MDAo+dj2LrMZoKBDr8CcasuMCgysjUSWxgTDFuyRYZldPLrxhC0pPu9pPhO0eeFvH/O3nv6X6a/PDgiUYvnJL/t+nvneb+Tt/9sPEU5PP+N12MMD5MIhb/97z/LHDl74rMe0izdOPNIAxYviJd8NxhLYeI2WWG5sLVJYTBlTPTqZIfUEs1mhbYfxgyOYjHP9IYObqH2wGkttRQOuA9d5CgvBhtThN27Xpo69hKiPyCWus9mMg/kC1zo6F1gtV/H9vX3q6ZQF4H1D07Wcrjd0R2sOP/FR3vbrLnP18pxle0RwBSs1rFtwTjBqMWWBplRD8KFP3/hzICWEcZM8twVkNN215Elds1BWFJut6dOkpFkrQgYEEehE0WQ67pqFolFAnNkUkcS+kMpxUVSG6ptea5JGU1TRxIwwsD0hhJieG/XiIWkmotGYxyaBjA+BzresumOW3RHHzTFrf8aliwVPPbHP5Us1s8UMU1psUVHYGh977VHZgqKYUtaOrlyxVolupKWhKGcs2+gn40NiiBJjoyEgRUFZlCDCankWBbGSDevoq3UyMzXoXwVLdHfVYAgmFnRLSvVEb5Xs4RIFxoNYNutGyGgxnoMjkWzfGiCDk8S+jat6MjtCn5IjugSHLIDORncmtjrY4ZNHPmam4of+zT942MPg41/1vXz+X/gTvO0vfBD/4MGn/b3i+jV+8b97nI+9+396DUe3i4cVjzZAwdNpiILDdGcqEhMRamIaRAqDugJTVkg9x0wXhPUK3bRDP5t0UY93hilVIwmgFJbCFFRliZFA54FQRuIlXdOtjC/eEstlTVRvTPdmLA72cH6FFeHpd7yVrtlQV1X0OelOODzcYzK5RLtacv/mbYKWfOyjH+fakze4fO0pLiwLXNdSS2zet/ZRcFlNZrS2RV3XA47c8TY+dCTc9X3H4VyenMtzITMfw4SJSOxRlBglNUIw0aBNE3MViF4bIU2UgqDaJ4IiUNGYCkuJMfpqnFyHO6riyam2gKcoLafHp316J3bxHUpjcypIg0/MjCIaXxsDm/aMk+aY++sHNLoC8Tx5fY8nrs+5fu2QclJgypKiKFEXO1fXxQRbVlgVmqZF2yZWfnkldB5jLaaacrJqadokMs4AQaJLbFnGxpPr5QrnGpCASuhTNRlQ9NY7kjUoWXQsWB+rhyQBXmNMcsHNjEsS0cY1jf5FZDACBI0puS3WjJ51giy+ThAyMShKMnFLbJkx5++sh+3tGJRdvJrx0a/9Hj6fP8Fb/9zPf1pMir12lV/4i0/y8Xf/jddhdK9N/Jcf/22Y4+WQrd3FVjzaAEUDPqV3cp+Y7BmBROdXY0wCKgVuMsFM55jJDNZLQtul9M1w0e71LAIY6V0zbWEhaR+8kh6xpDO6lNr4FQuW1M/HGCaTAltAPZkx25tRLybMD/boWsfq6AispQ2B9fEppycPqOuKsjCcnh5z8xMf48LehGtXDmk3t5m0a2a2Zh0sd5YbhJJ6YmmbzG6M+tTkZ5SQNAohT+opNUM6VH2kSdRaSxAoyprCjrQQEtMmyTgVm7iV3l1U47ZEJcMTSGWrKrEsnJCMyTJIIVVHJSpFAVMaNCjdpqEvQz4PTvK+igc84BDjCOJZ+Q23zu5wtDmhDQ1VLezPS564vs/j1/aYzWd0EkWsRVEhWqAuUBbCtK5jr6FuTSuKphJvEaGeTgmm5vh0RecGkKcIxhYU9QQVYXl2hvcOCKiJYIM08SeRzwickEBt0p8khsKaEH12jIl9kkIWx2bmJYtUB1mynrOwDyNgct6oLabLBj3tAGI0gaeAMXZ0zow0LYlv2wGUXbza8dGv/R6e2fsjvO1P/BTq3CsuZ/b2+ND7bvDx3/roghOAT73vrcw/+e8e9jDesPFoAxQ8jtigzuZmc1kTkXPkIhhresGsTmeE2RxZHhNWm8iieN+XzcYLfrKv12T37qEwRazeaYSu7bCliV4XNuorDILR2N2XMnX7NbFME+9xDZy0D2jXKyaTOW3bsdlssLbg6OSY9WoFvmV/OonzrTG8+OID9vc+yjNvfQc3ru1z79YDQihpCKhzLHVFsZixPjM4nydxUsonVekQQUXQXNEy6BNEonYml1obI5RFQVWVeBWqekJZ5FLXmDIIbRcFnSF1diaXF0eAFDkX20942TMDUYxJrEtIjFcIBBP1F9pXUUE9mdKsN2iXxp3KjNkCJz7pMTzWeIK0rLszTtdL7q5OuHd2isNzcb/i4n7FpcMJe3sVRVViipJ5VWIl9sOxpqQyFRNTMrGWojDQlayrgqKwWBHKumRxcEinBSdnG0IXxcVBFFOUlPUEDcpqvcS7DjRE/5WQGQnt0zwZiPQpHEmVMumcNUYJxmBDPGZiZPBHySkhkmGeZiYjS1xHqZ2enRp+9+FtSQ742yxLJg6j9iTb9I9+y55dNIPmaxe7eBXj41/zN/iN/6//nM6/sl/JvOr4yBf+zddvULt4KPHIA5QOH0WFsc43ggoGgaFNYlljDdiCUFbIZIrUU0Kxij0QRkLLKOpMzrQ2bseoYV7NqCths4S2cVixyESRssBY05ecRp1BpOZ9CKzXG5qmxRYWUwht17BeN2xWm9jXZbGHIOwdHDKrS07u3+fs9IyJCC/cOaZpN9TllGfe/oWEpuHkeEUJ+MoxCQY3h/ag4ui4Qb1JfXnyHbImM1glV21kykSEqM/JE6MxlEXBbDZhUteoWurSUhTJWA2D94prNtjg8c0G13hEI0sQhZdmuNOOysxkwZHEyLksV6KhS+x27CP/pdFJFo3jak5z39WRdiKJe6PJmaMowciGTlccr064d3bM3bMlp21H4x3TScHBouLxqwdcvrxPXRk2mxaxHYcXrjKZTOmcR1tHKQWVraIOxLcYDRRFQVnXlKWlYMrewSXW3nO2agjex70qCqrJDKeBZr2iaRuMRGYphMSWACrJfl6yZww9SCGBEpMYLCMGYxNITqe2tab/bvz9UkUQkd0yIknjmgBjXz6cdSaD0Dg+zMBuJV1KCCStEEgoUhlyBCp5fSSGUUbn0i528WrHB77k7z3sIeziDRCPNEAJgEd7pgBS6arGVjpBNT4XAsEipcFUFWY6I8wX6NkJfq1ocKlLcLr/1KRhGVWaTMua0hoET3BK10V+3ipYC2IDkid7okjTu0DXBWwRvTVsWYJYVk2LSsF0Muf4ZMV6teLgcJ8uKC/evU+BYb5YcLA35/bdY37ipz/IhUuHXLr6FIJnebTkcFKycC1duaa6PmMqDfdsx4NTR7sBwlAGmnUFhU13xmoBQ2ELiqJIZcuW6WTCYj5lWpdU1lBYoSqT1kYsrRfW6wqrysnRMUE78A5LLO1GU4FNSExKnjATyFABrGCwZOfYvtQ46R5sXRAaR9u28fhn7xMfGQtjHLboQBzGtmy6E54/fsDNo5PYIDHApvPMZiVXDmsuHc6YzWrKsmJS1mjhMFrSbDqqaspstkBLh1WDUY90bay62cTyZgGK0jLbXzDdv8jdVcNq4/AoxlZU0yld17HerHGu7dNcUaMTesZhzDTBS9M0EaBEZslagwmxEaaYEAWrWcwt5x7EFFEga2NzH56c0hl5pei48aJA+h3icjpav/Tan2G7JqY+UzWXZKpyF7vYxS5eo3ikAYon4MSPtBaQQYrRWCmRCx2cKMYKWhi0nMBsD6YzwtkJTtvU22bIzxNiCkKtEqwwtRWT0mJwJHIeVcEHjWkmnwSFBtTKqKJCcK2yaVq6ozO0FC5euczFS5dZrZbcvncPK4reD1y4dpWL167jN2smiymTecmkrbl1dMZHPviLvLWsuXL5BvgX2JyuKCUw6wLTy/tMwx7TekPnO9YbJbRZHxGZCWNiqkXV9MLYsqooyxpbCCZVn9gCylLYn5WE0FJXlsIIdVXTdHCHDu8F6pgaCU2b2AQDLtatxjv5qFUxIaUeEnALIWDw0f7N+CjMTQyLC56qmtKtNqnDckgPB3Q4XVNIB6al8ytOVqfcPV7ywtGaTmEyKYHAbGK4vF/x5LV9LhzMgMDpySlN1TCfzTHBs1mtKYqKopwwnc4pAuAdrmkJ3QbXtjjX4p2jqisOLl2imOxxdO8OzgGmoJxMY7fo1Qrnu97RNilzeqCSIwNFyS6to1LemMKJv5MPGjUoKa1jjMGbyIaJDKxKTPTk45e3QK85kvhWLnJDMQmQhARQUjVWquQZ9C02poBeXqiUlbrsEMoudrGL1zIeaYDiEt2vQp+eQSwFYDVWMXhSjt4YxJhotlYYtKyhnqHVlCAtXrvY2ZdRb7l0p6lYymJGPS2xpkGbQCiUUEIQxWvAaAQ01hCBgIk5fu8CbdexajyOwGQ+ZbXsODr+JM63TCZTrly6wP2793jxxdvsHx4yXRiCVYKZcLq6z9nRhudfPOXqtZvM9y5w4dpj3Fl/mLbrKLsJJqy4dnFOXdecNg1Hp0vWJmo2jCVWliAp9QBdAmPWCmUp2LKkqid0rmHTdJQm0FVwdnZEWRou7O8zw1NKoJCOjfeogaKu8MaibYdzCtJhJFY1afJLU1FMyDb58c5eU+dcI0lEKwL45D+juHYDGt1jnbZ43eDDmk13HMFDaDhbr7i36jhee3yAqjS4rqO2wt6s5PGr+xzu1xijTKdT2s6z3jQUZc3efBEBWwB1ASrBFCZqWoLEVFbQ+JkqVVVRz+a0GE5WDYilnkxwrmW1WuFdF+HISJia/Xm0/y+xSSmtnhmU3IzPGJNSPxGQBCu9eNYYxVrF+22hrDERR/eZ+gTKe7FrSufEz5IhWxY1w5aINmnC+4aNIQzgRMYARXqJLK9mL55d7OJzLT6w8RTLXf3OLxePNEDxGkA9AcUnn1NUUWI1T2xIHBudBRugMNgAWhqoSnQ6w01nhHKJa1qcRhv1RJLHCcx4UDBaUJQFpY0TbdcFKKOAshATTRBTvxzjFWwEKM5FJ1dbGOqqJojw4O4DGtdhC8Pe3kVOly33j88wRYGt1lw4nOJ8w4PlGZPZnHu3j/jUrVOu371HMf04jz/5Dg4uXODO8nkav6Q4K5hevwhGeOzCHrfvnbBetShCWVqMqfGuheAIIeBUwYPzTSxptQZjDd06LuO8oXGWZdNCqxzsH3K6XtM6F0FG8BRGCBjstCSUJe06WrgH2iSo9UiI4uVozkaatDPDEBBjsUUsSNbgKeuS1m3wvsUHh/Md625J409ZtWesNkvWXcOm61g3Hudj9+q6Ag0eY5XDgzlXL065fnVBWRQxLWRLDhYHFGWNSAHB07aOxUQxGjsrg+J9h0kGbN5rTPt5RYylqCacrDecbjxlPaHpOjarJc65wW8mpfbGsCTvcdAAYmL5V2IrTM7RJIGySWkUY5Tgo34qCmSj/mcslO3LjTEjCJGqszSXIOfmf+kfjA7jUZWeSesjgaZ++V5nIkRFbmJ/JO7KkJ/bxS528ZnGN/6P38wT/+TfPuxhvKHjkQYoDtcDE+mfY9Gxpry/ihJMTNuIid2ObRFNzsJkgs7m+MkJbrWiS4ZnyZcWlZGoUCxVUVNNhLIVui7QNrH82JbxblIlAhTvAgFHp0rnY6+aooxOqm3jaV30nyjrKYGSO7fvYKspN27cQNVRlgVXrl7i9Pg+7aZl78I+J6sVz996wGwy4WDvNovFRQ4OTnn+Ux+n1MDksc+jKAwX5hMu7U84OlnhGsUUsemew+A6pXMdLgiFrVE8znUYcRixKJ7KGib1BKRg07ioozA1XQicth2u9TStI3ilnMyYTipciIyDrSzeGlznMcTJHiWKlaGfC9VAMbFMphVVaei6aGBXTISz9SnOL+lCw9n6jKP1KWfNKcv1ho3zbJyncQErwqSIfZFC8FhrOFjUXL20x7XLU+aziqqaUtYTympCUdbYosQai1UQ5ynEIt4T2gYtBN820G5wvqNtW5pNi2tdbFdQzzg5WeODZbPZ0KzWeN8N4EQjkxZCIHI/SYPCUPaNDCmgCFBIoCBWU5nUQNAmBsWLicDFamI3zpcaQ68HCRLXnxoDim6XcacND4LlnN5JH5jsvBwk9Voa/0uT3q8lAyHo9b+72MUudvGaxCMNUDrxCB6vZP4kll8CQ948mU8xSvUUFi0tWpXotMZPpnT2hI42TTS9fCTm84FgCmbVPtX0LlMH61Oh3fjoVQFIIRQGsEJwiusCjtjLJogk0BIBS+ciSDGzCbfv38d1LY8//gTLzYqje/epJyUuXOJwf5/9coELN7m3XPPii2tuXFpz9uAei9k+h9ef4P79e9y/f4vi7osUiysInqpwiK6RECdQK5bCGNQWtG5D6zyLwwXGzmjbFUVZsJjNWa6PwHvm8wWqhs2mAxGWG2UymdHiuf3gLqdH96kqy2N7F5iUsFyv8LTMJhO0nNC20MkKnCc4BxrFxEYjs1XWwuKwZLFXUlplvfScNQ5vA2er26xXp6zbDffPzri/2rDctGw63/+kRWEpy5iiWHcdk8pwsJhwcX/CfCLMpxVVVVGWscljXVeU9RyVCGMntqbAUgaPOA/rJTKtESN0qjRtx2bTsNm0oMpi/xDqOetmxXrZsD5bElxiWkiuvUkQ7EPAZy2IDuAlQ4OYYiFV7qSKXaJ+KRu2eWMwXnqwYoPtGZesVRkqepIKRUl+K5HhQ9nSv8AghM1JoSg9GRgVxSAmkDkgMpiR/O8pJXd65mfXtn4Xu9jFaxePNECJJm2BLl5agXQRVxDsUOYggksFCGoFtQZbWqgLQj2ByZRQ1XSbhuBCuhM2yVwsXqa9WOrJHuWkovINVSeszwJN67GpFBebUhkmVReFDHIUF4jpiGnFbL/EVCX1YsZ0OuVgf8FsNuPWrbt4jrl155hls+Ztb32Kz3vmTVw6XNA0v8jHnz/i6ccvcOXgjPXBA+YXb3DlTW/j+PhHOX7+WeyNgvXKsVmdEtojKhVC0+KLAovBJ9v4UpTDeYktSk7XJUUpEBoKKVi2KwiB2WxBVUxYtx2rpgFjscWCVXePOw9OOTxY4LzStS2uWaG+A1Mwn06wztKpR7ziNhtwHuuhEMEWymRh2Duw7M1BQ0vTrPGu4XTdcvfoJidnS07WLcerjtPG0TjFB6Uu4WBSMp/VOI1pntLC4d6ES4dTZrWlrGK6qihrsAWtU2znmUwLimpKYQxWFVwUOxeADYpvNwQCXVDa1tM1Ld57ZrMFexcvc+oCd+7cpTk7w3cJnKTGiz679gbwmho3pnTKoPNIpd9kBmVI1ZjshZJSJ8YEjImNJdUMeh15GQZFcqsBoPdZSe9k2Tikypy+1Fz75bNjX7Tsj5U7IWS/lGR3q9tdlLOZ3I5A2cUufmXxn/zs7+VN/89bfHbtEX/1xyMNUEISwiqB6DmY+t/096o2pnWIFvEYwSf6vLQGKQu0jiwK0ylhucKrw2mUCoQo1Yh3w16xZoqtC2jWlJWNug0HnY9VQ6S8vgp4MdFaXsGp4lTxnaM2FfP9PS5eu8x0b850VuPahtoK03nF/HDG/t6UWVUwq2Z0TUug4/Bwxi9+6EU+9KkjLkxKZmWByIT9/ctcv/E0n3ruDmcvPM/GWXyz5qDwqMBJu2a6d8jp6THaGkpxGPEQVhxMDzHBcro8wc5KriwmrE5vszm9z4X9Qy7s7+Pu3aU5uw/dGcXsMaqionMdTRtLf1ftisIoUwuFiSXXVmPLc+0C6j1elE4ChVWmFUwmSlHECpn1esWDkyOO2sCtozOev/uAk3XL2caxdlHQG6taYFqXTKclPnga5zDWsj+vuXgwY29ecOlwn8PDGXVlqes59fwQ9VFLFNqAMT7phzYYdRQSvXEwBYOhWYGiqcGfZX7xKraecO/Fuxw9OI3NGRNLkkFKBLTRdyYC0wRYkvZkMMkTMpPSm7UlYGIkRCbORO1UNGuL/j026BY4iLoUyKmXGNlfJVUG9f9L/y5knJ7JVUQjb5xoY5MIleyPMk71mL7UOJvv7ZxktyOs1/yWP/7H+Fd//X942EPZxRs8nn3uEm/90H942MN4w8cjDVCiRNBgJNnPozhcujinO0WNQlbEoCYgVgjBEIpkX19awqREpyVaFjgEF6BLYMMD6hWvSjAVRTUhcAoSfU+CE5wTimBwVvrJKCAEFZzzdJqpfWGzdjy4f0LjPFdvXMGYwP379+laz2M3HufNz8xZnhxzdnrCnQd3KeaWzfoYW9eU8xmfuH/M40cFVy7tU965je8C164/w+mDJWf3b7PWgqJtuHGwR7NeU+iGz3v8gLt3W0RrTjctd49X3L71PNfmFVcXNSf3jjmsL7K3mPPJj59x89kjDqcTrhxMeeGFU+7fus/1yxfwUjItFO8cJyfH4FvOzk7YmxoO6hpjDW2zwftoeua9R0tQY/F4WhNoxbNqW9xRy6Y5YbXacPdoyVIn3Lq34ub9DetWox6IWCNbFYa9WcVsEj1kOh8oCuXK/ow3PXaBSxemzKclk7pEFKxarBP80RICWIQORSYVs+mcugBQjHq8C5G1KGxkD5yj7RydQjmdUU7mbJoNx8cPWDcOl/oaucQ0RNHxCKBoTJCEVK0UGwoS3XBh7Hc2MmtLhoIiSGCo3BHFJHGsSWJZEWLvQTMqUzYDIBEGZmNgW6IHi4z+5eTPBz1JLEnvY7Bs6VmeHqBIBCe6Ayjbocr8Q/cf9ih2sYtfNfFIAxSjQpHsXkVSmafE6h5HvFuWVMoqRKMwMfHCGqzBlAZTW8LE4qclYVrRnjV0rkvVGOCRZPomqMY0gWIIGpKvB7gu3uljoG+unJQvgSji9CFgCoulwLVKt3Yc3X3A/bt3me0tuPr4E+xdvsLd23e4fe+U4wfHYAJ1vc/b3/x27usn+bVveYrTowfcOur42PN3uXjcUj845S1Pfx43DmeEzRpxjhdv32NjCiazKVf3a25UjqduHLK3d4FlgA/83Cf52Keeo/z8J5kbwZ3e58HNArnU4pZLjtdLurPblIt97t2/y7SyXFzU1OUxpdSUZU2zWXH/3m3c6pj1sefxq5dAYN06yrJmr7aU04oHpytWqzWOaO1/0i0hNHjXsFwuaRrHujXoxHL/aM3RxtH56AhcGFhMKw7mJYVVWudoQnRVvXRQ88wTh1w7rJnPS6bTGXVV07UdohZtA6UGnA+44CmMIajSIhSLGaWpsMFhvCOsz+hMOm+6Bu8UO7lIUdSY0NE2jtPTJa5ztEpqvKgJlGQGJTI9XnXrvaxBCRrLvoG+DYMweJ+EkP42Q2mx78uMo7LKiI/AxGSDu4GFIYtYcwomIaABoND/e4iS5ZExm8nOtzmtk/1WBoYmi2RzCc8Y3OxiF7vYxWsRjzRAiUoTG/vgEEWpmkoto3FbfBiJjQP7MsrU6TgUgpQWrQtCXaCTAq0NrhE8AyujQQmpRNaYmtynJJVF4HzAton6lqhFwMc71sDIb0KiDkRCwFhh0zRs2g3BGq4ZQ9duaEKH1hWbLqZKbj17k7lVnF9zenrMJ2894PhBw4svPuDtT1ziiauXWJQlFyu4cfUKulxy+xMvcHR6gtF9pC6YWOFgOmE+nzKzBYfzioO6QLolRgqMtmxWS+6bOyybFV4D2q25/eIJy/Wak2NHKcKbqppCPQYPoWN9eo/aCHfuP2BewNVrsLAVpW2xds3h/ID1MrDsTmk3jpOzUzarFevNhq5zNG2H60BsTS1wum5pXYi+JsYwmwh7c4u1wrppcaqUdc2sUh67tODKwYzZxHLp8ALz1DIgqpJBO09hKyqxhM4RXEdZVJS2wDct6h2lesR3hODo8LHaSwqq6T4SDLiOQjwnm46zdRe7QgfFex8BayCCkqC9UDZ2lE6gJAGVvvw9CWmjRnbQkwQlaToigxKMSbb32WQvPvd9BjN7IhGYS6phQ2xypAVNtEovqqWXYyEmpnb6ZJCmZoV9a2YY4Mjg1QLJhj+Dl10P1l3s4jOOD3VL6ueqhz2MRyIeaYBixFJQAIolIOLxRAojG64FSI6yMdlvxn12rEBpkLogTDNAKXDW4VzAp4qeXNMQRLBmhikLvHYxwSSC+oDvbMzhE70z8AETopurV0BMSg+0LGZzyrqkqC2Xr1/mscdvsJhMuHnnDsd37rHYO+TgC69y79nneHDvFj/3SysWs4qzs5bnH7SsTgO1NFydnbFXlnwCmD71GNevXOTSZMJ8b87JgyOakwccXr2OrWY0ApuTY5bOs1qfcu1gwl7h0LbB4FitVzxYdxyfNlxeFGyWx5ytA4vplKN2yd2TJU+0G/YWFRPrCKJI1zBfzHmx8ZydrXnr41BUBtRzvLpPh6Pwp2hzQrducU3DZt1wdLph1TpapwQH08UE3wVWrQcMdRE4mFkO5pbgA6eNp/OBurIsJpbHL+/x2OUD5pOa0ka2oCoqRAyhC9iywNZQmgLB4FuHb1NFDBJZk3ZD17WELjrABgNaWmRaRIv3dUNdBEQDx6crzpYNznu8115sHIJGhiZV62Sg4v3gieLVJx3HSwGKGelKQtagiCBBUWMQjeXoxgwur7ANbjJDEhmWuB9Z0yJGQG2fTjK5XFh10MAAJulPxmXLOSU0wJSsf4mGh3EcuyqeXeziM43/3cf+N7zp23b+J59OPNoABdMzKEECogaHx/fS1gwu4q1n0NgtV62JrwtBS4HaorOCMCtgVqJnLa6L3h4+2+gHITgIRYWpSjArxASssTgHXRfwIrEpXKRNEJ8b9w1N2abTKfWkxhQFhxcPOby4z/LsmLu3PsHx3ROwNZN9z9Xrh1y9eplPffQT3L31CYJCYaLu4sVuwycetFTFCmsLpLIUsxmhMthGuHLxkM39+5Rl4MbehLZpaChZnS25++A+p0f32K+VvQJONh2zScFydcrxpuT0dM0zly6gGnhwvES9p3OKNA4JnpKOQlu8a1mdwWEJoVPOVg3WtYg6RB1zLXju1nNUtuNiHehO16hVtIAjhab1tA6CGmqx0VslePZnJQdTy6QQ2s6z7DwuRNZgMa148so+N64cMCkEayyFtbTrllM5ZTKZYRE0dIgtYlve4CG46HfiOwIekYBvO8KmIbQugtpJTTWb4Ty0ZydYr1QHU1xwPDhZst5E/YkPiveR5RmYk+E5fpare8btE7TXn4yLfccpmNjKKQGBZJsimSWRETCBCBTS97M2xYjHBkNILIpRE03bEkAhfycWJpOLlHNhTwZS/TKSqncwAzCJK0LE9mXNu9jFLj69+PGm5cW/9zRXeeFhD+WRiEcaoBAkNnkTwYTtqoIIUiQ1bdM+v68hMihBDMEaXGEIlYVphcxrwqyC6Qa/CXQuimR9NtvyigO8sVAaVEKk1I3Eu+vWoCY5hW6pIaMuxViLiuF0ucYb2Luwz7379+i6NYpj79IB+3sHuNBxfO8mN556Bzd+82/h9PjtHD/7Sfz6iKevr/jYJ4/5kZ9/keePWxblKdMJ3Ltzh/V6ybrpaF3DYm/CVDwz2yE4No1y53jDsjXsT2usd5weHfPC3SU2wLWDOau2YVIJVoSTlef5O2d0KMdnLZcOpwie1dkZbes4Wa2pCkv23e1CYNN1NMuWqW3Zn+/x4Pg+V/dKHlvMWJ2cMZGAdMq9AmqTGhEUwnxa0m0aDiaGy/PYpHC5CSxbh7eKiKEqLJcuzHjsyh7zWcG8LNlf7GGTO2u7crjNKZO6YlbXBHV477EIfrOmW60jSCgtBiV0Du0cwQWoC4rJJIKO5Rq/WlFPK+qq4NQ5Hpw0tN0ASlzWnoTIsmlIJceJVelTPAmk5Mk/NqNMbq9oLI7P7IaQugknDBACRkZ/90JV6VmWrAuJaaDI8KkJ2GSOl4GR7bUk0WrfJEVtz47kDcRFYvTak5Elfy+UzfqUHYPyknjxNp//A3+Cj37t9zzskeziDRj/fv0MV79rx558uvFoAxTJuXsT7whVsWKSP0q86MZUjyYaPFLUqiZWltiCrigIZYFWNTqtCPMSnVpYOryTWE2SvC4UpfWB5SZa60sR9SSiJk5Czifwk8uf0wgSVvHO050uMZVltrfH8ckZpvDs700xtuLi5ctMKsvzzz3L8ckLHD+4z5vf8oU8/bYv5r6d87P/9l9zdHIf71sOpsphbTlqAh+7dUrzgZ9if3/OtChZ7B+gZcWma/DGU1vFnS25d+cOWk25cekKbnnCp164x3MPGvb3Ci4u5nzwuWOqQmiCcnracNLA3rzAuYZm07FpHWVdsumgcYbjVcPZqmBaG5x33Dw6wYoiE9gPLRdKYbPa0BjDpFSmRujWnqlRZnWBVaWoCi4tStZhjUpF8B1HK0+TmABRmBQF1y7OefrGBa5e2kcJVGXJfDGnMAXtpgOvWIQCgwZBTDQ30xBQHyIg8R7vJIGJEB1Xy4pyMsFrwK+XhNWGsFlTzEpsYTk+3XC07Gg7n8BJYlFCIGjodSmqUWSa1x1GICWk8ndNvji5dFdSt2NJ0pnITKRqm17YSt+/ZwxQssu8MYINsWu3MSaWMpuXVumY5INiRqDEGENMPQ0+Jya51+bP82MQ76Y0j1h2vXheGv7khCfeH+BrH/ZIdrGLRz8ebYAy1BXwkjvC7DkRNZODwJDYeyVYS1CLLyy+tISqxE8rZFEh8wo57dCNx2u8Y/aJ/t50gePTlrbpKNMdsLFQaHQhzZFfhdy2PkDnHCrCop7QtY7uqOGxJ69ycHjAfDplb15x//5dmuWG1fESt/J8qPt5PvqRZzn8vCd48cTysQ+fsuocy1aw6tFSubMyHJ9tmN9dcWUx5Zl6j+liysfv3OXy4xe4e/cuG+cotKFpwdQXMF3HcSvcXnrqWlivN6xapdk4js+WnG48Z6uO65cuMJ84VJTWGc66DaerNV0bcJMCVWFaKKcb5XjZcHlWcvdow7y0vPXqPh+8fcRx1zKfVxgHbePZmzjOGo+Ulums5HBaUm0Cq6Dc2RhWTSyxrauSyggXL1S87c2XeMuTV5lNKjZdS/AOKZSqLmP1zqpFnMY2BmJALFgb2YXSI7ImuAbX+XRCRHBSTCY4AW0bgmtp2hXWOybW4AM8OF5xuo5VXa5nSMIghk3Pmo3a+r8jEAnpkTsOh9Gcnp1cB5YkpnaS1ppYpQOiCcQwaFGipiRWl2Hi6+xhEqIYKnbXzmGS23IAzZU/o/M0/wvK5cRGxqBkJM7NgEUM7GymdrGLXbyG8UgDFO0vr9rbcycLqsSphP5v7S/0Jvo9GAe2hFARygpXl7hJjc4nyF6NnmzQVYtvAl2edFCcF9Yr4eik5aCqKI2hqKGowHQG53K5Jr2IUn1qzqbxlrhtO05Ozzi8vGBvfw+ModGW5z/+HC+88AJnJxtWyyhmbbvbuC7w1C9e44u+/Cs5WW742Z//MCvnCQpOgFWgxmEoaGrl+TsnfF51jZO14cHZmnbVctJteHDaUU+EB/fvUFRzjtqSsy5w5yR25N2bl1SVYd157h9vMFJy43DO3eMVxhRcXFR0XcekKNibbLgxL3Ea2KsKJqWyP61pcPzSC0sqLO94U8nFScFx46hnBa3rmEwMb7k+RXTFugFTF+xPC2QZ2GwCoh4RxQUBF1jsldy4OOfN169xuDcnqKcyFc3GYGzFdDGjKmu6jac5PqFdneJb0LLCbZRSLNo5CAbfBULoMNZi6inl3h6qDtc2iCpu4zCdZ1EX1JOS07bl5smKtunwnj6N470fGBNPrzUJIf/WyUlYhwqu3Pcmi2RhJHrtU4F5wh8qb/Jy26LY+JkXiekcDVgG47XBij6X2Q8sXvrnEqvQVBEbtVFCTH2JgBWDNUX0GEoVb2JKTLLVz863WSy7i13sYhevRTzSAMUTKyhsL/lLF+KsHuwv9NK3FSHl5yXYmAawBdiSUBb4SUWYVsisxs0r/GlLt+xos57AR5ofDKu1p/CO/YWlmhYYMRSNslo5CAk8hEDno/+FaBpjAB86EMtsVtO1K5wLEDzGK4t6jiuglYZ4L6zUZQGbjrOPf4Jf+2vfRrtRPvbxj3DatTRrh849ngItLW7tse0RN950nVBZPnHnlGuHU4KUnK1WGKPcvttyb33GipJqskfQNccrx52zDYd7k9i7p1CemFuu71t+2iu2UBbzinm94IkXH+D39igwBNfixTCfWmqrBK1onefZB0sOFxV1FUWrm42laz1FbbiyNwVnuXm0QSY1e1Zx1rKo4LiAjY/MVV0Erh/WvOWZa1y4sECModu0TKdTFrMKW1WoWGxdMd2bwuEhp/cfcHzrLqvTFfgO6QLSRbMa9R1GCqin1IcHBO1oVhvUuZie8475pObgcIbUFbcfrLh3vI6lzwlwep9SOyFqkoYyY+3t7jWXuOeqnVxmnjo7k0Tbox5+nEcQY4ACEaQoI+dZYxh68cST2yRdSAgBY6PXSS/O1QEQqaZ1j4S3JMBh+godYp8pE03k+nTPCCXtyox3sYtdvJbxSAOUDo8jlqZCEiDmkmBiN9d0md6aEIwIwRhEI0jBWrQoCFVkUZjVuEWNzhr0pME1UXsQmRGhsCWCxStIKdhawIdYNYIHDdFF1ieAokKJYoyhKC1lGe/Q69qyPDvBhxbxguscy7MNm1VD8J5pVVBKSHfYDZgl7ugmX/br3oGElk/d/BSVxoaGVVAET1FVXD+cosbyYAlnJyvurVre/OQlqnrJ7aMNzsPtE8epq5BiwYNWOF2eok65sq9snCM4xxPXZ3Rdg/Mt+1JRasuDkw2bztOuWx47nHPtYMqd4wZrhU3bMKlrplXJ6cbxiRePuXFlQgUsVw0X9moWE4trGhaTwLQILPbnGN9SGUNlArURaiuU1nJpv+Lzn7jCm25cRYynaddoaClszaVLe4itMFJixGIKQzFdcDhZYOyUkxdfoDk+JjiHNk0EJ8ZQzmbU+3uoaOxe7Dx+1WJCYF4XHO5NOTg44NgYbp2uOVk5nKfXmvRlxOl8GIOTeH5oX94+Bic6ZjGEQYjyMqGqfQomh/SAO4IDJfQ6FD84msSO2qmnTtS7DDb7+XlcEWQklzybganpNSiDg60xQyWPpDQQOw3KLnbxaccqtLzvZ38HT/MzD3soj0w80gBlQ0uDw4tN4r/YXdbjcZKcZHtDqiRQJKeAUtmk2igisSValriqJMxq/LwmLCrM1KKrDhdCX4ZZVVW0yS/AlBDwuM7TtR7vh/ROfmjSv9TGokgU3Cq0TYcNgbZtOTtb0zaOrvMEH8HMpCiwE8G1G+o6MJk0TPSYPRb8ul/zFuahpdnc5cFqgwBNUDYdYODkdEVZ1Hzy+fs8XlQ80XRIUfCRmxsKYzhZee6ebihnDltPCXbKY3uWaW24u+wwRqiKQKNR03Ewn6BqOF5tOF47TBAW85rHr+3h9QFFVXDvtKFp19QFTMsJp13LaRPYKy0r7ahLy7S2nDiYzSyTEkoDzTp2DS6sMi8FY0s8yuXDCTeuXGQx2yNohzrPdDZnWtcUBkLwlGVNKQbxAUqwkxmzS1fwziNq6OQ0egq7gqKuKRYzNDhk3aEh4FuPto5ZUXBhOmFvNsVOZtw/XnLzeMOmzbqSMDAmPvme9KmdDEoyc5JLinWwuE//jxmZl5/YtxRMKtsgpdekRCdkUVBjyE10YmmyYkYppVimPKYOt7e21QsoMyXWYK3FWhuBiR2DE9s/0zM4u9jFLj6deNG3PP21O3DymcQjDVBW2jLVhpoCm7iSICGCFI13mC/bc1WT20Pm0Y2BwqKlxU8K3LTEzSvCXgGLAnMCNNEpVFSZ1CWTqaWwAVvFfjubtaPbeFxn4p10z35L0iQITedwjcdYxRZCVVkCntVqzXLTMp1MoyuuTb4YBC4eLCiKim7TsD83TIwi3U1uHFxn+vbP42d//oyu7mhUWbXK8arh+fuKKU+YzPeQ0uC9cPtoybqBm8eO0hpO1oGztce4M8RuuH75IoeXDvFuyawq0IVhbzaJmhOJY3/+zglVXbKoC2Z1zaQUTjctRWGorGCC8mDZcWFqcQgPNp5l45gXJa5T7h2vqMopRVEjZsPlC/t01nJ63GLVU1mYlUJtSmypPHVtj0sHc1y7wljD3mLB3nzOdDahrMpYVeNaXBebNQZpwMb2Ana6oNzrYnmMxNJpaw0amiiwDYprPaENTIuKw/mE/VlFOS058YFP3Dvh7vGGtvME7/sKnQhOSI0CE1ORGgNGYDCwFmPdSXzeOgXH/wNICZNBV3UeU2R7fLLGSpWgEZgEVWz2MtGXOeehBzwDMBmYEpst9E0ytLOCtQwMiuTKHTv63k6D8nKx+IXb/Lp///v5yS/7/oc9lF3s4pGORxqgrLVlrS2KUuDJLeVDL5mNF/KQVAGITUqV0V1tcshSa9CigKokTEvCvCbMa1hU2GmB3Xi8j9soy4L5ogQcCGw2jvXa45oQzdw0zosKyc0TXIjGbwLUdY1QcHy0pvUtILQdTGphb3+OqKPrOlyzwbmWq1cOufugZd01bPyK2hhOXlhS7z3NjSc+n1u/9DOsXceqU0qUm0fKuj3isacuYozlxdtrms5T2JKmCyw3KfUksGkU6OjWpwRqfLWPLU8puzUXDmrKYsada46T1RJcy2xWUNmYOpsUjqKaEbTg5v0le3XFehOYlsKDtSMbwGyCstp0dM6xX8fj7Z1jNt+jlYqu89TW4lGqUvESuHgw5eJehXdnnB53qCh7+3vM5/Euv6wqpuWc9XpN8ApiooNvaCFYkBJTVJTTKUVhCb4lNCvEdYgInVdc47Ei7M8n7O3VlFODTCbcO93wyTsnnK265Bzr8V6ixX0uJU5C06HfTkorqg46E14ZnPT6k3MgRBnVIZ9DKGoiQI65nWTClkqEx0v3IlwYpXO2tzPujtyXFYvFGNtX6UgPSiKDYtKySN7mjkF5uXAf+wThX34FfNnDHskudvFoxyMNUDbqWNESUEosRaqS8Qmi5MSPaKo8IDZKC6JJp5g8HdQipkRshS0cVA1MK5jXsKgp5wVu2RCcR30su5xNCzrv6drAehVYb6KdenA+mmRJ7vYqvQ26UWE+mzCdlKxWGzZdh7HCpK6oqzr1X/EUKMEHOgPHqxUHqwmXDqacnK4Q7bAKm1OhudXw9nd8KdUnn+P2nVvYytK6wLpTzlZLFhfX2GLC7ZMV627NfC/QOaVxcd9bFw3WZhNL2zQc3T9hsbdHqKawbjhcVFy7dInn7xzTNpa92YzCGKwopydLDp65xsH+AZ98/pQ7JxsWlw0XZpZ1F9iflIDQek/rA/NJgQhsnOJ9Q9Mq0znYMnUD7jyti6mt0sYmgWVh6XxHWcS7fUwA4/Hq6FxLUU6wRUHXtWhwFFL3bq1lUeFNgRaGoBZtO1APRYHrlK7rCCGwmNfM92dUNdhJga9m3Dk74t5pS+sisAy9BoXe48Tn1I6GZFVHYk9gW5w6StzoAIxVB8HqSz5Pz7kAp2c+0h8haGzw1/uqJIF40mJlKW4899N3yeXD2Qo/u9Ka1F/HxOodMQmkDA8xduSBYntR7Q6e7GIXu3gt45EGKJ141nR4hYoQtQgqiT8JFDnPToglk5obq41LJGJO3ZoCa0uMLbBliZtWMJ9gFlPYW1OdNNA4fAi0KGVtEGdYHbc0a0/bahTTOjBFvMuXJMzNOhRjDPVkQtNsaJoudtnF0DYtVgWxlgMzA4kMjCeCiNsPTnnzmy7g1yua1uE2nqMTx92jJevwC3zxF30Jz//wP0OrgC1LTk431DZwfHLMYj6HB8esOs9EYt+i1iU3VFXmtTCxgBf8agOFpVwccvDE46w3gu9aNpsNx2eOs/WGtgk0jeLFIqFiZmP7APFC1zn2K8Px2lFT4XysKDmYwF5dsmo9R2cdi7qkcy3dSrlyEeoJtKuAd2AL4dL+lMuHC/bnCw735tSTirIqsaWhsDVVMYsAq12jUiOmInSBbtNSVgvCZoPbLCmqitDWbFZ3sV0TxdFYvG/xraO0lvliSjkvCUVAJhNWAZ4/Sd4nPvucxKodNKd5zmtNzgliYQucDMBkEKy+hGGBHq0MoCZVfvVN/DJwefkUTp+1HLEjQ9fk1Izw3GcReNioNbHnTNpsBiUjMJ/9WnoAvotd7GIXr0080gDFaWCjHY6Ak5JKY35cU12DEst7IzjxqaFapKijc0q8s7QSAUppKkLpo2197QmzDt1rsHs1dl5iNw2dCp2B2gAauxo7Fx+th84FbDAUpWKsDjIDhaIoOT4+BXVMpzW12GiA1nUQLN4XNJ1gJjXTxQRTRbt9MzEs24JWptxbbVgvhfsnHS8ebbh1/yMsDq7yzNvewQc/8vPMq1hd4b1wcrJhf++A5dIRjGfWBmxRgHiCBgpRLh3OaFcNk9IynVp8swaxzOcXoTpkuV7TAIvKoG3HAxVeuN/wpisVnXecrBsuzkrc3pRJaZjNKxbNGS/cO2X/YIYCjSqVCIUF9RrvyOsJ1bQiuAZRoSorqlJYNR2TwnBhMeXyhX0uXLgQGzsaIQRH2zq60jGZVKkfjWEyrekksDrb4NtTiqLEecVvjvHrFTYkTi1YfOdpGwcKs1nFbGox1qOVJVQVd49XPHv7hLYZ9d3xSewcot392NsksycZnIToyvay7Ml2ake33g+cByfDwpKAtknvjQFKrt9JSZ/EjGSgMjjBRu+SQXtiUwWPNTnLmZdNbIkFayWBlGjaNpQXD80Dd/HyYTfKi+6Mx4rFwx7KLnbxyMYjDVA8SovDjTgTq0Dq7ho0m7UpKgXZPjzJaQmajdwMVgoK6/FU1IVHKkc3ceiiQfYmsF9hVgXWORyGjRPaTdQwWBM7xkbhpKRJKtrdI9HISxXW6w0aHHVdRPfZMt651rMpRTWlqEqaxtE0K9brJf9/9v40xrb1vO/Efu+0pj1W1ZnvQF6SGmhblmzLVtNxDKlJWKQSQYbUMYhmAtlWS7Y77LQhBGrI8BDJRoQYCtqQ4FjJFw+AFHQHCBjASMutWBaEjilqZGRTEsXhkrzDmWra05reKR/etYe6HMQrkTz3kPVcblbtofZ+zzmr1vtfz/MfehuoG0tuDKenGrRm3Sia1uC9wJJC9/7dr/4Wf/Ev/kVeeXRK3zxilGv61rNYrPm6r38zmdb0gPcWISNKRka5ItMmgTMlidHTWkUmAjeynqo75db8JlKfcO/mEhXO8UFztu6ZV4pveeGYhxcrylHBMzfHmOBQWmK9x4gExqRPEQOXtcflkdvTnCMDq9qxWVuKica2a8pM4YRNwY9CJh5J7JHREYPHI7B9T9+3icwZgTgmC4ooLVIr0IoQLaHtMZNblJObLJe/C/0KIQ0hpLFO3/a4rqfMkout0clhVWlDLzSvXD7iYtHg3Rag7H1OYuBKlwQOgMfQJUuP7Y/Rq2OddLS9FpxsCbaHdeX+AATCln6yAy77p7chgjAAlf2P7XxStkBEHRBjpZQoKdFy3z1JvJPDDsw2TuKgrsHJF6yb/+yD/Plv+mFe/Mv/tye9lOu6rqe2XjcN/5d/+Zf57u/+bu7du4cQgg984ANXno8x8vf//t/n7t27lGXJu971Lj72sY9dec35+Tnve9/7mE6nzOdzfuAHfoD1ev26F+8IdDgaemp66tgn6XHsaXG02EGK3NNh6XH00WPx+AG4sJvNK5Q0GJGRq5xcl5i8QJU5elxgJhl5mVEaSaEERm/txiNq+FsMAlyMuK2aI+zVHN57vPMgkoW6CwFlNNV4jMkL1nXN+fkFZ2fnNHWD9x6twBiBtZbFuuPTL1/y6VfOuP94weUmUORjTFXSipZPf/KjvOm55zEyRwBFqZDCAT3zyYhRpsmV2l095xq8d6xWNYWWlFrSbCwiQiYc89JQSMcnPvWA3kpsNPQ+UOWCO/MChSIGQSXA1z2ZhFIbMi25eTzm7lHF6WVNDIJ5bug7i/VhSGWGcaZRQuOsI8+SQDyKwNE4Yz4xGOkIrqberNhsVlxcnlNvmsQUDQNhdfBr8c6hVE41OSYrSkK/hn5FVZQolfJmQoTeeqz1SCkoi4yi0AgVwWhEPmLpBPcv17SdGDgmh5b2B26xW1Js3EvKdx2U13qfcBXUbEdC4WA09Nqf+XxgJcY9+BEHnZSdtmfXJdn6mez5rEJugwIPSLFbn5PDkY9QO8O33Who935y58Oyu32R9UY6b1zXdT2J+p7f+BtPeglPXb1ugLLZbPjmb/5m/uk//aef8/l//I//MT/1Uz/Fz/zMz/ChD32I0WjEd37nd9K27e4173vf+/jIRz7CL/zCL/Cv//W/5pd/+Zf5oR/6ode9eIenjZ46WtaxY0PHJvZsYs96+FpjqUUCLjbanbmbH5rqkmTtraXCCI2Rhkxm5Logyyt0OUKNK8ykpJzklLmhNAajFEKSVENDpD2ExEqUr6ENDLfdda9IqhNlctresVitWSwXWNdDDCk/RqQhVZalzwkIfNRkeYExht5Z2q4BJRiPxiyWFxQq8NyzzxODQMuI1orVasV0NiI4S3SBMs/ItGRS6WQcJyWTImM2zhgVknmpMVJjjKRdrlB2yeXpeRqfOI9wgd46fu/T57z5RkWBQHmQUoF3VHmGkYJJHigLTWYk945zZpXGuUDrIspoJuMco9Iwrree3glsSJY0s5FmlIMSjug7Mg250eRZwaiaUFVjsiwHIiE4YgipEzUek41GeNsSNhepk6BzEGH4XpNVBePZhPG0xBiZQvryApdVnNY99y8arGXXOdlKiQ+5KH5Llo2JJLs3Z4s70PFZnBT2Y5+dLHnb39t2Xj7PjeE9t8RX2B9fQopErh68TOQhOEmCqau8kh0Q2Y999oZsWzLs3jF2B0wGdc8O4JCCOr/YeiOdN67rur7S5WPg2b/y0Se9jKeuXveI5z3veQ/vec97PudzMUb+yT/5J/zdv/t3+Z7v+R4A/tW/+lfcvn2bD3zgA7z3ve/ld3/3d/n5n/95fu3Xfo1v/dZvBeCnf/qn+a7v+i5+8id/knv37n3Ra/ExYKPH4pJRGS4F+AEKgUFghdp5ouQodMohhijRpASSxFuRBClQA8dEaIjGQ94SRhVqUmGmLawdoS7I3DDWgZS/E9Mmoc0+ZA0hEIEdKdf7pDAqypy8rGh7S9+3WOeHTSTubkrJlB6cFZzcOsJkI/JZRAgDw+bZdh1N0yGDJ2pB1605mh8xO5vj7JI6eh7cv+D5596EePAQ6wKZSWOUKk98lyw6VIwYrSl0ZDIyzGYl6z5iT5dMRhm+XxCCI6BYtwEfBZNSMS5KQgwcTXIWDxq64BFKEEKgUJK33pmwrmva3lFmGkGkzBSd83gp6XvLou6RIW2Cnff0QTKdlpwcTfEoyCDPDVmu2Wx6gt/m1Sik0ri+o+1rXFBU45tU0xMyBM35K4S+Q8SAkAJT5mSTKUZrcunJ6YAeHzzWR9ablhcfPOb0vME5P4CSbQeMPdfk8PZaAMLAe+I1o50tCIniSndkK0tOYx9BFMkJ5fNxOw5NB7eM2B0/5bPIsfvRjzxodojB7+SKW6w6ADJX3GMZlGWDcywHn/Ga1fxB9UY6b1zXdV3X01FfUqelF198kQcPHvCud71r99hsNuPbvu3b+OAHPwjABz/4Qebz+e4kA/Cud70LKSUf+tCHPuf7dl3Hcrm8coPkGeEJtDhWsWMRWhaxY0nHKqbbJnY00dLjh01GIGICJlqkm0KhhcYIQ7Yd8aiMTOVkWYkuK1Q1Rk8KssqQqxwVVVqDFMNoJ2W7CilQKs3ww46KOziAAiFKkDnWRfq+T5wQBVpLjJFoI/HeI5VifnLCrbvPcPPmXfJ8glEZmTaMqpybxxPu3b7Fc/fu8uyzd6mmY7ro6D3cOL6D9xIXAxeXayBSlkUKTJRJibJpPdY5tIgpzbjt6X3gctNR944HF5aXTje0vaMLEaFS52fTW5ztuTkpeXDRcLGu2TQNx6OMcZnT1T2us5RGM84k48LQdSmgbzzKmY0yJlUGJuN8tebxoqa2A2FZKYIQGGMwuSbLFWWhyIxgMiqYTgoQAec9vU0W9H3vaTcN69Nzlo8fYNsl2XhMMb+N1Dp1pISkGk24ceMmd+7d4ejOCdl0jFeK1vWcLxe8+MoDPvGZhyxWbeqUDGMcH66OYBiOvH2HhIPb53o87tDLIbAJB++XXrJrsV0Z5WxLDE/Ew/sckmIPXGG33ZRtR2UHOLZBf3IHQra29WLbUdkmFwsGc7ah63LVXWVAPK9Z5B+yvlznDfj8547ruq7reuPXl5Qk++DBAwBu37595fHbt2/vnnvw4AG3bt26ugitOT4+3r3mtfUTP/ET/NiP/dhnPa6R9CJio6fFIYRAE1BEtBDkURCjxgi5U0koBkCCQkWF2rpyiqSDUCK5aIoYCNonT5C8Qo5GqFGBrmrydYbBJI6JjHjiwD1JfhkqxkTmJLl8wrBpKElA0blAc7liOjVkKm01tndkpgDhMJlhfnxCXh3RdJFHjxdsNjU+SspqRJ5VZEYgYvqzZLmmqAw6eoKQTKfHvHq/pOvrJLsOPUomAq7UAuc9qyZCDJzMx1SF4tF5i9CaZe0QZ2s2NcynkvVK47yn7j3eSySRqlBsmo5Ce0yVs9447pyUuGWNEMkrRiiFc45RmdFby7LrGY8mjEYj3KbDBEFmJB7FsnFMitSRanrHqmmZdjnVuCIrFDoX6EyhdEnbg8kNJqsIQVI3lrZuUUHh2pa+XTEZHycQmRVIXaNFpMzTGGs8qQiypC4yVsHT1SvOlxtePnecLlucF3ulzraDEoY+SNx3VbbE1j35lQFApORqdq+BAX4cdEx2Lx++7rstHPQltt0YDmTxabQirnRG9iObLcjYf586cofjHHnQPZEHIx65BzFb8LIzbdu/XgwIZpsN9KWoL9d5Az7/ueO6rusrWe/5K38d4T78pJfx1NVT4VX9oz/6oywWi93tpZdeAkAPAMBFRxcdbfSDu6yjiY4Ojxtyb2QQyChRUaCjREWJRqK33ZMBtBihyDAYmZENXRSTlaiiRFYj1LggL3MKXaS2vBIEuc9lsT7Q9p7OBXofcAF8TB2WCJRVxXK1YbVu6PoeiCghMFoBAWMMJycnnBzfYLVs+eQnXubRowvmRzOef+YW89kUowxKSDIjqXLFqDDkRuMR+OgYjcfcOLmLEBqlFOvNGmMyui4mfopWOA95pjmZGWJ0+BhY1R2di5yvHF1vyWTg5ccLtIJNH3i87Ile4HpYNy3jwnBzPkEoyWqxJjeSk6MpAcEr52variNTCm0ycqVYLDecLtZ0vWc2LjkuBfPpCJVnSK0JQmCjpHaRVWtxUiCNJM8VSkKRZ4zHFXlhmMzGjKZTJsc3KEczvPOsL9esH55z+cqnWTz+NH3XD1bwoH1LGWpG0jIpS6ZHN8nnJzhVsGg8l+uezgZi3I4utrGTB+BkyxkR8TVdEz67c8L++Z0cOcI+tO+1nRfYup8d8pa2TYqdh8lrvEzkwWPyCpF1D16U2Otw0kjotZ0XsRvvbEmxe2M2uQcnB4TZLxU4+XLX5zt3fCXqG/53v8l3fOR7vmKfd11vzDr1G8ynHj3pZTyV9SXtoNy5cweAhw8fcvfu3d3jDx8+5Fu+5Vt2r3n06Oo/lnOO8/Pz3c+/tvI8J8/zz3pckUzZLIF+yN9RInFPiJI4dEQMGoPBkDomCtBCDeAkjWPiVnIsFFEIgjAE6QkqR5iCUJTo0QQz2cByQ5FVKKlBWrRRCBWINhCQiUhp0/xeC1BCoAUUVUlvLdY6dCZ3RmBaSIxKLp/z+YyT4xOW65r7r76CD5JnnrlLVRYoCVKplA8TIsJI8lwgCZRaE31ACo+LHc899wyPL16lbjY8enTBvbt3eHh6SgwSrSTWO3ItGJdw2kDvPXmmsV4QHRzPC5Z1JKBYti1NJ7Ax4JsIXvK2m2OUFjRdCgEUQZIZw6ZtaVrLatNTHJVYH3A+4nqHULBaNcznR2RKMskF0yoSfCTXkvXK4oNg1XjkRUMbJDcs3L0zTrLYTGFMidAGkxtizCiDxPXQLhsIPb7raW2P3WzQShK8R3tHDAaMQ+YSMxpBMabop5hRRRcvqG2ysZdCEEVKfIxiD1IOFTifSx68G+eQQEjilYQdcZYtADkkxR6wYw97KAwvFftv93BApP/bgwyR/Erk1fGOGkzV9v4nB7wUDgDPAfDYdWG2jx22bQSDF8r288VA5P6j15frvAGf/9zxlajoHD48FdeA1/VlrPf+b/4r1Cu/+aSX8VTWl/S354UXXuDOnTv823/7b3ePLZdLPvShD/GOd7wDgHe84x1cXl7yG7/xG7vX/OIv/iIhBL7t277tdX2eHP7b8j16Ana4yhUINBIjNNlw0yh0VIl7wpZ/IoabRAuVRkBCoWXipBhp0NqgshxZFqhRiRnlFFVGZrK0/ahkyha28tMQ8SHgQsq8cSEBF6E1TdugNGgl0UqhlUYbidaKIs84mp+w3rQ8fPCQssx47pm7jApDs9lgrUWpSG5AyQFUhXRTKimRskwS6JjMRjxz53mUEHSdpygMVZETY1KiuABZrplMC0yWkeWGPoD1ERtg0wZOG4GXJSufs6x7Vq1n1Ue0FkxLjVSCtndEb1FKpcDEPjCuCo4mJetVz+Pzhr7tKDLD8WREYQzWQ9c21G1PoQTzyhC8o8w1WmlOFy0PzmseLVpefnjB4/MFPia/Gu8dAM6Hwe3U0PaW5XrDuqnZNC1d22O7jm6zpl0t6ZdL3OUCd7EiLC+hW6K1pBqPGc3nmKoEIdASMrMljO59P3Zg5ABAfJaM+ADEQCBGPzwmroCZz/ZA+RzghC0gOQQscRjvsAcnhwF/h/Jh9qOgvRoHpNqTY/fusHuwsbe/34OXLWBJwYCDJ8ofQmb8heorfd64ruu6rqejXncHZb1e8/GPf3x3/8UXX+TDH/4wx8fHPP/88/ztv/23+Uf/6B/xdV/3dbzwwgv8vb/397h37x5/+S//ZQDe/va38+53v5sf/MEf5Gd+5mew1vL+97+f9773va+biW+EJEeTozGxpyOmHJ4ogIAUaZxjUAMYGfxO0AMHZUsATDgtDkyVSEwtcSlRUiFlRjAZFAViVJJPCkZVRpGpHbdAKNLNXT1vp01JILMspRlHnzguIuCDB6GRKlIozcnJCVJIHj54QNs6bt6+SwiSrl5TVSMQAts1FFmWeBFxSO5Valh5QAmFlIGmb3jr297C2dlLXCxWbOoNmTF0ziO1BJtcUWWeEWJNbx2rNpJJmTa4aszRrVsIIcn8io1bEwk4H/DR8PhyM2i0M0YjyXhWcn6ejNuObxsuNx2f/uQpmzYwLTRVrlE4pDGp49U1nC0axmXB2rVoozjKBZ0LtJ0jEqn6yCWW08WaYjQiSI02qRvlvaPvGprGARGlFbVzOGeRWhONAu8JbUfse3qr8WVJbFvoa5QQFKMp05t3qO4/QmWXGKMG/gnEnp28WHwWMHktB4UrXxmAiM4ysqICKejblrZpX8M3OeiisGefiG2AThL4cPCC14xn9tJidSAZFlKgBMNIZ+uRcvVTto/twckBb0WKXaeF4TnBVenx653wvJHOG9d1XV+p+s8+8S6y+0v8H/zS6/oc9boByq//+q/zHd/xHbv7P/zDPwzA93//9/Mv/sW/4Ed+5EfYbDb80A/9EJeXl/yFv/AX+Pmf/3mKotj9zM/+7M/y/ve/n3e+851IKfm+7/s+fuqnfup1L94IQyUVk9Bjh9FGH8M+SXiYuydi7NAZ2RJkReq+qCvJrHLHMZDsrb+V0gSdQZ4TqwJdFUwnY25ORnzm9DK9XqWuSIdDKrEnWA7vrIxhtVqlv3QtURK89zjnkFJwPJtwcnLE2dklm01NNZohpWa5XDCbFFSl4vx8RZHnCDzWWvKioO8ty0VLby3OObTRjEYTyiIyP5py95nnWK4+mj5bgevTZj4dRZSI+CiQMpJJhSTQ2kiIngLNqmnpnaD1aWwVBTgbuKgdD00kLzpUITjWYzrnCMCoyHnm2ZvIR5ds5iuK2jIqDMV4Sj4ZYTLDZnVJs7aMSoPJDONZwbjMycXQCWlbJqMKhSZE2HSOdd2RZRVFKREyYm3PZtVwcbqkbzwxgOstoW0JUqKFIHoLfU8ZI1ZI/CAfjs4ifYcu5+TTY8r5jLx4lTzfhu1txzMJAEYGd+AwdEMGXtMWlIQr6pstABFUownT+RFCCjbrNU19/yqp9jUV42ts7MXgN7Ib6RyqdQYn2C2AOCC7qoPOymsly3tgcgBOdtJjdu8hlTx4D7kb74jhDcRV1PMH1hvpvPGVrO5n7/Bv/4HineX1FvW1WJ/6V1/HyUc/+KSX8dTW6wYo3/7t3/55T7CQTno//uM/zo//+I9/3tccHx/zcz/3c6/3oz+rTNSUEWaiJBLxwJoOQRxAyeBzMkiLBcOVYroeHJ7bT7muXNuKbTt7q2bIiKogFAWyLBiN57wwf5bT6ZrLxRmNiCATF8D7NGQaYllAKlyA3lpyLSnyZIQmhB9SciXT2ZQYA6dn52QmZz6bsVovgUBVjVmvLsmzjCLL8H2LUYroPaePHnFxsSJ4BzISUSh1xnQyR6J581vfxqOHj2iac5yQNJ0DoTieFxyNBJ21KJNxfASn6w3WB5SUdC5C07JYN+TlhEDquAgkXYC1k5wuLKM8p+t7XOewncUXliLPqKqcyaSg7wNFOSKfHRGLCSI3qHZNaTKmZU9WFExHN1FaoV1N8B3T8RSTFyzajiglvfUoaciUREcPfQ9R06w2XDx6jOsiXdNRrzfQJ1ccGSH2HdgeYRSdlvTe4wN464jdklCMCbpiPLvFdPoSXd2jhB/s5OX+WACi44Aoe8BFGbglWwLt9kiKCJCSxWqdfFiU2nVcdkfZYffk82z2V9xixbb7sSe9Kg7GO3Lvh3LFUVaIg/fZgpR9Ns/O1WTgmVxR8nyO99mDky9+QvxGOm98JWv+rz7Ih/73b+Od5bVJ13Vd1+utpzqLRyLIUIzI8QQ64QjBE0XEDB2SXducw5b3VYuppG04/G9o4YtIlIIoBSiN1AaynFAVZKMRt6a3eX72mI89uuQchxcCoSQx+AMrc9BZhu16BKB0xBgoSzWoNQJGZxhTcXa+YLlaM5vfRAhwfctsOqfrehaXS55//k00dY3RkvF4xP2HD1itLnB9smSPMnFftIxc2gu6xvGWt9zjTW96no9/ouZisWHdWKRwZFnkmRuTFFQ4XJ77mKTQpZHkRhMQECNloZOEWyQFivUBU0jOV5ZJ3qFdx9F8hDaRvFJIDbfunHD+aImpPSbXWBc5f3zG0dGYiZa4TGLykqwqedx5FusV80IyqhJXpmkajAhok1FlOVoIXN/gjB9SqxWub/HWUa9rurqjrVvoLUYqxJDiaIhIo/FK0g5kamU9qt3QyAUPHrds6p6qzBiVEilS8rWIcms+MvwvmawFmWTIh3D2Ktl1Ly0OIWJ9nzb9PL8y1om7Y+9zldg1J8T2/3aM2YPxDhyMdg6kxFuQwoEUmQOQM7xum8WzTSzevY+Ug+W92t1PRFoFYvv9Nfnzuq7rC9ULP/9f8Pb/50evxzt/hHqqAYqQAi0UWdSUwlDFDCuSib3e9kaGTSOIZEMvxHbDCUSxdfY8ACci2ZeHLfFRQJSSqBLJNWiDzzNMZtBFxrw6YlqWCNXhQ3rPxECMRL9tiUuc65AySYOlDIBDkngOmckRUnN+sURITV6UrNc1MQrKquThw0doY1BK0LYb8vGEtl0TQ8PxUcVS9lxcNMQQCEEQlUNniuXigo/+3u9x++ZNXn04pX68obEBrRTnlz2rueX2yYy1WmE7x1GZRk83xopWRR7UYeAzpO6QJrnERueRIdCQnHw7X+JDRBtNPpkRTUVXb1A6ZQ557+n7nrZ1eB+JIvFmZrMSTMW5TcO16SinYExdN5QKZkdTaiSZlHRdCzEg9QhlSpzrhit+Rd939F1LdAHfO6RO//BRJOdcU+WIMscaiUsMWKQI4C22XhN9T5FLqsIgIihSFyXghvwdEvBVAh8iUgpiEIN0ePA4GQjSSaUzUFy3x9bB/QPl8BVwsqWbxBh3E8ctTXcHNuR+JPPamziQBF/J4tmCkwPVz478KlJQoFIKNYx19onGEqXkFZAih8yqlPHwdMiMr+u6nlTpxwZ/dv6kl/FU11MNUORwEjdCYqKmIiOKQEfAxDhY2CdwEmLAxZTBE8Sg9Ilhxz6JIvFF/C4ZeYgTFOyySIKSCKUJRhNLjSqThHGUaYyWINPPbK9+o9hyCiIueIwW5Lkmz0CJBIYQUOQl1kbW64bMpPc8X19glE58k37Ds/eeoW9btJCUueb+/UesNg2RyM1bY+YnMx68ekHTOMpcMakUBM+LH/99RlWOKacofUnnWlzwCKNYbizeWapqjJSe6NdorXn+huZRm3Ha1Ww6aG2kLHNEjLRdsrMX0XE0ydKGpwxFnhKWVZYTpWDV9nRdpG0CNguUswzVBrz11H3HLFMYLaljQBsYVTnT0RjtPLFvmIynFNWI07YlKol1/cC50CAU3rshC8lCBO/iDvwIJZBKgAdTSCgkscgQRUWvM6xSGBSESMShZKTKDW1pEICRYvi3ETCEIsYoCaFHqwGcbMEIYedvIon4uAcgsFXtbBO1BTHs7ey3W7yHnfJGiOTbgiD9WcTebI3DDsmOL7LtiIAiJVVvRzMcAJyr3JbtsUmKhUIghNp3U4bxTYzJmC0OLZsoxT5jSpB++Lr+wPpYfQsff3fgu13X10Jd+BrVXoP4P2o91QAlXWUqDJGSQBQ5EtDRAh41XIOGQd3jY8CJiCOiBgHoNoo+xAHIEBOAGXwwgNRWl5IoJChF1ApRGFRpqMYlVZmjtUQIN1whD0qKOIToDUApXc2mDoYArA1orSmKEXXdUdeW+dEY5yLWWo7mR3iXHHLHo4r1ap3SeWNEig6NpWs9pw96pvMTnnvuHu2mQROZH404v7yk7zteefUVMMdkZUm4uCA4T2EEbQgEM+Ho6IRAZD7v0AimhaJfBvTjl9BBMa6mvOlNJTFGus5S+A3HR4FxLsnLOdIYKA1laMmMwltP63JaUZLNT1CTMU6VKNOBlmTlMeW4xAaLySqydkOUoPMKlUmqbMKoEMTgKJmwdJGLXnNnekRWHSd1Fpa+bRHZBFUE/EWNMAX55ITpKAO3wduWrCoQ4zFxXGHzklWUxD7gO0EdI33f0XU9RldMZ5Jq5NksLpCiSdECuaSoPOvas6l7Fss1LkRklEgZkxGcUuRZjpCS4ANd12GtHYDKbrhCDGE4HpMLalGWdG1HdO6qrFjsb1sya8K5cXjsNbLgA4O1PU9ly2H9HNwRwa4rotS+W3Jo2rYPDbxq0LaVGO9GT9f1B9ar/8mK//Ci5VuekB/LdX3l63/+az/Im/7Bv3/Sy3jq66kGKIkSmkCKEhl6CAA0CHrp0gk8JgKjI2IJOHyS+h7O+AcOShj+izHs02K3pltCgdQEqfHK4I1CFwpTaPI8jV+28faBRDSFg6vXQemTFCASISLBB4JIm8tmvaHrHEJmOBsI3qOkpO86MqUxSmH7jvF4TNd3EFMysVGR3kXWy0v0Zs3NmyeMigpjNEIFTh+fs1qtUFVJUVUIqYguoKRgNJ2hyiOWmzXNekUeIp13bM4FZxuH7FZo73n84FOsehBKM6kKnrl7TJ61aNVSzm7Q2Y5NzKgyl9bTdmTZmHVccGkbzk5rxnWPjg29krjZmAfrkGjKXU/fW6K1LJsWrQ1SljgNGQ0xZmzaGmsD50tLXjhmszFBRHxYoLIR0TgYzbHW0TqHj3Dz5h1YXuCrkssoWa8dZ65m3HvGfWTca5zecH7xkEXTIKIhBI3JS6bTNOIpVUndS1TjySooO4vKMx4/OsMHjwCyomA8nWGKEik0wTvatmFxeQlREBm6dDEgRALCymQcnZwwn885Pzvl8uxsAB/i4Jg8UNwM93Zy4sPU4uHo3XVfDtBNAha7dzoYEe07JVuQIrZ+J0oilUCq14KWfRLyHqRcI5Qvtt73m3+dj7zjZ5/0Mq7rup6qeqoBStj6lQz5OkqoQa2THg8xnbhDDDjhcNHhQiKz+q1qgXRiP+QGwPaO2L17FAEvJUEpnE43rUFoQW4URh8Erck0fhLDpmKURKt01RqHcYQ0IoUDapWItTGlxkol8cGjlcQoRb1uiUMWjHcWrQTWB3rr03W5lojoGBlD1ziW5wsm9wqKIkcYuLxcsjlf4e0CZSZkWY71nkJnzKdT6nrFyASevXWEdCmoUIVIObaURnB6dsbjukXFEqUVtq1ZLgUnN+eUCi5XNefnj9C3TziaebQWqFyjgZdeeshnHp+BKHjLMyOmhcc7waoOrOs+5RAFhxnGE8uLgI+SLCs4Gt9C6hFt7Ti7XCOlIpOaV3zgct0yn4xB5bi+4XJTs+4jZ4/PwDs27YSsqIhRcfHwnKZrmZUZVSGZTyusn9GHiFWC1XrNetPgncBFwXQyYlZoxnLGRR05X15wudrQ9gGpcmbzGX1vcafnkCvG82OCEJydn9N1Fq0U08mE+dFRIhQ37e7YijGiTcb8+Jgsz9nUG0ajMZvlEmdt6o4Mh98OnIg9yN2OdyT7jsj2+b1V/V6ODFx5nRSgZCLWKikGjslg9DYAErXrnqTjGLknxV5VB31FfsW/aurZ/+x3sC97jFBPeinX9WWu/7E2FP/D9Ekv46uinmqA4kQAkQIATZRkaJRIJmgiQh+T66gn0GFp6TFolIBkeD803wcgs70qFEKgohhAzsAOEH4AKAKvJFYJlPIILTAm8Sm0kigF0Q/mGDJtCFqBlumM3tvAKgaqqMi0QJlhvh/DsIlICGEY4wiIyZXUe08IASnS+ymVyLxK5/je4bqeXGdApOk6qvEkbfTHMz5z/5Jm0zA+mlLkOa6tKcucIjPI2PKmZ9/EnUnO5vSS1aIjuMD4ZIIJDm1rqnHFMk7oY7LH7zaXXNQ9zz47Y9GDCFsX2ASyqknF2gUyHTHFhFs37zCbK4TfcPuZZzk+GlM3HVpJ6qZltVgSnOX45gl5liGkJMtzOhfYLJdMi4zZ8ZwbR3NChNOzM9pNw3Q8QagVq2bNcr0mq0rKskRrxappWW0aTs8uuHdzysnxnPHIcON4ws07N6jGE1adZVHXTKqMo8kEiEidOCCXvmG5fECmBc/cvsG67nj14Tm9dRwfHVHXNVFkSKV4/PgUKSXHR6mLs6lrZtMJRVmyaRNACYDUipMbNzBZxmKxYFRV6Gy7YcXh2ItXwMgWQMuB5LpV5iT1zjCm+Ty29sOnDgBm752idl4pB6nHKhGXlU5hmVJtx0AKqdSOhLtHJgdo6rqu67oA+Ejf8A/+/t/k5OeuvU++FPVUAxSLG7ooYLauJgJi8Hg8DNyTSKTFsqFLnRYkOrqUZCwEMg724AM5UB3IjqWIICJ+d7kqCULipSBqQZTJ8ExJUEqgtSA4TxgAjlICpRLXJfqIHWTMqk+PKe/pnafrXZJ2JuYnMWxTdEEpSVHmGKMgBvLcMJ1OcN7hQ6QMhs0q0PYtuda0TUdr+2F/8mRFxuK8hxBSKKFIfJuiMAixRkRBUWWE3LKozzlfttx9c0GpArcmI+7Ob/Fbn3jE5XLD5MYRpizwtmM6uovTLZvcUBUZWRZprWeWaUJoKXKJyUrA4x1kSjCfVxyNYCxTRyjLJGJUYfuWm5OcygSc7widZ1WDF57bt24yyjyl7DGjOYv1msvLBcdHx5STESZTlKMSozTN4oLLtkfmFU6kbb/IMuzqnIikuik5Hs0pKksXLVIGykIyKSwitgTv8XrMerMgV4LbJ0c41zEtx2Q64/defIXMFBwdHdG5yOnlGqMNJyfHbDY1eW6YzWeEELC9TZJjAcYYbt29i5aas/NzxtUIozVnjx9jrQX2ycV7eivDI69V48irHRT2EvrPRg0DK0pc5ZiIwSVZKTWMc9TQUTkwaBs6ejvS7TUgua7r+oL1ipsy/blfedLL+Kqpp5pW3kWHi2FniKYQZOh0iykeUCKJQI9nQ8eGji70ONzAB4m7E7yKEhMVOqSsHhMUJqqdE60crPKjUngliVqhs4xRXlJlGmm2JNjt+ChiNGRZShBWWpBpQSaTCVgIae0hCjwSH5J3aSQQgsd5n2TDMSCDZ1QV6EwRBHRdT9cm/kbw6T1CTAZlUnosHlNprHOJWCv2YEcJhZFQlAapFZebmk0o8WpG7TRn5z3BRco85+6NY95ya8Id05CHDuUa7hxPmBUBJ5L7rHWRru2RZYYwGmctRkkCCiIslys2TU/rIj5YctVjsETbYoQjK0qEUETfUMSGkhZEZLPZoGOgyEt0OcWpiqYLGKkwMmCUZjafkGUp4PH87JTVcklwHRJLrjUyprFRLwvaaBEKtPYQLN7alF4sBDIM7rKxJ6Do25b5dMQ4C2i3QnRLbswqpqOCvtswnU0wWuGtZT6bsF4tOXv0kIcP7rNYXHJxfs5yudqZsc3nc7Is5+HjR5RlQVkWnJ+f0tQbYgxXNv/UzRs6KrtR5BZEJ6m83PFOto8Bg+qMzzmCibtOiVTpONAqeZ0oqRM4GUBKincwKKn2QEhe5Z1s13RdX2TFyP/y+/7ak17FdV3XU1VPdQelw+N2suB0pZicNZOM1EZPEn86XPB0CHrR0wmDjY4gDLANHUxjHbE79QNiILwSh+6GQkgNSuG1wmuJyTQn1ZSjsiTXLa1I3hlx54uxNcASEAW5SR4cSQ6aQu8iSarb9g7vPUWeAQwjHYXtHL1N/IboHeNxxZlSOOcgKkIMaJ3hrcUNmum+qTm5NWc2n1Dev8SoBMOkFBQGCukojWd6fI/1ZsPLjx4g6oAt75CNJUZqZKWZTXNmE8Pb33zEsreMx4ob8wxvc4SK5HmBEJGiUFRlzniUowWgAq211A60CHTWUlUZWZ5jcoFtLUIKiqLiYhWIUmGyAq17vI0okeP7BW2/4eHpY7SUdE0LYhhPaIUXCpPnmEyTmQQq+qYFKQkRpjdHdD7w0v1HPPv8De7cvEs+GuODw3YO52PSy8a0AcsIUiWSMsCozMhER6agFx5Pw8l8zisPH1IUBbruUFqilabZbIhEbN/z+NFDYogcHZ+ktw+BzWbDyy+/wmw6YTqZcProEfVmcwWA7AmofFbH4ioP5UCZcwUk7KMJtz8jt2McJYeuyV69o/S+g5KASnrNrmuy9T85SDxm6Kxs3/+6vvhSLz540ku4ri9jLULDf/sn/hOgfdJL+aqppxugRIsl4AeAEknkVC0SHyVxUOLwfMCJ1FmwwmMHT5TtVaEaiLbpOvXA9D4KVAy752LUeBRRSpySGK0YZwWTMkexTzMeeK2DUdlgjh7T52mTcnsgJuVJ0xHROB/praUq89TxiJHpZETbLhECJtMxm82KzGSMpxPa056+dzRNjxhIwdYmYq0LgrOH50znBaNKUeZJFaSVJteSMvMYveJ4fouqLHG+5WxzTtMFTu4dMz0Zc/5oidSa8bjgxrQgCx4dU6BgNp2QZdlA1o2MZyXVKGM6nVCNcla93alATJ4htUZlBmUyrLMopSkrlUACYtC6SMoiwxhF13gQPUbnHE3nKRIgKpQxSBEo8pxMhiSZ1opJYVhohROCznq8r9HlhnI0ZbU649HZQ05OSlZU5D1Et6LtNZ6QiIsi/YMFHxNRWEKmJSY4MgmZinSxYVyNkDJgtMBoiVES8GksR+oseO8GqJCA6mpVs9lsEEJw48YNHj98RLPZ7I3Y9gKerf5m//0B4XU30/mco5yD9xi6dzs7/CHt+Ao4GbgliXMiEWoLPpLnj5AKpBru7xizn2eMdF3XdV0Aob0GJ1/KeqoBSk8CGVtzte2sXQ+kWYWAGIdnhw1o2DSSeVvcBbTJHTslAYcohvA3IZDRI2M63QcBFoEK6WumQWaKXCeTrxggTc6SrNR7TwS0Ttk54EmW4YK+D/TO0bQtRTFB64y+Sxt7ZhRCOEbVBEVksVhy9+5NrDcILSmrgoE5idaGvkt8FCkcRVmRVzmL5RqhAlVZcPM4o0saaIxSKGnwrufs0aeYzW6gdUlZjLk8fYiYzji5dxcfNL6zZOWUIGE6zjCFROUaoRxIKIuC8aSimo4oJznKZKgsJ8sMhRaURhFD6mgoo/BIVF5iu57V8pKIwdkcKRTlaIIyNUJGRiJHKM2sHPP8nWNcs8TODL3tEUJSlhot11ysIBMeVWVMxjnLxRLvPT4E1hcXTG8e88IL95iNFN73fOxTnya85TkKHXBhAAPDfhtiJHq3/UdEbhUvKpIZCAi0imQajBIYnThGiRydOhth6HAobZJSZ9PgvcOYgr5vWa/XFHnOWkrC4HFzmLdzCAF2Ix6uxjQML/7sDsZrfNN2CiD2Xby9Z8rASZESoZO0OIEVjZIGqa7a3DOsM4o9fPpC2TrXdV3XdV1/1HqqOSiBiI8ehyeIBFGSVfk+TC15oQyOnjEycF6HoQ5sY2nFsD3sLMCHePndRhEHp9kYcUAnBF0MdKGj8S3eJz9QH2JyC43J7M3HiHMOY8zOuCsiEm/DRqyHruvIjWZU5ikbB4ExGW1do6RkOp1Rb2qyLGM0HtF7RzkeUVQlWmtm8zFZVSCVZDzOKccZs5tTbj9zE+ctLjpms4LJKEfKQF5EhAZHyWrjuP/gJT79qU8SgmM8HZFXmqwccXz3FnJcoKoSkynmE83xPENlSbo9P54wm2YcH40IShCzgqg1oppioyTPJeNCYXuLB/IiQ2c5fZBcrtd4IlFKhDJk1QincnqVg5YYoyiykr7fsLl8RL94QHv6GZrHnyEsHuAW92nOX8W1S5RwFBlUpUYqgRt8bLIsIt0FNyrHW58/4eaNI5pmzf1HK6yo8DHZ1YcheToGR4x28KvxWOdAapQCpSDLS6xtyY0m0wKdXPPRmSbLDHoANFlecHxyAykVdVNTVSVvftPzTCYTHj56hNSa6WyW1DFi3/m4+su4b4fsxkCfg1fyWXeHRt3WyOdQprzzMzm0r9/yTnZjnW3nRO3GPDvfk9eMlK5HPK+vYt3wP/vt733Sy7iuL1P92f/pbzzpJXzV1VMNULbmanE34rkawqaHbooWqZsi475PopE7ECNg8E8Z7PO3J3oYuCT7fB5PUuJYKXBK4QT44IDA1uJg6ya7BSTWWUyW7Xr2zkc6G/BBEKNgvVojCMwmY5xNxNeqrOi7NL4pyglN27LabMjKCpUZqvGE+fwGCIXzjrIyjGc5eakJwKZpUUYxmlaUk4Lbd28wrjR5FhlPBOO5QGcjoj7CihFBZdS9xxGRBpy16KqgOBrT2Z6yLBlVJfPJCCU0PgSOZiWziWZ+MqMPjk4UiHLOxmVcrFaUowIlwWhFkRvG1Yiu99Q2EnWBqWYg05hk3bR0HrLxlGJyzHg04uRogrUNq3WHFxVRVch8gipn6HxCVkzIjMGHDutbYugJvsfHSDXKedPbnuWFt9zlZG7QqqUa5TiZUXceEbMBtIJ1iWxtY8RFT64iUio2m4YoNEIptClQuqCu11RljooOo9KoLgbPdDpBa4XJMk5OTsiynOVyhXMeYwwIuHF8gtaai8Ul1XjMqKqGTT9l24TtmOjgtpUbw1WA8lqVz9ZWP4GtuOtuHAYJXgkJ3PFOBGrI5Nmasx1m8oikRd6BFA7AynX/5PVVWK0Y/x/GT3oZ1/Vlqrf+4ItPeglfdfVUj3ggdVFCTADFiTB0RVKLXkdJgcYLg4gRTSLPaqHQcbiSFDLZlgsxoLVtmErcvbfH71xo7eBKK6Ukao3KSyajCXcnM46Lcx6ofuCfJPJljBD8lnuiidEREPhBfRQj1E1D1zYcHc3YrBc0Tc3sZMpmGbhYrrhx4wZCZ7z64BHPVzk60/QucnTrJlEpHrzyEN9bsiqnrBIPxEbFYrlkMi+58+xzZLKk69fMKkGmDdNZgRfw6sNzpIK8KOibhmBrbt+cs1wsMNUY1ztEmZFXOVkWGY0MKMOmAyUj05mmlTdZrS94dLnGyowQlzTWMZ0eUzw8xyjPKFMYo7m4vMRNRhTFMc2qxjer4aodlo1jZScUqsDomhuzEQ8fFJyendFNjkEW2BCpO0EWFVprmtYSAhS54XiaMZ8ZnHbcPhlx88YxMpPMTiqyTHLZdPQ2YjJDDBYRPVprVsuathqTZcdoAr63VFXBxeUlJs8Yl7cR1nP6+BJrLScnJzi7QhMYlTmX6zXz2QnPPpfRB+it4+L8kqoqh2A+Qb3Z0NYNN2/c4PGjx9Sbhul8jnOOvusGUJEUOWwzW4QgwfD0dUtWSUBl6O0NKCHGfX5fCiU8GBQdeKZsuyJqkBZrpRM3Seqd7b084KEIodgnGasdONlzYa7ruq7rm/7Jf8m9zYee9DK+6uqpBihyGJcEktrGx5D6FsOVqBaKImZEQrpyJAGWLCbXWRnlQdt6f7LdkhvTe3psdPQ4uri9eVQIBAQmK5nPTyjvCNwisFp+kk+2G5yTaV0x4gMEbymKnLZxBB8H+XAaB/kQWa1WPPfsPSbjEtvWSDnDZJr1esnNmyfcuXuby9UZnW0ZTW+yXNWMxmP+2J94OzdPTnj46BFNn0zBeilQWlCqnGoy4cbRDZrNhtFMMpqEJL+VSd1UlBmv3j/DsSb4wM3jKVJrLpcLjvIpTWMJc4GPkaIq8MIzPhrTR6it5/lnRvhC0rmOi+WSumsp8pxbN44xXvLiKy26rrk9V9y+M+XxoublVx+AkNysRoSuQ2iJ0SUvv/oq682SG7MJX/fsmKOZ4U3PPcPHXnyJ09MH9H1k06URTFloCqPxEXSA+SjnSE/xfsN02XDvzhHjecHjywUPznqkgstNjVSa49mMvtkQQp8Iua7nk68+pixzjiYlmWuZFIaN1Lz66gOyvKSzPYtVy2wyYVwaTteniGA4mlZcLDfcf/SAohzRtJbVas1kkjKOHjx8hHOOECLn5+fcygzHx8ecn59TFDnzo2POTh/T9ykMEfaH4uERua2rx2rq1cWBMJWmmFtwMjy//XYANsmQbWvCJnZjHqFkkhtLnX43xJYgK2Cr4Lmu67quz6o/+ZP/Jc/8098gBv+kl/JVV081QNGJBrsb8aQkna3VvUSjEskx7o3cSnKK3b1k0radq8eBZ7Id5bjocTi6aGlDRxt6mtDTeocKgT5GolSU+YjZiWH+Qka76VnUL/JgYSEIUvc+4n3LaDShaWq8T8m729a8FLDerIjBcXw05+IsmXfNj45Zv/wK55fnPP/CM9Rhw8sPz1huQMmcvq8RKMbjE4QwnF2eUTctRmvGR2NMkTGdjBHak0VD2WmqcUREgYuOdXPOyc1bSJ2xqh0gKAvN+cUZd77uWY7vnjCuDL7f0DQdbSdZnbY8d2L4+hfeRF4Yuq5DRsfdO3fofCBYy3w24tZI4i4Dz949ohIb3nwz585RjskLXvUR23VkOoIWSO3Jcs1oVGIyyXw6oipGxFBzclRiw3NcXFyyqh1y3aHzjPHIkCnwUSC04WhUIhsH8YjZ0YiTmydM796knJScXSxx3jOazJlOpshoads1CI/WBbPpiEePzmk6R5FlRFcjQuD4aIqPkcv1ghAUR7MpR0dTLi/PEN4SrCXPCp65d4uXXj3l/DyZwZ2cHGO0YbNZY4xGazUYCDouzs65fecO0+mUumm4fesmve25ODsbuicDS+kg+Xar5tl9/1m/CQczyd0jW+k9Ox8TubO2V7sOilIM+Tt65xorB3+UrXrnkCS77Zxcw5U/fPkYrpONv4pq9qIndt2TXsZXZT3dACVuYcZAgBUMrrBJlZOCAyU6SvLBtC0XmgyFismEKkZ26cVbwBDidpyzBSc9TeioQ0MdWtpgUdHTErDRE4VAS8OsKvkTx0f86ughj5eL5DI7WIfHkGz3pdJ0XT8obhhCBQV913JxccbNG8c0m4LFcs3NW7cZTWacnp4zmR/T2hEf/fhnaJsLvuEb3sqb3jxOOTXCMsorqvEtxlMI9ExPxslGPQqc67A+4qMjLyQxKhABL2rOzl+i63KclVgbuTyvaTLHn3r7baZixdKfEaMjyyAIh7Mg+iWFNDRNjXARUxhK1XIyHkOQKGlx9YZCbXhu1nFDFhyfjDA0FEpx+2SMbyXN+oLMSLT2VGOYndzkeH7CvPTofoX3DRUNt/LIaKJYKU8VA7qUTCYZVa4IMe6IrFGUKHmMaRLfZJJBefeEGycn9C7Q9y3L1ZLVcoGRfdrWe0uVj3j+3l2i90TXsF5eIrDIUc/JjTnTo5OUxxQ61utHuK5OICIGmtU5RXXEW55/hrr3WBdpm5b7rz5AmZwbN2+ilOby8hIRwXUdy4tLbt+9g9GKsiyRQL1e4myHEJEoxNVOyJYoywE4iXGPS+J+xJN4KGFQ3wBy6JaoPUFWbQ3atnwTJQZgMoAUmbxREBKhtkBlkCELCWl6+TlIu9f1B9av/Dbv+Dv/W371J/7Zk17JdX0J6mW3RtprNtaXq55qgJKIr3vfBxHj4GciBoJs6rCYIaRPINBC7bone3JhwON3F6A+BvroaLG0saOJHavYsIwN69hQxxYTesrgaKPDDUF/KEllNEeZoVCCLgyun4N7Z9PW5HlBvbHs2ZBiyN1Jzqm3bt6gmox5+PAUnW+YzU9Yrje8+KlXyca3kOaEzeKc//j7L/PgvKEsSqIKTEc51juKPONoWrG2NUUhyTKJUYLednTtBp1JhDT44FEagnXYrmO1bFmtSZ4to5zzizWvhk+QS0sxGlPkmuN5BVJQ6JaLBy8xeeY2XR9QRoKw0PcQPEJDlIIqi8zzHiMUqsxwRHANwvdIGZCZwnpFXhmq0lCZDiM2ySLeu2TkJiPWrum6NWJdE9Y1ba0x/YhiVqKHq3+GTTcYRe4UPvb0doFWGRMjqL1ltb5ks6gRUeFU6jHgA21dE6MnuA7bNoTOYgSI9gyh1wiVEyJY6+ldB35LYAUZejaXp7iY0UfFuu5Zrmq6tia2DW3bJNWWtengipH1eol72SUpuUwqM0K4Yr52JZAvDrTrPclk9zuwpYUPtKnBGflA9bPtnkh2XZPEvVIDWXborCiVwMj2tuOgDKRYKXfvO7R5rusPWcXC80uN5NvL8KSXcl1/xHr3P/0RnvnX//5JL+Ortp5qgDKwRYbRThiM1yIyKlRM6p0kJlbDCfWql0TimWxTe3ZURHz09Hi60NPGnk1oWYSahd+wdA2t78iDZRw8PREvA0Jp8rxgVo04rnLKXOH7kDYGKVASnOspioK8zOmaDkEi0EqZdpKmqTk9O+Po+AZZ2XF2vsRkhnvP3OHh2SmPL05BT5nfnnN6dsan7r/M8dGE0WyM79LfxbJ1nF7W5EZR5prJVHPjOEOrlk29RMiIzjXRCYQMSBWpKsNy3dE0PQFYSsfHHyxwm8DzNwxRtvQudXtMKREEsjwjuo5iNB6kup7eR8ajEXk2xAv4iJl5RoDMDHXfY0MNAmRWUpUjiAZtQBQFQWeILMOMpmB7ZJYT/BnoGiEl2hgKk7PsLJu2Iy+SsVuRGWLocT4SHQTX0m9qxlVOVuR4BK7rWC2WLFc1RmmU1knD5T0xWLx3BGdx1uKdR8aIjAJkA3IzKG3kTnm1jUjQUqCio+ssbe/pu0hwDimgt5beOq6MpkVylm3qDd3QmFDb7ogYiNXEPbrYH+rDMfva419s5WbbL/tOi2BQ77DL0xHbgEG9lRjvybF7k7bBRVYMBm1bIL1DPKk1c33d+Ier8gO/yt/803+D3/svrrso13VdX6ieeoDioscyGGohsUMIIGIY9EQ5KB22LYvhfC6GIMEYcQQkfndSdySn2S5YmtiziS3r0LL0LUvf0PkO6y11cLREnAwECUppJmXJjSqjygWNT2nGUqa2PcHjbMNkVAzfO0CiBp5Kay33H5zhYkZRTtmsTzm7OOcbv/F5qnnJ2X94mcePHjM5mnPv3j2C70BsUGZBkG0i5gaDxOAs1E3kfNXRNJ7paEWzWVMUSa2kdLKkM5kgDGZy3pMM5KznUy+dYieWUld0vUdIyappmeYjnIPpcYXvA6JKuTC+64nRoHVGMRrhnMf7RErGWtq+o3UeL0rINFpn6CxjuejQWUlWjcgLjTZp5CVNjoqSkNWILAc25EZT5Zp12+F6i+0NWonkr6I1MXqiSK69dVvTtQ3laAxC0PYtl5uadWPJdeQgRDh10LzH+4DrI9EGREjU67S5C6QcVDSkzKPhUEGKOHQntqnVEaMlIeik0nKRFFB9YBcLu6RiDo5NKeQOXMQYiSJyxb11eO3WzH5Hio0QQ/KUOQQ1gq01vnyNkmdIK1YCqfQepOxuet9FGWTGe4kxAz9GHJBxr+u6vvbqv3n4Ldz6rf5JL+Orup5qgCJJu4wbQIYTSQLsCJgYCGJ74k8+JzsibUwkRB8TSLkCYGIiyfbR0sWeNlha75LPR3C0wVHHHhc61rGniRYvRDK2UoIszzguc6aZ5qJ1O4JiYstGvHVo6SlyQx1cch/1niAEbRfxfU/dn3L79h3GsyOcu+RydcmN27e4dfs2pxevcnp2xrPj29x79oj5yZRs3LPaWJaXiq7WCG8AhbeBvos8fNzw4P4pk6rnRBuUdzsXUWUkto/kRmE0uCjoLDx4XOObwO255+K85+goARXnAy6CLkxy2BUh5fx4RZ7l5HmBrub4zqG8QjhP19Rs2p7OgheCKAP9ZkVwnvXGI7zgZCaYjRU3judMjmbkWpKpHNs1dL2ltY4YPVmmyDNFHwTBpw5CDBGUQGqF8BGtFK53rNYrqtEIoTVt07KpO9rWEXXE68gODsSADwHnPK6PBBtJ6CIBkKR6iUjpB/WT3CrZEUOmkpQRLQVaCYwSeAXOS4JMZn1i4IfAVYOzvcjmc5uxHd6Pu+8H9c7QQdlxULZgZfeDe4M2NRiv7U3ZFELpAbBo5FbBs+WgHHRShFBsu48JmFxPeK7ruv77X/+zfP3/+GtPehlf1fVUAxQdxODYGnBCEmQgxC0M8UTpCVEgoiSS/ExcdEQCymukkETBQIpNuT3EJKnto6UNlib0iQgbQITkX9IHhwuWdUhdFEfKNCnzjGx2xFtv3Obeg1Pu1z0hpg3ED7bqkkhwPZkusDrQ9z3OQd8FNnVMScBtysB54YW7PHvrGZxbcHZ+ilYFxycnrLuGmDs6vSSfGu49W7HaWJCRJRpXp+C3YqSJS8/54yWPH5xy54aiqALaRJQyRJmsy01mKHJNZiTegveR1dqRy5baTqmXa4o8kFeKoDxegsgMlanQEjIp6W3AZBJTFMisIoaOqDt639PajkXdcLnsOL1o+cxnLnnp/hprLePMUJkcLS1HE0NVaP7025/lxnHBc8/eoAoe17QoqSjKAmstF+ua1nq63mKs2nUUXEwp0II0juq7jr5rwRlWm4ZN42haR9DgdNyl9RIDwQesC1gbUligDxADUkSMEigZhqTf1O1KXRSBFBEtSbcBnDiV7isp8DISAgNt4+q2njp2Q7yfuPrEFsRs/2yHFUlqMzXcOeDLXnlteou9nHjnc7JT8Kg9OFEmkWSHW/Km2Y549uTYLTS5Zk9c13Vd15e7nmqAkk7UkQBIAi5E/NBFsSRugSNdKR96mkAkI6KFhMhgxOYHx9hkn2+Dp4ueLni8T+Ak3SB4sD6wiZ4aTz9IBpWS5KMpb7v1DH/8+FU+cX7JeZukzxGPiMlVNMaAc5Y8z2l6T2MjTQdN55AikolA2y5o24Lx+Fmm82d5fLrgY586pesUs/mUe2855s6zmlGxJEjLfD5ivepZLyJt51FKMqo0OpfU/UP64Hj1UUdZhmSrX5H8M1AonbwxjBK0fUDJ1Jvqe2j7jiJKjFRYCyIaQlDYPlBmmnGm6esGGSLTcUU2mhB1hlQtve3o+5a6bXnwcMVv/Yf7/P6n1zxa9CzbgIiBosgxxhOsQ8sVGsdvv7jmz711zp/9Y56vv1uhQxohtdEjVVK+tL6hs57cepzzaJUs9Zu2pesdAkEIAdenztflsmXTOLouErzDR4mWaQQSQyCEiHOC3oFzguiSR40UEadSZ0T7NMYRUu5GLLsuyy63R6BlTK9XAhcEQoKMV52OU+0hy2uoJUSRyK6DexuIoVty+Jqh2xej2HdQDt9byIEgK7lidS8SaBFCJJCiEzE2EWX1AUF263+yXaX6bM3zdV3X12C998X/lLf/3U9z7Xzy5a2nGqCkJOMk3w0hJsvumMBCQJGa8ZYtlHFDt0UJgQekP7S8Sr4RdgAnfejpQ8D6MFiiy2SHH5N7p4uBznv66HFovIIYJYKMG7Mb/Om7z/CRszPWp4vUPYmgtAYpiD7gfY/OFXmZc7G2dDYgZKAoNFUuKTNBs77k0UNFUT7HrZu3uHVL8PjiIcvLBUergiK7xc2bGegW5SXzI8GjBy3ORnrbU0TBC2+9ydnlb+Kl5/K+4MF9z3zUkxmFzgzKaLzt0SYlMxMDWiaZqouBx2cr3jKfcXm2QqicclYmMGNU2rzbhna1YDqekucjpB6BzIbk5PR3dnHR8P/9jVf4td85Z9U6hAGZSYr5nGf/9HdQzG8Tz1/k/MXfp1lZfu/xBW+9WyGzGdZ1aGnQSuGtJyKpRiVr6+mtxQdP27RoKQep+WDDHiPBe5qmZd1H1k1P1wf6PknREZ44BPwRU5fD+YD3EecCtk/dNAl4BZkmdUNiGBoLcnvgDB2bBPK0BzUE72kPyoMXIXWrQtw5v36uzX1LgB0MZIlbUHIAPOLB63Zfd0qe7fAl7sZFWyAipDjwPlG7DB6hUrdpq+5JzrEH451dkvHQ1RGvAVPX9Ycq4QVdtOTCPOmlXNfrLB8DL6/mjB5+8kkv5au+nmqA0kaHI/k+5KgkFI4Q0Tg8g+8V2x5GytMJZELhRaL4pRD5xEbYmbMFn0L+QuqqbOWdydhNIqMiBoWLIvFfosMGi4/pJJ7nBS+c3OLrT+Z8YlVTO4sIiTArRNyFDvZNizIjpuMJtl8mPxUVyLSgKATaRFbrFS+/8go3b9ziaDbizq0brNoWaQW+iUyzY6w453x5hhURjGfTbOis4+7b3swzbxrxmfsOKQP1hWax8FxceI6OBEokJUuMAq2TB4b3LqlqlEALaOqIm3msl8wnBqMEudGMq4JRnqE8RFswOR4jsjE+DEJvHwn9hvViwX/8+Cm/+YnHbBCYsUJrSZYpZveO+fP/i+/iW7/pz9EtP8ZHfvUDfPi3Fjz88O+QjyrGJzNiPMU1jr5L45tc5QhlyLMCNxBbg7MQA3legNAEWmTX4HxkWXdcNJ62jQSXuirWB4QXCDxq6AYEH/EenI+4AC4pfxExDtEFMeXuRFBqC1IEYVC1JLVWAipaC3SIaB3RQeCjILp9x4VBHp/8Tfbsjteilx3rY6suFnvjtW2lYzwBcMFWBZSeSNYlgyJHDnk7ctstSSnGYnCRPfRIEWo72tkatSXSedyuTQwU2esOyh+6nv+xf8+f+IYf5GPf/i+e9FKu63XW/+XyBUbvvgYnX4l6ygGKpXOpi6GBWjiaaBkLQzZQaFXcxsIHYgyIKDBCk4tIJjQZcncF6ga7/O3oyMdkQx8IiAAySGRIIAUSOOmCpw1go907d2rDeDTjzmhEpQVdkIQQCD6CTid3HwRd5/DNGpONmM+mtO2ashCYLKI0SC2QRtP3HY8e3WfVKNbrgIsZMijwAu9gejTik5cvcZEJHuqWlxfnVCanDhc8uHzEaKZpFh2Z8dQOVmuPdRLvA3oYDaQNOkAQA0dBEGxAKoV1gsnEYIzCeU0UGXmWIYXAdZbgIkJliHIKOkcohSKwOj/nt37nM/z7//AKUSvmY0PXS/JccOOOobrpuXtH8effeof7D1+ieW7Jpz++4DO+o3WO0dEc0/cszi44u9zQ9z2m6BG5QZsMokRpgylGqKxKG60HpCYESec8XddzurFsmkAKmU7RA96l3CYhE9Hah2FEGCIuCFxInjAihkSIDQncBCQ6BpSKKSpBJZWNEgxjHdARjGIYDaWE6+BF6qIctkI4pJ4ObZMrm/5VOupevXM4LEqdnh05Ng7vOXRNxCA13kuJxVUeij5U76QkYwaCrJSH/JMtQElrujr6ua7ruq7r+tLXUw1QlrHHRkmLT1e40bKMLSOhKdDkKDLSSCYGTySgUWTRUOCoRI4QOdlwsk2b11Z+zC7FOMYIXsBAlBUxJR77EGi8pYkeF21KVpYSkWmqyRFvOr7FjerTLKwjoIgxJGKujBDTZzjn6O2KrKg4OZojRYeRDiFBZwYpZSL8BoGzG5aLmsfnnrZf4PUFDzee7J7jcX/GWet5ZSWIusBqy1n/GW5IQ340Rd4/xZjUublcOFYry2ScYXxACpV4NdahVERJSYx+CIgTqTOlQJiK4xu3mB2NKasRVaZ5fL4gOkUxvoEsjxDaEGNPvVnwkd99mV/88H0a1XPzWU0fJYuXHEIZqhsV5YnHyvus7H2W6/8JVX+EqZa0m1Nqe0zUiiwb0wvFsuk5v6yxomU0LhhVOVFLxqZA52N0OQHpCNYRhCQIw7rzLJqe01XPqvF0vdsBBCcGmqdKG3gIKQk4DAIeH5LsOoZECI0yDsKeQFRp9GKICBmHboJAiaTkMTKpeLQWaC9xPqJUQhBe7JDJ1a9fzOBk6OTsHXvS9yExva9kDO74JnKfTrztlKit/4nUKGlQyiCUgkODtq3V/dAhirvMKnadnut8nuv6WqtFaPhv/z/v4ev4lSe9lK+JeqoByiUOHzUtjm3Anw6CEkElNBMMaYgBMqYrZoOiGOzZkjcFIMAIhRhUIC6mmw8eH33KzokeFwLeh2GsEOl9oA6OJgiscMmDQ0hQObqK3Jsfc6sq+fSyHdQckd56vD+44hUpFdj2G7KsZFTm5FmGEC4BBl1RFBoZYVRlzCaOR48uU4KxXJGft6gLi5pLKDJylbHebIiqw20Cp69qhHUD6VPgfWTTBNa1p7eBzFq0MUlayuD3wdaNNNI2FnVzwuzoBuVoSlGmDohWmhAjzsd0NV5OQBcIEZDe8+rLj/h3v/UyfW659UwgYnl8ZrAWogR1MqW403Buf4fffCyJq39H19xH+9vgI8JA19eIsaaYjlGZobbw6rIhrwM3jyXTScGk7wi2wfsSnZeowiNaj4uSRQunK8/FxtM2Duc9iaqy9xEmJp5GiGlcE6MkBE+MAh8lMSTidAxpNLeV9qYRSkSFiBjAjpIKrcQuwNAEgdVgghqCIdMxsOeavHaDj9uGyG59+67JIZa5GgyY+FNDGrfYv/dOvbO1td+ClW0woDKDikchlUFIPUiP1QBO5U6uvAUquxWl9tOX9Pf5a61u/r8KfvbPnPC+ydmTXsp1fZH1qot83X99DU6+UvVUA5RH0eID9HiCiLjUiycHpmiOCZgIyRUk8U0yNJaIFQEv4iApdhToRH4lpPTiIRjQBU8IYKOnDxYbQuIqhMR92QRPHUVylB2ubYWUoA2jvOIoyzEC2mF7G+w1hvC2iBICo9KmHWNP0zm0KhiPSpRJHReTGXzvyI3h1knB4zPD+UXP8qylKjU3KCmMAhx122FbSzEB1Qa6M5u4N53B9QIfAl3vWS57bJ/GGEqlUQaRgcjp0doQnaUsxkzGx5R5hYoWLSN5XqC0QYmA7SxFrkFKhNIE2yKd48P/8VUeLlccvTmgji2n54qmD6lTQ6TJFdVYs2w+ySdefpXb/X2UEQSfiLVaSaQEU+SMjueM5iPyy5b2oqFpPMeqwqHofRq3EFqCN+TFBGECfVyx7iKXtWPTOLwNhKHzFWMYFC5pmKfYSmjj7j8fSaOZlB5JEAMFdVDUCBkRYbjJ9LPbPVyIgSgb0tjH60iMCu/T+yWQsmN07Mc7Vyc6+4r7LwmID+qeGJKMnkT83TFYxFXXWDFk6MitB8rOjE3vviZwcrWDcghQhBCfpUG6Bih/tJr8d7/Cv/nbf5z3TX75SS/luq7rDVlPNUD5eGgI0RPxEFLbPpJ4FbPo6ERgFAWFSG6ykkghHE1UlMHQSUeHo0YjgkAFgRlGQk3o2IQW5x0EiQueNnTY4HAh0IZAFxwLZ9lESY9P/BXFcIUryE3BSTWmUIpFG5Krp0p8lhgDUoESyc1V6HTy986zWtUE23N8Y0JZFMxns0TCRDA/atH5hI99coX1AWU94bSlZ4N1PeGBZFKmHBzTRTIT2XSSbi2wrYAocT6wWvfUteVonidwQlqfkgJjVOJUlAXPPnuH4BTdekE5G+O6gMkrdD5GhppRnlEoiD6ANCAc61XLb37kU5wcK6p5zoXswAiCSAnPnpxFcEwzQ+0a1otLJnFF5iOv3n+ED46izBhPJqjCUM2PmJzMqc7WHB+NaV0ajWXlBCc6gpBIHPiOPipiNqUTl9TdOXXn6K3fGavFARwoKVA+7kiyV/gfW28S0kiMEFJXQyTllxRJ0SMHkKJlIlnHQUUkB5m2jhETBilwAKMjISTJ+SFh9nXVQDTZdXIiKVxwK0lmqwROIxkpxUCOHUzadBrxJGNBvZcWq73NPVuAMhBi90Bly32JO67LdV3X10r5GPiv//O/heD/96SX8jVTTzVAuYx9UjDEdMJP9uSRPkqsEDQSjlBMUBQiomKgjYIiKlrhqaNihKNEwyAdjjGgQiRGTxftcD9Jbpexw4YeG5LD7Mp7Rs5yGSMb2eFiwAuPFgEhJVU55+uPTrhZvspp7Qhb5ZAELwfOQiYoKkWWCwKK9arDtrBuPOF8jQ09zjYcH02YjDXHM4VRI/pNw0c++pj1eaBaRMa3kzusbgQ3CgUEwkZio0U6yfpSsFlbohNECW0TWS0c9sST5XrYgAJlLsmKpFJ65uYtpBT07SVVecR4WpLlhlIrjPAEk1PkGaFpEMoghMJ6eOXBKZ+5v+Et3xApDFx20K88QhqigjgF8+YZ8bijbVbEKgMxYrFR3H95SWU0z9w+ZjI+xhQe16wZTQvu3Jzjo+Ky9RijmVUjjJJEhg03BqRvaWqHkyW9KOldjQ+DJAcGDlDysglyGJ0MwAIhcUOnZNsNST2WvVW9CCCCREaQIaK2Nq5DZwXiDkxqCUYnPkvQEhcTwTZGwG8bI3H48S0YYC/TCen5oCWRAFEmMCKS9ixGQdiuf1CbbX9cwuDzslXq6J3XiVQKpXVS8hx2UKRGCL0b74hdS2i7pkNRfiTKa4ByXV9bJX7lPz7pJXxN1VMNUKAnxuT4ubNsi5GIpBMaFz21kBRRMouKUigqoI+eDBhFgcSnzgEpg6ePDhvS+/rokQiyqHZX3mEYAbXBsfY9C2dZhMBad7Siw+KSBbzU6KrkzvwGt8qS32eDCxH00M0RSYZqcslorMgLTdt7TCdxncO6ZDG/XrcpJyYEIhPmsxFV5fjGb6xAzPmPv3vJ+rylrSWFNmgRkMqhjGCxAcYl3gkWjy19BwgPQtL3gXrTYfsK30lEgCJTODRlUTAqZogA56cPOc4EgglFrpjPRuQmOeIKoahGIzAGo8C7lti3fPrlR6xax7PPHLNiibjU9AuHcIlkOp1k3DgylJnHhI71xRkPNjX3P6I4O43cmpbce+YIU5YE0aHyimo8ZXbUcb5qaIOgKHLKQlPmFXku0t+3qcBb6m7D+eUCIZMcue/sMAqJA1F58BaJ+07ENu5gu7kL9l2UsG+noORAng4JHIRh1Jfy8wZ5sIxIse2iJLKsj5EsaKKKBJXCFYFd1yN1X/b8lLjLvtlzUbZf92s//D6J5veW+YcjnjQuk0rslDvbToo6cI6VB+RYMciTt3+m7fRJHKxVym2g0XVd11d3fcKuWYVrz5qvdL3uIfIv//Iv893f/d3cu3cPIQQf+MAHrjz/V//qX92ZZW1v7373u6+85vz8nPe9731Mp1Pm8zk/8AM/wHq9fv2rDw6ihdhD6NNXLGARweKjpY2WRbQ8xPEgWu5Hy0PhuMCzjp4kDk4bSiYNudIIKekI9IPDrB9IkFqkE7qQAkTAR6iBZQgsfc8qNHSuI9ieaC0iCOam4lZRkukhYG1QB0FIfiAGEH3y7lCOqpIUpR7UGZqulzx8WPPJj59zcV5jbY+Sgtm45E++/QZ/7luOePZGRRYU9bJndRnYLBT1UuAaxeYisrkICCvJpcHotAFZD3XT4/oe17TgE2gyWlPlI6R3uHqFDJbcGIJzGCXJtCS6jtB3GARBpMA5QsB3Dc1ywcsvn3K2aOnWEeENooloB8oFqjLw/D3DXVpObMNMgYk9F48FH/9ooKktd27OuH3rBG0ESIGUBqUkvWsJwuN8R2YkBEfwLm2eOgNlaH1guWm4uLhkvVqTZQVFWSWZ7MA29SFl7yTpd/q6BQByIJeKARxEEnl2y0lJPJLEpUnfJ+XX1itlm62nhmwepQRGS4yWaK3QUqEHyS9whbey9bu/Ap6G70OMw5GaQEwIydMnDC64W8UZcCAxPlDySJVydq6EApodKVbuuihyz0HZmrRtAYvYutDKHZj5YusNdd54A9WvvvQm1qF90su4rj+g/ub/+r/iv3nh27gaTX5dX+563R2UzWbDN3/zN/PX//pf53u/93s/52ve/e5388//+T/f3c/z/Mrz73vf+7h//z6/8Au/gLWWv/bX/ho/9EM/xM/93M+9vsXEHoJGkPSgSWcx2K+J1PJOWbuKVkIfBZsISwQVng0ujXWAOZIxGaUwGGlQbOhDj4gBLSRGKTKh0RFaramUplIZSuZ0AZbRs5Ab1qzIESiRIVzEIJhkBp0uPQlhkKVKECKgjWY0zshHGmc99drTt+mPEEUaB6w3gr5xvPzSJb7vuXkyZTIrKQrJN7z1mOfuHfHw8Yr7Dy5ZrxwiKHIjOZ5JqjK5pz4473j1NHK+TiZ1MUDTRjbrhjLL8Ra0yKnKCbL34DaMM8lsVICLBCsQDnzbQ5HjmxqpM7IyQzQdMXqCt5w/OuflVy7oOrh43DF9NoIVZCFSisgztwXPnXiONyvoG7xf0V96PvFbjldeDIwywze+9RluzKfE0BC9o2s2NPUGiJRlzkwYxmWWHG8F9NajnUOrQB8Em9bTtY5m04M0FEUBMdLUdepcBECLZJgXIjJs5cJDB0SkjJ2tn8jwL7Z7vQ/J20QFmTopAcROehtRbCciYqBGy72Kx6jkuaKGsdFOnvPZip6UaLz18RFDNMG2qyOQ7IMCtySZbWqxEolzsnWQ1XovLT7M3JFSI+Sg4JFqGPOoIW55MGXbjnm2bZS4VXp98dc3b6jzxhuo3vRX/gP/79+/zV8ZL570Uq7rut5w9boBynve8x7e8573fMHX5HnOnTt3Pudzv/u7v8vP//zP82u/9mt867d+KwA//dM/zXd913fxkz/5k9y7d++LX4xvIOhhtLONLxMgFBGXrv5imtcTAkEogpBYBG0IbIRkQ8rTuUPgnlAcxYKJytBI2thgZY9EUESDlpIsCrzpcVlLzC2xs9jOsQiBs9Aw86vkvSIylIvYaNFSoYYTvlTJcRQhUBKyXJDlAq0lUgRCLmgLgcnTBrZ1NwXJo9OO9dKyvGi5e3fE7HhEWWbcHBluH2e85fkJ61VLtJZcRcaVQoTA+cKhlaDvO+rO0oXk7dI0kdUyUOXgrWY0HiFjQNmaSSGYVQajI65z4GOSbHtP6DqQgtCsGY3LNOLwHb675Pz0jItFx82TOW0D+VLiWkMuIWrPbC6YxA3iApwQdG3gpd9xfOYjEVdH/vjX3+Jb/9RbOT4aEWyL7TuaeklXN/StxXlHkeWMqoxRkWMyiTQQkNgg6IOkd2EQuTi6Ltnhl+UIJTX1ZgXRp65JVMO4JhCC2HU1BMkCX243Zhg6WluflBQWGAaL/C1wGI6+1HQYNnSNJGzNAGMkBImParDVH8z7hk/4LJDyOSgecWs8KAbTN7FX9+wOf8FOVnxob58CAQ1KDl91NtzXu9DAbQbPjhg7jIwYPiM9NKiQ5BcPUN5Q543ruq7XUd/xke+heuViCFW5rq9kfVl0gr/0S7/ErVu3+IZv+Ab+1t/6W5yd7XX+H/zgB5nP57uTDMC73vUupJR86EMf+pzv13Udy+Xyyg1IAMXXw9dufwsd+H7/feyHUZAHPMn83tFgOYsdr8SOz1DzctxwFltcDOTCkKsco7I02hGSQmSMdcUsqzjKR5wUEyb5GEzBRkjOfM/jfsFpc8HFZsHF5oLzZk0fAlqq3UXp1kNDG9BZRKkwcEM8SkeyLFKUApMN7p0y4oDGwrIOPHrccf64ZX3Zs1pbur4nShhPK0azktE8Ix9n9DFipUHkhixTlJkm1wKNQMRI13lOzyxnFwHnMoIP9M0ag6PUgnFuyIiUmSRTEt93iOBxbYtvarrFguh6pAzY1RnN45dZXi4Zz074E3/s6ynNBHeRIV2GjJoqM0xySeY94dJx/umej/1Gz+/9VmSzjNw5HvPnv/UFvv4tN5Eq0rY1bbuh7VqatqO3nryoGI9L5pMRo1FFWU4oqzlFNUfqinVj2dQt3m/TqQNdW9M0G7I8ZzI9Qmo9jEniwXgkARUIBxyOyIAlgYEsO/Bt4+BnEg7fh5B+RoCUEj3kERktMEZijCLLFMYotBls5YXYvWca21z1PtlmRG1dcK+MfGLcWe2/VuacZOyHCcZDB0UZlNZpVKk0UhqEMkg5eOEMI57tSEhts3nEQVaPVLvR0JeyvtTnDfgC5443UP2f/s//+fWY5w1c6//7PdwnP/Wkl/E1WV9ykuy73/1uvvd7v5cXXniBT3ziE/ydv/N3eM973sMHP/hBlFI8ePCAW7duXV2E1hwfH/PgwYPP+Z4/8RM/wY/92I999hO+SUluMLS4hyu/mPKN0+MqmV+IYfQTBQmkpA3GRslykJV21NQEnsFzJJLMMrW7E/cgikghDEGVeOOQuWBdWHTXU9s1j0KPth2x72l8ge4Di3rFyvbpqhx2VuPbSZRUafOKKimIjBaUpaK3ka6NCCVRCNo++bEgoOng8WlL1wZ0Lrlxc8StWyV5mZFnhp5A3/WEkJKK0VuX0KTsSBofsC7Q2pyuL4m2RfqaQnqkMUgCIngqnSNkQAOx68E6XHD03hLEBmUiSkmaxwsePlrzmU9dUOYz5uOSu6KnLDz3ujmffnzJ6eKcftNSZ5oH93s+80rPgweO2AnefHfOX/yzX8c7vvVtjCtDu7mkWZ3hmprV43MuF2sckqwaMS4KCiPSRppVyMwQgK63rNqO5bqlaV1S7wBE6NoNMURGoynT6Zz18hzvE0HaB4H0MZnlcCim2Y5MRHKAjamTEiP4LaiIKcNpq6TZ+pvIwWwtKpLFvUgjGh3BhIi2HqUFPqTjdftz+2N56IpEsQNCPsaUijx0UUJI0vmo0rp2Ypttt07K3ehmm8GzV/ToxCtRCgaDNqRO6h152EE5bOSk74LY3vvSAZQvx3kDvsC54w1UN/6vH6T+u57xk17IdV3XG6y+5ADlve997+77b/qmb+JP/sk/yVvf+lZ+6Zd+iXe+851/qPf80R/9UX74h394d3+5XPLcc8+B68AeuF3KdLIdzEiGrnnYSUyRavfabfBaINJHwSJGahlY4HhMz3PkHEdFHgNRBKRIulChcrKoGWcF0oMqLbHr6Pqex21H029YdS0n1lC00NQNl73Dx/S5avA+QSRFiNYJrBijMFphseRRkPcCZRJgkQrqLuKsQ2UKHz1tHxCbSLeMnC86Ls8Ljo8yprOCqsgRJsfJiLMWawO297jeDbwKCTJQFSPK6ojLizVG1JR5QGVpZjAqCoJ1SCkp8gwpQEtJtBYZBYGAzCT9ZoUUitOXz/jkJy94+dMXWLPg7r0TvuFexTPPzIiF5nSx5DMPz/nYq5d89NUNl48bRrHgrTfg2bsz/uyfegt/5pvexrP3bqCFo+3WrB6fcv74lMuzJbbrmM6PmExHjPIMX9e4CFZJZCxwUfBoteT+2SWruqO3LnE8GOTCEfq+xXnPbDphPj9mtbrEB4sMkSBjijKQcm/ItmWlHFAwoth3N8JWSRMEUe4VOAyaGobwQIEcxiZbHgtkJmBdSk8OPh2nh2nEW+lxIKK23icD3yTubIiTn04McgeuEIfeJ2rfRblyOxzpHGbuiB042ZJiD6ZXw59s9zH7ROcvQX05zhvwBc4d13Vd1/WGry+7zPgtb3kLN27c4OMf/zjvfOc7uXPnDo8ePbryGucc5+fnn3f+nOf5ZxHm0g924IaTpJSkP87QIN/ZcgModgP77f2D5Njt4KcTgXV0XMaOxzTcFTm3haaKEWRkHRyWQDVcZWbaUOQlfVlh+5ZFY1lR0/qayz6S1ZFm3fFKU9P6IVM5BFARpUBrgLRRRRso8gxRKIQIVE7SjtL4wLrIaGyo1w4fwQVB7yW0gc5G6joS+5bFZcO4WnI0KyhGOc5B9JEQPL6P+OE+CMaTCZPxjIuLSzJq5iNF6CS9DzTS0pYWEXuE9YgqwLiEAME6QOKDRZiC2Hf4KHj84Jzf++irnK4j05HDbCTH42cZzSbk04rJtGI+L/mWP/0m6hhpnUHFguBAK8l4NqEoSqToaOslDz/zGV76+KcJLoX3zY9PuHnnFrfu3KVfr6ibGpMZVJ7RR03dWV5+dM6n7j9iVfcEt+9IxIGcHHH46Lm89MyncybTOfVmSQwudchIHYkQt3yL5Gkihdh1VRJBdWsxn8iqu3HMziE2/axQg40++25ECBKnwRiNsQ7nJF6GRKYNYi87FulzlBgkx9sje9dBGf5wIZFvB3rvjtgrDrN3hpFOSiveEmQTD2U72kmS4gFIbTsobDs529+Ug6+CwY/ly1NfivMGfIFzxxuszrzg1rVq+w1Xb/vZv8Vb/8WvPullfM3Wlx2gvPzyy5ydnXH37l0A3vGOd3B5eclv/MZv8Gf+zJ8B4Bd/8RcJIfBt3/Ztr+/Ngwc/UJei5IpbxNCl2G0rUSRnLiVAHOrZBVuDLYaUYhvhHE8rPAupmUdFEQMlIkk7o8FICEYgvIa8oC9LurohGkWUkdr3KOeo+5bH3tHFCHKwCxcDwVAEhIxkWZ5s3gkoo4gRlHFkBVQBrJMILbA2EpyktZHcgDaSLE9XuT4EFqtA3UjarsWoBi0URgqs92yaSNcHkIr5fIwpCparFa5bMZ4kwOT9EJCH5nzZJNnx8YgiSmwIKTBOCAiRrumQIZJlYrjiBo+k6x3r0GA3GUoEsvEMMz2iX13AqkEHxXFZoPKCgESqkiBMusrHsTw751O//0lOH57jWo+1nvnxMUfHx1STMUoJMiPxZUlRzcjHcy43jvOzJS89POPioqbvPGk8F/ebqkiTv+gDPlhW6xWz6YTxeEpbr/CuH3bewUpeDMBEyCQ03ilZ4m7Ms7/ts5USgTWATOBGqIFs61NnxviI1QmU6V13Iwz8l93Ru7dE2xJSDh47hAwHg6HdY9u1yoGHsvNC0Qqp5dA5STcGOXHqmAxJxkM44C6U8EBldKWT9GUMC/yynjfegPXD3/if8j988jrj5Y1UL7s1+YW4lhY/wXrdAGW9XvPxj398d//FF1/kwx/+MMfHxxwfH/NjP/ZjfN/3fR937tzhE5/4BD/yIz/C2972Nr7zO78TgLe//e28+93v5gd/8Af5mZ/5Gay1vP/97+e9733v62fib0kAsLvyTOfRsCUR7K5cEyfF7e+LwzGQTD/DECs/SDA20dEFySWKCkEF1NFhZc4IiZKRqCI2U/S5wVUGO1L0VpG1oBS0IlIjCEahY1LuBOGSZ4aSKKN2jqXJYi4tUWtBWSVDL1+npWotcEHig6d1gcxDLpI9vvNgbcqQiSuHRGCkZ1QqQoBN4/FIxuMxpihZLtfYek2mI0bpQT6bQNqmj3Q2JHGtasmzCpQhSokymugdrg+0oUMGRZSgM4WUEe97RJ7ReUcQAT2qEOMpVZbjELhuQ7vpkE5QTqagU0ijbVbUF+e88smX+dTHX2XTOYoiR0oNSpGVBZPZnMxogs0RFcPfnaK1Na8+esiDR+f0jSe4xBfaphOnVsdwzEQIMWD7htUqMp1OKKoJXb3Ge7tXw8S465pswa4QCZHEAy7K4S2RZVPQoGAPELYjkwh4FTGagTSr0S5iXUD4YRQ5HJ5yS9TloKvC/s+wNQ0Uw3EcBjdcIcVubJM+X+26KHpQ8qjdiEcddE/2QGX/O7MbVu3/Ig4xyesAKG+o88Z1XdcXUX/pV/8mz/0f//2TXsbXdL1ugPLrv/7rfMd3fMfu/na++/3f//38s3/2z/jt3/5t/uW//JdcXl5y7949/tJf+kv8w3/4D6+0WX/2Z3+W97///bzzne9ESsn3fd/38VM/9VOvf/W7y8tth4TE4DsY37ClhMZA8hffnlQ1B9ep7ADKEBwXkRDBIVhFyRqBFpGlEDTRcZuMClDS4wx0uaItFfVIs+4VRacoW4/XEpcphI9In4h9aZYQkCZdXQfvCQR0ZnA+mYcJAZkBmwm8E/gA1ga89wjAC0FjA9ZHjNRIEcmyNGZwPv3ZnPdIHen6yLoL5OUYaUoWyzVdU5ObQKYVvRV0vScGSS8gOIuRicsQRcO4krTW0fuQJLNRYHtPs+7AZ5hCY7RgXCpG+SCXdh677MiaHln1uOAYjUY4GfHthtXZivXFBqENbd2yPD/n8vEZ56cLWg9129M7z717d7h56xaTyYQsy9Fa0g/8EB8jIgac71mu12zWDdFFRCRxjIa2RtyanA0kVjmMT/quY7mMTKZjimpE1zY4112dDrLHuluscOjeuoMOw2a9tTZJgYLsQENEDsGBHh1Au+RNYnTAKo8TDABo28jZk163qcc7b1vB7rOTymeLKZI3ytZsbtc5UWpIMVYDKVYdGLJJEGroFO1HSVd+zXY4JO5WkUY8X/yv6hvqvPEGrOgDf+63/lf86p/6fzzppVwX8CutR39w+qSX8TVfrxugfPu3f/tVxcFr6t/8m3/zB77H8fHxl8hcKdlgEUPqgkQOCLFi4KUMI5XdpW6SkhLtfs6+2xUkia8CRL9rsCQXUkH//2fv34NvybK7Tuyz9t6ZeR6/17311KMfQu8GYQTDmBZjRtiMhEcYA8JEmDASYTzgpkUYhGcICMIMM2E6BMNAGEtoPDZMEGMFMxiBsHh4GMDNAD3AyC2Q6AcS6lZL3VVdVffe3+s8MnPvvfzH2jtP/m61pG5RpVtXfVbFqfM75+TJ3Pm4Z3/zu77ruwQeOiFmZRTl1Amdy6hP5AY2i5ardYfGLavouDdAe6ukQcjqkV5JzoCOCzpV84gIHlf0ITbpNG1AyMRoIkr1wjgKw5CJsQgsR0VypmvMmD0m86k4W3sDMllxvXmDLE7OyeJ4dHnF9nZPF4Tl0jEm5WYXzWBMdDJx8yVF0O0dw6DEmIkxkRS8CkOMDPsRlxOL2OCd48Vn1rx0ORpw8I6bRzfcfOJjLPpbxt2G293Abhh4cHnJ7Xbg+mbL9e3A7WZHv48MY0SCo10tWa7WnF+see6FZ7i4d0a36mjaliYskZVCvkb9mqhCjEqMOuFUBcg64dSDdqNO6VJM/JRh6Lm5zpyenLBcn9DvHUNfSz6rnkQAS/XMQcFBfHJomydFtHHQohgr4r2lTEIQmmzOsm3jiNExRk+MvuhJMlIzlPUyFnCSMQihZTtFcSKHZUV0AjRu5v4qlU1x3nrzuApUDuCkimQPtBGTjksrYKsg7WfxL/Wt9bvx1gsdB579vQne/6RHcgyAP//av8UX/Mkje/Kk4+nuxaOUmkd3eENzofPDIcVDFf2V70w0fkkFaS6rKIBGxQBK/VWWQn+rIzvhhpGoytIJnVOci0iT2HXK9cqRomcxwLBXzk+EZlScQiIQs2kTQhDw9uOv1fW83qaLoAKuEZbrBhFluB5LLxXzNDWtiEeyY7MbQISsZvi26RMepXFCFsfp+Tn9KFxdXdPvdwSvrBeergsMNyMx2t2+ioK3vjQZaMUD5kbaNJYqyDHicib4wGZMbOPIGEdYLjhZdawbx+VuYEiJ62Gk3+3hpVe4urrkZj9yuev51Ks3bCP0MfHqw2tShq6zFETtC7M6PeG5F5/l/N4afKJdndCuVrjsCO2KoelxzrMfMg9vNnYMtICIXE3hpaRkdAZQKL1k7PQ6hHEci2W6slytEefZbTeTUFYK1tVcroiSk6tiWVsn07qz6tQjSkr2RNUaCPpsvihtC2NUmphpx0QM3gTN5fqsXIaxIopTN6X/jOezsnWn5dIVKZj8wJ4c7O0PbIpMXidu8jdhEvHONC1iQGwCfHeAyeOy2WO8EaGf+jRf/hfew498y5990kP5vI4f7Hs+/H/+GpYcxbFPOp5ugJLBfp6tSeAk5qjURy63nzV3frDEnASR04oKLX/4sLAzdZ1S0kDiSQ42quwUnEuIT6CJ3Cqx80gX2CwDeeXIa8+9QWlRUgbpM43zSONwwSp6ko5ozgTvkWB3silnssuoE3yjOG/b9w6a4BnUmJV696tEK5HNyn43suiE5arj9OycmITNzSV53LNeQOcDi5aD3gKKt0dNVZRZT9Xu/EUZY0TVvEYAVIQx13QK7MY9uMCz9xdcfnIg43m4H3ntasv9E+FqO/Jos2OfFde0bG83bPcjSYWoQhoSbePJqUc0sn7mnG65IOWBtl2zWJ/jw4q8uyKNGwRFxz1jr1zd3LDd9laJU0Unhd1QnelGHr+Bl8KsZCHFyO3tDVkzJ6enZFXi7Q3V9t6JmDapurjKTIPCfPK260pzLiycXUci2czbgrnXNklpG09sPGNwNF5I1fi44GaHlocUP1pXk5DT+17AixDEHIoP4MThxOMLOHG+gpIDUKl+KfV9Lf9Gpn8VMt+3u/CkYuljvHGRNxu+6O9H+JYnPZLP7/hkOmf5fUdw8laIpxugTGWOcnhMv57z5R7/3nxKmYkLyAf9it7t62NmWiA5lUnJkR2koEBCNFnr2s6jnYNlYLvyPFgLPjYsfaYNgm4SISltA9o6CAauMpExKc5lnDjUgRNP0kh2meUqsN1Fxgg+eNw+s9uMpCjmCqoNookmZJZdYLFYcn52Qc7K5aMrGhc5ObNOyt5ZhctmZ6kx5zKpYrRc+r9Q0woJ5z2DZvqUaJPHiy3jnKff9+gYebgbWd5b8/a33eN6E8k5cb0dePV6zyjC9T6zGRz9ODAOPcuFJ2nGNQtCF7i+2bE8WXN6cYp0gRe+8AXOzs9YNpHzszPatiU0K8Z+x75/mdjvaViQB2UYBvrBOkAnzVOlSYVgWgBK0vklUNMhlH0FjYnN5hYFTk9OQeHm5hbMr7V4f9TraUK5h+xHSZOYR0omTwAlI+LwZQWqSsqeNmVi9MTBE4Mn+mjEXVmfF7NC86j11hH721WtSfmsARo4LGvcWknTYSyKhEPKB29reOzfyRxkZWr2Sid51zyVVX1gjvHGxuJv/zPe9Z2/mw+997ue9FCOcYwnHk85QKnMiHInjWNt1FApwtcqplXlMHvNGRcOqZ6qU9FcgE44cNyCUfdlvSYSFJOttDCJcZeYnmQUtqPjZa+cLwMnK+G5505ZRWGZRhodcHmEcUAGUzikCOJs24L1q5HgCV1ifeYY48jYZ7os5OjZJyXmhAO6xtM2Qte1nJ6dEePA2N+wXox0rdAGIScT3KYMCWNq5vNUzop608QsWs96FQjekRG2w4CokoMQVImq7IeRlDIuNJysl5yfr/nyt4289uiaRdOSM+z7xM028eB6YLvfsVg5Ts7WNN0e8Z4xJs7OFkSE8/unXDz/HN2iwbnMc8/eo1204BqSQG5a2u6c3Fs36f0Y2e4Hdn0R8aqxDjqxJjqxAJOmek6klUsoZWs8SFJ221sEWK9PUBXi1TUpDYeDpAbQKKW4Qk0lMq1YS1GOai4OwqVCLHuCV5qgpOBJIZEKkxKjQ7IjaULUQIYTSw01RfzqxXQovljqewdBlCDmEhycw5eHczIrlfYHK/tZlc405Pk1ILNjBpP9vu3aQbMVjwDlDQ8dB5qnu0HzMY7xhsXTDVAmtCEHvcmU8iifK2W2SNXCtXy3zlTusByl0icXEHKnTKGUJUuh7uuttCvbkcr1e+gCRI/0gp46tj6TA/QBdDOg6hHvCE1nbMnOhJEuK6MmNJmPh3O2fWmFHEElI87cSMes4ATfOojW/G7MyiqsOD2/R+MzY9qw6GKp1glFBxEYorLdj8XALE8Td+UeUjaVbHAQGs8I7IZUAEpGkqPF0jw4h6ZM2zqWi5bVsuNtX3SPNI70Q6Lf94gmlqsVpyGwf5j5yQfX3EuecbtlfbLg5HQJ4rhYr1menOKIBMmcn1zQLVeE7gTfLlDfIK7DhQ7XdsQ+sd0PXO8G+jEdTNMeu0Kq6LSedbIxJsYKmODGeZkATc6Z3W6DqtAtVizXmZiukTxAkcqaWqmmjw7XyQEQle7FpRw4OBOxVjF2UI9vMj44QnC0wRG9R3wiJplkUV6gcRBkLpgt7IhhY4ITGicEMW4kiMM7sYe4qfHhoYRYDtf2BPB1Ah8TMKnkYiUYqcvWz48A5Rg/vyJp5v/56XcDj570UI7B0w5Q5oo+CjhxFThUPh7QjKiV0eJSARmVbSlaE9SAB9HAzNzkTepywqHh4Gw7dfrzIEHQ1kMM6LIIEBvP0AnpFvKYyPuemNXuqltol42JFfuIG815NOdMzNlEkgJZPK6BbtmQUmIYqrZBrRxYHV275PTshCYkhv01jUS6xrFYNKZhUTXn/wS1qFRULK1TNCjirHmdC4JzMKTMkJTNMLLpEw6HJMjBM4gH38CYINm62sazfu6c/abndrOnaRxdCEjr6FZrhiHyyVeu+eTLNywaGHKPtAsWSwN5q9NTVmcrVs3IatHhmzW+PQXX4jHdRHKKDw159Gz3kavbPf2YjAWpbNfsacYFHKBFFbiW02pztkymazln9vstGVgsFqScubm+JuV0+P5sfq5NA105fgdflCLa1YxzxnwYQHGE5Kyqp3GkxpMau27EGxCuYtimABIPB2AiIAWENPUhYmDGGdPiJ6BS2BRKekfcAZdMhyhPjFA9UpN1jBYwN/uCYj/mx3jj4/QnE3/h+lm+5ey1Jz2Uz7u4znse/MojOHmrxNMNUObVO+ImB8w7Bm3VJjwXjUkFMhNDUh8FoGgCjQcDOCm3sqV5YJ3opnVNVT4CXu17jTMWJbcQBFkKsvdoyIxEditlHyE3DSE4QlZ0O6A3A+wjcR9Jw0jSERE18aRa2iq0wmIpaErsisNh9p6TbsH9i1OWTSKPN0gazazMwTiY0LYNnpSVcYzkpHgndG0gppFalYJaWiljqaWUYYzCfoTbfUIkkIMjS8PgMj5EXGgIztM48/o4P1ux+LIvZNv3bG63BNcyRGXIyv2Tjre9eJ+XH1yimogZHl3tONM1i/UCHxasViecLBLLkyW+6RDf4sQX47KMOEfTrhj7yO0wstn1jGMiZ5teJxnSDMDOpJ9lcp3hF1EDajNg4QQ0J/a7DU3KLBdLVIWbG3OdFTHGqXYVvsO26aSNNfv7AlDAxLY4IXtH4x2pcRA82nhy8EhIuORQnVx5aASCyAF4OClNJ02nYqAEWid2DsQZm+I4pIVqqqeavxVmZOJM5C4wmYOTqZJnFgbwjgDlzYj1X/7H/Ie/+pv5lt/0nz3poXzexS/9W/8HvoJ/+qSHcYwSTzlAqZb1pvDUKWUDE8MB3BHQ5pKmEXfAJnVGsdmpiAcKiyLmqKouzNZdGRaYLPZL/ad6hVZAA0KLBgdRCr5JJJTtQnmYYOE8y2ZBi6c9he5CkMEeeZfZbzfsdleMw44+DWafHjJtZ/UcwXv2veLdinsXJzgdyP0GKYADcfRDZhyV0IJ2hr1SSWl0Cxiy0icYeqsyqk7t+5gYckPCc9snwj6D2zNkx7hqGXyDbxqapCxSYt16zpctq8UC33SszgInzSm73Y7Uj2QC+z6TvZAQNCuvPbpmteoQD6fnJ5zeO6fpAierhuWiwYVAxpfaFYHi1JrV+hFd7ve8erthN5j3Si3emXv1mScIaLZUR2U+ctaJYJOS2jkAVmNXDKRE9rsNwxBpF2vOzi64ubkkj2MRilJASramgdNsXliWiUVJCIo4xdeyZ49dH8GVZ48Lgi86oXo1N0bCGYviDsDFYcCkEaVzZbkKWKSyKMW4jSpwtf2bugvVLGjZ6wpO8qx2J0/46wDCMkqsit5jvOHxzr8a+SP/k1/IH33uXzzpoXzexJf/hffwlX/4n74OjB/jycXTDVB8W0BEBRM1xUMBIG4mPpBZWgem2+XDbWTJ9sx0K0VUq9PEVYWzeZqEJt0KpVOyL7Nk40EbuzOVTEwJmkTqIn2O3A6Zje7o454XNLDuheUGQi+0saGVBd35KeG0JeeRGCP7/Y797Zbh0ZZ97q3d/LMnODqGfovkgRCUOFrvHNMyCF1r7ENW64zcLh0uKy6Z5qVPDZtxJJVpyWUYMvQJRhx9gs0Au9jTp0AKp3B2Cllw256uaVgsPIvW0zUN3je40EDwLJxDQ88wJMQ5LnTFfohcnHSkvAYPoTUPlNOzc5555pyTVYNIIiNWeu3coYoGYz+uN1t+7OWX+djLD7ja9qSspUUBTCXn5TyLFrGpM5bEXHnT5IsiCK4ADTNwmzFrAmRlHHrGmFiuTjk9u2Bzc0UeB2sRoNZw0tdLquLdAk5yqQ4TybiiQwkqdwBKBSmu8fiYiL7oktT0J4G6mNTqYNOnCAQvtF5ofFlGZHquzrKVcRGnIAZFrPtTEXyb1y5Z7WrOMrP0lwJetObCSrsAjgDlzYrmv/0B/ptPfdURoPwcxpf/hQekGJ/0MI4xi6cboEiw2ZQqQHRTwc0BoMhBTjIj+u/E9GZlXWb5gUlBmkqap2x6+stSPSr1+yUlFATVcNCvFO2Binmd5D5zmyKv5cgiKwnY7yNdTPjbRL6JaDJvlLZd0CwaFusVZ88+Q3ph5Pql13BJ6doVjx7ecHuzwTs1Ka/AmDPDLuPxeK/4nPA4+zsImhxJzDAu51QmJVNDZlVigj4qfcx477jaDKDWeNAtYNWeowT0ZoOGzPK0pV0ucM4Rh57gGmuQFwUdHGm3I+fEerHg4t4pLz+4YblsSzpJWa5WnJ2vaRsYdtdWudSsymSfTIBhUIKc4ep2w4+/9AqfevWG26053LrqHFyAh8mRLK2RCvugTszkbjuio3ULDsGZr4gzXYeUMmrTXRSfEIVx6LlJmfXJGSdn52yvL9E0knM9t49dVmVin0ziCiMHpvUJ3oHPaHBoqCkehzQOnzySsolgxQSwTowhsTJxG1fjLfVjoMQRnPWAciWtU59FKnMy50sO17exJJYgM9akiGWlvq6sihQzunxkUN7kuP+/H/gzf+Md/J57P/6kh/LzPn7pf/wenv+RH3jSwzjGY/F0AxTnDxoTUQQ3GYdNtpviD42OJ6CSD8CD+p5nqsQB7NDUH+C6bKYyJYemclKWq7186kQkNlMo0GabYEXMICtEaCIpwmtJkdHzBSirlU0EXb2j3ybG2DP0G9gKPFSarmO1PmV9fkZ/m3j5pQek3LM8DUhOXL42sL0U0gjDoAQXcW1Lr7DSzMnK7q59UHzOZFGudok+qYk4UTrnWASHy5k4KvucSDHiXYPowNmpEvwJo3ds2xPiWjh5vmFx74R2uQTx5EJe5QS7XY+o0K2XuPUJLDLPv7bln//YS4RWOL+3pl21tK03sOA7nBN88CAD4pbgg2XWWBKT47XrWz75YMvNrpQWO2+dgRtwWXAR0AG3cIQ2QONInSMFyCnjbgPcCs4prhW8d0jOqCZ0TNY7CVDncblM2F4YYs94c8nF+pzT0/vsb67Q3BtT4pxlELWWGJd0SQF9WXUSuVrhV2H8QjJA2wguOdzoaLyxdAK0TmcVOsYE4SorZAxKF2ZiWRzBeXwxYHMqODVwIlp1OpVFSQZb1JO0eJ5o+VSyXdnKBNYonyUSfTrebb6ZEX/8J/hEfx84ApQ3O04+ldBx+JkXPMbPaTzdAEVKQv5xsd5nsgyt9D8FwUyOo3la5ABY5nfi+YBPKvioVDcVnNTIh/c9TJoVKa+dR61jDmry9wAAdmRJREFUINKMMESGMfGamCbg2RSmySRkb7u1B5GMSiSPoMkqcVyIqFzj2xu2lz1DLyxbj6jgnZm+xaQ0bcvNfsSRaEOLd56mdagI4pSwj2U3lUXraJ3QOcdpFzhfek5bTxsc0iYal3j2ouH5s8C9RaR3K261ZZ8jo2sJJ2eo8wTnkTTSx5F+2HN79QhInLhT/Pk5q+dfZPXKBvnxl0gusFgsWCwaskvW4Tks8aFFnTOWxjcYl9Az6J6H+4FPXQ9c90DoCEsBpzQrh18JTVBkq+g24jpFThysA7JuyI35iix6hZtkpdudo20DjCN5N8JNhGsT60hjehnpE+wdkoT9MHKZHnF6ds7y4oy4vybn0SrUHXhX9Btq1WKPW+07jy3oStOj4MhB0MZD9LjGo7GIajkIZENhT5wvrI7DWBPvDJgU4W3wbkrv3LE8mcaRpxRPZcxU7P2MpXcSmZQzyVGSP1UYa9xL0kSvxx/0Nzv++S9V/sQPfyn//v1/9aSH8vM2Pjxs8f1RefJWjKcboNCARCbKuupKikzkkLEplTvAofqmmKppOihDJ7OtmmuvpQ5z+kUPy0zPwtSksFYQwcSamErTlcYpJoY0GsNBk+hD4kFT9C4inIrSpYiPHpGMJLX0TPa0zZIgjn53A+y5uNdychLY3UbGraD7zOmzDbvtyNV1ZLkMxGi7GbwnpkTjhLZtaBeOAc9qFRnGbP4ZxTa9dZl14zltYbXwtOLpBM4bz7OtcBL3nK0bbsPA9eWWq2eX+PU5XfDoOKJjhnHkdjfSS0D7hNyMhHNHs1pw/wu+mC+8uqYJwhe8+Awn9y9AI5vNxgzFfGTZrcn7SBz3+DaQx4Gr655PXo58cjPSd4FwsSJrB0vBnTrkFGgU2SWahxFHJp3CcK+hP2vZByU5BxH8Ppn2onOMXUBjhKs9i6tMeHVPGBTXONQpaT8il5H8UHBbJaXI9uaG5vyc5eqc1G9BB0s1Og5sXLkcDRhYibIghwykBzG/esQLEoTkhezt2vOqpjMpNvZV9Ep97e0RagWPczNhrJZLMCNSy+lz0docWETVTFYhl3Rb0gJQyOVvLdU9h948SSNDPgKUn4v4b3/RKZ/8gX+DP/0F/8OTHsrPy/gt/9f/I1/4t46NAd+K8XQDFA0H3CC1/sBMzsot30wI62b44jB5GBdfgEr1TqntW6cGLmqMi6spoJnYtioiK5NSDdwqSHH1FrawPd4hXlHvDaAMEVxi75XXXCaGTApwRmCR1SamQXB0LBYrGnFs97fkvEVItD4gI7QtPHvewItCIw03jwbOrnpQJaXAGIW2UUt3OY9rPe2i4XzRcf/hyM02MiS1fjYO1q23ElWNNGrgZCEeryN52DA8fIWwv+GUHbmB82efozm9R0BJes0YIeF49WrLg5cvWXnHKjmaceS0CSzPLrg4vWCxXNK1C2RwxDSS/EBYLgliOgezjo9oHhnJPEqJR8B4doqXntD3ZK/ElSOdOYa1I0sk7COrewPNoIydsrvfsL1YsG0cg4cUlTAaqM2N4LqGnBLcbDm9GTm551nsFRcc6jOyj7gHka7tyQ+EtHOklLnZbvAnp6xPTsnDLTn3VtFTGvAZgyHIXfVsEa0W3xRvIlkDKKZFycFs8n3Wqc+OLxkh5wqYcQ7vzTU2FK+USa+C+aAIWHqnbFfrtTp7XbiUIvY1IBLJJFGSZiKZKLnoUYpGSRN77d+0f9rHuBsf/fol/7O/8uv5O+/6a096KD+v4s88egf3fvSYqnyrxtMNUAgcRK3VQO0gAjx0civLVEakpnUqppks7gvLUbUk1TulmlIkZ8u6YsCGMBm3TZ2RYeqgXKtAClgRJwaqHKapcB5cQnzGNxkaGBeO/UJYNIlFs0K2A90I57omjMLm6hE5NzhOER1xTslDxGnCe0e3MMGn9w3LhTXh2+4jKQWSZkIbaFYdbtHiVguWCPde6Hnlwcjlo4E+woASvHAxeFaNECMkD1kio3pevbrlteuBexcX3Hv+Ps+97XleeMcX4k6eQcceHQfi7Q37qCCeOCZyt2I7OF791CWb+DK5aelCYNF4fNMwOshty+m9Z1mfP4fz3vobeQdNS3YNt/2GV7aRh6eepnmR83TKOFyxz3vGRWZYO8aVZ9QE2z3jxchizPSSuTlruT1dsG08Owd9SjTZGK3ceFxoyDkRT1sW2x3nFw3nA3jvQTJhTLTPRZp7e8IrC9xVj7/tkdvEMGxYdCvWF+eM/YY07ijyWJMjqd41RSuXhSulOM6bXklC6UHQeFL0BaBAgxRTNmNHKjhxE1NiAtmmVPbUbjtStdkTWDeNDZrQ2j8KR1I5VO+gxAJQYmFRIokR63M0VfrkRK/jm/GP+hifIfLNDc0ffCd835Meyc+v+E//u2/kK/7qsTHgWzWeboAiTeHIHUj1/tACGkpqpoAUUUGlVNnoDDwA1ctbyKhWEzf7rqhJAqfSVS0gY2JKKntSmZp5OqgAk1rNYbx8McwCFQ+SUJ/J40gKjm0KZA8bRrbieK5dccES9sruZgMnS5quxWvC5URQxeuOPiqbTeLyskeBxgmd87SdN2v8UVEf8F3Adx7pWnKzQLzn5H7k3rOJvlc2NyPDmHl023O6cKyCJ+iIBMEtA/sdXD7Y07SO0+dP+YIveSdvf+dznD73Am55Dm6L9FuGITNs99y/OGPhIPiGREPTdtxue3IXcKt7pFXHNgSSDqZ1CR4lEhGyb6zCxXl2KfGJYc+PCbxyEognLdKsaN0Ji7hjZE8fRnadkkTZNrBtAqc5s3ORqy6w6Tzb4BmdYyy+qniHhoB33pr4LTzXi8DVasEiG0DxXlhmZbnZ0z23Y3E5Em5G/NXA4tWecBXJBLT1nJ5dEDcNw35jPZWcOZCI1OJluz5ESrNCZ12SfXBI43EpQxPIycCAT5lQNdelx45V8DA1/3POlWaCtQ3gdOXNsLoewMnEniRQb94yYv4xSZUkVqETyYwaDaBIxlx8LGJOjPkIUH4uw/3YJ/mSv/o7+dhv+L896aH8vIg/9OlfzJf9l8c05Vs5nmqAIrJAnSL05iALJSUjB1aEeuc4d46tAgBX2BBFUjYRYy6TippEUWv1Tq6VOmJ2+ZVFqaWjQkkPVbfa8j4GTibhLYq6GYApYCkLEB1NaItwsqFZNKyHjnGbGOWWRlrCssHvE36MkAY0JxxCm5Tt5Q0PHu7ZbTNdJ5wsHKeLlrEfEe8LlhO0bekBUiT4gF8tOH9hxWYbGcdEnzP9qDzaRe63mVYTTYZ2EbjcZEa35st/8Vfx1b/8F/JFb3+ei/trfHeCikdDgzRLFosVOUaaZQcvPoNvl4TVOdG3bHrF+RbXteiyo897+rgnayTj2AeP+mAAxXkGhEfa87KLvLpQLhvHNidGn4mtR90a1YZt3nDteqJzPFo6fIazDL0TrhtldKlUp2Burs4bY+Yh+yJJzQFkya5bMIiVDjfOsxXBnfTI6YKT5yNdH+luR+69uqO5zeSo7LcR1wun5/fpbjqGzXUBE4IrjIeBk4yIt/cB9Q7xkH2Axpg7E7IKMkaqRaDZ27vJjVYwXxuKrb1TV6rpCwiq5nXVj0UTTlNp+xBRnGlPsMs2A1GUSDJQoomBsbAn1SnFYtRk3j7H+DmL9OAhX/1/+lf8mr/0v2XzH1zxgf/RX37SQ3pq4y9cP8sHv/VduH/+g096KMf4aeIpByglxTM1YatVNlU4WwWxNaqGZM5wuPrJTG9SJivbCJPBhSpWqkFhUXxZTWkeONWPymz9dbs1/TQDRjWb5AVxnYk7Y7Y72SwMUfmx4QH7zSUn+z3P7Bzr60yzUfyYaMS0BdJHFupZn53ifcftVc/N9Zarq5HdxvZnsbKUiYiw6JRmZR4tQ07gHIuzJet7I5vbgTgqmpT9kNnuE0tVznyDazqcW/G2t72NL/vqL+Xtv+Cd3Hv2nG7RoT6UZoYOXfasnnuesF4i3uG6JX51iizvkcOKtTpr39OsiK4hD1uGuGfIPWPcEWNPrwODjqQsXKfEJ+KWn8gbLhnoXWbvlVuJJDHh5rWHn4iR7TiQvKUoxGe2Egs7UBIYpvAsbFd3OP82sxuz4cWurRDM78OZmjU3gdS1bFGWOXOyi/h7PW7I7IaBZrtnuIzIFTxztmDxcEG/vSzNHx1JlEbsynKikw29BtDk8AHIjRWDASLRqppKcx9Xqr1EZtd00bk4tNjYH/4p1GaGFaBrTuQckZTMf0UTqo6srghiTYMSSSQSI5FYGJQk9V9NscTXRDqmeH7OI732AP/3HvDK7/jaJz2UpzY+PGz5r77+l5Ff/siTHsoxfoZ4qgHKgsBOnFXvSAEPkwl4SfPUqI6xd8Svj72e3GMzSHgMaJR1pQJ+ql2+KwDJFQGKb5gca4tvRPmiPcQqekQUtWYq5eOEamIviYXzrEPHJXse6RU0W74gZZZbxamCd+b74bzpE0Km00jOeyQYIzP0sItWKpqTEDd7fApIFmIY6ELAuxYXhEGU1EJ70bG4WdDvEhqtWV0/RAYci7OO5567x/nqec6ff4bVaUuzcITFEm3XJAlAxKe96Tm6BifL0vLI2UQYE+pGCAsSHmkCfYrcyp7LfM3teEtKAzmN3MSRjSiDCJ9OAx9LW17zkWs3ciuZR5J5oCOxMF9OPfs8kuIAuz3EoXiTmDssUQtQKCDUKXQ9QoP6FoiAm0ppK/hVB9EVE7sCWlStV1HuMv1J4lYzLmbyvuf6dsv17Yb4MPL8+QXLVxzx8pasSjtZz9v14xyQisNrEDNp42DCJt7jmoxPCUn5AExKn6iJEPSW9jng4YMY1yp0LB2Yc9Gd6Aga0GxAODkliyeqME7MielOBmIBL3Y9m+DX0Eqq/aqO8XMeX/Yt/5zf+t/9ar7nS/7ekx7KUxc/Mj5LfPnTT3oYx/gs4qkGKM/R8YrAvoATlQCM2C91MVord8Z3KnJqafFnekz1yWkGUErkQpsz61qSpRjIVqallFuIfz0ImizxD63tpx4+oriY6ZqWU98R88hl0xPXAWlWPGoTXRdYnAjcJvJlz+Z6iw4j2g82iWlmEYTQBp557oR43hH7xGazR5MjpkwcEm6M0A+0jSPulX5IjDmjjdCuG3zniPvRypKzkrLS+cCz95ZcNwFR5eykIwRIMeEbB2FBTgOp3+Jvb0nXj9A0Ij6gXcd4+wj0Er8+RU9eJDUn5ARj9gws2LvEbVAeMbKVyF73XA17Xok9P5l7Pi0je+fZItxo4jaP9BrNz0NAvVraQnfI/hZNe8jJ+u9IcfqtFVW1PULuIXf2NwVwTrroAgiaBioDU8rVoyo9jtY3pNCiKjgV8iJxs1pye2/JcHJD6ga+uH2GVdOQrq/N46ZcEc5saxEH3iuSBWkMnHgBFwI+GfBxOZknS2X/svmZZCkdcwTEOxNh1w0Uv5NcgEnOCSnPpkMZyRWgZCVJIiGmO5FE1CKMJVkLBDmkIxUha7Imicd4MpETP/jSF3H7jj0nbvGkR/PUxP/j6kX+63d9AXC8dp+GeKoByguuIws8AHbANLuIYwIqVR8ypXWYAZK6JqlK1tnnxsbY2wfRbLVZsWqesnyW4quemHr+VDM3YQZUOGhUJjdbJpp+0S640BWxj1w2mbjukCYgw4C2kZs9uDyiu8gyKO2yMQHnuqUTZbzew2jTyihGzavLNMtAMi97QteyPF3gVwsS0Pcj210kJ2GM5mjqO+vOPCbogV1Wogq77cBVvuWF0zPWZ2uadolKaWyngg8dtAuGbNVDqpEUR1yMZAW/XKMuoBrp445BEhvNvLJ/yCfHG15jx4Y9MUVu08gn4oaPDRteyQOXXom+ISpFqzJCNk2J+ftnnGaIA6IDDHtUR+smLMUQzXkIobBWaqzVMOVTrLJqdo2YqNoVPbUr58ujogwqXKOMCDs8C/G44BncAm091wI3XLEPmXe2Z5x+OqC3W6vsKf2iJrErgsvGojhx+ODwWQgJfLZSY6kNLBU0J9OVkM2fRI2Nc6GAlArCJpCSSdlYFM3RTOWyN3CiELOScYwOY1BcotcCTkRrh6bp34oqxBxJRx+UJxpv+80/zL/xX/97/LNf+efopPmZv/B5HH/k1V/IDzx6O/k37kEfPenhHOOzjKcaoNx3LVmsLDIB/cRUuAIOxnJ3PGNClJlgVczRcy6crULZKmgVmEzdyvftrrUsV5sUapkoczIRrVnJHqxXhIOWBQ5sDiDiOGXJWheMmrgOI9HZl3LOuBgZ2PFIExsie688E+A0KCsJkM1OfthHZBxxwdH3SuwVklq1RzBHVNeaFkJTJCVhjJkUlRgzcTSzunbVse8iw25kJ47bpLyy7ckfvyQ8t+CrXrygOzlHfWuslQtkcVYV0nSkbs0uQxMC6hVpWpxr0PUF8eScISW2aUPvIo/Gnlf6R/zkeMmndMdWzEL9cuj5+Paan+yv2UkmNh6kBZdR7SFHJGpp9yvgjfUgRevd0w9I7NE82vlrHDQBaMCV9J06SAIx2gNnGhrAwGYs57GcRbUiXNQASyRzo7Cx3tIEAtllvChpGXhwf8FV2LIPmV8sp1xs1qTrWyTmSTTrsZSPOPBNSdtJQ1ADKT5D0JLaK6BWkzEhKVvprznBiqX+QoN4XwxTiql9YVJSSmgqAtkcyVmIWczvBGt4GCUzplQSO5koNeVVhLdYL56YRsZ49EF50vGO3/JDfNV//rv52Df95096KG/p+Jt/6ldx77/4wJMexjE+x3iqAco9WZjzpWXGeU2UcQ5QEFSKCY8Ck5tmEbemChjqYZiMUew559ezILVSpz5KKmia2ETsTjdbpc8EZipK0TrdaelIG1jLgnXu2OWRWwZGl8vkOAIjSXr2oQef2DcZbQW3MnaHbabfRthEGufxXWDcj2y2AzkqTupdteCbFlxgNyoaIxGI2ZGzEsdEHDMpgWs9zbql7yPbaHftP/Jox0PZ8su+5lnuv/PtsFgxlt5HtucJKWAgdS16viY3pg0afUNuOsYQiHlgFyPXceA6X/Hy7RWf2D/kx/ItH/cjDyVx2+/Z7Pfc7Lbs4xb1Cm0DdOAz5GhAZCxpl9ZDU3xHklU3kQYYdlD7a0R/AI8uQGjAtXZOjEYAZ/12pnOd43SNqDg7J3kspzEA3iphxIEkhmJ2IprRIAyLlt4pox/wXvma3Yp7JyvcgxtjxYo3jwNowCdH8IHGdQQJBlJUCBx66ZCNEck5knM0kBLNZDCLM8ataZEQps7eZmOvpkfKCWIk+5HshZghiiOJELMyipmypZJCMut7wVFTTNj200g89uJ5S8RX/K7/H1/xx97Dv/yWP/ukh/KWjF/1Q7+RZ//pw2Pv7acwnmqAcl8WOIGAo1UDA6+IdRmBmSaEPAMnFIQwc3ydUkA17VLBR2FkKkBROJi9lfekCBJrj55cWZlo6/eH8mKoFnB2J+olcM6KTgM3umPrRhK5iCAj+IQELUNxVkAUHdsIlzhoHGMDaxwuJcZ9wg+gyZxqY8qICi57m0SjMI4DNA3OB4ZoYuCsQr/N7DcjacgQHe1yQVpldtc76/7r4f4zF1y84wvQ7pybMdMsBMkJP+7QPFhVSNUwnK7Z60DUTBbPLif2w5Z93rHJynXe8mB3xaduHvHJYcfH8sC/8iOXjZK2O/LtBt1uLL3WipX/al+u2ITEaC68OEgtmizFpjoi4x7yiI4RhkN6DskQMlKuehWPUS/lvJbOx1P1S4olRZhNU4Qa8CGCOGOPpAEaJuSJs5RSbS7YtnzyPDB2Cb2Br1o0PNdd0D64hb4v2m4xcOICQRqCa2h8hxdPEE/A4RWcih3jZMAk50xKIzHGqZRdvcM1wcrKJxalXJpayuVzIuWRnCBJJhGIwCjK6DLRFXv74oirQFZH5ZZUMzklcjpW8bwlIie+9D/8IO/a/G4+9J7vetKjeUvFr/+RX8vJ72tIH/rokx7KMX4W8VQDlAuWNEAjno6AAr0oVzhDy8UrQqXS9XDowVPX4mz2FV9SO+mgIZlYkvIsB6q/tHelmrNpdZ2VetddQIkUUzcx3YmKouLxeC5Y0annOm3ZuMGAlWJN5KrmxQPBodkhLZCEiHAbHNoLY1BGURauo30tI7cDjW9xS/Au4ghoFjQpKcOYBcHh1RH7cvctjnGAcZ9Io+IyrNYrOHfsNwMxK7JasXruHvsRXnn5ETpmgjrOTlbgekgZzZFRI3vdMebISKTPiT7t2aJsVLkZlcsEl+PA1XDLJ3fXfGxzw6fTwKMwkjqHDBHdG0CRnNFlARJ5X8xAsjXTi7W8OyNiZc7kHt33yDDAmGEs58sJBAOQpjUVm6y92mfeF28bDucchWgs1pQWyoMBJRFwjaUQJdnfmgqQwcYoCZwSHbyy8PyLEIht5kvWHV/ctqweXJH7wfQne3BqDIr3DT40NK4luIYgHoelhDQbQHEpWlfmFPFxIJdGf+pAgjeQEhzinV3O1AyjGbalbA6yKUPOShar5kmai2g2o+XaFnFIbcipguYCdI4+KG+ZyPs97/iTP8j//K/9r/noty/5sX/nzz3pIT3R+Ds7z3/ym34L7uEN6Sf+5ZMezjF+lvGUA5QFS3E04lngCSpE4OMol2rumFq9UKY0zYz9qCBFCvNRAces07GkeBBjwoxtmb58WGd9PelY0qH8WItgF/AqnPoFi1zBya5U9YRDJYmUSbXYoeM9NIKUCXYQSF7ZexhwnO5hKdks78WxWLS4tmHcZ3IE3wZz8R8iWVzpWiSMOeNDwDUNfqGoRFz2uNZSDNIGJGfa0w63aLjd7Lm8vKRtbL+348CiVPQEp2zGHY/yDb3ekiQxCvRppEd5MPR8fLPlE7ueV4cd+7zjerzh4faWfhhRl3GtAY487mEY0X4sLmoeQmVCZsc4CEhCtTEWaxxgN6DbaBPoOB4AysIb41EdiOu5896qdbwrgug0AympVCDXEvHSedGpXSee6VqpJn/T9VDAi0omiuMnG0+8aLlae4bG8Quac1aXO/LNloVT1In5xniz/w++pfEdThq8M5BbGRRiwsWEpEiKDZIjBoAxYN4EJFQtiiuXtu1vRqwyRxOqJpTNKqZlyaU6SKyazYz0J1cgUMXljMuKz2/IP+NjvEGRt1v4Zx/mK35nxy//y7+F//5r/yJ+apL6+ROP0pY/+bW/lnz94cf73B/jKYunGqCcuwXJBVocK/F0CJIzDcrHVXioe0apVTPGcIh6Juv6qbqmVvrMIifIEU0RSWNxki1RnDynzsV1Uiq6hGqdb5qFyqLYokE9p9KxUMejfM2WwcSdzhULLCkTSVmPL3fyQUqjN5tAs+biEOrZt5nrc8eJLDhZBda32X6YUjaxrXpy0cNoaqxrbVZ0GZBRUBdIwwhBCKlDEgwKY8r4k9aO3mlg60du2DB299j7iJMe3IKbMUFWnEvcjBte6h9yzY69y4xFaLwfRj613fDR2yt+YnfJLm7RNE5l0uxMv5K7whrFbI+haEqqXnXMlkITDDS0Av0AXbCy4H5Eb3roI7gR0XGq9JHUoNmDtnauxB/ASRMM7CjWDyf2h/SdA0ItP68l5LEIsEcOgFUrTVHEpOV8Oft753p+UuGyUy7PYBMWfMW9M04+fUV86RFBPS4EQtMQQoP3HS4s8L4l+DCNJ6eIpkRKEUZLd6UUgViuJXOuleCNRXG1xYJMCisTz866FKvglGLJb72DyhWDU51wtmB9eyLWI+gYb73Qvuf+r/uX/Mb3/7v85S/76zSV1fs8iP9+n/hkfJF0ff2kh3KMNyCeaoBy4lrwLSFL+bEstDqKeKuseSCZWIWxk0yq6EJq35xSMUMuKALs/ZxMjFlYlIkmcaUCxJU+QPU9oHplUMt9Moj98hNwnNPR4bgdbtj7oXi6FX8JKXfvFJbAeeshlBXcaEyKYkxCSmjnSN7GsQ2BfeO4WTbcuxUuNiMhZ/JJg0vOdgUhmueoAZSkkD2qjrgX0iLhspBHSH0kqeDvLZFG0OcW3J5kHoUNl27PeiGEpXArAylbV+Ax9Twarvlkf8Un44Zryew0M6TINkde2W957faScXsNwx4XbYLVmGDM1veoL+fPlf2OCfoEvYE0osJQTkWTYQF0AzQBdQ4ZEtyMMGSkSyCjVaBEMdHsNh9Yhbb2cpKJTJmQajYWRUqZupFvVbdUrqXaBVsqOK16pUPbBKemdVHvUEkM2vMoj2wax+2pMNw74yvWz7PoI911MgYleHzb4kODbxp86HChsctUi0A2miNsbiNpTEhMuGypnsk40Nm1oWV/VRyZ4glD+bsIzJ0IUj7PCA7FIVakJnIwa8Z4laCOoJ9/d+dPU/T/9st88/u/ib/25X/rSQ/l5yS+8/Jt/I1/92uJH//Ekx7KMd6geKoBylIa60/jahmm4YZsP7nFO0J5OFX3FFElcgAWpZpGy8RiepSasql3xXqYjArLQbXZdzItNq1XfCnLZMI0DQ0XrPCqXKUNOxmMflR3AEpouSsvd+rTEF3xWqlCz3Kn7ovNaRl/ksCuEXKnjEsIOdk0M3oYLf01AporQMkI3uQ5q0COlOpaQaOHW+BUYOnR51u6ZxxnJ8KndUMeLnkmwTpn1An7OLCLOz69e8SP7R7yY/0Nj4jsycRsd/1DvyNtb+HmFtnvjQkYk+lEMkWkqqjLpZrGWCCGmj7BzsVe7Xi0Nl5iBD8aYEwU7YmlVowKyMgY0R3F5t4VsquB1JjOJMfCrMDUpykNKBlxxXSveJZMvZWk6pkKGJjuVOu1kosDbQW+paqGkcE5XvKOD7obbhYtJxenrPJIlwTxAQkB17T4ZkFolrjQ2PHRZOkcPyI52djdiLpU9LzmjmKXjYGpXDHX5ItigDULZK8Fq9u/C4fQVO+XAk4ODOQE7Yl4wtP98/F5Ef2//TJf81d+Ky+e3fC3v/r//aSH86bEn3n0Dv7cj76bF/7jgH78h5/0cI7xBsZT/QuzlIZWCtEsgmrtFevMmaJOaMBDhLHk1kW1aAPsh1erCZdTE6hKUya7mrrhAFIoAllXUQ1MXhni7G9XDb8SOGil4VxOCdlxmW/pZTSLrSwHQaxUcOQOYKfe7bqiQ9Eq6C3fSyVFUdgg5xzaQN8mHi1aJOZSyhqQJNYhN2PHKYGkfNDcjIpGrR3jkAi68JA8sgrEixY9E5an0C4ie73iakis/A5Jntu052F/w6dvL/n45hGv7jcMmsjFRI0U0WGPbLdmWLYfDViMGQaQZOdPWged2v4mOzaSFB0tOSEAAyaSHQtQSWpiV422xCgwVu2IB28MD1pSRjrCooWmiF9jY0yNL5qhanaW7Xxbh+vSA6cKnqXQY3ZxMFVyVbSoZb8r6+IK6MyAWGKld54fdztu/MBz54FFXtANDTkuyMFKobVpya7B+RbxvjAzI048KSUDmCrkPJA0kIjF4VUhqZnlwWTPry6QRi2pnlBcjCsI8Yi3xoOilVWRaRehdvdWAp4gT/XPx+dNfOFv/BDhC17ka77rt/JD/+PvedLDeUPjuy+/iP/qj/xanv9//eODDPAYP2/iqf6FaV3DUlr7ES13gIL93QBtmQ9ytrTGA5Q09c0Zy11uZUWyTVYu2511bkCGclfsZsChTOpThY8c0gSUaiBpCr7wLHzDBUtIykO3Y3CpAKlyL5oLMCpz2x3mpr4hhT3wdRtloqzW5oJR+V7QkGHhGZPiRjUQ5AOqDomKRJ0AisYZ4EpibEwhmjRlOG0Bh3YBPem4PW15de1pm8RORi7TFjeOjNlxPex4ZXvNg9tLtlfXjNstKglpDExpjtD36O0ebnoYEsSMjFj6plcDFgsPp94qd1OyHjroZFGjZBvrUH6OBkwx7GZsVwFYICgmLrb9w7oF+8LKxCKkrWJaX1ipoj8yVqVoXsopMvBSqC3Frp/qPKyVoavnDg7WwwW81utPleyEwQk3y5YP33f4nHnHJvM1LPCDI4qS02gVUynStivrc4T119GsxCTECMOYiONISlZybJhDyRliSuRcmcVMJJg7rOrE+hgZpIh6nLeKoeCqSLaGAcSkGU+iOaZ4npqIL73M27+9411/4n/Dh77uv3zSw/nXjk/EW37D+/59Tn8isf7+f/ykh3OMNymeboAijlZCQc4yFdiYe4N1BX5OzdMhSmbQxJWzCVpUoLiCHnrzlPWIQ10oZaTZxJg5A76wL7lUBxWvE+Eue1JKUle+4YIFQ0pc+Q2jxELoFMZFc5kZ6iSW74zjAIooIIRpWyKFFXCKiEedoE6R4A2UqByqqcWAkyaBmIv2BGMopsk/lMnYBJKaEqRQ0iEBXS3JXceu9XzSRZqsSB5Jo7CPmX2/p9/vGfd7dLeHzdb2zSvqS1nqmGATTSOyx5iPhIGFvQELHQoD0RV79xFUSxou50MKrFT/TgCl9LFBFR21ZljsgHkP0RkrdFLSZVZfa8JkAdVopzMrxD2MO0ilAih607tASeW4A3s2mfaVNgfMUn+5si2VeQnc8dkRNV0KysfXwoPhlnv9Fu0WfJVbstrcIuMN+2FAnXBvcZ91d4oopNgTYyKOA2nsGfc70jiQSg8h56WYt2F9dqqBIZRSYqvigQCacD5BE8wRV62Fgu2uWAURxZCvCGZHPOF4y/pURfzYj/Mlv/9t/Jvf9b/in3ztX3rSw/ms4g+/8jV84Pf/m69738XMc+8/OsP+fI+nG6AQaPGHuVtAXXHMJNOjnGjinhv4Aloeacc2ZwZqs79y5zvdKRtA0NJzBReM9s+xaE5yqQAqqsmZXf2hnNP8NBZuwZksGXLkyu8YBbubl/wYQVLASdaiWykCSy07VCfZKkgRV7zFSiNENXMuU+OWCT87RL1NkK6mJ5wxJ1mtOiZrMZTD1l33JZf9ysnSHuoMqLUNuQ3cOLjJEc2DzbO9sSMae/I4IKOlboxcUHQYD8c4Zdgl2Ans1PBhzpbmiYUZUYVtKlhNDHzkjLqiz3Flgk8UkOGnY6OBQ3olVe0QtszG2+en3nruiB7Kx0VNGhpH6/ETtzDubf8ByakAvQo05qk/q56RUg9j6zKweuhsUParnkfnyznKaNozeMcDaXjY7fj0RU+TX+Z6f8oXJmC7Yzts2MY9z/t7vLB8hqW0pt+JkTRav6PY95YKE+t0HUKD89aNOfuEVjZJlZgdKUVyDtO5Ed8gOuK1NUCY7fve8qSYsaArpcnVPubArRzj6Yj44z/Bs99yn286/fUA/Gd//3v44nDyRMf073z4f0H7O36Ka2nfE17+gZ/bAR3jLROfE0B53/vex/d+7/fykY98hOVyydd93dfxHd/xHXzlV37ltMx+v+f3//7fz1/8i3+Rvu/5xm/8Rr7ru76LF154YVrmE5/4BO95z3v4e3/v73FycsK3fuu38r73vY8QPje8FHAECWUeMqeSLEp0maiZUTNRIoO0PKvK80QeysCQrRy4CgN10hDYZDNpTepdrwvlM8pdstrkosaqWMqoTliepSy4kBOSJi7dSBSxfH9NJU3opFYVledKnlSwhDI5104To5sBm5Ly0QJkvEzMgeGeMi4XzKq9+oekCkTK3b1ymEDVzMBs8i9KytI6ILvMqFZWq9UjRM12njRCHlAdTbAaMoyl+qkfrex3FGNKxlk2K5n+haiHYzHUHytnDEnNnAQsXeOsd41WjZFy2BdXj222deayf1ENGO0N8Ji4doC4sQqfgLFmapVb5LGcg3BgY8TPzkFJDxbdyUQmaAGP9cX0ZknViS+grxwb2wmSc8gisHGOH9pviNd7fhEdzy48D4YbrvYPeSk/4vnNa5z5JS4rbkz4mqpLmY5AIwHvGtrGKn8IZsRGdiZ3SkpKmdio2d7niAYHYcRpwGe79lzQWluG8w2uXD+uXG9B0+dUxfNW++34fI704CE8eAjA/+5L/6cADL/6F/Nf/N//9OuWfftj4OVR2nKjmd/5ze+BH3xj3Fld+hRxbuNwjGOU+Jz+Vb///e/nve99L7/8l/9yYoz8oT/0h/iGb/gGPvShD7FerwH4fb/v9/HX//pf5y/9pb/E+fk53/Zt38Zv+k2/iX/4D/8hACklvumbvokXX3yRf/SP/hEvvfQS3/It30LTNPyxP/bHPqfBi3N4sTtDLU3NIkqXMyuNRAlEGgY6dpJ5npYr7RhIbAmlJNl65kx33ne3ADIDHwW31AUt7WCpCFW7C1/6wIU7ISblSvaMPiNTqqbQ7AKTR0oFLap3SJVD6gAm9sRxGKPMnhVoHVLnu8l0rizgq25iDkgK8FAs1VGrURQTB8dU2Bg9jCdVdqcOooAUVzxBajqsqSkkZWqq2GfYlFSO5pKqKutRCkabMTixVDHFoh9x2OQeTPejWutpZuMRNxVAGXOUkSgHomtQKzPeZlgVMW6PGbSJmPaoGrBlPRz7WkVVUmdTNRFlH+oxyRSAlJhSdBUkVlGt1hNmAFiclUfjpTi3Nmyl4yfPMoshsu2Fl33kMu9Y7m95Nd9w7joD52OmyQZOO3WcsGBFR+s62pzwqcEljzhL+VTr+xyE1HgjnxpHbjy5cfgYCN2Ipog25rMjjdouuQYnHidSWiO6wl1+dvFW++04hoWWXlXNf/M/8O+9/d963ee//kMPeDFc8XWLT/H/2f4C/vR3/WZe+L/8I+CHfo5HeozPxxDVabb5nOPVV1/l+eef5/3vfz+/6lf9Kq6urnjuuef4nu/5Hn7zb/7NAHzkIx/hq7/6q/nABz7Ar/gVv4K/+Tf/Jr/u1/06PvWpT013Rt/93d/NH/gDf4BXX32Vtm1/xu1eX19zfn7OP//oR1mdrsmaGdWs1fca2enITgeudc8NO67oeU12vJK3vJy3fERv+UndMdCD7EB3EHdmzpWHwx10ihB7pN/BsEeHvhh4RStdDQIhIO0a152wWJxzHu4zqHDpR8aQD5PwdMSlHPhsnXZ1NLCiRc+CUpvhma4BLC3gDpUgNWWgYHqW8l4FBakKMgOTO+3s7l8q3Y+UybgIRauFf9ZSBRMp6kqmqpSsBwaiTsylSoexsCX78tiaqys3Ebkc4SqigyJOUVfumJLAtgCFpKWSqqS9xCPZUaUSdAKtFoAgpVOzokHts4UrDEs5jmO2tEcWW4+IlU2/6OE54ELgJEDbQbeAtoVQSopjb/sqLTQLWK6Q1Qm66ApeTIVl2du5Ew/SUVsaWDoolHPgSmVXKAAlIqTCbDW2DeeNzUkJYc292HJ+OZA+9irr65Ht1SNurx5wlpRnpWWZHCGZK7HLyloDp7rgRJZ00tG5xhoP+kDjPK3zeNfgiuW/Bk/2igZHah25EWgdYdEQupamXbBs1yzbBV3o6HxD45qpcmeMIy+9+grf+hv+A66urjg7O/ssfzUsnvRvx9fzvyRI8zmN+fM1/Jd9CR/5fc/z5e89ilGP8a8fUUf+v3zfZ/W78a/Fi15dXQFw//59AH7gB36AcRz5Nb/m10zLfNVXfRVvf/vbpx+ZD3zgA3zN13zNHdr2G7/xG3nPe97Dv/gX/4Kv/dqvfd12+r6n7w+t3a+LS6AreXGb8q0EM5DpcCQJLGhIZJJCr4m9REbJfJEk9qo8VGUvCWv+NhoToKXSonpolBZpk1VJqRIyMy6jLBxwIh2nack277kOI7GmAnR2l1nZCzGDrCldoAVQwF2twoQdZ3TJgWIp71VjN3+oBrJb+bIfetifkvpQnVExdcdyyWNMFUVplsao2yysTk61PKqwQOVvSebR0pTUyoClivYZtor2WDmzz0wKy8qQRC3Eg9m9a8l3aQVI2RJWmirrYikurY71qaSJBKsA8hge8JiwORdg01QQWBiRzKGKh1yqt6QIiMvxmXow1XQS5XUu+qURJCHOuhvbjhRQCBx6MRXwkotAtlaAUdbnfGGsRm4kswkjusxcbJSuWdIsz3m0v+F67FlGWGbBK/iYWavnlMgZI4vc0BAI3rN0LSvXsXItrU80zqz0xWc0gHoleSE1Ap1Dx0geE3mpuOxKVRyIChJqmsd6O72ecfzs40n/dhzjs4/0ox/jy9/7sSc9jGN8HsbPGqDknPm9v/f38it/5a/kF/2iXwTAyy+/TNu2XFxc3Fn2hRde4OWXX56Wmf/A1M/rZ58p3ve+9/FH/+gffd37Th0eN5m/BlUaMW1IB0TJRdaqjGR6TYwu8aJ29GQyiQcyMmpjQtCcDqkKKULKWgEjhcHIswlFwWvgVNYsdclm2HDdJqJYmbJI8TGpgKK6w1J/24uwok5etTsycHCkLcBiZvR1iJpOmM0UVS1MdUHV0lelTI7VGE5tAha1aiSV0rl3yt4URoV0ACEpH9ieyqaksu76PZftqiryHLLCXtGtwo5DGklK1VUlj+oD6wJchcMHkFZA1agH6U4ojImIufXW6t9ieypBDpk7LamutqRbkpiPTDQNkUjxjCHadnIBKKFeD5i2JFcdCQZOsmlvjN2qDQdNu2ID/Qx36XeyifOqoM7WkyIjGXzEt7DtlGGApa7o2obbq0fcDltCVmSMyBhZq+fCj2x0YKEBl0yjdeKXnLk1p37B2kUWzpgQ79T0KU6tSWAA1zl0iFYdlDOSC4ZTLWSZ0rqMw5Vuyj87hPJW+O04xjGO8daPnzVAee9738sP//AP8w/+wT94I8fzGeMP/sE/yLd/+7dPr6+vr3nb2942yQ3AoaJ452iKGFUVEg2qSizg5FxbBonsSTzHyI1ruNWWJJEsTSknrhUZlZUIphPw3sCJ1nJTIUjDeTij0yXXacc+KNGsbI0AmTQJNUdSusLeYTAsPWNplypyqWmKVJiNA4NyADfM/lJLB01vuTKplkcVdU66ifodLYLOaPuuyuTxUcFF1YtUxsDlkg4qIs+sZsdf2R2YQJ4RDw4dsRTOMAccRZw8qJULVwZFy3YrsJvWqWgsL+bLzbTE8+xKbVI9ATZxSDFhK5jMSp2DrVOrHsgVkFgBSgVqMuW5DnKSfGBQJAsqHisVkrJ8nuSzOulODuf8wKpYqk0kID6gLmI10QNZR8ZxS+c8N+OGZfKcrs+4JrO/3aDjHt33DBIYWhgdLBlx2fQp+zgySGbwI0mWRNfSuUzjFV+OUXJqQGUAGT2aE66UIUcyMSVSSmirZJ8JxSQu5toh/HOLt8JvxzGOcYy3fvysAMq3fdu38f3f//38/b//9/niL/7i6f0XX3yRYRi4vLy8cyf06U9/mhdffHFa5p/8k39yZ32f/vSnp88+U3RdR9d1r3vfiU3s1uDMSmldVrwEGqBTJamjU88SzyCBNYFbAic0PKMN29wQpaUn2WRdbMMnYCCg3uOcL94oJhQNPnDhT+hkwRU921qp44rmQGdVM0CdkIwkqbPqgS3RO11HK0ApUZabXD3RQ9pAoTqePlZKYpqLabauYs2afnCz17VyqW5eijPrPH1TJthUQIoraTHFxJ0TQijj1XwwUg1l4q8aGTCdTM7GiFSr+7oD+fDnhEKn8mc5fJ45lCdnMf+XjilDhi+QTkulVajpnQxDqRDqy7Jk80tRE5Liva0n1NYHZd9yOpyrXMAopQw575maEBamRX1hzkQM1BXQZsuFQgyV9Joo6hYY67Kz9caBcdhwdbVF+5EhKmftBefLZ7jaRXbpEk0D0cNGBDz0Wa3/YcqM454xZnbjwMDIuVtwEhJLn2l9hwseLQyayaGs14/mSCaSciKmoZQlZ8amo5UGspLiyOcab5XfjmMc4xhv/fjs6wQxivfbvu3b+Ct/5a/wd//u3+VLvuRL7nz+y37ZL6NpGv7O3/k703sf/ehH+cQnPsG73/1uAN797nfzQz/0Q7zyyivTMn/7b/9tzs7OeNe73vWz2AEpD4dT06R4cYT6cJ5WPAs8Cw0scmCpjjWBcw3ck5aOFrO3r0JGdwAAJbWTfUstKQ6+5Txc0IQVl25k61Lpe1J0B660uReYZssKCLRUleRapVM0HXeAjDt8p7IX0504JVXEYXwTcMmzR5qlY4pOIg+WkphcT6MtW/U2gj2XMl7xJS1STL9s0i+plDv6lse1MYVZyNHW1XrovKVkwNiSvmhT+oxEa1Fnh0pm+8xh3yrrkfTwGLI9eksjsVVjRSrw6BXdgw6YeVu2yhRjXqSsjwJgyjlzHkIDTQtNB6EIWEVmAuF4EBVPJm31GNfjW1HUjCm5AzArDVO/M6J5NF2TZKu8CWY9r+LQ7Giajgjc7G6Iccu9k1OWywtctyIHT0TZk9mQ2QrsnGODcjP2PNzf8ur+hgf9hst+x2Yc6GNkHBMpajldSuwjw2ZkuN2zv92z2+zYbrbsdrds9rds9lu2/Y79sGcfD9qOnyneir8dxzjGMd7a8TkxKO9973v5nu/5Hr7v+76P09PTKe97fn7Ocrnk/Pyc3/E7fgff/u3fzv379zk7O+P3/J7fw7vf/W5+xa/4FQB8wzd8A+9617v4bb/tt/HH//gf5+WXX+YP/+E/zHvf+97P+U6n+nzUudVhqQYvnkwm4GkwgDKqM6CiBlRW4jmj4UYja3XciiMREA2oBCaRaNGg4AIEj6SWc79mIR1XecPOR/LUEbdORG4+yPo/JvHBVKpr5b21u+zkbVKBx8R62LdVZ2AADturpcXzElZgcsqFAoQESv+VA3BSAyiTf0gdezGsqyLUuh9JZsCEGbshh0nXFcGsS8YgLICVQwZLm+k+F3Aglgkp2zukkg6Ha8I91XVWywf1e7kezxmLc8j9gReb5KeKX5v8DVDOUixuBlJ8EcqKzl6X81NTPzoWp9lqPDMXGZfjfEfMXI/5HJzUcZdSdRdAB5TGdDSrFjlfwkZhbKDf4xLEzYab2w1ni/vce/5tPHr1FXbbR+TYsx96BvG0oaXVQEemT5FmUEaSiYbrvwwNkMUqe7wzC/1spdvZwegTMfe4lBhzZsyJ2EZis8AT6EuJ6mcTb7XfjmMc4xhv/ficAMqf/bN/FoCv//qvv/P+n//zf57f/tt/OwB/6k/9KZxzfPM3f/Mds6Ua3nu+//u/n/e85z28+93vZr1e863f+q38R//Rf/Q5D/6gPRV80Xho+c/jCSgNnoinlYZGI400LLWhJ9JL4lwTFzLyUK3ZGhKK02iZDdVAinMRH1oumlPa7Lkcr9i7HhWHqLm0TpHrRD27c57fPddHLmmlSXNRWZvSAHBiVWaT3JT6qJNrmY1d+aBqUSpQ0dGqWKz7CqXRDpb/qJVCVedSUxHOhLW1kSEcwEMzAzJSAE6imKIdRMYSsjUHXiis1VgOLePMnuozoo/t3p19LId/0gLXwhqpi8hh+cqwjApjASUqxtp0RX8S1ESyHbAIsHT2uhFoPNK0qGu4Ay6mUuFqiFfZqVoeXtN1hQnz2LJuzq6kaeCHrF89X7aMaYFqPXVhzpoGd37KaXufzfhphocDXhfo5pZ+v+FhcpydNDxz7xmu+oHNzSNSHMghkLtMdAtiUlwcCNHs7n121gFcg+lmghB8wKugUh7ZFDNJMikmUoyEOLKPI/vFwKpd0rmOcfjsGZS32m/HMY5xjLd+fE4A5bOxTFksFnznd34n3/md3/lTLvOOd7yDv/E3/sbnsumfejz1x76UgooUHkUF872splIOr/Z3S2BBYEngVDz3teHTGujFm9CxTt6lakdcoHPCabemGROP4jX7EM06Xn0xYnPT3fDUlyW7Q3qgDLMM/CBAnUSYlYVwJli12tkygdUZ2NZjtvVFI1E1JvXvqfKlAA5VlIjkWN73BXwVZqhuZ6JJDt+bWI3qO1L3QaWAqWDsy1hTGnHaFw0Ky7JcjmZ7TxljdMVuPx/WWT+rDFNlm6ph2sQOHUgUYzjK37UTdWVXkpa0VNmux4DIQgyYrFtYNZZ66jy0LRq6ojnBUjjM930GQAv7YV42eXbMS3ptAncFnORUxLeukGRFVDwHtSjoALQgHaLesOpqRdO0hOdPSOMtuo3IooONJ8U9VzevgDvjdHWBbHtudyNZEzkkoiRzvRHrvxN0ZJMG2nFPiA4XFK+W8szirRCpMFFKIksmRmWMyj5CHyP92DMuepZ+ybj/7N0/32q/Hcc4xjHe+vFU+0Pb3H243RapSR+HE8Wp4Iomxasn4GjU0RU9ylICawmcFBGtU0eqWhHnQRMinqVbcBoEiSOP0i07P9qPuBTqXyhVOEB1C83CZBgGHO72K7VfJq46idX0jYYZFsmz5XWakG3+LtU/IpYOqJP6VJpcD4sBIa1381M6ogKx+STppgnqsI6KAGoqqHw1SRGdygyYzVIgXqEtu5+kFLCIjWXvrBfPZHk/AyHVkbWe11TBFo+xULNUTtXGTPoYSslwBVl6EMk2Al2ARQvLFukC2gboWmiaAkrj4ZykUlqszJgwmfDTBDZzGVOtQq/jrIzL5E3jmTxwqsYoKxO4K9eFloqjFAK7nNB7C9xlR5OEsQlI16G7npT23I4OTUtW3RkuO26HDTGan0rKgSAOgmeMsNNEOw404mmyo6XH4WhcS6AyPEoeFM0JbSCNmWFM7Mee3egYhp6xHYn7+bVzjGMc4xhvbDzVAAUw0aOTGUCwO1QRsWKMokmxrLs1F1zgiQT2BFoaVgTWGvB4cqEMVALOJRa+4wxnE0Hu2YeMpkL3i5hFeakmusM+KFiap9Ybl8+q0DJXgFLZk7pHeZp/7+Q6ppRNSTuU9/TO55i+Ysoi6d1U1ZSOSCaYZc7w1PX6+eqYTMcQAyiTpX0Zi59tq/YPymrfqcNcVt8QRXtFOgdNRp0rZnfMwIlOtvdSGRRhqmqahuXsPXFq5cSTmLceaj0Aivp956w6p2mhtQaI2rUGVtoWCY01JRwxYFI6HpuzcHF9q8ertgZIlSUqYCPJ7JiUlJBEDv4vlkIS1Czu1RcdT7TqrpxQGUBH1CADAwPaOcL5KemVTxrYbDtkyGhMxHHkZjeQc8NqcYI4x3V/QxpH67ftvAEUYD9k2jTQqKP1js7tCM5SYE4aQK3toSoxZVLMjC7RDwPDEJFe6FcDQ5fR8XPS2B/jGMc4xucUTz1AmTMABgHsPyfGnjg8nkRwjkZ9Se8koiar6sGzUs8FgZZgJmuMOFUWbsWZKkPccCMDY1A0m8+FaOkDI7ZlnfddOahaZ6mCmnooVTW5pm5mDIE+9l3HbH0zFmUOWGaiVmSWRqkpJK3ahjLWiZGpZmu1esUxGYtVwDFtquR5prTPrPIHStlxBj+rD64ETBBYGK2gSWEL2iZ7XziUDVfWpHzPaQGfZXWSKxQrbIhUwDJjV0QOTQRryssX5sQDvgCUEJA5QGk7pGmhCSXLVAXKgx2TauevilTBNKDaU7tFg7N9SQ5J2dxyK5DLaTqFNa2jtdGjNHbMJSHVxKVW9piTGuOwQUaH90LuPHL/HNUtetvD5pY8KAyOWw2kGDnxLae64ma3Ibme6K1EPiGQE9uxx2elcdCJx+NwTkoBlUwYMZEZYySSGMaRXT+Q+0w/joxL5WBaeIxjHOMYb3w81QBlKmipDMDhk5LmAafZdCgqtOLpCCQSA5kuR1o8HZ4z8ZxpYE9DwrMSxzmBPt9yLZExYM6jtAUIzAHG7G590haU8SiFWSh303lkspVXuFvp/ThlLoe7dWbrr6LMyTpf767iTjVPBTYc0iZT+mgEhgIKAkjLZOxW92vOpqgrr6taVSuSoFbtTO67qYCkCT+JeY8sFNpcAEpJhSWdHUuQyjZMz/VkHwDhpE+BiV2ZDn1lTLyDxkHroPWW2mkb6Fq0rWXE9tBQu1YLNPP+RuMMBIuBlwJQkObAOokaG5ILEEvZUk41pZbruUyW2qklylLW4+wYqHN2LHMFkIL2O7iJDJcR0hZZniD3T9HtHrnZoNtbNDrUt2z7BLHnfHFCCI6Hu0vyAiIG1mPOjDGxT8rGO7qxoXHWr8cheDyqUuz7MkkTkUQcEykkxpQZsxJzYY2OcYxjHONNiqcaoNzV3UmZVrU0mC3+KOrKT3MRyEoFKIlWAq16WjxrDTxDwyMNdLLiHGUY91y7TMQZOHGtWaJXC/g6qc4FpdOMPJtclTIJz7QNdZn6PJsEp6fKFExzdz58RbFJcO5fUgFFXWD6DO5YrUKZWBNob6AkR6by4YOQ48DCZMXu6Ms6Jnan7JcbwceyerFlK2NTWYxWZoDBWYVNsdeXXADIlC6SybzVsIqWNET1kdEDi1KB00TguKI5qcDEWdVO1xhICcH0Jm13eITaVFGK/qgcw+wLE1LTYbXpYgDXlkc8pHgm9qkCt/k5mwmp3YxxE9t2FrtW1Q2W5kmlzJ0AcSTfXOMfXuHaCHTk4NCTU9x1RvsehhFNme1ugF3m/OKc++sLHu1u0CZDEnLKjFHpc6RxA7s0sEgNXQw4hEZawBHJjHlgyNFaRkgmRyUnJedI1t6E2sc4xjGO8SbFUw1QoM4jNnlNnYKxe11FEJ2BFLGET9BASzKxLNZU8ISGZwjcyIJRGuJ4w5WLDAKiwYCJ84U5SXa3PIlYZymUO6LTO4OcJi7DHHU2K+N27jESSJhElLVipyhktG53UtMWBc60Xg7AZjogs9cT62NsxaFEetYccNLT1EqjKvScT0plH6aUT7J3nJ9N0mXbTg6VNE0BK6X5XE3WTPhKbVwyG2+eJn7bpuEoG7tkndgdnbxjnDEooYChzpVqHW/bD85ASWjBt1Za7jyTaZ6Tw3vFuE5rOmeqnGrKowUZZsctH4BIPT4o1bjOyphn10oBPE4aFtKSpWef98ZwSYDVGtkLDK+SLzfQJHIupe2LBZxldBeRXUKHBIOyHbcAXNy/x/lKuNnfEnMiqzKqXSVBEzsdWcaRvRsI6ibgFImkHMnlO+oPbFrOStbRrsNjHOMYx3iT4qkHKDUmoDIREDLNy+bdJVZmrI6mpHU6KeXG2rCUhhdZIgQ+Ol7zUJRRrFBZXVPmRRO2Wu+ZGThJcrhTntu9T2kexdgKAzJ6R6tSgYh77HvlfaRkXAqzITZ9WFUOvI5VeZ0Wpm5DD8tPvWXq3TszMDHb/pTaqSXBdxDUoUppZoVvFUUJU5rOtu0oLAoGFlpnnireoaTDLsIEWBSZdk3q/k2YTLD+NZjFfVKrfKml2uIPAKUpwKTz0DVI26DBW/dh5wsQaQprhTFCUvQqWOm6ej3oTUQKaCwAxY2IK/2bKlM1N+tTyvGuYtlDhZSIKyLrQHANJ25BoiHqNUn2JtptG2u3gEdDQBtvWuXNaKTRwpgivUlI6TKcgc2wJz+64uLZc8KJ5/J2R5SB5GHMykCi18gujXRDIDRFjwTEolHKmslTywPQlAtogSSffZnxMY5xjGN8rvHzBqDUOXUqsp0mO1ehCh5Pg6JiDQRbIp02rGTknlvgE1zHAe8ACQidYZBppXaHqbUTYJ55ZdjGDgChMB5Qm+qNlHa9E6V/ZzKddmJ2V5qLzgShNJaxaTv70s8nlUlRD+XWTg/rE8fdWb2ChzRtW6seYrJ0ndMulQWpY2D2XQ7LTaCmgrYiLp3SIeXZY21mWi2MhhpQ6eUgx5jGYOkmVUcVPh8qygtTVjoYH7DgDOyFoj/pPCwaAyjBQxOKM2ypnvFFU+ILQCmVTrY9Y0N0ssEXc6aV0hDQJdR3RVdU022uiIaZneN6qAo4qWkovF1LOBoxwNyV9NitWxP9aOxQBMbBAMHaI41DcouMDne9NaJl0UEb0ZRsP8s1uE1b8nXm4uyCeycX3MQbhthj7jjKmBL7PLJLAZeE5BUvhX+Ukpksp6SSlDlnYs7EOV49xjGOcYw3OJ5qgDK71594icNduKU9agLEiydrJogjqSNIoFFL75xKR0qJK1W8E56Vhp6WS2DwWoCI3qX3q3C1CkGrYneyqa93nTVNMqcH9LA+5w7LV+HkVGpcGQg5rL+sZGJhKnqq5cq5fo/DNmdVKIYjZuutJm9VWCtS0mP62P7UFM80SzFDDEwM0dT7J0AurqxSTeXUAFTjoE3GpoQZEzPpXuo6y/Ps0L3O76toem3Ol1JuXLQni3B4dI3pTnx1Ci7iVtxhH11AyMWAr7IxuYCYUl7spKSwAJrCvARw0Rx7nTPLel/AysSozc/f7FyIx+M5kY6A0JfWB0qLyAk4xTUZbRurAPcG7nx7gqYRvR1RidB5ZOnNF8e3SFZ0GAGlTwOPNtecLy84OznlNkK/762CWjNREwORkEGjlrJjcFMrBYP45iskphfKJqA9xjGOcYw3K55qgDKVbNZ5mMN8ABULVEdZJePJKNXxpKNhJZk+jeSkOHGcSOA5GkbJJIRLVTKplIXa3a6xDfkw6WYB0p3y14Pg0xbXWkkzaU9sAjvAqKoIzbO/obI2BoYKFHtcZKuOO7brFVjM5viDhramKKQwLZXxqYAjF21BnWAfY1SmybUKhcvb9TuTzwuWCnOUdIgezNKCzh5mSy9zF9zChkxYbvZcsdQc59kHBZgEPzEnsmzQdYB1A6sOll1xjG3AdyAtBqAKSHSC4gu4qAAiW6rHFRZoAm31HDfgWzRb6bhUB+L6+TTq2YU59WKy8+vU0YlHRbjRkZQjUbGeUFUX0i5BIzIOOPG4AG69ZjjpcZcbcuztX3PnDKTFcmyKg28/DFwPl5x1Z5yuTu3U7QaiZgYiOx1AlCxKEFdKjh3O2THVohWyxpzgspDzEaAc4xjHePPi6QYoMM1WkxspTFkHLQkeFSGriWSTGlhp1NNKYJ96SIp4ayR4pg3RZXoyvSb26tnSlpmxpGPmAGVqsiezeUiYqnXuMAKVz5Fi01/M5aqr7LwsePI8YZqwDy/ybJl6IGSWHZqBFAyI6GR/X0GW2KSLn4GiCjjq7FY1MHUcUspfRw42/OW4KHfpDc3o1KywOrZJzWwU4zSxzQcpleIztmQGVO6sWwp0qeRPPebeHcqKFx5WDXrWwFkDpws4XcKqPTApbYeG1hiQClIqePOh+NY4JuDpChMEINZ9WfGFPWnAdaCDaXDuMF4zFKWzAWs5niXVFjUzKuyI5NrnB8V5h2SPNg10DS5aqXrcX9I2ZwjW2E9StnFnM+HTiuIy5T1ln7boTjlfnXFxcsZmvCbtRnpNiMYJoDTisESm4L3H5YD4CpTL8U/KUYJyjGMc482MpxqgzG+gp/kfDumKKcodei041kwrjiHZ3b53nq5Y4KtrWEvmTBM7Ri5x7M3qjYlpELVJuvbtcXWbc4CBMQIpWb+W2QB18jWpiKL6olSaQw7P0yQ3/3wmWJ0EN/rYLtvkZ31fsG05byyMA6hgyxUBbC4MDaXkuIypajWq2EPLvmucAYoZs+T0MKban4dY1lV0HIGSNgHCvAKr7vdjp292iqlHUQ4vnHdWcts6c61dB+SsQy86uGgNoJwsYdkWDUpnbrIhIL70X5LZ8XAYaHSFmZpSQAWgqM60zMW4zQcmkDcPNz83M4BYAZpaZ+WeRFQtzrqpACB75DiiPiMna7TryFGR3Z7+tS0as+lnug5kRL1DdoMxV9XFeFCIBj4Hei7jNRfrMy5O7rEdHzHsRqt2E7X0nrjJ6NCrWnPq7HDekSRbrx/yrBP1MY5xjGO88fFUA5S7E5l8xrdFxLwlUIrLBMF5YrS7+9Z1dGRW2hCLxmIF9JLZ6sgpI9eayEWvoFI69mphUqR05q25h8qcZDWFYa66kgI27rAMauuovV7u7MH8LnyW/phX7VQwhB5YDGZjwSpEbCIsy7jZhsQZAyC1oV3Zjqsl1HV7dR3efEEmcDUf9Hy2muVl6vhyMSvLpWooqFXxBLFJVfKh/PpxoUl5PWG1ij+rhid4NBQjtlWAsw7OOzhbGDhZd7BcWL+dtuhGihZFq7uslEd11dXSzkA5HPN5BU+qDFIFXgWgZC0FPHLIfE35tQpQOIA9l1HJxaWniryrADsaSMkZSSNWZp4syRIC6M5KoMcBjdEM4kIw2/5oDSDVCcSI9HYNagMxJa6ubvAdnK4vuB1vGfc9QQQvxmYFsWs9a0I0I+qQ7MiiJE0kDKgc4xjHOMabFU83QJnCZi2bt2fsiRyeSrIH75y5zWfTnAQcnQaW0hZ4ItaHhMiehvs0XJG4REkU+h4Ki1L61Ig/TGTVhVXvpim0vj9PyUylqDP2RQ4jnssW5imeO617ps/qxFeAQk3/TJbqh+N0ADLle65MjTqr+tGyrgp26rhcawxKbag3ByHTumfjrZN8TpAKC1NZlKY8i0wsiszTVrNuv3d2p871XtDg0GBpHTlp4LxFLxr0vC0AZWn6k65D2hZCYyJW5wpIkcLmVLGsHI6LdUU8XE8VFE0DrOdsli7DAMfhENRzPDved76fUVU6HGtxRI0MYoJc1eor4wx8jIMByChws4fbPW65QMST91t01KlTAVh5tOXQUsHIh3TZOIw8uH0E63PWp6f04si7npQzyRkArYVIWdUs/J1Y+yGyPfLdq/AYxzjGMd7IeLoBymwC/0z+aNOcoAY8PEJMCQW8b/AKQZWWxEobmCjuTNLISMtOIxtVBgcbCpMypZCKy+ckPil3lLU0V2tprHCoZKlgBA41sqUSZ86YzO3m53BEdT5vH5abRLF6YHA8BjrmPivusVRKPYhTz5jCJGgDEg/+J1q/W8cFMDA1IZwvV09IXX9tJJhT0XVUj5I8a/BX03C1AaLc2W3mR2Eq5/WW2ll4OG3gXgv3O3h2Ac8sCkBZwWJh4GRewSP+0GDQu7sbqmTXdB4eL8HWAytSv+BmgKba8k90zwyISu2/U8rfy6WSRLknnl5arlCiPzBroopu9siYYblC+oSMAziPX52SVWCZkNsb2O1h4e0STO7Azk242q45jUocMo/6R6SYOF+tEfGkbU/O2VKDpRVB1uLxUi6diVg6EijHOMYx3sR4ugEKlEzI69HJdBOuRllLzqSUEOcIDlLKhGp/XzQmUTNJEr06FniWEjij4RkyvSqeyE4zA7k0B/SvT0fYVpHJ46K0tq0gQeBwVz4HIVWkWV7WSW1KpczSQNM2a2qiMkbVRr8yG3U9VewqB7ZkYj44vHbZmJHszdtDBmBk6tyLt2Vq+ikF+xzrLyQSTSR69+TUQ3JIiWipDqpdiCt5U3ZfJmB3AFEyMUBlzUIRxZa0zqmH84DeC3DRWJpnvTRwslhBKOkcF5hKn4uPyh3QVkCiOaGUCqsJkM7Zoup7Usvb6/mtAFQOD5mtm8K0FFFuxTEOoQGe1YZGHJc4YzUYkXGLPLxCH9zYaoKBXVkE4s0WmtYaKyaBIaIVdCWdlbcXflHLZZLts5gS11fXuJh59uQctwoM2z1ZK1OXjefJ2XBO1UPPcfYxjnGMY7wJ8VQDlImQgIMYFKZkT70Xt/4huehRrILGF+v7BkcSx6iBQMJnAy0Nnk4DKxrOJZGw8ssrIo/IDMyAwZzpUEvzmPCyWKWjHHq5lElO0122oQon7+R1CnCRcgvs8qGyBJi0D3fu5ot2ZF5FotVYv2xnVo0yzTpQvlfGTdGaKGWs5e6/rhuY0iDqwcUizJz1KKoAY8psVOamCnALe+LdlBap7YDuwr4JtZV1uUN/n4WHtYezUrVz2li1zmIB3RLahVXrtI19RzxoQKS0LXCVuZpt4/FUWwVLc1A5wx9atTrzUU9ushVozg+EnZNaWRXUsZBAEjvqz9EyoiSEiKDsYBfhU9d2bTUrxLcGPnY9iEfw5KqNGYDGFSBSxuIdZC16FrHdLkONKXO72bDAc//0Au8Cu83mYHOvmZjt35PMsdcxw3OMYxzjTYynG6A8xp7Uv6tPiMORMbtuIxAcSrZJUIr1vXga9TSSadUz4mirLkUbehJnLpNRVISAMEriUpxNCHWirXfak46hVoXU6h+KrXn5VVfusi939ChwmPAKCJDMoRPubLKsDMo0/6W76y0VP4rR9YeJdaaNqJOoA2MXxmk+tkMay7C8AYn6/TQDKDqWVM5QBLez3ahEkZ9N+BVvOEG9iTllBtBqL6WqPdHZ8uKcgZouoKsGTjs4b+2xbmHRId0C7RbWsbhU7Ji5R/F+KQ61E0EyARJ97Hl+TuoOzeIOeJmtZ3IILtdIuU4s81VBqrkaB4WlOnLO4GCNY6mOrQjkQGqW6OkFOnjY9bi2RV4b0X3RAnVLGAWXPVkd9BlStlM/FParCKU1ZjQ5nKoxVSUblZNyu9kS8Nw7O2d1csL29gZSJGUlFUBVNUIiMvPjOcYxjnGMNz6eaoAylynYJKYTSHFiLpkpxlIFbJNdFqPugxpYyeIIBBZkMo1VKKiZtCUEM6jXAnAiDZGRyKiZjdiPftZ0qNbRWuUSCyPiS4bHlz57yTojT6Zqs9vR6otROXRHoRRMQaMSZnsLh266iil/a7nvHdqCKTWh9W5eDp9PLFD9riuajFq15CzdMyEFLAXkElN3Xl/WldWs7DVZWWtJhRhBZNU6kzC2GLZZjxtFxCY/RcukqWVPy7OY4V6VceRFIK+DlRHfb+FeVzxPlrBaoYsFdAto19YM0LkixLWqG63mcdUt1pWS7FnzR63grTrHTuXd+e7FV914SUzM0zy9BVStkU5dpbVUx0hhQJQFYVI0neK5yUKvCZWM3juBF85wH3tEfrSFByNERYhoNyDR2XBGZwAxRBvLUIZbL52saNKpaMtVskiVFCO3tzdITty//wxn52dcXl6Sx2QNAnOuSS9EZKpKP8YxjnGMNyOeaoCiNa9en8v7ImJdcGJCnJ9o6oP80iy7vTq8ZDyCV09DopFAh1X0ZFWiJFJJqWhhHXa0XJPZaSKpMAlRJ01KFVTUu+hyp05J3M8zMjbgw514yoe/q3alLl63Ub/jwiFtJEWcWe3blcMY5vb5lbkRmCbWaSyV3SlgxZfmOYoBrrpMTRE5SllyAVZ+ZiCnEZuwxcSadTzVjr72q5l0KOUxw1OGC+u5dYaHvCM3Hl0Gq9R5pkOeWcD9BXqxNN3Jao0s18YsNB3BNzTe2zkXJeXM4MSKeOfE1Z20jh7A251UXC0vrmmeCjgcaKgXJtMBknp9zJctTB8GzJwIC3EsxeHFOiw5xdIxw4BuryGOyNmaLNe4qxG9teofbTJcblDfoinDrpznRTmu9ZoSG9ckzFWldrGuu5kLqN/stuhDePbZZzm/uMdrrz0gxYGc1ZiX8qV0h1k6xjGOcYw3Np5qgFJ5/0o1z1M8KSWcVHCC9VcpM40Tuw90Ys4ovrjMmmA2kMV+/LNTUjHLKve8qCobl1lr5IqRKA6ppZy1umQukiziWK2GXZniB1IYkvojX+3j8wygTBNjLmCEA7tSSlvFuQN4qR4dlMm1motNjQ3LNmo5sdSUh3IoGa7MygyE1KqkKVVxSFFMImCnZhimZXLPERPYlv2t+zmRN66AFL1TfXtHClLP6UQICdp68ro1Eez9BTzXoc91cH8JZ0tYLaFbos0CCS1taFj7jqWYVqcRUMlci7IhMlIn6jwB3nJCJmBXey7q4w6/04DLs6od/0kYZeBUJM+ybm7aJ61eIjnhvIEYL55ODaQEVXLs0e0GfuIV9KUN9FiZdCrna9EiquQ4mj5pNIdXdR6Wrpy/WLBiZXr0QKploUpqKjeUFfb7PQ8ePODi/ILT83P6Bw+JcSRrASlOrHroGMc4xjHepHiqAYqRAZ8ZnEzalBmIqQDFCA37z6kUBkXwOFpxZAIqSspKFKtjyEAUYcyZJZGlOkJlGrT4nFQ7+YmpKBubBpzvainncof57FCdXQWQcDCCm3rjyAQ+pm7ErpbCzMFRLRmutEQu61LrylsMzQ8pi/nAZ+LOus3XGXMVgFIBi1R/EYFQzOxy1a+4w1fqSVADavW86MSWHJabDqGI6UhWLZw38EwDz7XwXGclxecrOFkj3cr61rQLfNOx9g0XrmEh3nxsUNR5vESz7Zts/ZUDipg/zx/5sdd1sHKXfZlSawYa70o1ZGIubDWJlBN4ocNN0p1UDj05wzDA5Qa5GsmjoguPrByyV1BnOGg/QhTTlSQx894kTP4uEyvnDvrpLFNFuhPzrU1ogZzCbt+T0iPW6xNOT895ND4ijtaA0PwFj2U8xzjGMd68eLoBShXuOfvBTymRcyaEYEAFPYgrpWbPCxsw3dBbZY/VQTgDKaW1YHaT2TgJGFF6aVgw0orHq0eMkOfu5JQOE0K941YK+KgT4XySKu8lLV4hBaAAU3WPr3stB+bj8fLVmuaZ1l9FmjU1UcBPYXMOJbSVmqllH0zMj5UW613PiwlB1HSIMzBS2QNf0h3qTDQ7pRhmNaq19VB9TBPoYc11Y+rF3GLXrdnXP9fAiwvkhQ59dgEXJ3ByCqsVtCsISyR0rF3DPRdYUYuIhK1mdiiDVtipd7c4ub4WQFKaKOoEUGpn69n+z1NBJZVyuBYKkzXbv8pgCKZ3ySR6MkgoWTNlo5GdptKVOCE+oPc62O+sC8EzC/R6hHEgLxYwCAypeJ+oiWN9suaJvjrf2r5JAaO1l47tmQl4a6vIXASx+11Pv4+s1mvOzs+5vb5h2Pflsj0aoRzjGMd48+KpBihZdZrfUUvLOO8Pd9137lwL01K/e2dNxqZUgJJQmtL5OJEYcXRYr56ulCa3OBbi2apndMUCXigsQ52463ZnzqzT7XSdxMqEmOf6jSK4FQ5/q/U+mdJITg7rmVIKM1FszTrcOQR1W3owcpvG4phM16QyKLOJdgIlZV+cs5RCrTtVLJWjcOhdU74qqUx7BTzN+iIW5fKdc3FgJxziHdIE8qJBz5fw7AJ5oYEXO3huARdLOFnDegWLJRq6KbVz7lpOnZ90HaowiHIriVGVce4SW/McdxgRLeBkTnvV8T3OmlSgaI7Fymyf6jGZLtZyXhHIVmU2ongFnLBxias4sieRpZgBDhHWGfdsBzfJGBKciWWTWEflfmO2NCpIUgMsxQBPC3CdslRZ7mSqSnE8tXKqXiopJ1IcGcaR1fqUk5NTblXY73fHKp5jHOMYb2o81QClFr1Y23fBO/96HcH0V2ENanlnKWkVHKKKU4cXJeCnbyVy0aZ4PAFPxuNp1bPGcy6ePY4bPNk1h4no7qbL37U6xCa7Kv60ObACE53dfdfMiR6YjyqyrOW44gqFX3UmcbbRAjCmdIIedCjiDpVEvqyHaswldximw35URWtlD9xhXydmqrIlBdDM7eRdOrAOWW0CnTIlxm5VczQojJH35CbAsiWfNOgzLfJ8A883xqJcLOBkBculVew0SwhLWt9x6lvOXKATjxPYF3DlsQk7FfAhj02yOoHIetyscmXCmxN+0hlOkXKo6rGr603ToTcvGpn9Xc5DWSCrshDHnsxLac+juEXHnWk9upVtYzvYMWw8qgPSOGTZof0Ao7fNJUVyYb+iMUDqS/ovlwZ/E4vHtK8yjRPrt4OVIedspobDmIjxmpOTE05OTlFVdrsNxzjGMY7xZsVTDVBExBwuVXGueIxovZPVKQWkd5IG5Yc5W1WPSgEtswnIIQRxJHV4MV4FkulVVGjUfCrO8GxdYJ8zvdQUgAED0Xo3bZqDaeJTnea2aThZmCptZJ73oLxO5TuV6eDAOoggorN7di1skqCT9X4RyeYCkFJNarmi8cwmDJ5buqsi1elLMzLTVVQfj4Pxm1I9X4QqOi0P51DvwQ+IjFS2Cp0d9yI01QJsJFiaSEIgrz35rLEy4udb9MUGnu+Q+yv0/ATWa1gYQJF2gfMNJwSekcDKBdoCAgKJPUoQYS2eXiO1mNgxn6zL8ZtYnAJsbWBMYuJy7K2dQT33ZY2aCyFTFSXlmOZYtB92vErBLirCXjIRCNkx5swQe3S4tVJi51G/QPYOvdwj7cKOd0zoosG7BsaB2HjT/hQWhWJ1b3pnmRC9ZAMfEziZ7b7WfzcFsWgBTzlnhn7gJl0j52dcXFwAyvXN/qf653mMYxzjGP9a8VQDlDENZBY4Z6kGpdLZejeHo6C5lhrbB1Uo6MoEUdr+WTdXavdjj9dMwNNQK2JNs9IBJzhW4glOGO8ACGe6jZxKnj4hWlw46+R9By850LZMdNEe4gqnUEqXUynLlWJqIU1hTjyKt8ZwkoAW1Lxfan8czYVdKZoB0YwWg7WsNTXlEA0caAF3+LswBjofs9ou2pxeU1oeNCI5T8yCFA97dS3qGpBkHaEdVsHjHc5n05h03oqQnEMaR14G9CzgLhrk3gJ5tkWfb8nPLOD8FDk9hdUJslxBsyS4BSfS8Lxrue8anJOSxVJjTpw1IFgh3DqIWgXOFTFW0Fc4BQ3lEOSDbmNWBXUAJnBgmA4CZ8sSlf5O2R1SKmVMIrEsF9iqcJUzz0vLM27BlTj6XU++vkH2BkpldYobAry6Jd+OtpbdiEoDTUDaDK0i2carydm5sJNuTJZiItpChMm0rzVbV4SzpXIt52w3AdlO+jCOXD66RO7d45lnnuPTrzz86f+RHuMYxzjGzzKeaoByfrLg7HQNzOQA08x/uEufP+rHuTArpjBQsmjp0aolJ5+JKJFET2KrI3sie41sGbllYEvkWjKXGhnyYIxFjpATUgCBTr4Z4+EOHah35VYkkybBppCxBMQsjSIzVUNhK8Q1U4pHvd0pm1nbaHfNZW2WcchoTja5gpUe+8ZKl+elp1MlEpPzqDX5u8smGIOTzaejMkM5G4gqYsxpvFpSOhFkUHTI6D7DTtG9wEZhE5EeiO6wzwHoBFkGZOnRtUdPS8+dZYsulki3hKax6h7f0rmGE/GciKNxzhgMBRVlT2Kj0eCEwtYlUs717M9STRmpepkMU0puaidggNOurZoOqqzKLFVnB7G8XQFQrKe+HM8AfgGypPEdz/qOZ6VjkyKfCpf0/hHaXqGDIssBBmfD+clHuN2INiYG11K6LvuMDAKDpXKMUMwTzpwMgxU033WCPSQ8D8/131BWLQDfxi4CznmcEz704Y/+tP9Gj3GMYxzjZxtPNUB55t49Tk9PD0Zt8vpl5qkUa/42S+fANJmY7fkkMDik6KcEka3cbEHqdx7bhsyXLEvUyX9K68j8G9RRwXzwBUjNfSbmZMadbdQ16jRegybuMA++/rCUZWTGihzG8NN+bxr+4/sxG+d82dmopjcVSx/NFjroT+arqmPKd/Z7dpbu7I2b1nX3/Ez7Ny89LxSaPM6eTGuQO6PLVKHpZzouj5+/8t6BkCnn/+46JyFtEXtX7YoUYzd9tkAmcYhm04WI4HIdvx0Pa+VwSKtNvSNffxC4e3YfG7PcGfZhyZoNeiyur6/543/iP3n9B8c4xjGO8QbEUw1QgM8wrT3++etfH2CEzkyz7n5j4mHKDG7VM0x3kGVq4/WQ4TDxHbgS04k4nS0zPc1ByGOTZAU8BTw8DiHq67tzx2Hi+emOC6UPywxdPbaWzwRA6nZl2vvXffrYpFwP2J3skFNqWkgOi/yUwEg4pJvuHsHDWusnmc98TcwPrUy9k+ZAVWYbPqy36kQEHkvR3B3hz3C0P8OYbbQyO2BSQFCWCi/LsVOmRpf178P1h6X3pjUr6mopsdQV/xTn+bP4t1OHJ3Cs2jnGMY7xcxlPNUARkckD5Wde+PCHPP6mfIbp5XVY4qcAFZ9pfY+9P01MP+VQ5c7T3anM7pT1MwACeP29+093NOoEU9NdzpWJbUY9TZOQPPa9eXXS/PVPtz0OVVPT+JxpMWoSYWKjZmhJy5juHtmfZnszcOEw3cQYI03TICLEGFFVQgjT3yJCCGHSWARv/xSm18Fep2RpGe89KaVpvN778nkihHCo9JbHLhw+80t7q5rhvZ4RkxkIrICkal0fX+Xdb88qxOTxhT+Lfys/zSLy2Dl//PUxjnGMY7yR8VQDlCcdb+7P80+99jvagc8GKJQJuXag3W63vPbaa7z44ot0XXdn2Zwzu92OxWLB7e0tp6enBmR+irvn6tzb9z1d1+G9vzMmEWEcRx48eMByueT8/Pwz754cJtpJL/TZ7t9dCozLy0s++tGP8kt+yS+h6zo+8YlPMI4jX/zFX8xHP/pRHj58yMXFBV/6pV/KSy+9xMOHD/nyL/9yzs/P+ZEf+RFubm740i/9UhaLBT/yIz+CqvLOd76Tj3/841xfX9M0DV/xFV9BzpnLy0ve+c53slwuP8cJ+zMv+ziP9bnHETQc4xjH+PkRR4DyFMR8wp6Dk/q3c+6npN/nLQC0lIteXl7yQz/0QzjneOGFF2jbdgIx2+2WH/3RH+Xtb387H/7wh3nXu97FxcUFKaUJfNRtxRhxzrHf7/mxH/sx3vGOd3BycgLcZRj6vufjH/84zz777AHwcAA3IoJzzvonOTeVj9fx55wRkWmd831/HBSklPjQhz7EBz7wAb7yK7+SGCMf/OAHaZqG09NTPvjBD7Jer/He89JLL/GDP/iD3NzcsN/v+cIv/EI++MEPcv/+fXa7Haenp3z4wx+m73tijGw2Gx4+fMiDBw84Pz/n1Vdf5dVXX+XFF19ktVr9a5zhYxzjGMc4xuPxOQGU973vfXzv934vH/nIR1gul3zd130d3/Ed38FXfuVXTst8/dd/Pe9///vvfO93/a7fxXd/93dPrz/xiU/wnve85//f3r3FRHH9cQD/7mV2md1luSywy3JzERQoeImioSamiQRqTVPbPlnTmqapqYUHrTHGptVektLYpA9tTPumfaht06TWlKgtFYs1IlYEAbkVKiz3i7AXYO9z/g90RxbBAn+BXfx9kknYmcPsmR/Lb86eOXMGV65cgUajwb59+1BSUiJ2q5OZDQ8Po7W1FeHh4eK0/t3d3di4cSNaW1uRlJSEgYEBcBwHhUIBpVIJxhhiY2MRHh6OqqoqjI6OIj4+HmazGe3t7cjMzERSUhIcDge0Wi2am5vR1NSENWvW4ObNm5iYmEB8fDzq6+thMpnA8zx6enoQHx+P1tZWyGQyGI1GVFZWYvPmzXC73RgYGEB+fj5sNhuuX7+OhIQEyOVyjIyMYHR0FGvXroVWq0V/fz8uX74Mo9GIhIQE1NTUQK/XIzU1FXfu3IHdbodGo4HX60VKSgrWrVsHhULxUFymNlIsFgu6urogk8kgCAKGhoZgsVgQGxsLl8sFjuOwevVqxMXFQSKRICMjAz6fD11dXbBarYiOjkZmZiYkEgkcDgc2bdoEs9mM8fFx5ObmYmRkBNXV1VAqlRgeHgYA8dIPXfKYHeUOQsh8zeu/uqKiAkVFRcjNzYXX68W7776LgoICNDY2Qq1Wi+XefPNNfPTRR+Lrqd8ufT4fdu3aBYPBgOvXr6Ovrw+vvfYaOI7DJ5988hgOaWXyn/x6enrgdrvh9Xqh1WrhcDjQ0NCAhoYGWCwW+Hw+cBwHi8UCmUwGhUKBgoICWK1W9PT0YNWqVZDL5eB5Hk899RSam5uhUChgs9mg1+vhcDiQmJiI9PR0mM1mxMXFoba2FlqtFt3d3XA6nbDb7eIJPCMjAzzPw2g0ir0MGo0GN2/exOjoKBITE+F2uzE2NoZ//vkHJpMJHMdBEATU1taC53kIgoA7d+4gMjISHR0dkEgkaG5uxpYtW1BTU4O0tDT09fUhLS0NCoUCPp8PY2NjUCqVUCgUYo+M1+tFY2MjdDodRkdHMTY2ht7eXoSFhUGhUMDr9WJkZAS3b9+GIAjYvXs3MjMzcevWLXAch/v376OtrQ3Nzc3IyMjAM888A5/Ph9bWVuh0OvA8j87OTkRERMBmswGAWH/yaJQ7CCHzNa8GyqVLlwJenzlzBnFxcaiursb27dvF9SqVCgaDYcZ9/Pbbb2hsbMTvv/8OvV6PDRs24OOPP8bRo0fxwQcfzPgNmUxe0lCpVOA4Dn19fZDJZOB5HiaTCVVVVdBqtRgYGIDJZILL5cL4+DgEQUB4eLh4AuA4DnV1dUhKSoJKpYJOpxP3LwgCPB4POI4Tx4qEh4dDqVRicHBQbBDJZDLk5OTAaDSira0N1dXVyMnJgVqthiAIiIyMREREBKqrq+F0OrF27VooFApUVFTg3r174ufC4/HAarUiOzsbOp0Ot2/fRkJCAqxWKyYmJhAXF4fU1FSYzWYkJiZiYGBAbAgIgiD26BiNRvFyz/j4OOrr6yGXy9HR0YGamhoMDQ1heHgYg4ODMBqNyM/PR1JSEkpLS9HT04Ph4WH09PQgOzsbLpcLCoUCTz/9NMrLyzE8PIyuri74fD6kpKRAKpWivb0dGzduRFNTE7q7uyGRSJCSkoKYmBj6Fv8IlDsIIfMl/e8is7NarQCA6OjogPXffvstYmJikJ2djWPHjmFiYkLcVllZiZycHOj1enFdYWEhbDYb7t69O+P7uFwu2Gy2gOVJI5FIwHFcwBgPf8/FyMgIDAYDXC6XeKL0X97RaDQYHByE3W5HYmIi1Go1hoaGxLEfwOQYltHRUQwNDU1Oae52iw2csbEx6HQ6JCQkwGg0QqPRQKFQgOM4ZGZmQi6Xo6urC16vFz6fDzabDb29vdDpdNBoNLh37x6am5shl8uRk5MDp9OJgYEB9PX1QaVSobOzE21tbXC73ejr64PL5UJYWJg4FsW/TCWVSpGamvpgwO2//O+h0+kgl8uhVquRnp6OqKgoyGQyOBwOdHd3o7u7Gx6PB0NDQ/jzzz8hCALCwsIQHx8PiUSCkZERSKVSNDU1obq6Woy5w+GA1WpFVFQUVq9eDb1eD5lMFjCmhswN5Q5CyH9Z8Fc+QRBw8OBBbNu2DdnZ2eL6V155BSkpKTAajairq8PRo0fR0tKCn376CQDQ398fkGAAiK/7+/tnfK+SkhJ8+OGHC63qiiGTycRLNDKZDDExMYiNjcWGDRuQkZEBjUaDxMREsXfE6XQiNjYWo6OjkEgkcDqd0Gg00Ov1kEgk0Gq1MJlMSEhIQG9vL6RSKYxGI+x2OyYmJpCcnAy73Y61a9eiq6sLGo0GRqNR7Emx2WyIjo5Genq6eEkJmJzAa/PmzbBYLGhtbYXBYEBqaio0Gg2Gh4cxNjYGj8eDNWvWoLa2FiqVCiaTCW1tbYiPj0dSUhKkUil4nkdycjIiIiLAGAPHcQAmGyjx8fEPxYfneeTl5cHhcECtViM3NxdqtRpJSUmw2+1iY66hoQF6vR6xsbEwm83ipaD09HSMjo6ira0NaWlpYo/SwMCA2DtlMpmg0+mQmJiIpKQk9PX1ISUlJWAAL3k0yh2EkLmQsAV+7Ttw4AAuXryIa9euITExcdZy5eXl2LFjB9ra2rB69Wrs378fnZ2d+PXXX8UyExMTUKvVuHDhAnbu3PnQPlwuF1wul/jaZrMhKSkJVqsVWq12IdUPKVPv4PF6vfB6veJdLXK5HOPj41AqlfD+O/eH+PwUxsTBosDkNXyv1yv2rsjlcrjdbiiVSoyPj0MqlYpjNfx36wiCAI7j4HQ6oVQqxTtuZDIZ7HY7gMluef/8Iv47czQaDXw+n1g3/x1A/p4b//tPTEyA4zjI5XI4HA7xZ389/QNbfT5fwHiTqXGZKV4OhwM8z0MqlYq9O/7jcDqd4raJiQkIggClUgme5+F0OuF2u6FSqeDz+eB0Tj4Mj+d5KBQK8bPqn1/FP2fK9NurnwQ2mw0RERHz/j8MhtzxDF6AXMLNuc6EkMfDyzz4A+fnlDcW1INSXFyM0tJSXL169ZEJBgC2bt0KAGKSMRgMuHnzZkCZgYEBAJj12rNSqXxovo4nkf8yD8dxASdn/wlzcsIwScAtuFPvLpl+a66/kSCRSAIul0yPNWNMbJz4X0//Hf+tylNJpdJ/n3r7gL8XxG/qB9Q/sRpjTBxP4J9fZPrvTT2+6eskEok4uNJ/jP7xITzPB2zzv6f/2FQqFdRqtbhfnucD3st/uQcAjTlZAModhJC5mtcYFMYYiouLce7cOZSXl8NkMv3n79TW1gKA2CWfl5eH+vp6DA4OimXKysqg1WqRlZU1n+o8UWY7EU/d/uCZRJKAn2czveHyqHLT9zPTZHHTJ2ib7f1m2vdc6/yoOsw00+lM66bOK+Mf6zJ9fzOZqa6z1YcEotxBCJmveX0FLCoqwtmzZ3H+/HmEh4eL130jIiLA8zza29tx9uxZPPfcc9DpdKirq8OhQ4ewfft2rFu3DgBQUFCArKwsvPrqqzh58iT6+/vx3nvvoaioaM7fdPwngidlwNv0E/F8ToRzPfmGkrnG4HGXm4sn6TKP//9vLrELttzhhWfGZ10SQhaXFx4AczwnsXnAg8ehBiynT59mjDFmNpvZ9u3bWXR0NFMqlSwtLY0dOXKEWa3WgP10dHSwnTt3Mp7nWUxMDDt8+DDzeDxzrkdXV9esdaGFFlqWdunq6gqZ3NHe3r7s8aKFFlrmljcWPEh2OQmCgJaWFmRlZaGrq+uJGCi71PyDCSm+i2MlxJcxJt4dNXXwcjCzWCyIioqC2Wx+6DZ18v9bCZ/rYLYS4jufvBGSo/ykUikSEhIATA6yDNU/VCig+C6uUI9vqJ3k/QkxIiIipOMe7EL9cx3sQj2+c80bofG1hxBCCCFPFGqgEEIIISTohGwDRalU4sSJEzTHwSKh+C4uiu/yoLgvLorv4nrS4huSg2QJIYQQsrKFbA8KIYQQQlYuaqAQQgghJOhQA4UQQgghQYcaKIQQQggJOiHZQDl16hRWrVqFsLAwbN269aEnnJKZXb16Fc8//zyMRiMkEgl+/vnngO2MMRw/fhzx8fHgeR75+fn4+++/A8qMjIxg79690Gq1iIyMxBtvvIGxsbElPIrgVVJSgtzcXISHhyMuLg67d+9GS0tLQBmn04mioiLodDpoNBq8/PLL4hN5/cxmM3bt2gWVSoW4uDgcOXIEXq93KQ9lxaLcsTCUOxYP5Y3ZhVwD5YcffsA777yDEydO4Pbt21i/fj0KCwsDnnBKZjY+Po7169fj1KlTM24/efIkvvjiC3z99deoqqqCWq1GYWEhnE6nWGbv3r24e/cuysrKUFpaiqtXr2L//v1LdQhBraKiAkVFRbhx4wbKysrg8XhQUFCA8fFxscyhQ4fwyy+/4Mcff0RFRQV6e3vx0ksvidt9Ph927doFt9uN69ev45tvvsGZM2dw/Pjx5TikFYVyx8JR7lg8lDceYc5P2QoSW7ZsYUVFReJrn8/HjEYjKykpWcZahR4A7Ny5c+JrQRCYwWBgn332mbjOYrEwpVLJvvvuO8YYY42NjQwA++uvv8QyFy9eZBKJhPX09CxZ3UPF4OAgA8AqKioYY5Px5DiO/fjjj2KZpqYmBoBVVlYyxhi7cOECk0qlrL+/Xyzz1VdfMa1Wy1wu19IewApDuePxoNyxuChvPBBSPShutxvV1dXIz88X10mlUuTn56OysnIZaxb67t27h/7+/oDYRkREYOvWrWJsKysrERkZic2bN4tl8vPzIZVKUVVVteR1DnZWqxUAEB0dDQCorq6Gx+MJiHFGRgaSk5MDYpyTkwO9Xi+WKSwshM1mw927d5ew9isL5Y7FQ7nj8aK88UBINVCGh4fh8/kC/ggAoNfr0d/fv0y1Whn88XtUbPv7+xEXFxewXS6XIzo6muI/jSAIOHjwILZt24bs7GwAk/FTKBSIjIwMKDs9xjP9DfzbyMJQ7lg8lDseH8obgULyacaEBLuioiI0NDTg2rVry10VQkiIoLwRKKR6UGJiYiCTyR4avTwwMACDwbBMtVoZ/PF7VGwNBsNDAwq9Xi9GRkYo/lMUFxejtLQUV65cQWJiorjeYDDA7XbDYrEElJ8e45n+Bv5tZGEodyweyh2PB+WNh4VUA0WhUGDTpk24fPmyuE4QBFy+fBl5eXnLWLPQZzKZYDAYAmJrs9lQVVUlxjYvLw8WiwXV1dVimfLycgiCgK1bty55nYMNYwzFxcU4d+4cysvLYTKZArZv2rQJHMcFxLilpQVmszkgxvX19QHJvKysDFqtFllZWUtzICsQ5Y7FQ7nj/0N54xGWe5TufH3//fdMqVSyM2fOsMbGRrZ//34WGRkZMHqZzMxut7OamhpWU1PDALDPP/+c1dTUsM7OTsYYY59++imLjIxk58+fZ3V1deyFF15gJpOJORwOcR/PPvss27hxI6uqqmLXrl1j6enpbM+ePct1SEHlwIEDLCIigv3xxx+sr69PXCYmJsQyb731FktOTmbl5eXs1q1bLC8vj+Xl5YnbvV4vy87OZgUFBay2tpZdunSJxcbGsmPHji3HIa0olDsWjnLH4qG8MbuQa6AwxtiXX37JkpOTmUKhYFu2bGE3btxY7iqFhCtXrjAADy379u1jjE3eLvj+++8zvV7PlEol27FjB2tpaQnYx/3799mePXuYRqNhWq2Wvf7668xuty/D0QSfmWILgJ0+fVos43A42Ntvv82ioqKYSqViL774Iuvr6wvYT0dHB9u5cyfjeZ7FxMSww4cPM4/Hs8RHszJR7lgYyh2Lh/LG7CSMMbZ0/TWEEEIIIf8tpMagEEIIIeTJQA0UQgghhAQdaqAQQgghJOhQA4UQQgghQYcaKIQQQggJOtRAIYQQQkjQoQYKIYQQQoIONVAIIYQQEnSogUIIIYSQoEMNFEIIIYQEHWqgEEIIISToUAOFEEIIIUHnf5YgPenn5g89AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, + "cells": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAESCAYAAADXBC7TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebR123nWB/7eOedqdn/ar739vdJVY0sysiwL4ziAiXGqKCicAA4hhMGAQTLsjEJQGTipxLhqBJOYFFADEwjlwKhBT5GCEBgYW26Qhfq+uVe6fff1p9/dauZ864851z7nu40sWbf70H40ztX+9tl7rbWbs+aznvd5n1dUVVljjTXWWGONNdZ4E8G80QewxhprrLHGGmus8WKsCcoaa6yxxhprrPGmw5qgrLHGGmusscYabzqsCcoaa6yxxhprrPGmw5qgrLHGGmusscYabzqsCcoaa6yxxhprrPGmw5qgrLHGGmusscYabzqsCcoaa6yxxhprrPGmw5qgrLHGGmusscYabzqsCcoaa6yxxhprrPGmwxtKUH72Z3+W++67j7Isef/7388nPvGJN/Jw1lhjjTsA6/PGGmt8e+ANIyj/4B/8Az74wQ/ykz/5k3zmM5/h3e9+Nz/0Qz/EjRs33qhDWmONNd7kWJ831ljj2wfyRg0LfP/738/73vc+/spf+SsAhBC4++67+fEf/3H+zJ/5M2/EIa2xxhpvcqzPG2us8e0D90bstK5rPv3pT/MTP/ETq/uMMfzgD/4gH/3oR1/y+KqqqKpq9e8QAvv7+2xvbyMir8sxr7HGGrdDVTk5OeHSpUsY89qLsd/seQPW54411niz4Zs5b7whBOXWrVt47zl//vxt958/f55HH330JY//6Z/+aX7qp37q9Tq8NdZY45vAc889x1133fWa7+ebPW/A+tyxxhpvVnwj5403hKB8s/iJn/gJPvjBD67+fXR0xD333MN9Gz2MGBQlaAAEFcGoYkWwxiCiOCNkVuiXho2hZWez5ML5nHsu59x7d5/LF3I2Nx29nsP2LfRyzLBEegUYQVUR4g8qQAAURFExgAWxiHGIEZD4azSgoYXg4/M0gHpQBe/Bt+AD2mr6HSCgEl+HGIs4G+90FlwOrofYAcIAFQtSAwHV9vS41FE3lqMT4YUXlL1bgaNjpa4CtEJohRDAmJbBwDHZCQx6UNHjhRsDHnlyzJVrIw4OCmazHtXS4NWhGp8nRpJ7yWDEIcQrUVXiZ9FWhMUMPztmOb/CcvY0zfJ57nnonfzO/+iPsHlpl/rEMztpKAeG7UuOK08e4RtHsIbDm9dYHM5oWs/x0T51taRqGxShLMfYwlH0Mnw1pa4qFouadrlk0Ovx1nc+xFNP7lO4HuWoR9suUYSrN5SWAWIFtEX9AmsqnPUYCRQukGeenU2DCSeMByW7OwMuXxizNXHs3XiBZjHFGos4h7UWZ138bASMie+LcxlO7Op+5xxlUVDmBUWvpOj3yfMSl2X4EKiqJbPFgmq5pKobqmpJ1VQslkuWi4pl3bBsapq2ofGBECAoiHFk1lEUBb1ej+FwwKA/YDQaMhkOGff6DPs9yrIgcyb9LQAGRARB4r9FT28ndEXfeF/32eptv1dVjo+Pue++exmNRq/yX/yrh1c6d/wW/n0c2Rt4ZGus8e2JloZf4198Q+eNN4Sg7OzsYK3l+vXrt91//fp1Lly48JLHF0VBURQvud8aizWRDahKPPEqWCuUFrbGOec2Mna3crY3hLvOF9x3T59LF3tsb2f0h4I1CiJIP8P0CnRUIv0CcQ7RAKFFQ4jkBOLZWQRshtgMNQ4Rg2o6w0t6bIhkRkkrSlA0gLR6SkoMkJn4e0xc5YxBrQFrEJMhLkeNBSOINSAGaEGWiClQSYukliiRkKGeoBU7G3MevDiHuiK0SgiKqIJY1BZo7rDWYKwHsWCVtqk4ONzj6lXhuWsFV64PuXplwPW9HgcnBSezkum8ZFH38JSIKRNpi6RFjAMN+GKGz4ZgTTyedka1WDKfBtxhxvkLI7JBoJk3uMJSDAL71xYcHBxxvHfAxmYPW2Zs7L6VqgqcnExZVnNUG1QrtjY2uXV9iXFCr5eTj3doFjUHB4IxPUabE9oW8sJQ1S3GOowMETyIx1oht9ArDM4qZd7SLxaMexXnNjd5y4MXuXBhTLU44ZFHvsRTTz9LGwJiLdZYMudw1mKMRQyIBIyxZFlOZi1WhDZ4AiDGYBFM5rBZTp7niDFU1ZL5YsF8saRpPMEroY1E06si1pBlBWUZScjGYMhkPGYynrAxmTAaDRmP+oz6ffplibOOPItkxBhBEkFfMd8XlTREItEQeSWC8tISyFmiYoy84uNeC3yz5w145XOHI8PJmqCsscbrjq9zfnkx3hCCkuc5733ve/nQhz7E7/k9vweIteEPfehD/NiP/dg3viEBESW3hn5u2BxmnNu03H2+5PJOweVzOec2HRsTQ38gDIaOou+wIpALkjsoLWbQQ0Z9TC8H50A9GjQqH76J6oaYtIhbMBasS+pJuixFu0tLtLtNgBCgbdHWo41HWx8XBGPQzCXSkS7BrQNrEXHx30j6ECO50QBYQcSABJQa1BIVHIPQINqgWmN8Be0SrZbQNBhnMc6CyyArwORoaJF2GfdnBaQlcy3nduDctvCd76hZ1scsFpbjk4zjecbxScGNWwVXrpU8f23I1VslV64NmS5GtL4PaqKSlBdI1SCuxLoR1k1YzOeoP6To38Oi8sync2aHc649f8LseIZHmU0XtI1SL4WiLBmPRxweHWGygDQtbT3HWs/85ICgLdWiIZMMbIaxBQf7NdWsYXtHyPt95icHnBzOUN1AbEC1Ar9EpKY3MExGOern0E7JtOKBy1u897seZGNzwHR6xCc+/jm++IWvsKzrKIJhQA1G4oIvpIU6rf/OOJyzGKMogRAk8k+NfglE4leJRBjTE63LcVlBb9BnNBoyGg/Z2d5mZ3uXjcmIQa+kV5aMBgMGvYI8y9N+BCOgSNpH+tPolLz0h3LbyaBT+Dh7kjh7snhl3/zZ7bzeHo5X7byxxhpr3BF4w0o8H/zgB/nDf/gP893f/d18z/d8D3/pL/0lZrMZf+SP/JFveBsPPdDnrXeV7A4NGyPL7lbG1jhjdyNnUEJWWIrSUg4zslGGHThskYExmF4JpUPyHHFZOqFHMoFv0LZNyoYgJgNropIhJi4qQUEbupUpqigBFY/4FrxHQ0CbBlnU0AYwEktGRlAhbqdTZEiEKCgiHk2kRW0OkiHWplJT2rd4opICSFeGSixGWwgN+DpuuuyhmQOTISaP+wsttEtiUSaHrnQj3TFFLjboQa/Xsr3lgYrgp7TesGws85llOndcub7J1164zL9+7C6efGZIfZwhdQDnEFsgWR/rBixn+zz9yBdwg22wGzz36OOUZU4xmnAybZge7oNkbF24yObWDg+8Y4Os33DzV68xn56QZRaXZ8ymc/aOl4jt0SyU3vYGXoXesGS0uUFeZFx9+gajLUdv0OPoZIlBMFS09RQrLaOhoVc0LOdT1Ffsbjre9dbzfOC738J4o8f+4Q0+9clP8uUvPcqi8vEzVjDYyD3jf1AgaGQFgkAWy3eqGn+CgBrQQDCKJrIgzuKyjP5gwNb2FpsbW2xsTji/s825rS1GowEbkxH9Xh9nOyOZYMRgnHSUOH39hOA1fnRoKi+mUs4rEYp0M4RwR5lFX43zxhprrHFn4A0jKL//9/9+bt68yX/73/63XLt2jfe85z38y3/5L19igPt6+HP//e/g4rbiZAmuxuYtLs9xzoEPGGsxRYFkLlZGRDAui/6OVJaJ5+YAvoLQoMEjAQxxgcX2YpkCRUJAQ4iPT1WNrh4vXtG2QTWVdNpwqiYMslj+sGlRafyKmKgBUYnP9018gDGQl1FRMQ4wcBsBSYcQgHSljoTbJfyQ/p3l4ArEZXGhhPg6mwXSeigHYDJWBgW6K28PEN+jTg0CxCq5hTwXRkPDOTXcddkwvHeXr53f5tb9d1HtGdrrM5YvZIRnlvhFjjUDlq3w6Gc+z2DzQS48tEExGHF09QYP37XD3Q/ez2NfyLh+9SYHt26yfW6HYIQXnrnO4f5NfFuTFwOmx3OqZcNgNEG05LA6pK2VIstZLDxZPmNz9xzqPLPjPe5+4DwnxwU6h6Ato0mfrPTUi0OqpWfYC4zGgbffP+A3veceds9PODo+5HOf+QIf+9inaZq0yKtdLeqqGr9PRKIgChjBWsG5+LUJQVCN5TrjMvLcYVxGVhSMxyMmkwmb4xG725vcc+EiW5MNTJ5RlgVlnpNllix3UZ1R8F5PVY/0GYlGwhM8qyoOyU/S/XT//mbQEZaOZAGvS5fON4JX47yxxhpr3Bl4w3JQvhUcHx8zmUy4+fyfY3NrlNbWGpUZYo5RWSBY8BaRBkURsai0nJZikqEUvzKyCpFQqAAaIokRS7c4n6ocLfgWbcOKCIgx8aJaJKosNq0QIflYNKR1P6QyUFrYkkqDdZCXkUgkr4mqrLwv3YcknRUmBCAqLkpAxAOnht74YACDkqUSlSChgXZJ0IDkAyQriEteUnGUFZGJtho9s/dk8o1+ZIJxQM5JfRf/7Knv4J888Q6OTzYRjZ6Z0Braq4fMHnuMo0e/yPGzX2BzaPie3/Efgt1ka3eDonRcvKeHOs/nfvVrXHnhJm3r2diaEPycujrE5ULZG4KFk/0DjvaWuLJP7oYcH8y5+8FLvONdd/HYo/vcuHoTlyvVssaalkwajBlx7p77OTg6om4r6vmC3NaMyor7LxV84H33cvflMePJgMPDW3zyE5/gEx//DPO5RzGp2ibJU5Tek7SId2u/MZYiE4rS4pyjyPv0+iMGkwlbO1uMN0b08pJ+v8/mxphh2SeKWzkb4zHWOZq2xVpDkWVkucO6+KmEkHzWqogkf0n3jUwEWYMiNpaPTCojdVipKpySj7Mk5Oy/V89QCEHxQbFGXtZv0v0dHh0dMR6PX/qH+iZEd8z/Lr977UFZY403AK02/Ar/9Bs6b9wRXTyvhGzwFqSYEF+GxbAEuYroCyAN6mz0aVChVICLV52iaWVJJ2fTlTXi70TTYi027cmfdt9gkkHWInmIaoRGVUVDiyiIetQH8CGqLiS1o2lRNVGo6DwC1kEWPRRYh1oHKlEQOfNaTxuDfLqn87vE1Utp478VxNjIZIJGsmOE6Idp0NBEf002QrN+9LNoIm6dgmISAyESJCXE16MhEhljYrcUDu/7PHOyxSMnl1nqNqglVEpQjwSPZEp215hhdi+ysSRbHpGPAw+95W6KkYFBzgtfusH1J17gxs2blL0BtrAElohtcUVB3uuxXC7Yv7kH6qjmEPBsXugx2dhm//oRn/nok5TDIb6ZsZjWGGO58NAOB7duoVnOtWs3aVoF47FGuWu3x3vfeZ7v+a7LnD8/pG4DIbR88bOf5WMf+SRVS+r4gaBCV1QRFGPioq9djSWpFMYIzjpG4wm7u+fSzw7ndncZjkY4V5BlGb1ehqoyX1Y4Ixhr02cXQCwiyei6IhNnjK503VKsiC6QSoYrfnw7OksUURExxpwxx768vKKqeO9BTfTepMevscYaa7xeuKMJCjJBZANwKAZlglDG3+k1kArBoligR1QTmuTxADCI2rjYiE8qQjSLdjJBJAY2+UwkEhgC0EQVIxlW8Yr4pKiEeFu7BcQZNDNIlqFiogrSEQft/CgKTR39L2JPFQ+RpLakY5FIGQhKx7NUo6KTXhHqfSQWNvllUstzJCgWKcaQxfdJg08lHB/JDp1xs/PaRHXJaGy0jjs0iFi8WA6bLT527SJfu75JNZVIyIxg1IENkDuMGCKxKziZTtm78gRvffeD7N0qufbpF5geHFL2+xT9Eb3JEM1aFtMT8BUnJ0fY2Yyi6JPnIzb6fepRycHBlLaqycqS/taQtlqyd+sqtoBz5y9zdOuAupojxrJceLyvwAYubvfY7nne/dCI3/mD76DsOY6PDzk+PuHLX/kyH/61j1G3ybRMWsRVCPj47eiUMk4NriKSGrCEXr/P5tYW586fY/fc+WRyHTPo95HUXeOMofWxLhNIalhnuGXlj6ajpdJV3URWpKX7bnWcQSR6tyV5UjplJJZpzhph9RXJxlkx1fuAbxXnJKl0csrX11hjjTVeB9zRBOVgURKyktwZcuexEoAC1U2QI2CelJMcKAGbyh8aW4hTiScuveHMln366RZsg2IJCCKKEjM5xBiQFvVdm0YRH++SoZbOn2DitXdnXExtqdFPoqsFL6o0RJJCVHa6i3QVR9ftI0RvgyqIb0Ac5NnpVXhSQwSJTT6rUlCOFCPEZZGo+ToSkFWbcGp1Fhe3o00y7cbVTzDJd2PQYGh1zBdvXuaTNx/guB7HxdOZaJsJgeDBliVhOCGbLCkWJ1QH1/jMpz/DjetHXL7/uzGmZDadUlVzbG5owoxmNmV6uEc9X0YDamjRuqbIC9761ovY8UWe+uo1jg8PODqoMc7Q1EuapiIvLE0zIy+iitUbjNiYDMikwYYZ3/WOgnc8tMu73/UgRc+yf3DI9ZtX+fxnv8CnP/1FFlU4U1RLCobptCXBdO06SvL/RIXDGKHsl2ztbLOzu8PW1g5bm9tMJhP6gx55kcXnAqgSOhlEwXu/6uaSzkSbvokd2RAr8XvWmatJqgaGjql25OQl6EiKnBKa01/pS24rkaAEVYIPWHtmf2sVZY011nidcEcTlP/lkwP6g4ydUeD77nc8sDEnkyVKhrAFuownby0QKYAMaBFaVi5XHBBSP0Z3X1fy6O4zGEwsddACRSQ0krwf4qNa0F3qahsrRJrF54tHpEWIV82qieBE9hDViRDAhEhcjE8ZLLFUAknmF0mSu0ulAFCXIUTyEpWWbuHr5JXUGWSz1CItEBYIzUrtAYMas6opaeh6ms2qFKUaiUtXRwhhwLNHl/jla/dx5WgHGpcaW8LqvRNrEGNwozFF6wn1nP7JHouw5GB+wkUD/UGf+dEhx0fH2EzQWUW9nNHUSzQIrijo5QM2t84xPV7wtSem9DZuUY6G7B8cxPclVBQ9h8cxHI6Y7OxQHV3HLw8ZFwUP3Gt564Nb7G7k3HVpwl13nUfFc2vvJs8++zSf+NjH+cpXvsZ8EZIukjJrVl6PqFZ1YhR6u3fDWGHQ77O1tcXu7jl2tnfY3NxkY2PCeNynTLknBEWIhCSWhUxnbUETGVAHxkrc90odicRYzJnMkkBsl0djU9eLCMpZFUVMp7Sd3d4p0egeFxIZjf4TUnlLIQjuZTyyd6B9bY011riDcEcTlF95YoTrDSmywOP7Nb/vPY53bgnO9FH6CAPgGsI0rSynqkhER0g4c1+npMSyhHS+jM6vQg7Y1fOjP+BUtYhvqYI0qVTURCKTthc7brrtyZlVIxKTKPqbuEIYRdQlmT6WGGI7cDhjSunkd3fqWZFUiggeCdEzo2JAG6StkND5aQIqmozAEveZzMFxOwbFnKkdaCx3hYzjepdfu3kfX9m/j7YtIelQENWEqPxE2mcHOTQj/GKLerRNPT2iv3GZopiwvTPhxtNPUbcNxgo0c5aLOYv5ktz1CNowKuD8pV1UjljMFty6fkTb7KN4jHjy0mHzjO1RH20NedGjNyy5fM8ub3nwAvfft81992yyMRngrNC2ysHRAV/8wuf41Kc+xzNPP8d8mfxBEhfl+HKj52TVCU5XMrn9e1gUBRubG+zunGNra5uNjW02NzYZj4b0ihJrTaTAiTyKxJRjaw2rriwTiYox8jIdM5LyTU6/q10XkaZ25y50bfU9fYnSoauuntU9Z15ICIr38bPzPsT2Y86SHW4jZmusscYarzXuaIKCycD1qIzymRs5J5+q+KPvG/Cd2ycYLcCUQIXKFFmFmhlOi/ed2zAkomE4tR06YjdL1x+cykMSY+s1haOtou8loJoMrhwBi0g6CERCY9MCHlWU7so8Kh8ebMpUUY3H2ZWAOlk+mhVSeFz6EYnBbquFrkW9j55YDForZFk87lAjWscuIpH4WO06kJpYRhGJbc2dEiQSk2FTJ1NcpAy1n/D5W5f48NV7OVmMEbHgosoQvKYU3C5pNMoOZlDgqg2yrfP01ZGZbYosZziE4eaQiob57CB2GSFYdYwHY/LhkPnJnOMb+5RZTsh6lLljNp9xfDyjHOV4FeaHJ5y7cIFi3EOaGb/pOzb5vu+5j52tHkVmKcsCEUPbBo6nh3z2U5/iQx/6Vfb2j2l8iN4giMdrhLOjDVZ8krS8p5ILImRZzmg0Zntni+3tHSbjDcbjIYNBjzLPyE4NJYSOIKRqWu4sIUTDqm89xlhsFsPXbs8vYVUevB0daZbTf54hUqfPv/15L1ZPQgDfxhh9RfHxxupv4bTk9Mr+lTXWWGONVxt3NkEREBd9D14cXzu0/NzHlvxf/p0J9w9uIDID6lRaaUgDZCIUYtBZQyQNiYyks7ysFBELmqfbATRL9CIZDhPhQPNkmpwTCUiPzuMS2UVIPhdZ/Wi3CK5eTvw4oiUkBrEJTSQToukKX+Nr7vwmIfpYMF0XSLrCNwL9ZBgOMTxOQxuJjJXTUowxdJfHoil232o6FpsUgza+NpOjOuTK8m4+sv8wN+YXUXVRyUizXoxNC3oqUSgaS1ilxYz6FBu7uHpCc2vBU49fZ3GyhykEbEVbTekPRvjaY6XlrW+/xHj3Ip//1ONsnZ+wNVby/oRFA4fHx3zq489zeP0GWZ5z4dJlFnPPZCLcv1vyg9//EJcvjyAEvI9hZEEDja/5+Ec/wr/6+Q9xcFzhz5hNDZ2q1C360RfSVctWn1MqmThnGA57bG9vsr2zy9bWDhubW4zGI4qyOE2OJdlENCoeIe3TWUdrPE3T4oNn2M/JXBpd8A3i9ONL38czXTrw9cmJiBCCol5p2xTYFuJ3qisDxdKQxuyg2xS/l/pZ1lhjjTVeTbw50pd+gxAraN3AvEGXDb4JfPUw43/85TlPHPdRzVC1aFp6lCYt/LFzRkVjCUPzqJZodwnqTpURmkg6ZJk8KD6WbqQhelUAzYhEZAos04JkEXVAQewg6gNDhD5CRkeGlICQIzoEiqjMEIAapUK1RYNP7cWa0l7TTB6TDJLqoW2g1eh7cYPYQowi7RKaRYx3T1ksGmKHESaSpPi6QCSLqbmSYvzFgrh4nylAS/arLT584wJf2b+Ab/OYnJobcII4sLkkq0rqYjIQrCKFYPMMY3r4qcdpy3BrwLytONy7Tn20R1n2kawgz3r4yvLMY7e4+dw+k/6I5dzw/AvK5QcnXLi35NrTz9HOZhjN2b7rfvLRFovjY9r9F3j4nobLF3tkKeTMJHIym035hZ//ef7ZP/t5jk6WZwSHRCTFIxI/gdPCXiq5mNhui1GMVVwGo2GPnZ1Ndne32NneZrIZ1ZPhYECR51jnViQFOrUi4L1fxd8IsaTkjCVzGdasMmJf+n3vSMOZn0ilXsoUXu6xL6d8nFYKU/Ktj0qZMSaSTmPSMQfUE9XDM6WkNdZYY43XCne0gqJBYynEuaggeKGtAo/rhP/10YY/8d5tRtkh6C1EUslFlfiyG7qTrHbSu0os5Uiab9Pxt27oHwtOFZAcNJllqeOPdITl9LmrJaFrx8GlAX+dopIC17oQueh8jVesmqPJgBvLS12MfZqQHHy6NJdUWkq7DXVqea67hK/TTScvCargJZYqjAWbE9TFDJWurCMOwaIqKIYqTHjk5B4+detBjubjqMQQLcRoWCkEKiDOppec9gdo8NS3jvC3bnHuwpjxSJkdz2kWc6xzFIMBrRdGW2OoAybL6W0MMfmMh957Hi89psGwd7BgWXtcPuLeh+9FxFLNK3Z3St56v/Lu77yXvMhomoAPkXxcee45fuFDv8BnP/clqjq2QkvwyfSa/BmpmymkwZNBSeTNrN5jYxRrod8rmWxM2NnZZmtri8lkvCInvbwg68jJi7+zJI9L+kCMGIxxMTk2s1+3yya+nfKS+19MFboyzMupKC/eXkjEJIQQhwu+aD8hnHa3+RBQSQM2ORVT1lhjjTVeC9zRBCUsG6Tv4km/8YgKtiyR3PLJa8p7rgz5rXePcSa1GK/aKMMZ2yvE0k0n6afOm9sMtMTbKe48dudkiVR0P5FY3GYE4OxO0n0SVo+N7cspc0UKoEHwKfE2ZaysykLpuLvwE5MWka5FWO1pyiw+lYWIoXJpFky8P5EVJXX1FGDzFHefEbuD7JnXH0tfQftcr+/msydv5cr8HF5syoSxdLH4q9cpL8q/9YJWHn84J9w6YmuSM9lWlrOrLE72aesFAUu1bPG+xYhiC0crOQc3p2ioePIrV+lt9nnkUzd5/oln2btywDvf993c9/bLoBU3rxxilg3nL47Y2dlKpYlA0Iann3qCD/3CL/KVRx+jbn0cuBjMqmRm5DSzJo16TDHyMbk1toXH+40x5FnGcDhksrHBxsYGk8mE8XjMcNinLHIyZ1OHzRl1gljaaX0bE2ONxRmDiOCsIc/cKUH5Jkonp3kn6d1/GQ/Kix/bPb4z/K62kQhI91hr7UrxidacqNx1qbJrrLHGGq8l7miC0lw7wrRF7HspHPlGH1ycbzMLBb92xfOd5za42OsR23MbonLRGWBtKvlAzEoxoPaUYghJDZG0EFvSNTCnWSnKqqunM7auWMmLCM5t93eWzLRdJZV3YnmkC4sTGlj9RCUlLiJ21UEU02STp0XTMZkYpqZi6cbpapDoRwnp91kfXEmsyXTtyuk1a2cCjp1J03aXzx/dw5f2d1m0eTR8KhgTktojq5cWjaRpUz7moYSDBc3zN+ipZ3MrY3bwLDee/BqDzU3atqFtPbnpkxd9mqrG2pLx1oBzd29yePMqX/3Cl5keH3OyP8NkA0bjbYqe5eDmnOnRMYe3bmC88NxWyTPPn/DwQ5scnxzx2Ne+xof/9a/x9DPP0fqQVKGoiInVKAIpK4OoojE/L4Bg0rTgUzOqyzIGwyGbW1tsb22tCMpwOKTXK9OE4VgaiepMiJ+QBpqmZVHVgEaFJWXZOIEsmWNfCS/nJXmxivJN0waNfWohBcCdKolRUbHWYK1FNZZ4gsR2fGMs1spaQVljjTVeU9zRBGXxtRv4qwFT9rC9gjCuMZMct1liho7njgqeOhlzoTfo+ijS4u9TumbynUgXZU5SL7pWYkt8i1LWSVI/VsZYzizM+BShnxJY0ZX59HZyEpWTUyWF022RDLiSEUPlQFkSS0sNQoNSERNyUwszGkmEhDhFl5Dagu3K6KmiaFOjdYOEEIcHZgPUDVM+jKyOjdSpsyJrYmn8iCfmF/n43iVuzgZRfzKyUmygi7/rVJ24wBkFCYLOa/y1PczeLXquoV7scf35pzm4eozrb7KsGiQ4mmrJ1vY2TdUwm1Uc3LwJ7YKDW3vs3TqgrWGyvUV/PGQ42eH6cy8wGVzF5Uv87ISNiw8xbQ17c8uVm0d88dMf51Of+BRXrt2iDSF5gzolJJKUOOUgHbNq6uMSutC01VQCA9Y5RuMRW1ubbCeCsrm5yWQyYTAYkGcZztqUYRK32ZVP2sazrBqaJlDmjsyalc06c44sc6ckJHXQdL6Rzh/y4lLNS8o/5qVE5pWhK7XFSPTZrMpPJu7Te49zgjE2tSHHROFgUwx/+Lo7WGONNdb4lnBHExRpBSpBQ4tfKOG4Ra5X+HJBPbbc2jU8Pqn4zqEw7HlE6jPPTvNqEjmI5Yo4/C6WNbpMkmZFbuiWYU1n5lX29+3ZKdAtHuHMVW1X9rBJNSERgbMtIlEZiaUiRywdpXISxGMxS5QFaEX0vjSISSUdYucPktSTbqZQU0FdIyZHihJcP05ppkBX+aZJUYo1rHT8nqCWq/UGn9y/wBNHW1RNJDFdZ7Okt0PTwhZNuIl/BUGXnvaFWzQvPIerDgmmYro4pl4GTD6iWQSszambQHuyYH40o6lrjm8cMtrapdkQpGfpDXKGWz1+4Le+g5PZgkceOaDvGi5uKttbGVeyAvqe4UYPNnp8+kuP8JFf+RjHx4eE1YGe5tZIeo8gREWJMx0xSXESoyme3mBdwWA4Ymdnh62tTba2t9lI5GQ8GtEvS1w3P+c2OSOG8HnvaZoGI4YscxgT5+8YiCWhb3Fa8DfbUbNSYCTeti6WczTEqLqggTZ19DgTByBqMsua1kfFZS2hrLHGGq8h7miCkpWDOLTPGsQ64mydQFg2sGw4vNnyj5/b58nPzfn+7+rxrodhZyIYk4E52x6ck65lid6SOMU2KhSp9fe20g5EhaFTUiCqKWe7G86Gt3X5KsnHsiIcerotunJKt1C1qLRJpejuy1A1CAWRvCRCQgNUibzUqQwE4NG2jWrAYIKYEpEcKFDJiN1HXddIF+nPSvlRdcz8Bp8+uItP3zjPdJYTWk38TJIalWbWqMZqWQ3ilTgeyKO3DqiefBbdu04uS1rfULeBetly38NvgQyO967T29hgMjnHxbsv8sIzzzEcbRNy4eR4n+O9ffp5wdvffjd33b3Jh3/5SbYGGffeVfLu7zjPQ2+5hw9/5Ek++8gBD7wtY++g4fNfuM7xSU04oxSoxNTeGN3fmUBJRtqUyIp0Lym9RrDG0h8M2d7Z5ty5HSYbEza3NxlPJozGI/q9kswmxWvlCdGkQgR8CDRtCxIoypw8z9K+A9a5qLr8Ou3Avx5e7D152Y6dFykwYiQSEokt022X33fGkxJCVOQ6lcWv2rZDLJmtscYaa7xGuKMJCkUP0xulWSEpLl4UcQo+5obsT7f5pc+P+cgXLvCWC8/wW3/TlO/6DuHSxYqytFhsKps0yXBaJMJSAkOgH8mFxkyV0580wZjT8lBEiqZfkY+OkMRyy2kybUd2bCqlRIJ12tVz1suiq/ukU1kkpdJqmRaUFmSJsKCb4AyK2BJcDgyi1yR5Sk6P47T8pGnfsXPF0eqEr03v4qPX7+L6fAOvpwP0lFjOikJLXKjiPMIQFRQPfjpn+fTT+OtXGOSeMlOqRUB9S1tPOTm4Rn97wnI5J7MDvG+Yz04YbPTJhyOe/PIjHF2/RZb3cRsbXD82/PK/fp4QSh64f8L9lzLe+963U7dKyHc4mS+4ebNifM6Sj8a4YohvKtS3nDbpSAxC695WJQ5gNCYqKUkd694fsYZy0Gd7e5Nz53bZ2tpmMhmzMdlgOBpQlAXOulVmSJdxgkY1IoSonFRNjbGWMs+xxtCGaDy1xpwm974CXsnw+nKdOiFlmHy9x3aP7xQUTFdijOTNd507SU1Sjb4cay0+kZau9XiNNdZY47XCHU1QsuEIcSVdiUU0xaxLiO2zGj0nQTKW/l6+dO0Sj/7zEya/cJX3vW2fH/53DHddmjPotZSFYqRIi0VX6hmClHFlk0FavBpgDixBqlRa0dNjOBP21nUFaTLlyoqYRGIDeSr3xPJKVx14WbvjKlJfTpWWLtsimj+IU517iC4i6cKDccTQuM5L022nPeUmyYMTiRigcXbvM4tNfun6Zb66t0nVRgOt2EgExSs0ZzIx2hTyBtAo/uiYxdPP4K++wMAFMhMIbY2EFt9UUHtmRzNq39LUcFgvmM8P2L9xyM6lDZ5+/HEOX9inNz5P3hsS1HFyeMTm3TvsXtzgHW/Z4rve8yDGOQ4PpxxOa6rWMZst2b6c8exjFSoeYy1Bfcz2SGbQTunQbkwAEgUVSdF5qvHtNYai7LG5tcX5C+fZ3d2OnpPxmPF4xKA/oHTZKeHpPjqJRCUET+s9ddMSFMo8w9n0J5dIgzFJseme/nVKJy8mI6+klnwj7cVn9xd/H4/DBIkUNRGdOCPIYzKLcYLxEtvO1+WdNdZY4zXGHU1QfFCcxvyGmI6qyW8QTaLWGvLC4KyynNXUC6i1z1F4G7/w+RM+89gR91865m0PzXnP2xruvShsjCBzhhiwFhA9JppHu7KMQxgRg9caukC1eLvzrYTTx2pGN59HOR0AF30mNiV0ps4ddMUZbsfZ7p9Tn4t0V8CrlqOOIA3jMYpEF4xm6bddUF1N1xmkEkBdKmnFPbUh57nFDv/q6l188soudVtEQhICGlJCrJdY4WojOQltKgu1Hj89ZvnM04QXrjAqPFkh+NkSbRsa7/FNy2hzh937HuD6809jvLCxPaG/McaVhtnRAbOrxxgZUA4m7Nx9CacHvPWeHttbFdubJe/8jrsQJzz5/B5PPHmF+RIeePv9NLXnyuMHHF95Nk6F9qdluEhEThf30L13AhK0m5REF4SX5znj8Yjd3V12d+MAwM2NDUbDIYN+nzIvyGzXFZQ+qaAg0XDrvadpW1rvYzknGXSULv/EJC/M7QbYl5Zn4rfilQyzZ+9/8TbOlpxMamtefav01Ii7KhElYkaIibqBGH1vgjk1/6btv1zOyxprrLHGq4U7mqCIhMhF4j9WJ1yTZYhYXGbwbcPycEpbNaiPE3Z9ZsAMuD4bcv2xi3zuOc+vfvGIdz2w4Dc9fMIDl2vObSq9skLEr7YflziH0rUeC7F8U0IXp98lzGrnPTlbuumgaXudR0VPf5I59SUtEqqnpl45jc8/G7sv3aDBM2WluJy4dBwFog2nBuFuqnOLplTc1juuzrf4yM0H+OSN+5gtx4RaoPGRkIQu/Tal2AZBG0XbAL7Bz06orj5H+9yzlH6JWGjrBq3r6NnxDaFdsJi1DJYngDDePMelB+5ntjjk+NYNVC33vv078FRou2Bo9rnncp93vWOHC+cGnLuww/Hc8/wThzz1zE2ef+4An53jnrduMD064vEvPMLhzRfILDQ+pMVXTtt/FTCC1YA3MQPndAaTYsRgM8dwOGArdet0WSf9fp9er0dZlreFsWlHjlc+6kBoY3lnlSNi0vTq9JxuEvLZRf/l8dIBhd8IzmaknM07eaX9xOMx2ADBBEJSxALRS2NS5k5HatYEZY011ngtcUcTlFC1MWo96xbiuABZE19WM6toFvO4OAYFseS9EabM46RgG694m2XFk9d6PHuj5qNfPOC+C3Pees8R73pgydsfhNHIYxFEMrqQt7NlHEkDBaPJtiMRiTgo3G6u7bp7TklJ5/2IDT1+paasIC1R9VBWnTYrEnOm+ya1RetKZUkLiKTSkrZnnuNAinhFL3Hejw+GG8sxH7l1Lx++ej8398fUC8DHELxVi05qg42HEAhNg7YNOp9SX3mO9spz5M0UY5V6EZAQMBoQPEEbVONrPbqxR1n26G9PqP2Sk8NDXFYy3NqkV4zY6FXsjAf0y4x7797m3e+6i3PnN5guKz735cd49qpw43DB1JcY4GDvhOce/xph8TyDPKNtPJKUB0SwJr6GqBDEz96orMY3KpE8OOcYDAdsbm6wubnJcDSi3+9TliVFWZLnGc45bDK3Bo2LuWo4tUiHpJ60MSG4yIvYSnxWhTBy22DAVyzZdLn43bdOeNnHvVxJ5zQIdiW1vWQ/L/WnRGOwJJIcQkjf3tTp0z2fNdZYY43XDnc0QdGmRRtP8CHGrUucAtxWDcE3tFWFNg3iwRQFbjDA9vqpDCRYazC54jKLrTL80nL92LE/Vb5yXfnYV094+OI1vv/dM971sDIczBGJXT8rs2rnK1GfWlhtUlhsUlE8MWytm6ScclhWJKQjJ2dUlM4n0plfaZL/xUal6EzXjWie1JEE6cyv3f6hM9nKajhiynPRLO3Hoars130+tn8fv3rlQZ47mODrWPQwNna9aAjxcEIihI0S2gbfLNHljLB3HW48R744wJpASGWgGHTmCcHHqbk47n3LfZzMK5zLUFGWyzmqNdWyob06I2xusjvZ4N3veYDt3T6lFSabAxaLGf/mVz/Jxz/xGLNmm3nbJ+9t4QrPjevXOTk5ZFwGrAEf2lVJp5sto4k8WmNRzpRFOpUly+j3B2xtbbO9s8vGxiaj0YjBYBDVk7Ikz/JT5QTiii66+vhUldZ7mrYBgcxllEWBTVMGu306+8qprC/xeCSO8uuRgpdkpSSC8uL9nC3vnN3JWfLTvUbvPS9GN/RwjTXWWOO1wh1NUIwzKUTK45uK0AbwAW0bUL8aG+/yITYbIK6IflcraIBm6eO8PWexueDKjNIIvg7UDTx1a8gL+5t8/sl9Hjp3lR/4TXPe9y7LZBjLALGdt+v86BSTGBd/mjobw9Q6VUM64tD5RlSI6sgy/qQpxpoUEukSawUi+enCOhIhw8UrXUnKyOpi259RTLqFpE33JdUmpdWqCofNBv9m725+4fmHeP5wF99koIpz0dwbQgCvkc8gsd24bghNRVhOCQe30OsvUCwOcbYmKDTBJRoFIi1Ba5RAs2zwlWe8OaYcFcyOTrj+wk2Or92kqZXMjTkYnXB47RahaphsFEiz5NKFCQeHh3zhy8+xdwJKRdbPMcs9RBz3PXQPg5GQVQfo4hD1dcy3kdOyhCrROBsCwXfZsYAYnLMMBgO2NrfY3jnH5uYWk8lGirEf0uv1yLM8KicrlSwt5p3fJ3k2fPArImStXZETOPWDdBOgf1101UBN/zhDcl7sPzkb7tZNOI4lp/Qd+DpVGZEuUTdpg8bQvoicnH0vX464rLHGGmu8WrijCcq7l5/jqfpeDhnHwXdiCN6jvkGDRyTDFQPcoA+9HKyNrbCtRnlf4kJL49HC4pwhiCKFwdrYsRBCwa16wt5zl/jU0/s8+K+f4Yd/c8sHvsuzMaowsoxGR81QCroFQRI5EZrTBWalmAhoQXz758RaicRY+tVcoLNwvDiwLeJsUJxZeWMioidFV+pJp9p0x+Eh1Kh6jtoNPnLtHP/i2ft57vgc2maIj4u5tuCDTybZ2EGkjaddLqCtaKs54egQblzFndzE+DnGQBMsPsTBciaVkDR1VVlnuHbtJpOwzXx2wK1nnqdZCKFxkVdZw/RkynKx5NcOa8pRiUoscfV6I5ZNRtsGemWDaw5pmhbjttnZKTBVRX1jirUeJEdDjRgXyzoSsCZDRGh9iw9+pSQ4aynKMkbY7+ywuTVhNBowHg0YDQb0ypIiz5PqkZSQREziih7NrqsW3DaVezQSFtVAJJNRbTlLTH49b0j8pcbgvTMqyssZZs9ujzOm65SPG79nL/OcdKinX4/um6XRLHuWCFljMKw7edZY4w3Hi/6O9/7o9/LX/+u//LIP/S+++gcY/vBTp3fcAX+/dzRB+Ym3fYIXJp7/vXmYz+71OD6o0anHCxjNyVyJ7fVxgxJbOjRA27SoKk7iS5c0uBcC9aLFWRuHo4iCtTib6vhqqSn56tFFnv75Q/7Fx57i+79zznvfYbh4LtArPdYsouIhJYpH4kAXUEWIKbba+T9YErNKFqfyvdrY6ZP+G9WUZLLVtLBpF9DmOL2a7so5XeBbR4S6lFgFSdkoGslN54o5bjb5V9cf4Jeef5gXZhfQxkXS5mOeiYbosFQVaBX1ntA2qF/il1N0Pscf3CQ/uUnfLDG50tRKW3fH59GVkgPBK5fvf5C6zRDrOdk7RCSj7LtYMhBDZoWyyNHGM5/tczyHbFhg84y2qZkdzynynN3NIYOBIZhNBuMLHO8f0xzdIstqfNXG90Gy6PWwNmbCeE9dLwner6L6jTHkZcnm5iY7O7FbZzQaMhz2GYwG9Ad9iizDicTcku4t5faSy2rR73wu3uNVVzSyM1vH8omNj4GXEIaznTedWhE0nFYBu84jOd3ny5aENBEL0lRikTh+QF5euTkt70Rq0/pTFfLFKo0mMrbGGmu8vjBliYxGAPy+D3+ePzi6evo7Po2V/GWf95F3/a80z5+qnr/zD/1xii8+i79587U94G8BdzRBKTf6nLvvEg9dfgfHWY+DxtMsGurDiup6Tbsf8LMMEwx4RazgTDeRWE6rMihioOxlCBq9E52E3yVuipJlGSJKq1s8erPPoz9/yD/+8A2+68E9vvc7ah6617M5XlD25mQWZOVH6SyY0VR7OlsndeGsJih7oFqVXk4vZU8TW8Gi6uJC10W4w+k+OlOudB0+gZjXUpMMJHHxCZbnZpv861v380vPP8Stk4u0y9SNoxLnHrbJENl4aFu0bQk++m1oloTlDH/zBnLjKjkLjKsJbUvbZsmaEx9rRPEaVYXgDb4NVPUMa0LcpnrGW5sMJz0WiwWGwPlzQyaDwNHeHjdvnVC3S1QNxlm27x9Fc6lOmS83CAQ2z3k2Ngqq646mWmANWBFUzCoMzRCo6iUaOs8PCEJRFGxsbLCzvc325ibD8ZjhaBhJymBAkedkzmHtaZuudF+fMwFpHbr+rrMKR2eOlbM8IpXLVi2+rxTIFm+k2x07uf1xL1FERNIIAgiJaAQVMmejVevrdAx133vVEDNvVmpJ9EcFQNREL9caa6zxusFuTHj0//E2nvyRv3723m/4+ZmcPvZDf/vnqLTh/3T5fa/iEb66uKMJSmt2udG/yA3XYyGG0DO4SUFxd4/N9wl5Bs0LNbMvLpk/5anmqYxiYzxa13OhYlI3T2SXxpo4yFdjZLwYwEssCZDSUtWidpOb9YRf/PJlPvylPe7ZOeId905598M1999VsbMR6JchTn5dEZRT02us5BiikkLq4EndOZ3pEoiG126AYUhG11PIbZfVq0E4cR9UafstsfHGMmsLnpyd55euPcCnrt/L/nRMqIAmkR4vaAPBN6hvoIkzWbqf0Hqa5Zz6+jX02gv0wwxXxPbhtgYfctoAzngMbSQ0qvhgyHtjgrG0zYw6BMZb2wwKS1OfIB60XrK3N+dof8mgbymyBldCLzdYm2GMo1VYtpa2dWR1zWAwpzq5wfG+4nJLM/XR92Gz1Hnl8W2N70YTdIuzEbIsZ2Njg3PnzrGzHWPs+4MBo/GYyXjEoDfAuSxFo5x20qygpwMBIXk0ILYZe48kM3aXFhunJZukfpAyUOKmfEiDDDuJJniCrwjNAt82qFpc0ce4EhG38tSsfL6r1vXu3/F3KwobAiFENSke+u2EqGsrPiVXnV+mS8ntNkQsWX1DBpo11ljjW4U4x+Ef+G5uvQee/JG/9qpt12CY/r7vZfgPP/aqbfPVxB1NUE56O1ztb3NohdZqzHAwSr8Hg5EhzwyDgWF00eGfWnDzkQUvPD1l/8TRmAIVh191tLC6UvQa4hWvIyoVJnpWuh98ivvWgDEQdMAslDx67RKPXZ/zr7+8z0MXjnj7vcc8fP+cBy4r25vgXLwCNas49GgeFTwqAaVNq0o31ycQW5fzWKrQmLUi4uG2qPpOmTkLj0gbSYrG0lKjjhv1mC8cXeIjV+7m0VuXmc8HqDeRhCRuFLt1NHZJ+SaODfCe4Nv4Uy1pDm4Qbl5l4BcUWYU2C0Sb6MUJimjAEBBto/clgLEZZT+nrY5oF0eIKhsXB9z9lruoF4fsHyzIreAb4eR4wZEvsVmPLC/JnJLnsQunbgxiHJOJ0C8EZxua6oD9mwtY3iAzgohNk4o9GhpWvU/domyELMuYTCbs7O6yu7PDZGOD4XDIcDRiYzxmMBiQZRnGWqyxmC7yNa36XRdQCHHejpzZfgiB1kei5KzFJqOxMVHRiSQlEkpNil6X0Op9RaiPoD2hXR4jYRHLftmAEPpQ7OLKCXGu04u47KlBJf6zCwKUOHfnlTpvVmWm5J+6raRjJCkynZqS3sJft6dojTXWeDXw5P/9fXztP/2fXvXtZmL5e3/hL/C7d/9Lzv3sv3nVt/+t4o4mKLf6F7hRTJgCKAwJ7JSG7b6l5wPDZcNkMWdrecTmYIp9aMpNe8hjzyhfujXgqWqXIzPE2yIRkZSFgUvydvJ4SHdlmWRvDUneVkJQjEaPiCI0TNirRxw8VfPFZ4/Z/dwRD128xTvvO+St9y25fFHZGMXJuZ00tyrFcNp5oSiiKW4fQ4ym77JPOlLSXTrDqpOouy0eTcbYgDBtxzw+3+KTt+7iczcv8/z+Fk1TgDexhONTS6oCIbYPa9uiPv4E7wltizY1fnqAHlyh50/ouRYJNeJ9umJP7cj4lNYaYpdVTN0HPUEXUy7vbjAYBO69ZLjv3iFoyZe+9ASHB4f0BiW9geNkNqeqHNXS0hpDaD1FmTMe9bBWGfZ9DOgPc0KzZHZ8SB5OyLOoIImejbDvhgLGd9y5nPF4wu7uOXZ2d5lsnrYTb4zHjIbDWNJ7UVZJh1VUvuqqY6dTFF6sTHQLeRcfH1TTca0OB++V0DS08z2YX8fPb6DUBO/JrIArYlmyqVHJCFkfK7crIaek9+xxnvmK/Dp/T51i0rUQh/SdOqvMnH1t66C2NdZ4bfHkn/8Aes+Cr/7Az/J1W/C+Bdzjhvwf/tiH+eTPfuOlotcLdzRBudY/z77JcEG5x8KlPHBv1rCzqJi0S/rVEeXxVYrDa7jpPmZ6zP3tgnfuBr6vX/LE8Raf3LvEF44vcMtu4rMBJnOokXhxGjq/QbxEDXiCxqtI09Xyzp68Q4hdHeIILmdBj+emu7zwlXN86qsHbI/2ue/cHu95+ITvfGvNpYsNRd5tK+acrLpttEDppW03CJ3pszPamuQ56XwAXfkhxu+jFQFlERw36i0+f3Qvnz68zOM3z3N43CNUNvIh320ikRsf8FWNr+Zo00afTIidUd5XhOkh7bUXKOZ79KxHfAuhxRDn3QSVFAsSSULwnroWrLMUpTIuK0Zj4dxuxt337nD+3DbDUY9rV59jOb9KXZ0wr/v0R9tMJo7ldE7bGrA9rMtxmaXXU4Q5mVWswGK+pPU1mZxgshmmyDHGkhUxr8ZXLerD6v3LspzBaMzu7i47OztsbGwwGo8ZjUbxJ/lOus6VLgZwtThrZxyOcfZewyq0DT0NezNtu1IwVrNtzpDKzuTqg1IvjqlvPA7TK9BOqeolYPHeszBxLEJWzHFFj9yUSNmmGT6nwwHjN/FU4ejMrZ360RUCvy7OGmJX25FEWPQMWXkpaVtjjTVePTzxMx/gF37fz3B/1l2kfvvhjiYos2zAltY8qHPu9lPOz4/Yquf0syVZqNHFMTI7gukR/uAWTI8Q7xlljsH2kLsuWb4Lw+N7Cz7y9C0+c3OTG8ttfD5AModYgxgLQaIf42wYlwGspPAvEALGOkTAOJcMioLXQDAbHIUhR0eXePZwySce2+fS+Arvecse3/3OOW95qGZjLBgTktW1TxwkqCAVorraB12LcKeyAHSD/gigFSoLajUcNBMemV/k4zcv8+jhZQ7mI6pjh6+jAVaCRr9JSFura3SxoK2XqHpEbHz9xBk7spyhezdwR7foZ0scgbZNPhPxBG9Wl/ExtLVh2Ro8BWUJpa24tNvnne+4yM72JhvjCa6X8/wzT/Dxj3yEJ554Dq85mW042a+o6oLBsM9gBNZVFLnimxnVSYtvA21uMUZp24CwxLolag1CiTEGH2KIn/ex3VoFnItlna3t7RU5GY/HjMaRnIxHY3IXyzlnpwDfNhFYT8tF3fRieZGyYE0MYVvNv0kdSrErR7GJXHgfWB7vUT3/ReT4WarFgiAOtY4mNLQecIIRJYSKVhVbLXEaImHgRd08QVdekc5ga0QIq2P4OqRC47fsrDrU0V5N8pqkUDpjBGvffFdca6zxbwOe/bO/mV/5/f8Dd7nhG30obyjuaIJyl7/GhfaI870po3YP1x4ivkWnHk7mMK/QhUenc2R+TKhnqM0w+QhTTshHI3YHBdv3BN797jlP32j5yJeP+eizA56fbdFmI4KLwWvWGVpRxFuCiZ0paCC0aVihIXoURAgpwCqEONBPrI1kJVjE9Zgz5rHju3js4wf8i09d46ELN/m+9xzxPe+uOLdl6ZUulnMkSRykdmW6UlPcHiuKEqcsB5Z4rTlsS56uLvP5o/v49M3LXJ+OWcwy2hlIo7GjSTUGlbUKbcA3C6grJCii0cMhYglNjW8r/HROe/Ma/uZVBjqnoE2HlWYCJdNkMMlsqYoVg4jHyBHGB0rJuHh+zMNvfYDNjS1qaXnks5/nl3/hX/GVR59FKbC5ItZjZU6RjZjOlKbtMdnICX6J0ROcVXAOwUJQMlkg1IQAjXfUTRMXzxB9HxrCSjnpD4ds7+yyu73NZGMSf8ZjRqMx4+GQMs+iofWMBwNOb3czd7pyCKqnRtfQld8SSbHulNRIKjcpcR6QQGiWzPeusrjyRTi6ymw6xYtg8kHM6clLulqQiKHxAV+19HyIXqigcdhk4h2dyrE6tvSNMSkVtitVdQZYTl9duiWr/++8WEZMNAArK4Uo+Jix8wohuGusscZvEM0Pvpe/87/8ZUbmYwzNtzc5gTucoLzNf5FdM0AWM6yJbbu+btHpDJnWtAcNHCyQ2RKkwZQWih4qReyCMAaTZ9hBj6zM+Y6LwsPvEn7oRsWvfvY6H//qIc9OR8xlQPAFxjqMsahz6aSdTKg+tikHd2qE1DS1Ng6nOxMMp9FnIuKQbJepbPPZazWf+d+ucvmXb/K+tx/z/d9d8dC9NeNhwNrT7pBT/wmpjTglzaqnxXPcKE/Mz/G5k3v5ytH9XJmd57gu0VmgOWwxagmNjwtbaPGtR5uAhAZ87CwKskphIbQ1vl7ilyc0+9fwN1+gDHNy61cZH2gMYouvN0OUaI6VQGhbhrmjLDN2t0o2Jo6L56NiYSw8/7Wv8qu/9Is89uSzVL6OXpc6QzKHsxaXe4oiZtEuFgUwIjM5zrRY48nwBJ2DaCQr4mnqhiZryDKLxcXgPtUz5GSH7e1txpMJ48kG49GY8WjMcDCgzHNcIhXee4wxhODPKFVnFnNJhunUbxyipAKczrN21mLPxOt3HTHGCH454+DZr1BfewS/PODkZIl1DslyrGQY18PjMM6QWRdNyiGAWMRkScEJqTwocRYQp504cNqN44OPYx1MbFXvOn/k9EXFVyWsjrU73vjaDZjT1umgCh5av24zXmONVw3GMruYc/HbXDU5izuaoPT7h5jqMC7WWUEwMbDMmpIQWkxdEeZTdNYgatCFxc9apDfD9j1atfiQ2igzh2aCM557LwR+9LcZvv+dR3zqC1f59OM9nj7Z5kjGLGyBtAWYLEbmS2ekjR4UCUpo0mA/MQQTx9SrBsR2YWoaW5u7xc5a7OBe9u1D/PxXjvjEY8/zngdu8T3fccL9d8/Z3mgZ9gTnutbOhmhCDXj1zNTwwnLCZ48u85lb9/P87BLTZQ9fGcLSo7OAeImD+tou8EuREAihTkZYnxagZAIOAdoG6jnt8R66f50hDWUe72/qZL81KVJfhOBbtK0x6gjaItYwGVtGvZa7di3nz424eH6DVpc8+vlH+bVf+mVu3tzDWENmlHm1ZF4twDiKoodroSinFLnHiRDaCY0paMlxBoINiC2xxqcpzQ0aarwP+DTgUAWyPGcwGqWyzjaTyYTRZBJJymjCsN+nzPPUmnxqPI1R7hJJKCEpKyQikqYkS1ykPVHVUCWGmwHWGpyxaTySJHUj0Ez3OXrhS8yee4R2cUzTesQWVMFgWkNZZIjNIhnwnkZjCUkVCpeBzSKJTF+fcKbs1LU7x7TbriQVVsRIkxISKz63ySir7XX5JxGRZN+W96KRCK2j7td4PeDuvZv52y+s/l384mfRtn0Dj+g1gAiHf/B7+Ph//+p36tzJuKMJigwdMuhD1oO8h3F5bJc9OYYQkGaKaQxBIZwonDRQVygnsS15PEQuTgnVAglzZFgQLw2XZNWS+2zFXW8Rvm8sPHal5Es3J3zp+CIvtDtMszGqBYgBYxBr8MvYkosNiLHRl+DbVdONKog9TQYVIaoyNpYVPApuk5v1gJ//wnn+zSM3ue/cPm+/b8o7HzrhvotzdraUsowKxSLAs8shjxzu8Nm9+3n8+C6O5xv4xsWunDrga0UaCKFJpacYIyYh4NsabStoowE3dItsG1UZXy8JJ/uEm9fo1VP6rsU3DU0bcKox50RrRAIabFxMvSeEuDhOho5L5wwXN4ec351w+f77cYXjC5/6BJ/8yCfY2z9CjKXIY2uy98p0PmMxm1EvK8r+EJU4N8jlJZlNCk3ICMHQ4kBKPFBkQmZqQnNA2yxoaospDEVRMhiP2NraYWd7i8nmBpPJhPF4g8k4kZOiwDl7Op04nFWtoDOoRfIW1YpoUI2eDaNQt56mTQt2Spy11mJN2p4GVBvqoz3m1x9nfu1xmukJQQwu72HzEoPFuAyXx2GEGiKZ9D4qVuKhNSbpOWblgznbEnz2tknq3Wl5h/j5v7jLR190O5WIROIE6LODA08zX5Sga4KyxmsDcY5r//n3AFB9/wmPfN/fWP3uO/5f/zluHm+Pn23p/ZNPvBGH+Kpg+h++n9lFi1r4/P/1r77Rh/Omw6tOUP7sn/2z/NRP/dRt9z388MM8+uijACyXS/7Un/pT/P2///epqoof+qEf4q/+1b/K+fPnv+l9yWgTs7ED5QRxRfSINvM0IG4BskRcQAoIrkIParT2UMVSSTCKORFkGpCDGbIwBGq0XiLLBl16bOW5GAI75+G7NkuePXyWLy3u5vPzu3msOs+xjghi8A0QYhZLsBaMjZkRad4LkvJFVQkShwxGz21sZw6dzyEEtKlpa8f+8hz70w2++PSCnU/vc9/5fR6+75i33NuwdaHgqhvz8b1LPH7rIjfnW4SmD23qGAmkaPo4FE/aeBWtxNKNNhWhWUKILcaQ8l8UkKis+OkB9dXncMd7uCwmyWqTIvxNi0iTgtgEr0LjLVVtMNZRZsq4p1zczRgXwmDUp24rPvuZj/PVr36N2XQZhzQqFHkes0R8RlkY5ouG+azG+9jR5IPHZQWDcZ9QN4jJwFdIcBjjkFYJKjRSo80UsR4fLFkxYrKxwdb2Fpub22xubjDemLC5ucVoPGE0GFBmLnbcnFmAO9x++/b7zja5hABN09J6jxhD5hxZyj+JeSgB8RXLm4/T7j3OYu8KofVIVlLkBVlREMRgTI7JCoqyB8Shhh1Z8FVNaFrycoDrbaDY23JXbvu7OKN23B6j//IzeM4SlO516an79rZtyGmE7jf+h/oN4PU8b6zx5sbT/90HqLc8T/3ul1+wv/RfnN7/Px9d4s//tt/FA/+/BvvLn3m9DvFbRvXD7+PZHzb8zO/8e/zI8PiNPpw3LV4TBeWd73wnv/iLv3i6E3e6mz/5J/8k//yf/3P+0T/6R0wmE37sx36M3/t7fy8f+chHvun9hKMZmk8QadHgopLhHDLso9kmaj1qW3ANtlR0BO2xIFNiXb2XI4MA4QSdTtEFEDzqI2kQEcTFxdt6ZdRrePvkmPvlBd5bez5x4vnlm+d4ar9EQ4GIXdXqCaeTcq2LQ/4kjdThzNWuhK4jRAihxS+XhKoGSYm2klF7wwv7Pa4e7PDZJ2ZMBkvGW0o9GXPQv0goN6AoQCW10xJnAXqFNr0eVcRrHKRYV2jboNrGq/RwprzTtoS2IswOaV94Fnt4i34RsNLSNjEV1kqLIQ7/0zTErvXCsrIYV+IywbBkUFhcWNI2wq29G1x75Ms88/SzLCsfg2BS8JcxBrEWsZZ+r09Tw+HJlPliFjUKgSbvU1UVoa3IaXGikaSoYoyS4aL6Y2ycf5M5xuMRO9vbbG5vM9nYYLK5yebGBttbW/R7PYosw57J8hCS0TTEEtHti/8ZAyp6pmsnzqxpkx+l850YE0tDTdNQndykPXia+voj1NMD6nmFKwYMRn2yspdKKBaXF4jLCcHHFNrWxBlC6X/WGYrRJlKMOJ1qzW2kw1p7RlWJ3Utdd9nZ2T6npENXrclnX6+IwRhNyo/c9tzODL4KrnuV8HqdN9Z4c+K5//o3M/6+G3z4O/8C5+zgG3rOH59c4Y//B3+d/+r738Vn/vi70U9+8TU+ym8N9i0PsP+XDf/Huz7M/23n0Tf6cN70eE0IinOOCxcuvOT+o6Mjfu7nfo6/+3f/Lr/tt/02AP7m3/ybvP3tb+djH/sY3/u93/tN7UevXUe9QSc1TMaYXi95SQrQEumXoH1wFZQG+jlmSxFvkCApXTSA1GhlowHRWqxxeGdAXLxSzUvE9mlsj6kbMs23OXI7BH+O4YMTRvsZs2st1fNz9LiJ5MfG2r1RIESTYfAt3ocU+AaYNC02eFRjUqs2bUqxdWkgm0Y1RAxBS6YLx3Q+4sqtNo4DdIdQnGBHJW6zh5v0MGUePS6+ITRN5+CkbWtok+eEbvHRVbibNjVaL2hPDvA3ryC3blDaQK8whCbQti1CizGpBKSxlKUITRvTXfNccTYwclDojHoWvSK3nt3j6q0prRisyWKsuwrex1qyEcicYzws6JcDXFawt3/Mcr7EGkPuSuYnJwTfIMMerjfCr7pJNM4Iit8KxOa4rMdkPGZzK5V0JhtsbW6ytbHBoNcjz7I4GJLOVxHNrVG1ST6SM8pB7J4+XcADneIQ8CmLxqTMk8g44/s1P7zKyTOfwZy8QD0/JgRDVg7oDyeYrMATS0u9oocaScnGikFomgoayG1OqFvILHYwIkh2W57JWd9JpwRFkqVYm7igggZJAYEvUl3OprhJnNCcWUvbxr+POKFZcU5i5H/oSNGrq6K8XueNNd5cmP0H7+e3/ze/xs9M/p+8Ky+Bb4ycnMWfO/8Ffu7/c4Nn620+8f4RYbl89Q/0W8R7Pxu4mH+aH9985o0+lDsGrwlBeeyxx7h06RJlWfKBD3yAn/7pn+aee+7h05/+NE3T8IM/+IOrx77tbW/jnnvu4aMf/egrnmiqqqKqqtW/j4+jJOaPTgjlEOkVWHqIHRKcAzEYKSHk+MahS4M6gX6GHWaILdFgkLqBaokuPWiBFiWaZWAyCI5GSiq3wTTb4KCccNjb5Zkw5qmmx5WmZN9bZiLotlBuGYqHJrQ35tTPTmlvNYBDTZZ8DZ4gJsbVG1nN+onZGIqvl9GYmAyIpm0JrWIU1HR+g4DBpKt4B6r4xsO8xt+csjQBTMD0LW7UQwYZtp8jhQMb4+pRnwhRSLN2fOpE8nH/ixPCzauY4xtkssCKok001Iq0iEYy1RkWNLh0Ba70BgarS7bGObvjhrHus//k89x6/ll6wz6bm+eZ0mcRKsDS+pbWJxKmgjUZ4hz9HlgX25z3949YLGrEnlD0RxiB+VwwWUmWZigFAl5SYJkIRZaTF1GdGPRHTCYbTDY22Zxs0C97ZKmkE874N+IiHFYERQ04Y1I/k6bW6TMZIcQW3y4rxNo4vTgqLS1N5ZnvPcv0uc9T3XyKNnisGsqypDeaoNbRek/mov/mZDalbX1q5zUURUGZJ6NsXSO1xxQFJiuSByaOE5Az6kYXBmeMiWTJWqztHNzJSaOdqZZUppFVGQlS9cYYbNre6QxEXXlUorclbexVxKt93oBXPnes8cbDXb7ET/7aP2Xb/BoPZkOg/Ja290cn14BrfPqRGo/wE0/8CO4Hn31VjvVbxf/5Kzf5ExsvvNGHccfhVSco73//+/lbf+tv8fDDD3P16lV+6qd+iu///u/nS1/6EteuXSPP43C2szh//jzXrl17xW3+9E//9Evq0wDWe0w1I8z7+PkCWw6Rso+4HHWCskTaCts2YByhCUCB5ENQ8LMKZYyXgpo+S9Nn6oZUgzEndsJ1BlwvJ+xnG9yoMvaWlsOlxwcTQ2ZVCcGgRrCZgjO4e0dkdw3Rg5rlkyc015ZUSxBryFyOWofa1HKKgg80tcdIhloFq6uOipC6R2LtwaPe06ZFSMSkacENvk1XC75BgyfMWpprcXJxMAEcca6QFSgybJlhMgdOsLmLio60iK/Qg2sU0xsUtoI80DYNzUJjO3PwEFrEdKuWwZuWJpS4IqeX1fRtxaY9ZtweML/6CDefukrTePzshB3jGU/O00qfhQ8QWlofF9CAwYcQF1Fn6A1LdtQSVNg/nLFcLqgXU7Y2N/ChxdczJHNYMdggqI1llTx3FLml9TVBA71eyebGhM2tDYb9Hs651WIeYkLdqmPHp6m/YiRmuJiuUyaWM9rgV+ForKgLGCNkxJwcgtK2C46vPUH1wucJx1dplktsUVAORuRZH+OiwpUVJf1BPw2kNFRVDQFCHchsTm4zrAhIy6KeYYyjajxeavJCsNhVA3SXcAzxexkNv/E4bwsb7vJzOoJ5+qzbSArENmm/ao82qQSWXrucaft5FfBanDfglc8da7xxsBsTpCz5Rx//J/RNDmSv6vbfW+QAfOgd/xvv+P/+x9z7Hz/+hikqZjTie39tb01OfoN41QnKD//wD69uv+td7+L9738/9957L//wH/5Der3eb2ibP/ETP8EHP/jB1b+Pj4+5++670bsvwLkL2OEGMhwhvRGSDWILMBbpC2oyNHPo/ARZ1tA6QuhTN0MO7YjrvQHXexOu2gk3TJ+pGzATw8JkLCk4WSrLacCrxAAzkmauikqIC39IgWddF7Eocq6g3MkpDiqWTxzT3Gio53NclqeFpZsKXMV6gYkloTjlOECe4YyJWSTVkuDblNmVFqS2QbQhhCWhrWKLc1p0ROKgQCXELqLWE4JfrSd1Ku2oKmLB9JVsIDi/wM4OyMMcS4tvWyS0+LZB8JhEloLvzJMxSVYyoXQNWyPh3Nhj59c5eOYxTq5eRRsgBKpFw43nb7DRKjsb59in4BCDkUDQ1GlFbKft4kWGwwx0DAiHxzMW8wW6MWY06MWxAy145zAo1mbkpaPX79HLLcYJi6ZGnGE4GDAoy1WXTjQmh5TpEcUgr4EmlZtcnBIZ1ZmUDaJp+nRQYsIvpLbieDuEgPqWxWyPkytfY3n1K5jFIVW1xLiM/mAEJiMYQ916ykEPrONotoyZOGIwriDLMvp9R+6y6Btp0+eQWbIy53g2h7aHOJumDJtUfoq5OyF5p9A4ZgCNvpTTuTmx86iL3Y/qUSpPvWiW0NlWZXNGLeqUl1fTg/JanDfglc8da7z+cPfejd+d8J/8nX/OHxgdAPlrvs+v/Oa/zf1/+Y/x9j/zOP7g4DXf31m4uy6T/Z2Wn9z98Ou633+b8Jq3GW9sbPDWt76Vxx9/nN/xO34HdV1zeHh429XQ9evXX7b23KEoCoqieMn92Xf9e7idy2DLKBEYE30kAGGOtj2EDEyOuhNCVtMsC/aqTb4qF/hqfo7nTZ8bPue4FiqvBB8Ng76JV8PxnG1jx01QSJkm2snpIlCkGSudAUFZXb2anYLh9nnqwxpu1LS3FjR7C9p5G0PSMHGxsSRfiCAmBsE1ywr1NYSANTZuVAMaWgg1bbNEQgyok6ToxEGGHsHjQ0x7JRhi8mw6vJROKyjiG5wPyHSOLg8RXRBME820bQtti4Y2ljPkdHETieqGl4xSGoa5suEa5OB5Dp5/nOZ4Sm4tTa74WvGN4n3LredvsLlYMtk+Ty19lJxK49V497+gcYyiMcpwmCOMMcZwsqy4tnfIrio7m+PY/RIUxWOdo9cbMhz06fcyjIW2aTmZzWlbvyrLhODTc04VhK604/3pTB2RmKESEb8TQTV97ultTfNtUKVZzji8+RwHT36KfH4D2mOaVun1RtisQIkm2KLXI8sLVHKCGIpeD+cKXJ5FdUc1GpjFY4zF5Q5ai4Q452i2qChcLMfFoYPhjDWmG2ZpaNsW79to1u1IyyrlFqQLmutKWGcNt938oFQ66tqVV79f4bWbD/JqnDfglc8da7x+cJcvsf8D91D8p9f4le/426/7/p/6XX+DBxd/gnOfgMk//ix6puT3WsCeP8fBb3+A9j/a55Nv+Yev6b7+bcdrTlCm0ylPPPEEf+gP/SHe+973kmUZH/rQh/iRH/kRAL761a/y7LPP8oEPfOCb3rZM3g69rZXJT7raiCqYEkwPTIHSp9WKoxqeMiO+kG3xiEy4UlnmVep2IXbS4AXfhjgQ2EQjbeg6Y4i/i5kSBrGx5VKiQQQlYGzMqYiyusbBgyjZhkP7DnuuRPYKzK0Kf1gRpi2halEfTavx8CMRoW1i27Gk7IsQfSOhWRDaBXHSXyQbIZoLQJpouNWQ2ofjQpNGv8RFSQ0iBjWKcR7aKfhDnM4wWkV1xjfQNmjokkQ1KQaCGoMPimQZZa70zIIRU3TvCouT6+RakY9d9FQsPYilbaJpM4TA8cER/aZm9/xFhv1trk1jm7DB4FVxqlFREBAbSYoxY+zhjOPZgpt7Lc4q53a26JU51ma4IicrClxe0O/1KQpLS2Dv6IDDkyNG42H8PM8M1luZgzXQtAEf4sTlzl6xGvTX0Zk0DFJU0eDjdGRVFoc3uP7UFzl57iuM3QlhucAHcGUfU/RwRQ+TOVyW4T3Ui4ZAS28wBrH44GmnDW21IDQVvdwxGA+xRUmoW9rFDGcUtY75vMENNE7aThO00e4Iiem+EFUiTR4hCfggK0KtSR26Lafttg4eSWT4dlLykinNr+E049fyvLHG6wPJcp75r76b+qEFT/z2v/aGHssTv++vwe+Dt77rP+P+P/PR12w/dmPCI3/uHp764Tf29f7bgledoPzpP/2n+V2/63dx7733cuXKFX7yJ38Say0/+qM/ymQy4Y/+0T/KBz/4Qba2thiPx/z4j/84H/jAB35DTnwhS9kiJGJyOqwOHJgMzXIqv8mzVcuj4vgsGU+0jpMGWk4HoqkYQhsNoUDyeKS2Uh+VDSNJCk/TXeMQlHQdnsovuprUlq40A6kERPyxkO0OyDZ6+HmDP4pEpT2Y0x4sCbXvCv1xgUjzXbwGVGN2ifoK8CAe0oRlVUXUR29AiPkhhniFDT51pITYLhNMbGOWgIQZxh+RmymWqNiEpgFfJQXJJX8KeASvDvUWrGOUB8ZFS768guxfR8MJQlRbvI9X9i4zxLmKEpWMoFgMy/mSbO8alx8omAwmPHsUOJgGlq0kb4jQRcwbowz6FpcPGc4zZvOKo5MpeZ6xuzWkPxwyHAwoen1cEbNEEIPVhuV8wf7BARvjCSqCcw5nbPR9JFWs9bHjRgExWYr/OBPtHrpkWjBWVrOGQjXj8NrTXHvsM4TDpxi5Fr/wVIuaoj8gL/sEkxGMxbkseWRSSqxYxMYwNjEOY+1qAnPRK8h7BdZZtKpR7/FGOFo2HM0Dgw1PGzwuBcatEmWTutOZVyUNJ+zC3owIWEvnfO2Mri8ZikjnoT2dxHw2AO42kvcq4fU8b6zx2uLp/+4DtPcusTbwtR94c4WPfe0/+Z+4f+uP8dY//slvaTv6fe/hif/spX8BvX7NU9/7//6Wtr3GKV51gvL888/zoz/6o+zt7bG7u8tv+S2/hY997GPs7u4C8Bf/4l/EGMOP/MiP3Ba49BuDR+nSLFMQ2m2nTUNDjxtS8gXxfCIoTy49y4UkyVwRNYSQujTaeB1q0kk9zqzRVdtwPEGnjBQrSAYulySZp8yzthM1NBKboAQPeMF4JTQ+BqaJYHoOk1vcpEd+cUR9MKXdO6bZO6Y9WaCLBppuEJ9HtUK1iZ00AohiCbEzR+NEYSOKlYAxAeuihF9XUR0gZWeIBeta8MfQHOPsEhuWECpoonISfRZmlZUS1ODJ8Wqw1tDPAoP2mP5in7y5QW6q2M7aCr6JpQ9norEUUawTrDXREExgOMgpCqEnDQ/dP+FBn/P5J27y9M2KKk3ktWLpijFioF9aer0BG+Me00XDslpwMoXhoEevl7G5OWI4GmFczvF0xmyxwCxrjo6OOTo8iq3F/QHBRMOLEfBBaZoWH9qVgTZ+lyI98iFQty0afMxMUfB1zfH+NV547PPcfOwz9PWEzYGjXixZNp6iN6QYDvDdFwPBiANT0CoUNsOH2MZurMO6LMbiW8Gpp9cvcZnFL+dok+Rom7E3rWjbXhyn0Jl8PSt/iG/j3CDrHG7Vcnz69xAS4Q0qq5ZofZE6Er0prIyx6Ze3EZTV414mJO43itf3vLHGq43F7/keLvzpJwD4F3f/TOrKeXPiy//+z/Kev/fHuP9HP/+Kj9Hf/G42/ofnX/H37xl/lH+189XX4vBedzxSz/k3/+X7yfjUG30oL4Hoq3mWeZ1wfHzMZDJh79kPMx6PEMmRrI+4Mdh+almJC+yJhy/XgV+de76wpxwdKe0srFQE9QFaxYhZtVF2Kkgsh3Rqt8YcCgcmV/oDy85Y2BkIAwNGA7WHoyXcmgn7Ry3VTAmVog1oGyfR4gPWWbAG2kBoooGV4KP3oInzbPxsQXMwpdk/xs8X+HkFdQxXE/GYkEpKxiPEjiC1ihGLSgZkqBqCl9hppIJxFpMFjF2g7R5UNymYY3SJ+BohBrhFZ2gM9woayUnjHUFy8txR5p5hsWC4eJaxm1KYJtp+00BEI9FAjAbauqGuQyQEhnj1HgK9MmO0NeLu++9he2eL0WTCjaM5n3/6iMeuNNSk9mUsIU3OdcauItubEGiagDXC5tYG99x1F3fdfRdbO9sYNdzaP+Tq/gG9Xo9L57Y5f26X8+fOsb2xSa9XkDmHNZam9SzrCjGGsixiRH1q0w2q1E1N1cQU3bA8YXpwg8Mbz3Lt6S9xcuVJtgYZG6OSulpiRbBFgS3HYApwljzPyPMBWdEjiEXVkNkemFiWMtZSZDlGPI6WPHf0Bz20XdDMprTLhrpqkcGIz+0rbnCOSxcuMxiPyPJs1YXUReNXTY1zGWWWJdXmdI4OxG6hqEol8pHkkq6f57bHiqwC687G/3fbPDw85OKlXY6OjhiPx6/DX/63ju7c8e/yu3Hy6naPfLtCf/O7+cm//Tf5vvK1K/m92jgKC/732V2v+Ptde8y/129exyN64/CxpecnH3jv67a/Vht+hX/6DZ037uhZPPrcJwi9HIKDbIBMzmG3L0O5C2ZEIGemwvVGuXaknOx7QhOv5BXFVwEJJpYk9LS992wuhBoTq0WpQycbKpe3LO/cybg7D1w0yoYVcuOYK+w1ylfn8KXScWXPc3zSEhDwkOUm5nsYoW1jC2+oF7TLRfR7JPOtBgXrMRNDPhgQ2gL1FVLVhLbFtwHqllDXsFS0NvgmZr9450AyDBkQcIXB06AExLTAMaG+galvkuscR4U2NWgbVRhVfCqVGQJqDIulw2tGr2/I3ZKezhn7A8b5IZnGfJUKjxWLaCAQc0FCgLyX44pAaE+H7/XLPuOtIVvjTcpySNu0LI+P2O31+IF3XqLvrvLV64FZ40EMKkQPhRFcZiEtyIWN5s66rpgv5rRtiw3EDh9t6DllXDgyk3E0q1jc2ONk2TLs9xj3S4apO0RVV5kngtC2DaDMTg45PrjO7PAmi6NrTG9eoT64wfJkn3p2yHjYZ2cyYTGf0VZLvHFkrk9TtxgHg2JEUfZwWYF1GaPBEGOySF5MjrEZkSXX6HJJ3rP0ehn4BX4xwwQBLL5tMCYjyx29wQCXx2ydmAGTyjKp7Oh9iG3gwm0e1tWMoRCZYugISfJ2d83GtykpiZi8knLysrH5a3zbQJzjf37yVyjlI99w8uubBRPT4w+O9t7ow1jj18EdTVBkOUOoYwnFzcAsCVmFhArJLqJ2xLwtOKqF6ULw3kCjhCYumHiIsZhJJfHE+5NqIpmJNX4gywLDieGhbct3DpWHiyUXM2FkDZlJc1FQKmc4Z5UdLI9mcG0Ei4WQNZ6NMmeQG5o2MJs1HC8yjuZwcBiYz5Tl8QLxHtqGkBZJcTZOO3aDFAnvMC5Lc3xMnNJceZqTGe3BgjDrZg0BaQBfLPR4RI7x1RVYXiczM4xpCHUFbYORloCPQ/+CxkXTZFSVJUhGmcPAzOnJAjd9FsIRbRHQNMsGDK0PeJ/i84mzZPLcImJwmcFllqJXMtnaYjQcMuiVBN8yWwba2uBbz2hD+Z6HzzEojnnk+RNmHmqNsf/GQJ7HidUEIeCxJs68WS4X3Lh1M6agZo5mOaPAU0rLqIBePydzlrCcc1AvODwWBkVJryxw1pJZQ6+XY4NnerTH0d4L3HjqS9SH1/DLEywBv1zQVDOapmbQK9jdGjGbzpgv51hDLMtINDObAMtFDcbRtzmCUtUeRSjKHOdipoxRwYaAyyy5E3R5QtPUqGRxxk9Vkfd7nODwpqAo+1jnEITgA0EUSUF+ddPQek+e51jjouckURHUrMo0kbeYlW/qtknFsGotfnFZ58Uwa4LybQ1z/z3c4968pZw17nzc0QRFWwP9DexogpRDyHqo6yPkaFtTtzWHteVw4VjWgdAEtFJMkzwodO3A0ZOgdTSkgsG4WIvPXKA/sJzfzHhw6HlbPuUtWcUFE+iZAmNKVHLiWyn0UO7LhY0N5d6+4eZSqCrPyBi2e0JpPHUTOJq1XJ+2PHfkeaKX89w+3ApCWLSEOsMUirFZbFEVTR1DkQhoSFfI1kSvSPDYSYGe94RlTXu0oD2e448qmDeEek7wxxBuYNsbZOGE3FSgdVRjvCcQ5+MEjcqHqqVpLVle0MsCtj7CTm/h/AGuPqaRlkVtEFtjM4cVi3MGYw0ud5gU7S8iiLFkRUZv0GNje4feYIDWcTEd9vr4tiGEhqZZcnhzSW844j33jRhkniduNezPYRlicmsm4FwMIRNV8txQ5hkug3Z6i1vNMX0HxldoNeP4RgN7m+S9EZkYbJ5hihEmK5lmBS7vrciPr2dxBtHJDab7L3By6wqFi4u/9x4TPLlVtre3GQxHTKcLZtMpYoV8MCKow9cNeWbBRNOy+orQ5lhxeGryXo6RQFsvCdUC5wN50aPs5wSFpbcoAywOpMYVDjsZczQTbFaQZTlGbPJRx5JabjKqtma+XJJnGWVRxHZphKAtsY04mpYl+WoMupoBdJaMdI3HHWl5uSGKpN+vFZRvX4Tf8h7+1t/9K8CaoKzx2uGOJiiyfS/m8kMw2EKyIZgc0RRS4YXQZFS1oVoo7VzRhRKqrschxE4dJKomAcQZcIJxBtcTJiO4NIb7hpYHysBdpuKcXTCxc7IYjIEaC5yaIQUll8CuEzasUheRAGQGrImxWt576qLlqNdysW/o90tM2WcWlixPGmxLVHWMAxFMmtcT+245HQSDpoF7Gk2zmUVMjsvBDDx1OaO+dYuwfw2qA7IwxekcyyINC+xKSk10sXiLKrRqCOKwuSOTE4rlPnm1j6sPyWiwxE6juk2+BBNbr51zuFzIQ0aRR9NnUTjy3JEXGYPJmMF4Qq/Xo60raCpa9acD+hYVhRWaI4/L5ty1WbAxcLxw0HD1qGJeC048hVkAAWegn2c4TjCVR9TjT2qsUSS0NIsljW+pb8RsE0vsVin6A4x1IBabFdgixwgs5zNCs2R3MmBghUZafOOpq5q2WlLkGZuXzjMY9anqiqpa0rYVoRXy/hhJ5tM2BDJjcXlOkRfkmUWkochzMlNj0Og7cT0cMUit1kDwGaaYRA9Qs8RKjevlMNrg4NYBWb+MpbNYg4zvuXWoBubzOH++X5ZkaThglPVSqKD61LVjgJiATEqfjV+n20s73e3VfSt1ZfWfNb6N8Qf+xr/k4lo9WeM1xh1NUMz5h5HNB8FEY6wgIHHRxSgO2HDCLsq2hUUuLDV12RB9FkEVyaPx0jhBCihLYXcLHt60fEffcJ8Tdi30xWGljwlFXABMNKQKNuaWrEwsMc8kEyWzRPWDrqMiIEZxNqPMMyiEG2p4vrFkvUBdS5oQ3F2xagpIi7cBJGVc4HWVdxHqmtAsaeZT/OKIML2Fzm7g5vvY5ggNS8QvYxuw1vjQpCyM1A0iOV4zAlk0bjqlpwcUi2u45S2cr3DiY9dTyppRISaZqhK8EmhpQ/LX1Iayb7BZG0szZYlxJSB4H6c1e1Xq2SyFhnnauqaxgjM1airccslkMuKhc5btEo5mC6rFnFBVBO/Ji4xeKDHGMpvPMAIWJXMOIeBymC+jwdWIsGxqNCi+WdIf9jHWkEuGpCTVkTGEQiiKDGeE8+fPUzcV06MjKBxFWYIRjg4PWCyq2EodQFzGsqrJS4uow1qDzWLrMBoD48R4ZAm0DdY6vDjKrIdmGV4NQTJsuYlzJc3iGHw0Lxubcet4waIK9MdZJLnpx7k47HA6n1E3Db1eGduYUxda5LOpJV5TuUe6cPs4Z6dV7WTEl1VLVvN9JPVli6w8Wnecu36NNda4DY16/vDf+THu47XLhvlWcEcTFO3vomYYWziJHpB4mRjTVZ2Bi87zrr7DmoxRD67OArMKqjaeZMUILo+kpFcYMhfY7RseHBkeHggPOGHDCJkxCAVIQRxRTFQ5bht7r3T9EIiJag5+lSobjzF6KIwJiPHkNpAZxQpkzgJ1vKZN03RTWxHBe8RIVFKCEtoYY68SCE1FfXhAfXiTZnYA9QkmzLCLE8L0BF0ucOKxVAgthDZOOg7Rn9BqhlIQJMdlGblrKZo9htVVRuEYK4sUj0/07KimmburFhCMxNIBMcIEk1usWKqqRUxOPtyiGE4iMfEt+Dh00ABNGzuYQuuZVy0igTwr8G3gQANFZhk5pTdUqsywOGmoF0tEHXkIjMY7FJmlaWogTsUltKtAtZP5krr1GOIMGVGfPD4ZwSl+WWGMZTAcUvT7OJuR5xlFkcH8hNJ7+pmjDZ66XqIhZsU0TYtgKKzBNxU4G5NqVanFEJqGpcZSirMWawy9Xo+8LMizEvKAzXvk/QyTl2iwqK+wUgFLgq8ImnFt/wQfYvy9MTb6blzc3mKxZL5cxs6dokwdNrFQox2R0K5wY5DuZiIYPg0cfHG55sUJspHkhDSfKMbcm7WQ8m2Jp/78B/ht/Z9hXd658xEI3PffvDnJCdzpBMVYkDbK14BqQJopWk8hVEizZBAcD2UjNhhyD4YXjOFaLkxNRmtjzkYvFzYGhmEB49xyzhku5MKOg76AMxDD1+MV66rVJx7FGcU7yuexrt/d59OPic9XiSZFMaCCs4rNlTwz9AvHsZMYs68e9S0hxJZi39SxJNN6tA2EtkGbmlAtqA9vUR/cxNdTVBuMtklNWWDrhkIC1tRIaGK3TvDRYIngcTT0yNyAwloyqemHE/LqOv16n1w8uYtdSovW4zVmh4QuvVcEQ0w1FaPkmaMoclxmqBslG/TZOHcX4+0LjIYlhQ001YL5YkFbL3EmBpf5NnbsdLSnqRtQpfU18xBLZHnu6OUOGeQMehl168nyHFVlOBqT5wVNPWe5WKLe4H0dy07O0tYNLstwzuKMkNnor5G0UDetZzqvsXmPpl2CsQStCEEp8hzJMur5nOPZgmGvINDi8oxeniPWYE3AakNoqkjU8pKmbqjrBsEiKmTOUVeBXi/Q6zu8BJy0NPMltrHkGWjmMWGONkuCDxwet7ywtyQf7mCswZr4epyztK1nsVyACGVZUOR5bI8OGlWpFTmJ39FTIS52/4QQEBP9PAZuU+1eGuAWQDSZs+NX3ofVl3yNbyO87QNPcf+bOOdkjX97cEcTFOOPkcpDGwfiUVeE6R6c7OPnJ5hegWxs0yun3OUKzpcZ71DhUA3TkLP0BqxlkPfp5xm90tEvS3LrySTg0jA2cLepIF1jZpfEGe960RUokNqEXvKjaFJXLIU1bA9hY+4ZuYY9aWnqOWFR4Zs4D0frFvWJWLQtuqwJTbyKb6d71Ee34uwcWqxVjK/xsylSTcldILMV4quouHReBCN472ilH3M6rOJkTt7sUyyvUzb7ZNoQRGiDYi2UYmgaZbkaEhdLDdZAnmcYBxKUxrdY6THc2uTeBx/gwuWLZEWOaE01PWA+XxLUgsmo25ZALCP4EKKBU1vausL7qOhYE6/+fdtSSUCsw9OQ9wcojkU95+LOefJ8wP5eJBVVVcfylwj9XhnzTcQCildPwFE1DZk1ZFlBCNDv9ZmdnCAuY3o8J3cBawJZZvGLBS7LUBxeDWLjsWVlxnIxx9oG1KLqyVyJs9AqjEcTyrJErCPLSqyN+SvWFajJab0QaEBneD8nLJcYaaGpmLWGxw6POFyUXN4sYgaMlZhAC1SLJd57irKgyLOkeHTfw0758KffN9VEAiEExSuYEHDG3hZn35WIum10M5LoyMkqgG6NNdZY47XDHU1QwjOfpTHArEZOljCrCLMT9HAfSoe/uIttTpDBAMFSLD3uZMmkjgFmGgTyEvETXO8Sxm2DrZA0FDCOAc9JxSNWBGV18g6rxNEzk+VYkRb86sQea/5hZVzU1VVsFEoHbU3fzMlkhl9O8cdz/LKOfpqgqI/5KKGu0KZCfUUzP6E62oN2iWrA5gbjK8LiGNeekJklztbgG7TVVQnKa6D1DjU98qLEmYqNgWHSa5D9G8j8FjZ41MR8mDi8TymsxWWKNoE2XUZba2iDsqwabCMM+jmjjT67F3fZOHeOzc0RnjntbIpvWqrFApv1kEwJS/D1EpoKMVA6JbicplFycTgRnLUEbbFZDCU7nM0QhI3hCFUhywuKMobDzeZTlnWD16gOOVsQwgKjihQODYa8zDHW4L2wWMwhs/SKIT5AUy9xNhKamVSoV9o6Tp1WKzRtw/+fvT8NtmxN7zqx3zuutfZwhsy8N++9VaWiShIgBAhCEgJMONyhspGwxRiEBfoACKMALGxMd+OgDXTgxkEEVreFFMEQDhxAN8OX7pDtMMiBIQhsIyQGg0BTVUmlqtLVHTPznLOHNbzD4w/Pu0/mFSBVqUvKytJ5KrLuGfd599prr/e/nuc/BA+2cTFKreS2BushlwTG0W9WWCd0pjL0htg5XIzE2BG7DoujGs9SK2kZMeOE95bsCsZbjPWM08LNWHh0ZYjbc7rYY9uYyGJYpplxGvHe03Vd493Qxo4njkjLEBI13DONxH0yIzxZ+v/Uug1LvB0xcvuxtODMp+2Yu7qru7qrn5t6sQHKD/0gtRrq4yM83sP1DTIeqF0gvP8+ZusxVwYOI+VwgJsr/f6UIVfAY/s1PHiAuCvEfxArL4HvEeub22xRrwjxqHwGpNnLG1OeAhdpd5qiUmWdgBS1JH+GjCpFKGL0LhQoYjjD8r6V5RMhs3Ezj/OBNB2RKd8SeS1ArkheqHkiH3ek3RWyzNqqdxWTF/L+CuYbgpmIZoLl5IbYLP0RSnUYu6aLgfVq4XxjuXfe0XlLrYE8GxWSCKSivI1SLbMUgjEM3rHUSgaQQhc8/dDRryL94NlsB2K0RKdS4PlYWKaJmhPeW7quY15GnLOYLlLqQimZcV60G7DasEwjOS0c9nu66BjHox6r83OWVDkeZ5zzhN4wrDaM08g4J5x1ZBNxDkLwDEPAUEi5ME4Lq75nnBLWCOuhB6ksy8J6cw7WMs8zy5yI3mP7geNhTyqJLgRKWRj6npxzM8qxlALeRaZpJFh1ki1VSMcdwXumWkhpoludgVhyBhcDIpllHjHlyNobQoWaE7V45gJzykyTkLOqgHzzm/HeI6UyjiMCxBjxzjW7+9qI4opSpAlvNIun3nqe6CCN5v9j3iPKuXVNNoBp6cjtrL/9QSO3/Ja7uqu7uqufq3qxAcrH3qBWB8cZpj2SF0ywhPMIg45vanFAbcm8CyIjxiyYlCjHhBxXGFOR7QDrNRJ6jHVQHOIqhqR2+Kaiyp/CyXVVgQpPSYftzrI55GuHRDTr5VamWdE2u3VqiNUkwz3CSmZCnZGs/2rOSK6Ni5GRlMnzkTrtydNBlTs5gSkqq93vqPvHdG7BdwlITW3jVMpbwBhPFyLBCdtN5qWHW1ZnHd6CKZa6uqCEd3CzBg4aaygYxFRS4yBHKtEavNGRg/MOZyuUhZzBOM/55QNiXLPfj6QCORdqSQSvnQdDwUii1qzjn8XoyMGAMwUQSq1U0TA/h1PVTzEsVfDB4fuOJ9dXTPNCCD3WBuZlZJlnJbp2A0KmFoORwma9RsQhVpVRwaCvi7OM44gLER860jyzjj1Cpe965lHwztJ1a6QWpBR8CFQjzNOEWw0InsM4swk90+GAPyU+GzWqm48HxjFRqyMMLVk5zQyhaPfGKN+mYKjGY5xjWPUMNSpoC5EuRpyxTPPEvCw4H/DO41pMgxjTOCJyK0UX+17TNWvtbf7OqQliTkMcEax96ovSTusGrqWRjLVbeOqn3NUvvPq33/9B3vjQ/k5mfFc/5/ViA5RHe3VaNQmGgokBVgGzDsimQ0LEWNO8QsA4hwQPaQaTMK6Az0g9wuEKuX4Efa/dEb9GSRUBTGwfC1JnKAvURcc0DYzoRRzAUtXZnoryEEoBYxzexcYHACmnBB292JdcyfNMmmbKkijLgsxZk41roaSJMs/k6YCkIzXNSMkYqqYYzwfK8RonC32oBFsxVR+71krOyuPovONsbbm87Li4t6Jf9VjTcJYBu71H3p6TxnewBXwUNW8zliSGmiopV7wRnLc4LJRKWSrOBoJzxBC5uVmQKbJarehWPZ0RyjKS5x0lTZiaMDVTlllTfn1gygnvA9M0Mo8HcirEGMhFSAjee8ZJxzDOB5y11FKZphljvKqdUsE7Ty6ZXDPTPNGHgHWe4ANJDCF6liVT0Nwd51xzFy5Y73B9oJRCSkn/jjcMqzXGGqZxpOpshOBt8z2BhMd0TsOrFRZRyoKplmgcplpC8FQfMQ5qygR0fDelBVszQibVAs7Tb7Z47zlbDXTrnm7V0w8DVYTDOFJEGIISZi0nEMJt5+Q04qE8TSMGbh2PpYUFGk1l5JZvchoNlacE2VO6tGk5SCcF0KmjeFe/sOpL/8j38nc/8iX8/vM3n/dS7uoLvF5ogGLsjAkGGQSzidjBI32HxA2mX4O1yDJpOu90gOmAmY7INEEtij18BTPDfI288zoyHTCrLQwbdaft15gwqGKoZjilCdel3V5aas7kJTX/FU8xjmoD1TuqjWB7bAioQuXEBdCNohjLnCtXu5Hrm4ndzUg+zsi8UPNCSVnVOtOo/JMyU8qE5AxFsKYQbKIuO0Id6WMluoyjUJv9vFSLt5bVKnJ+3nHvcmBz1hPCKa22qXGcQ7oN5uwl0pMrfC24thFXdXuhYMlAyerDYq0ahoVma+8MHHcTKwvrdc9q1RODgZooJZOctDyhREkz3inpslIxznKYZo6HAyVPVCyyGApq8S84uhggZ/KcOC6Z9bCiVCV9CpUw9CzLQl5m5nGklgItCyfEgWAt8/QE5wLGeEQKuVSs8/T9gFjBWKi1EELEWEtOqJGfCxhXCLHinKHUgjGBlISzizN219fsbm5A1mAU+HgfqDVjraPkCbyQjjPBBryzlFw1u0cWvNMORS2ZZTwAgfPVBTU4YuwwVThMI0taGGJHF5rnCRrUqKZr2rU7dTjsScTTRjel+ZqoYKqNglDp8O1I5zSurI1DdSK2GABLlaK/d9dAuau7eqHrK/7q/4oPfp56oMALDlCqTNB12HWAwSF9B6st1vd6YV2Oeju5LDAekPGauowYEUwGEYPYgikL9rhDphneeYfiI6zXuLMLzNkZEiOnyz85Q8rqxFpFVT61avvbe/AR6yI1rqjdGvpAtQYj9db7Q0PeDKlWxiS8viv82OsLr7+958njA2k/UZaFPI9KiJ0myjIhpWAkQ8kgGUwlxkIvI6kewS14K0hNTFWUQ4OlD5bzTeDlV87ZXKwIwTQPi2YgZ4STQYbxEb++z3X6JPYwsllZNh68rURrKdaQvSPNhbpUchU6p+RLi8G6QNev2J5tOb93zma7wplMmhJTEUqiOdgWxFQMzWa+FlKadZyVMrVUQu/BOvKckSJEr2OcVBeK8bop50Kphs6jo6tuIJfclCkw9B1ddFhn2+c9dbPhen8gl4SzFu8DUoWlCiUvdFZHOj5EHfdJZRh6+vUGs7eU5JjmCZHCajUQxVJTITrDMRdEDLVmcipIrQTnsUUQZrz3GBPA9swJdvsD1liG3pHFoIGNGVsSq26NqZWbYyZcj8xzJeWZLgb6vlPQUwWxYBuZtQhNZqzcIeVzN84IKGH4NAqSqmsV4RRufKsCauM8TsZuRr9YpWhWU/v8rn5h1n/9n3wD3/CXv/2FCwm8q/fWh//Cj1Ce9yJ+mnqhAYoxlurUsdP5jmrXUDoloEpBSoKSYD5Qxx0sk45McqVMGecDYJEyIfuJasAUgQziAnm7wazX2C5iDNQlI+NCmWZYErW0u9EQsases+4wqzVmWGNXW2S4oA4TZtgiPrYbUWnaHkMpht3e8ONvLnzircwbjw4cnuyph4k6acqw5JGaR0RSc2xdlAdDwbtEZMKmGzozUm2ilsw8JWo1XGw67p0PnJ9ZLi42xM0a62ybAZza8089LwTBGEsYVpTY82T/iP1ceHBmubcOOKm4KjgMWMMMlCRUCqtVpBs6Vpst9x8+5OKVV+nXGwILy/HIMk6UVNXnrWqXopRCxlByYplHJYnWyvZ8o1JkAyUVnDVE78nzgRod3nmO00z0keWoniWC8kHMbsd6tWZz75Jus0EojIcDecmsegWaYjSBeUlCN2yo3lOWJsPGcBhnvBX6QfA+4IKlUhhWA6UKJXlKKVRj6FdrjAsc9gd8P7CxnuA9pRp8jDhnmecJMwvOB6zpEBGmZSZlYXc40EfPNEH0vkm2FVwsuVLDmnv3H1KAT7/1DnMtrFcrzubCdjWw7psM29qmuFLQeQIcperl55Z/Is+ClvaaP0uDPRmdcOKfgLXS9D/PJBvLU0v8u/qFV93/459xUHnfXd3Vz1m92ACldSZMceRisbVRUzNQW35NmTHLiJkm6rw09U4DCvOEHEa9GcxZyYKmqHjHergJ4DoKFqkCS1FVTC3aNrcGkUJ1lho9boiYzRq259jze5TNNazPYbWFOGBiBy5SamUqcEiO1x9bPvFW4fW3F959dMOy21MOx2ZdP1Nzas6yyn8RFiwVZzI+j6TdFZQRI4l5HpmWidUw8P6XL3jlwYazdUd/1kHsQKyOloz6WJRSbrv3T51uBULP5UsvI4/eYe2hD5YqhiVV6lIw1hK8I1lDKkoedjFgQs9wds7Z5RmmHJmv94zpSJ5mpEKuibwccLbgg6Nmw831NUYq0ziql4q1TOM1xnlqgVwqse/JxuGCY3ezox86VnHAese8zJhG4JyWhb7r8MEypZl194BuWNH1a3aPn1CB46SZNcZ7nDGIgWmeKMvczOB6Vust83TUoVZV59sSCtM0E4LHO1jlnnmckKzpyT44vN/SrStOhHmemecFh6NiyNOI805HjFVIyaDxDEKaZ0LfE33Ee0cpibEUxtRxdv4a55eX7KcZd74F5ymokd0b4xWpJKJ3nA89fdfRDwPBq5vsiVlycpK1Vjk3UquyR05yYXeyv7e3kuITQdmap5Ynt+RZY56qfe7qF2z9L7/qt/F3//Xff97LuKufZX3kd38z7tG/fN7L+GnrhQYoZX/E9AaJHjMHjKkgMxIdIhZqgjS1YLw2Sw8eYyNSBZcqdTkihyOIUD2YGLQDYwPg0S/quIBQwQeUeVgwNSGpQJ4gCTIZZD5g5hGTZ+wyIdMBO54j6y2565hNoJhIro7d5HjnyvJ4pzkzy3GkHo7U+aBOsTljio5CYMHYjKkZR8LmiXLzBLscyV4oeUJy4f56zauv3ePhw3O6lWfoNBivNPAlTXhUBe08tDvqn+ok2q03LFa4v3JEA2nRkY4ppjnrVmJ0GFPZbLdszs9wq4HYdTqmyAmHYdxfU8UgJiJAzjNzPoIY0jQpVyYljFRyWsAYxuPCdm3pELypIAlvDPO8kHJmvd3y7s2O9z18QOw8y9IM7RrgWkplWG2RaqilKVOMsKQJgyqKvHPkZULyEe9jI+p6qJXr3Z7LizOkJow19KEjNy5Tf3ahTrcFHj/eM6crVmWg7wfGJDx45SFWCo/eeYt8OOh54yObswsO+xs8FpGCdzpm88ZSUqbMM8e6IAg+RObhJbrtBzm/fI1cVcXVR0/sIjgPFeZ5ZpwmROA4F67HPfb6SNc51l3UkVdwajXobQvH1A5WaeZ4T2+B7VPp8MmBttn0n8Brbc6xdynGdwVQnzzhn06FX9vftVFexPK7+fN+SPtCAxQb3a20klqRMuvtXjFNYJAVpBRRQqB32LiCuMZYi8wJTIdIwCyTApwqUDzWdkhY43wPaPscqhJla4I0I3lBkjq9GlG5qpgRWytVCiYvmOVIWSZympn7DSX0TCZyrJGrY8fjveXJzcT1kyP56oZ83CPz0lKGK5gFmDA246QSqNgyk8dr8nRNpVJS5axzPHz1Hi8/2LLeRuIwaEqvdU/VGmJOvMgmIX2qwjg1+fWmWgjB0IdAnjKLMaSl4ABTDUYE5wxxE+iGwMVLD7m4f59SC9Z5juNIYKFzlmHVcRgXxnSk5IU0HqnzEWsNx5uRgmC9xViHswapwna9QpxlqYXVesOxFNI8Y51nu1ozrAbEB64PM5fbnmAcN4c9+8OBJRfEBPpBXWAd6tcSY2ROKrt2zrFaD5oiPM0sOeN8pLTsnu16gJJxToHpvMyU6ci4WmFXa9bDmm41cHZ5zrtvv8Pu5obLe5dcPnhAFzsqsNqek5ZELYU5JXzwxGHdDr5hs95QUuJ4syMdjgoYA/SxZyyBH72uPLl5l48eP86D8zPOhsD52cC6gvMFax3RO+LZqoX5WeYlc5wTtQo3+4lUjwTnAcN66FgPgS40zxQDztrWCTGYquTaqlnJSK2tc6LAXr183ns5u+ug/MIuyZn/4tf/Jr7uH/wwf+Tyk897OXf1BVgvNEApJ3OqkpAkiCzY0ECLUb2l8jgKuIBxHuIGGbbQ90pwPZtxN9dw/QQ53CDzBKWq94lkShoRowBFTa4y5IW6HKmTJuvq2EgwvmKN3Aar1WmiHCfSWSUly7K2zK6wI/FuqnxiDx97p/KpNw9cvbUnXx2ojQwrImALzsxYZqKtBARbZ8p8JI07jBS6aDnf9Lz20hkvPbxH1zusj9ignSC5bZc0EHLyvhBpJN+nX6ytvaKO6JbtJhAOhZwr3mkoorVgvKE76zh7eA/bdfTbDevzc0JUH5KaZ8bpgOkdAngfCSWTy0zOmZSKurPWxDKDOMvmvMc5xzQtTHPCBK9KJZY24rHaPShWs3RiT9iesxt31FS4GRem/URaKl3skIszpBaWZSF2PdvzC4xk5sOoIYAWur4n5wqlYq2hpETJmbDZ0HXa8XGmcrzZYWphPO7ZSIZa6ELg/OKC3c0NT/Y37G+uWZ+dMc4TLnRgPMOwZndzRSmZaVJvlhA8JSXm+YiUSs6F/TgRYoBq8cYx05HNmjfevOYHXv9+Qjxnuxq4dxF56XLDg4sz7l2suNj0bFeBoY84r94wF1E5KVVU2ZNzZT/NHMeJOc9YA8EFnHN0wVFXHbEK1bqT3yAnDZBvnZJS1cUYTt2TZ2TNd/ULuvKbb/Fdf+Qj/JH/5q8+76Xc1RdgvdAAxSwTMifERDAdxkTEGggBxCqXFIsJrZXtOyRGTBwwcQOxQ1YVs1ojXYDHDnn8BFkWHdMcZ6p3FGvAWZyziCmUPFPnkbLM1JShKoFQx/mFuizIOFN9IE+GtPRMU2B3EB6bFa+ngU9Ohh/dZT75aOHRO0eW6yN1mpsRXAVTsEwEs9C7iqsFmzOhLsxpZOUNw9mW++eRy41nte40eNAHbPCNOKAA5Knfrbk113qPjXm7SzaY5usiGN9R40oDBwGMxZpK1zv6bcfmbMXmfAvWEFwhLUe6eIY3gLPEoWcad+Q0KzmzVso8UtMMtTIvC2Uq9OueKRXGMWNXjlp0xLGkhegtwVnKMito8moZPwtUZzGhoyuZ3ThSq7DMmop83B0otbQogUTnVrg44LuOeTpSysx02NOvzrh//wE3ux3jcUf0gLWshgDW4YKn5AUxhthFXLDkaaTEHus9q5WqlXZPHlGWiel4w9nlBVbAuoCPPc4G7VYVwTiYp5m0JH0+BsQ5bBfJFaxYBIv3llfOBtz5hquj4+p4ZL/f88nHlY+Jx/oV/dBxtul46XLg5csNL9/b8ODelsuzFavBE7wjeEsXA6uha+ZqwpIScymkksBAOSaMJNQuqBK8w3tPDL69b9rZccrnEeUF6Ul0N+p5kcp+xZfx0d97/rl/3IfT5/wx7+qu4AUHKJSMEatkVWvR2/sAttM7PmvUql40KddYB9YpAdaqaVY1FvGefIqoXwR58gS3jNicqRaqAxc91RnEFHLWID+yUEttohgBUympmbO5SvKWfUrslpEnh46f9IFP1sAn5sgbh5EnO2Haz6T9iCyLZvXYirUVZyZ6OzIYwabCMs4Eb6BM9L5ydn7G5eXAZoDowfQ9Pg7go+4bJyfQ+kwr/mQNCj/lDvi9HANEMC5g+y3H/A6X3uEt9L1jtQrYzoCrpDS1KMXEvKvU6YhzBmNr80eBWmbmqVJLJuWFeUrkOZNLZV4qdkA7I9aylMphLpx1HaFq5s2SElJbonRROXBJlc3FCuc9ZrUmp5G03zFimI4zyzxz2N0QYqQbepblSOwHbOhxXY/Jmc12Q+wG1pszQh948kjdeGnW7sOqw3cdIj2WShcM1jssljQrGRdrWJ+dszo743D1LlIL0QesD5RQkGQJwWIlknN5qpIKEd3jKzZ4QvSMxxkp6q0SnTB0sLIWcYZVL+QiTEtlTolxuWFKlv0jw7tvG/5tVRXb5uyMlx5c8OpL57x6f+DhvRUvXQyshoh34J3FuUhvjMqovaeKsCyFcVw4zMoBssZiG0emD44YPDGqOgnRjor3+r67q8/v+tG/+as52yox/Je/9Dp/74N/+zmv6K7u6jOvFxugVFHeh1NwokTMiHNR7czzrHwS48B77aw4jxg1tBJrSM6TgRzXyFml5iYd5glut4d5opKxs6bIViqlZKRCTZVSijY9ClQnZOeYbOSQB94pK94u57yRL3jjeM5Pcs67ued6ciyHmXycqVNStVGTDhtZ8MysfGZtE3VeWI4Zb0WB0Xjg3tnAw5c3nG06jKm4PoDvlATZDLSetamwoO6nz8hHnyU6qq35s5uNwTrLsL3gxkb2y8xLF5Gzy0jXOUqpSE7k4wGsY1kqw1AoeVInVmcxNVHrQi2VmjNLyizzwnxM1AI+eMzgVREUPFLVMM2vIhmDc0Hlx1k5FX0X1HDPTqxWK+Za8CJYHH2/oW5Hrh/tKNPCMk/M44HpuGK9XSG1UHLBdQNdrXTeNSWKBW/xXWCz3WJKZZpHhvVaOTEhAobtPU9ZJrx3CnINOAxLzYQY2JyfIXnk7Pwc3/UU68mlknIm9j3BOnb7PcuSibHDeU8tmZIr1IprJne5CmIbT8r1eBPxtoJx2Cw4axliZdMXVWQZp3lJqTIl4TAnPvWJHR/9+NuI61ivB155ecP7H2543/0Vr9zveXC+4nzT462qmCwgDmzv6TqPcx5rYM6J4zhzGGd244yxqgKiCN4ZLs42dx2Uz/P6if/2y/n+r/krrGx83ku5q7v6WdULDVAMGSMZEYelA9Nhfd8Myqp2U4Jr1uRCEaGUhM0L4gPLNDEZ9eIQG5FuDZdquFatRQzY64I5Zuys3IOSC7VALRWlLxiSgcVZblzPld3wtt3ypr/gdX+Pd+0Fj9LAcfRMM9RFqPNMnWZqSbfmbdVUvFuIdmLbJTpZyGMiHWc6LDmPHI83BGs5v3yJ9bbHBYtxERPiewCHObl8mpO1+ekLcvs9Y0yTmj7DT8HcEmerGGzX4zdrHr+x56wGdThdiqZAS8FZz3p7xlIS4zRj08Tm7Iy+j4zXO0qZyVm5Lcs0UxaBJORa6HqPi8qVOO4OYCreB7zRUEMpifVqYFdmqmi3pZqCqwvLUDAh4YzhOBeGfqA/v+DipSPjMTMfdQxXcgJRs7oTO3hzfsmyTDhjiDFirMcidP3Acb8jrjpc7EhVcL6jVCXQpqymdNZbckmUtCBViN5z7+KSOh1Zby7ohw2pCrnvNU8pBHZPnrCkhHdqz2+9J+WMACkpiOn6nnlJdF1PCJEQA9uwpreeeUwcp5FxnKipYAV1JDZCsB7Xg7FqtldqYkrCbs5cH0c+9WNP+KEftoiNbLcr3vfKli95/z0+9OqWh/c6VoOhswbvLc57te+3EHxgiHp5MGJZcuLJ7kgqhUUs6ebINB5/nt7pd/XZ1I//H34d/+ff9Zf4qvh9d+Dkrv699av/7B/m4b/+vue9jJ+xXmiAggN8wLiAVIsRhxiLcYFMpjZTMilqQy+iia5LmkhiScmSo2MxllQBCeBWmI0FF5HYQeyx13vKfg+LgooikDBMzrLzjke24113xk+4e7zpL3jbnnHjz1gYyLOlLBWZF8qUqFmVQJIztSjAgoplYTAj5zET8swyzqSlsLaWwS88ubqmHBZe+/D7Ob93hvUeggfvlD3SLM/NMxwTMQZrDLVWitRmGNtGWchTUuQtibbxDUpVYnFRG/sslif7zPngcEnlxlgHLMRlJnQdwXqMKaRl5lAT03FiHkfmrJtbHTMlCaGzbNYDUivTtHA8CsM64JqdvneGGHtqccxZyavSbPDrCRjYJxipSB4wvqeIIcQVl/fvIcvCT37qMburic1ZYUmJvh/IpWha8bQgYiimklMB7xDrqD5iY0d0hmmeMcFzc3PF+eYMixqy1ZxxUdcxzxM+DoTgGKcjFw8ecPnwNXzsCQJDH7l2sCwLQ4hImkilKKfFWrr+gmWe2O92jEtm0/eEqK+et5mVWTDRcr6+xN2PHKaZJzfX7A675r+SqRWs1XEMqKFa5wzroXKvLpRLyMVyXBw3U+L6OPMTP77nYz/6NiZ2bNaR+9vAS5cDrz1Y8fDeilcu11yeRVadw3sNg6xSMFK53A7ETr1alrny1jz+vL/l7+qnKet4449+Df/2934nwTjgDpzc1b+/+ie1iRA+v+uFBijWa9eEYqjOYEUoOZFq0vRfZxErIAkpiSqVUgvFGlLnSXRUW8nOklAbd+MdGUONIOeO6tfU1Y6yP5DHI8uSmWbDTQm8kzveMivesme867Y8kRVj7iniYTaQ5NZsrWYdi9RSMLVQygJVo+UsC+s4ce5G7DixpEJOhTWV+xGWtCMd9zx48DKvvu8BwybgotdxA7fNAf0YaR0kVRKZ6rByinWT23TaE5hRI6+T3PgZszYEkUQpSpw8znB9qGyi+tQtqTDlmWyvWa9WuOAI0VKXym43kXNmScKjRyM5V85WnqUWKGCXgjGGnARjKsuS2HS6+RlrWdJMSRr2J0WQpSBZ6DpHDI40HzjuhbX3DHEgOnA2EM/uEYMhpcLm7JxqRJ1fc8FgyeOIYKi1gAibcyW0GuMRtNvifUeaJ3xO4COH8YALDh96ckqUXLHOEvqBEAes85xdOFbrNXFYMY4z837Hk3fe5e13n/Dkeg+l0PvKprN0m47QrzBG84i6rmNOC8uSGIbIuMyMhxs2qwvmtGecBy76Fa+8dMa9ywt244H9fs/xODJOE2VpHTipymFqVamIqTgPZ8FwvjZ84L6limfOHfsEuyVz/Vj4idef8E+rwXvHxabnlQcb3v/yilcfdFxuOlaDY9U51sPAkhPCTOc8l9vh5+NtflefQdlf9ct456vP+f7/5C9yZ+96Vz9dfd+ciPsXI+jzhQYoBUvFglhqKaTpwHIUsrXqBusNxVeEoqHAxlNNoOCZccxYsgilCLll48y5shRIuWeWwOgGptUFs0mMYWFchOsjPE4dj8uKG+k5Zu3GUC2SBHJBihJDSZlaCrVk9WmRSqnKPbBGcMys/ZFN3WMOC+OSyDnjc+KshzAndrsbog+870OvcHa5oou2jXRE84R4CipOTqAntU6pGYxmtWjisuhGJlVzgcSAGLXQbzMhqZWaFpZpxEklOs1wyVXIxpGkUozhuC+UOmOqEHtHLspTmI8Th10iF8FbSzWGKVdCb3DeMCUBK/ho6TpPFdNSmQVnBOMt3kVcceSUEAMhBDDKpRlWPXFY0XcBI4VgDcNqBcZSN1telo5aFnxcYazXkVTrD/lgGY8LYMk5EZ0jLVmJxMYyzQvT8cgwBJVXe8/F+pyK5TgvxOBYdx3dak2/3mgWkUQeP77mzdd/hHc+/TqHR4+YDzccpsI+K09qcI6Ltef8wYaLB5e3r8NmWNE7Q64L1zczgiWVHXG7Bw7sckcWx0vec7bZslqtuNiccZwmDscjh8ORcTwyzzMpJZQbLlhjoBmzeTFUI4ipBBLBFy63la7TbKM5OXZz5eoAV4cjj9458JNvKPCNXWS78qzXHduhJzjL0AdeeXDOw3vhubzv7+q9ZbqOv/d3/9bzXsZdvSD1e/8v/2s+8H//J897GZ9RvdAAZVoyYZwoU6YaQzWQxZCdR4JDPOSgeT3VddQQKa5nNh1HcRyTMOXEhDAVx1Qt++I5LIF9chwW2M/CMcM0F5Y5M8/COBuWZKg4db1P9ZTSRq1ZPVRqUXfTrH4qUrVjIlJb5mzGycjG7FjlA8s0MmXIKSN54eUAfam6YSa49777nF+s6ByYWjU3CPuMdwUYUVAkAmKMdgsoGGnhcLXl+dRKlQaclkJeZqQkSi5AxRpDWRLz7jGuzGyiIVhV8iw5U0VIBcZUyDcKtLbVIaOQsmE6LMyTBiJq8m9ThVgAwTsdtRljmVNVAFUNVSoOteP3wWGcgq+KwTqP846u6wiDpkMvc8YGT8wFvyRCUGnv/dfeR5lnHJbYb4m9hke65FVam494b9Tvphac95QqmBjJ8xEfLNZYKAlvIjVVxAo5F6yBYbtldXGJM448Hnjzk5/kR3/oBzjsnuDtwsMLw9kDT54cT3YLVxKY3BlnLz1g6Azn5+fUNCI5YWriOM+IdeTqwHpyEg7HBaKqeq52O7AWay2b9ZrVeo2N2kULIdJ3HccGUkouz3TA1OvGivKAWmAxBkOwgrcF5w19FM43TzssuVrmJIxLZUqVOc3My8zj3TX7BQ6Lp5pHbFfP771/V0/r03/sK4Hvfd7LuKu7+pzXCw1QXp8rWzsDM2CoYilYUrCUGKkxkkogh4HkOxYCS+nZ0bNLPUe74khkly2H7DgWz26G41SZZ1jmSk5CyS2FN6OjmvIM0GjA5GTuJq3VLhok0wBKc4WleYxIItYdG7mmqyNjWrg+zFQctiYubGFFYZwWrrKwBM+GmZu3f4LlyuGDA+fxzmkekVV3UEoiL4uOlKRirQcLKRWssUhNTXVUqDXrZlYLy/FIWRS85BPAkUo0lcFWXHQEY7BOXUdL1c6N2soLu72Cm+AgVVgyjEvFB0PAUbJgTMF1HnNrZCdIEmoG4wzLUrA24ZzBuza6qpW8wDzBdV5YioBbSHWn3JpSsU59OwyW7Xrg4cMzHr7vZS7OLvAhEPuB0HXkUnDekUsmBo81hlwKtqrBWQww5aRmfD5SSsWKoRRhnBa8Fw0TtJVhWNH1PWla+PSP/iiPPvmDnHUHxpJ4fS68PQsP2fDBly748P0J0w18/ElHfPAa9zY9D++vMOXI1btvM09HfHbkapCSsDaCHUh2BXbA20gtws1u3yz7DWfbDV3XAwYrFmuUCxxiVMdgQ1OiQVoWpnlupNzWPWthjyIa2Hj6miY7O4IXVh2cVVFfnKpE6yKWnC2H2XAzZp7c7J7PG/+ubutH/8tfy/f/z7+dO77JXX0m9Qc+/T/gff/oxeGOvdAA5Xv9q2zFEKRgBIoYsnFk48nSk6VjygOjrDjmnikHxuo51IHJdMx45mSYF0jVKBBZKnkRyKJE0VqgVErOIJplQy1IVVv008XdiDSAIs12X7NhpJT2e9qdqJIIZc+mPCaUI4eUOEwLiwjRGwZXOPMZqTOPUmaPx0vi6t03Ob5b6L0CBYwhBou1jioW5y3BiG7qKZFTwRirJFMj1NL6LG3NVSCd1puFXApFoFQFUUOwDCuvviYiatpl9O7bWYtzkBzaaUBIS0UslGb2hghGG0mq8HYgpZIESrYYCr49Zl4EkwqmSDM007ya46Fw/TizT5UFVfwEA/fOHNuVw68N0VnycmR3EH7inUd84sctFxef4st+yRfz4V/8iwj9QJVCsA7rHcFAnSdurp7g0PWurMdah/cBg0VKwqE8GanoWM4I1qlLaz+sQODdt97g8ad/mG2X+OSThR95Z+KAx+TCkx5ks+HVuvD+leFL33+fH3tyjVlHYt9zNqwJIXBzdYUbR3LOhJQ5zEWl7MZhXMT7nmpUgr3b7XDeEbxnu9ni+6EFHgqp6JjKoZ2p089RClNKpJyoIuSUSFk5OGoyXKGCbTZ+pdDwi35uTOM4GSEYQxdgPVheOofx/I7r8Dzro3/x1/C93/BfsrLr572Uu3pB6h/8yC/hS//fn98Bgc/WCw1Q/v76VzN4i80zlrY5Gkv1gaU6ikTS4sk1UE0gV0teCqVaHc1U0ZRguAUWtRa1ri9CrUW5G7UiVWXGVL1zFymQT+qgpo4R5XlILtRS2kgnU2+NUiqu7BjKI1wdOaaF41J01u8tnS1sjWDqwk1O3IijOPB5piyzcj+s2uqLVPWh022EIhULBK8y3aUoH8VZg23W51JFNzSUT5JO+SvCLZfFW8MqGrbRsekdSKEawFhKrVgpOCOIUct5C3jH7fFPAtYJ65XDt7XUAsY5sgjzXClFWA2enCrzVLHe0EWLsyAls8xC3lf2UyVVRwWCVN5333Jv7Qid4Wou7LD0wXN/bXj5okD13Bzg4z/5hH/4//1XPL5+wq/48i/h5dceEvsNNgSsgc3ZOfN8ZH84sPIWi1rO4xzOWLIBH6KO6KoCJh8Coe8ILQvgsN/z+I0f50E3QYy8cXSk+DJuKSA7bvZ7fuCjH+WwqazNlg+/9Ao/eT1y/eQJ470V5+sz+vWagsFvNtxcXVHcQjSVuWhMg7EWH1Wp5VMl18LhcOAmRmII9H1/20mRIsCBmjPW2lvZuQ2eIQRWgLcKQ3ItlFrIubBktffPKWt3TapyqVCfQ9dALqf3SAMr1kC8u2l/bvXx/9Ov5Z/8z76Nl93meS/lrl6Q+sOv/1q+7E+9w+e/dudpvdAA5SfS+/F01LzQrDl1Q7GudTZEZb0iSNU7TCMKPIx4HYEYAQq11AZQFkxVYocRdYpVroK6jAJPOSYCIpaaZyip/fwJmAhPiasZUxZYdvT1Cl+OTLUwl4wxanzV+cpgKraO3KSJsRiyLYQyQpkoVYFMkYIxoBm16v5qjNXxTBWsqxjUw65SMWKIasNKrUa7JJhGlNXjqMpjwRnYdIH728j5KtA7IaXCPqvaqO8dVoSaLNOcwYJ3hqFX8NJ4u5op4z0VHRcFr2Mh5yxdrxEEMYDtLEN0YA0lZSiiLv8YUjfgIuyeTESb+aWv9QwrQ3Lw5iT84LuVXRG8GXm4NvzShx0f2Douzwpnfc8PfyrxsR/+FGm356u/5it45Yu+iEphu90w1cjZxX1qLpiWw9PHSBXYXd9QS8JUp66pJSPLRG8Nw3qgjCMlZfZPHrNcvcnlJrCEyEEqX/l1v5VP/eiP8fjj309YjizzDYtYxuORcnxCqEce70bSfInIhn4YsC5gp5FpmjXoTwzGeEq1OOuw3qsFvqu4osBit9/jQ+DSWfqux9pBux7WMY4HUk4AGKMJxtYoSHVWDeq87dRMT199pApTWkgpsaRESlnPHTRtGZrvTy5U0a6KMUouv6uf5zKGT//vfh3/+nf+V2zsHTi5q8+83p425E9++nkv47OqFxqgMBtKrkpirKURL00ji2g3RKNtWpgf2i3QnTRTb71I9EJbW5ucU9hfTur31sb2goISkmgHpRERqRkpuXVWpNmlt+C9WpAyYZYdq/IELwdyu8j3DkJQANE5KPPCMWUOGcRUPJlQZ6yoNXwVwVqHM5B1J6dW1KfCai8lF3nmTlfpuGMqOGNu755Ta++3VEBO/IMuGta9ZdOdCLGVZdExjkGVQMsipFnddq1VFdRuqnReGHqLVJgXzWvxwdINhpwqNQnW1KYSgt1ex06SdPzjnVBtZVhHzu+dMdTA9SHjro584H7gfBsYa+Emw0cfFQ7FqwsqhtefzEg1rHzP+88Clyv4RQ/hB97MvPPujh/76Cfw/YqHr72q5moxIKnD+YiIjsSC03ZAiBHJ0Ht1zD0uM/M0EfoeMRbrA0MXeWJgmWbohX7redhXvve7/yZ9d4m1cEgLzllqyVjpkHwg7w+IbDDG0HVrwjAwPn7MbrdX+3xnES/sFgXA3lkwTiMcvMNWXdOSM9e7Hd55nFHi8Hq9posdXdexH/ekZWngu7kEt3PBts8F9VAx1uKto+sHlZ03Qm0RdUnWfKbKPM0cDgfmpF3DkuvTTJ67+nmr69/9NfzgH/6LQP+8l3JXL1DNkvjUzSWXvPu8l/JZ1QsNUOZ3H2P77qkNt4F6Mk0tpSUSn4ipJ5lthZbiK43kakS0Q1Eyp/vK2qTABjTHp+rXSkmYigKUqtwSqdo10TTgqkOX1qmRmjDpmiFfsZYRnLbHQ+OSWGMI1lDSzJIW5ira0mfB10VDAmkJstBAiual1Cpg1XbdgrbiT+RHaZ2UCplKFmlSHzWvq6LOulILnfVsvOH+KrCNBmomZ0tKlZR1o3QWcq6UqsZdelcOtQgh6hhgzjr6gYpxGiWwmxMRhzWQlkrKQk5tHbay6h3eGUwLIhzOBrrNCieOdx+9xeAql5ueROGYK28dLdcHAVdZnd/H+47pyTtc7xb2SyUZy2rbs5mOrIJjqYbXP/26HnNrsa89JHaRbjVwfu+S/c2TJlavLLkQQiCVxDyrlw7NS0RyJU8j0RqO4wERiMMZh/3bbILnV3/wPuOPvMNbN+8yC0hdOPeVe73npQdnVAvX08Tm/iucb7eEqP4nu92OcdxjqaS86AiyeLypxOgwfUduacIWg7euAZ/Cfr/DWQvG0HUdfT8QY2AYOsZxZJ4njSVo4z2smvdV0c6aiMXI6ZyyKlF2hug81lqcsfR9TwyRUjK7w4Gb/Z798cA4jhS5Ayg/n2XXa66/2D7vZdzVC1ZJCr/xB34nl//Tjz3vpXzW9Vmf7f/4H/9jvuEbvoHXXnsNYwzf9V3f9Z7viwh/+k//aV599VWGYeAjH/kIH/vYew/M48eP+aZv+ibOzs64uLjg9//+389+v/+sF7//oY8zffzTpJ98xPLuNenmSD0u1HFG5lkt5Rf9b5kn8nykLCNlmahpQVLrfOQEOWNqhVKo7WOpKtvNaSYtE3WZkbxQywRlUSvzPCFpRtICeUHKQi0LpcyUcqAuV4T0mJUc6ExmsEL04Ki4lLE5k5fENCam5pkRbMLVCVM09VaA4DTZN1iDQ7sZ3hq8MXgD3upIqeRKOQEzbRxhmvImVWHOSR1NG/jqnXJNHmw7Xtp0bIagMuOqVBzBttwaWBZhSRUxBpy5fQwKpCwsxTAvao6Wc+W4z1Ac1kKpwjjCkhVIhs6wWnliNMTOEYeI7zv69YZ+taLrB7rOK3GzVnIpGjqYM87puGjYnPHFv+yXE1YD3TpgnXJgQheI3rHqAmItaSk8fuNNPvZv/jVvfOpTzLP6oAQfcMY119yClcoyHQjOkuYjx+sr0vGoKL4uBCcYIxz3O8bDjp98+5q3Hh05XO9YlYmv/uCWD5wlLvzCq73wxZcdv/iVM4Yu8IM//i7Fn/Pa+9/HZruh1MphtydNI3VOTOORaTpSSsaIgQpDv+Li/IKz7Rl93+FiwIVA12mnpIqwPx64vrnmeNTf9c6zWW24vLzP5b0HbLdn9MNAiAHvnHbDjHlGbl5vPXOgnSe5sORCaZHLIQY2mw0vv/QSH/zAB/jFH/owv+SLv4QPfuADL+R140Ut+WUf5of+4F983su4qxes3igj3f/kx5/3Mn5W9Vl3UA6HA1/xFV/BN3/zN/Pbf/tv/3e+/+f//J/nO77jO/jrf/2v86EPfYg/9af+FL/xN/5GfvAHf5C+17bkN33TN/HGG2/w9//+3yelxO/7fb+Pb/mWb+Fv/a3PzmxI5pm0XLE8eowJFttFbBcwnWbwWB/UEt7QAvnU5h0s4or2JJovRJWqsmA5OY02CcrJAL6RYUUylNy6I/WWl6Kln9eSqHWCcqSrB7aMrE3FOoMxgpET36WyLJWlqVvEaPdCPTJm5Xs0u3rhafqwoZlxYano06pUmp5IA/pOKTxCG/9YHVGhox9nhN55eu+JVr1VUlKeih6WSk7qV1JFWLKQs67BWqumZ9bimg/LkurTx0a5OUtKWGM5LuruijVE7wjeEKPyV6wFFwy2c4TYEWJHjJFoAhfnA1eP9oxz5SKqBHtlLZHMcfY8/smf4PGbr1OXiZe3hr7zOIya5GGIZxdsxSNXb1IoHK6v+NTHPkbwkZdeeRlrDMNqTVpSe10K5IU5wbLM5PlIpuLWG6ZxYsmFLniCc8y7HU+udjxJC3MuXGwDwybyle874zBnakpsgif4wMfemdiZe3zJl34pX/S+Vwne8/jRI959900Ou2uOuxExKpm2olrtmhbydMAibFYruhg5ThNLSiBCoEmES2UaRyV7i9D3g/rB+IBznj5GSinMy8w4z5SSnxLDUWBQaqFWwRp3G5lAVaA7L4vKuPsO6xydc6z6ngtr6bvPnCX7+XTdeBHLrlb88B++YyXf1S+s+qwBytd//dfz9V//9f/e74kI3/7t386f/JN/kt/yW34LAH/jb/wNHj58yHd913fxjd/4jfzQD/0Q3/3d380/+2f/jK/6qq8C4Du/8zv5Tb/pN/Ft3/ZtvPbaa5/xWmpdMEaATJ2FOh+A2vLhFKC4rsN0AdNFnI9gvcbEGzWukpPzaklIKZhqQTL1lhR74pk0aTEFTcCrt/edJx9X5b4kapmp5UCoR1YysbGZaKAUoVbwBnLJTKUy1UKSqhlCknBlQrKauuV2BwtQRNrmf8odlmb4dhrnmEZePBFk1U00SYEM3jlt4WOIztEFw+AU4BhrqFSmlDDZ0AVHcBZnhXmp5Cy0CRpB3dawqELIGMip6B25uNtjseREBe3moKMfA3hviYPFtfUZo68VRpOCBTC+o+8GHr7yKjc3CzdXV2w6S+8MYck8PIu8vi+M4xEELlaW91909ErVIC2Z631mzGCjw3qjZnHBMR4OfPrjP8qqM2zOzwkxYp0nLSPH3Y6SF0qq1DSTl4mUkjrtNoKprHquSmGZE9bCUixvPE6YsKX2K9J0RMRhTORIx2LXnL92n1/yymvcf+klqoE3n1xz/eQx83HHuL8hpcJqs9LuRSkUHOTE7uYa2VyzPruki4GV6XUUUwsITWKuJN8ilXEaG1eq4oqqeZxz+BBw3mOdIy1L8z6RRnhVcC6SddTVeFzO6Quec2acJpW1R40iMNYSvSfGz9xJ9vPpuvEi1lt/5wN84qv+6vNexl3d1c9rfU45KJ/4xCd48803+chHPnL7tfPzc77ma76G7/me7+Ebv/Eb+Z7v+R4uLi5uLzIAH/nIR7DW8r3f+738tt/22/6dx53nmXmebz+/ubnRD26Jqo28ajRYTnWzmTyPlINoKrwPuNjjhxVuvcJFbf+fuisKUFQVg7Sxj6iPqbSwtFPgoIi6c7ZF6M/UitQFkYmaJ1w5sGJmYzNBGrhpvJAswlgqh1qYQW3fTYY8Yqr+XWN0bamocuLU+wGVf9YmQ7XoBd46qz4jtWrHRHTTaiHGlFrxzhKAaA2995hayU3NY/CUahoXp2gXqmoHZlF1NX04hf6Ies7MagB3kinnnKH5oCRRUCTU5p8iOGcasbcSgkdKIWVhyhNxCdSkm63tVzjfsT2/4EMfrvzEJwzvPrnm/MJzb2ORXSWsLdNaSaL3usrLnXARPMv1wtW+8Objwji/wdnZwHbl6btAcIFU4a3XX+fyPODdB5GgwYXz4YYyH6mtQ2HRUVLJUHLCD5aaEvurkXk6EmJPFzVzKfge61dc3n8/6/WAGPChI3Q9w0qN4rpuxX48kuaFx++8wzTtcSYxzSO1WJX5itUAQOexMeBjoEhlLjMdgaHrcdaRs3bCFGC3ztUzvibKtYKSM5WAFwVXMUSssdoxKVUVZ8Ygtei50uizt+OfqiOtlDNmmqhV8MG3DhrvSdD+71M/V9cN+GmuHS9SGcP3fOV/A9xFC9zVL6z6nAKUN998E4CHDx++5+sPHz68/d6bb77Jyy+//N5FeM+9e/duf+an1p/7c3+OP/Nn/sy/8/VaSsvFEsByuxub5keC+joYAWohp5G6v4LHFtdvcGcbbN/rZbmNgAyGkjNSEgaV10rjo3Ai2aLEQiNKGK2SgEyVGSkTNs90dWLtErHmNlpRdVAVw1ThWIVFKnLyppgPRBZy0dGRaR4mrvEF2q9TqJozhIo0BIPFUIpuSlX0c28MRXSwYyw60gG66NVhNCVELHOpDNEypUq0lmjVmXRMVVU26PEV0WNsjdV15NMGZqgYllLI5WmaMqIcGQGctYjY05ep2ZDKrAxe6xXQ5HxLOJ6nhXQ48ODhK1zeP8O713jzU5bX337MKnpeub9q4KuwCobeG4aVpxTDOzeVR08mrPW8/96K0DnEKaAs40gRy3E3crjaMb10IKw90/HAuL+G1kUTIzhr8N5i8HTR473B92vmeeLR48c45+kCjHUh9mdUo/yNOKzYnp8RY69dL2s5HkcePX5EzoX9bs/N7oo+GGLnuTi/ICWHGCH6yEKhGIeNHaFf03cd0QWCdXQxtk5Z6454p0Z8IrfZPt46hn5QhVUuFCkqqzfaTdF0a0v1CmBKKRQLnYtYnnJTSmmOyE3Nc5IZ++AxBqJ3tzL1/771c3XdgP/wteNFqo/8mxs6cwdO7upnV3/wf/x7gY8/72X8rOqFUPH8iT/xJ/hjf+yP3X5+c3PDBz7wAUQmRMLTC+UzHQ/dUIsqWdD/a9/FVCjLCPt3sbHDDQOm67DOqhEbYGrjnpzUOtL+0UYWAFWokjRoTzKVCVszrsz0NhFaByOJIEYlm3OFscBCBWeUh5FnkIRpNvPabxAd8aAbfG4W5ohpUlAhNdaJM20zvbXaF2rrrtQ2BnK2bbJWwU6thlQqSQSzZCye4io47dVkaZJlLKUIxppbl9kswpT0+OSyMBcFKdHqWCg6iLcjJ5Uxq2wVTG42+V65QHURvAXrDaValjEzHXeUtDDNR7ZnZ2xWaz70Je/j4uVz3n77hsfXB/zg6Yc119OBJ9eZ+rb6xHTR8YEPvsrl+RaL8OjNtznuZxYxiDUUY1nGhZsn1+yePCLMM/M0UvOojsFiFMSJUJt0vMyCtwNiM857zs+33Fzf4Kxjs9k28inMiyqxdvsDISzkCuM0YVpu0M31NcHC+XpNKRPX13tygVIt55dnpAImBDAdYX2O7zY4F3SUUyrHeWZeFmqpxBiwYnA24JzT0QtWycNdxDlPyoV5WSi1qPuvtfp8qvoEee/JpZAk450jiHnKaWrEZJXqV7JkihRSVXDU9z32s+fY/7zXf+ja8aLUr/yXhv/03o8+72Xc1Qtc9cc+9byX8LOuzylAeeWVVwB46623ePXVV2+//tZbb/GrftWvuv2Zt99++z2/l3Pm8ePHt7//U+ukWvh3SpJ2SqpCj0YEASm3H/IMwVRpo0XHOtLcYsc9+QhiDcZH3DBgY4/B6x1la11oInJuZmTNtr5Wap01CFAyhoQtC50p+OaFkmp5hisiHHNVKXFwOAemzNg6t8ds45pGJkki5FrxzYitVOWkWIyOrU78FCo1Fxy2ucYacq04tAvTe4czBmcV7CxZlTiZlm5sLXNWXoM3lkAj5ra/WUU7NL5YYm7pz1U9Wbz1WCNttCA4q6GFRRcIpRKsa/JqXd/JSI7SrPLVEUxfHRFi9Oz3E/t95u03HnHv/paLiy2r1cAXf+ghpQrLspCXREmR4AJd71mtBxzCMPRY4zgedqy3PUYq85L1eRcFUOPuwNU7j1lfqMtvzTOlVIL31KURVose7yKVNE2UZcHHwOA8teu5WvZcvnQfSqazlhgCuQhRhMOoycRiNDU5p4IR7Y75LmBxBO8oNRP7iIuRNGVwgTDcw67uk6pF5kUTtp1DmqNrcPq2bWc91qiPjT1xQ0LEO3drzKZyaXWFrVZUrdbK5YwTTwieznqKCKXoKLLUQmrW+NLUPrUKx3kiHo+Ez1EH5efqugE/zbXjBamNm3/mH7qru/oCrc8pQPnQhz7EK6+8wj/4B//g9sJyc3PD937v9/KH/tAfAuDX/bpfx9XVFf/iX/wLvvIrvxKAf/gP/yG1Vr7ma77ms/p7VRK2lltzNKDxPHSzN9gmo9TPMFYVNDS311vOivJWajpS5muwARuiAhYXsKfNwZrbmX0tiVoSIg2ctH9WMs7oWGepFSuCt9p3GYuCE/Ee7y2uLvo386J37CK3suL2ZDBY7Vy08ZNKRGvblJT0WoQ2zrFgTkwCA0bwxqraprnKplLV5r5op0SkkCoY64jGkMQwJh3PaO6OgpNc4bjUW5fdrAYat94vDkuw6IgIlSCLVDC+uZfaNokzuOApKeNsc3jxNHm1wfnYuCqCd76ZhI3srgs311d439H1Pf3Qce/eGa651/qg/iDBBYzV1914iKtILgs2WFyqzHOmzOC7SOgi3nuWJZHzohv4POG8Uy8aaT04Y7BUHEKddfSlk8XKNI1cnp9R5pl5mTBTT9d1iLGItUgplGVhSYs61nadGgYaiw0dq9gT+g3VOkIfWGqHrO+T/ZpxKXgmQgyYEPAh4IMnhEDsIjFGXCMWl6YKM8bga5MIg4b/BadjuRbR4H3jkZyI1yKE4OlDUH+cNroTqSxLZlmWW4BSciHXwvE4fs76Jz/f140Xoeyv/KXsvvScD3X/7fNeyl3d1XOrzxqg7Pd7Pv7xp/OsT3ziE/yrf/WvuHfvHl/0RV/EH/2jf5Q/+2f/LF/6pV96Kxd87bXX+K2/9bcC8GVf9mV83dd9HX/gD/wB/vJf/suklPjWb/1WvvEbv/GzZuKLzNTqUCO2E2FWuySnTfoZw3nd4E9OsXBrhy9SmxqoWdWXiZqMKk+cx4UOGwPGB4xt+TQ1UWXBSMFSGkApeDSvpohQ0MZArdo9WQSq09GH5ImSjkhamrtn45Q0BQ6n9Z5eKGeb/BfEqswYgdyC/2jSX8PJH0V9Vp01RK+kWR0PnYzchCyVImh4nDf4cjquyqdQPmylNN5xFphFjeZEIBe13feqK8ZaQ3SmdYHsraRIcsV6iwuG4A3eN/BR9LibRqK1TkcUIVqs6ymNTBuCI3aRlHSzfPTuFRcXG8bdFV0X22ZbiSEy9B0hRLDKl+lWayqG8TDSGQ18NJue8/sXhKGnVAUQaZoQpyDP0iIO0ONqsBTrMM40UKoHwEvl5vE1Q9fRrzrmeaQi5PmIC55qLCFEVl3ERE912sZLqbAUg4sD3nuwHjHafZGwxgwX4Ht1eXVOHWNdIPhA8JG+6wgh3Jr13dr4GUMthWVJWGcJ3hOcAsTSeCWKEc3TrB5rcUCMQbtHIoTmMCzNwE1TrE/8rEIqmVwKx+kzT0X9fLpuvAj1I99yzo/99r/yvJdxV3f1XOuzBij//J//c/6j/+g/uv38NN/9Pb/n9/DX/tpf44//8T/O4XDgW77lW7i6uuI3/IbfwHd/93ffehkA/M2/+Tf51m/9Vr72a78Way2/43f8Dr7jO77js158qXObgwtintpNCc+qbNqYptE3b11laRbxp6+eCLYnfkm7gyQv5Dwik8V4lViqBFNaaJpgJENe8EbwjZibUcJqOY00DBQDxhkdTaUj5EXJiEY3GesstvFL0JBZ3UhMg1dGfeL1v3KrpPBtmmJRZQc0gKDyDqoIHk25nWpR35UqVITSiLalEWyBlmpcsI3zktpIJwT9Q9boUQpOOSpWIDqricUNbFlrEQPWCs5bvHfEaHHeYGzVCILmzhI7Rwxq1hZCRGrFemk5OQ4fPL4b6HrDvIwY7+iHnmUacVZwTgnRiQVqpnSZoV9hjCX2g5Jw58QyF/q+Z3u+pjvbMs6ZMh+ReUTbKpp/U3IheI9zXv1qEJVXNxBWqzTStDAfJw7XO2IX6Iee1Ez9Yt8RVyt86BHJTOMerAcckhKlVjAaTigYjHUUa3BxjY0rXNfjgh6PLkRCjIQYiEFHWsZYjTsQIVinXiVGQZmxFme9dldE/VJyaXEJLSeq1lPHUXDeE53XjtazXTxjGilW30PWqlIs56KZPdNnPn74fLpufL5X/tqv5Hf8+u973su4q7t67mVERH7mH/v8qpubG87Pz1mvvxxj3G2XRLkljVjaPtc6aUvaPEBEE4bbRn+SVp7uKqVRYUHlm+ZEvEW7NNa2pFdrbi3frakENVjFVPUl0fEAiJHbbBxTM6QRyROm1hYOp50czbw5gaVmatKe0wmU2KbsqSfZstHOibS2/OmO2Bq1v8cZgnHYBr4WRO3mayUBqeiGFJ36okRn8W18FIyCpaVq18VbYYiOzulmXdFgRi+GaAVrtRvitKWi1JJgiUGTjWNncUGt9ktWYzBrC11n1U4/Boahb69UI+e25+R9VImr0U6LMZCWmeA8OS0Yp10mI8JqtWK93jBPMyF4pvHIcXfNvJ/oVwPbi3uMpXDc7WE+4qRCyeqPI2Cdo+8CQ99hXECsx9v2+EaB3LJkxmnk8ZMbjHhe+6JXCOueYRhIy0JOCd/3rM8v6buOw80V1/sJ5yPRWsQ5+tWKfrWmYrk5ziy2R9avwPp9dNt7xH6g63r6rsPHSAiB4F2LddBzwzlH9Pp1rKWcAv0wTT2lYCo3oHU71jmdm9YwxI5V16nvSaX5/ciJ4nQbr+CshdrOnZy5vr7mV3zZl3J9fc3Z2dnP1dv9c1qna8f/iN+C/zxUxpiv/hX8D//q9/GfPfiR572Uu/oCqa/74K9Rp/PPk8qS+Ef8Xz+j68YLoeL5D1WV/FTWeqpTB6JxHhSS6OZsME+lyO/pmLTxjrYsGtej3sIUkYyyEfT3TCOynkIET4mxUG7N0E6PX0HzcgxIWSCNUBaMzmXw9pT3YxrZV3BtZ6hUkDbmacDLVH087ZaYRlyst+Zawdg2ympus8YqadhaUlOpGGPUuK1qJwWj3Zos2rYpQBCD80rGFbQLkwWWUpvdvkWkkHNR9VMj7VY0+dYag6HS+YALFuOAYAhRibXTuOAchNBhncE6Q/CB3IiqMUSMsaSUFIy118P5juA81kHwUYnKKNcCmveK60g4uvU5tWSwC9YFurUlDiuqVPyS8GUBY6m5UJPymOYl0YWAN4bsHMF4BXtGRz9SinY+rKPves62ieurEVkSycFmvWV1vmY8jqS0MN9cYVZrhn7NMidwVTszPhCHFbYbOB5nBQbOMxbH4AI+RGLs6Puevu9xXjscglr/u9P4x3u6oEofVd1Ucsm3I02MUYn1ydK+nd/aSWwpx86280jHkU+7ieYZcPz0Y2t0fNTFF/ry8XlZ00v9HTi5q7tq9UJfYWoDDafhjhGVtPIMQHgKQU6z+tP3Gonzmd7KqeMip5zcxmuBUxpybd2S0/dMS4Rt/ZY2dintDhZnblOGqTNmeWrEpvCkGdKfft5oIFzXVBpFlAtRRJR30jgptd0NY7Sb4hpAsrVZ3rcxTxRDDB4QppJB9I5aRzsVEf2901hIeSaFYiy1GvJ8er62eWTo+MdY8EbVRVNWXkNzxYemIPYBhi4SowNONv9tBGQcfd8pqLB6jECdfa0xakBnLf3Q4RbDPC/UmjHGEYJnNazZH240n8ZZxlFh6Hq1Isau8Scq8zzifUc/bJCaGfqeEFZUKSxuwnWRPB0Zb66RLMxTZp4LnQ8gllwMFCE0abYRS60Z7612Kwo422HMzDRnLrYD8zTiYmBzfsE8jaTlSJqPdKs1F/dfYnc8IkRWmzOWCldXB9KS6YYVswSyKOcpdh1d3xG7oARgTJMEF7zzBGtxbSxTRSg5saSsRnttHHMC541apK+jaT8v4Bx0LmAxGmNwer+cOFqluc06Pfdq0RGiVFVD5eX0yHd1V3f1+Vhf9w3fhKQfeN7L+FnXCw1Q9I6uXTxvuSY6OkBKU7Q8vVCr9FiVJ/q1etvGlvc8bm6jHzVqO3VpnOEp78To18Rozo1F78BV0twyZgx4KiWNlGXG1qfdGmOeunYaTh0RVdzIacxjwHr1rlATttoUOUrgLZzk06bxDbTDY5taRowll6I8DSy5/a2K3Nqq10aGRNCkHtEsHXNaozmxeIxKixVFUDGNoKmjggJQBGNFCZfBKGfFFLwzOGdwJyGUMzousU7dfK1V4y8Dzhuc961zA8NqTTesyaWyzBNQub5+gjFwPIzqx2GC5vfEjtB5JfCm5ZYw7GzEb89YDSuqCczLkU13xni9w0rCrNfsijCmRdVGxpAzhG6gC1u8y0TncD7Q9VsFAallO9VA121YxNBtzxBgmkb62LFer5m84Xg8siwz27MLus2W3VS4mSvXN3uownq9omC5HisuOLDqa0I7BmqcpuoZ6x0xeGLs9BiisQmplBYr0HC20GzxFTmeuny5VA15dIboA95YBSLmqcy91tKEbdo1kdw6YnJSbel5lnL+uXhb/8It65gv3PNexV19AZWEF/t8eqEBCtC6Iea2A2JQcqtIbrKYExBo36PxNp5R7pzM0doDcuqaGCrGtJwbUA8P0cfEOA1XQ+fyYlvHo4EfKwZfK0EyQRayKVQjSDWU1sHw5ml3olEKKKKBhafEWWmqGQtglKBrOe0R6huiPAPd/Z11CkKavLpiSEvBOCVP1lJaW98hprbE4nao4NaF1jYOg2ljroqSK0uBackMzhGspYuoysYZQtCOSCkFbwXvDCFY7bh4S4wB5zV1GKkq8+1X5KxqIOsd3ju8c3TBYY0g1mKNZgfFEKi5YKyOrkquTOOEdYEQDXFYE1cd0/6GZZywNK6Q9zjX41xESoacMM7SBUsftowYDvsJqiqSgnV0ztM7S+cMMfaqjAoB2/WIWIyxrPPCNE5c7w9MCLFbY0zBiGjYYDlyPI6EEMjTQrwfCestC0d2057tZqALjmo8++wZiyFWQap2Bk+eMSUXStXOSR8inQ8NmNRb8FLaOLBRxvVVE5rUW7lNWYRiRJ+796raMerIfPI4KbWQS9HHLArCdQSnwNiZ1hW0jvBZZPHc1c9QxrD7nV/N93zbX37eK7mrL6D6f/53f4OP/O5vxv2jf/m8l/KzqhcaoIjopm9PPQg5dUmAtqHq56cRTYMazVSMUxfkvf+noxyj9vAn/Y8atD0zKJKTSVbjmkhpoX3gjdBboSfhJWt3JWhY31KFpUgzMpPbFrxtnzdnlgZa9JmVJoe2KGlXrI5lrGj3pmb926f0Q98C/WoLIkwIkguuGX3lNjYqp78mrUfSeDDVNI+YClakBcQZfOOiTEXoo7rX9s5gvapxbMv1cU75K9Yq6NCmhN6Zm2KwRpU5zltEMjEoIVZqBQIYTzXqa0LbqGOMOOMwAjlpJyWnonfxRlTqTKUsibok8jJzdnaBD3qKe+daJ4F295+w3qmXS8umcSHSRct2s6UfBjYX9zm7vIf3BisV7x2r8wuWWchzYpyPjNOCAOvNGZvtJVUWpvkAIuR5ZpwmHY2lwuOrK867LWF1wbldKV+qVg6pclwMEiI+qNzXO6d+Mln5JM45YlQflCrS7OfLrSrnlMlT5DTONFjrEGOwVkF2PXVOold5s8CSkj5/ER0h5UTO7XERnHUEGwjGE53ejYlREEe4Ayifq3r0v/i1/PM/85ee9zLu6guw/s5//Z385v/0P2b7d/7p817KZ10vNECB0sYqaupubqkn8rQlcDtGkafS4VMPXMzTj2+HPNIGRloGvQvnVtdjdfRhwVgFMm3fV7WJETorrEzGlqy/Z6BzDgtEqSzeMOfapL2NeKsEjdblaes+5R42rgmtY0J9Kqm2Irg2Yrk1ckPU2lxgkWbO3/gs1ipPpzahkJxCBRvwskbDDBGhWv3cikCpCgSNpYhFjKHzlmB0s5RGkLX+RLw0Tc2jMMw2qbFzjuADLkSs9VjvsQjOecQosMp5ATxIwBnBGY+IwcWox8FUSlpwXrC+pxsGVquBmjPTPGKlEEJkyZk5JYJzuL5DpFJLpevW2OCIXSCNIzXNbC8K2S6IFIoL7KbMzVtX7MbCKw/vcbbd0HcBCq1DMvL4ZsdNKsTzLR/40Ie4/8pDrnfXjDlh8qIJwtY0YKHEV+c8hI4olmVRIHA4jrx9NTNSsN3CtCTmZQFrccETvcqLjXNtDPcUjNKAiYZK1lsytTW2gUuVGpvm4hsa2TaXTEr6r6JuzKVmanMUNla7RApQHNG5Wz8VZ6wSmu9GPJ+z+rt/+tuA9fNexl19AdYDt+Yv/rm/wDdf/lFe+kvf87yX81nVCw1QGieTE3h46uAtt3jjRMzUL8vt56feiHlG6XNLsX0WdDQAo660mkmj5lUWQwIplKqAoDNCbxKRTBRpI4qnLBjXLviuVrzTvJuKgpBSpW0+NLt6wZjayI6qxMhII6voHnWyOG+34rdS5lKFRMZgyc32/uT6Wau0BB/TpMfqQis0N1LUPdagZEiMKmyi18yjXCopFw5H2HiH93pMmnWL4sJasWgHQKro2MZ7hYGqQ8b6gI9qsnbCks7bNgJyVNHjVfKCLEk9WqyatqVcqDnTdxE/DHT90BQ/mWWeCVY7JTdPHnPY7zi/vMD5ezjrid6q4V7oiH1Pt9rQr9ZsLo68VCrjpNHNeRbG48yb716Rp5Ff9KEvwjjd9Jclcz2N1G7g/R/4Ih4+vOTy5ZepOPZLJrrAMo6shh5nLllttvi+x7qILTPWWRYKaZm4OSTevRq53i0UL2xSJpdMqWq338WePgZ8Oy5Px5gKuLPRoMXcTv7TOeEbgVZPZiUdB6ddqVQy4zSRc2mZA+09A03W3Tx3bgMGbXOX1XgD55yqvsodSfZzUR/9K1/Nuf1nz3sZd/UFXL+q6/jw7/4YuxesSfdCAxRV4bSt94RWGjfj5ILJaTyjv3HbnWhxN23co52Qp4Cn3YVSuXWkNbZd6xWcWKtAoJSMFQgWvEl0ZEJVqbA/mbrx1Ma+SKXUptZpm39Bxz5zEqoBI8p1Mda28Y7RjZ3GbbHK62hPt4EgS6qVRLn9O6FxBywoF6c9xsmoTuQkqS6nwdXT/7VN3ljdqFJqiqd2fCcr3MyJ6JWrceLyWKNuseodk/Eh4oOm7mIc1geMc9SaKUkwweN8wHuHdQ4XAtbphuyMGrvlVFhyYVkmcqqYYon9mm4z4F2klqqBgwZMSdSiz3t7vmK9Hehij0hlOh4x1jFsPJ2zDLEj9gNlc0/HTxa2q3OePLqhiCXNEzdv/ATz1ROWJWMPCzktYB3F9tx/+DIf/qVfzObefUox7PdHrFPPktlalVJ7z3FemHYHvI/064R0C2PxPNol3nh84K3rkbEaOi8Yr+eMb52mLgSs95p6bU8ZSTRQKFAVZN8quZzyi5zVkZagBoDeqSlcSdplylkBrG1jRNPCwKucQOvpnHDKq6o6ZvPeU4vyVHK5vSO4q59lfeyvfSX/8mv/Ap1ZPe+l3NUXeP0XH/i/8dv+9/8xH/zTL04X5YUGKFry3k/N0w9OSpj3fPn2TlE4hf6pPPbEVzG3XZNnHwtoYEO5HbkUcp6RWuicxRvobUWWzFw0pbhY8BU6b1iHwLwkvPc4U8m53m4G6iticGKYciGjnZMTCKpGlTcnqW8utSk8GtCohmDU3l7aug1eFRqGNn5p0KyNjayzZFT5oQa1cqtZKrSsGdT3xBu5JZwaYxoPpXAzC6voiQ5CMG0koBY0sYs4b7G+RRFY7R7lZSEYizh1Qo2dvyXfnkCK9woGiwVjAt1mw+AseV4oKbVOkZCqVSmuhWUcyVPC2MijqydQK/fO1xx2O57MjxhWa862Kw43VxhjuX//Pqv1lmF7SbEOMRbnAtFF4uYS5yOHmwO+Fq5FN+Ob62vmecGv1mQfePnVV7h48ArjktjvrpnGUcdWYQ3mhpRH0iL4ENgMK2K/ZX12STx/gGzu87JEHh4Sx+PCXDLiPJv1hovzC1bblXaInPJxmsmvhjs2I0AjouCkOcA6p8fY3IITuQ2VNKJqnyWpe7FrkmMaKClFM5VKbQGSBoK3t+Twvu+IPqiVf9aBoPyUt95dfXb10b/0a/iXX/vtXLo7cHJXP/f1ZXHF/+v3/h/5TVd/nFf/q3/yvJfzGdWLDVCkcOKEVGkKHXimW3Aa7fCUn8JJudNGMM/+TPvgRJVt9FhVQRhDKbkRCp/+1zVljZeMrwoslAugrpxTTszF0niumKrR9sZbci465qngrSEawQVHtYExqazUWNPIo4KYU0/n5IWiZY1yTZQY2f6ONPt/ecbqX54Kp1XxYZR/wDMpw43ecEozpgpJPXEJzqpU2KpTXM1wyMIGcGK0i+GEaoTjODEMPZ2z2GpwYqHWljekR1gbLwVjHVUKuSSMBIxV7w897p4lZ4Lt6LeX1FLJZSF4R61CMpZpHpmXRFh1dHTcM4UhRoxVwJPmEd9F+mHNxeV9XOgpBfb7HVkc64t7xK7HGM8wrHDujGoMcb0BI9zsDzx5+23SeMAAvbF88a/8El563/tYxDGOe5Z5otaC97DZbqA+oKYV5Fm7QT4Sux7nMna+wpoZlsCPf+JdPvXOnvsPXubDX/wlvPrSQy4uL4l9h3WOnA25xQKUUlpHTbtsT89Vezt+McZhTDsHT2PLKmTJ5KzjoxN5vMpJrVPIKenjGoN3nhiaMZx3dH1PFyLWGqQUVYA1Yu5d/ezqU//5r+ejv/k7CXedk7v6eaz3+w3/9I99O/P/JvO7fvMfQP5/n98eKS80QGnhwk21ICdRDqewwGeJr7e3oI1Aa0+Ose0n3GlDbhd1TD1xbKk1q2y3Zqq8lxjonMGbiqmZKVeCEaIL2JaBgw2ICDcpM7iAo7IUJaU64+it5vTMuah1vICRyjpoENyYWhjgMz0gxUwn9xeDN2otX2u9dcMtwFyKEitFgVapTZJsDFIbAbYBLOXFGjBCpZJKueXh+ObJoYThZp9eYBIh7ycojpfOe86jx3sdF7gGEEW081RF1K69t0oedeq2YlzE32bNeEIY6DZbJc86R4hrTWHOM9M0M6cZi2OeZ1yZwVdKXuhMZR0HrIHBneOc11GaARlWCvzSzDtvvYFxHeEDX4Sxjn5Y461gagUPS84MMZBTpgoMZ5e89ku/nE9iePzDP8z9l+7x8hd/mM1LL3E4TpT9geV4IOUZ6yNjAecGzi89dT5wnPaMy0yZM65WyBZZLHmGR8cZ053zxb/4VYZhw2q9pogh5YIt0mTo0EVDrZaUa+PFNgtjeXqOPw0AFGqz7Zd2/GtT5ZRablOmpVZNJi6FkvOtG3GIERu85vOESPSR4EOTvevJdxqZmmdOybv6zMtut8wPCsG82B4Vd/Vi1spGVkT2H96w/le3d+6fl/VCA5T31q2upelg1P+hiVWeft88zdzhVrvyLG/FNACg8tNSc7ugn3gbp98zt+m90QheoLfqmppOXiNWya2mKVyOeSFahzTwYozFV4MzQucdc9Z8IJUr6+P3wSOpMJf8tG3fuj3O6igkl3yrvLDGUEW7KwVBmky1CXOAliHUjkCtQi3KcLVWdETDU7KkbSMdGr/EysmfwzTvDTgulZuxEJzDOssQlcxqvce03BnxgeojLnbYoMF3YgDnEBtJGKo4VYQvmSCWOs8cdteUAqVUlpTIOdP3A+u+o+sDffRQB6gwHiZynrDeYuaM5ESa9pScCdHTd5GLsy226+mGnm51RrfeKu/FGo7HHTOGw02TYlfleJRaWN27R7zcsHn4ELfZMqZEHY+3M7PgtOs1zZnOQU0TZZrJxdD1F6RSoVuR/JbHs+WweOwQGWLFeMf2bMvFxSXnZ1tiFzHW3EqIjRhqMVAr0VmM9/q6VUOWqlJ3Y5tNfTMorE/Peo16aiZr7TFLLuScmwmgthid97gQlAxsLTFEutip++yz77KTR8/n9P37C6Pc2Rkf+8++nB/7HS8YW/GuvuDq//Odf4VfF/8gZ3/781d+/EIDFDkBkdtuiWnSWWgkjcYvOXVPWrZO+3kDyj0Rbomhp++XcvLHeK9SQR9KN+7gLNFWAlWluA38OCPNR4VmzyJ4sSQHS1EDM2dpXI6qcfdOLeLFgMWSixprgZqcJZwSORvoqlJx4poax1CNbkC1KWKMMcT2nApCqdohqW38Y4zckmBLhdrkTI5TVsszpFkRUlOVOKOhec5qV8ZZhwBTMUzFsLIBG3psF/F91PBA01RPGo9MSolS9S4/xAAmK+BZ4JCUWNoNK7xXea4LHev1lo1xTc0Dq2GgixFDweSMkUroFyRPpMOeMk8YL/j1QHD+Vn01DBu6zRnWd1QcSxHq/ohBmI5HaIosvEeMp2Qhl8w0joiLZGexIeCipg1LrWAr0zwjYjjbbHEOSJ4DDlty84MBnEcKHA4zN2nChY6u67g4O+fe5T3OtluGoVNQJ+bkQdhOPDUN1BO0kbC9xeMVTDVb+lupceummOZ0XKS+xzsln7gmJ/DpLL7Jop11dF1H7KL6x9w+HqeWJTyjdLurz6xs3/PR//yX8fHfdQdO7urzo/7Rt30nv/lvf/XzXsZ/sF5ogPJevkiTtZyunm2kI6ewvdtuuJxaJqeHaHSTkwk9IDrKEerthVk3fZU6mDYiCs7SmUJHAx20rJq2q5T6NBe5tta4M5wgBQZV2ihRsSmGRG5t3kuRW6uW3lnmWp9xvVVuStGb/BYgqM9b2ujrZMefs4I4y0mTpM/ItPAcZ05P89lxgaYiS3uu/a2HiaFrbq8iuplbo8nNu7FizIIUWK8Kvcz6wM5hYoc06/UYepwLOmoTo+6uVjtC0Xt81xNiIHQrun5LHNYMmw2xX+N81N+lkpcRmQ+U5ZqaJ0qaSOOeMo0gEPqBoe9I80QtiVoNxVisCy2E0GBi1FOlVKzR7pYNARMiFc9xPrK7OTAdRozxTHNlP1UGPL42Ca7JSBiIEQU+y5GchdpfYFxgf9zx7m5ESuLqODNWh4kRdwIIDWa6BuKcsyCunTfK9XBWOzm3pmxyGm06lYVrVkIDok9VYzqirCxV3WgppxGPjnuK1CZNdtim6okuEF0Ao2owZ5oarp15tHGSsac+3F19JvXDf+nL+cRvvHOKvau7+kzrBQcoSqTUOt3OnWik5haDaOnV2jxj1ianzaF1H+T2TjFxyqe5leYaC1jEgpGCM4Kn4tq4RzN0NETNWtvGJPq9iiGVinnGb0Rat0VQ9UXJgrOab5MbR0XQjoeI4I0lWE+qamsuaLfjlDRsGhAT+/RIqJ9X1VGN6HqUv3tiDTcasNXAQWOUCOubd4tvslUdJyjpthQ4loxzVYm9trbgvMJchbQYas6YGulCj48BFzw+hmfAXiNlSsGGgBiLRd1NV+st/fqcbhjUun7Y4GOP9QGMZUmZ+fqG8XCD5Jlt7/AyUZYD037HdNwjGC7vPWS1uWCZDyAjfb/GhogLEawlDL0qbkwAPOLARafcE+fJxbDUypQqeSms+hXdA5WbH29u2G+3HMfcuDWeoYv4Pqi3iLEUF6kmsIhlZ1c88Vs4PuamZIILHA5HrEvc7zqGfkVsnjBSpZGU0eiCRhQ+gVclZ9en57bY206LOtuomVqtCpDnUknNKVdKRUppHbWqXThrCC608ZxrnJPmWaPtNuRkVNOAiQJhBWd39ZnVm9/1ZXzi1/zV572Mu7qrF6pecIACJ9/Vk3oHGlA4uce2bz6NkJd2GefWSr5KQchAy7QxJ+Cij6nX4VPvoakjjOCs/o1ShSQF52/NJKgGHGoJXqtgvadWzdmphhb6B0mtYvFWw/xyA0m2jTLAUHJhprTNSmdYJy8T05ZrzS2bhlqfIrNSa0uxPXWZ9A78RCK+fYxnuDmnxOdUKwFLLprZE52Or5RzXDA2IEWoNWOtBgDmCvu50nfCMFcGUwhRuyRSi3qeBK9rsQ4bOlwIrDYXrNdbhvU51kUM4F3EGMs8HVnmhVIyplSVyYbA5v5LHHfXXO9GVh7iasPly68RYs8yz+xvrjBSCMM53XpLyRljLKVYNRzzHdU4UipUDEEC8yLIvFCWpM+pFC5WK9x2pSOqOmFDIKcjwgQ4DsmBcVjnmZaZmjPzkpnnAzeHhcezYfHnPDi7h18OPD4m4uqMVQishhXDaqDr+9aRUMBRUO8R61x77WhdC68S8MaZqiIKJNr5WmpVZVTreqRSWphghloQo8ClNp+g2AzgnHGEPtLFoHlPthm+tb9124aUpwGRd/WZ1eG7P8z3/Yq/AdxFA9zVXX029UIDFM2ROfm0PnM3Z57ZiOUpWNGfMGpOdVI8SKbWp5b0uvsC1nFra//M6MiIwVth8NDbovkzxpCplFwJVuW8JzfyUpVgm2oB7+gcresCxlmis9SkG0pu5lju9k5Vya7VGqRUqhXEGUxp7fUT58ToKECJkG3g5TSl9nTnnQGpyqexrkG1W6LjiSSrkC7XSjQQjUeqbnTe6ihIZcZqZX8CgJ239L4ph8RgpHI4jMRwcpO9wUW1lnc+YrD4vif0a2K/IsQBFyKFytWjd3EucPngIRi4fvw2aZ4QIMTI5uIeZ2cPEIE3fvLTPHr3HR5cnnPx4BIjhevrK8Z338I4w8VmwzQd6ddnzQDNELsBbzw2dBTryAWmcWYaR4L3LPsbggirlQb5qTmZmq9ZB5YeEzxzypRaMGFAhjNm21NDzzRlxmlGUuHJo0csyXLYVyYO1PWWi4szttuePC2cbVY8ePCAs7MzYoycAiKVQK1goKRMtU/bYtba2/Gk0OTmVSXGt6nHpZJSIRXIObUO26mb15KyW2Ck906dZptqxzqvxn/WNBVRG+ec3gdGidUnYHtXP0MZwze879/QmTtwcld39dnWCw1QAOVcnLodzTlT7/jU8aO5fmiXgNPs/EQELXq3iWbJ6M8pwDAtqdja2jYL7XAoH8Dirao3ci7UdvG2piIVJXd6qEVb6T44THbkIhyLMES90s+zSlmVmyLNrV7JnNqsMa07Ap13pJwxzjULc5RD0Z6Xsl2etuJr68YYearKEWuecm3aXbdtgMMY2za7pyZetR2f0x28Zgep2kfE0ZmCs5YlCZ23RCt4DP2gvI6b3UieJs4vB7ZDT+g3dNtzTOiJw4Y+BqiFfLxmygvr7QUPXnqIcY7d1bvcPHoLYyr9+T0uXnqN1WqDMYbd1bssy8Jq6Hnwy345GHjjjZ9k/+QxxlQu7j1gc3GBl8KDB5GUM1I0FG8RqNYiuTLPE9M4k6cbfJqoUuktrDcbNpuOmhOWTAwDzoOzhdqMzigVbx3dasAOA8ENpGoZMxQClcpUPU/2B6rbUKvl6jgypcS9szUXlxdszs9Zbzf0fa9qqVKVT1RKc/JVSK3KdrkFCiJP+UMnzmpJmVIqKVXmVJlLgabWMgaMM0gRpFRcG4FqQKW6EDurnRqpFWc99hTBeXt+3BKVbjuK7g6g/Iy1/3sf4n97/7973su4q7v699a/Xp73Cn76euEByu2F3ChX4kSElVqeCg5uEYqBxrUQKbeqHvRXbjcA1zw6ThdmaZ0KWv5NsIJDHVaxzb0VIXqvjqxFpaPRO0ouGAHvlLwanUVqVfBgLN4YdaU1mnCcauvK0HJV0MTkIijZVDSt2ADFWpbWFTltWt5aaEKO08RJOaDy3udqFdg4eyLvGkoDNqdMos5ZYtC/WaqQqiBFTfFqqVRrMVUI1ipYco7zwWEDpGop1kC3grglm0iWiDUBbwwy3nDYL3hniMOa84tLBMMbn/oYUmactZoQfO8lujiQ5gOPH79LHFaszi8ZLu9hvZJd333rbabjSL+9YHV+j+3mgidPHvHS/XP2y0zOSgCVmrHJYDLEqN4xq05HPaEaWBZc0IwgHwPFgHUBF9Wuf54zse8p1hGiI4QOiR3SHFx3xxGRyng8sEwTxfQkK8xLIfaBlDMJYRHwXc/5+X0263Mwmo8j/3/2/j3Ytj2768M+Y/xec6619uM87+3bEkqDMKU/ABODMUmZggijFipSlBS7VMEPBEiOQK4K2IJYqYpDucoygdgpqAIqTkw5Lkj5kQouFzGY2Eg4UlvogXgIqaXWo9/3cR777Mdaa875e+SP8VtrnxYtqVvq27ePtMetU+fuvddee56111pzzDG+388Xm5CIgDbtazc1Muwxb+pWK3UUbQMlW0bSvFTmxVRKrufmcBBX9+f4QYPU5JBw7NA+7fPevfRS6blTP0sMe1gF6t2e5+ct/4Gv4MtPLt7rw7iru/o56//4m78GePZeH8bPWa94g3IgZ3ZWR5+YtHZrDT6MpuUQXmOTc1rNtB4pbxMYRcR1vYa7vXptBjWrh6ZBzX1TSmauBd8XTGAJxbXvdvJkaPqDPuS4TFGOWpPDdKT2Bko6MbaCYep7UxEObBaxnsoC/w4OEDXRr+1saGrzFNenI6VfcdtmwI7V+rnDOgHCUdQrlE6VVRXECc6Br4r6/uiWg+vUfr4HVh5Cko6qD4QU8Kqklac0x7I04lzY5Rvmq0vSoJw+eMi43jAMK0qZuXjnU+Rl24FlZ6RhTUoD8/aa3fMnhJhYrc4I6xOccyz7HfvpGbuba/JcGFdrxpN7DOOGhvDw9TfYXV9Tq5KGFdM0E5KSxkgKHucEbYVEhbKjTNe4YmwQRFEnSHcMSRAyDR0GXBppIuRcKWGkaGSeK/vpkmVaqPNEq5Wb3cxNFjSMSNkz55mYBtIw8uC193HvwSM2J6eE6Dtrxh5/p+6lSQnHSZ4R5xpGT+5C1VqZl9nAbOL666GvbsQai9I5LVIsdbp2l5g9N02HYplRDt8ze7yaM8j9Ai6du/bk569//O2v8dMf+K/e68O4q7v6rPUv/dRX0+Yv7RHKK92giGFX7U37MOKgdXvtQTtyu0OnX0W3lu1ML32njzdb7fF27uiOsemJNR2qgpKpJdtPqiDulmCb+57faUfKH+BvL72V7+cuxqUdhYy1Wu7JOjq0Ktsls7RqdFtgX4rpBJzSpJH78RyspqYfsSajdh7L0moHd9HXT4crco76Bo5rrQPcTm4FkAKlwlL6mL/ZGurwPcE5UHMgpeQJsZ/ovDfwG5CiszDEsuPq6Y7WHKcPzhhX91lKoFw859n8SULwbDYnbM4eGw5eHdPNC3aXTwnDSBzWqDfU+rS7Yrp6yrTbmcBYlBASwxBpdWba37A5u0fNM2kIpPGceV4YfGJMEXGwGgeiV0qZSQJtSZSYkDLDPOE04IZkqHzvEW/OnwpUl4ghQc4UCdzMle1uou53zNOWmgtLaeyrMM+FjE0qmsB6vea1117n8Wuvce/8Hiklw8YDzlmGzkGgfIgDqLUhFGq25/eheVSEnDPL9po87UmrDRJXJqq1p71pVHKl5GzalA7tk07j8zEQYmSIicFHC5b0tkL0vgcO3tUvqtr//J/mn/9NP/ZeH8Zd3dVnrX/uh/9XPPiWHfXq6Xt9KD9vvdoNCib8bMZM5faaTl/SnBw+3bqotCAtI3hU+t79cCOhg856cwLQDDNuZFVzsoTSJS4Cua+VajO7ruEo2vF0f3iLf1kAGfoY336G6UJqaUxUC9gTYelTEi9iGhegltIR9wdNiN2fOwp5u2iy3YYL3mpz7KTnRI4rHOdcd33cUkGDas/nsX+7QUrtH1tKB8Q5hwaHC2o8jVxwNKoHTR4XlFwKu6trap7ZbCKnZ2fo6ow0JC6eXbJcPSF5OH10zub0PuoG8rSnLT3TJkZOzh/i48rcO1KZdpcs80TebY3im0YkjKTVSP+toU64vnxGUGVYn7Db7ii5kMaRpTTD5FvsDN5FmhaEgRAiLc8QM94HNAS8sxRhxBsbhUYujSoeSYnd9Z6b6x1XVzdonShl4nJbeHGTudouPVpAQJUUEycbCwJcr9bHPJtlyabx0cNkS4/P1cPI7ECINbKvg9bJruoIaYVzHucTC86aNux+Wi22TsyZ3IGDB+ZJiEaJTTEQQ+whg6Y98p15c1ghHepAW759Lt9l8fxc9dY/u+K//Yq/814fxl3d1T9Rv+n7v5H3/Vsz+ROffK8P5ResV7xByfbm3YFqh1PvgT+i/Yq/X4tCy0i3YKr6o3bFJhG1NxrdKXx07dh9qirOF3OyYIObUoXST+61WkNwEMfa97SjKPcAYBO11YuBW6U7cEyIW1pDG3h15JbtSrgBKrRq2hDXBFWb8JgVFYLz1hTVSun/WndozOptA9PQo+7GXEDWkEDXyDSOayURCA6iQvRKKw3nHSkaZr3Uyn5nfI3qhBAScVxTyoJnQbOtOs4f3CcMI1UdkczNW0/IecvJvVPO778ONXP94hmzV1QKPkQ2997H2aP3sdtu2e+vWK9W5GnHsuyITpAxMY4bmgg+DtRW8M7cTvP2gpwrklbMKBcXLxAVtjGi4lEfuImRzWbD+fkpqh7nDEbnV4LMC+oUnNKcp2FrK1ywc3Wo7KY926uJq8sr9lfPLWU5T2yXwovrwn5xzHNh6ZOvECLO2URimWe2Nztybqh3BwUryEHv4Qjas5UOTQrGQ/E4SlUqpnuqRalupGpkKY15yYAQna16lsbR2dNqJYRACIEUEyEapdf3eAK4/f3bgK5RKX09eHC9WR2mO/rS5+7qru7qS7u+463fwPf8H/453vej71A+8tPv9eF8TvVKNyilTn333g3Ecrjgkz7iluOb6QHK5iT0vf7tiuRwHXjU2NK9ux3jbs1EhZpR7VkmrR5pnflwUq9QsiUCH7qd4JTgLP9mtxw0AAfGSvdQeO33p9S5IipEdbhGn+7Yzzosh6QZ4fNAy80HXYKYDsQgXHK8EC/N7hOxJqdhzRA0tCnBG720Vqi1ADbR8dGzGgMK+CRoNTeMVCE4wYdG04COK5YMbz+9YO0brBz3Hp7yeDMybXd4n2ksbC9eID7xvje+EvXK0099miAzce3IOIZh5NEbX0YYVjz55M+QhhWbzSnb62fQZpJP5jiJAZ9McFtKwXtrTZftFW2ZyE0ZhoEXz99m3u3ssd4qS28aRB33Hr2Gc19BTAMqynqVaM7BuKbR8MHRmpArJgqeG00by3Zie33J03fexLWCtJkgjdqEm13hxfWe3BxzydBuJ2g5F15cXpObMmU4PRVCSj3Smf6caHjXmClHzYlZuj04A/5RmpF3G0g1BsrSStcjNaLzpj0phTnP7JeZhUZwnugj4zgSU2+YnDs2Ka1W8lK6nV2sKe7Hfpic/Oy6feXc1V3d1ZdqfTpf84e+5puQ7Z7ho3+X8gt/y5dMvdINSmt6vMI8NBwvX+l95gjaNChV1AisB7dPT/C9ZYIotSmCM/JrA5GK14LLO5zrWSalTyLENCelVUortg7C8mcQWCq8mBaiF4LzuFYNdH8EydnHokpeTF/iKgzBGBVLNTrtYZ1kaxqOolkbktjXa/+5qooXc3bghCL077P1kTRzeHgg9AlPzZZefJqU5D1zz2q52mU8MHgYvDV23hsJ9+T8lBQ8L65vuNnObHeF1YNT1vcfcL29Yrd9xr1H57Y6KYWHr38ZTR0vnn2KTWisdLIgwewYz+/x8NGX8eydF9T6Kc4fPMZ7x83Fm6b5qYU6Njan91hyY6PB9DjzzGpMwEItNzh1nKQRlUqZrknSqCLMyw5ZGm3eUUrh2ivXp+fM+7eRBsNmQxwHhnFF8J5p2tvqJEQqyrTbsb26QBG218/ZvniH4IXVZkMRT3YJ9cLmxLPkhk7LcbpmYzcTDM9ZWKqQ+1QETIxsGihb31V6yrTvoX09S6i0Zlk6pRzdWZVGrmZ9D+qOzcmSM8u8kJcFdcI4RNbjirQa8b05sds7tBm9WGvGOcXQKLcC2c/WoLTenN/VXd3Vl2a9qDuWVvlDv/H3Up7/xHt9OL+oeqUbFOSgpuC4rjlaKY9OnoMYFQ7gNVNU9AkDB9slR6ZKO9xPtxob9XUhOmFZyrGZEW7TfhVzTyiN4DtErXNJcjX9RqsZ362jtVs9wVxCXoXB93A+NZVJLnYfNkQxV0WtplOx29lVdO0OHtOJWLaKd+ZEaZhOR/VAJG0E9T3R2BxPrdqJKnhFBaY+SlKxxqWoNT5Sq2lgVFmfnjGXievnT1mPifMx8Oj+GatN4ObqHXJuPHj0gO31niE6NvcecHPzgvnmmig93FBBXeL00euMQ+LNT/w4zilnj15jf3XFdnmHOAYExYdAy5Xt1RWrk3vsb/bspxvCMLC7uqa1TJ72iB9ICXZXFyTf8N7TckFyhVEZ0shuvyVp4fmnf4rL509APOeP3iCsNozjKfv9jmm7NYFvzazXJ6gqz9/5FMNgOUBBM2NISKssJfNit3Czz8y5r2SCmk5JlbTasDm7z8nJOavVmjQMxJR62rM9v7SzZ46sERHU28uzYi4ce7bacy53Zs1SMk2F4ByujxCXnFmWBZpNTsZh4OzklGEYcN7354DDiVnea5upvTkxMF38rA3Ky02KaVG+4K/ou7qru/ol1o8vN/zY/Ig//we/Cf0f/h7w/L0+pF90vdoNSp+KHEBjh+2OTUYO7/UHsJX2z3XnTDt8jdsGRtROhl0bAvQr24zWhVIWuhOYg12X1nC9UVC1ZGLp1uXD7YKzw/LikI56lSZd59KM+KmGzvfYhOewirHmo18tl2qalWorIydi262eveLECLKlVnZTNt2MimkaOi/Dq+tZKs2cHD4cH6PWKnPtTiRp5ipRITgYoiOqEIaIeEdZrolUXHQsrZJWG2pZ2D3fMgwjp/fW7HY77p+dU/Oetz72caK3xywDuyWwOX/I6cNzXrx4yvO3L1mvNoyr+2wvXlDLns1moGbBh2hi3GWGCovecJP3rMY1bZ7ZTvueEC3M05Y2DJT9JWnwUBsaPIIxasQ5ViePyEtld/WEULZU9Wwv3qRc2Bpke30J0gg+UvJMHleM40C+forIiU1ZxhUxrlhwzDeZpUBzQlkWA8MB4v1Rm7Nan3B275zNZmMiXPcyX+SQqWS/TqdybCgtbbqvFctBYdQnMypGxe2/05wzuZkotpSCU2fNyeaE9XqNqoluBdBWaC3b+g9r5JzzqHPHxuNlJ9Fx+dkblVorJb9Kw+K7uqtfnlVa5Vs+/tuPH//Af/YbeP0//F6Uv/ceHtUXpl7pBuXWPtz5Hn1C0Grp7JHb2x1YJbWaduM2d4Y+OTnYbSNge//Wake7gx4AZnrAx9uJxDtrJkqfdDinPTVYjoFs0GysLmbvPPBXDk4j1VsXjvar4Eq/SsasvAeWyeFkZZHHhzwWQAQvNt2o1US3etDi1EZUm440jLtSWyM0iM5BK8y5UmtfAb1kJ3bOhL/NOdwQWEpl/2KLQ/Ary9JBheura6iVk/MT0ukZZZk5Ww9MV0/INzfEqGgTYgysz85ocUNwiZtnbyLLjiAOFwI5X9PynnFIBOeYpqlPB1o/eVauXzwljpGSF/bbK7xTltyYasEPa8q8Q5aJSmFYBUotxBBopVpqcgzs8g2rMTCO95mmhbzMeC3sLp4heaJII2tAaiUzM8vIyTqSgtmnCYHLqXC5z9zMjf0iVCwpWRCGYWBzcs6wPmUYN6w3G1brNT5FnPP4LmSlNnK1lQ3aIwzkJQ3IQTRdcndtVdNEiYC3tY40KMvCvCwsJVNrJXjPOETONieshrFnKBUOmVS51U4T1uNzs9XKUmaaDzjnzJbcbpv9g3vHXlOfuU69q7u6q3evvup7/hVq/eyvt1qUX/2//uHjx6/zvV+ko3r365VuUG6bkuMlX//8S+JYXvr6oUR65nG/gj2i7R0iAVFvq4xW8c4mKFIrXo9yXGsYRHAIwSnizIGj3lGK3fsiUKUn1FY7KfhuVUasgSldxGoJtn0KRIfLqaHJa+2aFbHE40Yl98A3oU9I+gntQBl12JoHaRRpt8KogwODRnCWh+xUwfehigq1WVKxdvEnLlBQbrYZT2YcFO88zhuwjFxYR2F1dk46PbWhzjJz9WRL1EZMSkyeJsrq5Jw4rln2O5b9Beuk1DgShhMMsrfggiPFRFkyKThW0ZuI1Eem3RaplejWbC+f0eqCpIiqEVOdDCz7G5w2Sp6ZdzfWvPn+exVnAYJOcGlDI6Buy7y9QaWhg8O5NaVVvHNHKvAweMb1gO+JyJf7ytuXE5eTkJs7ilxjipysV5yenXH/wWusNveIacAHjw+HyYnh5Vszgzwi5qbpcLRjdEEz0XJzrouo63GaZs9e060c7Ou1T8mic5yMAyfrFUN0OEz8egjRrO0Q/9BXniWzZNNVtVpJccCHYAyWl6BxcHChGVNH71j3d3VX73r9mv/8f8NX/rHv+wzL/6+UesUbFDg0KXa12V5yx5j7whJib5uU24ZFaeKRPk1R8dCbE+88nQVvJ5a2w2UM0d51HsHZ+kSb4JrgFTImYmwVcnc49LahZ9jIMXW4tYZ3HpVKULP9LrWa5fi2der01trXQuBdx771VU8uhdoqWm0t1ei49NaoVDy2/srNPBcO+6XbybCDwFRI3h9H9yl4Uj8pavAEEebdnqiKX3nGdSI4c5wsu0r1sLl3j/HkhHl3Q533uDLhEyyTRQC4YUUaR2iVcvMC1QZaUecZ06qD7zJ5mdicn6Eq7JeFNIw2EUsDtSx4KuPJCU5hiEopDpWKU8cwrHDOsb25JgWHDx5t+WjvcmJNQC3FTrKq5oipCykp3nvGVUQ6WfVw/i01mzYjDmiI7Ktytc9cbjP7EmgCPpgrZ316wr3ze5ycnrLenOPjCgneGunDL46udcK0PV4FddrZIyZirq1RmkUc5FLAieHv+xpIpU/qSiWXTC4ZJ40helbDwGY1EIJH6KsY60j6+s660VIKpSxMi4FhnCoxJpw35o9ztj6yl1YDMbeYTf0OQMS7uqu7erfq1/3fv5V/6jv/fnfp/cqrXxYNygFDL92t0g424ZffQA+hgmqALMEjWJKriKLiESIiDnUJxOF8z1xZnuP6bGOut6LbeggONOEJbbltIpxy3NGrdzaeh9sQPxV8t5Eq2k+gtp4pNOOviIlnD+GGUjurpVuNo3MmsFT7eCmNTD3yX1QsxG9ZMkszsNuBRDoGT/KevCzmDpLW9TPgUdLgEOeRWmlLoalQEDRGoCHFRJWLNsbNGRJHrp4+R/KW2ip1qaSkhEFJJ2tCTORpi+SZUhuaHFVgtTpFvSfvrhBtBO9ptYJUxCmi3hrN1mhlxqdIGgdanmnaGNJAU6AZadd7R0qR1jIqjegd6oNNmKTiTbmKrEbmUnCtUl3FuUTOlTQkw9wjtFIIySNuQFzAi6eoZzc3buZKlWA5Nt6R1mvu37vH48ePOD05I6WEuECVblWXwyISW69QcGJOGu/cMTW4Srcct4b2yVvtzbV3pqlpPaH78Nyfpz01LwzBc5oSm9UKF+yl3VqlIfiuJ2q1kZfMbp6Y5sUaZa+MMVrSc4xYFJVFPnzm9NH+X/WgSbmboNzVXf1S6tf/h3+E933PDTU6/r9/9T/mTz/9tfx3//r/7Pj1X/0P/xF1u30Pj/C9rV8GDYqNzNtB1YpxPA5OnNYOkKn+pxkhUznwU0wYK0RUIiIe0RGkiwXbBG0PYqnHoWeXeLE0V6emFWnYFWipzUioovhgjgn6yQaEbAaZjtDvLiA1auxUi2lMEHLtbBMPrtlKxosawv6gp1ks9XYuhSEEgkpHo9sv1qvgaUhw5LkizdoyL7ZEqD1pOUmDYtMl72FcJXb7TM4zZ6vAEME3hwsJWuH6+cToFT2LnD58COK5uXpCbJVlqiYwXXmaE9arM3OW7F6gtZAX04M4KqinVeH64gIR0+ps1hum3cRqUFouTNOeYTyh5kxryrg65eb6ksErMUR8iNYohmhcm1pYr1cs8960Q8ER48A0zzQa07wn+UhQCHHsa6FGzYV5Wpj2O9ana5tkqf2evAuIN2jb9b7y7Kawy9DEpi5xHLn/4AGvvfaYhw8eMgwjzjlqt6nXPsVaqkUQHOIPblOC6foTwTWbmNXj7ez3f2D2lFpotUADJx5pBdqCk8IYEptxIIVA7W41uM2CqqUwLwv7aW8EW3WkNJBSInpFNXSxeUOarSFbs8cAjKVjSdqt023vGpS7uqtfTH3l3/4mft2/+Sne//QHaMuMA77uf/o1tGVBnv794+1+pZOGXvEG5bAuOTh2Woek9eZDDrD5nseDIuIBs9Xax5bF4zSCRNQFVKJNYkolt4k2T4RSSaKd7mpXtQdHw1wqC1C70iOpoK0hpRo1VkyvUjlMAixttiJkkW75FAanFKl2QhA5MlCK9hBAU+MaVVYheE+pdv9zyUR1JKcd8IVNjVRppZDUHisVjo4XFZvaJBXS0AMTnSPnQivZqLit4aNjMyR2u5k8LbYCGUZWpyfUPLPM17hqyLuUxNwr60BardhdbWGZWY+KBsUHxTXHbi6cPzyn1MIwRlq1OUHNmVYXnIxEH9BkItw87VmtT2lNaDlTRUnjQKkQw2BW2xAppeF8oHU7du123FqrOVWCEFJkmXaMPkBIeCcs+x25zMzTQt7tCYMnxEDyCecDhMhugYtd5tlV5WYuuJBI0TD+9+894Oz0nHFcEUI88nEaUEq1xlWsYVYMN+/UHdc+FVvpSFfGltaFrDR6QuRRIO0RYlC8U3LJRC9EN7BaDTSnzO0QcyDkZlk8tTWohdLTr9dpJMSEOHere2n23LIoq0Ypy1EMaysoW5faxNI4LXd1V3f1+dV13VOfR/Kbb33G53/2x3cFn/c7zN/5O3+H3/t7fy9vvPEGIsJf+2t/7TO+/gf+wB84CusOfz74wQ9+xm2ePXvG7//9v5/T01POz8/5Q3/oD3F9ff15H7w1G4fU4YPbwKYi5hN2NBRDiXtEIqo2KTGibAAiqgNIQjSARJqoaVAwwqbrgthMJbcDB6UTYVUJ3mixB2GuV0epMBWz7TaxRmjJNt1J3jP40PkXQqmFXV7Yl4XSKsE5ghdSVGJwhL5SKtUYJ4MPR5fQAcrf+slI4Aj4EhFKaUcxpOkK5GDBQFCCKmMKRoZ1jpYXolY2gxLFmiAfBpZlNnFpVO49XDGeRrY318z7LXR4WBwcOjimKiiR7cU1nooqbPeZ0q3d85K59+A+82LZO8t+R8sLQ/SEFEhpsCTlEBEJ1GWPF8PZU2fjtfT1FMV4H7UW5mlPXiZaqV07oQQf+26l0kqh1WyZM+rI855WZuZ5QWisx4HNJrFeJcYYCaqE4Agpkavjxd7xfN/YV8BH8MEYJ6f3ODk5tePuNnbtDnDp0weoeIHRK2PwhC6KtSgEbNBWqlnJW0MOf6odNzXjpJIcrJJjCB5VE9HGEFmt1ngfOYiwasvkMlHKwpJn5tlWa049QxyNw6KK8tK65iU9eZes4Jw5r4L3poxqgtNA8ANew+f8Wv1Set+4q7t6r+p52fIb//a38mu/7fve60N5JerznqDc3NzwG3/jb+QP/sE/yNd//dd/1tt88IMf5C//5b98/Dil9Blf//2///fz6U9/mr/1t/4Wy7LwTd/0TXzLt3wLf/Wv/tXP61jsTbSPomt76bOBQwbOYZqi4o8rHOQl144GRCNCsAbFeUt77Smy0pz9nGoC3Og9gpCL0TcL1stUwbgkwNLqrXAXm7CYdkRtHdGbm66GMDVMn7CUVplqRruQEjGXT8FQ933uA/SfJ5Y0LA2zGYvlrwhC9MGmMa0aUV1tfN8wPUqTRlkW0tiPe5qPwlnnHeMqkOfG7npLjGqQMhET7ZYdtIx6I94KDcQRhkQYhGW/pcwLLgXiMDJNOwRlmjPB2YRj2d3gUsCp4lozaFx/1HJdoCmihTxv8a4x7a6OuUQppd53VJZpR24NdTYha6mRS6HMmRgiIUKMEXGOZZm4ev6MYRxtrVcz3tlqzntlSCujsdIJu/2xutxXPvHkhrcuZ+bqGMaBzek97j94zPm9B6xWlrh8EKIKtm6rvZl1TvAo6nrT3EWypVqGUqscP9tqhdrw9CDHfhlxmH55p5RSmZeMU896PZCivcZqa9TaQxH6iig4R/TWJNfaXrK1F0ScNW/9uWNaGMWpHavrvBZz9DRjrvQsKOc/97TjL6X3jbu6q/eq/rOrX8tX/iuvPp/ki1Wfd4PytV/7tXzt137tz3ublBKvv/76Z/3aj/7oj/I3/sbf4Pu///v5zb/5NwPw5//8n+f3/J7fw5/9s3+WN95443M+FgPJHiyQx4xewNkbLt2dg0MloGriV2nm4lGNiAbUJVvriEdTQIKnLhmVjLQBFnekwk7FVhmdt2b2YATpuSumL7FDUTG9B0ButoYRZzySAzBL6GAuhKWYO6N01i0c3BN0IJytggQL+Qt6a1c227NFu7RmJ5RaCurkOO53TindYqsq3QEklKXYtKUHxaWgxvpoFZVute6hci1XyjzjowXcSYOSM84rISZUhbLMZtmNns3JGlSo1TQgqsowrpj3e5JXUgxGe20HZY3dJu8n/BCQOuOkGZemZMiZEEZqyfiY8F5Z5tlWOC4Se+pwjIF5qpSy4KoyjBs0BBuulRmVSquZZbohpTVxXPWfbU2v7+LWqsq8wNW+sl0apSkhjZydP+Dx62/w6NEjTk5OGFKyk3efUJlFONvzQJ1NtTBXjGUeVWrLaLttSA7gEzk+FlgIpJgzyzuPE7GcnWXqmpw1MSVrPnqTV2pFjr5g6U1Id5gB4vxRsWvTQOmcGew55joC/6CRQXpzop1Fo4iC95/728eX0vvGXd3VXb0a9a4skb/ru76Lx48f8+t+3a/jW7/1W3n69Onxax/60Ic4Pz8/vskA/K7f9btQVb7v+z772GuaJi4vLz/jj5XrHYHSUFoL2PTE9z+2xjk0J0JCJNnERBPiRtSvEbdG/QrnRtStcGEw4FaIuJBo0gWPmKhVMVtx7Dv43A7k2NtMFYd0u7M1UKUWvIpZdUWJqsR+Aig992appk2RrhXRA94FCOpJIgTVnrfTU5s7GyU6IXbrc/AO3wMID81Sk87IUEdUJQBBGqfJEQWk2hW9D6Y1qLnQamMYnH3OS9dCFOPBuIaIY+lOlxADZZnI+z3Ldub6cmaaMvmwGgpqgtPgWPJCzQvJO2rJqIL3aiGJIRGdM5hZUPK8x3uPNKXkgsPh1THPOyOnloqqshpHUhrw0eOcwdRWY+raIyh56ToXAVV8iKQ0EJxS855WipFdRXrqtEPF0Zrjald568WOq6mQ1hsev/Y+3nj/l/H4tdc4OztjtV6TxpEYR5yPVFx3TXVbu/TJjkifqJhLyX65Jg4Wqf2PNUnG3KlIq/13amuhUhq7eQZgNSaGFKE3pDY1Mc3LtCzM80yeF5Z5Zppm5pzNFVQqORfmUmwqFwJpTKSUSMkSj713R9KtiOC87ywXhw+9iXGf+wTlc6kv9PsG/HzvHXd1V1/c+vX/lz/C/+0/+F++14fxStUXXCT7wQ9+kK//+q/nAx/4AD/5kz/Jd3zHd/C1X/u1fOhDH8I5x5tvvsnjx48/8yC85/79+7z55puf9T6/8zu/kz/1p/7UP/H5w7Si9caAo124C2TF28fH9U6kSV+SqEdcBB1QTagGux+cCQX7ON7JiIZAmxQn1SBknbfixdQFpTaKluMJZMHsoa1VyrGZwMLZnFJLe2nVUqkCyTnWXRFQW7OVj9jJxhoUcw4t3TFUWl8kHCUExqZQd+vkWSfHEJxZl5eKc7cUjuCVSCOp0mrB+8Z6iDivzPtMLbVTZB3TlGk1g1ecEzYnAyn5Tru1xouaqXM+ZrTEIAzJ4aTQsj1u4jytCVfX16yjpyZbK0gruBBRn3DqCWrrmjrNhvyvfdqTK+v7J9Ra++Qh07qOx3tPHBKIMOc+qVJlSENfiWQoSwfrBfJiriynBxFzxjtPa5grSyrORWoTrueFy32l+YGHD17j9fd/GY8ePmZcbYgh4ZxH5NAQmiPL5DbGydFiDbQ447GoCCp9NdaFvKXU22d1A6rB+1qHpdUG+1yYpxlaY1iNpJT6WlH6lCpTSyHnhZxtzaOqx0mJoDRnYt2UIkM0vU+Mfc2GMzZMBwYe9SAHOJvCy9biz5Zw/Iutd+N9A37u9467uqsvZpVWef9/8HdpOb/Xh/JK1Re8QfnGb/zG4///+l//6/kNv+E38Gt+za/hu77ru/jqr/7qX9R9/tv/9r/NH//jf/z48eXlJV/+5V9+/LhzU1FxpjVR3y2QhiUzOmxf5xzEsaIgHtWAughqD4XJOhxNhTgEvO5pN4HqBSndrgnGo+hIea8Hvkmx8X6tBOdtXdO5Jscdfi5k5OhaaQKllJ6r4gBz8JR2O0npOyFytWlBq80Q6TScc32nVHE4knMsWEPgRVEqQwxMNXMYmCm2xvEIremRfCul22q14ZPDBZiXhRC6e6PZz4BugwVb5UjDBQH1duUtsN9NZgNWWOYFFyMhReZlYbUOLFNmWhxjsLVIKQUfbLpUy2Inc9dYDwPTkllqxnnPdrsjhQCtEaQQKJQC837Xr/pN6DsX02eEaCsf72wiUVqzNrBlaq64YM2F8zYRKLlwCGJsCtMMc1Ukjtw7ucf73vgyHj5+jdPNmZFh1Zvup9uAwbRBtekxWNEdBKi9kT70FCIVoWcjId0ubwC1nKuB1Gq1ZthHo8pSSCmSYjTLL43aCmVpLHli7uuuQ/NQShduO4f3gTSMjMNIjJEQvE3LMDeXF9dzHfS4Vnq5Xkbdl1JY5uUX9Xr+bPVuvG/AL/zecVd3dVdfuvWu24x/9a/+1Tx8+JCPfOQjfPVXfzWvv/46b7/99mfcJufMs2fPfs79s42e0z/x+dqhaSrBpKbiujOn55xIMLZDtxCLxuPa5zhhcckmKeK649PG5OqVsB5wmlguHNNi43ZbsQhzaywdLa4cBLkdG9+psca7UmozN8TgTNewLAVE8c6amYwwZ7Mqg1Fqg1jKbexX3aKOuWSjxqpH1SBkDmFeFtQrzoF3HEWfg3cEsZbKeeviU1CcNMpcUBWGUViyfR9aiMkC7gCmaTGcfwDvLMum5crucmIebHQTfWNYJ0qtnJyucE7JU6Zutwa58za2adpIyeGcsMzCmAZaWWhNj7ZpFSglE4K35sfZ2megQZ6odUazkW6qqyw5mzqZRs2NxXtEPTGG/jh1PUezkMBSC3QwWet6j9bAeSMK11IRNcx+SJGpCNvrmeulsj494/Hr7+PRg4es1htCDDY56cLmdrAIC11k2u25R1eNrfFariZ6bg3ppN8uJQKphp1fFnKxZ0MMoacmwy5nUoysxhEnjtLt6vOSbcJUC9KMx2PTD3vexDh0+/NADPFIrLXtk2U4aScn03Vd/wThpBmYsJVmtulSXpr6fOHrC/G+AT/3e8dd3dUXs37v7/wXafkn3+vDeOXqXW9QPvGJT/D06VPe9773AfDbfttv4+Ligh/8wR/kn/ln/hkA/vv//r+n1spv/a2/9fO678PkRPrURMQfJym1C2RFgolhO8YerFEBEPV9ouKRjvQWaaCCOsEHjxNH7fRVirk6vHN4bP3ixBw4Ske6i9j6pesNLJ3W9Bfa4Wyr4IzcKuCcIy59rePN4VFaoTa7SnVdjFqmTIqe2ipLNgdRdDBGT1JPrkaArRlyMddIa42pGGZfRBh8IzlDnTdnDpE8Z2LwhCDEpKzWiVwWpr1NIKAYIZdsV9jB46PaCWopLAUWrzSEi6dXjKuB4JVhHMg1U5eKOiUlyzdqrbJeb8jLwn6ZuL7cwZHgutjjrI3oA7lm6HZc75V5nihY8u725pqaB/KwIkVHiIGlZhPtTrWvPwz5H0KgdYgeNFvvqCJqz5PaBCeOVi3aIPhIrsrlvnE1gYSBBw/u8/jRA05PRlx0xjhp1dxcnTNiKcQHMCC0cgDyVZZabDrT1y2lVmti5ZC9Uyl5obZidGIfWI0DYxqouXB9c0MTFVtSIAAAtL1JREFURwoDtSq5Zkot1JZtygLE4PFqBGTnejqxj31aEo/o+gNN+OUcKxFrhHuXbsffjlRBWm/gjKlisMBc3r0043fzfeOu7uqLWd+zr8jVzXt9GK9kfd4NyvX1NR/5yEeOH//0T/80P/zDP8z9+/e5f/8+f+pP/Sm+4Ru+gddff52f/Mmf5E/8iT/BV37lV/I1X/M1AHzVV30VH/zgB/nmb/5m/tJf+kssy8K3fdu38Y3f+I2/CCW+aUuc2pWzEOyfJAFFbwWypOOKh+Ok5Tj7MOHkcZ2uhplHqcVDsxOYqrlcKo1c6RRZPVp+awe2+X7V3LpA9pA4jCi52UnJq33di5CcwzvIVTvUq3R8vR6zcZoI6j20SvCC90JZ7OfkWolBcaXhFWNnmA7UoGbNPr9KSujwtlIr0Qsh9KZMOzW1FvK8IA6cNMKgeG+PjffaVw2OSiWURouOJc+GnBNjizgnNG2s1iv2+71h/Gul5kam4Jwg2oDC6dmam6s9+yWTEXCeGDxFhKqVmgsLsF6tAHOY1NJI6vCrE+ZcyNud/Z58YIwJ5dYe27ErNNtadK5HoPrANC9HZ1I1Swo+BFI0UfRuyjzfZ7bNM2zOePToEQ8e3GMcBju+OlMLnRbbLBunA89olVILy5LJuZBL6enBPWdJDqGAPQSw2td8cAxxYExd8KuO/X7Hi6srWoNxGMjIkaej4lDnuzi6o/7V4fu/xTmPukDoolZbXfUVU6/DrKRxcIv1j5o9l1rXw+RmE5Pam5IKx4iJz6W+tN437uquvnj17/zBP4z79A+914fxStbn3aD8wA/8AL/zd/7O48eH/e6/9q/9a/zFv/gX+Qf/4B/wn/wn/wkXFxe88cYb/O7f/bv5d//df/czxqx/5a/8Fb7t276Nr/7qr0ZV+YZv+Ab+3J/7c5/3wZvmpDt16A4eDlA239c6vmtPuki2HVwVnTbbxOwWPben2YwcFWWZbCS/TI2yWDx99MYtic6ErwdrblBz0EhfVWinb9Uix97HYG3VnBOKaR6qQdbMB9SITo+BgBW7n8MkRqQ3BwpuUGo1e3PLNsnxYnA384UoTugANukY/mqME9dYrTwpKZVKbXaCq6UyzTPDENhsUl8NGWm0LIVSClIrIXqMElNIwZqKJj1czntrdkSIMaIYNr0Vm26oONOLYA3T+mRk2s8sc2G3ncihcHpmJN84RBqO6+3eeC0hGj21NlYnp6RWubm6tFVfM2LuIZen5ArOUQvkaSbFaDk/CCEEa/gQs+iG0E/QgvhAxvPsesdbF3tkdZ/z8/ucnpySYjKdS7MU4krDoVQnfdVoa6RaD0F82U7iYjEF4lxPApbblYoISZUQIsM4MKSI946WG5fbGy4ur8g5M44DPga884acdw5Vj+8k2MM0zvvD59wxOVn0tiOR3otL796sH7FnqPSPa7N1ZqvS04/71KSa5fnWnvy515fS+8Zd3dVdvRr1eTcov+N3/I6fV73/N//m3/wF7+P+/ftfELjSoTkRAhxWNXhUI+242lFEIqg1KCrataKdOCudn9L9uOocboigzlwU4kGDXZ06ITlP6AF9rVa8E5qzd33L5SkmtJVmIXDBM8+ZXCE6sSkGcDw50LqLA4JTGkaL9SrMpWtegEqlaSM47a4ZyGLsk+gc2kWagrmLxDWiV4K3YEIRxbWuf2l24gqDnTSn/WJuEYVh9AyD8VZK7VfXuZjTRhvOKSIVFz2u2ZRnvdmQq4kml2kxLcyQCHEwLUUtOKcE76itMfgES2baTQyrFTVYpk2rcHN9g/PK2b0TVIUUA7tdYXcz4XxAYmSeJoIENqdrXAjs9lu8F0L05Fz69KhS5mz8GqcUtemBIjQP0YcOUoMgll5damG3ZC6nzFuXey73lfc9PuW1x494cP8eMY12f6VAK9aIqnCA/y05M+eFeSnd9mvuIukNr3bH0YHs65wj+GD2Xe+tcVIlLws32y2XN9eICmenJ4yrkSEmvHb+jOoRl69q7qqj9gRrbJ2z3Jwjm6c/745OIYxe27qWyuCBHQ5HNft+O/jNOnywydGB9nLj8wvVl9L7xl3d1V29GvVKZ/FIF8GqdBGsuK4z6W6dg8bkwD3BTkR2wnZ9knJrw6RBU1OaivO40UFZocMK2Uak5qO2ZCmFIEpUR23VhjAiRGcn4ZxNK+JUKA2WnlWzTkpQR66NaSnMuVB7+rD3HRDWjPZ54kwE64JRaHNrsBS0ctQRNMBpZUyeOdvEJwRltQrmXFFHXuyqeBg9m5NIXjrLpNtIV0MipsGsuC0Tg6PmnhDdoW40IY4J5x3LNBMEEEftQLYkkTiM5Dmz7G9QEcaTE6b9nrrsESouGFK/NQEnSA4suYLAMERbP+WFedpzfS2sNytWw4oYPPfOTllEcUNCa2WaMmEljKf3ieOaRsOHRG0zlUZQhXkhOIhpg4aIYMJjdQ7UIdRjXEFMA4XKLivPrxeuZkHSmtXJCev1GlFlzkufOBREbWJkOh1HLQut5s5bsXVU8AHn/XH9cpieWOyA6Uy0k5C1O2SmaWa727Kfdqx6MvGYEs7ZmuZQR6AallKsB04h3VLcd1q1GWrlMO9QOaR9t+5Ea8fNjsU3HBFxSDNLZCcAmT6rmfDbixDcK/32cVd39a7XB/7rb+arfuRnePfUWr+865V+h1HxKMEmJBKP1mHoNmLoCG+HqOvrn0MujTUwzS63kf5mreKQZqRN9Q5JI20YWapQlsoqKE3pmgslt0IuDWrFdw2FSKN11klp4BFW0eBsqrAUsxAn78i5UkUQ52il4EJgCH31Uu3krdUxRrtKnsTEnqowqLlRlpIpubJZR6RBzaVnwDT2u4pqwHmMCqtK7ZwR5+2kaSm5C4g5o3b7BacmEhYnBG+ZK5vNBlTJcSLvdzi1pqnmSqmzkWddwEXjysz7iTismAW024RLbQQfUJ/wa8fFxVNs0hAQYLVOlJKZdnuWpaLNMw6BMQ0EGs57xvMzlrlxcfGccnLCOiVSOkQYCLks1NrMRuuFGD3iPdEHQMA5cqnUCiEmfIwWnFcq19cLn7645maB04en+BjYLxPstp0U6zpu3mzkrTVa7fqMWggeYgx4P+J9MFT8sTHpfx+naCY2bs3s4q1UpmlCaJydnrEeBoK/1Y/Q+opFLGxQu5bKmCXd/tt1IWY1tr8P4mBBqP33TSfYHjQx7di4wKFdkQ6Kk/69cOCidCGwfO4TlLu6q1+J9eAHPOWdd97rw3hl6xVvUCzczxoS28mDsSlUTG8gTW/txxL6+kWPzh+6GNW8wYL0PBcCNBWcS6jfGEMCz8qbtsT2+DYeN9dFRGjMcyFGJXphKY1azYFCrWzngkojOKO9BmdCyWWuiDim2dZEaVDqUrquI7KfZrxUCyEslnYcozImu9qdJkvOnXcZRyUFg5GJa5yeDd1+amLdmjNBOZ7QDUimaDPuxXB6Ri3mNkkxMuWFJWdiCOynvcHsGj1F2a7ORRRplWFILCXTnPSoAYx0Kg1tGZYZaiFo6hqMxupkTV0acUjHgD8vFXWem5sdz589Z96suPfgITFaEzquRjjx8OKKvCxmL17MrRNjxFXPPE8srdJQtFYSDXWOEJNZfMUxV6H6wIxntytc3ix89MkVb19sCetTTk42nKzXlh3U7GTs9JBN01H2/cSdS8apsh5HQowYoaWvdDg4e25Jr+2lzJwQAtEfwg2VGALRhVs3UO8Dbpucw2NfgJ4XVGrXiZij50jF7b93E/BaM/XyquXQoLban9OHnqNnT0mHylnswS0QsXSdzV3d1V3d1btVr3SDYpqSzjARj0jqmpTu1NGXWCjieu5On4V354Z01WDHrxniPAZaUGiVVj3IcPD60FrpYWnSmxMMW++gtEKpYhqEPpIfvYHBalNiKHjvTRib7Qq+YYwU5wqKwdCWvbmBnFpYXhpMO7HkiveWLjsmJSVL/wlBqAVidKhUVJqF7DUI0bQO8z7jXEC9MxhbNH2MOkeK3girPpBbZTcvaKvMs2UOrcYVwzBSl5k5L+am8SYUDeKJMdKqklIiipFRa17Y7a5RrfhhYBUjBEdeZlpbcD5RW+X87IRpn5n2O4ZhxTgm6rRntRooNRMlgDpupowEb2C2WQjDitcfPzQRKZVlLoyirLxZsYdhJKVzdrsbc0fVRulNgu+8FHUBcYmbfeGTT1/w8adXPL2ekJA4Pz3l9OyMzWbD5uS0U2UrOWfmOXeRqjWrIhCCJ4ZEigFRo9G6JrQDHbhaY1lyI+fFNE1dd7JKCafuCP47aDsO+g9pnbVSoYkFKrZWjVrcYW61N5pBPVGducngqDWx7J96XOlYo2H25nbMATqUvRa0N/2i2j/XjILccv83feFIsnd1V78ca1kJ7tEjypMnLwvB7upzrFe+QTGmietNSEBc7FOTPgnRaJMTNWKo/S3GPVG19GIauP5GTQetYft9HBAGmvPULFQ1bKitKtTAaKZQNWtzawTn8L43NH3SsB5sPZCz2We9tytXL47gjakxrj1QybM5JmiV5D3ew35fGFIgRms6DuN7W0sJPllQnDglRMcwRuapUFshuMD6ZMOyLJ0+ag4Sp3bynGe7+m/i8CEwjkA2F0p0alC1WpnnfXcYZdIQjcrqEvS1wv7mmooS4sC42lBbYz/NDAi7ZUbV4X000mpttnoisErKdHMFOZNCYO+gKqQxdgFoNCDZvCAhUnZ749yosh7XNO9Y5pnWr+hTDIyrFSkkfPDspz25VFpeGEPCx4EqHlwgN8fVNHG5W9juG+IT9x884n2vv86D+/cZV6uePaMgAe8DrSyUekhe7pZygVIzSxZMx2oE2VwqpdnEpZTcVzAmoB5SJIaICMyL5esYmt7WObW1riEx23LNxdZ5Nfdmw35OjJExjWYn7iBBOVBgW7UwSThOCuXgIKLRDkLoo1Dc3GK+5yEd6La1g9rqgSLcmglq7+qu7urnrL//J/8C/En4Hd/8zaS//v3v9eG8cvVKNyh2JtAjpA0NpkER4YC4V03gbIKiByCbenC9WVFnnstaoUkHUjVkqYh6nERaSGQfkKnRysG+axyTwQvRHVDnigRrXqTbVufK8QTmFcRBHGyUb6cGtbUSgjRjrIR4aJKkszuUIR3WBZBzJaaeGzPXHsKn+B4S6JyN/A1tYSelsmSb/jglpZGcM60Wgg+EGEyrkGe8U4Y4UCOUZYLWv089q/Wma2wg58K03eLrwma9Yl6gupeuyltlHEaur1/Y/WogxIEUE7vtDUsurIaRXEzjMIwrO85aqNkaxdVqTYoRH8xufGM7MGoxt06rDR/s3+iccVScU8Zh4Oz0HMEeO+cd+/1swtjWmOeMDpG5NC6ub/jE28/55JMblhY4eXDOo0ePeN/j13n84AFpGGhHNj3WBASbQpWeoZNLOyLqAVxznRjfRaY9zG9ZFg4rnRQDyXtarWyX2XQealZpW9UY9baWQi2WfJzzHlrBe8cQIt4nQkjd/eMxZ1o77mlaF39rP/7aU7JtEtj68+8zYW2illztnevf99L05dCY9MmOHvdBd3VXd/Xz1Xf9R/8Rv/V/962ky8L41/7ue304r0y90g2K0Nc5eFv3aOoMFBPLilrTIuo74dOmKuICrZ9M6Z/Xw8lVQFylBTuZ232t8H5Dcp5NUjzW0IhAUMviKcWycoyCaguh1qcUYBP0/VwISm9OTDfinMHWcs6k4Bm8rWRarVCxEX7BruJVcM5OZIIQB8dqBXku1lRJZ3yokJdMGhwueHN/1EzOdhLy3mEYdGOV+APBtpgmolEJ3pPiQCkL0qSLMA96Bm/o/p4GnPPct2YdMEeDZpkxyCkqDWphnvcMQ2IcB8JSSEMi59nSh8fBsP+5MOWCn/YEHfqVfF81uMDNfkK9Y8mZacnmtuoMEFGHc+YMurh4cdTE0ISYBjKKiyMVYTctPLva8uT5NfubheSFIUYe3Dvj8aNH3Lt3zjiOFlUA2CjNqnUthlMlBI5J17U2ai3knDlA7Wwil6k5G6smeIYhkoKnlIWlLGZXRml16W6yilQLbGxtsealFbyzhjKlkRhSTxM+uGsW+3/VPvXoDYpwC1wz35K9do7j5to1Ltac+N6cSFfyHoIM28EOXyulg/ncrdr3ru7qrn6B+r5//y/yP+4Lf+A3/Rs8/nv5rlH5HOoVb1DM4mlv0reANtXQG5PDic0Q3yLOVjoHkqxIz9FxiPdICGZ/dRV8FwB6waU1Ydzg946glShCiKb/6FE5FrjXg+FSD1ublkLp2S/OGcAteI9Tm6Z0aa7xPtKBrwLqxcb3rREOKynA9fuhVqY547wyjgEFpv2CUzuhzEs1UWNwjJuN0WXrQi3epgEdy+686Ue0r0iC127DtVNZSAOxJVquTPMekUatZqdVF1hv1kirzMve7tNHO6HnTJlnqnQHUGtHce+yZIL3DEMgDol6s/RVjCOXwjTNhMHcJU6EslgmTZEMzlY+4g3XnksxR5NzJkhtUJZsDh5nDic/JGOsGNQGHyIaPNcvrnnnyTu8+fZTXGvcOzlldbri3kni3mZkiOHg2qXLS7tLyFg1hwmCCbIPZGI6oM1ycQBqLZSa7fevjhiVFKDkPblYIyM4Spmpdenq14Y0S7TWvjpSqYiz31fwwY6jQh+12eqtu5gQm+A16aJY8wZzyz22V88RGKedbtsJvED/nd1OhQ5U49p3liJC+zw4KHd1V3cF/9zg+LFv/gv8mWe/hv+6fTXjf3XXpPx89Uo3KLbGsavXhvYrfdujqOsNigRb6Xhn+5WjRfKQNusQ70wwGwMEh7qKOLvCDAPQNhBXJo6tlZAsT6e2wlIac640FcZoPFsESmsMydmKRiBGCw08JBw3lCY29XDSiMEw8eps8lKLoKitFLwYl0StgaBrTcYx4EOAZpAwVUcIHnWFVoWgSpkXQrCQwpBSd3PYWqvUTM7VwuiC0FrBO7uKph0cK46QAilFaivUkinZdBCtekLw1Ooo2VYGMUQkeLZ5MViY99RW8DoQQsB5mxRMS8NbR2UBdBYBiPeO8/NzvDZCcCxLpswLPkSca6QY8GkwvYlYBEDrzwEEm8hoYH1ySkoRnxLS1xKm9wksrbHdzjx/+gxXFs7HxFlqjLpjWJ5SLwb2Hjh9iB83OJ/oTxmEZg6m48m8ZxELXaitBB/shF4y87yn0HC9icnLzLTf2Ym/taOBt9GOVmEVtWwgTHhtEy1HDIkQBtSZxdh1qzu9qZB2aFDsOSgC9WCjV2tQzNkDoLc2ZZVOP+4rnT5xOaQiHyzvthay3KLDtOyu7uquPv/69vs/ydm/v+M/f/FB3HfdYfB/rnqlGxTRYH/EI+hh6X7Q/2FiUINy4ZwJaOUQCohZjJ1B2VAHTY+W0EOzMKwUZKTESG6HiQfkatORJkJwSvRKikBr5NpIwbJzLKkPQse/izZcU2puqLYeQgjTvhCit/TijmuvpVJaIWrEDe4WgV/A+YpqYdouzFPBeYcPjhg9tQrLPNuawQneOZZaUWdwMqWRBqOiTtN01DuoKrXQMfWHVZlQ2m3zIDEw7SeSMx3GPE99utObwoP9VWyysk6BcVgdj2eI5rSapy20QnCOWgo51z4hUuLgCH39NqTIfLOjlWywNW/gOBdG0/p4Z5Opjn8fUoD+O/QhGAK/O2hcdFTg6bMrPvbRj3Pz4in3NxtOVwPrITL4QszPked7LrfPmB/8Kk4efwA291Bnmp9Wze8lzdKLzXVrzaTUvgqh0UolTwslV4OpIUz7HUuejG/TVzAHoJo9J3vYIJWFrleJlg80DGuCj5Z3pNoTrbUnKB98yH2lQ1eVdKjgcVLSDlMgATEn2qGTOdyFZe/IkaNimpN6O0HqkxevjuRf6bePu7qr97S+5exT/D8eBtbv9YF8Cdcr/Q5joXADIgGwq/7Wr8jtarTY+29TA7o5zzEcsGeUiA9osAnLwflgzAvD3scYkDayrE5ww0isGSeQ+4RklcyZ05r0MbwQsSamNqU103bU1vCq+KiIE1pt5CVDBT+IaVjKwjLbbZwofkhAZbudoMHZ+QbRduRoWCBxJSTPer1mGBLqhGm3ww3JQGrLhPNKbYV5f8DVOyASQ7IFmRp8LpdCHC39ltbY73a01hiH0YBhPlAqpOSIMSJS2e229nhKMwtxaaS0stTdUllKNuppGqidxOvUE0LEqyM3awTVJVIarJHwMKbItBRQZb1eU3KhUggu4aO3NOc4gECKjjF4gg+UVnuYXuX66gW4hHeOFCNSG/uy8PTZM56//UmGsuPEeQZ2sDSaRpxXVt6xzM+YnhZiHPEpgVtjQZT0BtYs667D11q1iUkphd28Z5kXqK3b2iEvE6VlRCzQ76icFhNX11b7c7ai6gkxkaL9LpwPOO2OJnV4tclcE3PfmHH+dt1yaCYAXG3H1c9Ba2KkuB4aeGhYOqOltUZu2dZnufQJis0oD3BCp44YHPN0t+K5q7u6q3evXukGhZ5YjETUBXMZdOCUCUMaiGWzaOurjW6nVPR23dMFgk2teUBurzRVHBoGGE9oYyRMPao+V8iVRewEX1tlaY2UAlKqkVid2UxjiihKrRknxhahmW6gSj8xYJRUaqEtlSoNHwNpSCzBkUsm10IrlRjsxJWX+SjwTUOytOVaQZyB5YLpZFDjpDiRzuLI3Fzd4MNETJHV6gQfA8s0k/NEyZkUE+MwsJu2ltxbE62fsGIwRPv1zZXB3cY1tWaCc0hvmuZ5b86d4JnzZEGBauLWBYFm0DQlo9KMzOo93gdKzUy10fqJtHThcskZX6xBdCnhRZlzRggMw9r0Grsb2rKgXafhfZ+kOE/B8cl33uFTn36Hs/XIJgysQyMyYwHLlVqUWiODj2i5orz4KGV9gvcDEgMu2FSuiUeptJoRxNw8y8yyzJQldxuypThbMnDta5xqmHsX7N+vNjUpmKg2xkTyCef9MUNJ1SIatDdHBxcO2PRGDgl+vU0xGcsBS98dPYcv9FUYh1u/PDmhQstQF5yAD4epSRcIH6nMRsM96G7u6q7u6q7ejXq1G5QmGHferiHNxdO5FIdrygOD6vBmaqONTjo15kQrQAaCmCNIBSjUIpRiYXAaVqjzqAOksV75466+1cY4CK0prSz9J5vlt9ZGDNaslGzZKEOyn1GyIfHVCXnOlKrg7bbzvHBzs2faK+rh7OwEgFqXLroVVCz113vfceWVadrjncc5035M+4mUIqthpNRqKybVvi4Qpnlimq5pmMYmhYj3noqivrFyI87+0agI8zwzTQu5eIQu+nVi5zZRCoVaTffinGee9rTaGIY1MQ7EGJmXbJZbDYQUKHmhNIjqiClRamC7vQZqtxA7WrMwxSCQp4XVemAYI2M18N1+niwxuBmfpkozpssw4EIkV2GaClc311w8e5P7oZHGU3zv4VxrjN4xBsfgIQaI6pmnF+Sbd0hnj/HOpg8NaCUb1yQv5LKw309My2KNmDskFZv2xCYlHu9sheWDI4SEc7HberU7kNxnBAq67qY5aKYOLqrDhEQPepOuwbp9Xdh65p9UiMhht3kUibeuLenfiKg5wY531b9mm6SudTmKbn4pL967uqu7uqufv17tBuV4+deBZUrHpbv+htqdO9gInmIjdOmWVJrSiiLV+CeKEWmRYpMMgVIjLkQkrFCXGGLEtYVaq7lDgHE0q6ch66XH3JusZVwFvGvm4vCemiFFjyg0T3dP9EydJdtJTZV5FnK2+2xVuLnZ4UQYV5GYAiVXSin4ECzArywm4O3NivTEZueDuUdSBFWWztzIdSH5xOnJmV3B18zSDJQWQiB3DY93yXgc1SYYq3GNc85Ess6cN/vd7rheU7VcnWFIJuR0JvS18MRsQl3nkFpYlpkQbG0yDAPDEO2x6ym/tU8Bcs5od0zlklEmWh3xusG5Rl4W8jKh3qPegQYKwrDe4FwX0frAzYsd03bLw83AWWysok3DitjUx9XKSh0pJoJ3FOcopVH3l9S8hbqiNpuWzMvMPO2Z5j21FpuY+cFEvN7WMNobD7P/OsvkOciipIu2+xRDe5Nda+UAsC+19ialrxxfcs1YsnCziVVfwoAJXA8Cl2NT0Z1mtNatyS+PTQ63PxqQ7fXS6NM2Ow5UybUyTTOlNPa58ezZxbv0ur6ru7qru3rFGxTRLnoV6e+xjaZgb/oGZBMXesKxXeVbA2F25JcpmiZZabB0IJU2CI4mdsKTOCAh4qtNVQiCiwZ1qw1qqeCVFN1x1eSdw0c5hv4F52nOoGJLR8aLmDXV4Fgddd4qQ/C4wbPkTGkW+FaXzDSZrsGrI6aBJthaoZbOLonH1FvnTCvi1JHSSK0VJ0oI3qyvnVnifMCLUHoib621p+86og/HpkZE8DHgXcC3YOTYWkjR9BGlWAxADM6uwkVZx2SrLS2oM+GwSmM1DjZncmYZjsERoutOKVubeVXmZbFAvYOoOUNyQi2ZZZ5MeNwKUYXaCqoR1OPVMaQBDZHtNHO53XNzfU2bZ06GxL3TxGbwxJiQ4M0DLg7xkYbitHNB8OxqY7/dkblmLo0lZ+a8QKvEGFivTxnSiPPBghD743844TfbvnBICVRpt1qon7V2Ocwy4NZFc1ilHG3Eh1VO/9Poq5xuUW4v/Tlg69tLkyj677I1YamV/bRws5uYcuVmO7MsBp+7utpyeXXDfsksVbjeZi4vd+y2Ezd7mx7d1V3d1V29W/VKNyh6ALGZ0rC/W7fuZLBRNmouHemkTWm9mWnCIdkYQFoXOuZsNploqyN7Q/fgEjUk5n1FnVC9kkVQD3jjfXiHkVaR29F4NStppZF8nzz0FFlEzOJcMrUu5vy5NWQYMVQcOduJf1lscjPvbpibEtOAD75fqdt32WpATVRaK94Hmyw4Z6GBHJgtdmVeymLTIvMvgWCfa2q6nmqCU+ccIURqKRTmzvlox/A8E+QuVEBdZLebGIcVFZuo4AI+eAO9AYi5i6S7b6zHtHUVCCfunFobicY873FmD+p2WHNNlbxHQjKNiUD0DhfTMXPJDQPiE/vtzCc/8Sne/tSnSGVhnZQhmHB2SIm0WuFStOPE4gbUOdR5qkT2zbG7vkZmm8qFEFjFSBoS42pNiEN/LpqbBwwLf7AR305IDpsRscaKw9qkHVcu1sz2xvml7I7bhuO2Dq4flYMT51aLYjbhQi7ZpoeqaMnUImynwqef7XjzyZ5PvnnJp9++5GabudkuXF1PgKM1YbffcnV1xf3790jjmt1UWaaFZT9REF57ePIFeR3f1V3d1V19tnq1GxQ34NxgJ4GXTwiH7bu0l65Q9bjasZPx7R7empMK9AwcCrIHdY3lekYKyOKJfg3qGIeAOtBWcCK4YKA1WsV3SmxrjVIrwXk76agQYkCKUVWDd4Q44mOg1oUyL8c8lVoNL2+6zUqIAWojRmdX1M1sznOu7Odt559Ehk6RBQsUrLVSlomcF5Y8G5wNodRKitH0H7WR5wnnPT4EKg31ylIKvscGxDRQckaAlBIhePI8MfhAa4VpnsnzTM0LruPbRZXdfmIcByrmehEVvArR++PJeBgHajVbrkozyFoIDEOgVaE5pbZTUgw4BaVAqTi1RN2GY7XZ4MKBCOzJTRAXqOq4vtnyzvMLnj55h+nyKevRs44nDE6N3DtYkxKG1MMDI2ijlsrUHHsZkbghDYm0XpGGkdAR8xKiRSaIu52IIIbrp6IYbO6gI6m1HptAe34e/+fowrnNybltSmoPEbSvf+bfpRRKd+CYBfhgDW6WLF0KKsoyw0c+8Zwf+cnn/OTHLvj4p6+5vqzcXE3UZjqeXIo5y0SppUCt5j6LkbUkvAsUv2dzdsLJyQkXl0/ezZf3Xd3VXf0Kr1e7QRG74lW1tQq1mIakD75Vu9ak/63OAuI0hFv+RO1R87mveRBEArVY1ss8L+a6mSNLWeOrg92Ok/XQV0VGvii14jpqYp4nDtj5GCMlW7jbXGZSMOCWTVHsG7wLpHWkloo6j0+JUiwrJ3YdwlKMwFprwav07B8DtJngVGh1Zt4LIUaqF2KI+BDI/YTeqtl+D1h/VU8IQOuxb2qrI+8jPvQ1SxgoteC8sL1+Qd1W7j14TBpW1LxQS2a1jizzbM6TvrISlDQmQoqUWogpdC5LT5mmHdchrTV88ISgx6TovCyIKCEk0rgxbYcz8bKqErxjv5upteGjJ52sEXG02gjOs1Th6bMXfPLTb/PmW2+RtzecrwInyZGCEqNpbXxQhu6WKnj2uVgisU/MSyBsXuPs/H0M6xMkjUYc9hFptsKyx9EhNIqNLYyV01Hwh8kJcJw2/Wz3y2H4Bwb1a2JakpczdA7TE1ulZcPkZ/v3az8OdxA+YY2oivLkeubDH33K9/+jT/IPf+QdLl8I0wzgqLniNFCq8VKcH0ixpy47y+0JPrDs4Kfe/CiNxsnJijfeeD9VIvdOH747L+y7uqtfAfXr/vK38oH/+odov/BNf8XWK92giDOMvYhCfUl02K8kRfvJwzmk8+XFeZwPiDdRYsOcNOJaT+U9XK2ag0KTg+DJ9R6kB0g6wZXC9mYCgRiU9SrYm32wK88hRbTbf0tZqK2R80JK5rqZ54UQI2BrHPWeWgrqKrVUYhoJIRnDhGqWT0dvdvrJPw244FmWmWVZmPLCspjgURVyXtju96g6xnFlTA5xaHKUWsitUkVo6lhyIamx952YmHO726LSaGEhd4GsOmEYBuZ5zywOWiF6T0rBmhnvaZh4OM+FMUVqqzgRlmyCWB9GoFLzgqpQS2UYUs82skmXUws03O5uUNeIrjJ0om6j8zycI64GpEHr2TMueHJrtCIsc+bp8wt+6qc+wu7iCa+drnh4eo9VdMehWq0VqvFuxDm2u4XtfiamwF4TUzplde8x49l9XBgQF2nO1nCuW6CNpipGl2197SIYZ6c7bKQ7oA7NydEi/Fn+v3Xb2a2lWMgVi/RpzfRGZaa2YkGI2nU71O7eqbSmXO6FD3/sOX/tb/0IH/6ZHfttpcy22qzF4he8j/g4sLvZmcusQHARjfDgwTlXl9dMu4X9Unn9jfcTnOfjn/4EP/7hH2dIiXF1R5K9q7v6xdSLuiM9E9o0vdeH8iVdr3aD4iOqsTstK6VYywE2Km9NaZ3iKQeSrPP95NHXO+po3k4urVrWDLl1AqzgUkJTBD2nXj3gcu/ZDCZoraWQl8J+C6uVR4IFrSGN3IrRUAXL2BFvXArRrkPoJ7cubPTBo2IW3xADSGNZKi4GW9dky9pR5xhXG7M8q+AWj5tnTocHzHOmtIW2zNQ8M+WMi8n0K1PG9RVRDNZQtFot8wVrTmprlFat8QgeR8F50OapzhgdjUIthRA8TRy5ZTZxBXQCbYgMQ2S/3eF6NlETcN6jFEqeLZ+nT1GOsHi11YiJW82ZNK5WDCmQUrBjr3ZV7709dtWZoLYpXd9SoTmur/d8/M03+fSbb7Hstpwmx2v3Tnl47xQnsJ/2iP1IvLeJVXOBUhc2Jxv8+gzn73F+8mUMJ49wfkRcoqlSjmRWOTJGam2drcMR9icqHHhplvdk6pSXRa/HqYgzcJuo9OTkQ8Nit/G9aWnNeDEio7FIUCoKHfJWSmE7VX78oy/4b/6Hn+bv/8hTLp8XKAFplfV6gAbLXNjtF0J0LGRef/8j1mnk6dNn5LywPt3wFR/4cj7+0U9z429AhXuPHjMtlff7wNWzd7h48ibbm/mL80K/q7v6ZVb/9N/8N/in/s/f+14fxpd8vdoNijg78R+omWIn11qKaU70cBI5kDMPqcUvj9XF2ChiTYpW+n1k6lyoS0ZTJA5r6voRNZ4yLU+JyUb2dTEr5vX1zH47s1oFQrTAPe89Xnyf5rSjPiTnjO+pxLVVWweoO7oxcs1Is6tZ5wO5NGIYicE4Gc6bviTGgWFc3Qove27KPE0m9FVlmgwaNibp2S7VrNg9MNA7s0rnZYFWjM4/Z9sUOG8cGMUQ8s2mHEvrtlTrCFmWQqn1mOVSCrgQe36O0KqJfKmZVuxKP3hb6dRsD7/zgdElnA8Mw4g6IdViLpsYaeoode7rjABdxCpoHzco85J59vySn/n4m3z6zU9z8/Qd1lp548F9Hj24x8lmzTLvzZZbTAcUx4gbEs0l1ucD/uSMtrrHsHo/unqMuITiUTHarntpIHtoNgR7LO052T29x5uJofG7Vbd/4/E+VLU3NZ+pLbEpoNwyR45+nduf3WhobYBSqvDW8yu+5x98ku/6vk/y7LnDh4fceyRsb26YtltCjGw2a5YM7mqLUFEvnJ2fEjUgUpn2Ey56PvbxNxGXeP+XPaDUhfe/9hpvPnvOerXiwYMH6K/9SrbXz/mhv/FLfRXf1V39yqq/Oy2sfzy+14fxStQr3aCgJnylrydEG605VLPFyXfEg4iDqsf391u7Jnbl2oFrluPjjJpfCnUq1N1CCwuMHr+6hz95QLv6OKLZrpq9HEf7OKgiLEvGVaX4Ys2KCjElu8rNphAoNSNFGMbRnCvdHeJ9D3dDcCF0si3UJsS0pjVLlDX+iZFXXfAE78h5odXCOK7sHClKnBamad8R6Xo8QUu1K+6mQgyBEFxvOrq409lEI+fF0PeVY4YMpaIJaMZ8ERGGYcUh7C7FRG3GLNnvtninaDBNhHhb4Ww2axoFN7hui2420XD2eHmn+BQIKVF9pDSbRKgIVYSae0SkM3twFWVaMlc3ez7xiU/w4q1PcW+TeOPhA167f8rpySnDEAnBkYYEDeKwIp2ekcOK7Ab05Aw5ex+k+0g4AU2o+KPGw6Yun6kfOTzvbMhh7JFbh45Nj/rDYo8ft89Ba07kcDccggftBnrb7HyW5qTWSqsm6t5PhR/5mQu+5x8+5R995IrrFyuSdzQRzs/uc3G5ZZln1mtPGhLPL7Y8HNZM08yD8w3qHbt5x72H97m62bNaRSrg8IQwsEwLF9c71qsRobHkhdUwcrO/G0/f1V19PvUj844/+Jf+Td7/p++mJ59LveINSs/TUTX3TsUak546LJi1+Ojg6bko7di5aLco354YpAnNEtgouaDlEDbnaWGDjI9oNwMik+37D6aMWvHO4ZpNEoIz4WTOBUW65deSgpsoaKPUhZx9bzQcIUZUOoxMBefNYbKUhWXa44KjZPDq+v1zS/4URb1AXozfMQxUICTQnTUzag+NoeVVWZbMUgvOeUoGp960KtrD7aZrVoM1DAaQMzdOV7uawyd4DgTSI/VUhbpkUnAETRYyKEbtDeo6PdUjqkQfupDUpjMpBvtdYVu2Sm+CUAipO8mLoeWrsOwzjcpuWri83vHk6Qsa8PjxI9734JT3PX7IvdONsVqcEOsh/E4gjExxzV4SOt5nPH0M432aDoh6vB4CEw2GdtA3AbfQtCY9R6frOzgM9Ow5dBiA2HEf4Gm3epRj39EaSOkutHb8fkPW98/14L5aan9OwrPLhe/9h2/xd37gbZ5eOdbjPU5XC80J63Xi+nrm5PSUmiu57BEJ+BgIYeDs7J5N8gRiUoYxEceRnCtzzpxvVnzirSfkfUG9J6XIkAJNlN3cWI/Du/Kyvqu7+uVYT8oN//L/6dt5/1+4a04+13q1G5R+vjDoqY36jaxpmSdyWOuoXbnjtY/ZTWx5G7Mmx88bQMLZydo1Qor4GEzL4c4IJ+8j7e+j+QrjcQmUgpTGEATVRgiRkDzBK8KBwlqR5pDWSMlOlnY9XVimmeAjXgXnPCkOoCZgEO8p80RKQ19FFby3SUsrZrkVjPLpxOGTWFPk1CYhKng9wTnHVGaWOpDnPTEmxjgQsjVDyyTQik1jYmKZZ8CIqq1Zng2i1GwnavWOMJiWRZ09rjkXQInB02rGKayGNSqG/C+lEjvUjVaOlltxiveBQwJx6yuv0ip5zqiYC8slB80CHsMYkCxcPnvBO0+e8uz5NU+ePmfOmeHkPvdPT9icrWEzsqRIUWWpjSk3llqREInuhDic44YT4uYeLp2AG62ZE3vu2EQE62ehNxIH/YjcZj+9vDY8NB4ilnr8s6YuhwneUYtSK4em5AAPFKm3vQuNVm09ZyJY+/hiC9/7o1u+++9tWcoZr98beeviCi+eZWkMWSml8mJ7zb3NKYFTrm6uee3+PZrA1fVCCIFnLy55cP8e+6ly8eIZISbW44q3nr3gdL2iDZVpWRhiYLubUNcY/Irt9dUX/CV9V3f1y7V+3//2j/P4/3XXnHw+9Wo3KLVR9dClNDvxeQusoxW7cnVyFMUemxWEeiBPqDUn6jp+vkFdBPGNdpjMiIkwXVoTzx5Rnm+oi5C8UuaM1Ma4SsRkI/sYItqhbeq0I+5n8n6Lc55wIL2qNUrOOeZpz7geCSnaesfbzy7Vrl59skwZ9QGvSs1mw62tGRU2BEu5beYG0loRH5jKQhzWeCfIojgXuLmGXC0nJsSRcQjsuuukAd6ZJXgcE8EHttst3jm7eqf01GRnKcXqEe9oYqRcUSWFQPIOJxCC7Vpba+ScSasR76Dl6YiCdz5YBk/OLBXiGBH1RKAK1NLQ1o56IDeMVFFazUy58mM/80l+8uNvMS3C5vyc9z94nf3pA67XJ5QU2UVvk6um1IoJXZ1SQqK5Nau4QeMJzq9wPmJ5O5Vcc0+iPuhrXNc29eA+7PmienCPHbDxvWmpn0l1PQhoVfVIiT00Nq3dTk1U1Z7DvWx6o31i1mhV+cSzhb/5fW/y4Y8XUnrA88tnaCtIa+yXzGo84eLyhtPTkftn5/zET3+M5BNLyVzdeHyMvLi+Ypo8m/Wa3W7GO+XR+QNeXF1BrkiGty6e8/D+PXOKzXtSSHhxXFxfcv/e6bv8Ar+ru/rlUaVVNv/VD95Zij/PeqUblJYXGguiXTsiHd3eTAty3Ns0Y51opSth7WtN+vpHFLPICJQOfOsY+FobJVv0vMRAdRvS6pQkA54dg3emjQgmQnXeE8bUM2iMyRJDgBCoweFEmecFVQjNqLPOVXCBZZ6ZcybGxModwvs8MfTpQkzUnG3ukxJOheANh6/VIRrwwQGVZV5ILpLiwDRvEQmEENmcnHN6/oBl2jLv9sw9tG9YrSl5MZdPjBC9rYBKIaRAEGXOCyklxnFNKUt3mlSWecbHyJgGSi4s055htWI1JOZp6idwGMaRNA60WmjaCN7hOppeQiKtN9RSEBdozpPnGZ8Cy5zJcyW5QO123lorVzc73nr6gncud1wXx+mD13jfr/oA7/9VH+D+gweshpEUjLWiYsTVRkOOdN+KojTnmSu0mvG5UmthWRaWboX2zlG1Rx6oh2KMEkto1ltNyOG/Y1PCcYWjIiaU7Y/ZZ6Ru397MbnsQ0b4ESBEqIo68eD78iRd89z+44tPvJF68uKa1C07TwDuXL3j88AEvLvZcb28QhIunN1xdTaxD4Hp/zYP7D2lVubi85svfeIOLmytutjeMaeDJk3dYr0+Ypz2X1xeM6w0PTs95cvGUe/dOOfEj1/uJ83sban3B22+//a69tu/qrn451NQWvuYP/xFWH/pxWn7xXh/OK1evdINSyh5pAdVEa8G2ItqorWtN1MSXtVUkZ8QpIsHEnN09IV1fUVtFcdakdNvnYX1TpoX5eqJFwdcVId1H54EgmeiAcjjBNNNUeGfQso6TdyIUJ3gZcIBz0U7w/cq81WK5PK1Qc0ZiIJdCEEXxOBeo0sxGK6DOM44J723qE7LxSHZTxhFBAy6YMyfqwEkcmaY9NQiFSlqd4ENgiAOiwjztKbOahfXY1RW8GhhuGCPkxol3HaHf8N6xnyacCwx+JHaB75iS5QZVWGq9XZf0EEE72ZvItdZCCIqPkSIK6nuaMcy1MJ6syctCK5ZFNC2VJg0nGVXH8+dbPvXshrh5xK++/wEePHqd+w9f5/7Dx4yrFa7rZFBj5DRVlIb9EizrxzuHE5sOzbmwzVtyXpDWOuguGQW3h/kdkPKtNQshFKP9HhqT2l5KB+4CFO2rosNqqJXb2xyam0Ojc3AGHVZIxkOxSVOtwk98Ys9f/9BTfvyjNwS/5v76jI+++SlkaASUp08uGIexZykJ62HFm0/e4eT8AWdnD3jr2VNoUFrmydMnFLHf/7zf88ajR1xcb1lvNgR1PL+8wp2tuH9yj4uLS+aQEQc//YlPcLY+47UH9784L/S7uqtXsD6Wr/kX//ffzvl/8yHKe30wr2i90g1KLTtKcTQpSI0079HDVe4BZY/2K9dGnRabogSjmYq7vS/tqPCmfRoiGGq9ZdpcyExAxMuKGu4zrO4ztoqTTCtCabmTSQPBeUOhi+kLCoL6RFDFa6XOmRAUJ/Qk44bzjtYyIsq835sQMg341RqaheoFH03Q2H+OqIUOBu/ZLzO7/YI6024Iyma15pDNE2NgqTMt71l2ZlUeViscFmq4U4dKoyyZab8jdjv2MCREheoqPkZUbHKSS2btA975ow5FRAkxUeaZeVrQAifjYE2BYBbj2nCixDTifJ9aOYVayfsJZcCvEzSbOvlgtOCaYM6F/T7zzlsXTBlebCt7OeHhlz3k7PwRm80GHxKlVnb7vcUJHAS5XeyqagnL3jmcC5b23KmvpWREPKE710WF2lkjfdkHFdwhQuEglJXWowlecocdyz62bJ4Da6cc1zqHm+dcjk2JYMJbVQzZ35Tr68rf/6kLfvjDWz72dmMVz5n3e96+eYuz1chunhnHNblUdsvEelxz8eIFpRYenp/T8sLFfMFqsGZ1PW7Y73YsNfP+Rw94fnnF04srVuNotvkykYJwtb/A+8gbrz3k2YsbTjcr3OS5uLhkH/K79tp+1Wt40viunfI7xvoL3/iuflnVx/I1f/7JP89/+5/+Nl7/T+80J7+UerUblHwDUm16UkakGM9C3cEZAqC0WuwqFKFOM1Icil0Bi/PdzdOx5d4cNk2FVpRGASbAUoRDWuO5T/QPGNpMXXYARKc4rzg1V446RwgOh2HEyQXVgPNK9A3vrPmRdtuktNrMUdM6LbUVpv3OaLCr0TJrmglNS2vU3BOCg6eWTBo83nsGn6h1IQyeFAxD31pjiJGSK61OtCWjfm36Gq+sT06otTHvdzjnKGXGO6PcztNkCHkUP6xMT7LbkpfMKOBCoGkXujqPaiWGWzZLO5yzfUB97Ff3EMZEc2oThVyMsKsD4jwhjUaNLQV3OuJKI9/seOvJU37sY0/42CefcP7gNR6+/hU8ev3LOT0/x4fQtSYWiFhrZamF2sQ0QTEc053VuT7RCRhzxHRIUUZUxL6/VYsUaNXYKUZOA6ztOKxijIWiR03JoWw6kruw1XqaWg7EXPr3HoISQcUjYqRXh2H/5yy8+XThhz5yxQ//xDXR32c9ZN5+8sIaE21My9Lpvzu8CwzquLx4zvnJBgGWuRLTwHxzxeAjIQSuLi4YNytWznN9s6PSiGOgucZqGHhxPbM5GUk+8fTiBbtlYjUmcsnUXBiiZ5nvRLI/V53/px/im37bH+anf9//9b0+lLv6Itbb5Ybf+V/+W3zlH/8feZ275uSXWq90g5LLc0RukKIoCVlGnBtRN+JcRMqMhgGtieoKTYMJYmulYg2BhIC4Cq4i1ZuW45Aw6xTRgPiCi4JzzbQiuqLoCtWBGD1KozSIQ8KHSHAO74RaZrRB8p68ZGprVBTnHVXtutzRuvyxEcdkOPO89DRdZZ63oJ5p1xBRa06KaRlcp7vGEBh9B6mpJ3hPKfNReOm9N0qrc8Rg/7ZcKjVPOHXE4KyJEmVYDUgLLNm0IftpYSkziGOuSu0nUXGVmvfcLBUdbI2jPqLqGAZjsoTgzAVEQ5xl/GgIOD1MtTwu2b9Za0HicsxIqgjaIXWtCbU5ribh+a7x9LpQ/Ao3nHJ2/xFn5/c5OT3tqcZK64wXMEu1qusTE/vjvTfInx5+18JxlNGMY6LOW4IyzXgjrR0dNHY7+7tiNN5ajcRbS+3f02hirhtovRFRnO927G7Ldn0NqD3Th9bItYI4nl9Xfuxnbvjwxws/8dGFwob5ek9V5XQ9cnl9bStFYL9MnJydcfniiuiVzTiYo8wldnnPk8vn3D89Q1S5yTs2Y2TJC+Nqw82+MoyR1WAAwJvtlvVmxWqTuHw+Ef2Kss+UOuOjxzshrRKTW38RX+13dVdfuvWB/+YP4y48/lr5yn/nrjH5QtUr3aA0FoOYUcjlBl0cRQKiI05XaFihfsD5FepH1EVDlruANoOVSS6IyzT1iFdaUEQjBD3m/IQh4mOhSWPaVXbTwLREikIKDtWGd5GY1uAsWVildseNOYyc87jWKLXQOgU1OrPb1pzxIjj11FYZRgtArCXjo0IzuFmdJ5bWyMvCarViiIkYIrRKSqNNirSLN31Eu805BGsSovcI4ERQFeY5U2tj1RH4u91E6MySECKtOurcqHEgl8x2N5HrTBwG6pJZpTVhiD3zSC0JWASnjaaQhoSKEsehh9EFtJNryaVj9RXxHiiENIAouAjFTvitOrZXe65vZj71fMv14nj0vq/gkQ+cnz/kwaPXOD09YxhGmjgTvjohJodXEwyb60aOkw76+gbsZwDHr8NLq5fWv0cFJ7YWPAxRaqnUVszlUzN5yZS6dOmS6Uh8dzqJdrt7/xmHxkhUbj93/Nm2Dvr4OzM/+GM3/MTP7MllZIgb9tPCepP41DsXSIOoyn6eWA0rNicbtvsJaqYUJZ2tCT5yvd0yrAaaV/b7Peod0TuGuCLkpYuvhbOTNTf7PdJgiIE5F66nhaUJ61Vit99R5oVpv+PsbMOQBmj7L/Ir/tWqr/yrM3/yt/3T/OnXfvi9PpS7+jnqX/jR38vT//LLfsn381X/z39MubgTwX6h65VuUGgOlYjE7oyYF8qyR1qmlB2u3KAuUnRA3Yi6wRoVP6JhwMWE+HDrzlBwQZGwoDVC6BjxpeGckmmUueHLiqltmLMQZUvoLpE6T/g0UEsld90JWHhfCMYkKXkGzElUuzVaPUir5GINhvbViIoQY8RrAOfJtVLbYqyX7FhmO9lP057N5oToXGeQVMRZcnBw3pqUaBOBZVlsrSSmSym5WFaQdnt1XTqR3QLwvBQ2yZObZz9PbPczZZlZpgUvjtVmg4u+W2qVArY6UY9oQINDx7Wh/Puao+SCDpYPk5sipZ+0faCpJx+cU0tlXhpX24VPP7ni+QTp5D5f9vqXs16fEoeRIa1wzpsrpzWCC3hRKgZ6cx1qp73ZvBWgGv1VRI+k15/15Op/W17TQcQq0qcjrVJKZp4XSlnIeem/a4tVaCilesSpcVzEgHNmzbbpjQ1u2i3vpBaeXGd+6Mcv+PsfvuGtJw3vB2rJTHlildYsrfHgfMWz5xfs5onXH7/G9fWOeVnQJvjgWQ2Jq+sblnzJ+9//kHk/U3YzirCfZh7cO7VJX7XpmWbh2eUFqp7NZsXV1ZZ7pytoysQNue6ZczadVXIspXD9/DmvPboDtf18pf+/H+ZDb38A7hqUL7n6K1cP+I//yO8jffyCRz/+oV/y/d2JYN+deqUblDrfoC3gViuaGnVUDlflTbt4cemukoyWPZpvELVJivh0TKlVFxHxllYbA7IkQ83HQF0arShFjXA6M7KrZ9SWkPwcV4UU1KAdU4Ey4dIKbaZvCDHZiRpQZ0GAJU/QUW2tKVWMECsI0vno3vtOn7VU4HSYPiA4Gm3JlAbkhWW3pXlHbZEh2tg/OCOz1rwgtZFrZplmvNpkpfQ8nlImWq1EV40FUwtahe2yx6sQvYeQ2KwC8zyzXwoXeaaUzG635ySdU2lMpeJVWHJFnWeuwuB6oGNI1FqpJVt6sLeTdyfCQMuIT+TcqKVws1242S5cXy9cTwsST3n/o4ecP3qN9ek9nE+Ielo7TCDc0cKby9KD9RzBBZwLBpPjMB15CZRmrvKjg+Yw/RARWoXDuqaU2qclhVqzNSXFsotEjOZr05IeDCjO1kidGnvA2utRSCtHWi5qmpmPvrXnb//gU376Zxq72dZS+2nifQ8f8NZzobhGngpzqbg4IDeZn/74R7l3dkrJjfsPz3j/esOzq4lVW/Pi6hJoxBSIO8+8zJyvRp49e8awWfPlrz/iIx//FPdPznj/o1Ou54X7Dxw+rNluF1qzFOmLFy9YrQLnD865eLHD+YGNC7z15K0v3ov9Fa3Nv3zNn/+ur+DfuPfR9/pQ7qrXj85b/ur/4vfgP/mDd43Fl3h9Xnnp3/md38lv+S2/hZOTEx4/fszv+32/jw9/+MOfcZv9fs8f/aN/lAcPHrDZbPiGb/gG3nrrM9/IPvaxj/F1X/d1rFYrHj9+zLd/+7eT8+fvCCjLJct0wbx9Ttnf2IlWJxqzsWIlgKbjdKRRKHUi5yvyfEHdv2C5uWC5ecZ884T55hnzzQvy1SX5xQXzxXOW5xfMz18wPb8kX1+Td3v2+8blsmHbTkFSX2U0tE34NrMKyjoI66isYyB4T61KwdP8iqYDcThB4wp8QtOIHzek1YY4riB4C8PzfbLTKq0s1LKYNVbBtYyWHb5OrILDSyWKwDKzTBPLfmLeT0y7Pcu0sN9uWXY7pGTyvCdPE5Iz0TnjirRm+gznDDQnjaRwEpTkG77sGaRw73Tk0fmKx/fW+Dazv7lie7NlP83UWojRjnkpjQUlNyHnxryfqRla89TmaM3RiCzVkwlsF+F6X9nvKi8uFi6uCx998wUX+4Ybzjm59zqvvf6reHjvNcZhYyszFbwTvDfRa6mVeZlRJ6zGgfVqRRoSPvpj0+HUNCjB+76COaD8OQpXW23U0oAulK2FkjMlZ2rJlGrPVe98z0+KhDAQ4oAPAzEOhBBJMZBSJEbj05joWI/5Sg1LQv7Uk4n/z4ee8P/+2xf8wD+65mYRSmtMS2E1rPjkk2c0bSzzws3uBs2Z7dUl5/dGTjcrBGHOM5c3N3zy7UvqBBcvrjgZBq4vJj7y0U/w6LUNjx7fZzzf8ODeOb4VlmlHKRnNhR/50Z9gmSZ++meesttv+Z98xQZ1ldUwWJhj8EYCFri5fM56NfDGw8/dZvyl9t7xxaryzjv8xO7xe30YdwV8Ol/zdf/s1/HHfu3vIH/yU+/14dzV51Cf1wTlu7/7u/mjf/SP8lt+y28h58x3fMd38Lt/9+/mH//jf8x6bYK5P/bH/hh//a//df6L/+K/4OzsjG/7tm/j67/+6/me7/keAEopfN3XfR2vv/463/u938unP/1p/tV/9V8lhMC/9+/9e5/XwS/1EmWi7BLeD4hPAD2nJKBtwYURZETxpinAHYWYrRWoEyZ4qKCZWmZaDkj2iPc09eCEZV/RVcSFRAnCRbjPc/d+7sk1J3pF8EIMDh8cIXmKVlQPQs1OPxcTolbnaCp4HUyvUQpSM00a0srR/TEVc38E7bj1nj4rmGYheAfNGChIYxw8pWSWPFNQyjRTmp2Ah2j4eVXPkidoGcXTph14xYvimk0vai04AT/EvoqozFOm1okgnhQ9/mwkusLzq4ntzRVVHSkNDEMi+siSp56Zswc8c2moM4FsaRV1jZAcN7uJzMSSKzlPPfwuM2xOOHk4kktjtT4hjRtaE6bZQHWWAxRREcsqypPZopNRaX0Xj9Izcuji2YMY9hh82MOUVOUWrnZID5YO7WuNRgYpnfFneUTCIX/IrNxgdnDtxNjbSc3t5OYwqak0rveFn/jENX/7h57y9FlimmfOV+dcbbecnKwAmKmsUqJoZjVuWHYLT955izwv/ORbb7MakjUpojzcrPixj3yU1x7fw/lGcyu211s2PvLk6TXLXHE0ri5f8GXvf8yP/8THuLi8xD8yjdT5yYa4vUFU+PgnnjNtJ9A9037Lg9MNz55fkJc9q9VASHtee/iST/8Ve+/4YtaHf/PCt//Qb+LPvP733utD+RVb/93O8Wf+pX+d9okfea8P5a4+j5J2tCV8/vXOO+/w+PFjvvu7v5vf/tt/Oy9evODRo/9/e38eZtlZ3/ein3dY055q6hq61d2aB4RkpgBWcIhjCBgTHw/4nMT2tZ3ECTEIntjm+vo4T2zHyXXwJSfJSRwPJ+fkmOQkOIkHQkxsxxgMMkEIEMJCU2tsdau7q7ura9i1h7XWO90/3rV3d0sCDSB1t9jf5ym1dtWqqrXX3vW+v/X7fYdlPvShD/F93/d9ADzwwAO87GUv4/bbb+ebv/mb+YM/+AP+yl/5Kxw/fpzV1VUAfv3Xf52f/umf5vTp09HF9BnQ7/eZm5sjL66N6ggkUqYonSNkEpN3Q2N/T4aSXZRsR76KSBAyRcoEZNOGl1nstjR6TxEaZ1ndcBekAh1QLXAKVFaQtzLW2ltclz/Awexx5vIxWRrv5tM0R2ZZdP70IHUW02GVQugMr4to8uUs0/3QWWQwaOEI3mCrMRIosoxESRKlcD7a2xd5QaJ03BRdVMtIKRoTuuiOG9VEmjRNMdaSaIEMDqTE46MnC/EcvJIkOkF6j7NVdP/XAkTDrXGGujZoraPdvoyFUN2Yp53eGrA9tnid02r3SNMcH6K5mHWWdqcTCyaRROkxQICkKDDWM6osiGimluY5Rd6lNzdPtzffuP02RZlKEFpPLfKD8xhb451HN+Z4SiUNWReaGc3ZrJsgIJzloHiaiz+xrUc03yOmnBMI0Ix1xMQ0TSTRzE9wNvSPs8UIMC1SzsUkLLCsLEdPj7nr4TEPPDZmd+gpZIYxjspYVJZQVRVexcSoTpaSpYr1kyOG21usHz9GkiQIHQnJdV0zKIfMzS2wtrZMmmRs9kcsLyzw2NFjLHe6bGxusbl5BhHAuUCSa7RM6PY61MbQabfpzc/jEMz3Wuzs7tJqpYxHFdsbZ0i1oL3QZmmxy/KS5hU3LnDlquZlB1fY2dmh13tutvcXeu34Vr4LLZLndM5fE4Tgo098gUQ8+6Juhq8fXvf33sXCB792rskMXztsMHySjzyrdeNr4qDs7ETW8uJibPXeeeedGGN485vfPD3mhhtu4ODBg9NF5vbbb+fmm2+eLjAAb33rW3nXu97Fvffey6te9aqn/J6qqqiqs9Hu/X4fgBBiazeGqdV446MPicqROiN4i7MDvB3iyJGyQIoCZIqSGULmSJmC9Ajpo4IkyOihEjR4RTSlDYgQg/JE5gjSYGmxE1Y4jWFe1rTVCVrKRP6LUKQqiZwYQQwGDIFECYQKWFfFIDxriQzZ6GTqHASdkKQpWZKiQiBLddMt0UhTNYZtmiSJxQchQxLN27yPBm0BYjqyVARnSKUg1SkhVFG1oVPENPk5oW66NojIlyGYplYLEHy0n8cjabpT3iOIKp2sFT1N5NYu67sjThpAVBRFF6Ujz2WMIc1aVM7hvUAp2SQme3SSorIcnWRkWUHRatHuLJDlBWnRio68066DaDJtRCNFjnf+adK8ZgJCcNTlAGMdOEdwtiGiTjxLIilWICb1ylmJb6O4CRCl0OcUHYluZMnN64U62yV5OsTLeZYASwDnA5u7NQ8eK7njnj4nTntM6SnSlN3hiE67Q+0cQjggdjsGuyPyMM9Of0CqNOvDHWpTEYKllbZJ0gQnPNdddpBh5eh2OoyGNbtn+rjdMYPN04zPbNLf2UUJkEoRfKAeGxZWu7RbOaKCbq9Ff7CJ0pqjW2ewzpCuLXLsiePk0tKa63LgspxX3rjAN10zz/49GaPh81ctXOi140VHCLzsUz/Kw9/6wQvz+79B8ctbl/PPv/AmrnlofKFPZYbngeddoHjv+fEf/3He8IY3cNNNNwGwvr5OmqbMz8+fd+zq6irr6+vTY85dYCZfn3zt6fD+97+fX/iFX3jK560bR3MrqYEkun36WGgolaHTFiE1ODPGVjtg+yhyhCjwMo2dE5liRYpU0dcEEgQSFVIkGciMgI4FixJRnaID3pWUVZvTepme3qWbGYpwmkxPNl/RbAZNmJyPG6USAak8SoCVAhsCSI/zHk/c8LwXBBICntortFZkSUqrVcQQwEYtIlW8A5RCIBNNImXsFgQXQwSDI8sSFJAmCuPiy62kInjHRE2UqBSdJNiyagzj4vl5F69ldFglhhIKEVN1CSQkqCSh02shvMe7ASfGnqGXKDISlZFkKeiEpN2hlbVIkgwpRCQgq4QQouoHGa+bTlLyVoc0TRFKxQ1exTC+6OASmogCiU7zxq23GcN4h3e2Yb266O7qXTRZYyInjh0mGrlxHOFEzgfeTTsqoSlGhJRoZEPqTWI37SsVJfiz5OxGJRRwEAS1DTx8subLD4x5/IRhqw9laekWGePK0llos7s9ovIVi+0Wm5sldTnm+Il1sqslxkk6vTZKa+YXFqjrknI8oqzh+pddSZoUnDp0lMPjk2xv7jDuD9hosqqkUAjn8EqgkpR2npPlGqkl/dGQ+YUF2q02ztdkWcLRM5u4uuSkL+m24OqrV7nx+hVe9bJVDi63aOequUzPb/m4GNaOC4Fr/+YDXPW//R0e/d7/40KfyjcM/tU9f5Frf+SLF/o0ZnieeN4Fyq233so999zDpz/96a/n+TwtfuZnfoaf/MmfnD7u9/scOHCAEBy+KUqECHjhIscjuLiRiQ5J3orJtb7G2wrvS2QYoXyLQAEhFiTCDZCi6agIjXMCYRJEnaF07L4In+CljOMPRlhV4jo5sreHQjoSJVjSQ7yUeJ0gtSZYTxANn0V4tJSoJCHVCXVVx5xaHQmevsmcqWtDXZcEAlalKK2xHtJUkyUa3Xh7BKkQTUfBOo+zvrnT1435m0fJBG8rqmqEI6pJrHONw3xUJSF144ch8ZVp9m0fCxKdNB2PyOGQxM6PShOEd4RGXlsUGfv2CJJ+zbZ1ZG1Pu6XJ8hSR5qi8Rd5bIe0ugEoJonGeFSLmIk3cdBvpL8E3KcIqGqdJHZOTG3pIaFim8XE0JxFKR++ZNCdvDNaCd00BEwOTpiMZQWNVL6KSJoRmKhR/lg9Nxk4IeBHHIkHEiEH5pAIlhKZwghi7wKSbE91sN4eeBx6v+R/39DFVxm4/vj9VgJ3dIbWL3aCN3R32LnU4enQd4UFK2H/ZZSRZi8HOkM3tXcpRSVWN6HYLlheWefTYcfp9w2hnm53NLfIkod7dRThLOR6hlcRpT7vbIUgoihZISW9+kSTRKOEJzvHY4cNYW5NniiQJzC90ufzAHC+7Zg83XbvMvj0FvSJpVF+RT2Ps0xdqz4SLYe24EPBlybX/fgzfe0F+/TcUPls63ve/3soVR0YX+lRm+BrwvAqU97znPXz0ox/ltttuY//+syY3a2tr1HXN9vb2eXdCJ0+eZG1tbXrM5z73ufN+3oSpPznmyciyjCzLnvqFaf/cx8wcYQlCAAbvK4KrcG6MmGxuqYjyUF/iXYW0I6QoGg6KAeHA2ykhNXIfFLbptCiTI+ssdkgShdBjfNXheNnCh70EnUCyjtAlRd5CIHGmpnbR4j1TjqBFHFtohfAB7X00UBMSZ2N6sMaTyihRNtZj65LdaozQmm63R7eVYlQSR1rB0UpTTF01EuVAlqWRjOojsTBJEmxdgozCZu8bVYZ3JAi8KRFBNpKuMO2+ROdVGbsLxJEFjTNqmHh+COLoQAsSmaFCoDcuEZzCjzcQNkGnBWGYEEbH8dVlpAtXIFtLqKzVmLSJqXFaaH6Fb1RLPsRxkmi4KEzGJt7FYyc+8TS8j6lfyYRr0rxVQuN7IhuBrzgnKngyOqIxhwsB5T060CQeR6Kt9wGBi8nF3sUx0uQnCNkQih0CjZIJNYETm4GP3bnNiTOBwmmOnTjN0nwvviaFwpQ1O7t9ghOM+gPWa8OpjQ2Wl+ZwpCzM9zhxeou1PQU7Z7YIGG7+pqs4tn6G0/0+1WDMxqktdja2GY4G+ESSpQkhTQgySruLVouVfWu4AO12p7HyrylHuzjvyHVGNR6S54ruXM7By/dwyyv38fKrFpjvFqQCtBIoJWLzaZJdIJ87fe2iWTsuEOSXHuSmf/Fu7vm7v3qhT+Ulix0/5h9+51+nc+9nL/SpzPA14jkVKCEE3vve9/LhD3+YT37yk1x55ZXnff01r3kNSZLw8Y9/nHe84x0AHDp0iCNHjnDLLbcAcMstt/CLv/iLnDp1ipWVKL/72Mc+Rq/X48Ybb3xOJx+omsWysSwPkhAkCI/HRL+IqkaiotlWUpDn81EhY3ZwZoT3I7ApUuYo2UbJNoJI5py06L2vI/HWy8ZOP0MkOTqrCb5i5GqO0aPV2suBq65G7/NkcxY33GT38BbrGw6DYt+ehKXUoFVACI9KUxIVXWKds5Fcay0qUQSfQQDrLNY6vASpUhCKQWlJg2jkxh7rA1mSgLMkUmG8x8s4YkIGkIqsaOFClF8nQkeb/xDwPnZMqG1TdsS7e52kMUXZh1i4NSMr7xxSx7GTx8XuBiKqf5xDBEsmLNLXGGOwY8XIRY6LzgrqzaOMF06QrVxLa+UgqrOEkHHU0/wndjsE6DSHxvUWwDsbx04NvyNWDme5IJEMK2IvQzShfCHE5wCRWDq1tT//7n/CJRGT/5eyIVmrpqMUMMZgqhpnTeThTLo/IhJwrW9ILSEwNoYvPrTDZx+sSZMFtjf7bIYY6Hfs1AbtVgsRJINhn6X5ee6//xFwJT5RXHVwL3O9OY6tnyERHqkUBy5fYlDu0DYF6+un6W9s0cpiAOV4Z4dytEumE8bjEcPhEJUo5hd6iDzl5utv4omTGwjrSJRmNB5QjUZsbW3Q6bTIe4KVfV2uvHqeN7zmAK+6dpGlTnxvRkrzOddL+MZhFzL97F0KLra140LBlyX7/+nnuG7+XXzph/4FmdAo8eyv4wzPjB/4C38N/8RjF/o0Zvg64DmpeN797nfzoQ99iI985CNcf/3108/Pzc1RFAUA73rXu/j93/99PvjBD9Lr9Xjve98LwGc+E/MJnHO88pWvZN++fXzgAx9gfX2dH/qhH+Jv/a2/9aylghMmflZcT/AlwY8IeHywnF1M5XRGLoVGqgxUglYdsrTA4fE2jn0maholMrTsIkUPqVoIkaFEVL1EXoeJm6KI5l8i0cg0QSZtdKtHp9vjuquWefMbr+X1f/4gna5hc32dB+95gLu+tE6nu8KVBwUr6Uk6ckymIdMCbwM+GBIVs1hMQ+qTOiEIcNYgBdjgsU4RpMZJgQiOdqZR3oGtwTmUEGgtKfIUlaQE52hlKZlu9DMhEKxBhDgWy7MMU9cTmkczygEXApJmXCYCSZo2XiCGVGmQAhdAJlkksXqP845Rv48tRyRCYGtDaSyWQFVbPJI0iwZ5Y6tor1zB0hU301q9BtnZAyohhICzFqQkzeI4IrhoKR+sgeAbfo+MUuGphX1EALyLWTw+xPwjISRZXqBUEkc5Ex7JOTXKeTb3zb8TD5QQHME4rLNnf8vk94a4hfvmZxnjOPR4xW1fOs1O1aXft2zu7HDD5fs5sbUbs5u0xBuL8Ibt7SGbZ3ZwZsxiL2N77Fhb24fHcdlawfFTAx4+dIIiKxjunmHvygr90YCqHDPqj7DGIEUchyV5jq1qZCJpdTt0Ox1KJPtX93Lq5AmErxgOxjhjyLKUVjdnYanD1dcu8fpXrnHTVQssdjK0mFyepxZy5/0d7vaZn5t/Vmz8i23teNFVPF8Bwz+8io/f/J/ILoJzeSnhj0YJ/+IvvAl74um5STNcODwXFc9zKlC+kmLhN37jN/jrf/2vA9Fs6X3vex+/+Zu/SVVVvPWtb+VXf/VXz2vBPv7447zrXe/ik5/8JO12mx/5kR/hl37pl9D62TV0JovM3n3vxvsRpj6FcX2sHeDtLp4xnrhhx4FAVGRImSBFhtJFzOkRCUIEnDOE6CJGcCBFgZLzJHoerTtRvtss1H4yPpCO0IyFVJKRtBaQ+Rx5d5F9+1Z487dcw5v/0hWs7s85euQJPvw7d1PqA3R7jt7wEHvbm1y2B9qpQdgSIWx0I0WAdygtY7ZMCBhTkWgdJag6x3rB2MZNu5XltDOF9mO8KbF1fN4CotpHSrJEkacJWkkEHhHclEuhGnfaRIH3DoKcWu7HDCEJMo6lorGYb8IWPT7EbButY7FQjksGO33seIytojtt7SxpnpHoBB8COk0jwVcIVJaTdpaQc/vI9t2M6O3D6zYizVAqmYb+eWunhUJ0jZWcN6CJGuFGCWXxTcdGJQlaZyRpGuXiE5+T4EGq2CURcSwWOzdnfWD8VJocpvySOMZp1D0yetlMHGeH45qNvuXhJ0r+9AvrrG94pNb0WhnGWoamJE06rHRb3PvYEZbmexx+7Ci+LClrw803XcfiwhyPHFmnLh3W1uzb3+X0xjbeBE6f3KB/Zpt2KyNvdUmyhO0zG/gA1tTYOsqTi3bB3NICN910Ff3tIU88sclSb5ETp54gyyRJIskLycpKj4MH57j5hjVuumae5U6KljE4UTQXNf65f5UCpfk7fFYLzUW2dlwsBQpA/bHL+aMbf3cmQf464xdO38in3ncLxSMb2Mcev9CnM0ODF6xAuVgwWWQOXPFzKJESggEZ8KGiqk8R9ABTRXdYZwZ4PyL4EtGUK0JIgsxJkjY66SKEbHgFsUNA8MiQoWSLJFlAqwWULBAyI6o/ZCN1DXhfxeOTFNXqoLMWSXeZPctL/LnXHOCmm5dZ39jm8188w9ZuD1yNdrvs6465arXmsj01K90x3ayi3fIkypMlEiEiV8R7T2j4ILUDIRXj2kXjMwJSarQMdFNPIT3B1th6jLeWpNlMZfDkqYq2+YnGO4cKISYue0+aRamytQbnIgkkTXUTPihRaQqJRrjGP8Ta2Mlo7NsDAm8dO9u77GxuooLFNpJorZP4b+PYKpTEIyiygqQoEEmBExq5sBexdDV68RpEvoj3YEzdqJJ8E+rnGy0PTUowDRm1KS6a7keik6gWShJkQwBuZEjNsbahoOjogSJCtOFvFGBChCbIr0k6nhilnLdhx9ThygZOnxnxuXvWufuhMULOc/rMDs452q0W27u7rCx2qcYVw7qmlWUcevAIgkC7kxOc4NSp01xx+QF2RxVaaHb7ffr9bZx16ERy003XcuT4CebbBZub2wx3hgTvscYQpIxFZvAsra7Q7s0TPOSpYGvrNMHEcVnaSjlwYIkrD3Q4sNbiqoNLXL6vx0I7I+7tkycYzhYoX6U4Offv8Pn4oFwoXIwFCsATv/NyVnoD/uTlH7nQp/KSw6s+/9fY+/+ucQ89eqFPZQZeRB+UC43gAa1RKkUoDUiSbAWZSZwbYzpbmPEGttrEuC1MvYmz23hXgSsxvsKaUeyoyIQ4IHAQfBwB+QpnRii7jVZdlOoiZQuh8yhXJkXJPC7tQRBKMHaEM+uslxWfHJV86YGTWCEpTYobjQheIkSb/rjg8JZhvmVY6ZXsnTPs32NYXbAszgUybUh0wGORImA8ONl0VdJmm/aO0bhiPBqz4UuWey26eUq7k5LImNRsTE1wFmTDMAkiZtgQsHiU0njvsTZu0EIKVJohG5faEFsHU8fV4OPIJPJNPN4FamMZD8cM+oMYLiMFSZJGDxgpG3WMJzQjES0lUilUXiDyHIyF4Rm8CxifkqwWyKRLlqtm5NIoa7yLHRXnpqnBhEj8FVKilYq28zptxjgNuXYCJaehht558JZIhpYIpVBKNRLkcLaoOftrCAS8B+sDO4Mx9z92mmOnDU+sj7n/0GlGY81lezsEJel2Bf2dXarxmEce6SMEzM31eOzkUUw1pBzWZHoJoRT7LlsmCMH2mW0UCmermCA8GuKN5Z67DyGV5PJ9K/QHQ6QSGBfzjmSSkqY51jv2LK9R1xW7O5vUyoKvmVvqsbTU5mXX7+Hm65e57uAc8+2ULNGoc83kmi7UpAB7fvqcGZ4v9r/jXtTSIjf82g/xwLf8Pxf6dF5SuOu1/5HXveFdLMwKlEsOl3SBIicbkJBMev6CFHyCTtpovUSa7IuGbsJS11vU5UlseZq6Xo95PH6MNf3oSCsUDRuWgEIIjfcGJ8b4MES6fvRLCS0ULZTsoFQbKaODrRQSZ2ucG+BMha9GVMNFZHcemTbeJUgECh80Q5sy2g2cGnV5aMMzf9ywPFdxcMWxf8myumjJ84osDUgtSdIoic5UgidgTI1XJTJrMRr0ObIzRO9YLlucY3U+J5U1iQSFQjWeH0LETBitYtEgA3hbIURovEckIm2cUglRotOQTGMTIyBCvLcOzlEbQ7/fZ3enjwzEkZAPaCnxwUc+TVNcaK1p5QVSC3xd48ZjklRH+/66wg9OY8XD6O4iaq6DlxJ1jl+JJCC9JzTKnqlTLDRk2kiGFmLiAhsx5ZcAQglkSAgyKnHwAmTM8oGmY+U9QYCxDmM9xkXZ8bA0PPDYKc5sOY4e2+a+h9apTMbq8j7GY09ZDtjd3qBfjmCxQ3AB72tOr58gBM/W6Zwrr9/LTqo5NjxOORyS5C327l3h2PpJihQGOzsMR0PyIsP7QK/XIwSLVpK7/+x+nDUoKaMrsUzozs9Tl2OcM2yePoHzFYmCdi9ndd8y112zzKtuWOaay7osdHMSPemMiKeOXWZVyQWFO7PJ1T9Z8Kr/6d3Mf8+xWTdlhm94XNIFimha8KHhD6gm9K1ZfmMbX2UgcqRK0OkSRXEQfI1zu1TVBnV1irpcp65O4twwWprjgJrQuMIGkeJk7GYIN0L6FC8KnCgQIkfKHCkzpC5ikRNsFJeEGpGCVhLtBTJLCSqSUAXRQl9qTZCSkQ+UQ8vpkeXRUzXzRc2+JctVlxXs36dYmNd0tCLRAZlICq0BT3AepQWDQZ/tM2fo75zhsY1d+uOS/Ytt5rIMiQXnp7yTEDxBKHSeIYPHlm7apRAEpNaQZdE0LjhcZVA6epPgGpmvg1FZsrW1xWh3gAgelWi8tQjA6VgIESTWVDhjGI9G+LqmaLcZ7w5IR0P2ZApdFKA8Wjgk2/jB44T2HoTqIoKceMBG9Uijmokqq4YPdN574uzI51zi6ySxWDQEV9lwUKKsOTQ5Pc0erRRlWfLZP3uUu+5bp7I5VS3Y3h1y5vQIYxVKara2S5TyVKMnqIyj3c555OGH8T5w6rhmYbEHGvbtW2Hz9Aan1k+QpB6l26yurjIYjNna3GK4u8tg3OfK/fsZ9ftoqbC1ASHp9/tcddV+llcXuOe+R8iEZHcwQMpoYueDQSSwPNcjbyUkWcHeffNcf/UcN1+/zBWrXebaKYk6S3o9l7/zTHjyBPgrcUlm+PrAPnGMlV89hvrYVXzb5T/KD/7yf+NH52ZEz68V7/lff4vfvOsv4//s/gt9KjM8B1zSBUr0qDgre4xm6CKG70Gco8t4ZyyCQIkEr3OkUiRqLxlX412Jr3eoBscoy1MEOcZWG4yHJ3B2t7k991g3RogaITRSJHhZIRnFfB+rAIXQBVKkSBKEyiI/o86xuwJhol2+LHKkKgDV8CeIZBNifpD3mtoqdseaY2cM9x6u2TPnuWwpsH9Ncdk+zdKiYr6TUrQEWQtksOiWZ0GmtLsLbGyeZP30cU5v7XL13nmW2wlJCGQypvkiQKgEZAoiIDMB1iCDn5qYySyNpmkOlHLgfHRabQzM+ls7bJ7ZIFhLpgTOeZw3qKZHZJoxjPOeJE1QQpCnGUWRUXS7FFJjvcfWBqEkUmtEKydpZzi3iR8eR+krCbJJShRi6s463SQbe/unbpnnFCeOhnk04aycZVac/TmNQVwz4gjAme0xf3bfaQ49sEVpFEp3sNZzcr1Pr93Da6hGNd6W1KZC64SdM4JUKULwlKMhw+0zoBRXXHEVJoBOE6pBhcWhZIJ1NdJbhtt9vDUcfuwIxhgSFSXeAKPhkMOHj3L0yNHIDslz2t0WaVFQ5BmtVo5OBYvzmj1LGVcdXOC6q5a4fE+Hdj7JaGpCCgmRLv41FBmTgmVWqLywcA89SvIQ/O6bX83vZim/+6e/NVP6fA34p//H/8Le+75woU9jhueIS7pAOUtcnLh8NnfJMpIoQwxaiZ0WGRUnk4RbIRVapniZEVQHna3SyRW6l1BtHmN88gms2cGaberqJFV1Gmt3cWKMpEJ6jRIZQSSAQqAQdkwgJcgUETL8cIRzI5Ksh0l20MMdks4CSWcRmRVIXcTknKAbboRvWgDggsKj2DU5u6cDj5225I84uoVhac6zvABrK4rVPYFe29ApJK2sQGcZi2sdFpbWKHc3eWLjOKd3hly5p0NbgfcWLUP0YJEKH2p0luKkiK6r1iCNxY9LUBBMjfAx+dnXFdXOkN3dEeVwiHCOXEmccwgvoidJI4cWWlLVNYkUKKFJ8oxWp0vaKRA6QeQFIssIUhKsAwmyyKDdRukEV59GjBeg2INUk7fpxDr2/A3y3E7Jk7/mhZ++WaZy5OnXxfRnimaMFAIYY3nw8U0OH9nECYFKBM6MGi2YYae/Q1XbWNH4QJZmjMcVVVXisyiVbnc6VGXJaDjikQcejhbz7S6jUQlUWFtHlZSIGiGdpzgfUFphTQ2NpX+epySJolUk9OZ6FJ0WeTuh11HsmU9ZWyk4sNrlyv3z7Jlvk6eKpOnSOR/pPbLxkomipadevxkuXthjxwH4riveQHjNDfyf//lXmZOKOVlc4DO7tJBtBYKpL/RpzPAccUkXKFPL8RAtyKd312GSvBJAqKgcadQgk4TeEEK0Mm/4BrrXRRUZvh5BVdDu3ohIMwIWU21iRutU4yeo61NU1RbO7mDdGPwuQcjotRKyKF0OKcrHTooPQ5zbRScdrNnFjDZJd8+g2/Oo7iJJMYdUOcHHwkSKSNSUssk7mW6+ilpIzlSSrTOSR3dAPxHotjzLLcfermTPQmDvnoT9+1osLs2zvGeF1X372Tz9BOs7J+lKy0IKhQgo7VCyRquAsz7utc4igiM4j+/XkKbIROLrEmM9w60tNk9uYJ0nUQnjsmRoarIkJSCwrjGC0xoZogttp5WjlSTRKVmeI9IUrzQkKSLLUZ2cIDTeONAKkbURaQdfBwh1fI1Fo9ppOEdCPLsuwNPe7T/d9zXtkyAkPhgeP7nJZ77wCI6UNFWMytj1yHXK4nyH0kFmBKPBiPFwhDGGuo45Nj4YrLH0+7Gbl6Yp1nqcMwz7JSBIE4VQ0ZnWGIuQknpYk6Y5SidUwuKcIUs0c4sLdOY7LC912LtasLaScuXBeQ6sdFlZbNPKErRWTfcnNI638W9ASlAyck7OTVp+ttftKdduhguGYGr47N387YPfwvpP/Hne93f+M9/efpwV1X7WP+OEHfCx0RXTx9/beYKOzF+As7248KWqIh34Zz5whosOl3SBElUVNs7WfSRAxpXaT51JhRcIHcdBIlqixFa5FyBU5IFmCbLQeF9hhrt45xFaI1WKlG10Nke+eDld8WpstYspN6mH65T9o5jxKYzZxLkBPlT4UCLQeJHGYsUZlLEQDJoArqS0Q3Q9JKnH+M5oWqTIJIuZNPHJxeciBdDYqEPsPsiYslwby8am4dQpz6HgWOp5Xn2tZHk5pd0qaOcaIZdYWF7l9LHDDE49zsAPUCqgTY2UgbSVRcUSUZ0jmmBDX1lsWaOzhNHODsPhCFNWlFUJAQb9AcPRAEJAy6rZ1GIXKM8zilaLRCQYJBLFRJ6N0sg0RegkepHoBFpdpJOE2iJUG2SOUDQ+JUw5KM9UmJxrb/90nYIpXyVMSL9NqF8zagvCMxwb7vzyCXZ3A6assF6SpQWj4TY4T5pmKCRjZQkuRXjPcDQiBIe1giCi/4ozsUARWqATgRAeU9cIJM56lIxeOmmexPfjxIMlONqtjFY7Z2llidXVBS4/UHDN5W1edtUya0st8iyNbwsEwgu8BUeUhEcalkAoMS1wJ6/NMzFPLkHHgW9IrP3zz/Af/vl+fv7Xv5fXvPysMuXK9hn+ydpd08fvO/FqHh8tTh9/8e6rufbWO6aPf+m3v52b1k7wn6/6+Itz4hcAfzRK+JkPvIs9v337hT6VGZ4HLukCBTwEe85GJqOZV2imP0JEb5MqNP4WimnSLTRmXhKRBkw9RlQGX9tYKNDYfKsAOso5hSyQSYe0s0Zr/hrcwhBXjzD1JoYNQtii2t2gHvZx9ZDgaoKrEcE33ZoYdy9UQQg13lfYahdXLJAWi6h2F7LW1PrdjUeIEFB5B5FFom8QAbwh2EBwPlrTe0+eK/bvK7j+hhYHD3ZZmMtROvJNMu9Jryjod3tsnXiMzcEpHCaGAwaPSjWCBG9rsDWutBhbUVcGW2rK0YjxaMRwOKaqHdY6hoMR1seOhq8dWqrGzM1hK8fQjslSQ6IT0k4bqURjuy8RSYJINSFLCHkL0nYTgxRN5tAeRAch89g58aoZw8jndEf/dMeGEBrDtslHLCQQkTD70JFt/uy+deo6sLC4zObODju7ffK8RZJmbJ3ZIlUpSkCWKUwFUsYxkbeWJFUQBEkSpdzO2TgaCj6aiQnIkgRBQBiPD7FWzlsFzjqyPGF+ocfCnjn275/nllfu5xXXL7C62CLV8X3ug4DgpwWF1HGMFs31nvp8nwlPySz6CtduhosL1/3Y59g95/G9L7+eq376VdPHN7x/F3f/Q9PH17Jx3vcf+L572JGKqz74N1ld3uH2V/zOC33KLzree+f3c8W/nhUnlyou6QLFWYOUIIOOao8wSa81KB0D24K3eF8jk3xaoHjnkVIQhCFM/E9qgx2OYrefQPCGIBUyRNKjaCZEhOaONCQkxTJJS5Cr/YieIQSD2Rphdnexox1stYMpN3HVVrTkdzXWjEGM8bZEuzHOtvD1AFfuoss5kvYCqtWLbf/BJr4ckS3sI00zHCF6cjgbTdQECGHp5IFvuq7Ft7xmjlfc0GZlLo0yYqKtu5IC3VZkWU67u8jOqcOUG4cZ1iW5tmRaIZKYJChCNGIztWE4GFHXFmMMg9GQ/nCMDxLnA16nBKKSJGiP0EmMBMAjlMJYSzUyJLqMScRKkjaFJFIgWikUHWTWI8gcmu6BcBLpU6TuIXRx1u31WeaVfKWNdboJ+9D4qEQ3XEQzVgtwZmfM3fdvotQ8Q7NB7WuELGh3ErwLDIcVRaeNNZ66qkmyjN6iRKWCZFRS7sZcI+89QUZn2ylF18fXzgbb+I/4Rh4tSZOMTq9DkJ68SFlZm+dl1y3ymhtXuf7AIr1OOrVQm9KuhJxcGqY8GiZWhM/xmjzpc+ce/+THM1y8cPce4tofPufxs/km77j2h7+IvvwAN/7wu7nqTY/x0ev+4IU6xRcd77npU/yn7/t22r99xzMfPMNFh0u6QPG+bjwvJN47hJiMGRwhiGhq5mq8qaP/lpRE5udk24ikSO88wRpcPY7y36gNinekNt6teh+TckWQE2ew6F6LJ21rRKKwwxwtFkjaHlrRAdbbEmd2cXaHerSJHW9j6x2s3cWO+wg7gqwkhBGm2qEebZO0FtBJgS2HOFeRhhKVWLwAVzkIjrRQ5N1oGd+VcPX+hKv3FyzNZZHjIM52kYRQSJFAkpOnXXrdRTa7c2w89mXMTp9lNHnmwBrcuGKnP2BjY5ONM1uMxyWRwaoxXqCSBHT0DUl0CoTm2kfzs0QrvDPgogPtwAjU2JO3JC2p0TpBJAkhTZGtNsgMHBgrCckipIuEpI1K5gk6B6mbbtbTynWeHxrCtG6kuiFAXVv+9M5HuOueo1ib0O4ssbm5iQiWJCtYmJvngVOP0uq0qOoxve48o9EAYwydTpflPcs8/thR6nIc04K9R4qAbCIEkkzGbolxCGnIshxUikozut0enbkW7a7gwGUdbrpmmZuv2cPqfItEqWkhEUL00jnXgl6cl8r8tXc+pDwnfHE28vmGgX38KAf+0VHc793ID//aG/l3l992oU/p64L3LjzOv3qVpP3bF/pMZng+uKQLFBGibBIgBDdVksauiSEEBRi8KxFW4WQSZ/MyuqRO/g0OgjPgLN4Zgowum974qA7yChEUIknPKm6aOZJIAmhwJfixQLjIBUAm0TBO5aj2HELsJa0NMjicHWPGm9SDU5jyDLbq48pNhB7g7AhfD7EyR4gU1c7JupD3POXYYIcWQSDLFb05jakqBusnOf7AJqP9Ar+8ik9UHLlIiUBGInCId+BSSXTWY3HtepQu2DhyL49unqarDF3pqMdD1k9ucur0JoPhAGsded4mTVtxJCI1Os3o9bqNA63F1BVKxy6D1oqqGuKljynNQlGRUZJhyFB5i9BqI1S0eQ/C4W1BUIvo1hJKF5BmIBo3WJ7JcP1ZvlcmG7cEQWNC1yh3vA88cWrAxqYEmXPi5OOkaUG7PU+Stzl96jSnj5/CmZJee5GTgzMMBw5vHAu9Ltvjmo7M6HYLRjIwGI5JizZFmlJWI6yLYYypUuRFj06vw9zCIirRpAWsrha8+obLuOZAm70rXXpFdHo9ywGPtvuTjKCzRQp8LVXbk9VP510nzhYps7HPpQ/18ut5x29/6lkcuc63tR4GOi/0Kb0ouOXP3sE1v/wo9pkPneEixKVdoDQjd+Fd45NxVj4agmMaKecMvhoTRBqJsQ0RVUtBCJZQO4L18dhgzo5ziOOdIBVaZAilomWJdQitCNIjcoE1Fj+SCKsIQUU7eGIXBxFNvRCKJE2QUqFCj7S7Snv5Olw5pNo5ST08ibE7IAxCGpx3YEd4l2G2WpRaYWxGcAkBGO0EvKspxJhr1nJefvMccyspUkMIFmcdXjTjER8dZBGiGSwEkAm9pctot+c4efwRzjzxEFs7G4zObHPm1BZlWaFUQZppWp05HIJECLTStDsdpFYoJMYNm+sZEMJT1wZrY3PZNyTU3XGNGhr0KLDqM7JiDlEUeBIQS4jWKlmy0PiyTMzxGsfTc0me593Qn9M5mGywT5Ybn/+fcxxlI39DhqjmOr7R5zd//3McOTzCB8X+/Zdz+vQGhx99lLk9SxRZTr/cpa4HHDvyGEWvy8LcMseOHCFLLa4q2XFbtFs9lpZXOfL4YUxdMxiMsN5RtHJa3YLlxRUCkqwd2H+ww03XrXL95UtctqfDXCtDK4E8hwg8ebqTbpiU8mkLhmfqdDxTYTErPF5ikAohBZd9Oufv7/1DABLxafbrZ1t0vDSKE4DNfpve+iMX+jRmeJ64pAuUuNFYoAl1a1xOhW8WXW/xPhCEIPgKUw9IdWNpLxtHVRfAOrw1gI8JusKe7bBY02yYAUej/PEB6VTjViuxZUA6HTs2XiKExjEhdAaCb5RDApw3cXSkk2iRr1Jk2iLbcwBCTT3YxA5O4+UIK4ZYP2T7+FHSrTE6n0N1WsgiRcmMPVnKa1+2wOte2eO6qzt0i8ht8NY1kThxlEHj3xEm45jmXxcMIJhfPoBOcp546G5ODI5R1YG86DG/sEBWtPABTFWSJtGTQzTFoJKKVquNdSlCCKypceMhiVaNVb7AWoc1NbuDEa1ulz0hg5Ah6CGzvZCsINMeiPPfiuJJxcd5RE7vokJLxWIwxAsMU6l5PNZDtLFv7O8n7xoaq34XHFv9kjvuPkldzaNzx05/l1NP7NAuuqzt20tV9tne7rOyvMzVV13NQw8/wnjQx1nJ3NISzgQ63QXanR6H7n+APXvXWF7bR13usr29wUJrjvmlRVSiWFxuccNVLV73TQe4cm2euU6BkvIp5mmTzsWTy4anUzGFp7k+k8eT458vj2TWObk08fA/fS2P/NVfbx69dIqN54qBL6l30wt9GjN8DbikCxTvLWCiugMx7VjEoLio4AnOxXFLMDg3pC4hQSDSHK9MXISdjWoYAWhBsDXeGYTXSJ3iQ3RFlec40yIlQkic04Ra4J0A6yBIpIx+K1FVJAjEDo9SSbM/CgSe4EqccRAESmVAQjFfYIo5zGgTxqfBj0nyFjqbJ8gWWMF8FnjljTlvfPUyr375EsvLLTItwRucdTjvsM7gTIVzBm9Nkwbc3IkrNSWrKiFROiVr9wg6Q6cFrdW9zM/PkxctamMRItCdXyTVCdbHJGO8RQpN8IE0WIw1oDW51phxiRYyGpdhkFpiTM2oNBjdIXQuJxT7EMkcQuVECfGkFnl65U1U38BEyoz3keviw9TeXjTmZqLxkhFN6rQQUzbpOfwjGIwqbvvCI/zBH3+Z0UjSW1zgqiuu5tChhxlsb6KV5vKrrsZ4w9bGGTY3d1nYu5eVlRaHHzqFc4LSVNhxjUdw5ZWX4UVCOa5I8zbdRcXinnlWVzWvuGGBV1y/yvUH98bXKjyVN/J05nNfCed2Us79/3PxlVRMz+bnP9djZ7g4oPeuodbGF/o0Lgr83SfezHV/a+Yeeynjki5QwJ3toDR26JOxjw8S6YDgY25JEFGZ4wyhHEY1R6KRWhJkdASdfMQFP8p3BSJ2YJQGZxo+x8S5ViNsIDhFsI5gIiFViEDwPpJyA0D0F/E0bXrnCMaAdXFjTTRByOb7QGYFabIEoqbsD6EeowrQ3ZyFhYSbr4E3vrrDK27ssLSgY8FFiN0YFVDOoZ0maB15C85OFSVM/E6EjOGFMkWIgAgWLQTzi4vMd1vkeYEIgo6ANGsKK+/RaTzeViV1ZTC1oaocSqeI4DFVHd1YnQMESZo2lvaO4aBke1fSFmuodDl2oxp89eKk+f9miCeQBCmanJ5GiSNFExQYjwhfzZwsQGUM9z5ymj+75yStbJHd3Q3GO1s8fHqLNM+Yn1/i5PHjHD96jG53jr2X7WM47GOd4dTJAdYGpBzjgmXfgb2cPrWFVC28NYyGO3TbbaTQrK5k/C9vu55XXLVCmqizT3FKbv36KGaerrj5WguLWWFyaUHvXeP+91/Go3/x31zoU7ngOGEHfPL2m7iGz17oU5nha8AlXaDEOzzftLGbtn+j4kE6QkibbgXNhpyA91hXoZwE0UhlfSM7ppGg+qiU8cEhfUCoDGicVkWU0k6KIMY1opZ4CwiFxOKDhSSJHZ0QkCSAB+uxIYCNoXs0hlrBW0TQkfsSAqhIbpWqIMkXYnHgHK3M8LIrNK+4MlCYY6w/dJpqvsfC0jytTk6qM6SMYyV8tPzXyKhmCmC9AUAncTwVTI0xQ4KtqHZP0c0V3ZVlOkVBlmV4Z6fUD2ssMpGkaRr5G0IhE0cYjVFKIwiYaozTCUFbrKnJ8hxT1zhbIgVUVcnW5mlWxiPSbjiPH/K0r+2EdnKWz0rzChO8xzfngYqdEhrOCpzjMvxkiCj5PbEx4hOfO8qR47tInbG8tpf5bo/77r+X1XabM5tbtLvL7Pa3GQxOMDSGtctW0brk0ANHmevOU7Qyjhx+gpNHTmCNo50n7Pa3KYoWSM14t8/hR0/xxXvmaacJN1yxhGq6fc/+/c2Tiqzn3m0577u/hmNnDrMXN0bftJ9H3/J/XejTuOCoguFb/91Pcc3fn/mfXOq4tAsUX4OMluGxmxJHMSEoFDZuZDJp/CMaToiQeBwyGESI5lqx26FiYeJrCPF78RaPQKUZSI/3FhmiHbrQAjGWUAMGBJqgohNIcAJ8DMEDEbsXUiGCAO8JTsScO60b7kVjOBckQTQWcUEgZYu0nSIkZD3NwQMJr7i84qqlIa7aYuPUkEGSYfbuoTdfoCVoIZAi8itEM2LyzWYuBGidkGQZwTtcXWLqquHqVMzlEt3qoVTkbNTWUo1HoCStoo1QCmstdVWRJAlKRSt3IUU8Lni0jmTg6dhBSJI0w47HOOuwdYWpq0aNMqWBnse5CMRuDZPU4uZz0QQmhhZ675BKR0XLOdLYZ37PBHYGQ/74f9zLIw+dxBnPeLiDtTk7G0P27dtP2s1g9wSD/hZSSvJOjzOnN5ABVtfm0SpjPBpRlRVF0WU8HEVisjN4Y3HaszvcptPOqEq4/c5NHj18hnf/4Gs5sNpDiaZT0hRgT/YdeYoXyfQqzTDDDM+E1/2Tv8sV//tnLvRpzPB1wCVeoEz4Jz7yEmJfA990CqDZ00TcxAIKRJQmB+8a7kmIfAYp8c6BM8R0Wx9JuAJklsTOiquBFCF89P2oakIZED4m/ooQ00Yj98RHwiwgnI3W7hDHSCH6sQQpCDLErkdQTQdITMdIQurIpUg8+1ZbvPJKweXzW3TZJGk5lnKFCI6MM/iBAK0IQhIQmLrEmjp2lwQIqWO3QSqckjgfO0FKJUghmwIJamOwzsfgOgJaSVSi8VJQl2OssY2iRJAojSQwGA6oyhLvLEEIUAqdpgTr0EJR1zVBREWU8xPy5rnupb75NzSk19gnQYZ4uZoxT+zcxI1aKd2oFeSz7iaEEHAB7ju8yaHHh5w6vo53gW53jlar4NETx9kZZBTz8xS9eZzZZef0ZjSU8zGt+eEHHmVucQ8Oz+n10yQ6I01TentajAZDxuOKrFigrgbYVEPQnDpxhtPrjg/93iHe8bZruXLvHCJMNPHx9SGEaajfhFwdR1WxqJo8NyGa9IPn+rfydeh+zLomM1wK2Pd//tnEcWKGSxyXdIECDoJtHEzj7ainjITXoPAOhPQIofE0vhKNK6knIIXD25rgfMy3CT5uCcFHmTA++qYgoFGOeOmjZbt3cU83k7t8h/CGQIJUGuEcuObuX8p4PI2nhdaN8EgAPvJlwsSrpJHZ+okcGNJCsrYoWUw2oDzGsOyTJYp2u43WGhU8MmjGoyFVbSBAoqNkVacpRdFCJgnCx3hb62wsCqTABYdSmuDAGMN4MEYpRZ7n5HlGZSoqU1OohDzNCEmK1ApnHVVpcHXFaDTEu8bZNoCWkrEdY2sbFUCmQiuBUBrvLFU5AmdBJE13IHJxvIvy5Kiw8dHOv7F09yF2yqSSKKWjmmjKOXl6nM2gaVRUwXHs1Bn+2ye+zPY2LK2uMR7UbGxs0OvNs+/gPvatzXHHHQ+yL12m6HRQePobG+xZW8PrDpXrc/rUCZKsS29hgeFgiLEGR5v5PXOc3n6UcVXS7vQQSpKnOUmi2dzc5NCjff7d79zJD3z3q9nTS1EiIIVEqcgH0lIhxYSMLZthlsB7B03RK0QAIc5JKP4qIYDntqS+6jXiHJLyV/hRs+JkhksA3/bDP0oyvPNCn8YMXydc0gVK3Lw8hMbUubnLFjKODPxUlimQyKl0OMQyIK7f3kXibJh4StgncQRkHMmEKB8Gh/MGaQWhMuAVXkBwkTQrtSJ4E4smB9FxVsQxUACps6Zg8Y1/S9w8PSBciP9qRXCBYD1ap2TtBMIG/ZMPM6gHiLanqjxlVZJl+dTEq65LpJCxu5EmtNsdhA9sbGwQnCNNNKlKSNIEoWJHxdnAuB5jaovzLspeG8v7wXCEUopOp4cQirqu8CFQjeLv0VIwGg2p6xotJVqraK8dQAmNDYZEgNIKT8CKgLcVphxhrUFJHYsR5/GTbJnm0vtJF2VicSIliZZIpVHNaGeCZy5SIOCprefzXz7KkWO7lP0xC3uWCWmHlU6bw8fX2X/ZAdbPeFZX1xgP+wSfo7IeTg448tgxdJHRmZtjdXWBB+9/lMViDS8Vwo3YPLONVCn79h3gxInj5FlGNaqphhWdVk5Zjjh+5BTj3S4f+q/38H1/+Vqu2jsfm2kBnHWReD0poiHGLCo19T+RouFxO4ttSMDT8kuIpniTqAkVJ8DT8V3Oz96JsuwJSfnsl57Za2XmNHsRQQhc8eziIF6q+Jb3/h3afzyztH8p4ZIuUFwwjc9HDIDz3jULuZ5KTYOXIBt+R3AgYqCdVJGHEYIjYAl+cgsZJaxCCIKc+Ji4KV8g+ECQHu98M64JeO9ji16CEDbyWfBN5oub3p1KGQ3ilBKgm91GxkTa4B22HkcTF+NwZU1wCah5ElEwOPEwT5SfZ5Rt0Ztv0e3NUbTbtLptOp0CKQLW1ggPaZqS5TlCaVSSstQqMHWJKSvG1ZhxVaLTPLq/etf4o8SAO2s9znmqcoxQCpWmjMYlxhpsbZqdL97Vm7qkHo9IEo1SKqp1nKMux1TjId47bNPcss6C0lRlyXh3BzMeEoSMxRVMN+XYU5rc0U+6BAqlkmac89wCA6GRFYfAQ4+f5u5DuxzcdwWHdh7i1PEN8l6HdneByikefPBhsjznimuvxFjNieNHSVVCCJIsLxjsnEEFyeF+iXeBM6eOsbCwzMHLr+GLX7iP/Wt7GQ8HWFMxHGzjrCRNM/rDAXuWl8mLFqeOn+SRhwP/PX2Q7/uOm1heaCOJnSzbFKxCxG6REALlXXx/T0oNSbxKTcfNT1jE+MbvBZSU0UX4nJGRbL7vyXyW8/1lmsdNoSSfdpY0Y8RcjKjf+ue47Vf/9YU+jQsKVc8K5pcaLukCBe8IwkDwjVfJhMvgCCQIFxdmEQQ0HimEKLn1TXptmBBiQyNZdtEU2UvVqG9C5J40Rl8hRCWPCB4XAoJo6hZ/mMR7g2gkyiHYxnY/NBwYjfcKGXTknBAQQUTX2GDwYowQHleNscNd8DlZS2G2N+iPvkQY3MdQVxSdhFanRafbo7ewQHeuy/zCHK2iQKcJOs1wLjAejRkPh6RpQpom5K02Ks0IPqB0gpISYwJBSFSR4G2UVXvp0YkmL1pIqaiqEkFAax23Qu9pFTmhyLCtHKzHVBXVcIg1BlvVVNUo1m8+qpSkUhAU3laM+5uM+pu00wyR5IjQuM42e54gWrtLrZuOkJoSYZ8NQkMInvw0AGMdj5/oc99Dh2nJLsuLixgHx46vs32mT6+dkM2vcnL9GFsnT5AVOZdfs0b/dJ/+9gipNEWnRznaxXtP1ppnPB5xpt5k2C/RKmV3tEs5rlnes0CrlXDi+A69Xo/t7R0Gg4pyHMm9o6Hhc1/aJMkf4n/6S1dzYHWelNjZC0RCs3OTrkYzpgpNepQ/ZxTTdJyaMjq+54SICcpCNlwqELKx6zvH6C0WLbIphGBiXjcpaEITARAaNfR5UYQBgggYO9sQLjSqt72Wuqf4zD//9Wc++CWMX9++jGyzvtCnMcPXGZd2gYJtjNAsTLSoyGZmHxfb4OOyH0TsXDhnmvGPIs71o6Q4piBXeG+adNsJUTFMC58YGlgSjEVODNvO4TmAI7iKKNZxzV2ua04twQeBCk0SsXeRQiNiQaVSgVRFnFYlGaKdR78UMcLsPIodPISxI0aJozaW8bBisLPL9tYZ2u0O3bkerXaHolWQZxlFu01vvkee5kihURLKYdnk5xiUkrRaHSA6vpbjCltbEMSxApK6NiRJI9FWOkqiQ2jkx5EzUpcG4T1VWWKqMeV4hCljwGCqFSKA80S5dxrHS0gR/UuIauuJv0m0eVdIqc/rlpzriPpsEV+WyesXePz4Nl++5xhLC8vsnhmyPdrGBMHy8hJVNSA4R10N2bdvL8PhkDNntpibXyLJWuQtx3B3TJZ1qEJNCIHxYBAJwdJTjQcU7TZz8z02Tz+Oqx2Dfoa3sLV5JhYcRlGNh/QWOmidsNvf5bOfP0IqHH/lTS/j4N45lIiS8Ik/yuQ5TMY4kxGmn9YsviE7wznVXVNYnM01nhQWzvmmmIlVjRTRR0YASkTpuQ9xXHk286d5DcLkuobpaMm5WcLJhUL5na/jzMs1//bv/O+8Jpu5pf7qv/ku9v6PmXLnpYaXQIECPjhEo4BBKJobQiIBtQbvJkt+LEQQhKCJxYxpiogotSW4RurbbAshjmmi94nDUyNkwLvGVC0u73Ek4Q0BEzcV76bqDIQkBIVs/FqCqwkWRFBNXk48LgQJTsYNukgQ2iHlJuweR7s+gcC4Brwnq4ljF+exVc1osENRFPTm5un1ejhvUakmSTK8d1R1hTMGGXwsMIByVKGzDKFiMUKAPM+QKm5pVTmmHo9J04xUJQgp8HicFARrqccjfFXhrME5i1KaLMsQPuAMQKC2FqUkOkkJaU4xt8ji2n4688voJMMLGbk58qzrqxAKpdSTX+yn4Mny3Cf/f/ABHwLDUc2X7j/BA4eOodMWVVVRtAu2T56GEGi1Wgx2txn2hxgDQTryVoszp09TtFuEIEnSnLLcRQjIWnMMdndRWiJR1OUIW9fUowGpTnCmphwO0XmLclAiZSBPUwaDXVAB4fsIAdubjtu/cIrKBn7oe17B8nxrKoc/m958lgMSmnZGvDKCECQ6eM4WM83zn+qXz3qohDDhbDXRD2HC74kp1GeL7Ph5KSfk8EjUjlyVyUdUnj0fNdEMXzvG3/U63v7//RN+eukhYFaczPDSxSVeoHiCN5H8ymRNFgTZ8E9C4y/SKDicj2MHoQq8V01R4JsOShzHEDxCeoLwDXnQRd8TJCFUgEEKiXUGvMAjEcLHn9t0a2iky2db7DoyZPGEIHC2JohA8AmoGOwVfGyp43w0HUsEqqVIzQBVr+NsxchbTBV/R2YluVNYJ/DW0AqeNNFYW1PZCtV0M+TCAlme4YJHK0mwNZWtsdYRakMuIbhIGU4SHbseBKT3aCEw1mDqgMxzBApbV1SjEfV4RDUeobWmquvIkmjGAs57jPHRgE5rpEpQSUE2t4e55f0Uc3sQSUZAoIRASN0ocjhruNbg2RBgz3181nlW4J3HWMehx07wuS8+hKkdwlXsbKyj032s7Ftk2B+ycbqEEEiKFqUZoxWkaUGSCpypqUpL3mpjXeyMhWqIUhrvLSOzQ6ZzrPOMhiOSrGiCJj3WjvEBtFD0d06hEeAs43FFkeeM6zGnTnk+8alt8jThr779RpYXOgii2++5z2lyLc7tJMXH+pxREE19cVaZc26BI6bOvc1QKDSjozDp5DXXr8mymvxLU5CcHQ/FjyR55iJyhq8/Tr9KN8XJDABvuPt72f/RU7gLfSIzfN1xSRcoIdTT1rb3NCqIxvYdiOOLWDB4N45k2GZT9I3cJDRD/chFsQhCdJBt1BQxXC+OdJw1eGwsTGwNQSJENFIjxA0ZfOSrTNrzjUpHBBOJuKIhEShBkBLRcG1lEARnwUlwApkn6NQiR6eg2mRQOZy3aAR5IlBN2KG1AURK2spJOx2yTpe80yPNU5I0I0kSpFBUZUk1GiCBJE3otNtIrRteSexc2NpSjeMYKISAVkkkXRIYD0a44KmrkvF4BLbG2Zqqjp0KJSTjsqKqq2YsEWIKdJrGIiXvkM+tUMyvoIouXmiUiORXhG7k3+G8TTW+xoFzeRPnbs7nZdH4ELlFTaE3+fqZ7V0+/YWHOPbEGTCCMoHlfatsnDlJqz2HTDO6C5LTT5wmzQuc8SRSMdzeZmFxD2e2dqjHI6wxqCSh2+3S39mh3e5ijWBkaowxBCHBS6pqiHeePM/xwaOap2JsVEiNBwOkUIzHI5RUFJ0Oo9GYL9y1wVznQb7v22+myJPp+5bw1CLtqY/PuWaTxss5Jfu5wYFP/jmuIcZa6zDGNt8ZgyAnvitKnY0NmEYJzBQ8FwTj73od/9cP/ysatvQMwPHDe+gc+tyFPo0ZXgBc2gWKL6HZXJEiruee5u4zyjYnRmxxHGQikZVRNMpq7lJjKzsal8VZUGx5n7XPjzwX7ysQHmct3tbROl/KpgMTf0csdiaKINE05GPxEgjNZuzxTiCVQISYPmxKosuskSidxDFSuUO1dRhVDQkhkCWKRAgSIJWCIlNoHUi0JM1z8nYbGp+QdnuOrCjY3t5m0O/HAsBb8iwFIRiXjQVu8BAkxrroZdKoQZDg/IhUpxSpohyN44igcaBFCoJzKKkIAurRmLoc45yLDrmykcgqjcza5IurdFf309mzl7TVI0nzKDOWZ/Npvlq43ZMRi6hzihMf+RihUVUJIQk+cPzkaR586HFGZSRCm3FFUsyzML9KomBrZ4QJ0JrL2NnaROuCImsz2Nph48QJhNa0Wh36233yPDAmbvuj4Yi6HpOkWXy9vUOoSMhWKnqYaCVjxICxKKFIk4xyPEQXMQYheM+wv8NgXHH8iYLf/i+nKIqct/6Fq+m2suY3ydjVe5J6aXJZhHi6ayTO+3dSrJ0t6M5eW9N4zfhJ3SzP+rJEDsqT1Txnf+ZMyfPio+op3pDPipMJ/vL938kN77t3Zsz2EsUlXaB4b+NGFIWpxLuKyBWJchPbKB8MUBONrjT4IQ6LkGnT9pZNZUOUviIRzQYigscLwDm8H6NkwJoqdjt0VL0Ioaa8kzjGkY2gUzSFgceLWBBFA7gQJ08IUAFwhNLiCQiX4KUiYLDDddzucVJnkDKgQkAo0UyQPHUdeSzl2DAejWj1OqRJhxA8w8GAgKVd5NGro1HCGOexowpP7AKV4yFZmmOqOvqZpClSZxRFgbE1tq4xY0E9LhFCkGUJAUk9LnE2yo6djQoS6x1Ka7SORFikgrRF0l1hbu9V7DlwDZ2FvSR5F9mQMpt+yHlmY+d2Rs7F5LH3vnGcjeof7z3OuYa0Gc65yxf02oqXXakod3c5uS1Ji3nOnDpBkbfJM0WmPdJAr7eHemyph2NsVbNnZY3R7g7luMQJj85irtN4NCRrtciyHGOrOMaLsx9KW9NOC6TSmLJGJgl50cLUNShFNY5dN1vX0znJ9rCi226hMkV/AH9823Hm25q/+PqrSXR0Pp7UAeddjSlv6en/Ns4b+zzNF62LpFnnG/VbIOYrybPE5EkXEc4vHicFz8y87cWFeO3N3PH/+7ULfRoXBVzwvPPoG5FvOjorTl7CuLQLlMkoJ/jpaCeqG6KbhpgUHtSx+zFtezdzFTw0WT2TDSMWLCF2W5yPpNsgcL4meIPzBu+qWCQ4gaRJLw7xeyKPRUCjgJgWTiGSGmk+gzdEykt0lQ3KTjcdgSI4iyhPk/gxlampCCgpyWSgk0mEliSpQqaSpKVIsrTpvCRImZCmGcLDqN9vOkyxo6GUjkWdECSJIgiBSnUszgDvPFXVxwx38SEqfrRUJKnGW8doKDCmjiTcJIndFtdY89NIt0UsTmSakrV6dBdXWVg5QGd+L2nWQ8gEQmgcgBv5asPZDN5PVShxk4wFqHcB7y3Wx0LEubPGbg3LAojdC5rHQgT2793Ld77ljWjxKT7zhaNs9g1aKYT37Gz1Kdotqsph3TYLy8u4RceRxw7T68wRkGTdHqPdIXmaYp3D1Y6gDIOyJNEavEdLUGmOHTiMs4jgEDLKfYeD/tRozfqYYaR1Qm0NUsY/v9IGzHafYC2PP7HFf/2jEfPzBTdds0aaqWaU6KfjTJqrNmVdiVi0wYQMe5aDIpqU7EmHxHnfFHTRNyh6B028UwRSBrRW067J5PsmuUnPVU01wwwvBN559I088c2DC30aM7zAuKQLFEQsIKYyTCBazkev2NCYuDlfEYKJ44SGdyJCdJcNRPKgF/GxmHyfN4ABmYIPeF9CqAm+bNQ+URUkpI4bbYhhgnFsAngdv7cxfxM4hBegYrLxxCcFr5CpAiUQId4xB1HjqgF2d53MjOOdtI0maFWT7+ODIAiLTlIKqZqipIXSCS44hqMBOIMInizLYldDS0QaCx0fPOMymrLZqlEeWdPk7UQisGo4KlVVUo4mRQjUdYWQCp1lpColTRNUmkRjN6kid0VpZJqTdbp0ez1a7S5Sp1FBZRsCMdH3Y0JW9t7FrJ6GA4EAF6LDrXcO7y2mkYkrHVVRYjLim44cIuE4jiYkQmr2rh7kLW/6i6Tpn/KFLx3h6IkE41OCkIzHJo5wdndw3jDs77K6d4X+5i5V5VBp7NY4V+GspzPfi863ZY1ORZPkrDBVhdIKIcFWFVlRIHUS85Ak6CShNhaEYFRVSJkQjEdJMMZhzZC0yChrw30PGf7z7z1A+r0JV1y2AMJHxZhS0yI8OulGq/zIgTqHOCvlWe6K8LjQFHjWY6zFhxALT63IkqjOUkqRaH2Odb5oDAibvyoXpgUPMCXYzjDDi42/dO93kb7lyIU+jRleBFzaBUqIvJFpSx+I0uJ4NxmLjaYQIC7yATtdZKPyJmlUCqrprdSRfhbOLs4hWAhjwOFdLFJiMaGaROV4Jx18TfRkiaUOIcqgJyZZAQdeNAojmmLEAimSNH4NEaXRw1MwPI01NUGCFrE4CD5QW4dWIHVKkkmyVoaQknE5JgjIsxytRJweERgOdlEolFakeY7WGlPXeGdJtKYOgXI8JjiDreuYC5PoeAUF0TwugFZJ0w3wCA+aSd5PFrspaYJKEpRM4jXJWiSdeXTRwTgXuwnaIIVuaomz5NZJfRGLDomzEz8Pj/NxdBNN22STQ6POK0qsizygiQGZOGdcEYDL1g7wV779O9i794t85A8+w2PHSor2Cqby7G5tIZRkNB4xGg3Q2wl1bdBJghmPY+7PRLnlapxxIASmrAipR8ucqq5I05yARGiP9QFhLUon2LrEGItWGd6LRkat8S5mPakQ/UcSFU3vrAg8/Hifj932GG/6Fti31o5EZNU4GnuPalyJQwiNHX7sokgROyHeNzk+IuAiE5YmxgedaNI0vg/0OZyTJ9vaSykJ4ixvJYRJNhLN38+suT7Di4MfeOwv8dkvXQfA9f+fe/Cz4vgbApd0gRL9SRoianNHGT8voqoGN9HwME3IFfFOXcqG/oEHXJT8ShVHN6LxVAkykml9wPthbJW7MhYlaPCy8fGQkSTrozwZBF7G/g0+xOydhrSJcGdHShC7CA5CHfBBIVUCjLHjE6h6G+fjHXDQMYtGBUikIM8UrSJhbrHLnuVFEqVQWuOMYVhXyBAosmw6dhI+2p6PR7topREh8gxqEbNdynLcjFoCWqd4iD9vIkryxK4GgjQr0DpFJ2nMxklSdF6Q5jkqzRE6Rxcd0s4cre4iIu8yri0yDBGyjCOmEFUtseiJAYpCSoyNYYZSRtdaJgYfTZdEhFjHydDc0TecE60UqHPJm7ED4HGEIPAukGQtXvOq1yGV5j9/5BM8/sRRsmw/3sbrNhj0abXalMMRAUeSa4yvsXUcJ7bnelTjWMDKJKGuPLZ0eDFCSE2SJgyHFYlOz6rDvEd4HcmywSCa/KPgTKQgqZwgHAKFkAmjasTC4jzGwp337IB4lB/+nleQpyIuyiK+3yXxsXFxrDTJT0I2xbYIDT8nkoMFkGhNmqZorRt1ThxBnvVKeeqiPxlPAU8pYKbubTPM8ALh17cv49f+9Xex9tkB13425uzMyuJvHFzSBQq4ZozTGHFPTKvwcXjTdDDCRE48kfgCPphmTBN9T4T0SJ8S3WXLRuEzsQt3hFBHF1pn8M4hm46GEAEp1FmJcWgkot43WT4QvGzyZeIGPzG9mkiSg418BYQCaRF+B19vINwY06QEBxzOQt6od/JUUuSaNEkQSExdo6TGGotOowrHmAohoq29MTXKS6wxJOqcsUpweGend+JCqtjOlwGNJEiBUBKdJORZgU4kQkXnriRNSNIUmSSEJEXlPVTRReZtkqJH1p4jaXWRKsEFosqncdaVRKdSrRKkUkgdC0QlmjGJrQg+dlHc5I5eKbROYvoySVOcxLGDQsQRyNSmPY7RjPMYHzkrHoESkptuegVBaT78X/47hw8/iJLLdPesMXh8EMdcdUmn3aYaDtCJxtYWaw3j3SHGBnSSEJyNeTcIvKvIspR6HEMXVWM3L6TCWBPfJzp+j6cm0S18w6GpXQkykGY5tqypyzGmnTHcrrA1fOZzQxJp+O633kyvm4MH4yx10+lSzVjGe0eiFN4FqtrGTpNSZEoiRdJIheV0NARExdV5br1P+vOahgg2D88RBw0qx5cP97/Of88zfDWIBw5z/f/9Lg79zZc+UXbLjfieH/u7pFs1a5+ZOcR+o+I56dXe//7389rXvpZut8vKygrf/d3fzaFDh8475lu/9VvPWfDix4/92I+dd8yRI0d4+9vfTqvVYmVlhZ/6qZ/C2udum+3DJLvE4VyNDyVRHuNwuKaDEu17Jv0KIVS8o/YeF2o80f01hBrvKlwY4sM4FhzegTMENyZQ47H4YOL/B4sPNd6VeF83HIoq2uWHiqlJnDcQTPN9TT5PqPC+wvsaR4XzFd6a+Lt8hS3P4MebGGMYWc+w8owqcEHQ7RYc2D/P8nJBogPVYMDWqZNUgz6j7S2q4QBXmmij78CMLf3NPoPdXTY3z7C1eZrTG8c5s3mSnf4ZtrfOMByNCMGSJJJOOydNFSI40iyh3WrRabdptXN0KhGJRGcp3fkFirlFVHcePbeH1tIBipWr6O29hrm1K+nu2YfMOwwqw+ZOn+3dPoPhLraqEMFjm022KkcMBzsMBjsMBttsb2+xOxhSjkaYakAIBqmiJFs2BnzWBeq6wlqLc466NgzGY0bjMWVVMy5L+oMh/dGYUVlS1xbno9y3P9xlMCzZu7KP//m7v503v/FKDq4M8KNjLC3P0Z7rgreUVUVV1RhjqZ1lfnEPWolo4pakOOeRInZCXKCRXDuKVCKxkckkYgdFKYlUDoUg1xmuqrBVDQGsiRED1WjIqL9FsI7+5hbeGWw1pjKaux82/NeP3YPxjrIeE4IlSzR5lqCVwFpDWVfYhmBMCCRa08oyWkVGUUQ/nBjqeHakE4LA1I66sljjcY5GHeVxIfJ+QjMyjX9jjnFtOXRsxO989iT/5uO7l+zacSnC7+6ycP9Lt2v1sn/9br7jW9/Bd3zrO/jBb/t/kf23zyM+82cX+rRmuIB4Th2UT33qU9x666289rWvxVrL3/t7f4+3vOUt3HfffbTb7elxf/tv/23+4T/8h9PHrVZr+v/OOd7+9reztrbGZz7zGU6cOMEP//APkyQJ//gf/+PndPKBGEG/MJey/7JFsizl0KETjErH0mLOy192OUeOnOChR0+ASACY6+UszLfx3nHk2AbOV6jgWFrosby6wMJim36/5LFHNqhqR5Y6Dh7scOU1a9x112Mce+IURcuzstrBWtjcGHDZZfP4EDh6pGR5WTE/v8D6+g7LKx1aeZfjJ4bsDl3klgTRjF2awklEz5DgDM5HnkpdPoEdbzddmVhFOh9IfOSDJDLyP+qhIck9eUtjaoMpK9IkoazHDJwlyRJarTZKxuaRlJ4k0/jg0TolTVIgIIIkSVOUjr4kRZY3RUFCkuVIpUiyBJ1k6DRHJilCpYi0TTG/SFLMo7MuKimog6DerXB2FAmxKmb7CNF0G4Sgruvo8KEEiVToJCGRGqU1VkQvFu88dfAkxHFOVPVYklTiXMxOMkTyJoALrjlGUtYG5+OoQzTZTFKqOPLxnjRNEcGzsrSHb/0Lf57lpXv53B2HePyJEt26grXLDnLm1Cm0arpDOMbjIcZblFQM+mdIskgONhhCUFQmqozyIofgUEQDPJVEuXo9qGl1W4xHNa6qImdHqfhcgyX46JdTFFlsVTiLrQf0+9vsbhUcftQxN7fEG169TKeI13VUVgQRyNKUVGu00uhckqbplKsT32NP5y8DWoeGrxLHNt55PE0qt2zsDhvO08ntmsfXh9x3dMiXHzV0uj02NpJn/bd6sa0dlyqkg4Ev6cj8Qp/K1wWn3JC3felvsPJXn+BgeUcMTp1hhgbPqUD5wz/8w/Mef/CDH2RlZYU777yTN77xjdPPt1ot1tbWnvZn/NEf/RH33Xcff/zHf8zq6iqvfOUr+Uf/6B/x0z/90/yDf/APSNNnny3hg2WxW7BvX5cnjp1m//5F3va2V3P//Y+w/8Ae5nqLjKqKhx87iVQSGRyvftXlHDywRlnVnPjdT4JSXHn5AlnRYn19E+9KrrhymeuueyV3fuEhFhdzoGJ3+wyX71/g6NFjXHvtQeZ6CXMLPbY2BySJ5uabb+C22+6i22mx/7LLWF0tGI09CwsZ/WHJzmAEIY3E3Ubt44ND2oQgBd4LCA5vtnHVKbyvo+qnmbhKCYVK6OUJrTSwuNgiTTrIIMiyjM5cF1/X7PZ3ECFQtNpIpWi3W3GUUEKSZCgtEVJFHwxjEBKUTsjSFnmekiRp5NUoSJKUNG0RlETmBSItEFmXoruIygsQKTLJcEmCcY5gdiN3R0T1jJQS6x3WRqOyQKD20amVAEmaEjKFqU3kVzQhhEIogoieLT7UIAw0I6HReIAQEq01ztpYuGmNczYSOGHKB7ImGp0ppQhB4nwAH7C1R4lAEIG81eVlL/8mtEqpPn0Xjx9/gFb7CopOm+FgRDUakOc55XgXmaYoJtJxxWA0RjUeOFmmMEbgrSOIs0RSnWpsGXCm4cGkiuA1SukoWfaeJFPUVY1WClcbnDSEIKirmqzQjWtwzh//6eN4N+Dt33YtWinSNEEnOsqdpyTiKM0GzvNRm/JHoLnG8QChBFJF756JAy/E4WlVW45tV9z90IC7Hunz2NEKWwa2zmhG4zHps69PLrq141JF9z9+ltfe8JPc/85fvdCn8rzx8bFi27W5e3yAz74iYQ8PznglMzwtviYOys7ODgCLi4vnff4//If/wL//9/+etbU1vvM7v5Of/dmfnd4J3X777dx8882srq5Oj3/rW9/Ku971Lu69915e9apXPeX3VFVFVVXTx/1+nH2H4Oh1C4q8zVb/OJt373Dd1Zfz6ldfx1x3HmMDm1t91tZ6LMz36HXaHDy4xmg0YHe34sqr1ui0WszPdfnSlx9jY6vkppv3o5MUJT1vectreOKJI+TFMseeWOfBB08DiocfPs4VVyzQ7XWoastDDx3jssv2s2/fHm771N1IJdnaGlJXgfG45tTJUUwpxp9jnRWzfhAW50tCEAgsWVrSSgBfwESZgiBPJcstTSuJTrGEWEBAwDhDXVb0evNkRYsQHFJJlNSkWYFQAuMsSZpSFG2SLKOuHWUZR1EqyUiLLlnRQiUZKkkjHaaRqjpEPCYrUDrHqRQrErwTBGsIlUEgYsihkNH8y01C6aJbjW4SilWiSaRqPFACwXmQInJTXPTraGRUcYTnHULKJrVXRm4JHq0nMQbRq8W7OIIQEx+UCSm6GVUYEz9cFOAgVXTARSiMF+y/4mq+LS2443N38eCDh4Bl9qytMtwdYsoKKRR52qIcj8jzNF4TIjHWWIsUCVpbrI08JBHAuthd8QKyVoKtwfmaRGuMMSAciU6oy4okV7FAsQKhQGuFqS3WSYINmPEux1XGJz+zw/61BV5x4xrdIoveNlLEoEUmCdvn/PEIcb7faxND0FionHd85P4EBqXl2Jkxj5ww3P7gkPWtDFEvcOzoEFuNCNYgGOHM6CusDM+MC712zPDi4f56xAfW3zp9fPJvrOHun2UJzfDMeN4FiveeH//xH+cNb3gDN9100/TzP/ADP8Dll1/Ovn37uPvuu/npn/5pDh06xO/+7u8CsL6+ft4CA0wfr6+vP+3vev/7388v/MIvPPULwmGdYW6uYM9iwekNwyOHj/La17yML9z5ZXYHA6666nJe86rr6HW7GFNTlRVaZ3S7CTfddCWmsngHaSohWA4fXucN3/xKrKnQOlCWJQ8/8gSPPrZOXWk67YS9e+dIU8np09uUY0t3rkNZlexsDyhyhVSOLAskqeaxR09RlQpIEMLHzaEx2RJSxLttVyFcQOeS1T0t9i0dIE8s3kZJdFYUJFqRKei1M/JcoUUgK7LoI2ItQmlGSpHlPdpFgUwU3gekisZgiYicnUponEohF2StFB9ApRntuSXSvIi5QE2y8MSsS7iAcxaDwDoJ1iNkHKMgojFbtJevGxJm8/KISDJufkq0rGtCE1WThquliKWKC9FLJjS/V8TfKXwUixtj4/NpZM51XUfzM2eRDUnaedfIogXOuShZbmTGSokpv8Iah/eSgKC2DuMcPgTme3O84ZtfS7d7L3fedZThZkXa3hu7L0TnVZVG9ZKrTfQ5sYEkSbC1xRiHTDWmMmghkFpirUMKhUoUtqwJlSe05FSdZL1tYhISahs/p4KMr6kIOBOo6hE6SxiPxhxZ1/zuf3+QPFO87pWXo5V4ijnbeZ2Tp/zRTCzvzxq/hRCoas/Wbs3j62MeOl5x76NDTu7keF9wdCOqhmTaQdQWIWqyxDN6npv9RbF2XMJYvNfxK9sHuHX+6IU+la+IV33+rzEcx46WfLDN5T93+zlfffbcpRm+sfG8C5Rbb72Ve+65h09/+tPnff6d73zn9P9vvvlm9u7dy5ve9CYeeeQRrr766uf1u37mZ36Gn/zJn5w+7vf7HDhwAIJna2uHnZ0dbrzhAKc3dgnB4j0Y46lrS1WWFEVOXdckqcLUDqkDWgueOHyKY8dPs7gwz8EDSwQEg8GY4WjI44cfpXYHuf/+x1hf36a2gVZL8s3ffC2dVsGJkyepa8uBA8ts7+zy8IOPcu11VxKCY+P0JkIkHH7sFMNRQIosOoESDbSizDgQfJTNuuBRaPK8zcKiYHFBk0mLEJC3unSXlmh1O+RZStFqRZMyAlrHl8+bGhE8UggUHi01KkmaO+UQ83KCRzgbN+mmOyFVCkEwNgY/GqMrg7OOJElxzTFa6cbg1jcZM5GsKrUmEDNipIrjGxEmHiQCIRVSxY1ZSRk3aSmmhYmSEikDzkfjMNeMhqwDERw6SQkBjLEo1Zi2+Sgbd9Zig0UnOlrsByIBVCucc9Hfo/n/qXlbAKkVCrDWYo3BuUBVG2pTYZ2jNg7nAtdfdy1FnnP3lw9z7OSjqHQvc4sLnD55kjwvqOsaZyxJlmMseDQ+VBhjyHSC0k3HJyYfxJBHlRK8Q2qFULEAVDqLpniJnj6vNMtiWIMJJFrhnYhjrFRAqChHJYePSP7wTx4hzxJuvmEfSssmQdk2HjHyaXkn0DRLxNmYgOHYcfzUmCc2Ku5/dJcjJy1HTirGI832lkVIh0wDXsXXRcqADQrnCqD1tL/jmXBRrB2XMDq/dQcf4jvo/qPf4Yd7Gy/I77jyv/8o6bHnPzK7+n+7D7e983U8oxm+EfG8CpT3vOc9fPSjH+W2225j//79X/XY17/+9QA8/PDDXH311aytrfG5z52fPHny5EmArzh7zrKMLMue+oUQGAxH/NmXH2JpsYdSiqqqWF//U0LwVJVh48wOaaIxBpI8oVPkvPzlV3Bmo8+DDx1jc2vA+sk+C3MtqtoyGFr+9NN3MRzucuTYGc6c2cHauKBbO+bI0XWscVS1ZTgcsb21y05/yO5uyWhc0t8t2d4eIqViNPSRnCvi3TCy6SOERhI9MV9DgJK0WoJOJ4lSXhRpljG/so+lvXvpzfdotQvStCDNssayPhI/na1iLo53OFPhrEV4hzM1wXsckaiapo06AgCJSlOiLDugGh4DziGVwjUGaUJIRGMOJmXkKTjn4iZqo5xVJRqpNUmWkhXF1F1VCBFN5nQkq4qJd4mMPBgvY2ZREJEEHLzDCxVpN9bHz03NwKKnR5o21vhEUzJk9AOZeKFEe/zoM+N9VKCIpnvjm1DBEDy1KSnLEmcdZVXjvEcqiaktxgb271ul023x6GPrHDnWZ+wTlldWGA6HVOMhSiYoYsJ0sNGZN2ulOOuYBAUaE63kpZA4a9AqEmeD8+ikSQtGRfdfVyODwJZ1TLp2HtP45ug0QaOpy5KsaDEeG+4+tIVx97Aw3+LyyxYjr9b5WHhOghobD5MJ32TSvfMexqXji4/usH6m4qHHxjzyBGxueca7krFROCcR3oDo0yoStrfHqLSFbs1B2sUMYpbVc8VFs3Zc4uj81h3834Pv4V+txCW8WhT82U89f17KB/sr/Or73zF9/LI/fAR38tTz/nkzqusMXw88pwIlhMB73/tePvzhD/PJT36SK6+88hm/50tf+hIAe/fuBeCWW27hF3/xFzl16hQrKysAfOxjH6PX63HjjTc+p5MP3uKFYjgqGY/rqIaBqXvrdG8TsQgQSDotzYEDyxx9YoOTp3cjB8E5xmUklwYE66cqQrAMhsNoSR8dwChLx/2HDsfNF4X3jjNntptjBPc/8DiNOwrxDDRKCLwUCNEEGAaBFLqRHHuE9zGgME3Ii4DWAeujk0uWd2gv7GFhzyqLe5ZIkgSpdOMYOmntW2TSImvpxkhu4nES/U0Ihno0xFb1NCcmGBOjiIxBIZFZgvDRk0ULgQwCpCbR0UQtNEVVVIXEDJfgPUnTwfDB4ypDaRzlsERKHY3egkBlmjzPY1aQ0pFwKxSWOHKZOAH7RoGjmy5K5JC4aTKxkrHYkbJRPkHDbwnN5mxQMgYQGmOmxZVvVD6x6xS36SxPowJMRUffzBicsyRJDI801hMELCzNc9m+Nfqjms/fdZRHD+/QbnfAGsrKUdUGJRTOGUTjsluVJTKA1hlCGZSU4AOmNKRpFkd6vkaqqO5JCoUxNQmxlnWhudZJgvfgnaNIBHmq6Q8Cro7y7HFZs3XmNCpI3vKXr+PPv+pyEqVj6daEJ8YMnfj3IBAx3sB4Hj66y9HTJZ8/VHP/YcWon7Kz5QhNjEIQDnyJrceEECiTObzTCAO+8qgsRXUzrHz2G//Ftna8FJD9weeZvAIiSXnLZ3/kef8sNaxYuPvsGGZWYMxwMeA5FSi33norH/rQh/jIRz5Ct9udzn3n5uYoioJHHnmED33oQ3zHd3wHS0tL3H333fzET/wEb3zjG/mmb/omAN7ylrdw44038kM/9EN84AMfYH19nb//9/8+t95667O+05nM2/NENg6jke/Q0CLjHWMQNOyGyTeBjHbln/v8XVijyBLdtLvDWVKlaKiXISb1TEYENIZvYsqpgKDOzvCjmVo8XgrZdEgcQtQoGV1pPZMAvMmxvuEfeHTiyYtYyHg8Ump0VpC2OgSpMCZ2XLDRc8UZi6lrhIqW+0pJkkQ3nuSQZBlSF5RmjGwXtDqC2pQ4U+Ftha3L6MfhKkJZgw8IHyKfQ8WOSCRgyobI0BRdonmWTZci+BgSCJHMibdAHUmvPhBGkMhYgBVFiyRrNd8rkTrunt7HJGkpNVqlWM+UA+O9x9q6UeKAD+OzbrHnBejFURZBUNVlY2Am8S4G4+lEU9eGqirJshyaDpHWCe2sDT7gvIsjJRmfY5IkZGnK/HyPy/evctvnHua2Tz9Gb24et9WnrhxCJxhTIWVU8UgZomPvsELJ6GIsJeS5xIVRfO1FIElT6nFNkWQUacLu5i7FfI63Na4KyKBxzqGEpCxHlKMBUknK4QCVahJZUFbwhfuO88jxI+yZfwv7l+ebvKkncVKA2noeX9/lgce3uecxw6kzKVu7GWf6aSzwfI1wFrxFSosxYwQaqRJGuzuxCDcKUytQCpHGAuzc33UprR12kpn1UkFt4DNfeN7fPitIZnixYHn26wbhOYCmB/Dkj9/4jd8IIYRw5MiR8MY3vjEsLi6GLMvCNddcE37qp34q7OzsnPdzDh8+HN72treFoijCnj17wvve975gjHnW53H06NGveC6zj9nH7OPF/Th69Ogls3Y88sgjF/x6zT5mH7OPZ7duiGbxuKTgvefQoUPceOONHD16lF6vd6FP6SWHCZlwdn1fGLwUrm8Igd3dXfbt23eeeutixvb2NgsLCxw5coS5ubkLfTovObwU3tcXM14K1/e5rBuXZBaPlJLLLrsMgF6vd8m+UJcCZtf3hcWlfn0vtU1+siDOzc1d0tf9Ysel/r6+2HGpX99nu25cGrc9M8wwwwwzzDDDNxRmBcoMM8wwwwwzzHDR4ZItULIs4+d//udfkh4HFwNm1/eFxez6XhjMrvsLi9n1fWHxjXZ9L0mS7AwzzDDDDDPM8NLGJdtBmWGGGWaYYYYZXrqYFSgzzDDDDDPMMMNFh1mBMsMMM8wwwwwzXHSYFSgzzDDDDDPMMMNFh0uyQPmVX/kVrrjiCvI85/Wvf/1TEk5neHrcdtttfOd3fif79u1DCMF/+S//5byvhxD4uZ/7Ofbu3UtRFLz5zW/moYceOu+Yzc1NfvAHf5Ber8f8/Dw/+qM/ymAweBGfxcWL97///bz2ta+l2+2ysrLCd3/3d3Po0KHzjinLkltvvZWlpSU6nQ7veMc7pom8Exw5coS3v/3ttFotVlZW+Kmf+imstS/mU3nJYrZ2PD/M1o4XDrN14yvjkitQ/tN/+k/85E/+JD//8z/PF7/4RV7xilfw1re+lVOnnn80+DcKhsMhr3jFK/iVX/mVp/36Bz7wAf7lv/yX/Pqv/zp33HEH7Xabt771rZRlOT3mB3/wB7n33nv52Mc+xkc/+lFuu+023vnOd75YT+Gixqc+9SluvfVWPvvZz/Kxj30MYwxvectbGA6H02N+4id+gt/7vd/jt37rt/jUpz7F8ePH+d7v/d7p151zvP3tb6euaz7zmc/wb//tv+WDH/wgP/dzP3chntJLCrO14/ljtna8cJitG18Fzzpl6yLB6173unDrrbdOHzvnwr59+8L73//+C3hWlx6A8OEPf3j62Hsf1tbWwj/5J/9k+rnt7e2QZVn4zd/8zRBCCPfdd18Awuc///npMX/wB38QhBDh2LFjL9q5Xyo4depUAMKnPvWpEEK8nkmShN/6rd+aHnP//fcHINx+++0hhBB+//d/P0gpw/r6+vSYX/u1Xwu9Xi9UVfXiPoGXGGZrx9cHs7XjhcVs3TiLS6qDUtc1d955J29+85unn5NS8uY3v5nbb7/9Ap7ZpY/HHnuM9fX1867t3Nwcr3/966fX9vbbb2d+fp4/9+f+3PSYN7/5zUgpueOOO170c77YsbOzA8Di4iIAd955J8aY867xDTfcwMGDB8+7xjfffDOrq6vTY9761rfS7/e59957X8Szf2lhtna8cJitHV9fzNaNs7ikCpSNjQ2cc+e9CACrq6usr69foLN6aWBy/b7atV1fX2dlZeW8r2utWVxcnF3/J8F7z4//+I/zhje8gZtuugmI1y9NU+bn58879snX+Oleg8nXZnh+mK0dLxxma8fXD7N143xckmnGM8xwsePWW2/lnnvu4dOf/vSFPpUZZpjhEsFs3Tgfl1QHZc+ePSilnsJePnnyJGtraxforF4amFy/r3Zt19bWnkIotNayubk5u/7n4D3veQ8f/ehH+ZM/+RP2798//fza2hp1XbO9vX3e8U++xk/3Gky+NsPzw2zteOEwWzu+PpitG0/FJVWgpGnKa17zGj7+8Y9PP+e95+Mf/zi33HLLBTyzSx9XXnkla2tr513bfr/PHXfcMb22t9xyC9vb29x5553TYz7xiU/gvef1r3/9i37OFxtCCLznPe/hwx/+MJ/4xCe48sorz/v6a17zGpIkOe8aHzp0iCNHjpx3jb/85S+ft5h/7GMfo9frceONN744T+QliNna8cJhtnZ8bZitG18FF5ql+1zxH//jfwxZloUPfvCD4b777gvvfOc7w/z8/Hns5RmeHru7u+Guu+4Kd911VwDCP/tn/yzcdddd4fHHHw8hhPBLv/RLYX5+PnzkIx8Jd999d/iu7/qucOWVV4bxeDz9Gd/+7d8eXvWqV4U77rgjfPrTnw7XXntt+P7v//4L9ZQuKrzrXe8Kc3Nz4ZOf/GQ4ceLE9GM0Gk2P+bEf+7Fw8ODB8IlPfCJ84QtfCLfccku45ZZbpl+31oabbropvOUtbwlf+tKXwh/+4R+G5eXl8DM/8zMX4im9pDBbO54/ZmvHC4fZuvGVcckVKCGE8Mu//Mvh4MGDIU3T8LrXvS589rOfvdCndEngT/7kTwLwlI8f+ZEfCSFEueDP/uzPhtXV1ZBlWXjTm94UDh06dN7POHPmTPj+7//+0Ol0Qq/XC3/jb/yNsLu7ewGezcWHp7u2QPiN3/iN6THj8Ti8+93vDgsLC6HVaoXv+Z7vCSdOnDjv5xw+fDi87W1vC0VRhD179oT3ve99wRjzIj+blyZma8fzw2zteOEwWze+MkQIIbx4/ZoZZphhhhlmmGGGZ8YlxUGZYYYZZphhhhm+MTArUGaYYYYZZphhhosOswJlhhlmmGGGGWa46DArUGaYYYYZZphhhosOswJlhhlmmGGGGWa46DArUGaYYYYZZphhhosOswJlhhlmmGGGGWa46DArUGaYYYYZZphhhosOswJlhhlmmGGGGWa46DArUGaYYYYZZphhhosOswJlhhlmmGGGGWa46DArUGaYYYYZZphhhosO/39E5mg7t9VYJQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/binary_segmentation_intro.ipynb)" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAESCAYAAADXBC7TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9W6wsW3aeB35jzBmRmeuyr+d+q2LxVhQlUm1KKhVaBtqGDMHdbXTDhGHoQW0Y6jdTDy4IaPPFsp74aD+Y9pNhPwmW7X6w3W4IsGjZDcuiZBQlUVVkFVXXU6fOfd/WJTMjYs4x+mHMyMy1zyFFUudU1QZzHOyzbrkyIyNixfzjH///D3F351jHOtaxjnWsYx3rR6j0h70BxzrWsY51rGMd61hP1xGgHOtYxzrWsY51rB+5OgKUYx3rWMc61rGO9SNXR4ByrGMd61jHOtaxfuTqCFCOdaxjHetYxzrWj1wdAcqxjnWsYx3rWMf6kasjQDnWsY51rGMd61g/cnUEKMc61rGOdaxjHetHro4A5VjHOtaxjnWsY/3I1RGgHOtYxzrWsY51rB+5+qEClF/91V/ls5/9LMvlki984Qv8g3/wD36Ym3OsYx3rGajjdeNYx/qjUT80gPI3/+bf5Etf+hJ/7a/9NX7jN36Dn//5n+cv/IW/wPvvv//D2qRjHetYP+J1vG4c61h/dEp+WMMCv/CFL/Cn//Sf5j/+j/9jAMyM119/nb/yV/4K/96/9+/9MDbpWMc61o94Ha8bxzrWH53KP4wXHceRL3/5y/zyL//y7nuqyp//83+ev/f3/t5HHj8MA8Mw7L42Mx4+fMj9+/cRkR/INh/rWMe6We7O5eUlr7zyCqqfPhn7B71uwPHacaxj/ajVH+S68UMBKB9++CG1Vl588cUb33/xxRf52te+9pHH/8qv/Ap//a//9R/U5h3rWMf6A9T3vvc9XnvttU/9df6g1w04XjuOdawf1fr9XDd+KADlD1q//Mu/zJe+9KXd10+ePOGNN97g3q1bpJS4fX7CT7z8Em88d5dVv6BTI2GAgWZcE1mFLiVyEnrNpARuhnnFEXJeICKYVXKG0Qvr9ch2UxHPIKAimDhJFTEjCWhOPNpc8d/83S/zwaNrhIRqpusTtQ5MY8U97tTmOzYRoboBgSZ3d3Kt2fb0fZ3vfiC7x7o77k4SRURQ1d3PzGz3O+aOm6MqIIJZvK6qIgjmhls8FwLLRc9quUTFcTNAMHNqrfGa5vE77bkPtwcg9454x1JP+JmfeJnXXlly0hkn/QnLfomqUMvEOA2UWsjplG1Vvv/eA55cb+hyhwhsx4nvvPUOHzy+wKTDzEheyF1H1/eknFnkRN935JzoJFFdKD7yxz97l7/6//w3+OnPvQ4oOSnusU8Eb/vKsFIZJud6M5GX53SrU1QUNyOlOI54QjShyMH7daQdR3ff3QXM++DGMWoH1AXMAYzEBAju2v6Bm5NKxRDMhEqhMhJHq8O9glcwoEqcKylOi1ILgqKqWDVwxdziH0b1iqrgdcItgXW4KxDnv9kUJ5877kY1p1ajVig2Ub3gXqk+UYoxTRmrcHW95v/x//rrnJ+f/37/lH/g9btdO/4c/2cy3Q9xy451rD+aVZj4X/n//r6uGz8UgPLcc8+RUuK999678f333nuPl1566SOPXywWLBaLj3w/aUI1gQXYyDmx7BKdZjIg4pgKZCWp0iUlAQvN9BoLeZUEIqSciXUlkZLQu6DmSFXMMoIiqoiOZBW8OikJ0gmnuuDk5AR/eAXERR5Xco4LecMEu5pFPzOwgIPF7ffacQ2gyAHQAHbgJBZV3YEJEaFapVIDjJiDB9BSZrCjuBguAVZqrdRayV1Gu4SZY1YOtoFYxA+29VDGVAokEqgAlS4LJ6ue065DrVJLJQtIEk76Bd3iBN1A33XkNLFY9OCVakbOHSoK7f1pe51SDNXYArMATZLa+xKhy4lb5yfcvXWOxzuNY0JF1EkJwKhTYVFiv6LQpdiH7k5KmaQ9In37CM602/+qCREF9qDl8DjF1/E+AFylgUAn0YEIboq74AZugtQ4F8wKxQaqKQa49OCOuIPt97uo4zi1FtzZAxQTAo7Ff6WBYTFDvMMtYQZOxb1Qa27HMY5lgBOjWqFUxcg4jnlhmowyKFbj+ebz+AdRf9DrBvzu145MR5YjQDnWsX7gtbvf/mdfN34oLp6+7/mFX/gFfu3Xfm33PTPj137t1/jiF7/4+34eQXCg1Mo0Tpg5IrEkJUmo5LYYt/Wy3al6rWCOeCy2OSeg4u1OE4eEklXBG5AxC9bDATcwi7tNNyQJi8WisRrtQt/u1Pm4g3CwoD/NQPxu7/P33A8HzIpqAKOUEjklcsp0Kb6e94XM2+DBBMwLe0oBSMZhoNayA0+HgOefVbHYtjVfhaSJLi9RSUxToZaKipBTQhDGcWScJnDHzCmlBJBCbqC1eC4lpYy7UKsFs1Pq7vHxXzAJKSVEG5gQRUV2h2JmmCQFO1KrcXlxxeMHj3j88BFPLi65vrpms9kyjlP8m0amaWQcB8ZxYpoKZapYNWotO2BXa6VME7VWzH137pjZ7hi7CA3ptR0lAcK0Q5KCOjRopWj8nit4RiSjktAkSDu9RLS9N4+PUgkwBimnAF3miKT4XVVEAQyz0p5H2vNkRDqSZpJCUiFpHK+kOc6nnElJSekHe/n4pK4bxzrWsZ6N+qG1eL70pS/xb/1b/xZ/6k/9Kf7Mn/kz/Ef/0X/E9fU1//a//W//vp8j7owFq8Y0FcysgRGJC+18D+mGmCASd6Gmhu0YEUFUsFqYeXN3QTSR6BBKAA+pCBY0eJ1fm1gcRem6HlzQFHf7bh53qa19cri4iwjiH4Mg5ePBSCxs8tTX7fN2B38IdGawIcTi7BqLnIlSG7DyWAOjVYFgAqKCW2UqE+PUGCAzanu9FKgDN+NpOCUirYUSbTKoaIo2kFWF1NP3QqkFVOhSj7uxHiqleGOHwNwIGBUAcn7bugMaigutbdYWeG8tDw1mKBbgtAOT3hb8GcREz8WRpEiN4/T44RMuLjcgSn+yZNEvWS5POD25xWKxRJOjWlHNpNyRtANXUtZg0p4+lCKkFAwJQgCMuQXntt+OBhlFBE+AWLx3k2gtorEfXIHcIHmN99XOwWg1ye61vDX4xAW87TMMXJh5ugA2DlgwQaIoipkiEH8fUhCBasGYuSSSGp5BvSLpBy8y/SSuG8c61rGejfqhAZR/89/8N/nggw/49//9f593332XP/kn/yR/62/9rY8I4H7P2i3K0Ye3anGBl7iTFpkXbyc7ZIm+OwjWbv52bILUxnwYIh3qwc+oJJAC6rhCokfcUE04sUiICovlguhGxIJjFqBoBhCxudJ0Cb5beGcticjvwZPMaxw3wYm0Vs2sg5hbP6nryJpwM8Q9QJwZmpXkM0sR7RyJlaoBjHgxd5jGka0ImvLBdnPj4+H2z5oWtFKrY1ZxN0oxtlunF2ntG2ecKpoyi2WHaWUzDbvn6HKHijOW+X3HO3digXc3kLaImpFTgKhSK0k1iAnVHftjXqO10cCNtPaUt+cVEbpuBSSuLjZcbzaYRgun6zrOz884OTkhZyF3Qtf1LPpT+n6FSqbrMzlDSmn3bw8WWysoCdFJDNbDrMa5uTuSjSXRAj6BlQC4JXQ1phatHfcAke5x7jUEF8f3QOfkc9swADKSUTrw2sg7b20qQXRuU4GgJE3YDFutiVxwqjsBcywYmt3v/mDrE7luHOtYx3om6ocqkv2lX/olfumXfukP/fsBKGJBrdWjDVMLThdgQRSSIprpPNOnjEmIBiezuMu1FKBG4yLt5iRN4AFsVBOqhmnBpaC6hEnQnELbIYImYblYoG0hNzNEnUwiadp1dOyA6pe2mN5o7bTfh337ipk9aRT+oRBzbl+YGTlnVJVxHOn7nq7LlKns2jNmtmt9AEzTFNvU2jz4/vPQsRSGYWC52utaYnP84ONNSCWtdZGzotrYHBJuwvV6YCrxQiIwTgVXQSTRd11rlVSQvmlpygEzNOs35j2jTKVQxhE5P0U6oZQCmiA1sKSKJCWpRXuvKVXdoRbBBbRL5K7jhefPuX3+Aj/2mZH1dmQzDQzjwDhuMCtM08B6c8V0MbLdjoyDgSdS6jk7P+X0bMGi71kul/R9T8452imayV1Hzl20k0SQJKhWEEElIZII6sQwHVGvqBtWhDpCdaGmCSyh3uNN22OUPXtC6HCAXYtSRDGDapC6aB9h0UYTjKSCS7A/UzHUDcQbChbEpTWZQlhMDdH0zNJoBs0/HJvuP+9141jHOtazUc+Ei+d3K/do1zuJy0G4qCuez7eoOmHpKhgQX+C2YCKBFiRN1KJgjiYDSbiFW0NF0ZRAlOoVuoTnjjIZ2XuyC5MBnTHaiPkU7aQi3EqKJGfAyNKzINNph8hIqVPTpMSCZG6NMRGQWbfi+0U/+j/gQm1AStwR0VhYaK0Z1QBUKVoB7kbXJdwrZSo7ZuZQPFvM0JzoklK3jtUabS50L0iShGtiqo5vhxugZs8OxGIYrRZvrw9Cj7qinsgsWfWnrHrDbYu50i+XdIslDlytN9SpkCTTZ8AK0zBBDlBTjX27TfctuqShEXIVyjjF7sqKeKEXYZmUZAXqANrjtkR8Viu3NpVUChuyGIrTaeXuLefuvQUl9Yxyh3E0dC3UJwOjVa6ZwJy6HRmu13FMVhk57RBg0S2CmcmZlBN97ui1o6FlagMleT1hyehTRXJmWwo+wuVm5OGj9zi51ZOXHdWdaZpIGIv+hCQ9lIoyIOK492FU22lBBCzOmYUmOhVyMsZ6zWQTSmqMWGNmqlOqMrAhaU8WQ3zEKRiFWjxadB5uNcYAup4qzoTp9gfzh36sYx3rj2Q90wAlFlZwcYpVplpwD8FrCAINkYTT3CDsF23VjKaKeEUbIFDx9q/i6rHQJt27ZxBc4g7dREkkgmxxFimRJDQp+7t9MIE6gxBrVk7mls2eEZlBAOJUq/M73IELVbnB0MRPZdfSCL0DuNdgRxKtpSH7NpIqSWTXJog7/T1rc1NYEltYa7zWLLy90ZJq4sxDR1G0X+LNV3NKqUwykbPQ90ty11FrtJlSSiQJMLNcrlguK0imlAoofdfT5Y4iqalHyk7U6w1wmRmlFEQSUixs1wTQ1JQxgsFSdN8ySiESNUnMGpBgHhzxgkwV1Z5F7XjrG2/y1d/4La6mCRYdPhU6F+oQNmlvDRE1Auj0HdoldLkgLZfcOj3j/OSU3Pe4Kpoz2YWSjdOcyV3m/OUX6E/OuHr/AW+++T2WZx3dsqNfLkkp0SUYtNLlBTkpyNjaj3FeZs/QHFuzUBupVECkMkplkmBBdue3B/hzBPU+3D2SMbwxfdpaRdGqi3ZmQaQ2KJtQ/+EwKMc61rH+aNSzDVCIu0fx6OsPw0AtFVcN2rwtQLMg0RwwQUmI5uYuLSSd9QA1FnA8dJeaSFna3fseFMQiGV8pcaFf9l0sHnUWoVZKhYlKVXYWUaRt0QGYmTUTs7lDVHbAIL4fWR7z78xIQkR3YCEcTLFfdmyM7PUvtbV4NGn7bb/BrMyvtxOTyqyZCRdPzpmc8z4PxffC0LkVE0DHMJcdOKmlYhkgYa6MY3O61InlYkHXdXhVhDVepbUwlJSb00dDcBy7O8CVJm3C5djcWTRbq1C1+V+kA1JsY7Mki2kwWQlQBcuIaxOPhsJCSoihk8P28Zavf/m3+cpXvsHtV16lX/Y8fOcBMhWsFrbTwDhBryeMmw2bqyfcf+E+d5+/yzBecf1kQ4fSK3FuJCAJRYxRnVsuvPziff7s//1f4uTuHa6uLtluN1xtHjOVwnJ1xtnpGctFBls3/UvGpQBG6hbhQus6UhNCO5A1U0TIjY0zrRQHNyWJI2q41RDOEmJcV6OK4dJiVlzwEmJqcwMvFA9ARg0BstoPXoNyrGMd649OPdMAxalxF08DKNsNYxlZ5oyZRvdcg1WAuHtMiab1iMU+kVouBe0OOpgMEUPFyIkILZttLy23wrwC1lgVYdkvWHYdOg2IGdXDUjtRMGKNlFnvMYsQZa8bmBd7VSGhYNaCwQjHxgG7oToLIgF0p2tRhZSUnINRmYEQImEOaY4mZ9akzJkqsX/mvbr/6My6l0OQEnfY88/m7fAdwEIPBLWq5C7A4mY7oSl0DzlnFLBaKVM4aaYS4KfruwaMSmNJFBdBpEYXox0jbYsy0ISioblwwsXT1BOI2k44Gu+pIC4BTkx3i3BkpTgRGyI8ePtDvvW17yLLW7zy+T+BV+He82/g24FSJ6o6V9tKLR02jvzO1/4Jy1df5cd//me4vN7w7vcewDhRttcMZcti2XFxdcHlxZZHT56wvNxw1p/QL1YUqZQ6cufubTabK6ap0HdLVt2KjDDWwmQjdRopNgZbIpeYR4sv57DUC0JOOdxMzT6uOUQj4kZq7JH7hHuIdTtPmGRMElWgarAmMrFj7dxr2z9E7pBXavndrfHHOtaxjvXPW880QNEUN8JeKyCMZaDWAfdZmCqtpVLijlqCVYAAN7ihukRlsV/orLk70ha8RlQFwYjEfbg2C/EMenK4eHJm2XfIetgt2OaRZqvx5W7pl6bZgP3ivnNWtDaENvcsLR9kzmi5KRw1ZoAS2xPgJOccGS7tFaPVkygtfGvWvMzszAyQ9jqYuYXD7rFzS2axWKCqu7ySPdMSn88GZJdofUVXSzERihs9Qt/lcMUIDNspclAk0m6rxf4Zp0KptVmaBTejWAntBeEgmZ1P7k7xitMSUxur5AguRgCSTFAYhhPpweKLJiZtrhg1rBpjMUjOe++8z8MPH3Py4z/BpRuPH1/wL/z8/wEbBzabNd3Jkqka68s156sF3/7g66Q7iXufe45bLtz57KucL5asLx+z3V7SrzrefuddypPEb/z634dN4cU3Xufshee4Hq6YysDJakHfwWq5YrFYce/2fVaLJVOdKFYYy8A4xT5bb7eMw8A0TUzjQC0B6NSVUgulGipKlzNd7jDr0DS7dwxVyFnopOAkqqRgoFKkweXah5AXpda5NSmRAURhHI8alGMd61ifXj3TAKXrcuSatAWn2kS1EdUF2lo4qKMSyaOSHadiTKFBUQlB7KwKOWxZtPvvsCq3bAqsuVNmlYU0bYvSZWXZzxbkQCOqsCDsvnXWvuRmATXHqu0AQUpK1+VgS6zuAIrMrIcbtbkzZgbFzBDJOxZjBi/7ZNO5FeQtjM4ZSyzGzGyHCNqc1NGDmmGUNhdTRLKbGdM00XVdC0GDmdaZ3U8zMxMZMbmxVKFF6bLS9Qm8UspAp5nFqidpZiojZhOixqJbkJIy1oibR6TFt8//gGafnltjcfQMo2LW2BAiwt2poStprAjt2CKhHUFbc0fAxZjGkdF7lqsTprHQF+P6wwf85pe/zDgaL7/0ApdXT9gMW5Zdh6lwsbniuTu3ubJrLuuaB+sL3GHVnXFyvsDlBFbhGjqd7pK7hG43nC0yz3/2ZfqzE9759lt87Wtf587tE+7dP+P2+YJlb5yfZs5WK0gLtIPihiGoZKwxW+MwNtfRyGa94fpqzeV6zdV6zXYzRhjeZst6mELf5IYmpesSXZdIaYtLwiUQvyeL9mddINKRJGMWjquwUVeQwjCuP50/7GMd61jH4hkHKKptoTcL+3AZKXWD+bK5TDKoYeKtRVBAyg2rpMvAWLdNn5HAY1FW4q5SFVQMl2ZXFZqbBIRmExVh2WVOFj0R5hYtBRHlhES1ie1UsCRYklnAcqAZCQASICPmqMxMQC3GDm7sqPamK6l19zt7HcsOZcXsoCYinW3I0frZx+tLE9lqEmplxz7swY20fR0gZbYxa2NoZoFsvIcD11D7XqmVUhV1j7kvdWQctmCZvjtBJZM7wXyk1IGUM7lTuprJTThszcmkmm5s1zwqwOfWmVRMHJMpNBM2i0kr5pVEhiQgBl7BSwzIEdBsjNOWzTTQre7Qn9/mNC94kY73PnjEt7/1TXK/5P/38EOejNesr69IU8Vzx9T1LBc942bNdDnw+L0LLjdrnn/hRc5Ob7E8WVKTcuflF6hjYfzGN+DqMc+//hJ3PnufKVXeffcDvvzl3+Bn/9hPcP/+jwFbsIKVE6gJVY/AWTFcQnOSKixSZtUlRE72dvKcmXA2pTIOhboese3ExeaCy6srrq6u2W62DENhKiPXmw2lQJ3CNTTVLbjTdbeA1NxnQtd1dDkj2UEmhmn8lP6yj3WsYx3rGQcoEZveht61xXOctpQyUUXwLM2OadTqJCZyF2FuPs9JSYVKhHxJ7gIoaAoAYhGR3lZbVBK1LcTMqZ0RxtJyMBbN9hyzTPrcc//sFjZOPLy6ZE2hejhj1CNGfI4yr1YppdJ3LZrcwb1QrRBJnzMY8N0sHJgX7/jcXXdhZ6GhkV17Bma3T2oaHN9lm0QMfv3I/o02ku+AwLyPVTVC13S2SNtuiKB2cUptx5FHTy446YWy7VmsOlKfWPThdqoYT548Zhwrrif0i56UlM32GtUTanWGcUREWPSROkud4jWa3mQubyxaZNdIO4ZhR5Ys4Tax2XHi7dhXUp2CTcoKagzThmEYWd5aINME6w13CnRpQVmd8zM/93Nc+IQvM7/91a+wefiYvJmQdYHpki51jB+8w8DbrLrM+E/f4Wqx5Ikql9NI7YKh6K+uuF9GfuqlF3jpjVdiLMFQeeONN3j99Vc4PVmATyBGqWtKPUG10lkKAGYRo6+WMJeDWUnxHosXTBMpKcvlgtwt0XPjrpwxlYlSopVZpmiljTpQizFsJsbNlnF7zXbY8vjJxGa7Ybu9Zr25ZhiuKLWwmbZUm5jK9En9KR/rWMc61kfqmQYo1BRD0TwixaeqrMcOo0e1o1liSGmB1oz4SGIK90vtkdqRs7NMoZUQU0wiZbXQYS64VFJKDAWgb2CgIsl24CXaCtecniVyVqwkkmQ6S9wuMVTugius2Y+19fMLbSpuC8capxEno5pivlANnUtKSqdEPgns5seYGXVOIZ2ZBd+7msqsk1Gh1gmRmKVis9VZtaW+Gla9MTNhu92LciPwK953wt0Yx0pKIbjEHavR9lJJUKXNkU68/eAxHzy5ou8S/aKj7zOapA12VFbLBctuwbIPImMs0RZaD4KmnuXihMQlbmU3/Tms0do6PbZjcJImaolGjy5OkLyIgXZN+6NioCV0QVXJKcOiDZpEsZqw8QyrA93JOdMA02VBNKNuvPHZF/mJL3yO//G//59IU+azr76B/OTrLJKyuRzopgRjZdhssOQ8uXrC2WpFUeGVN15HXLHtyD/96tdI5nzm7l2ee/0V8mJJvbpiuHqH117sOD+T8CznjKliMuL5MZpWWImE42DyQjwc/bWMao5zQmIoopsGKGuiaE8BbpNmUiZi8DvBbMHGz+JsvDXhVnB/LgDMAMO0ZRw3jOPEZjuxXhe228IwXvPk6jHwtz+tv+5jHetYf8TrmQYoc3qmtBh0c9hujVI1bKMOQm6WUwHXmBor8TsiXdD8M0sgkZVRrQQ4aWFkOSeG0akeUfGzv9XFEG9psZJZ9sv4nGi1FKt8uLnEBa4oTIlmY448lVg4wz7s1bBSGcxJqSIOOSU052Bn+tDMmEOtxnacAvCY78Wkc0qtxJBDb4FwXZf3wtGgPOLnLTXXxRGtNzNTnkpxnVNLQXZD/UJ0eiiubaralpEyVWeqE5uxIJvtzrU0C5L7vqfLiSRhKc6adoLOLvesN8OO5VFpjpwD9uhmhktzZs05IDRL+JzVsXvvABoLuLYxADhWBStC6lYsz8+4ur7k6uKaqRhVjfvP3eb5V+9itmH7eKS72/PiG6+yXHZQhPe+8y73b73InTu3ebJ9woMPP6QOxkac2z/+Cm9/53tM2ysE47mTM05XC3SZ45y9vmaYtpyuumCyxHaDDpvMGcgouYmNouVoaYr3LVB9ZBdL4m0QpsXnaLQdbX7/OzzbsmxMcZ8QKUR6fTA92Sp97vCVUi0mVZcilArVtjy+ePRJ/Skf61jHOtZH6pkGKObWRKrta3PGYi2BNCbzqklIaN0QD3usS4RqaYLIR5nHxjeXLPMQtgAQKe0DyQL0xBXeIog2pvPKkmV3ikrfFmmnSuWxTqEH6Ham5JBBMAtxQytSabknQBKl69s8HXf6nOm7FPkfIkxTZZhKs5VazI5zbwtQgIucctOxxBwaEXbBZvOcmll/EsLWfX3c5OJZrzJ/fxwnzOoNq+8MYObPD5/D3bBamQU17s7gA8MAEMcxNS1NUiFrzzhMVDNSDg1Ebdbr/WtxA1TNYKqUFgM/zwdqWSfWRMY4WHViNk2EjtU2JJG0CA3HdsuTJ09YD1tGdTZXVyQ3Xn75OT4YPkQ7ozvJdKtM5z0PN4949cdep797QroeeH75Al//B1+lv38PzYmryysuv/c2qwn6PkBW6jIqysOHjxkr9P2ibfde7OyecFvi1uEpRggE7WaolNaqM0oTFatovCd3FJsVzHgtuDS7+qEW2hWtITB3KpFgl+NYlW2AG3EU6DWTu4TniOq3kjjWsY51rE+rnmmAMie27sLIqrEtEUrFPBjQtSW41qZHaeBDm+VYFBOLi/mc6WEttVVm0ec8Udaa9mTPLsxshFhilU/J2jH6RMgejCnDZNGWUTOSC1nnu/3mRomVv2k7FvGvj9k+0zDiHuJFqSAp76y/1hblOdUVDx2IWbRfuqyxeJV5rk1qIts5dj9AXa1z5sp+0T+sWcfjPotwQ6xbiu3EuTPoOWRqboKInW0ogE5LATYMb4+fB/sBiJeIcdc2JBDw5nt+ejtnkezusQ3ERHiZHrx+m4HkYDbF8STC20opjMOALBJeKz4WpnFga4WhFur33+e7v/UtXnnlDS4ebRkcHjy44KRL+OSU4lysN1yMA56N292SOkz0Xcfjh49ZaEa7JSuduHNyzq3nVtx/+QUU4Vvf/C5DgWW/2OXYqHoDVwn3jlqV3SDMUATPvUGgUmshp6YVqpFZolKbo8qpHvH0MV27vXWn5cEkxGKat7TZSUxOouBWmisq9llMNjZEnHoUyR7rWMf6FOuZBihzzQtSqYXNsGU7jRgnzd3SBrG5BWaRWV8xW45bKuacFNsCvFSD+seN1PJJwkkzB6uFi2UWuKoTs1dyZk1cuB3Hi5HMSUmoHv4ZZe4SBRBKqvQtbKvrOvquZ7VY0OeOMcXQv+20ZhonXGtoUZrI1ec8EA2QM7t2HGnTm6P2d+SzYyi+DrZhz6DMQONg7974fE6XVQ09yszIzEzMbt8etInm9lmkxO5Ft3HsDCNEnvOAxDnbREURld0N/zwYb34/88eYpBxMF81xshuk2DixWTCMJObGifscRAbTVBiGkS4vKNOEmpNzhy47Ok+wMb78d/4h93/6x3niwrCeuP7Oh/j1mpN+QZ9P+J2vfpvFyQLJQn3hOdKdc8ZF4tonbr/wHO989z3OVgtWJyvOXrzH3VdfYBi2fO23fofnnjvjbBlDHrs+LN6OgGSQ3FqCFXMltffkNRg1bUMpRbpodzIiMocYBjgLd1nZHc82Z5s297u1gZxI/A1AqtqEz8T5glgTZWu0Tmv3B/1TPdaxjnWs33c90wDl6VkztVamOjHWKQK6Wgsk7vjaRZZI0oz2R6V6XHjzzj6sqOQAF+3OUUVIKYBL8cj70LZAmhOiTyp9D8s+mBtvYtOu5ZbUalAbNd4AlWpoL1aLJSfLJV1jTXIOMWvfZbqUmcaR3Cvbcctm2MaAP6GFmMHMokC0ocJ+rBQCcOTcA5HMumNf5sF5tMh7cyih93i6NRN5KDMQ3LuG5gTblNJBbP6h9XjPdkQmyszEsD8eMrdi5hek0VgeMfftdaTNI3JrrBXcAEAxPDAhGVLKu3yUvQX5JvjaTYturbsyTcE0WWV9ecXVo8dcXV5yOWzQlFiVnvXjgbPnXuBPvPIqV1fXPHjzHd5/+wn3f/w1yD2jGcvVijff/Dbvrt8md5kP3/w+F08uuC0L9OEVgyz59vU19Y0eTjJPnjzh+997h7v3fnqXCBvzdvZATrNEto4YJJDU4w617CdUL6Qn4v5j1EA4yeMYu4QmK0mASm+zp6SxWl4T6i2szg1PjloDmNXxllBMbaGAVYBEkuUf/o/3WMc61rH+GfVMA5SPK5PCWLZUnzCEUi3gghoh6tSYX5IDQJSWWUaLxFdP0QZQYl6JOlr37RNpgMTkQJPhoDqyXDjLVYpo9QitoKbIQ5k2I9Ut7sqb7qTvOlaLBavlitPVSbAQbQGvpVCbxXaRMoMlUh8unnGqMVdI9mmueGNs2nwfc28TkPeZKWZzyyqcMLXOepQWid7m8nycBmXPvsTnMziBvZsmBh7uByAezujZP6cyZ6ZEOdRoO1SrMWVaNdozKVF3Mf6NMVEhpBUH7IwqSophfIkWShcx+tUcobZwubm9YzsAEJqVGmm2CGfn55zducUF7zAMA0OZUK8MmzX9i/e5df+cD66ecHHxkO3VBXfv3uLlz77M//6Pf5OzW7f52Z/8PDZdsr265LOvvcat5Rm//eV/zIfffotzFgxXG7h3wtlnXqJ/4S7v/KPf4cEHDzGPmTo5J1ys5dU0NkgLmgMoCrm1KQXRNleHmEllYacKDYq0QD73HUBxxgNAGyANlKpdtAbbrB1XgW4eFphwKqU61cBEkK4B1e44i+dYxzrWp1fPNEA5bD4gsUBPZWIYN5Q64TnTjDmtX9+GozU9hoigTaMgYvuF04lhdarUxiDEXXZFc7db5FIbZgdC0mBQFotIWXUEc2HrlS4JpbWFXGIu7Gp5wvnpGcu+p0uRzlpKWKCtVtbrNVPKyBk7sWyXMl3fU31Em7tl1uE44S6aWyD7fBTfMRddlxsTEjS9Wwt+r4eAYc98iMTcoRtgZcf+7Ns6tVaGYaTvO0TSPjxN5CNgZt/e2beLsJndip91KQe4ay0kNKzJwUvprgU0b0c7/LTuUgONRrVIlhW8iZlpC3GNdl+odbFaMauICv1qifZL6lSppZDaxOd1uebOvRPee/AWy/NTbp0m7DRzujzlw+sPuKqXTOvKxfCYk9tLyBPl1op86y5rm3gyXDPKxNntM+6//FJYjJc97737PturNcN2RPW0vRFDJSY9B+AbG9vkuGlrVyophy7E3EmSW7pvmy8koU2J8F0BzVjxpsea1UDEEMsQ+LQsmzkzJyPeRRihh5VemoC52harhepHDcqxjnWsT6+eaYBiEvSHyZw0KlQX1qMzVo0BaFREantMJmmmuqFVSJrQJp6latxhi6I4YhNZjeo1FsgcSasx06TpQELUgqTI/VApnKw60IRZRn1Eq5EUqht9znRdAxtZ8DqRPJPFSWJUjbve6gXNkemxnQZyzqSsdNrR98Y4zVoCx23axfqrAsnRDvKsP7CCAKkNPWS2Gc86jGp4DX/RzKAAO9ZDY4nCrOI1mIekwVZU9yZwhVKdVKHrpAG6uY0Wr5WS7NpLBxaSaFUdAJpZd9LkvyRVqlkATqC2+/4Z/NQaTqLCSMpLMMhmZAoqhqSOlNri7iMiRupaAo0nxJyOEa0DRiGfnTGmjG+NZe0471dsx2s2OnJZNqT3PqQ8eIhVGHMIntmM3D6/DUPh4ffexpKwuHOPfnHGuw8e8N7DB4zJuXXec9p1ZIfF8pTpeqQfCn/m53+Gu3dOQJck2bBUyCK0KQoIJ60hVWYVN8FE5WBFZGpBdX24chCgUL00AXfX9teKSgTAQWMExTEfglHSNvG5tXsmH5voWjELN5Q7WO1CdM4xqO1YxzrWp1fPNEDZ3wa29gYxiXYcC1Ntiyfs9CI+3zoa0QqZb7vN8Uo4f2Rvmw0Ny94lE3eXTVDa9BPmhoRBExVh2Xdo0l3rSMxJSLMKdyz6Lu7scaoXfNZ3SKPpfa/hMLeYsVKmsBSLQNLd+5H2vmstwSRowqy2r3Ok48o8NDCcN2ZzC8baYMSZIfEbwWeHkfkzpNAU4EE1rNs7UJFSC6tjp88JQBK/GeabQ3fP73I4d/v0Ztx+aGb2oGYWzM6lqiFyloxVw8oEXkkqOF2z3sZAyXAkZZzWynKPSdOA5o7l8hQhw+ScdyuKrNlOhVXXUS4uePSNEcvKcrlkWm957M6ozlAnllV459FD8tmK8xdepDze8uD995k2A123pBThYrNm8ZzT3zqH6rz60ovcv31OPUlMw3W0qOZxBKK7WU+xf2bbMMEIehjV20kcfweuIYDdWXXihA/WLLVWp0Qrp7UHtcX9C4lIWY5ntfnUae2wGayId8Sspmf78nGsYx3rR7ue6SvMjE/aJTnkDNWZxolpKuB7gLHPfmg+kXYBnwcGxlDAmNzqzZrJHAQnEnS7gdWp3ekfWGM9YIsmZbXo6ZIwjq310piI1Gy9KWeoMNZKygmSUoEyDUwWc3aGaQwmw9nH0WsMzTu9dY42UWrKiWQ52A3fB5RFYq00cCG7fdVgStNlxHe9OWNqa9UctnqgtYCaMDheMwDSVMqBQLa1D4jxA5LTDpTM/+Z5OvvMkqdaRzMAu3F8ZecwOrQUH9ZO8CtNhFxnkNX2vwlWG9Ml3cECP+Fs45h6olQhdUsW/QorsH5yxXazYbvdMJXK6e1T1GB6csXd+7c5BSarFKk8LhvquOV8sWJlCtNIeXeNp1MWQ+GFPrO5nmCoVBL3f/J1nv+Jz2Be0V44Wd5C1bnSLSlB0ozqAte+udBiUjXNczOf63smKv4K9t+bmbLZxRPgFD3Y7x5HF4S0I9UcrJ37SrPZN0DZwuPUHeiaCPyYg3KsYx3r06tnHKDEf7EQ7afpTmPZhXXNj4J5wTTmBA6B3YA9VXZiyzmV1C2mJIeoNpN0YnaxxB1lxa0iqpj3qAgniwWdSFDgGkCo1phOPE4Ty+WClBK1TEzVGKbCNBY2w0Bpd/l1qjvWpkwlZrWkHK6jBlxmDcgseJ3faUqZRb9i0fchEq0lgFFKjdoPl5G1xSxsyXvmZK4ZCMygxomwu9rAGD5rGcKm6hrtokiYNXLOu+c5FN4+DTDgQPDKfvH0Bop2WpMD99PHngtNo7HbJ61dZTYR2t05KyaOb6h9Zw0NMeW566BbgMGEc+2FtTpT32Ou1HVhGrecLk7wqw0yjUzJuZyu2NaRPBTOz+6w0I6hjqyWmcXqlOvJeHvzmKtxJJ+c89qf/DznLz3H+1/7Ou89eJfFyRmv3L1HWp0xDte4Cyn1VGIsQaT86tzc4kBxE+Jg8k5DgtfWzvLm0mnJu17w6k2LRWh6akustZjcHYF9Acx3bp/mgor5VL5jyeKPq3zMkTjWsY51rE+mnm2A4nFTOMsaYjF0SrEdQPEm8JsHyYUDxFukOK337k00Od95azgfxHcpszkpXRLmZA13b9Hy86CahIqw6jo6ideg6TNqrUhSailYNbq+w4GpFK6urvBqTKUgbdAe1cldF3esSekWPcu+Z+PGZrNpqt9mKS51Z/F1d7quZ7lYsugWjNPANE07YDO3Odxl1+oxc8oULafD6cA+szDMabMwlYmphKMma25Jtk2EO7elzJimvf31kDEBPsqSzMyJ+8xt7QDXLHjd61Nkx8QcMipzi0c00mi7rtu9D/NCooZARzMwA5RZxxHsUTFH+w7rF8CKV3/mp3jjX/hjpHffZTNMXJXKUCZkHFgnQW1ktbrF1VB4cJ2p4mwuJ3yrnOZEoSIP3uN0eYu+LNkMxpPtyOlL59x64yVcYLu+QtRZni947rn7DKnn4YNHzUqdmo3eSSnOUbf9nKRw9LTwPYjWVgWoYUne7c147C5Ftv2ue0xMipbQATM1f2gE4oxbRVq7SCoupTEqRw3KsY51rE+vnm2AcvB5WHTDpRCpoFOwDbnZgGU/N0bV44Lb2gMuhticXwLqHZIV2t0lVlEKQmmSUeI5ifZQlox4j9vAouvostLG1u1Yga7rCGeJ0YuQJYEJUqVZZCGljlIsJiabtFbTbPcM8HB9vUZTIncxVNBsoutycwGF7XizHagNgFSHYTs2kencagqAgrd95qHNgJsAYseiVI+gugYkkip91+07CWZQYwHTAxvxDBIO2ZSnwcXhxxvHdgYmHM6k2TNeh0FtAV7YaTZUFUnBpIRuprKPTp1D4cIRFK4qw9VJyx7LCaTj1o+9zqs//3nqc7fYDIWLybnYDixy4sN332UqG+rpiqvrkZETLjfXfO7F+7xx73mW5my3DyjTh4ybIVpzd1asTp/n9Z/6DLdevIuUSp+UF156jtN79xhq4Xq7Bk8BsCRRxUIzovPco7AYE2dGU6YEQHGnZZlUxJ0gjeIRJgEwpAX8xa6SdrQUku46Q3FuC1RIPutXGqtiwUi5DkTL7MigHOtYx/r06pkGKDNFortFNRZ1M2M7jBG8teiDHpdZoLEfxCZqGEObWZJDOOgBOgwQnRdmQ5OhWqDG4MFYEOdWUWK+s81J6TR0GsUsfiIRl193bQeLzC1RVv2Ck+WKUgpVhfV2y9ZGphKtHdwZx5G0S/GM4YUppUgd7brd982McRzZbrcHbIhFQBuht6lmsVYjO0blYId+hO0Qb/OBUkK7LuJdUrNMIw0QGrU2FqXJG6LV81HA8zSDstOjaKTsHrZ4EHbhbHt25XBOzU1gM7uAVFtCalJgQUz0nUVIHiwATdTrEe5XfKRXb6+njOs11+OWKUHpMskrp+68+vyLdKXwD3/7q7z9nW9zPW4xVcjOL3zuJ3jhuefI6w1DUYbuDpRKeXSFjBs+/2f+FD/7p/8Fzu/fYnjwmM31NctVz8mi5/33HvHgw3c4P3WW/RJTx3xqVutM0ubEITQpYYsPoayZ7IdgSrAcsQeaRqQFvLk1y3fbF9J+Zm0it+/+hhwTwS01HUsT4UJrNfUBj/yYg3KsYx3r06tnGqDEnWO0IuJOOwSi1Y1xmiglJvtGLknjqq0lhewYg1kEGIuXNGGge2g9kgomkYui6liJFlDYkdu8HzQ0HQ5Zlax72tx3bAG4G6VMbfhbsDVJlOViiaw0IixEGEuhTiVeRhJmxjCMuNWdKHUuFWGcyg1AsE+JLQ28xHu0UNQwCy53S5LMQOFpJkPoc6JLCU2JLrc7cquYtCWuJfKWauGOaiCglEKtlZzzQQz+TZbmI62fjxPJygyU4jgfMig3LNHsAcycMBzvR4EeoeItiGwvJA0b+VRHxjKyKCNaCiLK1XbAaiF3HUtNLHtnonK27Di/dcbaRh5uLtlOI5VCXmb60x5dKQvteO7uZ3g0Tmyv16zOKnrxkDsvPsfdN14hnZ5QH16FzV0swK4KpThIQjWFAyspqrYTQM8zm/YunrlN1faWBhNWW2ZJTG3e7ZkbgmJpOpUAao2189kJ1PThtZ3fbX8nlRDRQmh57JiDcqxjHevTq2ccoGhz3sj+YiuFjTlX08hYosde8TZnTSBnqijqQraE6AJqxXxqA/Ri9kn2HONJJPI3NGXImWkcSOT2uGBQzI2JLcknFproFwvMg653d0x8t4jUlpqqKpRa2dQR31zRdYtgPKwiGF2CPsUE42myBmicLse0ZHdHZu3HDUErNN0w+/VfGovUaH1teRZWGyZooM0/ChJy19Hl1IwiGuJKc6rQUm9jAF/uFPMabauDGUDUGEmgSSm13AAl8zEDwGJoYGq2ZTySZesBwwL7Fs9HmB5JbajB1GYoZUAxCupzq6xnHhCpUjCpVFcmM8Qri1Lxqwt8lai2JfUdp64sujOqVy67zFUtfPfiEY+YkEVmISNm0FvGxsTD9cT9s547Jx3desuFOYMKY7/Ac4I+gRuaAuCVCtN2oPcJSRVXw9MEKYOXdq6d4b7AJbQ2lRGRKVpXdYHIomXhWHNdZdwzuLYQvhZKyLQ79kJGNdo2IkMYfCQYk2oSQxuTNY1RaX8DcW557TBvoPFYxzrWsT6lerYBitPYjGZHFRCMyWFdJsYSY+hFjeSQRGKRDW67gZseo8Sd5q5t44jXXfPDPaG6RGXEuEaozcmy3w7zSpJKbhOJUY15JsyvJajmBkAkBKQ4Y50YriZy6sJS6qGX0HY3TMtZoW07wm46cdyBh4vGOFgsZpDhe7bipgvkoOV1YFX19p4O2zAxyTY0CuM07qL0S9PTRPuKJuiVA6DTfn+e1yNpJ5r9yHGM5tqunTSzYi6yE99y4AJ6monR1lKrgFPbrBltRqMKO2eWNrEGjU0ojNPEOE6IwyItMINy/Zjt5gpX6JdLUuoYtwVy5jvf+z5//zf/Me9fPaZPwt07t1GB7fXI9Xbg+zaxlQX9+YKL7SXfffSQy+2W1aLj505OoEtYcUotbIctdar0WZE6ssgNOHlpAYMSc4qkIYPGKMXwv7bnZI7An1mxefpz2JHr7LaSdoSboFsa6zg1sewsQq6VNkU6BTh3O3BPtclWLW0WOYpkj3WsY3169UwDlLkO2xNKLFRTrUy1UKuR0n4w3ey+qaIkMUQLovPPQ2QYTExQ2+YKdCRdkKiIbABuBIfFghCWh6TCYtEHwJjFhc2emVIK2j4pncZU3alUylSoWuj7ZXNXxGPnxX2O1Z9j5WeLcThlJkrZsygygyzf45SPE6XeXOhprMx+nwYrQbiArLZZL20QYVuonL2Y1Wd3TbNWB0NjzDZjSU85hD6uzHchbR8r1p2Zo6cEsrPeZv+7bbGeASQeOgyPrQ5LesW8UOvINI5YVdw7Ulri08Bmfc3V9hpZnFHGK4bNGquFd997hzffepOhF+6cnnD79h1yEj6sD7gYLrjYFi5KQlcdT64e8fX33+Lx5RWffeVVlvfvk1Zn+LZQqzCOhSIDm86RMrFUDSDdwGK0/BxnagzYnIWSgK5pUBwoB/BUgxnBcSsEhRUsl9fZrtx2t+2nUc8tyQAjAd6rNuZOwF0xb61MrQGau/p7/Vke61jHOtY/Vz3TAEUb2xGLeNxxak6YCpMZUy0YwZ5Ym0wcjoRY5CuKqJNEyM15402XEN2OHFknZJIkVHrEFEnsLvSzXVdkXqSVZd/trZsNYNQaM3lSSi0VNiE5QI0rdCmx6BJTcUptYObAVjsDFBFhsYh2UCllr7doK9TseNH28VBQOg8WnAHdnOrqsygVmW+1289DtzKVSvK0m3szW6/TrAeZWzUzQNDZJeQgEWZXTUjNSbXXyexrVow47BZN85shb0+3dg6dQjFUkMaOzds/J7jYfMIcCCwCZtG0RlYSw/WEbCZSGyT56PIJ10+eYK4sRdHqDOOWcRyw1LHsFyxzz7JT/PYZ7mumWnny4Yb1ZsPlxWMu6kR/0vP8iy9w++WXkW4BQxz/vusJ9sJJEi4cxXchgNUcqQYuaGtl4uHgiZ3VnGnMWpyIJJ6FsvHcJSZ7t0yU3X5pWT847VyKQYOqGlk3Hpodc2eezO0t6h6xpvU6tniOdaxjfXr1TAMU84r6/g5a4pu4OEOZWE8T1ZzOodQQP0p3IKZs4ll3wTw3Z05c2E07TCM6PcSzRkq1aSDY6V4gwEoSbRf4GMoX2zJP+I3pxBECF04b8UpOEY2/7HtEIhk2WJxY6Oc8DxFhHEeGYaDrup1td57Kq6qo27wMsxu8J/sMkT0oubkP42sPS/W+qbUDc6pCTnubcNd1O9BgZhEVn1LIhdvrxDbP+63dmbewtkMWRRrzZO4t0n1/bA4TaD+u5n1fa21BeMGc7YL5fRYpG05tz9sSblsOSJnC4SQItRibqw22HbBlR7/oMCofPnrI5cU1ear0JkybNbdOT7mikjWRJuO0S9y+d5t+AZ4XfPhw5OrxJZKcW6dLVrnnzumKRe5BOvAtVgqqiawdqkLfJ4btdcTze0v1TREsJ94jNNDLhDO29xnTo+OIzTklrc3VWp4z0DOvzSBv7djtWbIbOUEIUDEPhmkO9KOd33He52DJ6jN9+TjWsY71I17P9BVGDiYURwomxOVZGabC9WbDME4scianNs5WaRbM5nDI0a8vJX6ck8YcGe1xMrQ+vEqh62rYhW2eAMwukKxaaZqRmLuTUlvuG21ePSzL2mb9rBYdyz4sy7U601SYhglJHQDb7ZZpmiLBNiVqrTtWZbPZUEphak4lmMPUYpt2hpgbGpSZgZCnd2O4NIA5gfSwpWKmlKZPALCmf1GJQX6iegN0zC2qmJo8vyaUali92aLZ/Q4BKrVtxz7Txg42cT8Z+el5QfP3q3nMj4EdwHIi5wYy4hkwNI2x2I5dm/ArrK82JL1CvKKDsbm4pJRCnxM+bHjy4DGnacFCEy/evYtfXtCZcLZccf/uglffuAu5sh4rWRJ1FM7OOugTVgp3Tpaw2TKsr9FpS1I4PT2hSLQObdpS6sSq7+hyh3jGUbRqZOVkbaAjEn0bTxZC8d2Z3xpvXttxaLk0zYa80974/Li0AyjzFOo4r8NZZBZC7NCr1MZFCe4JR0m6+MP+6R7rWMc61j+znm2AwuFC1xZGV0xDSbIZp0Zdd22YHm2+yEyhG2LBcCihDZF5TL03wadIExdC1+Ubw/x2r20eE4Gddjfc0aW4+FeL+/pIas0HugmIu1mYk03dnVoK4zi2JFzfAaBpihlAM3sC0QYqLcp+DjSzJoqM+UJ7piHeylM23lkQTHAmT7Mr8XyGTbYDSmaG1UqXUjAIGvvPrLEkBOsC8zTjAC/aOisz2zXvu7A+SwMnew5Hd/vpYwAVfORns4Zo932J97TjVby1QMSgDX3EevAMPnJ5cYnmk9CmTFCnwub6iqvHj2EcSaWACcv+lFuLE7bVOEl9OFwWHWcvrHAd+OA7D/jw4QN6PePenXuc3z2h73pee+MlTu6c4AkkFdbbS95//wMGK/Qpo+OW0Tecp2BU8pxB4lBtxOnY6awkgBYz0G7DD5GCMAWDYkQLSDrEUwMtW/TAqLUTcPt8PFprrp3vyePc1/Y3URkRF9wiWp+6/dhjc6xjHetYn0Q90wDlwKTaFukQEorG0jSV0rQJRikEe5KIbI7Z6GIGJCRF/oQzNd2JYS5zFixCtDpKjYnAubEZEO0bb5ZdUW0BajkEo3XvgGgSAmqtDNsJSrNJSwS4TePEaM44lfb+4rlLCX9Kzh3TnHfSnrXUBtRmVqIt+DdqBkQWj5h1Jzf2pe+f9HDhj9bZvvWTGvCyWqnEvhQRqtfdvJxDzcjMriQPnwkz8GDf3omXuymKfRrIPM0EzZ8fCn1VtAGbWNh3YW84PuuIxcPKa4YVCRCAst1sOS1TE4TG6AOvIzJuWHhl0WfG9cCTy4Gr9YbtOPDc6Tknpyt8IWxlQrQw6oR3zZKbKpvtJZutMPqILBLeK35dmKaRy8srtmWi1x6GDfm8NFGxIU1wHW26CfdoUQb4zMyeJXeJ9sysLxFr9vN5Z85tIgJIKzvNUnxswLbW1gprLbI2hVuQFhlUcZ/i+CktmO8IUI51rGN9evVMAxTx5mzweUGMGzslaPHtMDGUCfMuBqe5QoEkceM8CxJVIUmFRmOLJBIWokXJjSUZ4zHJKNURizAtbaFuWQQ8YUVYpswiBVuDpjkTrukznVIqmmKKbFJwMYZS2dSJUqVN+5l5jRkeKJNLRNi37cYiYGt+4yaHqbqzjWcfFW9NBLxzGB9oROLhuhOrznoVEchJ9sP63MiacE1MZUQt0eccWpicUJcd6JhFuDknsjbnk0gbOEcDfRp3/w1QmEQWyizwnQHOXIegZXceiJAktl+9BbiLodIBi5aBU0HX0QYxbfNunMkTkyXGbeF0dQv3BFJYdM6JX3NPNlhXSWewFeW9x5c83G5ZS6FfZm71S/I4cfFgYG1bhkk5u3VKnpxOBa/G9TBSG6uTxopsjTo51QSblKKhgVmJk+lI0kF2JkbUOzrrgy9JAYTVFaEjBgQW8C1Jgv0QuiaSbrN3mNq/2uLq26nh0Z7DibwfpwGUCj6E68cFSJhFovHOpm0ak6Pt49mtYx3rWMf6JOoTz6r+D/6D/+CgjRH/Pv/5z+9+vt1u+Xf+nX+H+/fvc3Z2xi/+4i/y3nvv/aFea74Tj7vnEEi6V9RAqjCUwraUSMmcWzsmeI2+u7WcEaUiUsBLW1SVpDF/J0lBZUJkJOWJ3CdQqM0VM7c8aC0EN2GRMn2es0kEJCbK1hp3x6WJFGv7V9r3xmqU5prYTVtpgwuNRr+r4iItkKuxNji1TFgt6IE4Njo9zfrLvhW2y4y5sb7MDZb20eePzenSoJIQa1TqYh5Q9cpYpp2gNiUlpRY3LzOzIfRdx6rv6XNHTmk3Mycl3Qlk95qUGSTdZEwOU2RvZKCotmnUgkoOwbLMDEGP0Medf6pIsmh7SIclZ/LY75v1hk5zW8CNZQenXeX+Kdy7I9y54zz/4or+LDMmRxYJVadcrikfrnn/mx/y7a+9zcN3LskTnPcLes0ownLRcX7rlIyQpopPFas1tlkMkYncO312+oWinTFK4fuPLvjqt97hnQ83PNk47z+5ZnSHrO3cWCDagysx9K9HWbSPXYiyLTQnsbsUcwEijDDOQdm1Pn1GLzSnVrPYmyVqTdFK2oE7jdyeT6h+kNeNYx3rWM9GfSoMys/+7M/yt//2396/yIFu4t/9d/9d/of/4X/gv/6v/2tu377NL/3SL/Gv/+v/On/37/7dP/DrGI66IzoP1ptDpZpduBpjCSdPou5aQLbTJCSKVRBruSQtvt7ni+QEWhBi0JpKYtF1DBLzbKzNeDErqCtdytBaQX3Xh9zhYHtrG3jiLpQGLMydapWpTDu9ytOyi71WxKFWxGISc0rK2WJFSpmr62umqZKa7bj4PuNi/zzsWiyHzz0zJR83vE903lfepianAHfVSBpC4zJNoYZQaQxUtFtyVlLT0HQphguW1r6wYWoW1v3rfVxL5+nclEOL8mEbae5piMaQwFmPE+2a1AYdNh2SRoiZ6UDVymQD19dPqOM25jKZU6eRMm3oFpWTk8Rms2YcK9OyUMTJkinbke14Ra+V6ytnXa7pFh3LfJuT7oTttiB9JS+gy462pN3ArE7XQ62FWgspT3gqeFe49jXfee+S/+V//QZf++23+Myrb/Dyqy+AbPnin/4ZfvanP0tOhpogaYlZjhlTAnjFbGxsWLAf4q2dxthsUiGGrbWB9rrZCZVBcOmxaqgFCFEBTxHoVnzC23BLl8Oz+5+/flDXjWMd61jPRn0qACXnzEsvvfSR7z958oT/7D/7z/gbf+Nv8C//y/8yAP/5f/6f8zM/8zP8+q//On/2z/7ZP/BrmfuOBrqZkQGlVLZjbcS1xd1qW2CrxcA/19ZymN0vLs26HEJEp2JAkojF7/IIvmkW1rDTikoDQdGU0ZxYLhY7tmHu2IRDJRbYKWInUK87VmUO4jpMSr3BFohDcbIKi9WCk/MzzroVfe74EOXJxRW1JeKqamx9rbtFPGm6YUXeazl28GfnqhFmYCSNGYnoeFzocmasI7VGDktSDTu2Of2iQ5PeYDtmx4+Z71owoQsqaFuEfi8x7Md9/vR7CNGIIpoQTY21mttl3sBKZTfgzpyiE1Urw7TFbKROG2QYcJxpu6WMI6szODlNlGQ8uLjivfUHDN6z1CXJYyr1NEwM5kwS7/Hy8cjj969I58obP/Ect++csFp1iBfqCMICTQu6xYpqhfFqQ7WByeHxuvL1732f/8/f/jL/29//Lo8fjyzy1+m6xGqpfPd7b/GX/9L/lc+9/iK1bBBZornHrYIXqtU22FKpJQCmkmM2lbc2KNGhcQ8htflESsG4xEglZ6qF7Il5AjJUTCpmJdqMJs2C/8nVD/K6caxjHetHvz4VgPJP/+k/5ZVXXmG5XPLFL36RX/mVX+GNN97gy1/+MtM08ef//J/fPfbzn/88b7zxBn/v7/293/VCMwwDwzDsvr64uABopsq5LRCZIInQpcZF1tiOhWJONqGiZE07IafnJoxVaYJYbSxKiqnFknAvEQJnPaQFnW5Rb9FfAm3S237gmjlCYtkvSBLJm2Zh20xdJidhGEc200jWIOLjplbJKVwvtfpHQMrp6ZJlSvTa7L1dIq+WnEhPkkSfwuXhrUWEHHpiZpeLoLs8lL3ld89W0D7O+hXidzQGFE5TRMOnVFmuOiYMqyWSc1trqe97ck47BsNqDUEqtMF1hFC1sVze9EO/W32c5uSQFTp8fzGvp0XkM7uwPF6vuaSc1rpo2SClTuSs/PRP/xQvvfgCYKSUSWmBeMd4vUZkQzrpWZwtWJd3eHJ5xcISenaXvOwZqFyM1zyxGC64/fAxXiZWtePs4oS7L96hWyxDeCrCMCnTlHDr6ftztnnCTXl0ccXf+Qd/n7/7j77FV7/1AY+vJnLqGavgk7EYnf/pf/2HfOaNF/g3/m//ErdOFtg0knWJIFQfMB/AR0qBWgToEMl0XcKmOYlWSDnjLkxlJOUu8mRKRTW34y1k73ALUXe4hGIOUwjL9VDX/InUJ33dgN/92nGsYx3rR78+cQ3KF77wBf6L/+K/4G/9rb/Ff/qf/qd8+9vf5l/8F/9FLi8veffdd+n7njt37tz4nRdffJF33333d33OX/mVX+H27du7f6+//jowA5SYCWM2gwOIPgqU6myGiWFyqilmcUftRFps9dKeYz/LZja7minVM9V6zBaYZ0qhuXdCJcL8PFZwCdtytdCjLPo+xJ5PZXnMWSbVnUK0G+a7fve2gMg+72NemEuZwConXc+dk1POlkuSOqVMbDcbSi1NZ5GQnHZtmVmjAS3afF6oD/7FHtv5N0D2n4fOJgSzqnOLxxmHEdxCW7JYcnJywnK5RKQtaI3Zmm3SkWy7ByYiNKblpu7gd2NJnmZS5vd1090Tmh1pmh+f9UlqJDWSOqkdO3HHilGnymKx4o//3M/xyhufgS5RiSj6y8eV99/a8OSdyvRkidQ7nKyeR+lZpMzd2+fIquOJFNbi+KJnUOWxVa5VWbvy5rsP+MZ33+bqamizlGJ/jmNlGA2rHcIK855vffcB/+P//Jv8xj95j4vrDrPMertmO25xTZh2vPtwy9/5377C17/9TgiTtTBN15SyiXPEQbVDJDRCKUtYob2QgIQjVvGp4KWQDMrgZFmQJGOlUsaRJFDrRKlTA6wxRBAUzRnNOp8tn0h9GtcN+N2vHcc61rF+9OsTZ1D+1X/1X919/nM/93N84Qtf4DOf+Qz/1X/1X7Farf5Qz/nLv/zLfOlLX9p9fXFxsbvQODQQ0MajVcOJUDYHhnFimConfU/1FsLmDowYChbBaEmkDauL6PbqA46EgFOAlkga2R5zZohT5lAsT2A1RLjq9Llri7LtxKelFLLOwtXQRVT2mR+ptVrMYoE/jLmvVoOyr4ZaaGsuywbfOkk6Uk6knBlrgQYFeErLYRZtmEPRLHBjkT+sXV5MNUQqKomcI1xunNYsemG5XNL3OXQO834RbzZujyj/PTVDNaNMhf1ARPnY/JXfT90ALRFluxfHNp2RYKiN4KUlvedofRk7c4tq4va958irFTVJaxH1bK6U4YHg1/Do4Zbvl0sevjew7E+5f/cuL77wXLyPac0ix/vdFmPQylArdTTKtdN9uGZdZqHziMmW6huKDVh1pjKCZJ6snfcfXzNYDc2HGdqG+dU6sjGlV+V3vv0B//Aff4c/9sYr3DlfQamRjVITXmCoE9vtNtgiwp5+dfmoDa8UFoslOQc7EjrxxDhVzCZylzCLc0hTimOPggle2zwepsaQfXKzeD6N6wb83teOYx3rWD/a9anbjO/cucNP/dRP8Y1vfIN/5V/5VxjHkcePH9+4G3rvvfc+tvc812KxiAnBH1ttMT74v0jrvQtMpbDeDixzT5caCyDBJBSzsGx6AyGJ2W+J+0CsdhGcJckRj+mtbjH8TxoDUSGCyMybINFinksoTxsgiIXerOWKyN5VIznRdR2oMJYKlB2g8CZ27SRsoUmVrIKNhaurK+rauX3rDrfu3GZwZ3N5gbU8MpzdsLf589ng+/RMm6CePh6omFkIYcXQFO2enBLLRcT0p2anBScl3bWHzOasjggVcyLXZZqm2Ff68UAkNuWw7TRbnj/6+B24mv81u3G8XkwsNhsjHyR6ctHiqYZNDhaAJK9W0PVsS0GsUKpQx0xd92wH5VoL724GxrVy7+4tzpcrUhKKw+p0yfUwMl1fkfsFWRPVnbEasnU2W8esC1GqGsY1Lhs0TdhkmE2kPmOuTG4UGfBaSO2/qQxIKphligsPnmz5R7/5bb74Mz/O6y/d4+LxBdfXI48eXHF9NXK93XB1dYm7sTpZ8Nqrr/DWW2/y5MG7LBYLPve5H+ezn/ksXddTqzMU43vfe5Nx3PDGZ17l/HyF2chmM/Lo4SXDUCOl1wopQe6F1WrB9AlrUA7rk7huwD/r2nGsYx3rR7k+dYBydXXFN7/5Tf7SX/pL/MIv/AJd1/Frv/Zr/OIv/iIAX//613nzzTf54he/+Id7AYMkSk6h5ehSousWiGa6pEgS3n/ymIvNJQtVXrp3j1unK2qBzhN9J3RtJo9ZoYo3FUqHU3AmVHqSJRLONmckdVgdEVfMEy5dZEzUSKIVKaQOUs4gkVpq1hZvQqXYeRsQ2Pcsuh4QSi14LY05mRNZnVoLpS4Y1LEkdJrptMNMGWwCVc7Pb3G12ZAu24we952oRGhW4yA0PqI9AeGGIeMGo+FIkh1YSm54rSySsOxiMRYMk2gSze2VaAsJc4S6NXZrbhnFVs2aCL/xknLj1ef2khIUSDAKu5lFzD8LlidpisGOZJQxjqu0tlrbL+6JsTjbEs6q6gOTVjaPHvGbX/kafUro45Gu6ygWgtGH6lywYHkq3FstuN+vSLljUwpZM7dOboMpd+6eklR58Ogx62GDFaMbMz1LkET1LdSRRU6cn55SpxgiWaYt/bhFPSPW0ndFG8Wh7TyP1OJhLPyT3/4O/81/9+u8eH7G9YNHPLm44sHFFVfbLWONCdmlFm7dOuNzn/scH3zwPt9/6zt0OfOZzz7gp37yMYvlIkIDJ+O73/k2ZRr58R9/xPPP3cPNuHx0yXe/8yaX1+vQUmGknDjpFty5vaQ/7f5wf7O/j/rUrxvHOtaxfuTrEwcof/Wv/lX+tX/tX+Mzn/kMb7/9Nn/tr/01Ukr8xb/4F7l9+zZ/+S//Zb70pS9x7949bt26xV/5K3+FL37xi38oJb57tGZySvRdRiXo60UfltbcsjgeX11RfWLR8lLM7jKViW6ZOe0LslqQVSkCipE0k2UVLIuPeCRYkGhZHCkWXHGinUTGvbSvK0gld0Lu8o7fmVd9t7DgrroF56cnLJYLpnHi+vqaUispZ5YpMY6yi7sHYyoGYozNipw1o6nDtDDVWJi7XSicxRrOU06X3XbsmZI9kzLPDuLmYxsbRcsz0TbMLueeLued5ifcIfOAv4P2UWNOAiSxdxNZLLa4oUk57PPMwXLOIc5qKcG0tpV7s5QHVxJ6lwi+U4l1XSW6Pt5m8JiX+S1hwORQSqG4s76+4p9+5bv8zb/x/yZ3C37ipdfoTzpqr2yGLU9ceFIr0icWSVhoppgxTBvunC559YX7rMdLXn3ljNNO+epXB9556GjquHPnNsssJCrFBgTh9vkdFvmEx48esV1fMW2v6Wohkemkp0rYozFHpoRVJ6U2lsCM7737Pv/93/nfuJ0X6HbCrLLBmVpYn5kzjSP9oyveebxhu92y3gyIjHz/yTf4zW++0xiuOIevr67AnK9+8x2Wiz7O5bHy8NEjqjuStQURC1qg64y8/OQ0KD/I68axjnWsZ6M+cYDy1ltv8Rf/4l/kwYMHPP/88/y5P/fn+PVf/3Wef/55AP7D//A/RFX5xV/8RYZh4C/8hb/Af/Kf/Cd/qNcSCZaiy6lR+xKR8WUOFJsDwCMArbrzwZNrtkOllInUJc77ns2tM56765ytOsig6qguMQ35rEoIX6P37qRUW+sF5jA1IUSfbgEOckp0Ke18xqLxMzPj7OyU1XJB3yWmUhhLoV8tOUkZUt4Fn0UrpGWZlEKBsIsuDFTp+o60HSlTiYm+Lf8jpAH7DNp9u2jPnDwdEx+PuwlafP4m7MS981DCmNIs1Go7yqPWAFMgO/Cwe32PwDBNiZyhFNu5hW4CpXkbZu3K/B7a8LsU4wec4FPmsL4wU6X2uzUW3wZszLRlhLSJyVKAMcSjBsNQuHhywcnpkldffZmvf/N7/PqDr/DG868g2RmKcFErE0Y1WJeRy2mgvv8e2k+88uI97t+7w6PLCbNLNC+5c3fFk41x/7nneO0zL3PrVkbrNaluKQYpdywWwrvvvsPXvvYVbp8tSTmErTklxAyaBV52uiff7c+hVD5YX7LJW7oKSRMlSQCbErOEai0MW+Nis8Y9En01Kev1xOP1NWYVTYlpaGJq4HK7RdxiqOXshFLBKkjEHlNHx4cR1uMf6u/24+oHed041rGO9WzUJw5Q/sv/8r/8PX++XC751V/9VX71V3/1n/u1SqnBGkiLnW8pqzOVXyu4VdwqJiF4fbIZGSbHqXRjpoxQ6zUIZD1jkXtQYaoFFSMlpUshnHUrKHEna3iLFg+OoEpBCAGpuNKnzKLLEWa22+JY4E9WJyyXPaVMlGIsliuWyyW1Vq7WG4ZxxAxUc+g+tDlTvDBMI2OdQMPKPPV15/jputTAxixW3eequMsBOHnaujsrOJ66I/b2s5aQG5qOcEvVDLuWi8cgQKu+a73MTp6w/0rLeomwvAA3untpOxDz7vdUY0ZaWqm0wXWpDUE8nPcT70XA57C+0LlMKVgIMcFl1sY4TsG8ARQXzIRhmPhjP/fHee2lz/A//c//gL/53/23/Nb7b3Ovv0XplLfXFxQS01RIPnK26rnYGq++dg9dnVL7M/rTjne+/w3eHq+wcUnPiJiRVcjuME1kEmNzFkHl9OyUH/vcj/Hc3VP+0T/6LRZdR58GRpsTh5t25ikmzCQYoE21ADwiVIuAPjVpP3dyY6NUlckdG6PtJY0R81rRtKS6xzwpi0C+lBMTQAP9Zg7etCi1MWpzpswnUD/I68axjnWsZ6Oe6Vk8Viu1VsqkSJ7ZgZbw2tLXahlbWFlHyspQHEnexLLKaHA1VBbXI2ergb4LwWrO0Q9KInEhdsFESThdbiFgLiRAvFIpmOR20XZUEn1OqIalmLbYhhaist5uCX2HUqxyeXVJqcYwTvvWhUgsvI0LcYSCUxQ6jeTa1cmKaTM0pmU/wNDNMdknyR5acmGvQ/EZhBzUzGg8PfCvHogiSw0GKeW0E/K6aGNLwNBYCF0iUfdQ5HqAg3yeLfSRbBMhSUTYh7A1xK+p5c4gc+Po4LlQRFv8f9NrzNgrGLUAVO4TxQbGaQzQpMrmekNOiVdffY2f+rGHPH//Ob7y5ne5SgUj83iasOGavu8oJN6/uOBuv+DqYuRb33qfs1vRwrl6vObOasX9u3fpXrhH7RJiYSWGU8QH3C758IMHPHn8mFIK9+7doe9p7InSi1KBySzs7wfHYT52qY0KiHZVm6htjlmlNs3P6AEKc0oxQqExVo7iXmfJMCKK1RCAJ9EYGVgqo8xBiELSaBvV2rQ/Iph/clH3xzrWsY71dD3TAEU1IrsnmcA1FnYpYeN16HLaxbOrdGhKkMIpoWEwQbOiHvbQJ1dji2pLnN9e0qkgJtHKkYSkJVlGutQjMrZ1tiISQVYxdE/BlOTKomk05vk+IlBq4fp63RacuDMupeAW7Q+YWY551s8MVhySx3w2baFkIvSLHqnBWNyYPNzAjfs8E2d/Bz7nmsTDZhDk3Gz7yG4fp5QbS7NvM0xTZbMd6fvcnDIxaLG2tsye9WnA5mBi4mxHFtnLY29u3374474dxU4jE7tgD2hCUJowUVSdnKMVND8HXhs4aQs8smO/VIRaRi7Wj9lcrVnduc2q77h3fs4iZ8owMdQxpmJbZdWdMpXCg82aW/dfoGyMshFuP79i1V9zVzacpcfcP9si3X0ebCay3CLnU2AJtVKK8+TJBY8ePcLqQMqVaSiMZcJKCV2VCtL2g9f9/pozcsJ9HA4y92AKIWZEFbVdpL85lN1xm7Ni5vOq5STbiOMRACiNEaw1BD1Wo9XjAuZ0MyMjAnIEKMc61rE+vXqmAUqIKGOBm+PVrS3uqhouGo+772SpJYy2RXSerCttOKvDZjQWa+OkcxYnI33XlJY14dJDCidF14Kw4s7WSD5RZB5xr0gLKVt03Q6gROsjZthM08Q8pzi1NFvDIjq8sSDhBmpsjGrLZnGKWQwqnFkHFzwHgNC8Z1BU9p+L6I3Ffw9CPn4y8NMWZG/shWra/axWYzuNlJaZwcF7lOaoimO0z2QBx+qcYJsOtsEPgIjvwJs00a006/fudWhQQ/ZgTEjRxiGG8KW0nw3kPgI90qLKIOFVKcViyKJPgDJNheHyivffeRPKyGv37rHSUx48vuR7jx5SU2bVdTzZXjHVAig2CdvNyNXVY07OL3n57sCdfMGtZeF6Gnlv4yzv3CGn1NgidsDRrEXw14kybRmGgTKNZBE61Wi5BC6g1hJW9HZMpOX8VOLcLRZzqWIvS2ScEIF9U6m40VprYQefdS1RLc1XjFIb9+XRWuok2muptTI7zaTGapkbT/4Af6/HOtaxjvUHqWcaoMxKSVWly10DKBECoujBnXckiAZpEmLLuc9QMaZaGEpiocqYnO3o9NsNfR86j5jLE5NcRSdS6tm3RQyk7hZ7iDVURQOgHDAAtVbygQ3X3GIxn4WoOdP3C0QTpRasVoYDN0yIUiulVvrkZFUma3N3rLZ5QbENohKb9lRb5zDifgZJ8678uFQSM7vBzsRC1tw5DqXGnfucfyIHv7fLV5nBUZ2HOR60ZoSDbdgDI219mY+EyfHRYYqHP3e3BojCVu1tnpJQcU9N/JnBM9JmAoWqWCnjxHW95u1338brxKu37/Fcvs07G/hg+oBpkehTaJ5QoxZjGkdSHbnaXHCrv2R5Dh1O3T6mS1vunt2hWzmiEYSGV8oYk6dzykzN1ZNyH+29ahG8p4b7GBk2bd8cDn90oAoBut2bPb79wPYjIFS0TWh2rFQgZkdFO1BvgJTALrXpsaDTOI/VodO0a/Xk9v3p04tBOdaxjnWsZxugOMRdc2sndJpbjz20H9rEhd6obMNJksN1I42JKDUutm5MVhm8sikjeWOcrk4onZBTRWyKJE1VJEVKLDjVwT0GCbqBSzAKnSgnfUeXElOdZ+RIzP2BiKQ3p5ojCl23iLj4fgHmTFYZtwPDGE6JlBKiQqJDqqAWybOTatwN14lOero52r4tHofMxBwMFxqChmRayNocZz7/zuFE4ZglJActAJDUUnYbk7PLeJHQQZhZAyxhCa5AncWe7djJTIykve1Z2vcFicGNTeg7R+anLuMiTGO0XWAGVrF4Jk0k7RDXeP4aAyIhBhqqKio9SkfWRC8rppoisGx7zWQT739wiUyZe9Lx/HrgtBjfzZV3e2GsE0l6coqZSavJealbcX6+4rlbzqkZ68cXbJJz9+XCc4ueaSHgRt1OSKnUaUOfQkiNLVgsV5RpYBgS1LCtZ3U6YHRF1MPkHsrWpkueNTYS4TbRh2wAJnRPsy44eUyQzjg5Kbnv0NyFFblWRqtxfBEkZbJGrlCHtGMBuQGU5lsLUPVxSPFYxzrWsT6herYBih9kZVgsmvMlU5G9C6U5GgCSt9RXj5Cu3ObLiETOQ7XKWCdqUcwS1RWREBR6VSyHJiNrQiW0DUZHsg58AnVEnCSJZZfpUjhx5qF41l47qWJeUJSu61n1C3LKaLtl7jS1Fk60ATSlaOG44sWRvrEWJq1NUMhCLC7aRJHmB/uqMREHs2+8tV126bs7FuJmy2euGaQcijVFdLco7lxCSpv03O7uG2BxDc2Hzm2oRnTEbMMWFjc/JwE2ZnFoSiFeTn3GVRlSYjsMYeuWWLRj+yKobU89KHi4q/BgcGS2L1tCak/yDFS8Ousnj9m++z4rd+4uOm5fXvNyn3l45wW+Ok5oBVllLq43nI0bXj1Zcnt4xMVlwe6cUG3k3h3j7PaSdH4HGe6zuPUKy7svQl1TL6/YTNc8fPKA66uB05MTcnfCejMxTnEeWzsuGSiiVMoOaHuza0MbzyDCDNMEyNLC8SSFRMQMLNpdZ4uOxWJB7hcYwno7Mo4TWeN8zPN+FyWrxrm4G+aouy7bTJzUp0xfxzrWsY71SdYzDVBoOQ3R9ihYSsxmkEPXSND4vnvszCZouyBnYsqvNm1KnSqlKOPklBqX/ozuXq/LEQy3GQvAbu7MrB1pW0DXZXKetRb7xX/Wpbg7XdfFkD2PyauulS4ltMt0Ocei0OymStqLbtvdbIhQK9ai8EXaezTZiU1nQBGfp10v55AlESJLI14uXo/dO2nSDzkANwc/q7afSHz4/vF5QGADR7Vtj0RYW06KB06Iu3GPUQE5JbrckXK0yHLOAU5SonilmCHLJdM0MZbSXk52wtlYyG2HfrwGDRAvMUVnUCFpj1FwAVXBRuhL4fN3lnz9/fd4/OiCuxfOol/wf7r9Cn9iEC7qE1anmUl6bne3eOXWHb5jl3z33Q3/aFTeXW74/MsORfGrc2r/Aree+zHynftMY0Xzgny5Ip8tOe2WPHf3PjkJm82acdwClSR9iHil6VRau+zw3J2Pp4g0x1prXFrL7klCnUJPslwsOOl6Tk56Si0M48RUKmOpiEIvkb2SNaHeDqodtNx81hHNe5fdeXisYx3rWJ9WPdMARTSWafM2CG9mTLiZq3EzL8N3i69hMaumVqgSbZf2DGWqbDeFk2VkSUhOcdGuE4KG6NFt54ZpDZxYGFulnEk57Rbt+XW9BWGpKjlnSinUqaBAyqGXSZJJbdrvTn+ARhibarg0PMLcxnFgpYv2PlPLgTlkOeb33xa2A7ChGnfM83463Gc+L0wI1qY1A6RmV52f/+bv7oPb5kGHXd8HeLDYX2n+fsrQxKw6zxnKmUXXRxunVESErut2AGU7btmMW8wieKyUtg0tAwWsLZ4WChtNWFGkaS/cm2MlWQyO1ILpREKo05ZuGnnj5ed5PFzz4ffeJ1lP3RZO+4kXFh1SEre844WTu9x2x9aXPOycV+6ccSE9DzZn/JPvL/n6W0ZajOjibX76ztu8vH5I1yXy6i637028/OLI5mLDeL3hg4cf8PDRAz788H02mzXdMkc3RxUv9UAL7AcAcH7fTTTcmKmEIi7UGrNzckqcL1acrk4YbMv1dmSz3oT1PgfDt5AG0pnHDjTxrrD7e9jzJjfPk2Md61jH+rTq2QYoB4vkTQEou49PP3Z+/F5fUamHFtpGr08lMknGUlnsIus97MAaDApzGyVJ2Dy9NhFuXM6TzkBmvi31HVCIbJGIWh/HES91P7VV2mKkB4yExP8ic6TGnXIW1usNm8srlm0xWfRNLGwzY6K7HJPYDNvdAYc7qO2bg/0Tbo+oYvv2VOhOD6S1+/81MMPOzYPIHMWGpsRqsWTZBVCZpzerCKmL1lWZJtzmNpjhtmdrzCxAXMu98WrUUtrgxESpFZ23bXYTyew+avtQfDePyL02VdKGKmuqjOTcIWx57713+J3vfI/NxjjhjC53FIf36sBiEa02Gya2k1M655HB9yaly879fuCDqyseTB0fPNhSdOD+PeO19RqmgWwKU2V4cM3D7z/g8YcPWV8+Ydg8QTvh7HTB+emKqRKDIUVRCaBl3ASas2haJICF5gbyEKjh7pEKfVLcnM1mw+X2mqmNT0gpBVOlSk+KvJqDc2M+JXausPnvqLVMG+F1rGMd61ifWj3bAKUt2LPPJZiGPTCJYXuy+3noCa39THf9++K2E8mGjddIrpRSmKaBslCyBaOQ1EkqLBY9KSXcp9CvNHBjTc+BOClJa/HMwGkGT9ZC5oxpFoYSk349BZMA3lJwYxqxWcU97xamOddiHEeGcaCUJU6wNq3j9BGAUmvduWAECTqfABea9m2bQ8ZJcdz1oL0TraQZjOzWqAONBA0AVjNsiuC5GRQuFgu6nFuKaezrWmMgn/jc6pnJsEOXyfw6jaUyIyVIWTGvzbF0GOU/tyVmgEVzrQh4ADjzislEkYFVTniZePDgMd969yFlMO5NHeQFkhPlduHsVsfzywX2eOKtD9a8l2/z/vIuD9MpXV2yuHrCk80Vax/44HLNatXzyvKU22f36KVDh2vYbuimClPh4vETVJ2zW3dIHfyJP/553r0wvvPmg2DZmLVC1v7JDVAg7M+dPdMhjV0Lh1gFrrYbfCpMbYL03F7LqnSqZG9s4vx31MBeaHJl3u3zU7d0N2Ji9rGOdaxjfUr1TAMUb4AgxRftlq6JJtnfQe8f/9G+uQEFKBijV0aMpYOLU60wTltKFWqenS8BOHLOZBVKE13GSzaWpC0VqtLcLTOD0l6zMQLm8fmi76Ea4zTRqeCLPuy9LfxsXuB3zhi5Of93ZhnChjo7dm6mx+6BQyw2c1tlP/mYXWtm9/j5c9gJS5t79yM6lcPavWZ7XB1HplIYxpHlcsGiW8R2lggUk65l1Uik4+acmlD25vbPwWt935EktC8qLVhsqq25c3ObjEJ4iLTpOQBTvCp4H9OoSeS8ok7C9eMtUiITZV0nxlToxRm18IBK3y3Y3jvhG7rid+Q+D7kN+TZT6Vhyl9KfUqZHpNMlr9117vc9K4xkE7UOULd0C+P87imLhye4JCZxqhZee/0l7t//Pt958/1wyaiiNu9Jv9FSFJqAes5WEQmXEkIlQLe1PF81QwxUoqXTqYQGB9+363bodGbJ9qfDAVF24/w4alCOdaxjfZr1jAOUdmep0obROSkd0NPNNWIQ1pmnLqpO3EVXrxQXigsVxzQASrGJYXJK7XDPpBQLoFu0FESIAYAaWgfmloLOLRoh5X1uRSymTQvSWIyZbZgX86lMMdU46cGsH9rj5/c8i3yDpt+xFTbP7WFHw8M+yyQYngO6vgXAyQHomYW1sX9bci2zzqcgVaht8OG+ddU2kP2+j89l97FaZTtG5sy1bOL7TeMiOUSzKiGQXXQ9XcoxVTolUgotT6QCK33X4X3PMAwBSUplqI67tPZR265dS6sNezTBTcCFWpVSMrV2OEafz/B1olxXbmkmnyZsGBjrBtUe3wgPRuVqM/H4/ISHr98h5TNeRDhdXPLt9wQ9uUept+nqKa8/9zw/nh5xq68suMTtmiqgqYPFRH97iZyd89233uf9Dz/gtZfv8LkXlzFTp02nzinBeIAN9nRV7Fu/CRTEW+KLxHksKm1cQ6LrEh2LEMOKI15DTDtDXWknWGMd8Tam4OnXlrmdtxc/H+tYxzrWp1HPNEARmq3S4+7RELomLI0VWhFNbUFubZUD/Um4RgyxAi1nYuZAapoYgWHqGQeFZfh45gCtrEaXnJQUlwRWW1shBra5OF1yVl1CslCq0HlCzZFd66cFtlkJEKWCa6Zqwl2o3t6De7QxWmuj1IJ5T+9Cr4nqztacEUG1o9cMVpt7Z3Z/xN136AvCUi1Bs0TLpAGmQ1ARkeqRPOoeSblOpOeGrmPvjvLm8JA9pNq1mA41LuE4st3iamYwzW0r27mJkmpbWDOLPjJizs7P6FJHUqHWgkoiaabL4XphrCwkgORgW9QziRXVFfeESGstYThbim8xaS4gc6bNQJcTd++cclonZCFwMTEWo/NTeh25zM5vXd/n9OWeF+9UugR/7CcfcfqVkRdenrjYrvGUOKsr5L17LFLH7Tun8doqqG+p1XnvovIb37zmd77+ATJ8yGeeVzrAbWjAtM19Agq6G20Q2SdNwCoSE4YlzgufamvX5bb/YKERLpeInBMV350DDSJTqDtNEgj54EjuMciuUbprBh2OGzjWsY51rE+6nnGA0u7+nR2DUs1A8n4WDAFe5hbQ/kLc3DTuiPnuTtGNmNbbXKqlCqV4W6gtNBgISb2BIW0R6xbZJrQ2gjtJYdFnJDXtQ21OljmYjN1A+91CnroOQ3ftE2l31NpiQsVbiFspOy0BjSWqhBNJd0BkxgU3h/GlnHe6lPl1Eje1JzumyW9G4wst90Tq/s7b5xbEzT7R/PyHoOcGaIFdBk1Yoxvp4U20rJFUu9kOrLdbrtZrbp+fcX52EkxA7howElLfs77e4D5G8FsWfIo5QC4Fp0XBq+BeKL6hyBUuGyQZJmuG4Yqum/jpn36NnkIaBy7efp+rD56wzM6dF5e81Z3x6MkthEteOTMun4ycLC54/qzwufsfUqxjDWzLwJsP71HrCX5yD2SJMEGBRxeJr/zO9/j+B29zerdwMnTcWjpWtpRaKB5haAq7YZXWMlwa6RYtmHaA2yilaCm6kLocAluchYYQFmtg/AYI1Z24WWQPLeegPORQ83LzvNgd+2Md61jH+pTqmQYoczZDTBb21sqYxZKOYWCzBbndnbce0C5LRGgzesKgGs/h5JpnpptSJ6aayAaqeQeANLd+EoImDRbCDWnqQRVhkTsSxJ2rxLYFkKpN13EwbRhBVKPNUyamqTALYmsbCFhTuFaKVaobpbV2SqlcXl4yjiOlxu/BRzU3M2g4nHK8Ewx/rKYkVr95Fs/8L/b5/jl3Dqo2efhpZxXsAcp+3o7eAC+HeS1zLsfs3rm+vma9XnN9fcHZyQn37t4NRkU1ZitNhrqSDFIxGA2vgtdK8U2E+GlCyJF0WyZqLZgVpnEinSm+TFQfuHf7NndvndEzwMsd2ye3KKakO4me+5z+1inbofLkcsO4GSKRNvVgt7h4YFxXwU+Vr7xbudNn/pyd8LpmbNyy5ZSvfPctvvfeO5zffsjz97dM7wbINRdMhGpOFQsnT0oIFS/tuOWwn89Aww/2f06JXhM599Hqaud826k7NmQ/yXrfpnEP59PMqthHZUmzEqYJaIXqH3e+HOtYxzrWJ1PPOEDZf/TGoEDMHgk3zX6K8DyobedAgR374k4TrEb0fLUKvkAb01FqZTtO5JRJGi2alJScclvYodJmoezuQx11Ydn3EYBVbeeI2OeaAFhzHsXd8TTFPJZSpgY0fKcr0aSknGJgMrAZBzbbLdVgnArvvf9htLHMd4MDD4cD7t7zvDi17z/Ncsy/M4MGP3AEzdOhzQ08z72dWOiaPmH+eCPs7eD1Drcn2nF8BMTM2zV/b2Z8hu3AsN2G6HYqLJeLcFNVC2t3jmNaqqEGaoYVkFqRFPvGTZGakdLjQ4qgMu85OV/y3Csv0z+3pL+1ZFxPWE6Ubolah3cDK91yvx/4+rd7Hn7fuHNnyfXWuJ4qH15WLtfKB48TwyLxiOdZ3X6Zsbsd2hfgrYdr/vb//lU22ycs+sdMmyfY+Dyb9ch4tqCaUj3AXybaKIf75CPe3r2kqc2kyrvE311ssTeB98cJXee/I5mnWh++RLQs9/Qi7TENWB5Fssc61rE+xXrmAcpOCIpT3RCJWPNdHgoxZwSN/v18UVaNvr6Z7WbixD+j1tBdqAqiMUV4mKBf9PQWVuP93e0ecJjMgVnKPIpvmTO9KuIFaZJEIwSIh7qMGQTM2xhx5oftH+i6PiY0i2AaybPDVKKFhHC9vgaHvosUVm9AYV7c5+eavz4EAoeMxj4Gf85EmVticgA8IhQsGKgD4fEhm3LQAjhs9xyCl3jfegOgzI+fhb+HAAWEUicur64ZS+FkteLOnbtIl6AHvIKGrdiTU8tEB+AFLzVsz5ao6y223tKNLUZ+vWah55zfu4XfXbJ45QW66Tk2V1dcP75kui7UzQVTGXnj9BHf+c4pb32wJK2ci7HnSUmsP7xF11XkllJLpl/cJvU9w3rN+EToThLff+8x33r3knu3e1JZMa0LuSxJGOvtxGYsOLpznM37MaUI4DP3ncj5MIRvZymXiKxPIrgoLjHMUeWmjfypv6IbAlzYO3l2YuP5Z7O4e/fvWMc61rE+nXqmAcphhQumCTl1BiDgXtpdn+weNwdVSbNmWrNrho4FSmunxLobGSelEI6PlkQa7SLdaTDq3N9vvXtp2og+d/Q5gcWieTNAPnr8kXGyByiqiZwztQqljDv78LzIVJzixqaMlGqItFlC7qgQEfFN/DqDjkOAMtdu4av1I+2d/aIXEGzOl4mF05qLadbS7BcqeypJ9uPYkEMQc2iNvglo5v89vU1Kar+3WW8Zxwl34d7d27ywWnI3wek0Mb7/YdjHhwm1CSjUOsVMPdOYfXO9xacNqvDw8QPWdcFmGJi62+SzJaJKlVPK6RmeHUsbTsolP/XqyMVobL41sFlf8e034cH1HTp9kcWykvslXjInw8jJ1dsM7/QM56/Qr+5xfTEwbJY8ki1jOqdbJG5bx7IXJhO2YwimS/VmU09ImXb7cm5lzmMJdvtGdadnCoCiuEpL/22uMYGPggp56vMDsCINqPjsOrv5uCOBcqxjHevTrGcaoOzp6blNY8yz40L0581xYAi5LY57gEIT14pHpkb1YEvMHSuCe2SexADBwmR2cMH2/eLPfjrw/toe/3UpxUwdMyRLLOAaDInudCIHvyn76Hezg9yLtnhPtYZuok4M2y02gy+RsOPObg/2d9+HoAS40fY5BC5Pi1nb5gCRmzEHhcW+jU1+Wif5dAz6jfYEe4Ayv/Z8PPZf3wQq83bN78HmdkV7f9NYuLq65vnTEz7zwj0+c+sOd6fCo9/5Zuwnm9Actt1a94zMVAwmJftEUqjbic0AY6mYP+GhbXDtIZ1RfclUOsah0HXKrTPn539W2aQNv/W9C37rHwqXds5qOXB6suT0Fsi45ez6IfflEenBCVbuUsrIWVqQ7Iz333/Eshe6u5kfe+EOZ8vK+5NzvRmoBmKVLmtkwpgiZmhKeBu8KKLonJ7GXmLiFiBVW0vTZM7MOWQ/9uwLN4TNeyAvgEnLWWnqZWkpwA5NeM6xjnWsY31q9UwDlJtWlRblPgdY1QozONF95qZbjbvwlKm13FgkZ3dE6FFyaCwomE9MBcaywT21xzXRK4BHBHpYceftiIU5aYAUzIgUkr3uw2+4Wea+/qyFCRHnrEFRaXkmpQarsktIXbSfh4MntRbTPEF4t7A3UGIHbZPDFsHTzMq+DiBXYzBiO5vF2D/ud27WDijNoKe1mebWVtuF+0M5v277WnTPuhgOKiHGbfoKzYntdsvV9QXd8/fpO2WqA+4hhhUTtFvgFbAKUmA00tBi4gWWsoIOVgysxFiN1wx1TdWBacpcXsPjMlD7Ldl60nnl1Vsjm9vwwaUwTBesL7es03OU5+HFM3jpZOT19IjnU2LZZzQrr734PK+/+AIf/M67XNQCL2Z+9md/Gi7f4oN3v8vDx08oFuGDtdZwZYnEgEQElURpCcMyn3ON03Ms0nG9iaRVbuxHZG8Bn4/L4TE/bNr4wX+2a7/5juWrNv99HetYxzrWp1PPNECRgzt4aWhBxckq4AV1yLlv4VwZc6GMxvI06PtpmuJ32nOpQ3Vj8IlBtlR1EEPVgYlhvGLY3ObkNFOlIlrJqdKJMNZozbhXzKG2O01JxqJPJFGG4ohmqIUkjsxaCZsnHiuIx3ygGu4V2OdTTMO0s5sG+MmgYf2N32fHvFQLcOOzCNiMaZoope7219P6hbntdQia4JDZ0LYvQvODtLQMP1zg9izMDTZk/vwQyDSQYj6PByBA3Hy33oDXTnxL2G6dCCFzAavehj0633z3ARdp4KXPv8Jzzz+PbuFEMifnHX06YRwKZhNX6zVvP3yHq8tCnTqUjpwE1YHn77/Iiy+9xtmdMy42T9BF4uzOLZ5cTHz4+JK3P3iHt7//Ieu3HrIdhbtkbt3teTE7Q1FW4rzw0j1+7NX7PF8KujG6kzu4C9kLr77W8X/5P36Oev0NPnhU+IXP/TifeeE+v/39N/nmmx/y5PIJph2mwbqlAh1KsQAhqmkn7MZtN18o2oyE5bjNHgpQGSeGme9GG8zHagbkSoAfp+lWZg1Uc8BZA0GyA/Jx3u5sXMc61rGO9SnUsw1QIO7i29e1VqapkHMmpSbMrI5IxkVZb7YM48T53TsUKzgWQWtBmWC1YilSOKuPWETK0rULvZWJWgSVjMjYKHYHN9xCoLhrOc0C1SQs+gjpmpwQlppDmtsaAMGGgAbAsY/RhLSef0xBnhmjlu8iez1J13UApLJvg8z7Zk7endmQp23Ah20e4CPCWRHbDx5s/Z2kiTzPDjrQLsy/f8N9ciDAncFHsE7GnPkluwEvsW9nbmDOtREBq2UXc++EEHYlwu2zc976/rv8t//z3+e9n/xxnqtKVyZ+8uc/x0/+1B1O7pwgZK6++4QHjz5gvSms1xNZexDnzv0Vr91/GTu9R759h7Pbd+hXiW6Vqf2G0zvP89yLL/OTP7Hl3fce8uab7/HuO+9z9fBDNl1mGJVNeRMv9zhJnyGtzsAUW2eeZ8np4oxVZ/z8TyS2799h8/9n78+jZcvuu07ws6dzTgx3vu/dN2bmy0HKlGQNlixZssFyWVWWDW5jXKtRo2owuBFDu1dT7tUU1AJW4WYtqsAMbbdBReGFy2ADBXSJLqiSMTZlYZDlSbOlVM7TG+8YNyLOsKf+Y+8TcV9mCjnlTKWedH9aV/nujelEnBNnf8/v9x2au7jnrGL/8V/j4MazPHf9gHndEpQgCpVUW0KgkWihcgcpuxb3XRQpl+M2lsdHFkcRxPJYSWZ1aV+c5JOIJM+hd+WJpFGnWowak/oJ75Ex3V+SOiqndVqndVqvVN3RAKWvhSKEZGJmgkzGsLLvBESmzZRp0zAerSKVxPuAFhovQvY+ydk3MbfNPQQXwSe/EynSdMA5hwseqQVaJSv2RvR+EzGpeBALG3ctJFVhUq5KlIurzxjB+3wlikTEkMmq6aev27ocPWk1B+aF0I+lbuduPN9vJIGTkyTZFx/HnCSu9s9zEqD0Kcd9Z8Vlcq3QJl2wx9zZ4EUAT7+QPu89KamWXRWxTHvuXUyTu6xEqAQAESDiCYt+mfw4hPS8/d6LXDpS/LtHnsBPC3735QucG0MpiwQSjSK4iqO9PeYTgbPgmoAwksY5zt+zjhkZDia3UEOBGZRUxYi6s9ggMUXBxmjITmFYXdvg8sXLzI5bHnn6GR7bP2D3cMZTjz/Nc/uP8MTNG4z0CC00W1ub3IjwhuY13Htxi9I/y+UNSzNz2P0nmOztEmxk7/AY5z1IT4geh4SQPHaUSp4wMQSkkFlBnDJ24oKsnMBJz8Ei7+neL6jfx3knJLBJJNsF5eMoHVeBiIonuEv5QiD0o7h0uJ/WaZ3Wab1idccDlJNdAClkch/NgMEoRQwwb2qmsxmmGrC2sZaN25Zy1yjSyCKwDOaLPoKLib8QJSpKvHc0tmXsBhiVk2CVRkhLL14RIks6Q+qyKymoyiItHL6f56cFOAaIIjnOpoVhaSi3WGREuhpWJwi55JGIUirribLJWvA422bw4xdAwXu/ACknicL953cSMMByPPNi3iV9l0ZIia/nOOvAhzQiUxKRP1cEt3df8tgmsyJQsgddCwrn4r3BMpGafH/y2CHRdBIQSgBFgvfUznHh4jYP3bfOE/v7PP7cAd9072v5xne9kUvnVxmUIwIDjuaSWzem+DYQOhgPxgQqvBBs71zEMaf1U2o7wsqA7AYcz2u0NpRGo6sCrRWb2+vIbc3xUcdjz13n4OgYFzVeKybHHXu7e0gxxUhDeXDIk7u3+KWP/nt+19vfwDfdu8GZszt0s5J2VmBHZ7n6hWscTj5DjGlg572nC4EgI0KXaK3pnM+fzbIrteSRZBJsn+C9ACK3gxV6QnYUi9t6smx83vfJ418wqktdQt/vptM6rdM6rVes7miAcnJxhXSyDZl0EfIibK1jPp9TloYzZ7ZRUuLaDiHBdm7B54g9QCH5byRVkCQGQYjJ8yMEgQtJglygUsCdlFkJFBfhaqLnAOS5f6UNRkpqt+QG9IvIgpQYQ1qASam+z+9e9ITUSFiQFdP7zsCl7xb1IEalcVMPTLz3+TGcIAXHxefW//f5nZj+c+5/nEsjtMLoBdE1ZEm2DgoE+OhfsP1SSLRcHm4CkeXFIDmZ+JwhzAkQBUlNshz7hMydYLEN+43lWMO3fsNlvmv+Bn7633yWX3/uWX6XfQOXK0HdHQOSm9fnHB4c4lyHaz2jtZLD4w41GDFeGTGdX2dUaZRRSK1QWhOjQAiN1ApdGELwmKLEWTiaznj25h6PPPUM5Wgdh0KYEu8tnW1o6Diez7i1e53HXMNIeR64+G1sDscYoVCDAUGUHPzWEUezhrhIcE7jHB/BxARQpRQJDLIMnuzt7zkJKhcklfyJSpU+635seAJdLMHpssvSk6BDIEUs9PchAaDg80jvy//qntZpndZpfcm6owHKyVqMNXxAoCBEvPNEHxhWFWfPbLG6ssatvUNiiGijMk9k+Rz9P0OMyc2TFNjnA2ihEBJ8jFjvGXifAthU6tosnyGTE7PRmiRSGkNhFLSWmMPasknLiXeQ75/HOMuFfblNvYomK4kXP72RW4yc4IiAzyTHeNvrPG8E8Hwg0T/+xGOeb+pmrV041UrVq2lyB0guH7PsvpDIv8RFkGMi7sa8+PefXd9fITv/Lkc+/ZiiV5b0n1h+E0xay8O3dvk9o0v8J2+7nyeOW37508/wCx//FHff/Y1srQfcvObG9Vt4b4kiIIuUndS0M85ur1MWMJlaVle3KIqCYlBRGMPq6hrEgAK0lNgYsUEwqTuevHGLx69f56kbNzFVg0bSxWT659oGF5I0XPvAikwjreO6JrpIKT3KRGrreOrmLnUTFqMwISBKlUirIXGZUjhfAoMy5z/F7L+TW0v5s17s6gwushIqnDjKT/BHbuuw9J0SKVM3bwFqT+5L0n7jtE7rtE7rlauvCYByG/ciRPApL06ESGUMW+ubXDyzRdc5JlFgpURpnaTG0S3GC+nqM53CXQQXBY5EbjVSIQuNDy226/CFQmqN1ikMUMiehBrziKcHKFAVhrIoiXR5i3vVijwxygGFQAuZ/FFET0JccjJ6zkUCKHmsxRLE9ITd1EFK3BPn3G1urFIq+u7NSZ+U5/uVnLS/f37FGHHWAqT335MTYooB6Feu2/xXYiK59gTd29xjM+1S0CcnL4FK/2SJECx6FXl67IkugQ2Bh598lsevX+S1O2P+02+6n+v7U37z4Uf5XTfu4tylc3STY2ZHB4CgC5bhqKR1DVJ7Ll1aR8uWYVkwqsZIFEYZnLWUxiBiShcOziGk4WDa8vFPf4Ff/fineeTqc+xOp7jDOQNRII1CaoEMgag0PhNQRTkAUbB764BjrRgPJavrA67u7vPY08/go0aLsFBCpdEjiXeidHYozuowKSAko8F+3LUY//XdqUxk7onIi+8IZMl3zNzlLDMPMQdfiuR0HPPfY0rTjrHvYMEJ78PTOq3TOq1XpO5ogPJ81QkxEoOHECi0STwNNKvDEevlgDo0rA/HNAImXY11ftkZOJHaixDYGJMTKQmsRKWQShM7lw3hAqq/ko0nFEVpNpR5ImmhKI2hNCbdtvD0gJPdjAQ8BCqq5docF/+HUjp1XXK3YbGo5KbNomORr5oT8TcBlF410+foJDn0C0c5J0c6J6XGJ0dB/RgojdJAq5THo7TIi2e8zfp+sX+CuC1XZtGpCb0Dbw/nIHnXyBP+J6mjkj+xF3BkYoxoBfvX99ideC5uWx46v8LvfugK//DnfoX/8MlHec3dZ5g+0zE/KphNalrbsrIxoG0sK6sVFy9uUk9vYOuGo71jymHFaHUjLcQhgRQjFZ21HHeWz3/haf7Zv/jf+Mwjj3GMow6eZt7i8ZSmQJXZ3RdNEwQyRg7mjoefuI4JgfGo4tzFVe4ajnnquUOevnZAWLSfFm6DRGSWCKfuk0TgMxm5By/EBFwSUD1xTAm5HFkSUHks1Ocf9R0psXhMin+gJyj3n7lYjv+WJW7rwpzWaZ3Wab3cdUcDFIJYkgLz1aCPERcizkt0XuvnsyntsGJlNCYqw7WDQ7qmwXUeY5JKx4eIixHrAipRO7Ah4DyEIAk2MJSCaMY429I1nlKktr8KARcdXkRQmk6K5FIaQAePlBFdCqL0aFEgQuZvECmLisJofHD9tXEab2S5RD+6UTntOIETieqNzvJV8smAv4VLrgsoFGTrfynkAlAlULU03uo7G32lPo7gBPpaZPD0C2U8sWiFmFRGgZ7LcBJIpIXUxxQPIORye0NI5mMQicEhEWhp8ASs9yilUCISfEAiCR6iEEiSZDbEnFodJW0rODhsabqS0Urgyt3bjIYlv/KpZ3nw7C7V1NKGSGenrJUDjJXMu8jW5W3UcMCNay37+1Pm7T4bmxucOW+YHc4J3tFWKSgSFE0L7WRGaBtKoymrFSobeHa6hyxHOFnQeU+pc+ijdSgpiaXmyevX2N4YcsFEpkfQzs/yzPVd9mZTpEkjIBEl0WWSqkygVsaIEYJCCrroSbtCIJQmeAgqopEgJCFLsqVMDrRpDCgQ+THxxH5NRmzZBE5C6tmksMFedpzM//IxHkNKlIqek2Ll0zqt0zqtl7vubIAC9H3m/urdx5C4FzG7jYrIdD7l1oFEGI0XMK9nuK5djFP6gUKaVCyv2J1zWK9xIRJsQGiPR+E6TygTSDBKo4SgDR4vRDK48gIZQEW5UAlJo/NoJrfPWSp+lFS5C9Jb2ycy7ZLASG7LJ95GXkPSgk14kW5IHjFFsieMuk3pJDKg6T838ngrBRRy4nnyKEX0nYo+4E8m0qiQL+CELC+yb1cBJeW0J4qYSbEnsnlEjgBQiePRzxCENMkfJQakTPSWkGdwy05MkoR3XjJz8PhT13jzfWP82LGzWXHP2TU+/8yca0/PWI0C21lciJRBUc9aUILN7U1s6CjKgnPnz7N55jyrq6uY0YhQN9SdJwiBiB3HkzlNBztnz/B//L7v5drBPodNw829I37tE5/hxt6U1oFUikEpcAGMEFRVwdb6mNDWTNsZg9EGUkQO9g957ImnaYIjCIkPyStHLEBCMg/03iMzqIzBJxdipRBRIfpIBJF3QCC5Dmbytowge3VVHmMu9i3LDsmyo9I/VUpVRqVxTx/OEGRcAKTTOq2vtnrrxwO/8Rb5pe94Wl/1dccDlNvbzkuQ4bxHK4GQ0IXArdmEbl/gPBzXs0zAlMuxzGJBJRNMky+KCx4fkllVyM6dzjd0zuNjgVR9F0dDFNm1NoEQH/JiIAWFMYkX4ENPogBBdo31y42nP+8vrcf7EVA/8uhzg5SSC/Lo7fwRT+p0vDBf56SnyUkeyvMN2/rHkEHXSUCT7usX69PtiiBObMcS8EglEajs4wJk5U66Rm+TCkmpZCzm/EKmHUIEGTNBOSTeTnyhoZxQAhsD1/dm7M8U0gSiEqyvjrhrq8D4gG8j1kaQmnJljPUdK8OC9fUB0U3Z2RqzsjYGPaJaGVOsjTi7MqI9mlEoCK5F6QnHc8toZYPtMzucP7jF/nSf2eUzrFWCz3zhCY6O6wyWO+ad41gGilIwLAUuCho3Z+9on+grbhzNeeypq/j+s4kJ8CmRM5Wy501SYaXxS6QHFRIpAlGIxdGSYXmSdft0bMjMKenBR9o5Pek1EXBF7JlY+bliTJ81kOKjBBqRujMkftKpkexpfdWUVIz+903++t3/M1fMmCeemvJfPvn91N++218dndYdWHc8QHlBCYHzKUzPBIHWGgTMvWd+eIi3HmcDoEjZuzGbXZ1YaLNUM8QEVIIPBAI+BLSRCBHobIt1HVKXicwYFXkVzYRFgfMeSQSpEi9BKpzr037zSCpzRRagoFeu5Pv0XJZMC1i05fOtJ9525tJkUKCkJKrbAdyCP/IiBNiTvy45DGTC6gtzevql7uTz9FyXk6qPvpTUyQF1sdV5XNR3b0TiVPjgiS4gMzfFhUDUqRMWRe4AcTsoijGihSd4y5M3jvhffvlhpHJ4pZlNjnnHQ/ezTqSuG5p2jioExchgW89ofUhZRSQNm+srrK4MmfnkdaK1RtpIM62JWlGtDDh/aYNN5yBKXOMowgpr2tL4iHGWcaE5nDVMm4abh4fcOpwQc9eqsx22a2m6ObuHB8Aq125McGh2zl9CKU97PMPNmwWAkIgU+Jd5J0oKZJCJzBqXUt+k+MpdJcSi25ImOScVN2K5kxedtz4HOSuqehLyCQJ2OvZyJpRIyjbBKUI5ra+Oeuofv47P3/8PgDEAV8yYDz3wc7z2H/0h7vkDn3p1N+60vuy64wHK8xfCEAMyJM5DzLd7QVLjWAc5xl74flwBmfqxGE/0nZSQ5/OpI5OvYqPAlIYYOqx1SD1ASZP5EgLCMkQwiJSjTJQUukQhsdEjTpi5Bh8IKuSxR/qzWhB3e3ltTpXNoEYqtQQs8XZw0QMdH5ZdE7i9m/F8/5Pl7z0XZdlVSdvUS1yXIEcIuXQwva07czuhtq9+iVz6meTAQiQSjSYmd98gGOiScaXQOjBtPLPW0eEzTkojjOeTZIkOQeDGwYwbv/oFHB6h4R1vuId7L2zQXZtx7KY0bs76xjo2NljhGK+UKNmhpWVQSZQSDGWFMiXuuObmk9e59fBTFJVh5fwGq+fPMRyPEqlZRaTSDPQIXyrEWYkphtw6nvLktetc3dtnXncEaSiKEucsjY1oqdjaPosQkluHzyGKgsoMKbSHxhJERyR1qGJW6/QE6EQelnkkGZezyUyO7lU7iIUmajHGS5CwvzOZj3JiXy8eH9J9+/FipiHJHGmQ9n3qop3W126Fb30zoVCL38vnjvAPP/oqbtGLl77nLi5uHr3am3Far0C95EHdRz7yEb7ne76HCxcuIITgQx/60G23xxj5i3/xL3L+/HkGgwHvec97eOSRR267z/7+Pu9///tZXV1lfX2dH/zBH2Q6nX7Zb+L5nh1pzAML6XBM3RCBpChKiqJIhI6+UdFzKEJIZE7v8dEvVDDWO5x3OOeJwGg8RpuCprXM55YQZJKSRpLaIgbAE2UihoYgMKpAkzoIvRS3N5ZLIKnniKSrVin6EMOYclcWaoxMbowR5x3eu4Vi56TnSUpVjjy/UyKlXPBSTo6AkktJMkELsf/xCzDy/J/+E3++Z0o44b3yfKO3Pkn5ZLJy4vsIVBdZjYKLqyNef89F3va6e/imN1zh9fddZG1YLazcfH7syZ8UjghBKKatYzLrCF3k/OqIN957GeUCXT2ntTVCCZTW1HWNUJHV1QEiWgotKcoSqTVlUeHmjue+8BSPf/oRbj5zixtPXuexTz3MY7/5aW499QyT3V2mR/vcuHaVvRv72LmDIMHDwf4Bzzz9DDdv3GIymeFsRBdDhuMNVta2WBmsMB6tc3A449rNfQ6PJty8cZ2bN28ync2Isc88ykD7xGd3chwZwgnu0BJdJ2AixAK7BAE+AxSf8A5RCoKEIAUWcAI84IhYwMZIGx1dDNjo8QtSbfpyiRBfkojnq/G8cVovXt13vo3dD7yTH/uHf5tf+Ic/ufgp/u4x8s2ve7U377ZS91/h2b814hde9/970dvfeukZxNve8BXeqtN6ueolA5TZbMab3vQmfuInfuJFb/+rf/Wv8mM/9mN88IMf5GMf+xij0Yjv/M7vpGmaxX3e//7389nPfpaf//mf51/+y3/JRz7yET7wgQ98+e+CJUiRcumg6lxyipVIVJBoFFpotNIYo3NuzJIY2MtnQwh45xMo6fNxYlrCTVGxuXmG9fUtlKqYzTtm8w4bPZ3tiNEzKA1FqfBYXAiEKDBSo6XK9IslyODEa8MJwBRDHvcAPXk1LzrOe7quo8vpxM65hZ1913W0bYvPHZOToKW3qe/Bie59XMTCeYM+Kyh1UVhcoSdeQjb7OtFpeuF+WIKUk4tqjEt/jqXhnCSKQAwNQ2G5f3uFdz14mW9909287XXneONrzvLQlfPsbKxQZh+Q2BM5xe1yY4HC+bTwjscjNoYlD17c4ty44uhgSmstQXmKgWLezGibhrKQFDp1X4ajEaYaI8sxTRd49AtP8ImPf4ann7vJsYdZ4zi6usczn3mEqw8/xtH160yPD5nZmjmOqe+YzGccTQ453NujOZ4wlLBmNMY7uskEO52ifaQ+avncZx/lk5/8HDdu3GI2O2ZytMfh4RFt2+Y4hAROTna+gg9JcRWXn/1SRZVTsEPAEfAi4iV4CUHE/DdyNzGm4zWkn7ntaLyj9o65tcxtx9x1TG3DzDZMu4badbgYMv9FoIRES/WC/f/F6qv1vHFay4rvfBOP/bV38t4f/SV+47/5OzxUDG+7/UMP/Bzxbxwh3/jgq7SFy5KjEY/9tXdy7a+XfPLt/+iL3u9nr/xbnvi+la/glp3Wy1kvecTzXd/1XXzXd33Xi94WY+Rv/a2/xZ//83+e7/3e7wXgp3/6p9nZ2eFDH/oQ73vf+/jc5z7Hhz/8YX7t136Nt73tbQD8+I//ON/93d/Nj/7oj3LhwoWXtD3PJ3oGkuVXPzwPGXRoNCAJnSeoiFQKEXyahfC8K/14IpMHQCRFhVQqjWuKiqHWDKpV1NQydxXTg+vYumY8GHDh/Fm89Dx9reP42IKPaKkxSmUr+n7l763x8zT/RPeD/PfkHQrWudylWS7+Rieg1ef09KDMOZ/GDzJ1SvpORv/v3va+HweFEDLlIT1/D2BijLgucXCklIurechX4QuuyvNJtkuuy4k9xZI9078WROGoBpF7z2zz9gfu4v5LW5QjQRA1rQ9sjg1ba2Oe3T3EBpK6KS7HRwufluCQwqN0gZeao7bl8ecOOL9xlW+6927Oro/Zsi3zEIlOg5UU4wrXtYiqYDQaI3RFawOf/OSn+eQnP4vziigKDiaHrPnAfaMBdTPl2YcfIwjHyoUNhtsraDMgCMG4GnG+PIsoBOsrFbs3d3nq2i43DqYcHO0xb1sqU1CtbUFUKGkYDAeIkMaJMSbycg/EhJRo1atv8hEjRZKAL7xS0vESQkjHiXAQIy7qE0Amdd9EDnvsQXjIwYAuhGTgJ/LIMWTOlRQogACVMshKUCidEo2fN8L7UvXVdt44rdtLvvFB7vp/f4F/femj/9H7ffjBf8Uf/Dvfzqdvvo5L/8VThNnsK7SFJ0oIdv/JRR79xr/zlX/t0/qK1svKQXniiSe4fv0673nPexZ/W1tb4x3veAcf/ehHed/73sdHP/pR1tfXFycZgPe85z1IKfnYxz7G933f973gedu2pW3bxe+TyST9o7/yP3mi9CJzI06oTUihdCnRL4EP52xeQHO3IqRo+xgjUQqU1HgpaGNHFAqj03OIziNsxAwLytGAck0yXl/l/HzE9OCQgSlYX1uhDZ5LF+7isSefZTKrcd4h8RA9MUgSSTe14kMM6GxM1i/pi4VcCBzQuZDloQEImEKmDoAER8DF5BFC1EStaGSJDo6Bd0RliKqgjR6BB6OQIRKdS+9LJpawDz2MSBkwUiqkJruQpgygnlh50qelJ8WGEPJoKvlx9F2iZN4mUAqMT141QStCiBQhcu/GiLe/5gIPXlhlbazojOTYDXA4hpVidaVMpOXs6RFFItOmz4fk85LJtW0LjWsoomXvMPBLn3iMRhb8p9/wEA/sbKOFp3YdpqiwrcV5i4iCOghuPLvL409e48azR9Sm5ObxETbO2T2cUNQzirNnOb+yjps0PPfZZ9iqLWtXzjI8oyiUYdVIlEjKpNTRUUwRaC3ZGg9ojQFt0GVgNFSMirOURrF7POVwNgNVgEvRwiJ7zUDmoaBS94xIdiLJo50+QDGkMU0M1D4m8H0C2MQYkd6d+F70nZcETkXIXb2Q7PPTjQKfydoKmXx+RMwxU3HR6fmd1it13oD/yLnjtG6r9uyI//5LgJO+fvbKv4Ur8F/98pv59OEF/LdffYW37vZa+cgWP3ff//QVfc3TenXqZQUo169fB2BnZ+e2v+/s7Cxuu379OmfPnr19I7Rmc3NzcZ/n11/5K3+Fv/SX/tKLv6g4wW5laaEeFxrIdFKFkMYTIjumnOROhLgIRYv9yTdEnPN4GTFSEL2naVpMKOi6jmpYURSaoS5ZX10DvcFsckywkbq1HO7uY23AuUjnuqxwyVLOfMUaWb4e4iTOWrqo+pgM5KJPYEqIiDGaqizQWhCdpXMO6yOqFZRSo0pDjDDWgrODgnIwhmpEU0+Y1zXTzmHJdudBImNESZ1Iwd5nvk7+POWyQyLy9uZb0pbm28OCHCxu69r0FSTIEFEIpDZYAlpELm+t8Y1XzvGai2c5s14RjKaRmiACwc3RGkyhct5RBkeiTzZO+hQhBUoroipoAkg6tjcK3nL/fTz59FV+6eMP00yOeffrr/C2197LaiUxRYEfFkymNVd3D/ncc5/g88/c4rlrtxgOx3QCrh8e4UVyctXdjD0VuLy9jb95yI3nrtLFgJfJYM5KhZvU1HuHdHsHcOuIwUHNjhcMjcaWJX69RFVDGmMRuqCKktp7OiBISesijo7gEvjKh0uCpAJ8TD9pyiOIpHTj7FVIEH3njwWn6WTJwBJ8sNzHvdibfBz2B2J6eLrNn1CP9bk+LxM+ecXOG/Alzh2n9Tuq/27nE9izv8H3/9Lvof22L74PXq569p+/nh978z/m3ZXly2AnnNYdWHeEiufP/bk/xw//8A8vfp9MJly+fPm20c5C4tqDgJ7TIXortv7vYTGakDL7mwQWIXbee1Qs8DGgfGCtHLCztoXKQEGUGh8D0+MZMUQ21geMBgNCYSm1ILjIrO64unvArVt7zOdzgk/+HVqrtMhz++K9AEu585NAgcQTEmAIARmTTZYxBUVRIJDY1mE7S+stWki2BiO2V1axGm5NJ1zeGvP6y2fZ3NyiGI1pZkfcuLbPw8/c5OnjI2qlkKJCBpU/I7fohPQ+Kb0M9SThNYSQGyTyNs+UJZdlWYvsl8xlsQiU0ghfs10Z3nLvJd503znOnVljODLMosB7UBIK79N4LI89TrCalwAoL+JeSKI0hM4jY8dqMeD+yzvcvLbHE9du8ovHn2PSHDM6u8VD586ScmYiEsfx3pQnn97jmad32T+eolf2mAvNgbU4AYPSMNSSZ2ZT5I2rVDOf1Ei7R4CHpsMgqA+OiPOWMG8o5i0XtGZtNOBYGOT6Bq4a0inDJHbU1nMwnTOzHZN5TWMdddMSvAcXUFJR5PedxjExd0KW3bVFPtNtY7Z+ZPm8PRFvH7DlP/Uf5om/njDRi4IgMnU6ZFKu6pMcbjf2+2qtL3buOK2Xp4xQvHHtOX6N3z4f6cupL3zw7Tz6zR9M/kCn4OTrpl5WgHLu3DkAbty4wfnz5xd/v3HjBm9+85sX97l58+Ztj3POsb+/v3j886ssS8qy/G1tQz9uWGS8CMXt4XO3K36SfHfJCFkQETUUQnF2vM7O+jbHs2O8d6hS01hLjBJddzRqzrgYIQtBWWjQAaGHDAYVh0dT6rolSEnUoLV5sa24rZsTexmtPKEo8h4tQGm1UJq0naVtHdE5SqM4s7rCvRubnFldY3c2oWkn3HN+k2+47yIb62uUwxHCrzA5u87muKJ8+mmeOppTd4JAkUcFSz+Wk59R76/R/x5j5vmIFxrBEZdBg4vnEgKVLEnxUmC9ZyzhoYtbvPGuM1zaHjFcMXijiUGirGBcVVCU2LpNgEYk63XxvMv2/nOzWa4d8q6OPlDbyHHnaaOhbh2/+fQNdj71BWQ03Le1RSUCdB7ZOEY+cq4cMhYKtVXy7LThxnROFwMDLZDFkC9cv8Hjz97g9Rfu4bXndxh7y3T3kCIoBsYw3z9Ax0iBoNKGcqwZlUO2RhXmzDa7jeWZ3UPq1jKznr3jY67e2uXWwREupO8BIfUzjExmbUItdWaZH8uCp3yCA3QyVqD/HtxeJ297vrz89vst/7WY391m1rcgKb8Ajn559UqdN+ClnTtO68urTT1DvuHtyN0D3PUbL/vzq61Nio0mg5PT+nqqlxWgXLlyhXPnzvELv/ALixPLZDLhYx/7GH/yT/5JAN75zndyeHjIb/zGb/DWt74VgF/8xV8khMA73vGOL+t1Ty6SUoL3gRBEsuOOYnHVmYieaV4fY1xKc+m722JxpRiIFEqxNVpjUFYcHh/jItRtx+6tXUqlWB+v0Gx2KFkw1iOqyhCERYRIORgkLkdIZMYQUuDf4go4LtvoC8ls/kMfxHdSrhu0IBqJ1wKPp/MWFxyrRcXO1gp3bW9waTxmqAuabkZVVaytrTEcDTHGMByUDI1hY6WiGCrGa5qPP3qNzz99zDHJfEtJhVIqZfz0oClv10lSZFLfJPLH0hclO9cupgTLhVNKiRLJ0FEIiK7h/MaQt9x3kctnhqyuFaihoY4CnGJYVKysbRJDy9HuAQtLsH7cEV4MpKTEXaRCB0nTwmNXDzl0EqcUgpKDSce/+7XfYnZQ85YH7uXSaEBoWnaP5wQpWFkbUTGi3F7hRnOV2azBxshQCYINXL11iJKa1bUJl8/vcN/Fy0yelTSzGicsXWsxRKJSlKOCcG7I5rkz6NUxky6w/4UnuHb9KtePWxoBV/cPuXl4RGMdIBeAQMSkK+vlwsvu33KEE0U8iSVOfhq8oHvyJWo5CoonfkQ+RNN+DiGm8RKJOCuUQoaXB6C8WueN03p56oc3H+eH//XjvPFX/0+s/oN7WP2lR/G7ey/b8z/9f3mQh3/X337Znu+07px6yQBlOp3y6KNLs54nnniCT3ziE2xubnLXXXfxp//0n+Yv/+W/zAMPPMCVK1f4C3/hL3DhwgV+3+/7fQA89NBDvPe97+WP/bE/xgc/+EGstfzQD/0Q73vf+74sBc/JhTBVmsuHGJMraYwQJbeNBrLRV69YQKY2utSaGEW2kg8orRgMKqwPNM7hpeJwMuO3PvN5oo1cOHuWK3ddovOCi2GHrTOr6ELgrEVqhSkrhFTpyteH5GpL5k1woqezAAOQNnSpLOpTiJ0EjEoGWc6ihWM01FxZ2+LizgbbY8MoghQOXWrK0Qg9GNEGiQ6SUTHEjDRKNtw1Mmysjlgrhij3FA/fmHHUWgJLBU8PUsTJ7ePEZ9iDBm4HL/1y+vz9EhEEERDRcnZseNO953nNpXW2NivWttaR5QDlBWHqkWrI5uYm1jZMD6bUTYOzPvNcbt+W5XgPRPToGNkcDhjrgqeffI5p3SBDh/SRGATPXj1k//AzfOLxZzgzXmUgIbqOwpSoYpAceJ875tHrN9id1/gQ6FyDChBQnLm8wzN7t3h8VPGmuy+ysXOWW1evM5vOEEri8VjpMOtrlPeeZ/Puyyhd8uynvsCzT1/laG/C4bxl4h03Dg5pnEdIjQgCJwMiRpK4LGJ96moJ2SvLUsRByiNK3KoX87p5qSDlxQEKy9aKOKGIC4kXJYV4cXz0Reqr6bxxWq9Mfert/wjeDlf+xQd46L+y+JeBkKzuv4J658HLsHWn9XLW7h9/J+1GOi9Uu5Gtv/fbI1i/1HrJAOXXf/3X+fZv//bF7/189w//4T/MT/3UT/Fn/syfYTab8YEPfIDDw0O+9Vu/lQ9/+MNUVbV4zM/8zM/wQz/0Q3zHd3wHUkq+//u/nx/7sR97yRu/UI5kmW2IyY5e5Gl7Go/ElE6c2+G8YHFjmfnCMkgv5tyd1ntuHh6wN5miqgEqSqQcULuOW0cN5cExVkqiNwQHmztDQojM6jnzpllIeIMUGF2kDsUiPZgFmTFkEzZ5YvHvJbQ9aFBCYLzDENlYHXFuc4NzgxVWx4ZSWZTzNFGx38yx3iYeCQIbBG1Q+GLIeGWFNWFZH08YGMVoVLH52Sf41Uevc33msNYu+CcASt4+2ukr5Kv852fi9N4dfWelfw9dBERkZAJvvPcSb3/wLnY2NGfPrjFc3yDKkiIahEgE0tXVVepaEULi+7Rdl5VDLwQoST0kkDEw1pK33n2Ou1aHPPpckn5HN8dagdIVXRDsTi232gM+p46R3mJkTFlJxYBCQmxnTDpHJw0ugG882gfWVwcgYHJ8xP7hkFt7NxjZiAueoKCqSqQMDEclO3ddYLR+hlINwEviLCBmoBuFiorZdMrkuCZEiQyS4ANOZMUZGaZGcMEjQsCFFIKZ4LdIKcdxOR68ff98cXDyfHnwi3nZ5DtmJVY8AaiX5m9kxdBvt76azhun9crWE9/7d3lg7Qe47w99hujcl/08+vw59n9c8sk3fXGfk9P6ytfV/+e7+Jn/69/gjUX6bv5qa/kD3/wn2fm3mrWf+ZWX9bVeMkB597vf/cVPaqQT4I/8yI/wIz/yI1/0Ppubm/zsz/7sS33pF9RtYXRS5gUsBeWJkyOcqBejlBDDcoYus1yWpepHyDTmSc6xjsPpMW3XsDeZMI4w1BUXLtzDrd0j9g/3UfsTvJbIehffOcrheeRQ0dQ1ztsETkIgCoXSGilUOs2faKGc5A4sFEhS3PY5V0KjPYy15MLaiMuba6xVhiJKjAIpAkFGWufYnR8z7yw6WgotMFqClEhdUlRjhgX4QiFEx6CCrSpSu8j+I7cWksxF4vHzsm+WXjEsyL4v6KA8r3sSYsSRxm8722u84d4LXNocsLZqWF0bgyqZzR0OSVkOKMZjRitjIDnN1nWN7SxBKKR8cQ5KmqRJiui4d9Xw9ssrPLQpeOy44wt7NU/tT7l61BJah5YGHxzIDGZDpG08vm0RIiBiSK8VoRKG6CJSRBrbcnh0wIVzZ7l0/hwyeIL1ROcJ3tG0HWWpiGjmhxNcY6mLXRAGd7NmU63RxIDwLa6zeB+IUaKixIUARi7cWSMZADgAvwiI9EKATNu2GPvclq30pTsnJ2MM+t9P3Nr/MSmDesCU/5zCtJPU2L+Exeer6bxxWreX2jnLfX/lsy/rcz7y7p/id/+r72PwnU98WY+XVcXGP2/4V/d8+GXdrtP6ndXVP/Mu/oc/8eMLcALw9tLwxHf/PX76W7f5u833M/rnH3vZXu+OUPF8seoNyvrOSFrz01sK+CTLJIXMke+rpCT6BEqklCCSQiJ1XRxEn0ihXuBjYNLU1K3DZiJk00ypm3TCrkqFwFKYkoDnuVtXkauO1TNrHEyP8UR87iBEHKWRDApNO28gKvLWwcJmXiGEQiq1UEj07893DetDxf3ba1zZ3ObMYID0U4QAX0pqJ4jC4Fygi5K6TWF2axWoymJ0TVGNMFqgzRBTgJKBqtCMTOQ7g2XeHPHJJxtmsUAI0DRE1+AESKFy919kFoJLVviAEjovY5A8MyIyOqJSeCGQUqMdrFWCb7xviwcuG1bXAsONNWwssMeO2dxiRWS0MWR9fYXxAOr9Kc2s42hqcbdl/yxHEkIkcBqcwEUIwjEwgfUysl4OWR2V3L0+4Nb5NT53/YhPPnuDq3WDD4HSZ1O5rKxSvXyZiAoCYkAqCCYfE7Hg4tom73n7W3jjhTPsGEHbzZFnFPWRJExbfOs4PJgzPaoZKsl4vIIuSuzRhIGcsTpqEQcN1lsCEuEhKgfaorO8XNKD6WTOl1lTywM/elJwn0wGez2oJXULFSnR2gWPj3EhFU/RjElq3HOFtFZEnyXiIpHKAZSQGKlOKIWyLB1HF9LrufDVr+I5rf94Ca35/v/9U/zg2ssvE/63b/jnfP8vfRf1t70IcVYqfu+nd5HixY8hReBPrD/3sm/Taf3Oavrajm+uXlyx9YdWd7n4V/8e/+3uH0L+0sdflte7owHKC9wsRZLnJmJnWMzto8gxaTEuTrgxk1dTPGteBIIHQupyRMmgGiCNITrJYFiwsbbCM/Mjnr56k0IXnN1ZZW1tQKECUnoaO+e5G1c5sDN2D4+o247OuXRV7lMSr1GSGFy+UE1UyLy1+OhvS+sNJzggW6OSe7eH3Ht2lS2jqaQnqjxKyQZv09Zx42DG8aylc4q6tpSFphxoVCWRIg0IlDGUxSqjQuCNpFaBN0bPrOlow1N84qkpLrFRiSLgQkplllEiUNmLJC2bvfQ3suz+9NtsvcdKKIJkVSm+4dI2b73/AjtjSaUDRhmUMDQu4kMkShgOB4yHQ4Sf006P2DuYcDRrQMm8b8MyYTcmsLJYXKVGFxGjJcFbgvdUAc4XsKkrVqWhkJKP37jFk4cTrBOYKEh8Uw8FaYRkffL0QxKiA+XxQhN9YHJ8zNXrV9kQHXJ7jWElGK8oVosxcmOV4AWN83TOIZ0DXeKRyEKiKyg8DGqN8z7JtIUgRIvHIaNOx2c/sjwRENm/6WWfJJJ3AgKBESLLsQU6pswiF2TO4Inpu0HvTxMzxyg978hohJTJoyaTmiVk5VV6bO/J44PH+qXb8mnd4SXkKwJOIIHcf3r//8p7/833od/zNI/8xDv48O/9G4vbX2NGr8jrntYrU9f+H+/iE9/514HBF73Pdww8r/0HP84ff/d/gXv8yd/xa97RAOUkSbb//SQ9sHfbjLGXvrIICbytRHImVaG3eE/YZVBViBips4V9YQzlaIwNV5FBsbW1xs72mGg9OkAxHND6lqPDCc28I/hemdMDDo+UKRl4sZ1CQvTL/JpsYd4raEKMKK25Z3ODB3dWODOSSJ+syKMSeB/Ap4V2Mqt58uYtjqYtRlfsHR3SOsFqOaaqVgidoK07RoO0OBpTUIyGKL+C7zxvfUPBTAw4bD/No88eYFFIZRLvWEgQiUS8kKfGpc8J0UEE60FIg0DQhRSWWMTA3WdX+ZbXXubu1RWGoaGkQgVJoRSuiHQ+gCkYjgYgIvPpDGst+4fHTOd1bxGzIED0cnLIo76YRkham2R3HwXOe2IwRCeg86zLgjec2aHQhkpKHjucpZFPlEQt6UJe85VCSE0MCQDImDpwnYw8vX+L2a8f8fD6mAcunuO+7XUuDkvWhlXqwxiJHptEuGaICAoZJINBwdp4jDs+ZhSv4Z65njhHMgdNnmRN33Zoiv6DXhzjiQQO4CFCIQWV1FTaYKTsbUwIIqYuXszSeSRRQBcSOHEx4IlIk3KiNBIVk8uEBIJa5iiF/Dw+JHv8EDkFKF8DpS5+cYn2y1FGKO4Z73P90kXkRnsKSu7g8gWsyS8OTvq6pMfY8+uIx3/nr3lHA5QXeHBkhQGkE7kPMUuOA1GqtCAgkoV7jOD9Ys3rE4ETQEkGaUZrvHMcHx0yKgtEiKhCM15bY1SUbG2ssLFaIH2kbT2mXOG4kcxtQIRk+d6bZyX1SUrSFTJ7egiZ/k66Ig4+4IVP1uZ5dNG30VeN4uy4YKw7ohA4IZkT6KyndBETDS7CYdPggqQUcH1vn92jmot33c3KYJWmc9TTmrqaoXWJVJ5Sa8qqYmU8YCcE3vH6C9w83OdgcsStWQIbMoDsM2ISCQElJDHK9FkqkUY/Io1MlEipvkEIShXYGWje+ppzvO7SKqXv0F4xKMcgoG1naDVgZVQhB2OUEsznU1zbInXB0aymtm3iQsQ+u2i5z5dhgcnRNUaJkAZdVIQYcFbR2YhtHSK2bBcFw7ObbI4KNm7u88TVGxzMO6IoUUHjoycYyNbC4CMipE6bUNDawPWjYyazGVcPjnlsbcz92xvcfXaDsYGhgaqSSRJeDtFRY0SJ0kPUyhhjDO7mLi5392RYHMxfRJGTOSPASepSzB0UJUALSSEklVQUUmUwk0DPwuBNpfs70vFoRUSq1H2zwecujESGiPSJdOxVjiWI6XvUj4xCBon/MU7Jad0Zdd8/u/aKv8ZP3vXL8Kuv+Muc1ldR/et/+lN8173fTDgR9vnl1B0NUOB5BM1epBPzkh8DIfQ8jxP3lxIZ5dKALBNqe4v23n+kMgYjwChFaQpC8BxNJiAFqytjRoOKQoOQga5zlIMxTkQcDqMaSqWZhhrrLUYnubHMC9/CNyQDlzSSSsRIKblNxumc43g+A1apjEJKaKNk3qV3JhFooChKirLChEBZFOwfz3jq5iFvFobVakRVRA4nhzjbIilQWiGjgaJkMBzg7JwdD+9602VuHk75D5+5xtHMZbKsIIokg9VKY3SJwKCVRKpsN68UqY0CwQac9JSm440XV/mm1+4wrjx21uDKMaE06KGhaRsGSjEer2KGK7S2o20tldEIVXAwr+l6/UgMpGv7JTm036dKgo8e5yK2i4Qg8Qg6IWilQBQKTUQbx+qwZGd7iwvbA359GPmNp29y8zgio0Gg8NQLOa0ACIJoPUKlfBypC7xQ7E479ucHPD2tuXw858rGmHs2hpyxGkkDZoZDMQuKloKjoLk+bXj02WvMuy4HW4JUEoRadKSeXzLHN+SW26KjgchJ3TKxS4TvzQlFOtZidlfplWEi8VuaSMqdygDFB08QcmnQGRK4cblr0gMUH/NQTywjD07rzq4vvFPAU6/2VpzWab143dEA5fmJuUsvERaXmiHbby6cTU90XXp5cv/7yStCSaQqCyqtWF1ZQQlBPZsiQkBGj3cdIUZMMcA1HdoYiqLEeiisZFCWjIclx7bB1h2QqLDIBJB6kJJev58t9AFw8YShW8Ray7OHR+y7s1xaWUW1FtrAQKWEZonEu8jqoOTC1jphb0ZRGqbHcx5+6hqHkxlXzkdW1laIwaFVIhgrJZDRI7RBVgMGdkhVz7h7c8h/9s2vx1n4lU89zSxESiPRSkEMaK0oVAExWdIjIkWpKQqNCBbtJUaVeBxDPeUbr2xyz5kh8+MJnQ9YIbAS1jYGVAyIrcKUAq0jzazDCBgWFY9NbnBtdx+PQGkBTrxAUdTvO3JnwLnI8bRhMtW42BJUhSg0qlRUhWBQSrQJGONYHSpWqkusVQM+8eyEp/cts7rBBIcTApROz+18yhHKRn/pAFFEJHWA44ljd3aL5/YOubq5yj2ba5wfV1xYMawMK2ofuXEw5ZPP3eKR6/s8uz+lFUl1JEUEqXJnKCyO42VniAUBvL9NkMBHTJux5JVEj80hjpI0SpT58eTRjZKksZrwIHrZcuasyDT6CzkU0rqAJ8mb4wLm952/F51IndYdVtF7rvzcD/LEd/7kq70pp/Vl1HN/9l206y/PN3H9Ydj8+y+fn8lj/81buPJnf2fPd0cDFLjdnyOkFgWQZvex53SwlEkCC68Obuu+3H7luiAMCsGgLCAERFRcOLONsAYZBTEIrBMcTmq2NteoygrrJaUVVKWmKiVSgfMeqdJVbRRkeXN2uF1cNaffdW+U1m939j+5Mfc8uT/ntRe3GIoA0VOZgojChkiIlrFS3Lu9gXWOSQsuSp65vsv1m9eJD+wwrFbY3l6j6WqsbRMfRgYUmqgLRDGgMBWq2+f+rQG/5x2vYTazPPLcEYOqYjAoCd7ibUf0JgfGeZzvMCgKmXgfSim0LhA+gabzGyOqAMe1gKAwRYXRAmLD6tYWIVTYWcR2NTJAZUqEDTz11DNcvbWHlwItBUoJgn/xq/cYPYSA94q6bmnaEqEjUgUKaTGlZDhUDEYSiUMKh7Rw90qFvnSG9WrEb9045MkbLQfTwDR0KeBQaqSKECRCpg5RCMn7JBLRQqek3+i5Nm04bGoe3z/k7KDiysaQu3a20drw1P6MR25MeOagpUOBlogQFsnA4nl+MwsAnf64eJ/LDKI0UtNKIWQK87MypPThGBOnRKauSYp9AEXKpSqUxEudwJFWaGXw1hMROBEIGSjZPgMoj4kQMoVD9v43L9LtOa07rILndT+yC9/5am/Iab2UuvF/exf23Uf8y7f9Va6Y8cvynP98uspf/L3fw5m/N6T8337td/x8n/4//xgPbvwpXvPHv/znuqMBSm8otsyPCSc8WJNwOGYDtEXFpYX8i534e08JYzRSZHM0rRFAaQyj4YCwpRFRYW3k+s19utZx7lxFiJJBNUSqgmk9o24LNsI6s6bFdg3ztqNt257necIZdbl549EIrTV1nVxM+8Wq8YYnrh9y4/Im2wRcZ2mkAzfAxkAXA9I7tgrFSim4cTilc4G9yTE3dm9gu2O6bsho9SyyFnR2hiBxYmQALyJRV2gzQPqAshMeOj/mdVfOsXvskcCgkAQvqX1ASo0QGts1eJcSdZWATggsBmclPgjKwSplUTE7rOmOA9oIdBCUMaBsTfQNYjSmUIb2oEOHSIFkPm+4+tw1ZnUDUuJ9hwzLoLDnc1CUAJWVPjEKTFEiC4WWkgERVQi09hRagAjIIJF6CEQ2R57XYNiuxjywVfHIgeMLN2/x3NEUFzwKQdSKLvOJpOq7dQEdPRqBR2BFYO6hmzbcmjY8OpmxeeOQoVTMGs+1qaeWY4gznOswQmTjPhYclMX76c35Mkh5viEexAWAFiIkibVMfi0iRlz06BjQeZQpRVLphBwmaJRGa0k1HFJWQ46nx9jOpp/oF+qg/JVJgChzo/ppk1Kn2ShfC+WvXucb/uaf4tP/5amd/FdrXfqVMaVa+g79uc0P8u5BAF4ecALw/eMJ3//On+GnXn+Wf3TwXviVT/2Onq8Uhv/u2/8nfpIrX/Zz3NEAZa1SGG3QGUB477EikThDcHiv0DoRRnX0mccQkQQkgUhAS4UVuZUdAyYECqEYaElVqBTSFx3aaPR4RAie1bUB3kuOpjXO1mxtDImqoXMRITRSBsbDkhg2GY0EddPw+aePOJ42WJsJiIlFmySlwSM7x87WGm+5e4fr0xmf62oIAhEDXksElpuHjsefO0JvFIhoaWVBdI7GW5z36GDwQTBrAnXtcC5QC8HnHtvlYGrZ2DpG+pLhsKDIXiegktNpTPMaWZQIOaSbH7Mi4bUbQ55Z0Ty9X9PmZOgYS9aGCiUCEx+ISjLQJaNyiI6BUsLIeEbGcM/GgIEWOBcp0cjQYqcT7GxAvT8gOo8qjxHKIINACovwDcIHlACJBi+SEV3PEuVkMF7fMZNIb5HaEcoEKAyOQop0jBjQOvF1IgaBRGsJMjCMEqEkK8OKc5uKi5uSB7YGfO7aLo/ePGRv3jIn0pEiE0z2L5Ex8WG8iMTAorPgQyKxNo1jOu/QMRKCwAmNlJHoWlTMnCeduDEygyiJRCqVu1AapXJUQkxjwEgf2pdGhSGkz0HKBNY9kEaGQOz3V8/PSjwasllhNRiyvrnOvO6w3mGdw3lPiILoPUWftdSPc2IimYsIirgcd53WHV2xbTnz8fbV3ozTel49+g/ewk+8MxkTvnf4lds/P7B6k/9xraB4GZ7re0e7/Oi/+s/Y+D2PfFmPv6MByua4ojQFRmlEBOcdXvaZISkNOI1I5EIBghT4KAk+uXPKIMH36h+B9QFJsnsrtUFFB66hC4r9yTHBdwzHJdYG5nNLqSSjocFjCV5kImdgOChRDAgBRoOSmbXMOov0SXkRo0tXvV5TBLi0Pubt91/mDefW+NgzLQ/fSi6evUeKkJ6ZhWdvHXPX2iYjI4leYYNLxNq81Yezhv1pR+sSr6Dzhs8/dosnn93jgXvWsPNjKMeYkSHgsG2NjgEpI8ZIXKnRVYWgpp033L0iefOFEd5HnC7RUjJvHeMiES699RRFwXC4wrAqGReStUqzXirWDJxZMUnRVErWNhVSRLQJzKc1N/ZaKtMwHg8JRqIHEMMx4zIw2jrHmXNbjAYlqp5ntZPPsuyeLyROTBkkIjqUjDgjaVGYmIzirARdKGQRUx4QEKXI6qqAMYKIQmsYBMlIay6ubnNxbcyljSMevXXIU5MJN+sG23kUipTkrLKMPeQU4j5kIbXElEvdEAtARESLDBZtFEJotNYYYxZSbaNv75KI7OsTIjifntO5QPAuGQ+G3BHJgZh9iGICMz0YAx1z5yN4pFT43vZNJF7UvJkSoqcsCyTQeQu9L0ruTi74PqT9nkjcpyyUr5Uyv/CbvPm//VN84s+edlFerdL33sM//KWlU/JY/gZGvLgp2itd/8tP/n/4A7/7fb9jL5NSGB7cvMGXm3F9RwOUtWqI0TqZXfm0cCTLDgGaPN7JJ+reSkL2HiQBFcEHQRcFNoAVKYitE4m/QZQUUoLrOJw13NiboFRkY32AEBIdS8Yba4xLjQyGEDSg0FpQVIZCKQ4OJti2wzufzLFcUm0YIvj0+mdXVnjHvTu8/cIaw0KwUmlKFWn6bkGIaYQQBbcmx8zdBhsrA3zjUUKBizgvsCFyNGuYzC02gpUQheDa/j6f+fzjfMc7H0SIEt9J9ECjCoh+CtohowIXiHiqoWRl3eC7mjUiV86PmQpN8jqF67uHOCdQakhVSgbaoI1OYX1Ko02JMQZtAlFIWhdpK0c1CJSlpioLnPdMDg+YiQbbhaR+ijVRHHL+XMna5QsMt4bo0iNkR8QlJ9koWbrWLitmAjJSMrdw0AQ6BaWASjl8iAwiqBjQInc78qIrERipkV4kbxAdqGLg4tqAlcGAuzdWeWL/iMd3J1zfP+Cgbjj2HquSMZ2MMW/RclzXE7D78Uz/u5QCo8UiBFJrvfx7Dq103i3GkN4naW/v5WOtTWPIkLpJ/ZjLn8hA6kGYDWm7gpCEvI3ChWxeKGinDUd+nxgtG+MRo9GY6fGUWzd3kVGgZNrfvTyulzrLRSPrlIPyNVMxUhxFPtfNeagYvtpb83VX6qEHqC+vsaG+Oj77sayo79+mGpSLv3UbX94FyWYxZ+/iBdxzV1/yY+9ogDLUBp0VMUFlB80T5m1BiBwemBbqmEcEUghMUeBVJEiBFhraOQfNnE5pBtWAiMF3jqKCSkI3n7M765BourphVGg2RpsMdcVAVxAKZEhpxUo4ytKgEDx5eMD+/j7O2cQXAEL2WymkYFga3nLfRd589yY7Zo5FsDE0jIxgPnepixI8QWickOzNaq4dzdhZHzA04KPBEWhdwAmBReCFxKmU8xK1Yt5aPvvIs+zu11y+tE6QBpwH7TFGEqOjmzc085qurVHaM16V2EYw9aArw3AUmLcR71LHRsQCKQxaOpQxhGDpXJPMzjrLYGPMSCta65m3gSAbPIJNM6DSGqNUIhHLgHMTJjPLrJ5TDDznz28SRUnTtbS2RZA6RMkcDCDeTnqOEe+T740j8T2uH9VU0lMOFUMLg9YyLCODUmGkQIpIoXpTMoHuKaTRAQFcS9FFtjGsr5WcH57jvtUtnhiPeWTvgCcnxxxYTyciUi4JowkDyyV/RKR/y2zgIkQCx/19TmYJueCzH8/SIM2HgPU+dVKCz12S7JicgY33aXQZQgq4JG+P9wmgCwFOggiS4DwxBCSC4Ftc51jfGrK9uc5wMEQLwfHhIdFHdAbHSQXXb2t+v5HsvHxaXyu18T9+lN/75h/msT/wwVd7U7526pvfSH2u+pJ3+//++N9kW311mdj94k/9vZflef7W+V/ngb/2A9z7B7/OAIr2AQ0Lfwetl9khvfla8J40dEluscF5hBBoJSmEAiOpCoMpFS4G2pi8H4SQuK4jahhVmkGpGDiD7SShs3jvQLeUSLQw+JC4HFJJorcE1xGCYnJ0xMHBAda6lEmjk+LDi8BARh66NObt969xdhjAekQUbAw0q4XkRnBAkQLkhMADx97xxK19Lm+NuTzW+M7ibOqYRFVSlCYtjDGkaYiMRG144tldPvf5x7lwbgVVaOrDGS5a9EAQRUM9mdLNGkTwRCyeli40TEPg0EuObWQya2jbjrlXrBYVOI8Iya5fyYAy0DUpbK+qDMaAjx3WQzeNNHUkWI/CU+qAMYHBMNJ1Dbatqacdphih1BoHBx2PP3WLWe0QQSfVFCJfugd6kLJwVs0DByEU3sO08bQmUnSRJghM4zHKUhpJqXQi9ao5CkEhNENTpgUZEhcnpNfwriUiqCjZNAq/tY4oK1Q15NqsZtJ1dN7inAMESqXOSE8w7SnbSTnmM6mb21K4+06LzyAjZLfW7D1I8PndxYgUiTwr1DJ5WxARUpImRJEoey+U3PmQEEQG6Sr7/+SRp4qC9ZUxo6rCWgsxUFYlrnOILsua+4+9f0fZAM77U4DytVbbHxf8zHdv8f6VvVd7U74iFb71zVx/5yvXtfje9/87/vLZT/827vnVBU5e7nr3fY/w1Le8GfHvP/GSHndnAxRSez2QM2mEQJ8wX4tSEKVOYAWB95KYT6oyJMKhlBGhNYNqRFkYrh9POG5qGLS4tqZTgUFl2N4YIyuHFIL1gaCIllJGRqNIEDVNI4mhZGgGKCVS5o6LeGfpmpbgXPI/yRyKQknuP7/Ktzy4wz0bHrqOxmiwjvVCsjksEGJOyEudzFesrRQ8czDj6sGMc9UIa9NVstIJlJQ6MlSRWiRlj3UtVhbszzoeeeIp3vVN5xh4QXvUMjnuEKWmXClxnSV0DqOTt0rTthzPa2YNdC5SFobVkeDIBwSOQWkIsmPWOYRIVu6FLjiOUzZXhmxvDChpwUtMoYm+wFuYHFhoj1gZCYZjw/raKtEXYGcUesZ4s0KawGcfeZJf//jjNK1EUkDOjhEmwc20YLPgfIisKDFKYLK/S1rIBUgIUtBGgXUw99n3w7vkDhwsgyKghSR4h1ERIzWlNrTWMW1q5vaYyTxw2HQcukiLxxSagRJIJ2jarPCRAkT25+mjivIx2XNCThrNLRVo9HKZLD+Piw5IjEvzwD6KAR8RMhK8I8aIMRohFH1iNyK9Z5FBXSQQhEAZhUYgfACXOi5GF8ymc27e2qWxlsZaggtU6BNcmF41lYCblKDNqzMfP61XrtZ/+qP89f/8Pbz/bf/k1d6Ul62+9Ts+zS9uf9OL3vafvOlz/Pxdv/wV3qKvv/ofLv97HvzON3L3v39pj7uzAYqSab2PkSBiukqMKSC+T2CF3J4WWQcbdSL/xXzdLXKYoAiIwjCJkS44VkqJiB1126F0YGVsiAaGReD8VkVBQVdLhJpxVNe0tcSoVQYDhRSB6B3TSU3TNAlg5K6Odx4lAvevr/Dtr7mL12yVGDcnKEUTBBrPyEjOrI0oiinzLl29agI2dHQictDCtcOaertEq5KUwAzRdaxUknt3NqgOFNcPDvHBEZQmqArrIzK0+OM5fhqI04DtFMNxRTUYMbeBtnHMjmsODmvqmSc6xUALNgYKpyWF9zR1zXAoMbLguD0mxJaqHKBFpJCRURkpVEcpO1QBVQFaKGRQCBtwbU0toRwYwDAoR2ytS7SOqLFgMtvnE595lKev7lEOBhhvsHWNt02mdyYwcJvVuoiAp1CwUhqGKgAWFTxIgQtJBSRkgbOSuos4Spx1eGuBJvE/bEepkiw3hEjtHHPb0cbArOuY1R0WRRcFnYPWOYJ3+JASj3uQcZKjkTpg2WBNCRByYTC4MBrM7q7pYUtyak98FULkgL/Mm5EJyPQcEXWC59KDlqgUQvSdmYgQYZEAHmIgCEfwnsOjKXXTsru/TxcCQYrMy5Fokb9LabJE79CcrXtO62uwNv/miJ/6O2f5gdWbr/amvCz1k3f9MpyCkDuy7miAIiTJP4LkgJKuPGW/IuSrvbROSBTZvi2deEmEyiht6riEpK5ZKws21le4+8IZBI7dg12EsKDyAuA90gdKrRLfoZ7hKHCtQ5Ua7weEELEW9vf36Jom+agIiVIaXGBtWPGOe87xjWfXKWNN23qClkTfQLBUqmR9PKAsDdPWZYDiCXhaL5gDe9MaFzdYHa9yPJ/SuZboE7i5tL2ClILp8YQuS68dAlVWGFPRHR9iJxbtDeWwYFgItNHMQmR6NGc6bWjriPcDYgyUhWSEog0dvigolKXQgdXVEr3rsTFSFopgLZtrYzZWKirtGVUSESIxtggsg0JjCoWtBba1HBzMqAb7rI3rTGbu8L7g4NaMRx57jtZ7dKkJnUNVgWg8tY/EkJN+n+ckK0VkZVCys7HKtvTYMKUVAddJOh+YW4dD0DrFrLV0MuCco+06fIzY4Oi6jrIwBBepmxaHxEpBEJ4YLS53HYJPnY0YPcRAYUziOp3YppS+3Lu/Jh+RxI06cQyf8N9JY8Cc2oxI6pzQ80jEgrMiswuwEgLRewHlrqFSCoMmBI9QiWRjnceTjNhEHo9JLZAqyfOn84bOOnQ1wDuPdclvwTuPzDydsOB2AeRsHn+qM/5aLPVvf5PP1RfgawSgnNadW3c0QAnBp7HJ4uTZW3tnp3ufrlpFjEiZ3DVTfkk64coYkpkVAi8F0+BYWak4f+E8w6pk7+AWu9M5MXSMioJxUSCc5GAi6CpD0ybPC6MqOjdD0jK0LV0IGCmoD48gWAoNSmi8HlHaI9501vDWeyrWqoZ61mE7RdsGmujohKAAzo2HXBwOODo8wqlkOKcAA8jo2Z3OedZqxqVCzD3SJ6VPQDAIsFJqdGkIs4B2ERlrJvOaTklUIdLoKUbW18YUY0/XeWy0dH5OCB3D8ZAYCw6PalSEcSkotaHSiroLhOC4sH2J69dvsTc5RuOIwnH3hRGXz2/STmesDjXGCJpZC9YSY4suSrSMzGeetrZMDvbQokRR4r2jrSNP36i5ut+BFAy0wuEIUiFjhbKe1gZsTKTY3nBPICgFbI2GVKUhRGg6zX7Tcth66s5Stw4XaqyX2JA8Q2z2kIlC4KKnsx5pA7ZNvBJlDF4mIJLk4UmW3pNfS1kSVMgmcWIROikQaKEWoKX3NPHB0/kuBVH6HkinY9Ln99GXlIIoknutFGLRhTEm81BYWuArlUMug0PJRELOEYpoCVpqAm7hnix6YkkEax1CRTZWVxBKcjytqWc1oUvW+TIDpjw5QotMnD2VGX/N1qffs8mv/Jrnm6vTMd5pvXp1RwOUdNWdGyYxd1TylSeAiNmuHoHKi0AfutYbfUlS96SNnv16hiw0lZEcTo64fnjE3Ae00AxEiQiGeetxB57jwhGFQpWBUoGNCukd87ql9i0qwnQyxbqO4AOgsC5w71bFt7xmg/NbYN2cxkPrBMdtR4tHFSVRCLaKkge21nh295hdF/AkdUgyCQtM6prP7845tz1CEjDC0MiYjOA6nzQphcHNLGVI3ZnPP/EMj169wUNbFcXQJsfVsSaIjs45XOgIscEUUJYDWgdu4imEoCg1rQddjhiYksefucaoHLK+usa8qSlUIk1ujOHCzgqPT46RQXHu/DbN8YyjG4dMZx2FsIwqg0Izqy2+rWnmgcHAIHDMZzN2J5bal0BHpXVSJUlFKSpKE6ibjka0WOeT900MaCmosiz2+sEewTvmXcd+13AUPNZ6rM0ZRyHPJ4RKRM/c2chimJxBExFaImRE4fJxlYzPQuwBSTJI0zKdxBP5WuGFghgxKkvgQ0Bl8zXhIkiFUgbnPMEHrA0oqVBFP9ZZRByjIHX6YlyMM6XM4CUDNCkl2ihCSF2PnnPVb1Mi1iYAdpJP0pcjEZ219FRVgQwlOgSs6Og6CyEgxbID2bNmenv+0/raK7+3nyIZTuu0XqZyw4goS2jsb/sxdzRA6fNAkkInIoJPBlNCIsVS6QAQRCSGdLLVSqNE3yIvsAEO5jW7s5rKGfb3j+jammhbBkIwMJpBzsSxIdC0Ftu1DIYrKKCzXVIKKcl83nLUzLFNw/HRnGkbaGJBjB2jMOXt99/FQ1fOo2SHjR6pJVF5uhDpQsToiHORCsE922ucv7nPwc0JIAkCEqVC0fjAs1dvsrczYFNKen8wl6/epdQoVPLPkIouan7riWf5pV/5LGe/7c2srK1isBgFft7h545uXiO8wyidRh+NxxjP2uoIJQw3b+wzXF1lNBzx9HNXOZwcU5ZDBtUKRhe4pkXIRN6s6zlFdKxv3UdYrZjtToh1BCMwQ005VEjpCdZha0+h01X5bDqnayNKFAi6lMgrkreMlBqvQaHQQmKNxzmXSKFKURaKqfc8ubuLdRYrYGYdQail06pPfCAAa9vcdZPE6LPKxiOixGiTeD0xIFQ6nqxLQY5CipQgnMcuKnNPIqnbYLRKHa8MXGI2c+tFL8aY7P6aRzm255akTmBKhT4xLpK9j4/GWYv3Hons/eBOeKxIhO6PA4tWabTYJ2UTWVjd994rQkiM0Tjf0bZdSi12KRnbaEOYzujaLl8FpHGpzdt62j85rdM6rd9uPfoHP8g7PvknGf/0R37bj7mjAcpS8ZB+AuRxTwpPk8i+mUKUMQcAKqQQqNw9cWgmruNW03DsHdErjo9nGBUYlSWlkgyNRol0XaqUzF4q5La9TEZaSEJUTOeW6bxlejylnnbUURHMEKU6Hjo75B33brFWKupOEoVCaIHUEqkNMqTgv9Z6Su04v1px5cyYJ/dmzFxAao3PsmmJ4ubBMVdvHDLa2sS3DkfEBg+k1F0l0n+dBG8KduuaX/iVR7j/3EXe9Ya7iNQILNJKuuMG29RUJlnO7x0cEkTB5UubbJ/ZYnqr4dqTz6HWPOsbFUUpuHXrFl4UJB2rpCwKRqOSwdAgVcT5hnLVoKRiuGoQzZDVjQHDcZE+eeWZTyE4SVdbQgxMpw1Hk0iMCikUImb2kFRorYhRIAOYHphmsqyTaWF3RI5slzxwpKITAhUFUhQIlcYSCQAsfUNiBiIyGX6kwUlkkclkCk0IkeBbRO5mqPx6RioKbYgh4pxbgAUvAlLJBKCCz8AjSeGjjDjnF/4oLSmmIXVk5PI5fO545G6IEoKYQY/WKvNwQibMnkj2zoBIKpGk97nz4t3tQYshpE5MWRQIlzozznm6NmC0oBpUtJ3NHUCBD720OAGpcApRTuu0TusVrDsaoCQJZvKKSB4ZghAjLiTpsRIp20RJgZRqEXTmfFL6RCGYOsfurOawtVipCELSWocxioEpGErF0GhcsDgCCoFCoaREqiRV9t6ldB9h8CGNe2xQOGFoXbIX3x4q3vnADlc2C2LX4Jyg6TzOJX+WCIQocd5hHfjoGEjJfec3+Nz1KU/uHSfypEx25wpFbS3XD+fcs30eEQPBtQgEDiDE5PehkjtqExValHz2qUN+4Ve/wKWdVTbXW3QrKP2AtukQSlAqjZ01tLMpUg04s32ZnQcucs1eR4tINdZs7AzY2h7zyBO7CDVGOIchMhiVbG6M2d5Z5/KlHdrjI1SpGKyvcNdDFwnn55RVCULQzus0DulmNA3M6+QU29jI3uGUeWvxHrzwyXlXJVffmOZ4aMVif4cY6GwguIiPPs39jMb7RKYVQaSRjUjqHCnS6KYsUifDBUeIMSUDawNR4ZxFiEhZlCidgEZZFIlH4h0pukhitKZUiihiIlAvxicxG5nFpTeKkCgtF6CKGDJIkFRVtVAm9e6wUkq0Umhj8M7TdV26b1milKZpW/puiLWWmEdPUsjFCEqIDIpSy4YFQjmpOMqfyVLxHLIM26dtlSek+4JEzBWC21RUp3Vap3VaX6Kmv2/C+r85B79Nz7Y7O45UysUVb3IZjbgIDrDeJwVLSEmvzkeaztN0jsZHGmDqPHvzmoN6jg0h5/R4AoHWe2rraKyj7hyN89gIRVFQFIai0IsrXiGg7Vp8CCAkLkLjAy5KnA+s6MCbL2/wDZc3KEiW98ELgg15vg9KkjJWXCRE6HB0tuXM+gr3nlujUhHvut4kNC0YSvP07jG3jlucB986ovMIJFoqqkJhdETKRNxsOziawycefpaPf+4Jbu5PmM5bJpMZbdeCDPjoiESGVYnRAq8FcXVIsTZi68wGZ+8+w8bldV774CXWVzQiNlQ6slYpdtYr1tYqVjZXuHT5LCtrFcIoiq0dNl/zAKN7ztEMSw58pJElxXADoUo8iroTHM8jjVcczBumbUvnPK2z+OCyIitA9MToshtrzD9QKkWVE4kUAuWBNqC8RAqdumz0n13qhkkpkLIHGilYUsnlj9YmubBal9xXBalzkjsfSiZOhuu3cfG/ZCfvM0DRWlEUBq2TkZ9US4M2pRRlWTIYDBYqnd4fpaoqqqpaphYDWqaAzIVJWy9fz90WKdPIxhiN9w5ru0UHx2iDMSVFUVGYEmMKtNI4F3DO45zPIx8DCOqupbM2BQl6h4uBKCVSa6TWCHnKUfharv/7j/6plGx9Wqf1MtVn3/kzHP9E+aXvmOuO7qAIofJVcfLACCESlVhmh8Q+j0cgQ27pK0mUgtp55rblsGuonc1kR1AKpIYuRKz3OBxz2YEIKKMpjEKqXjqa3FqTDXvAR4/IIGfW1Ni2JXjHuVXB269scH6txPqOLkiCjygkRgPRUyiBkQJnJchIqx0+CBSCu7YGPLJa8eTuMci0SEkh0Aj2Gsuz+4dsbG9SKE3rA15ElBIMKkNhBF3j0JSEKImy5LiNPH31gDPrsLm+gW068JEyu+qWozHD9XWEqhhsbxPKIeXGOjt3nWPz0iaDMwUPPHiB68/d5JlnJtTzjs2x4vzWgJWhRuvI+voA365ihiNmteDppyc8+vln2Lu1T3084/zKmDdevoQqB8RmTuMih8cNc6doRWTubSJ6hoAOAhU8MgUtEUUkiuQeG6LHeY8kj8tEGuvFkNyCZcjob+E+m3xvRDypgFFpfBJj8kvJfiOCtPD3lu7p32mM0o9ifAw4l11hderKhRhBpn3Xy3OllMnHJESssxmEaJRUeG9p23YBTnrw0f/eNu3iNZVSC6VQDCG9t5jGjUVhOMkNOemnopSksyF3d0T/FUnfk7DM9IG8rSEQCKAE0Qv8otuzjI9YknlP62uxzv7t/4D9r/2rFlh3Wl+b9eHX/0s2fpv3vaMBSiQipUIqhYhJiosQmVSYFqqQUtYQUZGIpoLaOVpvmbuOWbB4AloojDEMSokuVOp+OEcdYhrTZBOyWV2zUhmEUpnjHvPVdiIjIiK6NESRRjdawl0bA+7brijwTNqAs0AgZcJI8D5SKMGwKnFIOtUQB4IgC7CBs2sFl89vcmMyp3GeKORigXBKcf3giDee22GlWME3DXMrQAZG45LRsOB4NgNhUMhk464L6g4mU89s7hB1SxEjA6kZDYaM19cI1RA1XkOe2UAOVynWPes7G5gVDSWsbY+45/IZ8JrDvSlrQ8nGWDEaaCSe4bhEyTNEBL/60U/wcz/3CR578hZFVTBQnrPlTdZ1xc5KiSwMtbXsHTbUpoDC0AaX9mEUFFriyY7BpHENoleRJHVNFzxRgC6SCVp0ASlMSvxdiE1SGKJAIJVCiUQGTs+VwIaKAiUNwcvscRIXIxMpkgOtFAKjkzLGO0+UERRInWTFzjmQubsWUnaNVAJrXVr4Y8wpxkseSYwnxjo5QDCEgIhLrxSt1IKbEvJ9UwclUpiCqiqxXUdm7KK1wRjDfD4HAd73ZFuxAC99NIRSBTHaxeNiHvMonfKlkpV/lkH3/ienE56v+fr93/eDfPhf/INXezNO6+u07miAUoSIzt4QaZGBkF0vRf67EKBFyhwJUVB7z7zraKKlDZ7OJ3WIlIIyBsbSUMgk14TkUJvGAxIXJdOuoSgUlVDoWBCDISrQhSKQyZCFwAwM/iiyM4DX7aywUSnsvKOtPQhJqRRaKWK0aBVYGRWUQTI3aWTkCg8xWfOPlOGh85vs7u7z2I05XUxZLzK0BCm4Pply43jO/ee3WJMB08yZGcVAVGyvrHFwa463DlOURC+Z157rey33XJTc2K1RtmFnLEFWNGHM3vVIJyf4caA6Dpy/5BkVgdG51aSkmXV00znjlZL1lRLf1gzGErOSgg3tzKNKw6Aa8lsPX+Wf/M8f5eEv7HF2+wKdm3NuZ0ioj3ji2h4r1Q7Hs4andyfsHlvEqERElRRZIWaibPKwEQhs8EQp0ohFpJFb6yy4bCZG4lkkm/hEJ5ZCIHJScAiCGARSa0plUkYOCVwQRPYv0WBU5nVkhU3IBmkyARMlZFqoY3purfpuSKCQGi9yx0bl0MAYcdaCEAyrAVprgk+jlagSSGicRwpJVRRImfgzWmu6tl2QakPwSeorBUILogiJp6JUGu/FmPxSZMoF6nkwPfektz/p7faV0kmpJJPxXAIuieMThERGQ5AaKyVdlwzchF8Y9n9lv/Cn9RUv+eizr/YmnNbXcd3RAGWApBBpNNL7odgo+8hbhASlEk/AOksXIvPO03qHFQ4XLESdAUpAOc9QSEoEc9vmE3kiZgYE1gNK4YVEolEMEFQE4ZBGEX0gqpiNuRSlFjx0ZsC9WyNECLR1QFqJLBPfQStFaxuUhkFl8EEiK0Fwgto2+NihpUE4xcWR4HXntzma7nF9lpYGKRUyBo6t5XPXrrO5NuBMJRmryJ4WBCe5MBpyOKq4NbEpwcYHDidznrx6yGvvPcv1G1OGJrI21MTWcv3WEQ8/ssdxe8iBFUgFb379Nu/63Q9x8cIZsJ7ZjSMmtw4oywHjYUEz0pRjjS8je/sTumbM5uVtZmHOv//ob/Gbv7XLmZ27ec399/LM1d/i7ntWGMeK2dWQJN5HE57ZO+K4Lhhg8Z1HZzVWqRRGKApdIEKg8xZjCga6RMSI0ooQUzpv9ALn0nuMXiQZt0qgRSAJAUIQgEzgL0HY1AFThiASB0eLBAyMEnRdh/eeLjiEzF4mEUQg28ErEAnUiCiI3ifwQcQGS6F0UotZm7xRCkOpJWncFNGFgZDGRDqTaXUPaiRoY7J1fcAYTddlx2QBxNThGJQFtrVY59KISyYPfO/TKEhrc5tvS4wn1TiRiEWwVA/FYBFENGn8FURMHUodCSEpoWKMhNOwwNM6rdN6BeuOBihSKYwpgID3MgXyuXRhGyRInbxDOueYO0trPa1Nya6BSAyRSilKY5A4JBGhFZiC2NiUkixkDmuL+ADFguioEllQKaIGmSxYkudGDCgkZVlyZmsLrTVNPcVZgaDMxllJDRJCRGcL+EoVeBcJjSd6n8c5GrQi2sj57S3uqxX1M7c4rBssSRqrtODqwS6/9bTkm65c4PLqBhUtxWyOLzw7qyXHTcOxmyFQdNYzrQ2zuuNg4tErFUIU7O93fPrh57i6d8g8Sj7+hX2OJsdcvX6Z2gq++/+wxta64bg7pvUtZ1a34HwadKkS8IHJYUv0c9aD4Zmnjnn0iefYPn+OjQt388lHn8Y3M7wr2N4ZsH/YMloZMFwrMYOCZmrxTU3rbRpFCYU2Gl0YhE6SY1zqgFTVEHyyqk+dD5lVWh7y+CKEkLspywybflzigoec56dFMkTLfakFH0OpNPbTWiG9yqAAovcImW9TKjnR5vv3jrEx+AX/RAlJ4z2FMWhj6DqbVEBKYXR6n0LBaJASTXtZcYg92E1f0+FwiBCCrm3xpFFTlYmujaspjEGKNAILmYOVvh9kCXTaPmuTUZLWOo+V1AlfFjL/hWQEx3Ik1FvdC5m4Qad1Wqd1Wq9k3dEAxRIpRAoDTOZdoGICJ1ZEbAw03jF3jllIHRQbeq5KCtirlGJoSgQS72NSAGmFKAo0yVLcu4ANLsXeh0jwES/j0nclQEr3SXwIJSIGyUpVoiRM5zXBOoIrCFGCljiZCJ5KawaDAmVSsNtApoWuFAWHU0sTSE6qNlIaxeWdVebB8uSNXQ6mNcKCLDRHruPhm7usDipWigtsrlRsDgI2Ss5uBY58xE5qmtbho2NuHdMuUB17jBe051Y5OgpMZpGzlzfozCafuVlQFKusXHyQf/frT7F9+Qzvec9bUOOLqPoaxVAz9op6PiLEgAstSgwZrozwQvHkEwf4EDl3cZt96/jkY09wadUh3IjYwebmgO1za8zsjNEzLWH/iLl3dNGjjUFKjdCKIJINvFGSoqiS46vP8QHO4h3QK2h7UJCTo6UUEEMK48vOrjHmDGSRRjtKSISPiBASmTqGxGdRGqHzCEQkoqiSCrTOZoACpRUR6LoOYxLnQ0qJs4m8a/FEmYjaSml8iHkUlRgdPkRkBsnloKRtWrz3Kb8p+5dEH9BZciwQaKWTfT1ptEPmtFRVlQBFJvWGEDDG4JzLhNtlijIkgJRu64Fb7hlKtSDpIrM0WymET+OllNIsFmGIp/W1W7Ft+eZP/Of8ypv/2au9Kaf1dVh3NEBxeDpvAUGyL4PSGDzJ26K1lmPbUQdPTaQj0jmLby1awaBIoKLSGiMVs8bSWgtW40IKnyNCFGLhSiuJSdYsBFEKopDEEBAxWeYjJNFbhO1YKw2SSNsm6/kYNU3rIDSUXjAcaoajIbrs/TxS0vFAC8rRgEJV7NeBvVlH3dbYACuF5IFz6wxLzbM39zk46Ji5gFUFu17wiWsHTOeeK2dHjFeHhGqD9TMr7MghdbzFfpgQvGDattw4mKJGmubgiMs7Q6LYZGVlm60Lnt1Wc/eDDzC3gUeeu4Y9POTTn3qMN73ldaxtXMFNa9qQopaNETS1w7YdUipWtgZMfccz1w4Yjwfszq7y6c99nrY7ZmtjwMZggOoU91y5yMrmAP8MaQTnLU2INNbljkkigFrn0FIihaEwBc4FvE+yX60MZSGwriWIpKZJ/igBGUVa6LO/SK+C8cEnkzEpUEhkFIiYxjVKSKzwKCXRSuJJNvlK5jEOaQFPfiiJmCuyUVpv1BZCyF0SgcuScm0Mrfd5DJO8R0IOA5TZ6yTGiA/JsE0lqViWpHvKskyRDUJgynLhp9J3hwaDATFGrLWJUyMFWmu0Tpb6Wifp8MluSE/I7Zouj8rIYEQkKXfeTpElzvQqI0TqLqo726XgtL50hfmcjf+6gP/11d6S0/p6rDscoCTn1HTCTAuFl5HGeebeUntPEyK1D7QhMG862nkLLlAWyZnUBYcUkdIYnDU0bYeXDTiPEooo04gnkSflQkmRAEpuifvkeyGFgQhtU+ObKasbazm0LV2x+xBBRnQRGY4LVlYGmFLgQ2r5Oxdx3qb2QFQUqmClNHQWnJUo7xG2AyXR6yPGSnK9tFyfzDiwHV2I7LWO2dWbPHmoGY0GlIMhHsms63CtzwZ1inkXub43YavaYqg0w5WSjY1tDrqGUh8zuX6Vw4MhVmzw+c8/zdmRZTqpufHsdc685SLV+hphfkAUlhAdXTsnWEdVGaoVza3DOc9e3UcUnu0BnKkats8qXnv3iDJGtFvl3Jlz7O3vc+vWlNlxmzoOIeB9TLLh2Lv/AiEkbkm+aBeZo1IYneICSLLs2OtnQ+oYQBpdxCyNFQtPkT4OAETIJFIhEVJilMhKmsQViVEtXAGl1gt5stQKYuow9Mob7/3Cqt4Yg5YSXEAXhq4NSCEpTLHoxIUQ8d7RWYfSWa2jTZKtW5eDEFl4pPRjJCFAI2lDwGXZsc22/1LqTHhNVvrpcxDZYj89x0m/Fan0csQjclI0S3DSj35iHjktqLGnHZSvixJPPsd9//hP8Nj7Pvhqb8ppfZ3VHQ1QfAhEqbInBbgYmLqGedcxt56GSBcD1gU6a2nnLV3nkFGgQsQT8ST/Ei1LKlPStRbfOSotUmpr6mdDNucyyiwAShASEUW+kvagVJKMBkelIyulTBYcQi7m+cORYbhhWN8YUhiDtQ0+CoRQuGy1H2Ok7Vpc6EBUrGvDaH2N2loOZ3OOZm3KjKkU+oxkbVUz6SKT2qYgvXrOkbXs7k4QYopUKo2vQsRFASopM/YnM6abIy6cHbG5PeL8xRHP7VbYOGNkWnavPsfu4RhXz1k7N2JYFBzemuCiY2V9DWSgaQ8I0UF0jCrDcKVEmYJZXXPjVo2MMy5dWedbHtxGyciDF0vG0jAq1jjcm/LMs1fZu9EgnEJLkQihPqLQKJIiRkuBFoJCSNrgkyEeJpM6kx+NUukz9ICKESUjnbWE4NMYJC+mMXcApBTomPkemZ8Sszuw1hqpsuonk2hjSHLywWCAdY5ZUxNiRGUvE2MM3vuFYVok2fMrrYn49BJCoGQGPiISokPkYEEfHHhBYQqUlASXcoZ6UBVDwFmbRkOhB8RghEIoQWs7gOwKq7Lza2/Lr7MkewnYvPeLjk/vMCukzEA6ZFB0YozTd1Hys6RnO1XxfD2UPzzitf+vh7m3+OM8/vv/+1d7c07r66juaICCTH4W/ZVrazuOXE0dAp0PtAHakAL0QmeR2RwtZk5DECLxVYKDGKhMQW0NITgqYyiSnzq9eZVSmoFQaB2RSiONRkaFDEntEgj4YDFasLo+YmWYxhSJEhApq4Kts6tU6x1FIYnBI0JajCMGKTRSenzosKGlbSwGKCQMS0VlFHo4xqiKSdMxipGKlo1OEkPFvI0c1R2TdsCkdhxNaprOEoQiyEh0yVcjiAhSM7OO49kUH0uEiqxulVy+vMOTT97k8s6A++4a0sxbNi8UPPiaM8gQeOLhqzz0loaL26swcDRighCe0ghGlaEqCrxVTI4FnlWUjaxT8OA9Yza3RmwNNWUYYecljz36NDeuHTI7VAzMkEHZcuxatFBoYVAyUCqNkWncUpmC6FoIqdsgSHkzuKwmEYm8KTL5tOlzZPIx0ncAtNZJuZPd3gPgYiQGl5xaReJ6eJfGK2kRTym+Sghcfi4ffLaINwSfeCpprKIRziWreJLsvWk6PCGRsCNZ9hzRWqALQyGKZAYoVeZILbsm5kR3pif7phgH0EaDd/ioISbZMiLzXbzH2jSq0VLhvF36n2R7/NQtSeOvHm70HaeFIPmkPX62yE8meV+Rb/lpfRWUPzjgtX/m0zyw+QM88u6ferU357S+TuqOBihSaKJQNMEz6yxTa5kR6VzA20BEpkU5kJizSCI+LSwhtec9glnb0pYVA1NSGEPbWVyAkVYUydsMJQVIMCKmro2q0hUmDuEjUfnUVu8E4+jZqgqqwiQmZhBUQ83GRsXmdkHUnja2OJKzrZYKZSQERzv3eB9RUWNIclvpO0KbvC1GRjGoCjZXC1yIzFG0jUNhaK2gtoa5H7I3s+wdzZg1LS4IWgt1mxN7RQRRUKiAbSOHs8DNvZr7vOfSXWe4+nQyj/v2N93FXRszpApsra9z9dFbHDw34+pj1zm3fglhawrlKVSWrDqJnXnirTnTq0dcWl3hwXsv88BrxmyekayOJcJ5mmlkr21p5h1tp7BEqsqx2gWmraLRMXUzBGhJ6pBIDUqhosKkBkTKuJEKi4WsyhLZIyUSUl5PzI6okNOHwZhEclUhuf764DJPJb3vWeOTD4lLj6tUkW3iYrLftxYlFUqrpB4igdMoIrpQQECIQAiRNoak2IqJHKtDkr4rqQhS5nTtSGEMUZIcZbNUWRUGby1apY6PixEXfLLaz2MXGzw+dz/IIAlJCir0FucsWimCz+MnKREnOkqIPt05LACHzOZvfRhg3xHqFT3EgMiuvKd1Wqd1Wq9UvWSW20c+8hG+53u+hwsXLiCE4EMf+tBtt//AD/zA82SJgve+97233Wd/f5/3v//9rK6usr6+zg/+4A8ynU5f+tZ7qF3goLPsdpZDF+iiJjiBsDAIisJFtM9BfFHkE3pAxoj0aRGazOcctw1eRpRJnJFZ3eFcREdHFVsq0VFKi1RzogcpK6LwRDknSEeILYGIjpEV27EpQSuJKQSjFc3m2QEbOxJV1EjpQUeC9ohCUQw0lQloNceHGd51FEIy1AUDo9EagowoEyhNw2pZc3bkuLgiuHd9yAM7I+7dKbn/nOGhCwNef2bAgxuab9ipeNulEd90acDbLw751rvX+bZ7N/mOB87ybVe2eOuFs6wXIyYTzxNPTXjqsWvEOOfipR1oFJcGgm99zYC33D1ijMeIgth6Dp98Cne0T71/ExXmSNfQzRrqo8DB9Ql7T1xn/vSz3L0S+PZvvsg3f8t93H33BQYm+b7sz/ZwccJ4lLJmzDAwHtVsjQUrhaaQEqkjyqTOFFiCCEkq7nwyYYssuBwxkztjcBglUCIicJRGonVK3Q0ke/xElhWL3Kb0XIHSaCqZVD9T23Jc17TOJ16QDXgEGA1GZxKqxEidDOREMkeL0ROio+0aIh6tUufFikDQAAIZIzqCETAwmoKI8hasBedwbZvymUhABgkh5OwhERep2ta11LZl3qXjLoRAcD6PZiDgQYDKniveu+wPJBY+KIEE6LTJLsj5J4Gx9D1xMSTnXpkcmrNRPoKAeQlnj6+q88ZpfVl14w+/iX/6ztMRz2l95eold1BmsxlvetOb+KN/9I/y+3//73/R+7z3ve/l7//9v7/4vSxvDwd6//vfz7Vr1/j5n/95rLX8kT/yR/jABz7Az/7sz760bbEdXVsz957ae7oQwIFxUAWFQuKjpPNuMd5IHhUAya5cCQjR0TQ1dlghVUq5bZqOrvM4KZAxjZK0MrjYIWRqzSstiDFf3QaNdwLhkzfF+P/P3r8Habdfd33gZ63fZe/n6ct7OVfJkizb8jXYxGUbrMAQiB1fMFMBK5NxkgpkwlBhkF1FPBMoPPnHFYInFJVJJTPBMzVJypnCoQI1QBUUZBjAJmBhYxvhGGNhycayLuec99rdz2Xv/bus+WPt7iMZQ3RkiXOO3OtU13m73+6n9/v07mevvdb3+/meGOPG2Jw07t4bOL+T0dg9gycmNgEPsrOEtshx2lPm7muesIbZ5eiJv7XSDPKYSMmFto7YB90YpbmwdBs21CIs0yV3gnLn9IRmizudupLShhiSrwJMIA08uLjg8dMLHr78Cu//qcbbn1zywnN3+MIvfCdlmTAx5lp44cUzvuidX8g//tmPUC+fsPvwxzjuH7G1xu7xxGG3oLLn6smei/llHj0ojMOItIndKx/jwcMDh93EsUzspwWrnWUxolTu5kg+fYaQKx+9eIrkiRgDwf1SeESBs0uWVp10mhOocjweWFq9QaTerECC6z9qN2pb7bXmF+ppmjyfSYI3AjmRhkRZZljXHa1VRxDj5w/meo8eAuMwUObF1y8p+mRhcbG0it5YgpsIS4dlXsBgjBlrjSYe5KcqxCFj1llqYVmqT4Bi8BTh5qtIh/IJtrJeGsZUCvwyce716qa3Rm3dc6g+YVXjeT3ZtTJ019qs6xxbkf7Xk5lqdZXm2E0ukSJ+PK/KUj7139U30OvGbX169dyffB/f/hv/AD//Tf/1630ot/VrpF5zg/Kt3/qtfOu3fus/83OGYeDFF1/8Ff/uH/7Df8hf+St/hb/7d/8uX/u1XwvAf/lf/pf89t/+2/kTf+JP8Na3vvVTPpYn85HaOxVh6cZcK9Iqo0VOGdEulK5crloCzIWOzRxyNeSBzSjUNcV3Lo6xH2KgEKgVCAOinlKsBFTNCZ/Rhbm9y3pRSLQixGqkBNsxcHKqnN2H03MhDU7hXOfkpBCJMbAcjGl3ZH91cP0AwTWLuEtFQweFbRjIm0QIFXR1d2hHYyVFZZ6MeZ457P1ufEskmKP6exRCiigGZSIIWFJabKQ7yr3NHWyTubia6R9+mXk68NYX7vJ573iezfaMYVTS+cjhmLGrAy9/5BU+8sGM9h0H4OLRzDRVNB54fHHgIw8OvLxr3DmfefjKQ9DI7qJxnBOXh8b+WLHWWK4KtjTujwPpZMvjw5G5d1rwO/8IqPkUQWJwqUn34L9pmVdMvU9HWm3rJEXWNY8Lm3up9F5Whohbxq9D/sr1x9XFtdci5xAUIZJyQsUJwa1WDoeFWl2fJOI8Esxps8viAUsiYc2yMaw3UlRShaCRk2FgPkzUtSHIKaExgkFloc6FIWck6KualhRBjJBcU2LVOS9OoOUm5Tit0LWlLLTWiTEQQ+Sa9Zrium5cy4XDq9Dco8C98f0EuJxJ8yDB7hk8QZWCYOLsn5Q/9ZePN9Lrxm3d1m29OeqzokH5oR/6IZ5//nnu3bvHv/Kv/Cv80T/6R3nmmWcAeN/73sfdu3dvXmQAvvEbvxFV5Ud/9Ef5Xb/rd/0TjzfPM/M837x/eXkJwNEaaKA2Z2fM80JolRAi2+jo8YM1t6deWyTXUMGUMmPORO3EPBDVQVx0JcfIkKDUzlSMkIOj11nBXOLhb+48NTBH32s3EoVthvOTyOlZZBiV1mGajRQzKblFVCnU0jnuJo67SquONVVVQtIV1NkICVKI5LxBAtg6uvdv3kkSMctcXF7x9OmB1hQ1p676Xa8LPq0qS2kMIoxjpIVGjZ3TFNmejIzP3KFnc+dMHKiL8OClC1SPbM8C51MGO2W6OvDklQO/FB5yNnayCMddpdSGxJmnk/Dxq8DDfWPmwMcfXLK5cx9CQkOgFNjvO20xyr6xxQcV+92RBw+fst9P3gCKsUkDQYxaFiwFqvhaTtEVP+9ZMg4cW905q8W3r4AzWy+4cm0/ZiWjInQqpXV3T/XOdjPSS4E2kWMiqAf2ITAMCSyCuTsorM6uWivWjRQTIQgpRbp1x9DnQA+e1RM0kCVgKbKvnoqswX9WKQRSToxi3tyYN8FBffXSWr1xB12nHeuqNQkrdyWs05MgctPcaIxUeTUrqJXmCdurZkXUYXNtXZGx4utDWJ1xa4PLDfU2sZRGs4YinI5b4NEb9nXjn/XacVufXn3+n1b+s6/9Qr77/s+/3odyW78G6jPeoHzLt3wL3/7t384XfMEX8KEPfYjv+Z7v4Vu/9Vt53/veRwiBl156ieeff/6TDyJG7t+/z0svvfQrPub3fd/38b3f+73/xMerKCpKaQtlKR6ohqAaSCFC87H19dbchZS+6sl5IMeEWkE0EoJQamdQ1waUBFe7HZe7DpuEJUNtYRwEC9Hx4ADmYlszsDaRdebOqXKyVYIKdYYyuS5At5G8yUClTo3pMFEOM3QhqnNVQnACajdxN0pWJApRr2WKHlzo/x4PLDxcNS5eKRwPxmYz0PHE3JgHRBPzMrMshpBgvdD3FXGeNNJFeO7eluEscfH0kiFmlMw0VVpdqN0ITFAX5t3C8WB87ONXPHs3czYEt0ajlNm4rIEHx8CxRs4xHj858OzuHifn7jJJMdIWOFxWQk+EITCb8bEHl3z8wSXWlTGB9ELsmRwVEcXU6btRAzEI25ShOv8DM3/eTMD8Il5X1LzHIVwHCPrnXkPbtLOuQBQMWjHaUolmDMGThnupa9MTicFXN4fDwbEp638pJoYwEGNAFOZp8udfI8V87eN29E6Mibhm86hdC3cV7d2fd/XPC+oTH6fmdkqbfT1Z+w3d9XqqUeu6gkqR7WZLL4Xj8eiNl8qNYNZdSf3GtnzNQeH6+VgbIFu5MNdrHVYyr8RICE7JHTRyPmw/Q68an53XDfinv3bc1qdX+a/8Xf7K1W/hS3/gY3zbdnq9D+e2PsfrM96gfMd3fMfNn7/yK7+Sr/qqr+KLvuiL+KEf+iG+4Ru+4dN6zD/yR/4I3/3d333z/uXlJW9/+9tZVjR5Lc0v8hKcL4FQzAPOqnO8HUu+Ul81JjabwXfwXdxxYX6X2qohXRlzZMrBIViY6xtaQSSjEgmaPGxOfB2j0lEtnGwbz93PnG0DkwnLXJwyG5U6V4oYyMJ8mJgPBekBv08uaAAVd1hIUOIgxOz8fukNsb7SOwNYoLfAfGhcPDxS9kawRDB3FvXutlEPnRNUjZwTEowm3S/6FVL25mnoM3fHAd1mjvPEZekgie02cv/+lk3uvPJLVxwPC3Mp7B4VSt9SzxLbDEECy1zZTwv7eSED98aBtIAUON0kZBTMErunlenpJVECFeXB4cjHnh7YL8rJ9hQZC9qNbTohiLHESA2BZgUZMjkmNinDUpnmyYWyKwPlOkem1U6zzhATMSi9NXcGIT4hCIJKol1PXlDa0qB2ToeRGJOn94bgeUu9UbtPs4IGaJ2oAYLQOmuGj6cWs04kokZKWbDqbiFrQk6JTVKqKGklGEcJ9F48eBAP47uBy5kQQqLW4vBAIK7sn9bXvJxr945BWGGCi7gmRlS9+S5tdfGs2pzWKG1NJ/4Esizrc9h683ZY9Lov9ume+ExumzIn6ZM1Ir+a+my8bsA//bXjtj79kr/9fv7v3/Kt/Pq//v/mbfH09T6c2/ocrs+6zfgLv/ALefbZZ/ngBz/IN3zDN/Diiy/yyiuvfNLn1Fp5/PjxP3X/PAzDPyGYA1iW4nfB1VBTFKVLZbbGri5Ih2MrtLVJCQAhklNkHDcILmgUhWYB0eiEzwphUIbRybIShe3JwEnsDrySSNCMqXjgnHRUF3KG0xPj/EwZBqgl0G0mqk9TpFXKNNP7xHxo9OJQrdqWFeZVsQ4pb4lDIoygCSRAJtBqW+90E2VRDofC7uElh93MkAZAEFvIqaKMWGmYdcZojEnQ4AJT8WQYD5tT/3jfPWUZjZO8oS7ubIrDhrNN4vRuJtGYpolSZyQ29odGf3ogSERPMyd5pDeY5z2RzrMnW971/Dmfd3dkbJ0+7xnHE565c8blvcru0YE6zVweOk+tsWuKDqdsxzNC3JNEiGRqm9EQmQ2suBNFg/mfayNrXJkk9ZMEstRKr2tg3zohIAQUx+DTIKmSUrixgl9Dzk7H0UW1AikNSAiU6hO63rvbdm1teq/R+c0dL+7CXYW2xWjFs2vMhKAJJUBbGGPyRqe7IFo65FVHwrpCQRSVDhpIGm5AcEkDJspSl5Uc+2oScW+NUQMn45a5Fcq6EkKcJOvhl95wXxNvY4zUWm8yesCbGz+E1apjr4piA3CSRzYh/SpeGf7Z9Zl43YB/+mvHbX36JcOAfexlyi0H57Y+y/VZb1A+8pGP8OjRI97ylrcA8O53v5unT5/yEz/xE3zN13wNAH/9r/91eu/8xt/4G1/TY1vr9L7CpMTJsGIwWeWJTdDhqi/UlYPBynMIKRFTxlbeg4gHySUiUgq1G2PrjCizwbIYFjIhCVM1hs3wqt5QBAlCr4Hc4VQFsUapPoIfciJeryk6SO+0qWKtrzTRDlYJQWhdEY3kcSQOhsSGBggpMmhkYfELlwWWQ+PqycRhVxFJpCHSe0NCJybXxJTSUBopgUQwqmsP1mZuk0dSBKQipXJ49ISTu8bZZksPgaKBkITWFigFsYlnzpWkAx242C3spsT5GNlkoSAsRdhm4Z1vPeXXfdmzPLcdefnJBY9/ccfd55WzO2ecDJEYlafzkSdL50Iyc8tEjQSMiGCmHIo7bvI4MNfCfDzSxdkhFZ+KxJho5m6Xa0gZ4Jbc4Lh8XfOUbHWhtG4IRpfOMAzkkKmL5/1YSK7ZWdcvMQgSXMszhjWFWgJVmk8XxByC173pAUNEqauw1jOd3L48pAHpnbIs6DjcUIhLdQ1MUM/uUfVmeu1dMIWUEywrbwUotVJ7R8SIQQjqbBVrRhMhpEQASpugGkl9vVhqZVl8qid8cuBfa319358r652Af0xkDQnsrunJOfLZa08+u68bt/XaS7db5O0uRH7hB17mv33H/wTcTk9u67Nbr7lB2e12fPCDH7x5/xd+4Rd4//vfz/3797l//z7f+73fy3ve8x5efPFFPvShD/GH/tAf4l3vehff/M3fDMCXf/mX8y3f8i38vt/3+/j+7/9+Sil853d+J9/xHd/x2pX4ttov1VNhWzNCFw50jrJgAVpoWHNxZTPDrDt5TQMWlNIX1BqJ6KOKmCgqnPVGkMiiI9Oxcbnr2Emmy8jm/MxH9r3RrEIS2hxJVTgj0+bAHIPj19dJS0dAjGgBrQGVRtMCzYhRCWHAUMJ4StpkJEyorJOhotQAtmbNTLuFp6/sOV50jC0aA/OyR9Spo6U2Si1oENImQaxUmq8qzCmkEgQZBIuRGEZUZqwdqNOBYZM5v3vCkcTm9AQxYdntOE3Cr3vX8xyPR0hP+J8/uFDbCb1tWMqRyzJzqCMhLrz4zg3Pf8kZm1Y4/NKBl1+aCXLGGI+0aaYROYTMo7rw4KoRWmeTKmmsxDhyrDCrcpSIpkxpTkQdhozGSO+dQmehYSI0VapVz68RR9+PY0Y1oBopvVOb0dUnE0GhX7euEXopWGjEmCndV3eaIqYNkU4QYwgJ1cCuuMV4WgpVjKoVBTLRrcYhsLQZi4G0kmQjQg7iU5YIS1tQU3p3omtUZWozZSmemSP4WkqceNysUzHQ4ARkhJhcz6TayVF8pTR3DnNxh07r2Lr6zMPgWVCwrqw6rTRUYWmFmJI3b9UdawRPijaMqA5lq82F40SISQmvwWb8hnrduK1PvTQw/fav4eWvi/zs7/uvXu+jua1fY/WaG5Qf//Ef57f9tt928/71fvf3/J7fw5/8k3+Sn/qpn+IHfuAHePr0KW9961v5pm/6Jv7j//g//qQx65/6U3+K7/zO7+QbvuEbUFXe85738F/8F//Faz/6G21JIJlRBebkkxTF6a9ZFZphDZJ15moEGlYnungOjypr4Jy7ckLr7Knk4KJAqwvHsnA6nHIynPmd+XqXfRNhL6DRnFUyREKON84R3+l3eqm0tgoQNaLiPZGqug1UBMsdDZWY/GPXQs3AFg2Bw/7Iw1ee8OTJhPSN31HXGQOiRnozv0NGyDmTU6KrJyz3Aho7IRkhGJoiKQdidBYIeorGwNILUeGtLzzPs5/3PDJd8uTRQ07PTrj73IscuvAwfowPfPhIq8UDEg+F5VBpywQ5cv8LvpDTL3sn9eFHOI4f5qpecrHbki4jx1LRfErKEeExKVVSiqsgtrMsi7uCJDNmaH1hLou7eMR8LSdCre2GbirXhFScCWPmKxxiwFZaas4RQWnNJw8hOnRtmmewjobsWhICrdVVtBzd5twbhrhuQ3zqZubumRgSvRUQQ4N42xOUzTDSamU+TvRVUGvma7ra2qqXWZOQW+PqcCBFR9d3VSQIQRKtd2qXm1A/ESGrh0/O8wKqbDYn0IM7nlatSYyBUoQQlFIWpmVxnQxyA6iD4K4ykdWqXCml+vMagruIzJjqwjR7evg2J3IIHuL4ZnzduK1PqR78/ncz3xP+wXfdNia39frUa25Qfutv/a2vZnP8CvU//o//4//iY9y/f/8zA1cSP46IkETd/rviHnw8r2sSriFrOOC8CgPbfGSuBQsBiYG2LL4yao2oguTOneQsjFT9xX0R4Twlaq3uGlnLuttKh03wsLysdAURQ7s5nKs3WitYg6jiF8OgPiWJQoyrQDF2NDhTo3f8QpMjapH9YeLxy5c8fbSnLsKYI6qO9JcVstWaMaTIMAaGjV+waxeCJV/tWCMG2IwDp2cbticbh6JtIhZgOh44TDPT5VNyHtnfPaMdZx49viJK4eTkHZy/7Yv4/HSf/CO/yP7BJd3O3C4rA4GJcHrG/S/+KuI730bLwrNf+oQ7L3w+59sTchameCQfGroPjKczz54VknmMgEin9M5ogdaEqcLUGwSIY6YbtOuQO4xWK2ZCE0+0RoVW10yaBaIlQogI4v9O8/NEgrDY7I0jPiFB1jTpbmsYn9JMaKUhzXk0rRsalcya/Gt9Xa0FwuraWZbFhdXYioV3h42pUWun1rI6g9wBBMJSFjQGQkyUZaHW7quekAjRJ0EAvTtJV9RjAGpx91LrRm/V/y2qpBR9umjNJdhrmGCMEUSdH9TduuyJxxUTXRuvFamf0s0atLTGsSwuPE7JG6nXEBb4hnrduK1Pqf7zP/Qn+S3j630Ut/Vrud7UWTyYJ4ZgnWyRSEBLQ4JC8JA+E0ebh+ypr4MFWu1OKe2VspIytbnQsfXuiPpkbMzYRg+quzgeePD0KafhlCA4hTaoNz9AKzMpN4YMIYLPv41eHO7VbNW6JCWgSEhYCIQAGpxMa9IxrWh0fY11v0ABHC73XDzcs7uYEEuMw+DYcfUJTO/QSkE1stlsGTaOxq/NyDGSe6LXQByUYRvIWRlyZBwDMQlIpyyNsCzkUihzpTx6xO7shB4i8eQuIS3U0xPk/lt4/svezud/+T/iZy7/HktXTocB2zeQwBd9xVfxwhd+NQwbwrOVt/z6SD5U0rKnLhOvHAqP9g94+WLHTCENQtbAoOtzGjZuH6+N3bzQDjOqRpA1aK97vs0wDL7qqY3ejVIr7qla/7PrRJnmPh1TbE0IHoeR3itIWzU5Rq+V3h16FjQhK8hsqRXp/YajktVdMNe2ZUXJMTnDpC432T+9FHqr5BwZx4F5WVzwLGkN8+vk7GLZ3huaPaHZyjXNttG6r+2upxWCOh/FGpgnNasI07RgmCc9d5DqMEFH3Qs5Jw9P7OvEMAjaZNVf6UrZdVR+jEor11RBQHw9Ws2bpjEGkgrYNQbutj7X6h99/2/gK9OPAJ85K/lt3dZrrTd1gyIC3XxNgwWSKVLAglG1U2hYFHRMDCkiMaDWqFoJCGpuoazW6dUhVSLOImlmLK2xjUYeEpQjlxd7DuOBIQVq8c8Lwbkr0iuRgthCkAETobbiF6zWYHVaaHCCiUbQ6MA3DUaKionSpfjH44CsjJWr3RUXD48crzrSAzlGIK6QsHazJnD0emYcIxIWuhVCMHLMKIm6KGj0C3Vr1GVhOs6E0vzfv3SkF8IKnxt7ZTMqwwtvQ9/ydkyPpGfuY/lZxmef5av/5X+Zp08uufyll5C+43KauffCc3ztb/5fcff5L6BLRbcTpy90ePBR9LBjERcx78qBJ9MTDstCRBkkMIbEZhwYt1tCcqfJOI7o0dcWqkbQiOJheEmdrgoLmJG6W4tT8InSOGRnh6xNrFijtkYUTzLOKoi4kDapkoJSSiUmIaSVg7I0UvCpS2ltbaAEmmfj3Fhv1S/2Mfr6wxCntfZOSL7uW+qCiLDdDFiHJm57vqYcX0/agipDSixzpy6VTqF6JLavNFdEfWsVdAXgteq/C72hrGyU1VLdzeFrIpXWCt1WZw+2/u64NbvWQu/4ZE8Fqw2CN869Nbp1gkRSUAKsK6Lb+lysf+M3/hj3wm1zcluvb72pG5QYA611au0UqwwWb0bU1jsW1jvF9QLTrK+WY10hZYHQzNcvq4alYwR1x0JZKjUUz0yRyGG/sLu6Ipyd+NSigsVACJ2EMQYjWIHmtNleF4ROTgFT9XA2WbkbqRGzH5tTP93m2ldKbZKBXpTDfuLqYsdxN2ElESTRzbkaGvqKKucGSDaMQoyVrs1XCWr05jTW3laGShM0Okm0tULvBbqTd8184lANFpsIyTi9fxeLdyFVdHsK4Vmw+3zRv/j17C4P/P3/71/j4Yc/xKzKV3zNl/PFX/2lxDFjBLplNGR6TFje8PTRjo8/uIQ48syLzzMcdrR9Q4tPsHa7I8epYEGQKOTNhrIUoghpGEgx0aq5w0X9HDBLyHVYXjckRHKObLdbn4KsJNZe1yA9M0orJF0BZBiblIgaOPYOFCJQ8bVTTpFuwmFaPHTQDBEjxYAEPwdLq4TeCTExRteNKNfUWijdGwOfhgjFPLEY88mPALYKgXOIRPVzQYKS1Oi2xhuIEs11JYoiBt084NKkYyvjhlVfYhi1VlJ2ivG8ZgiJOvuk9earyHVl5hOWa+1VQxSqmf8ZiKpkUZTb5uS2buu2Prv1pm5QUgyY+l5+KZWpG109rkWiEoaEZH+RnhbnoXRZo+nxsX6yThKQGGlilFb9It2h9M6kxpgyOUSO88zVxSVnm5GQXkWDt1bJvbHNkUGAUqjV5+xRIA8ZQmDqxfUyITjjZHB9AqZrWqyu6bjQKxz2M5cXe8piRHEHCK2vEuCVB9Jde7EZEyEKIs6zaOaJtykIS1toi5HC4NqUU2HYJMZx8Lvu1pAQMVVEAtvt1qc0wwZiw6zQNWN5g8RzlHO6jQx338ZX/abfSr16yt968BJDyHzJ176Lk+ciKk6ZVFXICcYt0+7Axz9+5EM//4SXnjT0zsjdZ07Jdxq2VGwuHA8zx+VItchhB+xn5jKTUuBkSCCJuRVar7SloeK5MtbXhOpuxBgYUibH6OA0Eaooc18c/9460zJxGhMxBnKIDBpccyLQKITVhithDYPEGzqsuahU3XpbamGqldBBm7IBsgTKqo/x5OROLc3R8jFQa6PV4ufQygTOKdF6dTHvOnlJGhiGRBSPLfCpCKTg0wsTHL2/LH5eJyGmgHTH3ccUMXNibFsDFcUVsY7FD+rTFOUm5VnVhd3OeEmI+qqKbg6B00BagXQityCMz8V66c9/Of/pC//9630Yt3Vbb/IGJWQqhZnOJJ2mhgQlxEDMiTh6qFupzeyzXwAAqE9JREFUhZXNRTdvaMrSWIBNFFJQYoAonuXikwW3YS6lkRNshoHeYT/NlG5sU0TWEfdSCvRKZs02ERdextARC6uAVRh0zV1JiuaORA9oq62vYkZByfTaOV4tPH2857CfUPULhUnF6K4h0PXiInajJTEq8zJRu9CJdIukIEho5NE4PRnZnCtxrKTs+pd57n7HPGQ6gZwH7jxzHx1Hlh6pU6PsrxjuBtp4RuME6U6P6wibe8/yBV/5L/AzP/l+5ta58/w5QXbQn2LdEJuwUij7hauHM7u9YrLh4uIVLh68xNm5cu88c2czsjkVYlaGMlBkRHaN3X7GJKHBpxLLMnGcCqUWevcQPVHnjpTmzyUq1GbsjxMRY7wOyhP1ny8O4+vV3VcS1kZBHV4myZODWzO3+dKplVVo601N7cUdU6Uwt0aUgJpBbai4w8tdZuoTuvXjiqLBaJV1PSWEIMQY6d5/EESppZBDYhgyvdZVT6M3k6PWm+uOevfGJUCSiIRELY0uHp3Qm69vSnFXUrWOXhNnVSAEmjVKKZ5fhNB6JYiQw7CmSIsLtkVIboziNRh4butNVkFvp2O39dmrP7u7+yl/7pu6QQlhIHVhojDnQBHlPCQ244gEcUx9rXSDEKOTZFujtkophWadXe3kFNmSGWNkCJEUI4MKR4OFTlElqzAG41IiV1Ph2XuJ0F1U2VUJocMCpQb0VFAtRDrKSDeh18owBKe29grFkegyRCREAuoOkzIw7RceP3zC/nLCmiDifI0eg9/hdrBmWDGGLNy5k9HUKLWxFFiKEOMJgUgtMxImhlMjbhMxRJINhJrpi1N4h00mjRGGAdVTas2Ux439rjGVCyhCOrlDeO6LaTr4hZeKWsGWic3JOc9/8efz+OlTbGm0y6dIKrSp0utMn664euUpH/nHH+PRw6c888wdvkQjH/rgxIOPX7G/7MS3DoSNw+pKT8zlyNlGCPGE/RzoAofpkmWuLEXQkJDQmeaZWgu7qbA0bwZi71jKtKUxqEAPvtKwQFvpujlnkm5RcYcK2hhipKqza5bamIrvhEKAapDDSIgN65VaCkFGAsIYGwtKj4nSO5Tik7OQnM5qQiSQk2P60eIzMLtmlXTEjBjWXBzzn68EJaeRxRYOk0Pq5la4Ti/2lU9nswnuujFjKZ1jbYChta4rr9UBtFLrvXkywnouVYu03kAMCx33zMPcjaUYuwVqV6JUohaG6JOWfnsdu63buq3XUN/z8lfx4//mO4Gf/JQ+/03doIh6tskY3emSc2KTMzGmtQmprgUInm9zwyRpfQ36g7l0Sl0oS+OogSFGf5xhQFIEcydFCI7Cz8HYXV6xPHuX002G5sm7NlVoCiWgLZBCRvvsaburtVPEXHjZjbp0T4pdjJggpRFpxnF3ZH95YNkfoXZPIzZbc1c6Ks71aN0dKyenI7reUYtCytffrzMvO1I0zu4MnJw4F0MdEOPQ06Ccnt5xi7NCq4nD8UBZLlhKo9bI9iwTamN58IAh3yOdbPy5DJleJ5bLV9g/fZlxk3hG7zIdGk9fmdDQOez2lOMO5j1PPv5hfv4Xf4aPvnKFjvfYbE547rn7pHFkLsbu6UKfEjEPFEuMQySFzmHq2Lra0C4EM6J0d+30xlwaU2mUdh2A+GqmzPUKY2mVIWSGYUDpN+m/vS7urlIPwEsxkTRRaiWiZPV8H+meEqxAWRYsdHIeUUnUY6OX5iLZ6ARWAHWNr+tM4CbrxsWqDU0ZkeDnY+3rz+9a7NzXFUxYsfRCHgZKq8TeCSuyvlOJMWIYdKcktzUOQIQ1L0iREGmtouY/fxOgy2o17vTSCeDaFVF68OOsCzduJV2ZQzkmckouJO+3Lp7buq3b+tTq9374N/ORP/iFtA/8xKf8NW/qBqVdp7giRA1s0oiJsJRKqa45MRFqN6xXX+00t6SKqAtFu18kjqUxW+GohTgX0jQzjHm1nzY2J5EcMicDHI97Lnd7xs2GrtCkUSvugGgdrYLGgFq4uTCJArQVtBVQsgtxp0I5LPR4RNvMdOws+wWKrbt+D4FrCLLyPFprpOjo8nFUmi3My7ym0yZSFmqf2Zx0Ts4Gzs4jOeuqNfA76ZwyMQzYCk/XFmkFjhcHpnki5ci9Oyec3z0jS6A+fIT0XyCeL5Dv0McttVaW/Y7eC2954S30LoSw5bBvtL5nf/GYsr+gXl1w9eQRS104zhO7i5ewPpLihuefueeE19qZ58KDR3s0V97y/B2SdsahM9fCshSyRtIgtN7ZT4VSK3PrzA06njETVtHxdWIx4nokCR5ylzUSV5vtMVynYEOvLg5NKZA1gvpzX3rziALriBV6K1Rj/XhZhbne9Ii5JiaFhKwOGcWdPS5A7bRSyKH7SkgDEhI6BJZSWKxQS6FX19GICPMyM5eFENNK0vUJlrNSKnH9uK+LXBsTTRE60gwxt80HjfRqSHeQ3NIKS1+zhSS6qJs16FAj1oSlFEopjryPQlRlTJmogSDX5/Rtfa7V9r+7y5//8lN+58nu9T6U2/ocqX//I+/mw/+nd6F/5/2v6eve1A3KXAvR1EmyGggIx9ZYSvHRenAtQKmFpa7EV65dPA7aWtN4YL17bQIdYVoKi0BaM+/PUmUYNmyysczCoydPicNIznkNVWtohJwFlYaYo+5jCs6iWN0knvESCGFEEawK0+KJvDShTp22dKTLGmLn7IkhD6BKXQqow7LGIaPqWgwxt8wGDZhVQuycnY+c3skMQ1hBcELzMCIQdxqpRESMOsPx6kidFjY5cnK64XSrjFmJgBz2tPJR5seX9PEc7jyH5i0pDty79xzn22do1dCkNCvsd0/ofY+0PbQDvTZgQ4yNshx58ugpd8+VF144QbeN41E5LoWpTOTYKHXD8biwWGC7GRlyokwHF5uGQAjVqagasVXcKb0Rgv8cSymrxdizbbRV6JUhZYaU/eI6JHJy5kdvHvRXS2EckiPrDaIEmkHv1ddHKoSYWWpFg5Jzpi+FqfY1zFGIKYIYS3Uia0oJUaGWhaBGiL7uUXUbeVjFvJ7D48+fdXEbuQCr3gjcZtyuGyLc2vyqs0jIeUDWdO8g4rRahBQiTTxXp67Ot+adFyquzVIDUQ9CLEthnmbqyvnB8HVWSt6cAIHbDuVzsU7+7I/yvv/zu/idJ+9/vQ/ltj4H6o8+/DJ+8Q98Efrj73/NX/umblB6cyjbNWeitEY1T7A1dUJmadVBXnV1zKg3Jb3b6pxx94bbMp3+6f8pHksilN45lsrJKAxB2IwDu+PMy4+fcPfuHbbbDYSGZmEYAj0Umi0kHfxCuLodzEA1EKOTYXv3aUrURCBDE1pZXF9i60oHPHE3ZUrtjiQfMkNKqBqlzDQ6MY6wtltI5/R8y927I+M2okFWVgpo8Aas1QoSHBhWK4ermbJUTk8GTs62pKxIqFifsQpaKuV45NAuKHHDBjh99vMYxjvI2Qm2NPpcMCaO84FJD6jsaXIAZpzbsmGZJlpNlAWm/cwyH8nBmGtjrkc228DpaQaMy8PEVDvbU2EzjGQ9ZX/Yc6wFY8XbK6g69VXEJyi1Fr+4m9HXDKKoAenmCHdVOs3dPjmv4D6hlsY8z6gotbl2SUJEuhFCIwTXPaHJc5OSA8uaCNVcZOqLHWeMqKyuGByCZuZJyEGDr5iu7fBl1aKYEUOkB/PmATz+QFxQG0JYGxMco986tb2a4ix63Xj7WtPXNItPcszXel1YxbC+2nKg3TrZ04SEQJ0L+8PEtCygHutA80bZAx0Fd+Lfunhu67Zu659d/2j/PPbjP/1pfe2bukEJGpwjooHSG7Ut2GqjBN+flzXwTNRXJWbegsiq8AurPsUMzJrfjfbuJmTzULZicKiNXa3cFde99Knw+OKKpo61X3Y79ve2dBkwaZgoxOjfF1utqY4SD+qagKVXqlUIkd4CZWrUAl0UE7+l1eCOpNKgzgURGIdMDHLD9zANpLShm9tPN6eZu3c3bM6ElKA1Y5lco2Gx060Sut//zocjyzxhqoxbZdgocRC6dIRKt0Jp0JaZearMc6fInuHsLuHefcRmzCLNCjBT5x31eIH2iRgaixUOxyP7feF4NPaHhVo6JycbhihcXV2iNTJXmMrCmBJ3tltqE3rM9D5zsb/kOB0525zQNa7Pm/rPrDW0u1VW1p2DX7BdBCI46+N6EjFbW8XNxTU52V09IeqqVYpoiNBdvAqehByCkmNANXOcu2uCWkNMnAiy4vODBjQFeu2EqO7O6Q2zRs6JYRzovXCcZ2pdrccS6GLU5hOelCLgwLWOsXwipt4MXa3qIJTq50BKCcMdZbU7b6WJ+RAOmOrCXL05qb3R0VXz0ulUB/jFQG2wP87sDkcanqatGn3NI5G4rtAEn+7d1udm/dRvPuFv/8+d3zTeTslu69Ov/+7yWR58Q/20v/5N3aDE4OP92Sq1OyU0aFiR9Q5f63gToupsiH6NLJf1Xrc3v6BZR3QddwuOC2/QBKoYh1oJ05ETIqKBECOX+yPzoyfs9le0MnPxTGYqgwcGppGQtk6M9ft2evdf9tY6x3Jk6QXRiHRlKZ15aszV02sJgSCgMVCscZwWQBhycthYX+/IY8YkEiQDQhoCp6cbVFd6KqvrpwutFVorDENmyJn9xcT+6Y7tZuDkfEMPC0s7UI/F1xAbpUvDWmcuE9NSOO4LtSfG3WPafA/ZG4tESi1IKzA32jQR6GxSZgkD+0Pl4y8/5vHjid4r25PEdtwibeHJ5YH90eghrLboAW1KmV1IqgrzdGA57piOE6Urx7oyQERJUVHtdPPkRbN+w/Tw8F93sLTesRA5tkIrns00yOqksk5rEyG4MNUncd31Ss3B9Tl0p8gKlOrsmwpI9O9ZzX9ucbW5O9NESSlRiicUp5SQ4Fbhqcwr6n54tYEyW8FpHtzXm2cCmThQLudMrw2rjbJyfTQ4wj8mdwztj0eaKGKdZfGU5SE4oO1qWVkouK05hEApC01XgJ342vQwzyyt0a1itZHTSMYYsvOAnCKEf9FtfU5W3+9ptyu82/pV1J++usef+rK3AYdP+zHe1A0KsOaVdKo1Sq/U0l3YZ87ICDESdM3MUWedGIDKuksXR30Lrvmw7hc2eVWXUoG5N5hnWlZSiIwpEqJwddyzO3RO8kiVBJIJ2ghxwHqi1+LLfV51mLTuF9Eg7pYoiwfMTdXvok3NVwEx0HpnKgutN063Z+SYKWXBqKgaMeWV/1FJOTJsBJhYlu7iUDEMn8JQA0lHYkjMx4Vlnjk52bIZM60tNFlWOm/DeiCnEbVAmSuYUEtn2h+pdWG6eko5XNBjpGj0lUloSHDKXGsNsYi1zHSEp08PTPPMnfPIvftbxiEz74XW4fJB4zgVTs9POD09o80zh8MC40gKkR4HShXa3GhyzTxZ6N2fg01OmARaF7+oB58S9eZWWl+1BGLKSHfQmokxl45JI0e8qTWfmkxTxWgstWAoJmHF5wfMnPjrQtx+w1CxpSKqhKQ06Zg41SZIQKM3ySH4+aWqVHU2Th4ypbhTJqfRQWodX1FaIyJsc/Smy8dwEGGeF2++Y/Tvj9w4kmLwj9XafdKiwem5va/J2QGNEcVXnNU8H0rNoDdfEUWlFrDuep6cAmNKZA1urZdbEspt3dZt/dPrB379lwLTr+ox3tQNSqmzOy9ihCprpPyMiKe5pujalOtRvQsYs0POWlvTaB2brvj4u1d/kZcg65TChRtNhMmMXYV7CidqbKKxF6NZpFlnbm4J3SZDB/Owwq54jnLFA2kTy1xhCUSN9KXRpkZtSg/Oy+jdXToxRqZpwkwYN0IeYCnGXAVNgWF0TQW9k4fKyakQ84zGhZDOSTEhWtAwI1IYdUTlnKuLhVIL29MtWKMw0WWlskpEMLabOwTZUvdH+rHTqzBfVZb9gmiiXB44vPKU03BOPs0UdY0CuTHLjmkqlH3n8sEVh8uZthhDFJ6/03nhmUIIytOemM8CT652TFeu8ZAMx6Nn0kQraIfeA60nDkuF4NbZ3vCLPWCt+HqugYbMdjNSiyskqi1uNZdAILHJI61MFBpVgdo8XyZtKDRKc9eLYSTMg/NqQC0y13DTQDphtVMWDy4MQTk93ZBS5DgdCEnRGgkW2IwbgnZn0vROFIMgVHMia0qRpVQiAxgsdaFWF/kOeYQIpRSmaWJZFp/KdEfa18V5PmUVh8cYGeKAGaRB6b2zLI1uSpKwirGNZpWleeayppExKGNvbHIgnA5cFmVZMs1gmSeGqJzlyKAKFqjcZvF8rte/+z/9e/zcN/6/CLd2rdt6jfWbfurbOWsf+VU/zpu6QendbqbMgqwXCmdDxBRXoqdfTFR0zR+xV3Hlwe3J164IWoXg9E9bH3PNVMO6szd288RJjAwxMIbIEBOHxYW5V4c9S9sQYkAUSl1QbYTkjcpSKvO0o3eI6mm2ZenU6m4Luc7hSb6uOR4PnqOSEkHNeS111UWYizhVK5ttIuWERiWEiKhhFEJK5CGgGlGJWI8cDzPLcvS1RGV1cRghQtoErHbyOBI0UqbGNO9Ylh3LbOwPO2AhxUaY9+xffhly5mzz1hX6Vel1YT7suHy85/LxkQcffUiZdjz3rBNYn30mcnY20m3ErhaWdiTFQIqCNcf0D5sNpRnHsjCXylQ6h1I5mvNJdNWEiER376gx187SGoqgREzdkaKWMAqtdRYWIokYhCFGojSG4Oh2a52gQsgDY9wwLwdiDwzDhmXxKUIpvkr0511v1kcqrLoRqM1D+jDDpNFptL4yeZZKUNAEEoID2YDWCmAsdaKUgqgQYmAYIqiwrInY12/X5/51TIGJf34WwVqnzcvNsdXWmFu5WXu15sF/1tfmRJVIJ63J3ePmlLsnJxx7Y1mKrx7nhW1K3N+eMgRfDUXv6P+5/J7f1utTX/x7fpIv+b/+AT70v/3+z9hjfuWP/lv81//iD/AbhvQZe8zbeuPVne+CtmrnfjX1pm5QVCOqPnY3XG8wyLDCsOTG3RBEb3bu1/oUXcFbrp1cwwRXW6bg05S2TlfEzJ01wNXSOBtHcgxsQmKbrnUjxm46ciyV2gTtBaMTkgshe1PK3Fnm5g2MOIlzWWA6VmqpxBBIefS76GWhd3eapBQJamtDtmasCLQ2M24COSesF1/lpOxj/1SJQyOlTIwDbelcXh7YH+Y1IwaqNTQGYsxIViwKHWWQCPOEzg3KgbbMlF2j7xcGMTapkZfK4fFT7GTD9vlzUhrBGtYmApU2z7RpgjZzuoU7d05JGc7vDCDKw6fGk13hlUeXTMeFk03i5HTAeqdVt+JqV2prHGthXwuLGKMY0TzUDlwYe32x7Wv4Hd0Fwd69ejRAqQ3tOKo9KjkrrS1kEaJTQ1ATlqVQSaSQsKCeddTdPdVYs5dMSDl5uON6LGad6Xj05kKdXKvSQCpLNdpcnacSg+uLtNOKW5fdoSPedFLJMXtKdvCE4Xn2X/SUMjGsycjF9SFupXbBOGsCN6sLDIGlVqfPqhJxEJuKXPdQKMJW4c4QuRMTJ8nDKKsZbVhoXeldyCmzSZHeKyZGUBeb39bndn3xH/pJvvzJH+Af/v7/6jPyeCd/9pyf/NJ38huGj35GHu+23nj1rj/1f+CLX/r0XDu/vN7kDYqPT3r3V+MUE6BYX7kQQFjvdIM4aKqbM0OuOSi22o1DiMTgTYAHrPnXt+ox8+4AMo5i7JeZ05gYQmQbIofYmK2ynxeOpVObEVsnxIiJ55wsk1IKqCQEb056g7IY81QJQchDIqgwHRdaK6QcVxKpQ75iio7Dp2FqpJw4OQ1uHW7uLspDRgNYakhoaIwETVxePuXy6RUgSOignd4Lopk4bDxksCwIGxpCnTs2NZ4e4WKvHC+gHEY2SdbsG+XSFobLPeeHA2kTCWJIDNw5P2O6qGhRBjWEmft3N6RoaAo8vVq4uNrzyqM9V7uZqI0xJ042ibk0jktxRstqmzURKoal4Nk4K2/k2rLdmiBWQZwS3K17vpGISzaC0tSwtSMNQcg5YrUQmjctqNIMpmmmrpk7ZkZri08cxGm9tTVEgr+pQfPmIcdArS5KTiGv2p/uWUulUFsnaaYjLK2v/7aw5g3jeieEmCMq6udMMWp1C7CLbKM7f8R1MGYunO59tcibE2uvNSjF2o1oWPxbeAqyhptzKohwJwXub0bOQmAUxZrRTbCgQMQsubMJY+qNuTef/tgtSfZzvawsvPNPvJ9v/J/+PT70b0R+4V/7f35aj/Puv/8eTv74He7/zz/Hn/vQN/A7/of/irfF08/w0d7WG6He9jcq/erqM/JYb+oGpa9i09bxoL1fARUe1lF3ECGs7Ay6rRmybiGVFTwFfkHrpo4EN3O7ra04t5VKuy8LU6+cp4FNiIxh4ViF3Vw4Lh3MaZs9BGoxlrlR5o7qQEiZWot/bOk3F5xxHEkpscwzpU4+Ro+KmSfRRvX8lWad2gt5EE7PT9mc+NcHHYgho0FBGhbda2FNmKbK1dMDbaqM2wETF4dqhJj8ohjqTGsLczjlwcF48rRx2BU+/GTm4cXMvDO0CWPqnGyN03REU+feds/Z5ZHt+QkxBVIaiGcj83kjWeLOacLsyJB8BXS1P/L44Y6HD/ZcXs40g21SxmRYnVnmTl/dA6JCHDKpd3Re3NWq5gC8kF1Q6ss9oglSK+twwNd760SsWqNp97NdOt5GBJTo6y1RNChBIBeh0+hN1pDHNSVBhFrWc+W6MV5zdFKKDDmj0gEhaMRoiLoV2OhI8MmNdZhLJeg6fRBcpN0Fjf5vqrWyrKsc6xBCviHG9l5Xy7rzVHp3R5qKkpO68NWEpVZa89+DpE6tVZM1v+ca7OaJ4HfyyElMZDHCCuvv1mnX9vh1z9moBPXU6DXr+bP/S35br3v1w4HwN36S7bv/pU/7MV55dM67/sZPesTGw0fMt8O3z936DP5s39QNimfq+F6da6S8eEKsr0bWMXxrKw3TEGOFZ3ETOY/ozcrgujqv3sHDmt4qwtwrh1o51IWznBliZBMST6uxP85c7Ru9+9SidqMuiV79rjanDSKRVoxlrpSlgUHOLtw9HieWZSYEYRwHRFwcqSoMwyrupbIZI+MmMQxKjBBCJMVhdQhVRDvEhFngsKssu4m2dIeVmU9vNEDMgTyOoJHaElc744NP9vy9jz7ho087l7vCS1cTl8dKmZrnulCJyXg+BZ47S3w+ytlbdty5d490nqD6ZCjkCKGTcyQwctgfOOwWHj/a8/DBgauLeX3MwOlJ5O7dDdXg8tCwkBzdbu3mAjuEBLWRgjJEd9S06km+TsP1JLxggreb67nRjblVgkRyUEozltKY1YgWSbI2uFIhKHmjlMVTon0tqBgFCZFUQY+TT9nw1Y7n7bgzRghYh1obnY4EQddmQpPj4q0brSlLbRjdE4UNeqvOKbnWQyE+4VvVUMtSfJpkrzbmujY/ympDHgZmndkdj0x1ucnQ2cZhBcM1Sqn0UkAcwT/mxGkciCjdChVBzVhKZaIyhMAmrjZkfP2ZJPpa7HaC8muq3vZ97+Nb/vjXAvAbf+LI7777o/+LX/NnL7+av/HVd3hX/6nP9uHd1utcF/3Ib/2//B95/i//yGfsMd/UDYpPS1wvItf0TlVi9NG/OyH9YmNrLL2qrrbTddSt4uLUVU8A0Ks7QK7zXPQT9va9C60XdvOROylzEkdO0kAoylQnLi4njvvGsFFmOr2OBOFGS7Ishd4VsxV+FXxqM88z87wQozcnMSq1VkJwlkaKGaSxyZnT84GYHeYWoh/fCnUhJJ+KNEnsd5WrxztYxJujXmhrSq6vR5ytsTsWfvHjyk9/2Pg7H/wo/+jxwqFHF3xqpKFrrkyj9AWbGq/sE89MnWO84G0vXfLiC0diCIh0B6gJNFlctKrK1b7y5OHMfmcsc6DMhpqwGUfOzjKbQdylg2sy5l5RMxcFm7FNg9/ha1/Jp4bIyjhp/Yb3Yeoo96X6WqVZx3S1o7dGq1C102IkhA1Gp/YFsYJoI0Rbs21cVBqjOItEO4Jbg0Pw7BoNEbHi+PvrsMCmzMcJE1sD/TpDirS60GzCOnRLlOY/e1/dKIdpZn+otOoapZwHP/+iRx4cDs4SyDm79b0UZF3piKxNS+90M+bWaP6XRA2MIRGDMjejC1S7XkUpY0zE7p/X8a/vIhRR9h1qd4fbqN4MefKyv2y0cuvi+TVVZjfBnX/n1yf+Dr/5U/zCTx/UdVtvnvrqP/8H+eL/22euOYE3eYNSW1tzbfSGKpuikZIrxF1D4HeRQYLf8Tnhy3UqYli3NcxP17267/Ot+R2qijtyrpNmR4GFzrEYh6VxmoST5FqLuQgPj42nu5lhrJQBgiT/fuDhdkuhdUPF1yFIZZknlrkQJDLmDGYcjxPdGsOQCVEorbDZZLaniTQoGjppyIg50NMMNEbSqBiVad85XE7Mh4VN3KzTl+uE3UCOfkG9XISf+aU9P/xTV/z4L8587OmRPm4IAVKUlbpqWOhoYiWXdkrY8rQGXrmYePDwgscPnxCYSXlgs92uDBql10I1pSzG06eF3a7x9Gnh6vJIDMrpaSAnpVajd/W1CkZaybC1NKQbY4hIUKpV9tNEiIHTky3LkpiOBevmGiRRtDnpNbSGWvP8IWSlDAdPFV5Tho11ZRQTmt1F1WrneKjUtuCu3JnaZkrzBUhOCdXoPJvugXx1WcAUIaLSHSFfDcSQ5Foo6T5VsVqxVgkhuUYKQbqxTYEwDoj69+nddUbWO/Pk07RaBQ0+Demtk1MmmFCXytKv83yEIWS0GQGHx6k4H6Wq27mjKkOMDEGRbh5cKFB7pQdgHIjdo49n9UjJBj5hQW/+fFu39enU7/mHv5u/9VX/n9f7MG7rM1R/c4KzD4bP+OO+qRuUZoAaMSgx+p1kkICuGobrVB3HkTuwypfqPjhv652+B6J5s0LvPmUgkEIEHLrlJNpKq4UhJMwi+x6Ze+dUG3fixOPJ+OikPDl0ni+NeJIwjtQCZVGCZs++CQshGkNK9B6ZDwvBAmMe2A5bWi90NVJUYgbCQswj2/MNMRu1TwxZ6LaQyynaI1UaPTgz5LhUdk8O6Nw4HzIqRrNCwdBY2ebAGIUjgR//+T1/7sce8aGXZy6vDnRmcvApRIgQcKeURHemBMkgSguRQKUvlYcvP+aVl7ZoS5xsz1kOpwxDoC6Nviz0pTIdC48vJh68srCfjCbKnWeM55+tbNOGp/vI0jsxNcalU6zT6AxBIXg0XcwRDZt1Vrb4c1Abgk/H5rY4sM2MhUaV1c1jxjxXokbGlBlCIupA1ILSiEnWdOdMa/5cxRTWSUyjW6TUSkrXwtZOxNc4tjaImLktGEG7JwHLioWvx4kYMjGO3iynPXM356HUxjxXQuvcG7zZPi6FUm3NaOo0FtI62bE1Q6h2h7aFKMQqjGm4cRQl87M/rI2JiTcYrp3xhmgMkbMQOVnzgZZ5pllnv8z0NZYhSaCFzq5OtOpCcekQKRCEJdzyMW7r06vT3/Fh2i/2W8bK50j94Q+8hxf/88/s9ATe5A2KqGtIvEHxALY1l2/d419/Ip8g6HtVIAirTXWdtLTmd+uyhryFIJijwFyA233SEkRp3YWIxwLbQdmOG64m2B0qV8dKs4EkidYB6wSFGITePZnYguPKy7KQc2DMmVaNUhYkGCEpJg3ECDFydrbl5HQALbSuhFXwSexYr87wEGE5zBz2O8pyIKqS1FcC1l1YGlJCYqdm4eGV8KN/7xf50C/t2FlmaZWYMmbBuSEiJJQcExIcYKdJMVWCdHIaqM346MM973hy5LnnT1DpXD5+yH53RMwviBdPrnh6MfPk4sjjix29C3fvDzxzX7l7lhhTZjcbda5I9GC/tiyupwn+PJS6sMwL280JJ9st09JZ5oV5mllKpbbmmTUS6KKUpdDVf+qtObtkqQvHSdlGWd0uARFbc3xcL9JESGnAbKH2sgqojRB8RWdmiBmtV+JKp7Xujhi37jZiVDRkRJVSKtchlH2NXxBRxu12JdIqJkoT17ksrVNq8waERi8g0tdzPNINQopOo62VaEpMztiZaqGKrcJwb7i7NWLwqdFUFtrauKAumO2tsm8GVW6ouHSDbmyHRBc49IWl9hUeGJhroTaj3U5Qbuu2fs3XXzkMyA88B3zoM/7Yb+oGJcRw05gEVeIqInRtyqtSYmdC2LVvZ33z93rvtN5p1SFh8ROYKSHoL3ssZ1x08TTX2iuHxTjNAymOpNA5HAsXh8rcT4j1E3UxSkpKLcIyF2o9MJcjhpCGkVagtkJnYUiJoNCsk8fMnTtnDJtASA1HqwoajBASmsB6I2ii18r+8opynF0srH3V1QQkJV9lBaUG5WiBDz8t/OIrC7sjlFDxOVKmF6B1igbXZISKSEcMWodugRQgpy3dRh4fO48PguU7nJwm6uERDz76mKvLhvXE46d7dvPM7ujJuttN4t7dxDN3IkNuCI1hSOjka40uUOx6QhYw7RRriEG1SgoRMzgephutiOpqvb3+udo6EVujDUTEIxFqoVlek6Ud69ZboYvSCLSlYyFQSmOZPe/G3TB2c+6EEGi1+c82CBrdjrssM7XWmywdF18bMXZy8vdb74hGQojruWceLKmRuXXqGv6oqpTWsVrJEXJKhBCZloVeqq9xVJG+xic0Y6KuzaOD53xdufptRCi4NkXWIEV/E8r6jp/7A9Y6Yp1gPgGK+Ho0E8iaaNqcdnsbFnhbt/Vrvn50/0Wc/em/81l57Dd1g5LW6HqVFaZm6xj8l9mcvMFwp49cj1hWL1Rf735tFdqq6mrx9c+91ndcC3JDCGBCV6C5IHFXnVGSQ6bUhadzZ1+EoRiiRkxxFbpGaMauLEzzHqwwpC0qME+L4+aj+mREO+OQOb9zwvZ0QIOBFpBODEKI6g2U4CusUjkcJqb9AelKyIrRab2g2pAAaMUkMPWBX3h54u///CWPJ5gWoYeOpujwuzYR60IhsUhApZNU2IwDpRZKhyQdswpxYLbGS09nPv6k8OL9Led3zlEJPH7lIcdJuTp2pr7QpHB2suHZZzY8c3/gzlkgJaHUjO5lpbR6wKOJIBqBAFKxtRlordJro9ZGWdzKG6Oj17UqrZvbf21Nb15PBlvBfc0c1LeUhZM8rllIi4t/AyylYy1SSvUpDFBbJ8ZXR9GqSsPzhmoV0toou33XnS3dPLV6GIa10XUQm6xDitabNyjNWPsImnmzEnNcJz7eNEvwKQ69UZeZWo1hGBhiAnG+iwSBAKZg1Z1AqkoMgRiiPxf4qofV9RNWcW9ImV7c/SbXo0XzEE5rQrVGF/dFdWurZd8It6j727qt2/os1pt6AejiWNZGotHbKuj8ZR2Kg9dehVZd3wkb13eZTqGN0cMFdbVkmtUb0Sysd9zBKa665qksGFelYd1D60QDl3PlanGiaVJIIRIkURfjcDgwTwd6a2hIaAg08+TYmNw1YtJIWb05ORlBu8PVQgM1NAZCiHhOst89X13tubq6uqGe9h6AiKni3uqKxIVuMxe7wt/72Qf82M98jIeHPce50OvasLXKtk/c14WtFULvpC7c35zy9vvP8+zpHc6GLXdPz7BWaH2mi/Cxh5e8/2c/ws9/9GV0E3jL2+5x935k3BY2Z53zu5Fnnh157oWRt7z1hLv3EjEpaRxpGnl6teNyt3PK78p8STH5oeOiTgV6Lyzz5Lk7Gp3OqtcAslV7ZB4SCC6k7qw5S+bi1dYa8zS7TVjcdi5AK5WyOJa+r6sYj0+4JhP3m/Wfr4eg1UKtC2Z9neL4+VZLobW6CnDdqlzrAlZROmKuf8lRGJISA2hUNMi6cuqkKGtI4YqwrwVrDcFIQclBycFtwXr9/a8bdSBqYEgDQZReK/SOmBFVGWMkqxINhhD894iO0lExNBizNI59YbaFpp0undYroTcGFTbxTX1/c1uvY1mt/K//1e94vQ/jtt7g9aZ+hXGXjdwwTnp3V8+rkxS7gXnZJ05YVh1K704cRdT36yE660Oc8dBWK6vgwC3nrOAuDfHGppqwq43zXtjkDYslLuaFi2lG2JCSgBjz1Lm6PHJ59RgojCdbcl5Fmb2x2SYMYVkmUszcuXvGeJLoVgki1F48mVcD3aA2WYMQlf3lgYunO2idIQ4+JWiQQybGAFZuyKZLaTy9ED76YOYXPrbjSakgETWllgosvO3ZyAsnI7902SA2XriTeOFO5N4ZPIid3QJnn/cOfvYXfpHHj54g4ZSrfeEf/txLJB5z5+xLeMsXPovJjpc++oh9USQObIbEOApn5xtEYJkqUw08vCw82a2TgSxE3FXi19RGkgixgbq9uJqH/6U4uO7EHGfvjYY3JjG6jfuaI9LAWTkxIqo06/TWqYuDz3LOlKmyzDOsMSHu7nJSb2sLpSxst1v/PilgptQ1adrD/ZxQW4o3yq01Dgcn3IYgawOqRIVafAWVcyLExFIbx1qp64QoqDBukiugTFiuJxsbnxAOKXkyd/NIhiQwAAug0ad8Udc8nlKYp4lOJUpgCP4WeyWakdfGxfdeQqMjKlQr1F4pvTnsTTz1OIXAoIFym2h8W7+KkieX/MS88DVDfr0P5bbeoPWmblBWfqyD16xj9uodNHAz5nbC7KvMCB//N7eJXl/SbkBvfqfM9a5+/TvrjtCXuGb3YA5iW4MEp/nI+XYkxsBu2XNx2FFroFVovTMdClcXE6VUNlshhEzvmd4LQw7kHFjKTDc4O99ycrah9plulRQytTUgeOifs9HpTZmuCtNVRWogxAQqr66sxDNaunkTNM2NaW/U0qmi7EtmdygM8egMDBkYB+NfeOcLvOv+Fv3AK9QIb392w1AODPuJ+2psN4G0yZxuBuTuiFnlyeXMxcXCMs285fk7/Ktf/xV8wbs+n/PzU5buq6NNNhoLJkYjsruE/dPC1VSQeML2ZEBkpi8z9Ozpw2lACejiuUHuqIoc9g1BGfLAVPbU7pj769XJUn0tcQ08A19RIIKuE5FWK3VZPCgxuJYJjHmebwSpqk6GbbVg1okxUktdGTZhhf6tk4WYyUNC1KjVMAvU6qC9nCNI8JVKb6vlWInRUPGE5KM16BXBG83t4GLl3hXrDhQM0X/+Qd2ajOAJwyuaP/SO4dZ2DHqtLPPimpnV8RYMqBXpnRyEME+uU4mKBWFpa16RRAwP00wxchIzGYf9EZTpNizwtn4VVT/+En/4f/f7+f/94H/zeh/Kbb1B603doHTra1Dgmq2zsk38erSucsSnJtKvA9LWFNjud+MpONMirMFyvXvDEeKKxTcPi+N6PdQVFVgfzi8CGLsyMdSJpIlSGpe7mePUSBmWYhyPTg7dbgZSMtpSqOZ31pITnYqEytm9Dad3N5gutDaThwjqVtAY4wppT46wPxZ2uz3dhJw33mTQICgaHE3eulNXywK7y8Z0aLSekHVCVE0JrRGlUZdCT508BM5PBu6PnUeLcLmH+XJGJVIk82Ra2L/ys5gd+dJ3PMfDxzs+/tEnXNaZear8zM8+4svevuPXf8kLvPXtJ1Rbp1n9yHHecZhmuiWWVri8mrm4nJmWRvMrKlKK6xxiJKaEWWep7rYJq/h0Oh5opROyUqbGXMpNQJ6JC4yv3++9u+DWHCPfzSi1MZfmZpbamaaFpANj3tCmeWXirBk2YW1waqMsC7UsRFU2ORLyQO+VWgtRncETxJgp1NY4OcnkFAnq66kgSi8dCa+SjkupCEbEtUc5KEMUeiu0anR8KmOGT/mCEgWwNScKSCIkVUrvzNbdTGzr74iApoDiTqPWGoYTebcxshkDmiKSAk1haQshBtKadYT6hDGHSI6ZcdgSc+ZYFvir/9x/7W/rtm7r10i9qRuU1jtVPHvkOl4+0NEgqw4B3G7ZVwy5TxIabb2TdvePur7Q10W+w+FaqnKtWXHia0foYOIUT9Z1T+9c0onzkftZwZQnTzuPLyOmhcPxCJbZjMoQAlIFoRCygSZaX1A6m7PIsI1IPtKkIrkhcSWWBmdgiCm0yHS5sL840sJME8FauJkSheiws9Y6BUfAX14Wpl2kSaRZ4CQPDLmgTellQy2Bqo1q8HgJXLXA21485TmNzAx8aH/FvhhTazx6emCRiS956ynPhcrHHu/YXy0cZCFr5KWPP+VnPvBR3v55z/DcM6dEW1iWRi1bchxpcqTuC8u0Yz4ckdbJGeZu9OZJwjEIrc0U60y9UFeke58Lde5ENTQJU1ucmSKuKhJ11H1KgWbQewWr9O60YD8HoBpUhc2YSYJrPFpjmxNjUKp1jrXS1S3KmOch9boQszKGQKKyiZmQRqbZ3VQRRYKhWahijFkZY6AXD40Mmmk6Ym2mFUOk+fnZO1mMqMZ2iIgK+7nRxQW4GxvptRPWzKFBAzEHelCmeaavgtjWC6VVtAnR3DrdA9QArXmDhkHanvB5L9zjfoB094RhO5LGRBwCpu6MCighRZo5lG1pFTQwxJEoih72r9ev/m19jtTwi4/4DX/vf8OPffWfeb0P5bbegPWmblB663RRFxXaq6FmcJ2do68yKoybBgV1N06IehOgZquuwQPZ/NZbWC3K14/5CTt3B3TZzduCceiVrXqC8OXUeeViJkjFemPMkDRArzQzYlJiVid/BmV7siWORlBb3Z+66msUJdC6B8L1Khz3B3aXR+rSkRGwRqs+TVIVD8QTI2iitMju6sjF0yMxjqCB6VBJKtw93fCoLdRSWFr1XJc40olcXM3c2Zzz1rc+z6UFfvqXHvDK7ort9ow755EXt4l3vHXLK/OOX9hdcIyKhYzKwLSDf/wLD/m5D7zM5ivfwdnZKaozorMPtVToFJCZzca4fz+S5s7jC282QsrkpJRaOM4F6+0mP6mUQm+QoluFl6V5iGI3ql2LpF3YrKvFOIjSMKw1F4u2xnCSONkKJ9uI9kpf/OI/JJCuLK1D8cC8rh3NfWXurOGBvVMMolaf9GhiP+0pS0WDa5VSgCSg60pRRIgpMuiGnBNlnlnKgrUGZow5YmIMMWCi5Gg0lByVcbOhl+oW8u50Y1+V1Vcnidahday7bqV3P89VoNc1/6kBwQibwNve8SLvuLMl3b1PSsGBeNHt89YLfZ4wjKlUro5HyjRh1RDzUEObp38+v+i39Tlb9Rd+kf7n3w1f/XofyW29EevN3aCszYE3J4Zd2zm5oT/QV60I7dVgs6Ar3E1Xy3Dvqz7lVZulXOsXPoGZcv1+60Zbc0+utYXNfCd/iGuDUhsPd5VT7ZxkIeWAdKOLQVAkKV0MTcr2dMuwGTCbEdZ/j7l2QntEegIy3eCwP7K/2FOmQgqZXju9Ncx8leMaGkE0UKuy2y1cPDmylM7JqVCbcTguJBHun215aersZoeDte5RALUIDx8dKCeBebxiHzOXVXh4WLjLjs9/5owvfjZyLAd+6mOXfGSaaHEDGtEwYF158vjAP/75V3jm7jnv+PznycOGqH7BDxFSMk7PEhKFzdFITyamY2fG3SmqECPo0kkpEIhUa5QQCLi93DN4lBQSRTtBvTHptRM0uMBVgBW2V+eC9k7A2ObISQ6c5oA1nxxJ9wmGiltyt6KuYxGlpowE55qU2jyTCaXUjpYOqItmWyN0F8MOKmgz7NpSDJResb4QY8CC0qph4oGPw2aDxYCKUXtniAqq5CiMWehilA5KoFpnMW88EP/Za4UogSh2jYbzVVc36rxQi1ERplCZmIhD586dgaaNtswstdDMGSdWF9I8+Tq0GXY8MlgHU3I9kgSklX8ev+a3dVu39Wu03tQNynVQoHcIjYBdR+14swHOxVjFfCqyJv/qTT6JfUJjct2cqOrKP7luTl4VA143RY5Ed80KgEiii3AonTDC3gIPj3BfYTwNqAV6LYQUIAeaVIIam+3AyekGpGMWPMiQFb7SFTRhLdJ7YDrOXF7OzMe2AuOUZWoguIYg+O1960opxv5y4tGjA2XpbMYtS4GreWa3nwkWubNNnG8z0hNTTMztSOvG1aEQWuXR5Y7l4RMeF+PDD47sSiTPLgC9mgM/9/ApP/fSgalFsjnPIyRDfTfGKw+e8I9+7ueJGd7x+W9BQ8JavQl0PD07YXPaGPZHWgss08g0RVoXSp0xOikqGiLNFMo6WQqRvvJDVJQogRwicYyUlRobVdGYKLM7ga6NQJuYOM2Z05zJEqEKvUKZO2VeqLEzJBeZDiH5ykiVph0LnVoaEQFz6IghlFI9TTgN9NA9QycEtsmJrt1wJxbQ1pA/tYhYQzGGFNlutgiKZEOlUZoRDESVLJCkoCNIzvRmHOa6np8J6Q7vCxhDGpzh0psLps2otdKWSiDRA4g2lnLk8uohxxOjN6OUwrIsALRWETNk6WjvDCIwF2LOSBBar6g1wic0/bd1W59uPfen/j5f+C/++/z87/p/vN6HcltvsHpNHJTv+77v4+u+7us4Ozvj+eef53f+zt/JBz7wgU/6nGmaeO9738szzzzD6ekp73nPe3j55Zc/6XM+/OEP823f9m1st1uef/55/sP/8D/03fhrLBO5pnJTaqNUtw231j9pBWPrC32MkRyTQ9MkENY1jjt9dAVnXSflXjt/HEfuT9U1cMuhWq9OUiBIJMZMs87UjF0THuwKT/YwFQeIWbNVK9Np0sinI2d3t2i8dhwlVBOm0ZuMJtQeWYqwv6o8fnjgsGuYZVqLHOdOt4TqBtFMRzmWzn5uPHm68PjJxPFoaNiShlOmxXh6tTDPHe3GaVTOxszZ2Rl37t7l3jP3SMOGR5cTr+w7H3yw5xceFj7wC0/5pY9ecpgE0zOe7IUf+/kj7/9I5TCPpDYy9shpyAzRSKkyZOV43PHhX/olfuljH+Fqt2OeGrWCdc8lGodTTrcnnJ8knr9/yjs/71k+74U73Ls7stkExjExjgkB6rI4UG0plO7cGUyQjpNVzSdjQQJJ1bUa5pM060YUZZMSp+PA6ZBJpkw74/LJzO6ycHVZePLkyINHO15+dMHl1UQrkIiMIbPRwCDKaUzcGwfujJkcwFplOU60pTiJVZSk/n8xfOXSGn2pK4a3E8UJNkMMbHJmzImTcSBaJwLbFDnfjpxvM+ebxLNnI3c2yv2zwDN3B043kU32CU2WNXmquuYIfP3UWsNUVmYP5BDIKmQRTlJkE5Vlf8n+4hH96ceQ3cvk6Qnbcslp2bNdDmhf0JV7ElpBS0HLAhSMBTc1vzlfO27rjVP9cOCLv+vH+ZK/+bspdtv03tar9ZomKD/8wz/Me9/7Xr7u676OWivf8z3fwzd90zfxMz/zM5ycnADwH/wH/wF/6S/9Jf7Mn/kz3Llzh+/8zu/k27/92/nbf/tvA+4g+LZv+zZefPFFfuRHfoSPf/zj/O7f/btJKfHH/tgfe00H/4lgrk+Es4n4esQHK9dwreBvQUmiDrRa7/Rv2LKfwEq5eSxfuqyEUH9ch5y/2vwgEEXJMWKtUK1xrPBwt/Akb3mmK1NrxOgXj0ple+eEe8/eIwZjOhyxLrQuVIwgvpGqrROarxMOlzMXT3YgkHKi1o5ZY7MZ8XTmztwaU2lMc+dwWbGWGc8yOQ6U7jlB06IgmRRgm4QhKofqXIyz7RbpnSf7I09bZ5LMNt+lBWhtZjkcuMyJi4uF3aK0OJKi32WDkuiMURmyEBDq0jkeKw8fPeIjH/0Y55st25OMSKDWTKtOQI1h4O5JZAyKyA4LTlSdJqW3zm4/UWqhd+eg9tIQiS5sLc2blNaYykyIkc0wMpdKqZ5kHSUgKCkIm5yIdJbdgbl0jEoITnYtTVhq47DsMDljaxkNkRg8LiCGlQYM1N5Qc5uuNdcLYZ3D8UC3jqToq7zVOVZKcQGzKkIjqU9NujWOxz3WKjkE1DrbIROHwFQrQSPnw4gxkbLRTYjijfZ4aFwuB2oHS5mDCXWaaXOltIUgiaCBIQ9kjS5U7pXzlHk2bxma0PZHCDNJPbk7mniz3zolZiw6cbZWqL2AVVBBrGOv4fbmjfbacVtvsOqNL/iOn+Jf+ov/Ju991w/x756/8nof0W29AUrsl2NXX0M9ePCA559/nh/+4R/mt/yW38LFxQXPPfccP/iDP8i//q//6wD87M/+LF/+5V/O+973Pr7+67+ev/yX/zK/43f8Dj72sY/xwgsvAPD93//9/OE//Id58OABOf8vQ3suLy+5c+cOX/r577xWsd6EAwrekMQYb0IA40oljWteTxbcpglUEbe38mqD0rsLZkHW4DVuJitL92C6WqtDw8Ubn6iBbYj0XmjJVw93mvKld0/5khcHvuA54fmzRMpKPAk88/Zn2J4PzNOO/dUVfQZ6omfDwop8r0JvkbIo5WrmuDv6REcjHQURUhQsNAidFmBqsNtX2g42cSTmQC2FaVq42s0cuk+BaJVXmvGTDw68dOkhdWGAmDL9sIAG0rN3CRK5evklDk8esEkRySNXRViWQGJP0CNzTSgDd4fKO5/Z8NzpGadpYIiwPRNO7yrPPXuHF+7d58UXn2MYB+a5cdjNaCqM4wyLUpbOxbRnssLlvrDbGYcjPHp0ZCqutbg6VC4vjz4haS58JgYOy8zueCTESBoGprkwr46VWh1+loPw4p0ztlrduaMJCR1Tt+u2KoQkjJvG2XbL2WbkJKmnDhdh0A2blOm9srSZWTvVhDIZKuqE2nn28zAotpJlwxrAF8VF2V2FEAObjWPwD4cDQYSsiRQ65+cjIcHcOzEkNighFU5OI6Ubh70x7eF42Xj8+IoHT3fsNfPwOHNxnCm1MFmlrcTbbRqIzTDzgMNnTja89TTzReeRe7EgaSJpJGgkSaaXTu1GSb7Csm6UeVkF24pZI0gnpsA3/7d/k4uLC87Pz99Urx2/lX+NKOk1HfNt/fOr/+Ej7+OObl7vw7itT6G+98FX8CO//lOH7VUr/BB/4VN63fhVoe4vLi4AuH//PgA/8RM/QSmFb/zGb7z5nC/7si/jHe94B+973/sAeN/73sdXfuVX3rzAAHzzN38zl5eX/IN/8A9+xe8zzzOXl5ef9AYOqwpB12C/cEOJ9eTYfoMmvwa0IdeIe4d6GwIrKv9VjLn+MqHsWs69ukk9NvOLUliTlFNQoDmqHL9wzgYP54Unc2Eu/h1PNoFnnj9le5aobab15mLe1kAaS60c5sY8wfHQubw6crG74vI4MTeYm3EsjdKhtM7SO244EUoRjoeFw2FCgxBzdDpt8fWXu00i0n39sYmRe5uRMfnzMBfjuDSKKMe68PjpEx49eUBpM+M2cnpvAwlfT8VCkgWVDgoxBc5PN9w5PWMcNsSUGMaRFAfmo/H44QWPHj5id3mgLjhIxjw3pzZvEiUYp6eZ+/e3PHfvjLsnJ5xtMiebxJiiU0xTJObgWiNVuohn5YTE6faUlJLn9VhHV1S9qEJQUgxsU2RQYUiBk23izvnA2dnA6Wnm7G7k7l3l+WdG7p07KG1Izh0xa8zLwnGa2R0OPLnccXGxY391oEwLvXR6MdQcT5+CZ/QEhRSVzRjZDIEhC5scyVEQKr3PhFjR2NaAx3WyJ3Bymrlzd0M+SYScMYm0KpS5UeaCtM4Q0wqVc+eWZvG3EDzSCRf+xgh3xpEXT055y9kZd4fMGBNJM0E29J6oTVm6URC373eDWmjzjHYjiZCjr9CGmImfQkPwRn3tuK03dn31X3vv630It/UGqE9bJNt75w/+wT/Ib/pNv4lf9+t+HQAvvfQSOWfu3r37SZ/7wgsv8NJLL918zie+wFz//fXf/Ur1fd/3fXzv937vP/HxIKugFRANSPO7vevsnVcbjlfD/kwFU6HhtkzrvrCB6zWRNz1ch6uZ82qbubPiet7koYKKrONugMUcqOZUMJhpPCgLzx0ix2NA6sLdO5mTZ6DoJfOx0EsghkzYeIMzNcNqok/KfCgca2dqE6W6S0QMWl1QmQkBBg1kHWg1MM+F+VhIdNLQ6LpQqzItldYNDZB6X5OSjY3CW8837OqB+aIxL4rVa8hZQeajA+46LBJ5dKjU2pDaEHPtTW8jm5B45jTzwp0tZ+NIlEpIhTRGRI0cA2MItHnm4smFTxOSoTJTWmFaEtvthiElzBqlF8IILR0hF+pZwKxzuW+0umBSma0RyMytOg7/ev3SjVY9fRm82dSkEGEIyiYIJyEyjBlNiWFjWEgcpgVC4WTTub9RymJMV40eFOvenNRaUJS5VI5zoTTPrjkdBjZjYFkqQiXj+Ta0TrUKIWBAtUYSRW1wXVNbmOuRMAgiwYmvJFLPnOaBuBGKHFkWo86ddmmUuXHcLfRq2GIcSqFKd3Bg8oiG0hdCGEmijLmxSUaWxJ0wcKrCWegMsdOoIMrGMrUvEDu1F8qqOw9Nnc7bKikmTDvNFkRABmUJn15Y4BvhteO23tj1Jf/7n+aL/tPfz4e+4/tf70O5rdexPu0G5b3vfS8//dM/zd/6W3/rM3k8v2L9kT/yR/ju7/7um/cvLy95+9vf/up0hLVZEce/984N7v1mbWMd6eKQNjMUz8jRT4oTedVSbLwKaTNZoXC1uhUXbr63XmPUHT7hrqI1FdaAY2s8PkxcTIGpJ+IQybFT2wJWsB4QicQhgAqbZvRDZzfPzJNRGtQWKXVBCIgkltKwtpAyoIm+0kjnudBaZxiTJ/zWwvHYKaWsKH9AG0QDqagZJ1F48U5i7kZ9MrPUNU3Yn1V6N7S7QLjUCl3QphjuIolJuXuSee48czZC0oUhNE5GONl2UoTtoGyyot1Yjldc2UKIHQ2FhpHGU06GE4aTE0/z7UaShXqshGxIDhSO1D5zKEYsrA4tJ7j6BqWtAumF3oo7toQbF07tnRxgDLDNgZPTRBojGium0YdrUTk/CSjCvDQePz1QaqdbobQGPXlGUDNKcT1MEmPIkJrn8bhEZQ3ta9Wncx0qhvSKSqCZIKbeDPRKDtmTkYvbk7OZQ1Rio7dGa51pWZj3hboY81Shun259YZIJ4oSzJBmaA8MaUNSyGEmR594DOogOg3VoYPa1zN+TVxWnwL5Ka6eXtw9hDBE9d8H71yQYP5L92nUG+G147be2GVl4Uv+m6dwmyf4a7o+rQblO7/zO/mLf/Ev8jf/5t/kbW97283HX3zxRZZl4enTp590J/Tyyy/z4osv3nzOj/3Yj33S410r9a8/55fXMAwMw/BPfFxxhwIrQdVU1ou4fJKe5GZlo+qWzDXWXvVVA/GKR/M/r5TY68bGEL+A1OILIpE1h+XVdZCTNl7NAboW2y698eRYeWUfeLIoSzOsNiKdbVKm3qmt+EVShSSG2kJvM71HaJFeIt0WhE4Q6M2nBCEYpUKTQC2+6tCUCENCNLIsE/NUqKumxjC6VFpY6ahdiH3mPMILJ9Bn4+mhsi/CjNAtYb2g5oF0zpwRwmr1jRFON4lnTyN3T4yTXMgCZ0Pk3nnm9FRIsfsbDWsBbRN9LrTFgwmNQF9gr5mctwzbO+TtSM971I6Eo7BQyZeFEBaGJGxyoM1wKNVJscpN3EGgkxXQQO/BnyvrQGPQwJiEbYbTUTi5O9BVEBmJOrD0iXEY2V0VLvcHLo6V3dFD9qyvtGHtfp50kBCIQTARllYodXEUvyl1qdAbFpxV4g2sX+ybLdCVpVZfUU0wzRXIDCI0dU6OafNGunfqMgFOeNUAy7LQ6wwIOQRGYFONqoHzccuYN6SweJSCgbSGyELMCZNGp3GdUFRNEJU1GUKgu85J1R1x1+d5t45IR2R9zj8N9dob5bXjtt74ZR/4eb71t/9b/Ny/fYcP/tt/8vU+nNt6Heo1NShmxnd913fx5/7cn+OHfuiH+IIv+IJP+vuv+ZqvIaXEX/trf433vOc9AHzgAx/gwx/+MO9+97sBePe7381/8p/8J7zyyis8//zzAPzVv/pXOT8/5yu+4ite08GH1ULpPYpPMzRANSOstmHDnTMd56B0sbUr6fhu6FUXj0PSV9Db+sCtNUd9976mG7+KxL9+u25K/ok/43fOV6Xxsd3ES1eJp4eFOzPkjZDGhEpjP1WqNb+QLQ2WQlAjBGNeGmJCFIeAVasonlMT1gtIp9ItoimScsSAeWnMU3FmhYZVg+OrMLr/awVFa2dolecGId3PnOTIg13l8bFyrN1hX9KodEydzZFCYLvJnG0S904ydwbhPDdOI5zEgfvnp9w7HxiHgsjiTU53oiq9OV7fGqXO1G4sU0Fxd5KmxOZspFhFYyXESoiNECoqC0kd5LYZhN7dXVVaJWZhux3AIqXOtK70VdtSe0eAHOFkiJxthO0YOT8f1qiBRFkKy36itMjLj/c8eLRnfygc5+q5TGKoFYI/eQRR0tohN+u0Uuh95ixlggasFqx1TAI0HBbYBYKw1AqqNBNMAq15VlPeCEOKaFYsGqbmzJXWsFYZhw2kiLWZusyeW6SRbI3WjfNgjGPkdBgYc2CzCaQ8sEyNqyeFxTodoZlSS6MplFX3osh6nihBImYRrN6ACL0xd56LqOdX2Wuw977RXjtu641fVhbs/T/Du/5B5rf/sd/26l8E5b9//18kEQgiDLdi58/Zek0Nynvf+15+8Ad/kL/wF/4CZ2dnN3vfO3fusNlsuHPnDr/39/5evvu7v5v79+9zfn7Od33Xd/Hud7+br//6rwfgm77pm/iKr/gK/p1/59/hj//xP85LL73Ef/Qf/Ue8973vfc13Op40u4YEwjXf3qcbCG3NOenrJKWrrmuY7rAslVUlbCjh/9/evwdNkp/1nejn+V0ys+q99HV6ekajm4UMyJIRBwt5ljWhWBSSsQIbmzBngbCxj9cYGO0Gl6PDwWHAxmvLC9gO45XBDp8DPmtjE0QYCMuYRUZYWlYXsJBWIMGAhKQZzUzPpbvfW1Vl5u/ynD+erOpuIZA0TPd0S/WdqOnuevPNyso3318+9TzfC95mApNVuvmolFqmTBedOC2y8U2B65Q/ep3f7MR9QcwRNuF5fFl46Cjx2NWRu842nNqJ+OhoULJ6Sq/0i0RdZjSb0RhkSilIDcQ2krNxMNoYCaFDXGUoiZoLiCfEgJdAGntWJ5YsHEIgRMsHQkxKqrlQpaAFXIUd39JFpW0Ku11HFzNeFhz3A6OrjDWZR4cPtOI51c05tdNwau45N4/MfaJziS44dptdzuzu0zVYMeICfqqOKjrJsK3wG8dEqZXQVHJecXz4JITM7r7HuYRScA7axrG3NydnTy0jy8WAF2gbD9LiixGVLVDR4cZKGirqPSkXcjWbe0GZzxrOnOnwnRGZfQgcHq24enWFUgkl8PGnFjz55KG50SqEJiCuknNP1Sn9GkeQiAsNeKGWTIhCEz0OR1b79So4coY0+ZQ4CilnnPe42FCBISVSgS4GmnlDaG2EVosVHjWlyTG3Y8hGim66CE2DZKWMA41CbG1UcyomzpxqOHNuh6YtLE4yT/jEQ1dHFieJJna0oYNcSZrQkGh8OwVjTt0hoCJmhheMx+UcOPF41xBDRPLqjl07trhzoGmkXL3Rc+dr77Oi9ejr/yT/y//8o3xBXHDB7zwbh/c5jaKVDxzfA1y+Kfv/jAqUH/kRa7O96lWvuuH5H/uxH+Ov/JW/AsA//sf/GOccX/M1X8MwDLz2ta/ln/2zf7bZ1nvPm9/8Zr7lW76F+++/n52dHb7xG7+R7//+7/+MD96L4qe/T80QqhoXRb1MHZPJ7lvtT9a8PlW02PaIFSuWXmtOoFUrZUr8rVXBmSLEr70sZD0OmkY+n9BNWc/rvYCK5zgLl47h45cTz727sHO6pWnNPK6NnuXxQH8yIj14HKgREqFO4qMGMwctNG0k+EgtloA7Fgs/RCpFE3lMlKQ4MS5KCFO+UDX306BK0pFaTXbadruMfqCm0YqcPc9unJG1IzeOVRnJxbZtcJyZ77E3a+hCZTdkOqkWuuiELkaaFiADFS8eR0Cl4l3ZSG9zVsbB0oi7nQ7vhX65INdM27Tc85y72bnnORwdH5PLATudR/dmUBNDf8DRyUCu0DSeNjTUiSMkIlZsGiN6chb2gCfGhrbt6LqW5AvHiwp95tLjByyXjnufey85tjx6sKIfK/uzltYLvnrjvIhdbTZqs/TgGCJ4T2gDMw8hCJrUujt4xgx9LfSpkka74IJzOG/FcZ7C/dpZw85eZG+/oW0FUSs8NVVKzmh2rI4Lh8dLUhnY3Wvp4h6+KJ2LFgDYNjhR9qJw1/k5+2caVEb6Tpl5z1E55OOXT1ACrpnjfUGSAA3et9RayCWjxUZROVuBGbyfSMcK2NdQt3FR/nRwu60dW3x2YP8n3sXf+4mX8+EfvJ+3/t9/kOeF3Vv22m/v4T8evvwZ29+e7/lb53/rGdvfrcD7xszhf3tzihN4GiOeT4Wu63jTm97Em970pt93m+c///n83M/93Gfy0r/PAdmI53p7e63XjnPd6XCY/Xqp082etcmbLbi65leI8QtqrVSpm+JD1tb5zuHhhuJk8zpcK1DW3Be0EjygnkE9TywKj10dufRUz3wfznYzgjfL8zIUfHKEKlQqVTM+OGZdQx4cy0GhQtN5fFD7dJ2se+QVfPCICnkYqTkRXAdecN74F84FECOqulBBKr6tqAacTPbwVXClcDoKZ9pIN2todudkYNX31DERsrLXtsTObn4+WyBiiAHXzmhbRwgD6AjVVCK5KJQpTXj9g1NHjB2htRt8SkpKsDoZcemQU/NznL/vFLMOvFuheaCMSnCRnVmHEtHlyGIYkSA0riOPheAV50CyoyQhhkjrG3JfCU1r0mQEJLLqC1kTWRv2z5yh29nnNx9+hEtXj5gF6/h4FUKeum/SIZORXpRA5zscnnEcmTVC6DxFbSQHwpiFZSksamHMShot4HIeIi5MkQYOup05Z87tcfZsx/5+w2ymBBGkOMZxMCfaFFicjCyWBQ2FuaoVDyjtvOXUzoxu3prKxmXCbsDNGlyIaIzMxXFXX3hqWJjKyScg4XwhxF3AUUqGWm0c6Cqadfo9EWqpTJcQ4jOqBZVPPyzwtls7tviswove8E7+O/f/5P/4iz/EPTexSPmS93yt+UgB+gvnuPC/vuMZ23f4I18Av3xnFSg3G3d2Fg+CTvTUiQY7/f06dYFMuSwCrpS1ohiTFctEbK02Y6+Th4qaJTms+SlTceL8ZiSk1RQ7awmzkQ5lw7oVmWY+gqkixHEyVh65MvLIE4m9PUc779jbjygZ0cy8CRQKOZtSKHpP7Br6mimrDBLw3m4WZcyU5KiY30fAU1UsPK6Ct/vK5IMriFNEKxIsfwiF1kdUG/q+ErMw9435u3ihbQJd64gxUxT6UChlLRmuqEuMNUEt+Mnzo51FK37UeCdWiBivwc5DJZVsGUbqabo5oQ3kPJJzYVgVcgLPgsceexSZjYgLpHFAawZN5ApVKuLECKCCufzWMOU+W1dF1DFqYTVWVmmgHzN9LvQ145qGvb0ZxMhQB+Z7ymx+loNlz4MfeZTFkGh9Y1L1aCPDWqGoFY8Owbtg6dfVftZejCeUUqGO0OfKIidWGUb1ZBWymElRSRlXzYdmf6fj3Ll9zp7bZf+UYz4PNLEiRalJyMnTJ8dxnzkZMolKEGHISl0k6jDQOTNN8523a7EoyzHRyi47s13zgBl7Zl1gPmvoe8XVimi1EEtnih3FDOYc9lzEumK1VHLNSC3ECE0ntp172h6PW2zxjONF3/kufvXPXuDPhuVN2X/Ryvk/9+FpQd/iVuAOL1AiRSfOiCrmeb4uKa59ajPliXU6BEv7tXGAsU/WoWprCTEiGwdNuNYhmUJ9rr2+WrS9UEGKjYmq+adYECGkiXbrUEYcjxwkHn5CObsjzNtM8JXohLY1T5PDxUgWxdcGzUKhovT4psW51tJ0h4Gaq/nhB0WcJ5WKfQBWc5slI1gmTAjOOCcUNJjqxFdLBFYiw1gIit2QGkEcxNZGQ6K9CU5FoQ20jTmppmr8ER8icdbQdEII9hooOMyTxJoERsi1m2BgLMmykVpLHE6DqZD6IeO80pdjHn7sgPZ04uyZC8xaz/5+pLrM4IVYWhapBy/MZg0uOjQHI0K7jHNKjI6xTwxlZJUGFCFV86YJbWV3VhnISA00Crn2fOjhx/joo4e4yR3YOyAoxRfGohTAVeO2SKNUElKU6CBUR03KkAqrpIxSSV0ljxEtnpIrGgvqKotcCQ72Zi1nz+1x8cIeO3PPfDfQRBtN5lRZrgpHJ8LVY+HqsqdMCp4qsBqV4wz9cmTeOAYGDkelESFqpdCzdx7wHd4X2pgJEuhCZx2WYqNQ5yNZeqp481IRTxUbZUrJaHVTR9ChmkHqVKR5av5D+TxuscUWEyQEFlvLl9+DO7pAWVu9XlPhfBKsyatiYXIgkzwyoNN/5llRrvmmsFb6yMaQjbWxG+txj+BxGwM4cd5Ihjq1yNfCY6n2SVMrqQpXV4lHrq6451RgPlO6meOu8x1t15KdQ8YeKRY+qMUxjAM1w2zWMlYb4Ri/paBa8S6AeEq28ELVde6QbLJf3JQJg0B2dvzBNVCFMZsMVkTp2kBsohUzUlibxAjWlQghEIJjGCo6ZLwTmjawu9cSGqh1tIJtTSIWnQopjKSLQzGpatNGfBDSWEgrx5gULRHxNqYbh8SwqvjzDWfOdvhmSWhPIFZW45JVk4FgYzsRXGscnb4/MTm4gk6dlugblIpTRymKcxERTxpGFkMGhMWqcOmxJ1H1zLsZbXRTh8aylyogxdRhMUY751NXKAaP84EhjRz3PWP1tHste2cbhpXn8OpIxeTkLkATAztd5MzZPU6d3mF3b8ZO52lbcKKUpOQeTg4HDq+uOD4ZSLUijf26llrMyn8U0gBBIicrx9BnGoFZqMi8MuTRCOKqk5mh4FDipA4KzjqDKnVz/TMRyUstlJJwElEczkXzH9RCLVAw07gtttjiGYD3/JeX/syzfRS3He7oAuWaFb0aQ/Y6b/pPlP6KgvPOihO18QCKdSimm5yugwN1ckWZipO1ZLmqudQ6bzdgFWfkU1WchKk4cdPDdBBKRqRQEYYKuRQeOe6572jG6f3A6Ss9Z3Ytxbh6wTUBnyq5KDkrWgPB7eCDJ48DzmV8I0iMZhInEfNPs86J8846H6IodbJON86J1VweP40mxr4wjBWqI0Shm3uaLpArDGNGpRJ8M8maCyE4RKwQ8tlubk1UYlMJwZGzUNXjVGys4wBXKbVMkmBzw/XR080iQSpjgVIiNZtk1olDK1BBy4zg92h2WlSidVt05Iknj2mc4ptISoUxJUKjqBNWq0zfrwDrktWqBBeIXpg3jnkb6dqO3d19LoRKvnxEzQWhYXc+Y3c+Y6iFGM15101GO64KoQiNDzS+te7YdJ0QAvhAP/b0qUKM7J/e4667ZxwfZVbLEXGRcbRirZ133HV2n7vO77O/3zGbRWaziGekFiWtCieHI8cHIyfHA0NKiHd4nVyRayVpYUzVOnq+IWVHP4x4UeqOsiNKJpM1k3JlldT4Mb7QNkIHeCriIfpAzub14qYCvpZsxchEhnU+IjjzZlNLpd52ULbY4pnB9QG1W1zDHV2gqKpZzU83EcvU+WRzceOMoObMZmodt+mW3JCEDLB2p3WW5Hq9Y62six1j5RqxVgAVarE2hTgrUqwYmozhFLI4sjieXGU+cnnF2b2G/Vni9M6Kdi9CCDRtQ0mV1UmiXygx7tK0DT0rolcLnjNWCU5kssAv5lER1s97cHk6FsEF+9O6P3bDyYMy9plSHD4EmlZo50Js1CZl03mYNbNpFLRCXKIWxXkrSJyTSbGTKMW6TE5lajesje+sq1MKlKKoiKlpYoDUm8eLi2hUm55JQqswrgrLRaXWiBKREGnaBseSxdEV+pNM2+3hFMiZLCtC0zCbtVNIZCUlNXMyl9htHc+77xRf+Pn3cdf5ObuzwOmL+zz3xS+g62bU0nCsv8IHPv4OXF3/jNc/R1OLRbEkYSfTSFALwQnZKaucWY3WJWvbhr1T++w2MEpCaqFWhwu7eMmc3p1x4fxZzp7r2JlB7MCFgg6V1BcOLq948oljjg57hlFRscKNMp1a3KQwG4kxoGJeL6sxo6UQuwAxIk7MAbkoFSHnkeArjfNE086jIjRNYwaxAt5HSjbfG3Gm/sq54AiI85NB4dS9C1sOyhZbPBP4Jw/+InBrZNKHdcXhRGdwwH1/CFLxw/nsM3RUnxx3doGCdSzWdvWq1zomwKawsKqjUI2tOm1nFNhaJ4+UtTX+ZP7tRTYmcHZbqOYDoRMBdtIru6lzU3Kd9n9NIWT36GnUM712dY5FgY9cPmGvE3bbOafmjp2aafaUEBxd23AkU+CdA60WKhecgvhNPlDKmWHM5GRdHe/C9P7s2J13uDCRSZ1Zw9dSyQlSn9GieFfxsdC1jnby3wgO6AIiQhcbUMjVkUsljSMpZZw0Fr436/B+ktCqw+YeoKJU1Ezu1KICSlFoxEYkFUoy9ZDzPcGbZX2pFUSoRRmWmSFVyjiyWK7IqxVaC95XQtTJcwQ0Bvo8UoOj7TqcNIxjJmcxCXbuaULl3Cnh3nt22ZsFxnHF0F9lb/cioTU/lDgT+v4YYYYLbuomTB0jdUQfcEAtxiXJNRODZxhH+jT5uogSq9J4z44PLF3C41guBrJzpFLZWxXGvieNCjsNRZXFoiC94+hwyeOPH3L5qRPGEesqRY/qFChptsmkkqn0iO8Y6wotQq8DpWRO+33a2RzvIzllUhGyYqGKToi1InWKfPAemZRgiLPQy2qFpIrfKBZqNR+Zqo6cy+T9sy1QttjimcCe3Jrfpd9OC772H76Bu3/Y1EcSAj//0H99WvsaNPEjf/TFXCNZPPO4swuUSWkjE3+VKQcHrhUnVixMhcy6+HDTp3vVTdDf9RARgnf4iRCrtZq82Dm01qlw0Y3Vt3VdbIxiTxTTFYkC3izOAaeVAmSEq1n40JUVd5+Zcc+FBl2saBmZzyPRN8zaSJk5tFpInfeK88Y3UTy5MnUICj4oMYLzlVrM7t/FiPg6dSWsYCjViLRpUFJKeITQCO280nUOzzoawOF9MHKwZHKtk72+YxyVUqBtPW3TEFxjktPKxpyuakWrbhx4U7FCRIIQoln651QoSa1IqQXnM/hqknEcbdvRNIGxjOQcOFkuSScLvHNcvOc8TezJOZBLAmcqqn7oKScjfV/JefJFUQe14rXgGSmpR2b7iOtYppG6WCFxThs9B4sVKRfmUSejPMjJjN6s2AMj1BRElSiV6ANaKiUrqhERJY2J4+MFp7sd+nEghMr+njDUxNHRkquXj4n+mCacZnd+lpocy6MV6Wjk4OqSp64sGAZFvDdZb1GkFny1LlPCUqy9b3C+se5ULSTMjz+0LbNuF5eDqYqqoLWYHaHzSE5ozrjgERcZhsG4NPG6dGJxm6I6TJJrcdk6cTVPxcnTCwvcYostbj3eP/b89//yDTz3h585afTNxh1doLDmWax9R1BEPJ9YpNhApkw3X3DOU6v9u0zcElQ3BY3zHic68QV1o+ZZy4btddbji4mY6q87LFcnNY+lJkuxm7/UaoofAkscjy0zH3lqwec/9zQ7nSP1JyTX4ppACB4fs8lrvdK4BvENKp4xWYGRi5lXrTsKIpa27CQSo0e8txwZqjVxtDKOhXFQnApN62k7aGaF6EGKmf2ztsEnmGpDE6UotXjQhiYIs64l+EDNoOpt9DWdF72uYKxVycV+Nl3TEKKnlormiiZBq0NwU8YL4KAWj6AgiaqZtp3RdDPyosd5uHDxPFWPuXp1QHslNJ6dZs6Y4bhP5OTQ6iYukeDrjJ0IvgYOnjxmXAhjrhzmnvpkYnevp++V3/rtRynamLw7WGeulEqtgjSmhBKZxopa8MERnVCyIq4xo0Cn5DRy+coB+3uRMAvc9/zTtG3H4dExTz0x0veONpr6a3EycnzYc3j5mLrqWfXKclXBB+tmOEGLWAQC5ndTUGr1hDCb3HWVcRwZkhFwu1lL13Y2Esrgg5tCLadzrWbV78RT1c7Txh15cvk1N2WHVp18gAqhEZrW+F5SdCKPb7HFFrc7fjstrDj5n++c4gTu8ALFuiPOPh2uHWRZj3jWRYX9WdVRp4W5VqEU3ShfiposOHiP8zZntxSXOuWQ2CJ+TcAskwOtsKldBFOgTByXNbdFq1DqROLFOCReHNU5eq08dNDzu0/17O/O6XTA7G0z615Q10Wcy/SjUgVUHSVnhjFRVI0j49ykZjGeTfCexps6I5VKroUhZZargTQWvAZi09LOG9p5xYcBsTeKk0CtbuLXKNUXkEKtoNnRuI6mDcTJTyVlJkKsp6gFC9ZSNz+Hks2XwwchNh4XYBwzJeWJUBGmoi/amZ3GO6Wan4p3mVnbwO4pxoMFi/6YpMLyZOTkeMUwGL9DXMAhNMGjrZJGkzRLHWlDJbrIlcuZxckTzGYLahVWmnDdnD49zu9+7DF++8NPElykcc4ycKZgSe/WSdBr3ZfxnYKT9Y91ItPa2FCrcnS04NKTLV0j7Mwi5y7M2e+U/VY56huqjijKE48f8OgjhyyPR9oGahFUA2HiuYgqpTpT0EwFea323lQ7NFdqToxjpWYIjWM+b2mbDlKi5EJwVhTWKvjiCQreK+oglWKkZieIeHIWUjJzPy/RiLJUnFeTnjfeQg4pk7HhFlts8YfFV/yL/xcf/NZ/9qk3fBo4rCu+9h/eWZ2TNe7oAkVwk7TXrLfXdm1rmLhyPXbw4CIqVjCUUsllsnhTCwD0eJyaWkIFSjVfESauiqpaei2m3hFnrW9g45lf6zpQ0AOKL3XyQwHwRByBac7vHE8sK7/ykSucOv18nn/mAnU4ptaCqo1qdrqOGI7RoAyp0i8S45Ct+PHG7wjSkrNZ0QcXCK7BVXOjdVWR6hgWldVSiD7Qdt4Sj9sOH+2sVYyTYDOWqY9SM6UkK86qFRxd09J4byF5KJmpc+Ks5a9TQaTqyAXSmIxMGyPee6CgmhnrSCXYyKLkyWjOU7JxU8QLTaM0PhNRiDuE2JGODnjq8glXHx9YrhKuiVQNpFUl5xFVO3YbM9nf20bJfeVjH1+QnDKfrYjTFRLmK46GgY9fugqq7LWB3Wi8jKpT12J6b+I9OnXeYgw45y27Rr3FKHhBtNKImZUcPLkiek/fKfux0ES7tmKsrFaZy5cHDq8OHFweQVqKh5or0au951zJFVZT2CG+UtS4Q+JaFMFrQuuIViU4T+eFWWvKM0UpFJwqKTmoEIsjViPlVoFcPZoKPgjOK8Ngo0MfKl4njo8W4zgFj4qnukCVjPfbAmWLLZ4JPO8H3wPfenP2fVjLhnNyp+GOLlBqVbxjUlqso+H92soB4Pdm5SAUqWRRqqtTccJ0gy2gJjtWt7ZitTGBc+ti5TopM0ydhjWBcS1vNqdNYS0cWpNvuWb4Viu1Qg889MQV3vvbjvYL7+O+0zuU4SpabCQhOLpZS9iPXD3MnBydkLMiEvA+WHcGOwfeRZx46z7kjKKkMgXVjRAJzKKnbQKuaXDeW5eomMKn1mrJwwIhODN2y8Y/oZqjqo+CBEt2ZqPsVtCMUvAOvHekNHVKaqFtGmKwfCFT2FiBiCipJNJY0GBGYHlMlvnTRGazObvzOdEHhmL6lbbxdK1jvhNYjitqzbipq4NTcikEL7haoI4EEp1AWQwcHp5wUkZiEFypjLUQ5w0SAqHC3bv75hCrhWHojTczqZFUQfCICNELTQxmVW+HNV2HVuCJs8JLXKHmwsnhwKMPC12rZO05qZnlcuTkeGRYgSPifWuFgBhfaaP+yooU4+gEgTC5HnupeAZcXlFTAekQqcQodG3Ee0cWMxPMuZBSJgahCgTxBDtAnDqGXKdzN5LLxNQSb9e9D9PPXxE108FAoBAouvVB2WKL2xmv+ut/ndkjC+CDz/ahPC3c0QXKNRLsjb4nIJPV/MRLUTNVAyFj44OMUsQ+/QfvLPtEqrnNylRQiE4ZO5NCaOosABu/lHWB4iavlOvDAtcKIMW6LU4cTgXPuoAyy/RlGvnARx9nZ2fObneOHSJlSDQKWoSd+R5u31NZcHy1sloVinpEPD6Yxb6o4L1DVMmT62nKlb7PlARSHDttYDYL+DagYTLkSnUzorBzptek0yLU0bZxOELrkEbJLqM5gzqiGvnGfGLWoYVCncZgPnia1uGDnYuclZwUcLgp78X7hhgjtWZKrsQm0HaRtp0xm+2Qi3JyckI/9MzmLRdiBBkZa+JkuTC5bdfQuTm1wKrPrIYVykgXPLsS8dHjZnPm0uIdaM6sVAnRI9Exr0KpAuLop0I0hEiMFuxn3R+7BoKzxOK1e3EIEEPEYxk6wTlUCsknanHoKAyrgTI6ilaWNVFKINDgG4eq35SvwUPwSvRWrDRe2alKjIGu9bipgxKCw7vCUAvDEnCB6jJN1zCftXgnZCpKJdVEyglcxbKEPF4arPCKCBHvM+KqFerT+y+aEImINCiFECJN8ASElAtjyTfpN3uLLT63oMPAn37dN/Dz//HfPGP7HDSx84HHyR996Bnb563GHV2glFKo/toNcu0Eu3Z6XftwiJinhX16L+RqBvLqhCBMn4aZ+AYT8W/yO2EKC1TEHFav48uuxVUiYsRa5zbHUCf+glhls77f48TKnLA+Th9QmXM4rnj/R57irv3IH3vOLsqS1Wrg+KTnbN5j7pXZDE6diiCBxRDpi+metSp2vyyWx4N5jqyGzNhXvETaNtK1jiaagVqhUooRaMNUTIiHGM0N1yTTzvL+KvjWE1tBQyZrMpJotc6UjclMqp1KIWdHqR7nHbGNNK0DyUb2LAJ16va4Sts4vNslREcpI94r0UNVGxOJCwxDoh/76YwLYz+S+kRwgaaJDEnM+VSF5cnAwZUTFicrmuiZd4E9dcTG0+LopeAoaG0osSW2nkxhubKR0agyqVoSIQR8sOIkWAsNUbVfmlpw02grBmHW2LnoxNN4G4EMWKpxnLXmDFxhzI7oG3L2JBFKEWo1SXnNJgNuGyUEJUSldY6GyHzWsjPv0FoI4ui6gJC5eiXSDz1Hg1ridNPStd5M8KqleFfLYyDlAWpBq+DXLrxVabuOpk04r+SxUvK6tC6IeqpEovM0IeAppmSbRpBbbLHFMwN/9ZgPjCv+WDP7Q+3n4/mEj+cZf+v/8TfwH/21Z+jonh3c0QUKWHFQJptuKxCMd+JwyNqPBKFqIZVCSiOpFmowl9gYLOiOaq3wUurknWIt7rUvit0cp/HN1FK5oVsyOQGuOynr54N3ZqQ13cCLODyOqiaF1WLKIxc6Hj9J/PpHnuD8qRlnnDe56kI4OIqE3RbNZkcfznV0g+epgxXjONoxTZ2TVCw3JeVMKhUfI40L1sGQTKngqiBe8KLm2orZy+MtU0hEKKmaW2ip+BBouwBRGWsygzKqcYCwQk6rQIGclTFnoBLaQDtrcMG6MFKMAOudwwWHSCE2DRAoZaTWjPeQc2IYMkMyaaxzMJ/v0ERHvzjk6lNPcvmp0bw9Rjg4OGY5HlIkUAaoSTi1c5r5LLLvK6dKxZdKUCU4xYszw7smUqSwGEekjqAZJ9B6UGdEYD+F83mp1DrSBM+8DQhWTKCFEJTWWaHXOkeUjIjQBk/KiRgGRBPqhCgV9YG+JLI3Hg++GDlajAcy6zxNA00b2ekiOzGyN98jhMA4DsTo2Zk3SEm4MfHxZiQkI/PuzjpmTSAGwTtF68QJckKqFj0QszILk7eJFJrYEEKllJF13JSPfhoPVYRM20SiBy2JMpr8+Ppcqi222OIPh/zRh/j2r/9mvvSf/Rqv3vsAr5p9Zhyvx/IJb7pyPz/zb/8Uz/lf3oHnzi5O4LOgQLm+SPDeTwWGfU2m1sVaTjyWwlgnF0wmnxM1KamoKWSMV+EmRRATcXSSIW+YJGxqFq2VOo011liPndYhhOu05LVDrbVkLCdHxciYFUdR4ZHLPQ9fXjK7u0O9cjKOPH5lQeiE6C3gzwchaSbGwezci71+UWVMZpFf0iSbjpVEbxLr1rJ0fKi4RlBnHQ3JgDOFjY25LIE4DYpGR+g8voVCti5T9Rs5calrpRKUSYHixCzUQwM+GklD6yRZpU5qKQEJhCaSSpm6FtmUQ8W8VqoKOGeWHFgnKsZADA1eMnhh7ltKhTBkfJwR2MHVQHRQ8gI/HuHqSBRBgyLeSK/BCSX2jCUTfWLeCrV4hqLsRFO0mNW90jRCLSMiA/N2xm5nnbHgphFhgOAKHiF68FInwrKHxuGjUsuIYplJ6hzZWwq1KcLE5MDV4YPQdp7QOJrWOkCz4Ok6bwqsWggBGpegFDwF5zLBO9omcGanY954CzCcivCa7fofFPo+4xS6puJdJkQP4ik1k1KhFLv2vYdULKrB+0jTRkIwsniMSlIrYrfY4nbB8i+8kueEXwGaT7nt7Qp5x//Fr77c85/+xt8g/rkn+f+85H/7lB2VopUv+7++lic+co4XP/BunsOnT4h96q+8Anh6Rm23And0gaK12phncoJddy42ECtcci2MU35JpYBAECGKWcPXKYPETZ0Ru0EDWIt8Ix2eLOtFjPOh6EYKui5Q1gXTJjm5mkwTYdNlAbWcH5FrDp0YafYkOR568oh7zgidqyyTUg9XBOc4uz/He4f6Ea0jbVdwNKz6Qi423lkfk8d8NHyA4jKh9XS7HXMvOEaIijqlFrEcIFHwIyoZyIgEU6oE8J1DfaaOGY/HE6kUCsWceIuNMkqVjUS56ZTYiHVPisnBa82Tw63JZZ3YQlK1B8mIg5wqmqFkZXGyYhwTSiSlRC2Jrg2cPbdHPwjH/ZLoHN3uHmeqx4cZeeVZHK7I/RLHkt2ZsqeeOAhDrgRn/jY+wML1MGaCwkwaNHkoGfGKDx4/FSg+gFLYnbfszhuaKBOPA6J3NEGm4skTm4gIRHHEXIjR4aOQS51USjYOBLOKd04oJdIveqJ6mqaZOhhCaCLeV9qgiEsUMk0DXSd4V8lDwXsIoYJmGtew0wSikw23KjYBUiZn5bjPHB+vaLqWPie6NhkZurhNgS4yXftixFnxlRASIcbJ56aiUqwrKFuS7Ba3D77gu36DL2nv3OLkepz/5++Efw5f+93fyeqeP/j3TKrwed/2Lk7xoc/4dX7qe34QePpW9zcbd3SBYrb2k0+J6GQqtU4dNjlwVmUs1cY6Uyigd47oHGHKzKnXdWF0Ipy6yQOl1msqHPNFmciwk6hZWBcluilkNnXItVbOZv8VJWkF8biNLPnayKivjo8+echz7go8byfQuEqvnssHI04Du3OQkFDNzNpAFyK1mgGbqMeLM25NCDSN4LoKTaSZN8znDS1AKRBMIK0iOG8+G4Vo3Zxaca4SmkBsHRrqxPEoOKIFI4qiUihayVrNil0tf8g7hw9KaIy/U4vd76Qo4q0QtOC6STGVEn46J2M2DkRJwrAcyMMIwTGsekpd0Mwd3cyxsxNY5Wojp1JQGsZxxdHhiuXhgi4I+3PH2VnHfs44qfisRCe0bcRHwVcYI6QG0uiJ1RHFkWWkaQPB23ipaiLMGi6c2aVr4jTWEYRKG4XgLLemnbWTU66lBfthxLuKC0IuAIFaBTx4LzixAiP1sKhKFxyxDaQ84oMnNEZqjSGQcyVIRaIQG0FLodYRL9AECJLZnc3Z6SIy8bFchEY9fmXk46NV4rjvOd+1ltAslSqJQJwmmFNXbzL28+JxQTfjoloLuWTGOpDVbzyAtthii5uD+954Z8qDnync0QWKV1DnqZPU0wqTqYuijgqMqoy1IgUCHu8dIXi7+Yi5eTIpe0y84Ez7UAsWyuYoquYOO5U9pZSNdHmjIqpGRpRNp2TyTxFr4RtHRtBgNvWo5frgogXPFbPHzxJ4clV48LGB0887x5mm4oKj18LBMgGWIIwPtLMZ+ERqM+Ogk926BxyxVnwAaQQ/C8TO4YJJj41EHHBTt8VRECLUBi3W+o+N0LSCOmWVMrVCqTb2ctRNYKK4BNm+37uIOhsByCTBdc5DMTMx+55gXSuXcb5HsxCSFYV5suIfBsfQV8aTkbRc0ewEtGRK7oGWEDy5JkpOjClzcDiwGjypCsvlkpkXLuyf5XTbsFNH5iVbarVU2uCI3lQ3rXqyX5G6zLK3DJ2d4Gm8p+kcTWxwzpNzZm9vhzOnTtmYr2acNwWPdVdGfHDMO4+qSdVFgdb4LuI80U38JSdkKTjaSdFVkeJwsSXumHJHtRAbJcaMEJDiKUVookOCyY0r4HXA18BOiJzf91y8cJZZa74mtILEbPwZX6k5c9xnklRc6/CxAZfNK0eEnCtlTFPnJRKIk8sNBOdwzorSgppMPyu6TTPeYos7Flfe/Ee5L7zn2T6MPxB3dIHisBTXimy6GaZGMV+PkrN5gmDurcF7s5D3Mtl0m9LGTb4lpRqPQ9d8E72+T2KOrdRr6cbARsrjvNtY4q8LlFKN+DhZWuCcN+8SnUYjE4F3feMSBKeOUhoeeWrkt/WIz7+wy93dDrGpDHnJcijmeivrjoQyn3X048req8uQwKsRUX0MxNas272ztGEFy8rJhVqqpdnakAlQQgw0rT2GcaCmgrgAOGqpdvzFOjBS7JiNW6OID+bDEczyvahnXEEqmA8Hak63LuClMuaCFk9F6PvMclFZ9ZCTkpLl6XTeMZ/vcHKyxEs0IzPnaZqWgsO7ytj35AqnduacO7XDmZ05M62EVaIm88jxzhFCsJ8LihfrIKk6oijzRnDRM29b2tYxm8+ASqXhzKkZMagFBU4ScucDODPLizGYQ/BkdqfFooddDITQTK66xcZvaj/rGAKqI7hKaBqaJoImQo000RGiFXQFT6iOYEYoiDiTleeWWDz7nRD358znO6z6wvFiJM46QoDMiMRMDQP9aiAidG1DNzcCsIg52qpal8yJ0DYdIQRyMSm5C96qaV/NC6VO10Lajni2ePbx8b/53/DDf+2f8yfaE+APp4D5XMGln/lC3vnyf0WU23skdmcXKKKbEDSLxbWRgkyhdXlMlFo3OSMhBLx3mwKlTJwV78yHQpzCZLMuTJb5eq0Ycc6yUYRrz61t7ateU+6suyoWnifTDe06r5TJFwW99n3OG0E34EjVc7DMfHg4ZrfCXtvSnG8QiTaq0ohQGFYrQheYzefs5IxKT1OrcT6Ss/MSplGWViQbKVOn7odW8wNDTT0ial4YMba0bWtdIirBZcYqBPHWEUl2Xqo6nDaEyYI9+IqEQojBxjjZURJo8bjQoCFTi9I4h/cNJa1IuZLwDElZ9LDoPYulKYNi27FOL+rajrGfkcfKOGSTxq4SuXrOnplzat8zphG0MPOKSwNNMMv/XEx2HUMk+EgaV6YacjbGozgaMHKqd7RRaLtA28EwrpjvOvb3IQ8rqljBW6sQXKCKx4U5zgtpGDdSdZOeW1FqE0SToYsqNSUqFQ1QdKBGh3cN4iK1FnwwE721SKZi59Q3DjyU7EhJSX0DeKKrHA0jTywzl13m8PSMqvucP+doEIKfIgvGROcDs6Zh1gRUs3npOGc/H2dFto9QdGSk4kJFukDxBfWZUjJOWqILOEk3/5d8iy1+H/j9fR7/7/8Yv/bAP6GVyM0uTp4oy5u6/1uF3/6Xf4IPveJfTF5Itzfu6ALFi7m/Tk73pqbxVjjknMnTp11EzNlTZCLSXnOGdTqZk02Fh32qdhs1yRo6qXFkMnxbw/gjmKJHr23vnFmLiwg+2J2m1krKCT95piBCznmzH1WlloGCQ5pAdg6C0ARlHBd4HxiyZyienbbD58KYzbNkPm/BW8psVaEMnjFD9QVhCueTAN6zzhVyYl2WGALqMtUpzgVi9DDxSdrYQIWyGixkzgm4dVKxnXg3WcGHoLh2wPkRNBj/BCNqSvBUzVQEFWEsleWQyLnSJwvIW+WAho4iBZGRZt6SauXo+Ig0OkJoiRGyr4TgyCmzXA54P2N3PsO7OeOwwOeRORWfBsblgFTTzsqUb6OlmJstBUpAsxBVmM08TRsRVZoYSMNASSvmzR6UjJYy+ZkIWoxUWibSdKlMhnZCEQjBW2CjOCNhixXNwQk12zhLa6ZIIs6ncY8TNAnBWyyAd5ZSPJaBNgZLG3aVkpQxFY76zDIrg88cLUYevZxYrnpO783oV4kvLGdpZ47UCzo65r5hvwk0oniqSbh9gwPatmF/35NSplZlNQwWcyCCi0J1hVKT/U5lB8UTrmnattjilqK86v/G//4T/1/g7TAFV9xs/A/3fy3UR2/Ja91MSLDR852AO7pAaYJjtKbHRJadHDBLsTa+qmXsyBQzPxUotZrqBK4VHlZ0uE2RgghFdFN4VCpaCq6a2Zpc91BVdNp2jeuLFXvieiXQJD2e/nSbMDrz25Co4Ap7c8/Fe+acPW/2/IpjXGQOlgPzncC8aynDkmU/MJt3NLFBpJrp2SwyZhhqJhcjo0YqToRRs1nNK7QxEoMjYzfp0ERiCBZCKM4CiUIgN2XybcmT064VPVSxeIGgBGeuqjhMspoEsql2pGaoCXENWQtDzqxKxTcR7wIeJYaWPAR8HvGuEOeOsWTqqlJGs5gPPuAFQoD5vKUfKwfHRxweHrI3nyEl01LxXUPpR9JiQVBP03hTLWmiiRaWV5yYRFohOPM/6YLD+xkijn4Y2Jnv04Zd0jiYMZt6clZQZ7wdLSa3FaWJLQKkNEyFsMl8/WQaOAwJnCNGb4VOqIjzhNaKJKfgg3nwxMbs8jVXnK/mUePWHCfICFc1c5xXzM/tcGH3NE8uL3N8uKAeZx59csDrIbOoSBAYHbsxsN8FgktoNWdZ5wOiBeeh22loiieXgu9Al8aHEWdcJcWk4ZqVMo5o3Y54tngW4Dz/+7/5l8Ctu8l+1+MvR4fhlr3ezYJ/8R/hvnuuPNuH8Wnjji5QutaxGitkRdVCACs255dJsWN+FM4SisVuuiJ1Y7+2EdzY1ML+PrmjOrFP+wKImuLmE38l1oXI9Tb39bqxkuiU7quKE2hCsMJkPerZWKisnWWF4IRA4vzunHOnPc1OjxczkhtWsEyFg1WPb4XYRlKqjD1UjbStcvpUh48NQ1YW/cBqlcgDyOSH4ZwpbRyK94pQcFWhmFqjDUIT3GTX4ogu4pzRj0sqpGVPLQnvCjhnVu8xTNk+mVyVNFZKMpUUopQ6glhCdK6VIWWqeE6fOUM32+XgMHPlcGR1NOJq5cyZGafOz/BtpIyV1bCExqPMCBGaqLSdZ3d3RhVYnPTG/6jGkcljgmEkZ5MNS/SmagkW5Bi8hUwWdeSopqoJCi4TGhgHC2zcme9Rq3UWBCFnK9RC8NM4UQArANd/t6Tj9YimItNor2rC4ane40OgTjJlh3kZVBlRV2xE5KeoBKeEZp0vZTM5p55clUVVUnTsnZozyy37c8/d53fpfEOq8KFHrtJQOXd6hxgcc+fYax1tKDgp4N10vU2+NFgR5EXZac1grx/6KRDcI+psdOdM/eP81up+i1uPx77tlcCv3tLX/LX/6YtxT733lr7mzcBHv/YiH3zZzUlNvhm4swuUGPFppNZCVUctJnu1ZOLJgn4qUq7xQqwsqbXaJ2Kxoc3GRA0mzsBERpz2IXhqTlw/3mGz/TUuCbCRM8vks+Kc2fKvuStrMirTMYrYSMp7y2VxWei84+7dOafnAdeMtJKQap4lGeF4zHTVc2bXQuaWi2oGc5qhKvO5p3NCHIQYhbwqpFVmSJXgA8FPyphS7WaFQBEkFaobUMn4YFbzIQScj0hw5DHR1xHnzTwMIMZIDB2lCKt6wph7SlVcaAi+UnVESRBsNFLGQi0QXOTMmTPsnzvHqFd44nDJWJdoTJy/9272znXENrDse46OD4mnO7xvqR5ERoKv7Ox0uOhxPtCvCtRKdN6KwjJlMQUI0Wz8u85GXAHB5UD2SnaKjx5pjAha3ZJVyuALWRNlMB8R1cowDDgPXoRMtgJMdbL6V0pJVrh4K4SrFpz4afSWcMFRQ55GgDYSkmyKtCzjRDT2iPPriwkfxbJ/ZCpsK6Qh0Q+ZZt5xZmdOfzxwcVe45/wZal959KkTnlos2O1m7KrAONJFmLdC9AVhxPvWcoawMWQ1jQ5MXbiZBLRaYrPWQLVGEd4PSANx20HZ4lnAT/5PP4SX+bN9GFvcAtzRBUoMASGhdXJjnbw6xAWYOhjOOdz0KdUKCeOcTKHDZs428UoEocpkvgafQIi1mHmuHw3JJ3BT5NoYp5RqnQlnlvuCSZEN1jZxU/ekVkW1UIrZh8camEfPudmMnRjx0pj7qzdtchVlmTIHC2Vvr8E3Lfmop4yVoR8IMRNnQrs7Yzbv8C6Sm0Tve8JYqBJwONJYJp8XTPY8dZfKsGIsip9F1DUQG2LARjuSiQ3EpkPEWXZOjHg3o18pdVySaqZrnPEtamZMAz4ohIZUvBFzqznK7s5ndDMjbI7jimFcghd2dyLBFcY0cHi04PDwhFO7Du+UQTPLRc9qVXFhhpNI1p7jxZJYKjttSxkyrgghtIToiK3Zx7eto2az5bcIyUobBNc4qlfUK30eWQ0r2tjS9/1k3OdZB0j6KIi3/BxXgzkQi1BqpWgliJ9GeusbuGU0Wf5Qg/M2eqy6vvaUpnVTYWtqM++D+fqow0uwMRomhc+5MPaZcVWY7yinZpGwWvH8CzPmp3e58vgJj15aEVph//wpQgyUxYqdKLTRmf8M5n9jCd52bN4uA6qAUs0wzjlzuhWBKpRcoBbzs/F3xhx7iy22MN7O//B1P/9sH8ZnhDu6QGm8wxHMyr5kHMW6IbXiQiDGuHGIDeKs01KrLcDOWvxh6ohUbGGuAkWqKV8qTP/DpMqW6qoTyXQ9JyrKlKmzLmZMIZPU0mEtIRnqJHeuWtG6ft7MwOwGKCQpoI4udOxHR1MVSTuoD+TJLC40ylALj12B2I2c39slzmf0/SHjagQf8POeM27O3qlTtHue1C1oG8e4yvQD9P2IIAQJ5NE8WHzj8A5cVSKZRpWTVMl5pGs8sj7u6InSEpww66wzgSqhKjl7XNzBzwIikb4f6VFyFJIGSnaEHJAC0lroXeszs0Y41c24mk/QIpRFYXn1mINxxSOPLyg9lAHSMFKS0veRK1eWjOWYVOGJo0NWJ8dcbObEWnCrhFdPbFuamaObQ9cmvCQcMBRhrArF0UXLBaoV1M04POlZLaHdsWDGiuKiw7dGIBaXqTUj6qFaAZml0ueRGFu8WBZULRnnMRO7LLTxFK4EWhlRX6i+JVFRn2lmhTgq3gWctnhtKDkjqcP7juALMExyZfMncQ66WcE1CWLm4sVdQggcPOqQ0XPf+T0u3LVHutJTSmBvlmmCo7qICw0+RPK4wjWFQCDmQC4gjafiGauQpaI+oWQkBPsQUMywL28/xW7xOYAv/NFv5QXveR/1U296W2N1oeE7zv7us30YnxHu6AKl9Z42BEQSuVazUUdM5jpZzXvvYS0ZFpkUNFNIG1Nej1E+JyKgdVXWpNt1wcGk1lh3VXK1EYKb0pSvcVyudVjWvJQ1J2XdwXHeU0vZbMd0JKrVHFq1ggOJQmXE43HBo5opqsTYkJLj6GDBh353CS/oOH96lx0S9aCnH5TF1UqQEV9GZqf2aefn6JoZY+gJfoR6Qqo9tWRiHil+jvodnC84BEIiR0XGgGTHuEjUnHCxQUIktpHgFXHXzpd3lVnbMJvP8MGTcjHuw07LUCvHq2xFIJVGFCFTS898NueFL7gXmHOySpysElevnDDrAoep4eiw0tBQckvJZpsfpvPx5JNXODheUZ1yanfGqbbDjyPk0XJtmsD+XsvOXHEuo2OFImixED0vARXrSrgY6HNhuejxYgaAORfj4jjBFTHvk8nHxOpTxbtCkYz4EefWxGk2HJWqGXGCjyNSMiJ18lFxIJE0XRfeieXgWPgQsO7wZby3LKJhVamlErzQNg0+7nK8ghIaup0dFscrLh8tic2MC2fP0UqlT0ua4OiiMGsiLgjeM3FdPFYtGt9K5TouVgU3xTuYv0tBFGp1qFhExBZb3GoMeutStItWdh9W6vLOlhi7P/4F/OQP/RDPpK190ps/4r2jC5SdNrI7F+Ji4KSABiM/NjHaaEfW+TpMLq+mAhHnNtb3NpZhQ1xFzLRNtdhNZhrHrAsJC7rzkBIVNbJjNSe26wsUG9vo5HWiNxQuaz7M2vRrDcVM45xTimSqr2SS7YOOopa27KMVQ32vXL1auXr0UV7y+Rd5/nPOMJbE0VPHPPnYgtVh4XhnZGf3gLvuOcPOmR3aecRLj5aBFCp+EKomRjy1MXfRpBmNQBeQ4mBVoDo0OWpxhC4QdwJNazdowVGKdRW6tiF2nWUejZW2a3HBsRwSwTc0KRPySBDhcHHEIx/7CLv7gfNnn0uIe5ysBh565HEOj5e0h6fRbpc+rRhyz5A9q15JKRMbx7lzu6yGRKlKbD0Xz53i7tBQnrxCjZV517K769nfcbRNpSQYU0VzoGTIVRFRUxxJxXvH0eERaRzpus7k2SpIcKhUs/KfuBgWj5BRGa2ok0KoaWOPLyLEpiEEG3NpFGIYLe8Gma5HR/CNuf8WK5R1MtKzTkVGXMGFPHGkKlrNxThGUApXriayW3DuTGAPx9GycqVPFMCVRB4XBEbaNjCLgZ02os6I0lFBxUi7xEApjiIZPDgPjWnzQTwpjfRDIiWoZQo5vE6Gv8UWtwr/7xd/Gf/xY79yS6SyX/i/PcALf+ydN/11bjqc477wzGbufO2X/FnQJ57RfX4i7ugCpW0CXVRzlC2ZENspwdVSfzfMksmq5DrJzBSyUykTSXUjEVY13wxMNixGJrAhj8h0IzbXTQU0r5UMuvnUu84D4jpVz7WgQCPEXiPkXuc+q/YDEVF6zay0Ujx4BlKq1NqYl0o/kvHEZsbxUnni6oLxtz7O4Spx1/4Obr6LLlZo9ozLkTKuEBkY8x7zvY62i+ye3WUYAmXVI42nqUIqR+RaicHjmpkpcYYBIRG9BSxWrcybQNsEQjRH2lrq5J+RiTFCTeQ0EBw0bUOl4rQQi9KQcZ1nrh6I9AfHfOx3PkZ9fmTvzN3ce3GXRX+Vxx474fBkZFwt+NjHH+PUHJruArFpKSXRtJ5z53ZQEeY7e3gPZ+cNu7myDAXXCbu7gZ25I7oRzYU8mvS5ZGUcC2PN5ulSIbSBIRUWyyXz2Q5NE0y94swRWKsyppHRF2sxSMEHiwQAhweci0TvCN76ct41NrJxdZKyK0gh1zJxOTziPc5HgncUTdO+xYIwc0ZCwQWBqZBCoGkD87nQROUjH7+EPq68/OXP5dzePmNSQtsxm1XceEIjPd3M46TQRrGuVa1WhNcKWvCxQUKY/IQcEhVvpC18qYgXCuaOq1Ni9eaa3WKLWwwthR+68vl817nfuamv8/6xp3tie41/MvzowXNgvPlGjXd0gSLiiA6iVIKoBQCGOCl33ERUrOZ+uvYrmTolNVuBUXUyaVt3P9bpxLCxhF9LRZ0IWXWSrrqNB4pzzlQck7fJNcUQlt5Tro151qnLa7dR/YTuSs0m3V2MytU+k6WlkcyYio2hREllpIgnNBAawZUZlw4GDldP8pwLPXftd+y7BqlK6geaWIhLKFcTfQqcPrtPs7fHbH+XMhb6kyWsnqJNS1qNpFEoqSJDxZPRmAiTIsmHhtluJDamKsm1UNJoBWKIhCDkOlJrpm06U7ukDKlCKnjNtE1DqpXzp/coAsvDgauPPU7XdOb9cm6X5WLF5eOBg35ksTriBc+5wLlzOzQNpOxwRaEWmlDZnTsa7+mCon2P00RohWbmCK2gNZFKIY9QimMclVWfKE7w0eF8BIms+h7vA7OugSkmoaqQdOp0VSW5QggNIdpYLzYRk+BWgo+0wePDZAioHq0ekYjWTKoF55VaR6tD7IyaykwcFW8FDc5M87wlLzs/jRVTBoSmieyJ57kXT7Mc4LGrT3Hw1BUOYmC1GMh5xU7bsj9z7LWRmsx0b2/X4xsoiBVgpVjnxgecOLI3N2bnK6KFPGa0lg2HSrzDVaGWiZN16zrtW2xxDaq8/TUv4rvec/MKlPcNA1//L7+D5/6jz+2wvt8PP/ON/x169ddv+uvc0QVKkUCMhZ02sNdFfBuJ3lKCYWqWVAC1mbnqhuhpvhVrwqoF/8nG8wTK+vuFaXvddDnWWSzAdQXGug1jD+OcAFwLFKzrob2ap8j1Bcq6eKIUqoPlKDx5MLBY7dD5jqI9dSp01p/ExSveF8Q7Umo4PEocrA44t9tw7/4ud+93nG1boiuMWZAR6DMcLtjJjtmZjrB7hvnOGfIQkeEqZVWpJzb6kVEproLXyUXWbPVDNOVKrZmcBkpOeOdomg4nhSqF6B3RR3Kq5AHKaF4ybZzCAjPsNB1VQfvM4qnLXGkaso+4XNnt9njias+VywekoefU3ozoMrVUYuMptWEYFzinzDsITgkVSp6ybYKDaFyjmispQRohJRhzJauN51zw5hmTKsvVSNO2dnPOFpznvUcpFvgXbHTYNJ7YWCpy7CI5Z5wKrXe0PiDRUWqCKaGZSR/jRPAOKiPBO2Jo8BIJIUx5OGZaZ34jBe+d2eVLQHAmAVbw0dGgnNnz/JH7dph1AzKsOHzicUqBuavsxYazu8Ju41gcZxRPM3MUynpqYx0SsaJoXZKLKB5F1DpFRu6GImpuzW79O1UnA7ottrj1qCcLPv//+Ms8+Kf+fzdl/z/y5Kt47t/bFiefDF/63r/IXZeucitckO7oAmUs5msyawN7swjRbyzNdeKAOKYxhMPUGNcVGA6hwCavxzuH07VPyZpAK5NiRyenWjb7rzIt62oL+7rjbY2YOnFPgt3kVEkpTZ9G5VqxAhsCrariKiCOsToev9xz+Wpmxwd85yjF5NQSLCRQfMbhCN5BrAwJFivhysHAo6HnhXfv8/kXT+H3Wuoyk3EkEXJODEeH7B7D/j2BcO404a7no3Iv9XhBuHJIWKzw7oS0cmSNk0ldQFxLqUZCriXZJ2xvOTfeBUodcVKNxFAh9ZU0OvIoCA7nhZorwTskeMZ+YL/xrGri+IknOcmBq8eZoz5wcHnJU48dEWdCFxpcBR8F30bj4KxGZi2UmCljRtSZfbxW8J4k1YIOUyVnGMbKkKoZ+jlHE4IZlImwXA2krMx2AlrLRFgVXDAiq4in8w0xOkIjhOCITTRfEwq+FJrgCUHQYN4vMnnSrLlNTfSIV/JoFvghmMeMRxmT2cqLTIGMtSBOcC7gXEvJ4KaiVMQIqzNfuHhaOdXt068UceZhsjffYeY7zu9nnK7IS8X7AK6QckKdM3VxrsxjS5iSpFULOCvipRTAOo9VJhL5VKDYSLRsRzxbPGuox8c87586+FPP9pF87sH9xDnyw++6Ja91RxcoB/1gdtsCITiq1Mn5dU1q1WnOohs+yDpzR53b/F10rcdgqi6uW3jXXZTrVD0++ClQ8JrR2vUdlTWvRKsiTvHOb4IJgWuhgRM3ZcNDYVJ2eAv6OzgZuHw4GLciOFTdxovDOcX7SvCN3bRcQh2MeJa98PDVp7hysGBYjAz3nuLi2Y4dUQqV4pVUMro4hArduMTffYHm4r20+x2lu0y9/BBNW5gfZpaLkTxkUq0MQyLGGS54K+O8EL2F8NWklDLiQqEqpJRJuZLT1DFyoKlQteJdoJZCHnt2m0ATWg6XI3WZyCeVxdGC4WTEJzh77hSnd/aNsyFW3GRn2TTBB/phwXKZGHtIY6IoFBXGMZvkPCulCMOojNnUMC54mG68Y8qMYyLGQPBu4s60Rkp1lUwBrXhfiK3go+LDRJamIC7huFY44gWpI1RLCs4l4iTiQjQlFo5alFAq3hUqlXHs8U1n1vmlUGomesH7gGDyXsHjAqAF1UwTFO8SLQ66Papkcu0RaYk0zEKhXyXjnzTO7PKrKa+qFruWbDo5qdyYuo+m0Ck6WQpOvz4b00KxfeRbwOLfYotbjXf1hY98++cjvO/ZPpRnDr/zMb7wX3wrv/lNd46LLHyGYQZvfOMbecUrXsHe3h4XLlzgq7/6q3nwwQdv2OZVr3rVNRfV6fHN3/zNN2zz0EMP8brXvY75fM6FCxd4wxvesAnN+0zwyNUTLh2vOCmQfWCohVozkHFe8YHJXr0QgBYLawvRIY1HghDFM/MNwVmITAKKCIqjAhmlSCVLIWMKF5wzien0CXJt5nZ9seGc5bCsxzsiMmXcuM22bq0IAsQ5fAxIo7iQ8b4wkDmsIwfDklXvKDVSVckFtEST/3olKbgcYXD0/YpDPeQQePhI+D8/dJW3/9ZTfOzqiqPFMXm1Ig/KaoTD5cCVK09w+NiHKR95H/o7H6QeB/w9ryB8wZehz38+OxdPcWovEGcF1/ZouYIfr1JKz0hGnSBuTsmeoj2usRu1Ohhrpmgm1RU1JpLrGentRi4VXS6texCUXFfMQs+F3cLds8zFnRUvOJ140amG5+14dmJmMZ4wZrPlzyXhg6NtG+O3LAtHlw44uLrA+xkhzCE7AjbWSKVSqke0weFpm4gLlYqjHxMihXkLjSs0TaBrG/ZnM/aCZyYD87ik6xbEWU+YQZi1SGxN5aOKBqUEKMGBOIJvCdIh9iRCi0hDJSKhAR8piHV7wHxVJG0enkr0kRgaik4Or5PUuOJwwTPrPNFHUKVrC9GNNL4S44K2GZASSMuAC+C7kRAbomusEyTejPS0TgZzGe+FpmlwoaOIWfHXChSHyw6fhJALDYXOB5x++svH7bZ2bHHnw//qb/Kyf/ytz/h+L9cd5P983zO+32cTdbHg7AfvPF+Az6iD8ra3vY0HHniAV7ziFeSc+Zt/82/ymte8hg9+8IPs7Oxstvvrf/2v8/3f//2bf8/n1wydSim87nWv4+LFi7zjHe/gscce4y//5b9MjJG///f//md08P0w4L2jbGICrdVhqpn1qGXTBAEmHsh1nI+NU+zauwLMg4R1l6NM7rNWRMiGAGt/mmtsmYy+ro181iMcI81ey/WB6x1l7XwAkzW/ERHXRxuCo23scXh0RFbH8Wokq30aH4aGkzGxWlXGXqhJycn4E2FmapUn+xXjpRUaRz7vYsuLn7PH+X0luEznoOSGvOgYfcXJxxkWRzQXP4/ZH/kimhf9eeS+JygfeRfth95LOxR8s8NxWlKuKsEVmtMJ1wbS6NGSCQ60OkTCphPl3FrmjRVlKpPEuljKb7bz3PgA1dO1nvPtnLgX2Nsp7JyNNHHB4eERmvdNhl0LKspytaRfrehXI6vFgOZMnWXMzN4iCEqplGLnxvtI2zZ4Z8WJaqXWZC6zDXSdI3gQCjkrtRSCa2hbkGButzEIzjV4deChTLm+qqa+wQsOoWqwAmbqsmnNaM24mnHO4hh0cmn1MeB8oarJi82zJyAuUNJIyiNaMLFY0ev4H8JsNrPfg+KIbUvB+Djr+AUfHC7AOI0Y27bdXHtOBCkDuYyIDwTpqCWTSw94cwhSMwh0YqGYokLwfmNy+Ongdls7trjzocNA99QzL3V/Mu8/4/u8HbD7U+/mJS/+Vt77rf+EVj79BOiilct1xZ/8pf+Rz//m3+JUf+tykD6jAuXnf/5Gm9wf//Ef58KFC7znPe/hy7/8yzfPz+dzLl68+En38Qu/8At88IMf5D//5//M3Xffzctf/nL+7t/9u3zXd30Xf/tv/22apvm0j2fMxRbJKV8HWfNGbmxLc91Cui5M1gWE/4RFVlGcONulGjn0eqXNeny0MV6bVDnXCLIO1RtKItZW59cfA9d5psA1wmxFUHV4NSOtWQicnjesgnC0TPRD5eikN1FMdhyOxwxjZkyeUj2ewCzMSLGQi9JXz5Wq/M5B5slV5skFvOR5p3jePR17uw4hMayWEOYk74njMSeL3+Tyxx9l777PY+cFX0R40as4dWrO8JH3cHL5KjkrbZOoeWR5UmlKoXEdDRHn9hhqJWUlDTY6KVqmjocnxoAOmVLLxkQvp2Luqy6iFbuBxh2ODwa6rnD3xTnzTqnLjHgYUiJXNc+XkyNSztRRqIMRWL2vlv2jlTIlLnsR0DQVpI6cko2cyogjsbPbsLMLXSekcYTiTa1SzdZ/1gbU9QiZJgaoIyUNOI048ajYTRsKtWQQTy2BWqdASGdBiVoHmlrwk3IGFao6QuwQtyRnC+Lz3oHP4BMilVpHahXKmCi5mFlfVWothCCkZKo07wLeVXyZxnhSiI0nRE9OznKYQqSUfM28MIIvap0tlyEnhEoVR1EFCipQqBsjt+K4cRT6KXC7rR1bfHYgLpUPjCv+WDN7RvZ3tSz5t19w7zOyr9sOqjz3772Dl5z7H3nnX/yHXPA7n/Jbfmaxy3+4/HI+/idPeDG/dsvddP9QHJTDw0MAzp49e8Pz/+bf/Bv+9b/+11y8eJGv+qqv4nu+53s2n4Te+c538rKXvYy77757s/1rX/tavuVbvoUPfOADfPEXf/HveZ1hGBiui7o+OjoCplgcgalswOlkzHYdrh+/wFRGTKZt5g47kWq5VrxsrOzFFDh+sjTRTWKxu6ENvcnjkRtfi08y+lmPdtZ/Xxc/IQRKKSaBngRBpj7JRD/D7+2gsZBrpDByMgiDKBHjN5hmOlA9UEaGOtLXQq2JYYCT0lFGYXi4cni44KmDzEtftM/zz3W0sTejttrg6fF1QTi6TP7gJdKl9yPPfRF694uIf/QCp576bYZHP0o+WiBjj6sDfmwp1dH7kYBSSqAWoBqjoZYCNeMt8o40Kak2ZOZkvhxjUXL1uBg5PFny2BNHrFYZPwvE7hSz2Q5N05GrEZ5zToz9SO4Laag0PrIzczRBQZMZqlW7aQvgQ0JcJo0JEUfnZ2QKsXHszBxdVKSOaIaaFa8eH4XYimU76Q7zmSBBGFY9JMt9qmLjuRgDCBS1bpoWb2RSb5LhqhnVRAD82idn8hhBArXEyZl2faam86jZeB9MRNbJsA216zDnEctFagCHdxVKJWULH/RNsOyc4nEuUEplHKegyCagREQguAYy1DHhNHCtyL4mgy+TAq2WypCf/qfXZ3vt2OKzA3s/+S7+/Bd9B7/9V37k2T6UOwaf9x3v4pXzb+dVL//NT7ntY39qQNPJLTiqT46nXaDUWvm2b/s2vuzLvoyXvvSlm+e//uu/nuc///nce++9vP/97+e7vuu7ePDBB/n3//7fA3Dp0qUbFhhg8+9Lly590td64xvfyN/5O3/n9x6DQtV1z0SuOcfyid2Ja/5saw/yzdJ7nf/JdW5tVjjotVFOqZM8Wa99ff399ue6aHGfUt3gJskzsFH1XF/UuClsbjUMXDk44Xg1J3bQtS133zXHxxVhOeJSJi7njCtFS8FX6wfVVHHJkcsAyZJvxz7TzOcsCnz8QFmNA6vVguPndzznfGSfROdP8FrxLhOKIimxuHTEcPAU4ZFHmb3gpfgzf4y2O004PKIcXUYOH8ENCc0DI8KYZUq/hRA8uIZKIah1MWrOoErwU/p0LkiBXGDUTG0b1DsOVyv65DhZtnzsoyPNDJ77gj1EWyvkXMJEJ446Qh0KXfTMGo+XES3FLNmrID5MnQ8HYqZpTWhoJOLcyKxzdF6suEpK0GYasxiPycVMweNlTvCRVEa0eIJM3RMqXsymHglTp8RRJ02uc+BEJ76JFTh1uibFCbVMYZPMEQXBUrNVo52jaRSDKCF4ez/iEQ0omZR7S5wWk3A7deRsjrtWuESKKqUawXp9nTtnoYS1OCumSqRSKUMyMu3E/i6lkotSquVXVV0XK0/v89TtsHZsscXnMv7oN/8Kjz7bB/Fp4GkXKA888AC/8Ru/wS//8i/f8Pw3fdM3bf7+spe9jHvuuYev+Iqv4MMf/jAvetGLntZrffd3fzff8R3fsfn30dERz33uczef5tzk+OpduE5Vc520hmuL8lrdI86tp0LXFSiTq+xatsO1r09lz2Y/9ToFzvVjpHXBsbbXX2+7ORKdXrvWTZECNl+3fVmxU52nzyOXri65dDBw4VzL6a7FhcBJ6Jl1gu40OIGaRprg8FgC7lCFZQ/9aqTmTHSK10LrHOoKy1oYT2DxkWMuXV1w712Rz7tnxovu3eX0qQaiY3SZEw9u5ZitYNY/hi6P8WfPEs7fRbz4x4nnT6gHc+qTj+OOBua1UMSRM+RUECwaoG1MEVPTyLC+2Tohjcn4FBIYU6WvEHci2kR6haEGVqNwvFDkw0dU13DPPZGm9aY+GZXaQ38wIsNIN2uITkAdpdjNVDBei2oiTuZqzkeitGivtN4zi44oilfrmIUQ6ccMFES85SNJMYm0t86WnXgxmXUwm3y7NDyOxgIklY3iBYFaBSVQPJuwPy8VkWoZPsyo0+jFORPCay2A4J0dhxc/GQN6GyNN3J5NUY1D1NsoKEFsI+IiqQ4bXx7zO3HGjXIerWHaRzCJsQZqMQ8XVchpJBehFGeGclOhpU/Tavx2WDu22GKL2x9Pq0B5/etfz5vf/Gbe/va3c9999/2B277yla8E4EMf+hAvetGLuHjxIr/yK79ywzaPP/44wO87e27bdkPsux7iPeKcub2qdS/ctRqCTcCfrLNT1uObyWhtkg7X62zpZRrrSJ34JXqtkPDObcbuOecND2WS9GyKnE1LvOpGmuycKXrWY5zrzdnWPBYRs+Oy/QWKNFw+WfH4UWJ/p6E2xW78Gc6dOcc9d53lkY89Rn98iSYKiGfsezSPrEpmWRMalRDEsmJEKQKjVKooV3Lm6MnKw0eBh56Cx6+2fOF9wl2nEnFHyG2EXCniGVeOVbpMe3iJ7vIOem9PvOseuPiF+L0XwFNPIkeP48oJshoZx0odQfBEF9CaqGqBjioyKUfMAE0kULNZz4fYEHZnJOe5uuxZjhWtnt996JDDxYLlceY5955iNodAg8ue4Sizg9I2FS8mxzZJsie4aKMlEXzjaaLQdjNybwqtJkYbiVTwLtKEwJhHglTEydp2z+TD7UDxI7n0qLNsHmqdHIxb636Is8yeYqMY5LqYgyoonkHMyyQ4gGyJ194jauGESMUHj7pMyclGOWZ7bJpg1twVzEROKrmMOCLiAjihZCMrB98hLpBTj0wFRSl1c62rKip5kqoXKBVHQbWSq6dWT9U4BV+uAwUrEzPlD/zd/2S4XdaOLbbY4vbHZ/QRSFV5/etfz0//9E/z1re+lRe+8IWf8nve9773AXDPPfcAcP/99/Prv/7rPPHEtZCht7zlLezv7/OSl7zkMzmca14UGwLrtQWzqm4C+9a8k6oVZa2usUC/9XProsWKhKkTst5w6pLIujsi15FtJ4WDFT9smjU6vX6t1TgYk2LIHNN1GgW5647X9lHVthcR8C1D9SwTLPvMlSsnPP7YZRaHK0KNzMMubWyAivOgThnyyLLvOUk9OSp+Fk1pUtPEWwiIRIovjGFgETKHOH77aOAXPvgov/Cex/md34XFkwG5WoBEjQvGdMxiUVgcV/rLV0m/9U6O3vs2Tj7+FHXnBfg/+t9SP++LKKdPQYAYIAQbZzmEnJIFHbqIOE8qxjvxIdioIQYSgoaGON+hEClAuyt0e8pYRh5+7Crv/8BHePCDv8vlS5chQc1CGgoxCm0DzimiHsFGMMFHgvc0MdA1zSQhjlZYRE/XRgRTPOUEqEM14fw0ThHrVrgAEnuKLqisUOlNDh7N+8QH8M7M6KieUkCpE3dkzWFyCIGs5sOjrEMDK14qFeOoOFfwDSCZXEbzJMl2PdnZNCL2WpGGyNSBYwo09NQ88a+CoyJQ3ZQ6Xcl5rThT0EwuK5ARJZHLilJ7tBoZVyvI2m1W3dQFMgl+yZ++D8rttnZsscUWtz8+ow7KAw88wE/8xE/wsz/7s+zt7W3mvqdOnWI2m/HhD3+Yn/iJn+DP/Jk/w7lz53j/+9/Pt3/7t/PlX/7l/PE//scBeM1rXsNLXvIS/tJf+kv8wA/8AJcuXeJv/a2/xQMPPPBpf9LZGKGlkbFmtE4pwJPBlfcNU01gzp41sw5rU4EQIqlUclaCmz6tlmot+WKfTB3Z8nec/Ttl4wIkzfYhtjrcpHAQjCTrxG/GObVWcq1mqgZoNhUHqqRaUW/dFDMtY/KjGPFEoksgxyQRaicglSfHnidPMrJM+Oq4sujJv/O7jBqpgzCmxJVhxROrxJXs8BrYd55VHskZRqesSiKq4kXJ6qg0UyAepHHkSoJ3HC/5yJXEy++b87LnzDl/sTA77aipm7gJCxrX0XUJd/wopw6epH7sPTQvejX1nv8GvecM9eht+MuPUcbKCofUwmo5MqYKeJL3nJTArg+kEyj9SKbnaACnDboKHDw10ETP2TMNR0cLnjhQDnJF+8LO5SWnmkItwqNXT1jUI/Zc4DBHi+1L4KcCpWRLhBYS1IiI43iVOOhHTs0rvXPkMjKOBa2FOJoFfskDrTTo6BA3MmsdMc8YliYxVpaoVIpGNAtjvyRIJI8NKVeGPFCyErsKo6ckIeLN+bZUtCmstBDcHC8Z0Z40dEgCF2FZK1IddYysSiGtFMmJ6DxVHWNZUih0TYdqMC+QknAyw0lhdZjIOTOOV9HSEtThfCIr9IPDSyT6FbFZ0fcdRLP1H/pKGSqueoocs1pWUm7w0tKPGaVSTV3N8qjc8Pt4J60dlhL+aX3LFrc5at9zdPzM6EuOSyXrzQ/B+1xGxs7vp7NuoJ8BuEbmuOHxYz/2Y6qq+tBDD+mXf/mX69mzZ7VtW/28z/s8fcMb3qCHh4c37OejH/2ofuVXfqXOZjM9f/68fud3fqemlD7t43j44Yd/32PZPraP7ePWPh5++OE7Zu348Ic//Kyfr+1j+9g+Pr11Q6bF445CrZUHH3yQl7zkJTz88MPs7392Gus8m1iTCbfn9+bgs+H8qirHx8fce++9G7Xb7Y6DgwPOnDnDQw89xKlTp57tw/msw2fDdX0747Ph/H4m68YdmcXjnOM5z3kOAPv7+3fsD+pOwPb83lzc6ef3TrvJrxfEU6dO3dHn/XbHnX5d3+6408/vp7tu3Bkfe7bYYosttthii88pbAuULbbYYostttjitsMdW6C0bcv3fd/3bT0ObhK25/fmYnt+nx1sz/vNxfb83lx8rp3fO5Iku8UWW2yxxRZbfHbjju2gbLHFFltsscUWn73YFihbbLHFFltsscVth22BssUWW2yxxRZb3HbYFihbbLHFFltsscVthzuyQHnTm97EC17wArqu45WvfOXvSTjd4pPj7W9/O1/1VV/Fvffei4jwMz/zMzd8XVX53u/9Xu655x5msxmvfvWr+Z3f+Z0btrly5Qrf8A3fwP7+PqdPn+av/bW/xsnJyS18F7cv3vjGN/KKV7yCvb09Lly4wFd/9Vfz4IMP3rBN3/c88MADnDt3jt3dXb7ma75mk8i7xkMPPcTrXvc65vM5Fy5c4A1veINl7Wzxh8Z27Xh62K4dNw/bdeP3xx1XoPzkT/4k3/Ed38H3fd/38Wu/9mt80Rd9Ea997WtvSDjd4pNjsVjwRV/0RbzpTW/6pF//gR/4AX74h3+YH/3RH+Xd7343Ozs7vPa1r6Xv+8023/AN38AHPvAB3vKWt/DmN7+Zt7/97XzTN33TrXoLtzXe9ra38cADD/Cud72Lt7zlLaSUeM1rXsNisdhs8+3f/u38h//wH/ipn/op3va2t/Hoo4/yF/7CX9h8vZTC6173OsZx5B3veAf/6l/9K378x3+c7/3e73023tJnFbZrx9PHdu24ediuG38APu2UrdsEX/qlX6oPPPDA5t+lFL333nv1jW9847N4VHceAP3pn/7pzb9rrXrx4kX9wR/8wc1zBwcH2rat/tt/+29VVfWDH/ygAvqrv/qrm23+03/6Tyoi+sgjj9yyY79T8MQTTyigb3vb21TVzmeMUX/qp35qs81v/uZvKqDvfOc7VVX1537u59Q5p5cuXdps8yM/8iO6v7+vwzDc2jfwWYbt2vHMYLt23Fxs141ruKM6KOM48p73vIdXv/rVm+ecc7z61a/mne9857N4ZHc+PvKRj3Dp0qUbzu2pU6d45StfuTm373znOzl9+jR/4k/8ic02r371q3HO8e53v/uWH/PtjsPDQwDOnj0LwHve8x5SSjec4y/4gi/gec973g3n+GUvexl33333ZpvXvva1HB0d8YEPfOAWHv1nF7Zrx83Ddu14ZrFdN67hjipQnnrqKUopN/wQAO6++24uXbr0LB3VZwfW5+8POreXLl3iwoULN3w9hMDZs2e35/8TUGvl277t2/iyL/syXvrSlwJ2/pqm4fTp0zds+4nn+JP9DNZf2+LpYbt23Dxs145nDtt140bckWnGW2xxu+OBBx7gN37jN/jlX/7lZ/tQtthiizsE23XjRtxRHZTz58/jvf897OXHH3+cixcvPktH9dmB9fn7g87txYsXfw+hMOfMlStXtuf/Orz+9a/nzW9+M7/0S7/Efffdt3n+4sWLjOPIwcHBDdt/4jn+ZD+D9de2eHrYrh03D9u145nBdt34vbijCpSmafiSL/kSfvEXf3HzXK2VX/zFX+T+++9/Fo/szscLX/hCLl68eMO5PTo64t3vfvfm3N5///0cHBzwnve8Z7PNW9/6VmqtvPKVr7zlx3y7QVV5/etfz0//9E/z1re+lRe+8IU3fP1LvuRLiDHecI4ffPBBHnrooRvO8a//+q/fsJi/5S1vYX9/n5e85CW35o18FmK7dtw8bNeOPxy268YfgGebpfuZ4t/9u3+nbdvqj//4j+sHP/hB/aZv+iY9ffr0DezlLT45jo+P9b3vfa++973vVUD/0T/6R/re975XP/axj6mq6j/4B/9AT58+rT/7sz+r73//+/XP/bk/py984Qt1tVpt9vGn//Sf1i/+4i/Wd7/73frLv/zL+uIXv1i/7uu+7tl6S7cVvuVbvkVPnTql/+W//Bd97LHHNo/lcrnZ5pu/+Zv1ec97nr71rW/V//pf/6vef//9ev/992++nnPWl770pfqa17xG3/e+9+nP//zP61133aXf/d3f/Wy8pc8qbNeOp4/t2nHzsF03fn/ccQWKquo//af/VJ/3vOdp0zT6pV/6pfqud73r2T6kOwK/9Eu/pMDveXzjN36jqppc8Hu+53v07rvv1rZt9Su+4iv0wQcfvGEfly9f1q/7uq/T3d1d3d/f17/6V/+qHh8fPwvv5vbDJzu3gP7Yj/3YZpvVaqXf+q3fqmfOnNH5fK5//s//eX3sscdu2M9HP/pR/cqv/EqdzWZ6/vx5/c7v/E5NKd3id/PZie3a8fSwXTtuHrbrxu8PUVW9df2aLbbYYosttthii0+NO4qDssUWW2yxxRZbfG5gW6BsscUWW2yxxRa3HbYFyhZbbLHFFltscdthW6BsscUWW2yxxRa3HbYFyhZbbLHFFltscdthW6BsscUWW2yxxRa3HbYFyhZbbLHFFltscdthW6BsscUWW2yxxRa3HbYFyhZbbLHFFltscdthW6BsscUWW2yxxRa3HbYFyhZbbLHFFltscdthW6BsscUWW2yxxRa3Hf7/7FZMWQRD2q4AAAAASUVORK5CYII=", - "text/plain": [ - "
" + "cell_type": "markdown", + "metadata": { + "id": "U3WUb8t2P2e5" + }, + "source": [ + "\ud83c\udded \ud83c\uddea \ud83c\uddf1 \ud83c\uddf1 \ud83c\uddf4 \ud83d\udc4b\n", + "\n", + "This example shows how to use `segmentation-models-pytorch` for **binary** semantic segmentation. We will use the [The Oxford-IIIT Pet Dataset](https://www.robots.ox.ac.uk/~vgg/data/pets/) (this is an adopted example from Albumentations package [docs](https://albumentations.ai/docs/examples/pytorch_semantic_segmentation/), which is strongly recommended to read, especially if you never used this package for augmentations before). \n", + "\n", + "The task will be to classify each pixel of an input image either as pet \ud83d\udc36\ud83d\udc31 or as a background.\n", + "\n", + "\n", + "What we are going to overview in this example: \n", + "\n", + " - \ud83d\udcdc `Datasets` and `DataLoaders` preparation (with predefined dataset class). \n", + " - \ud83d\udce6 `LightningModule` preparation: defining training, validation and test routines. \n", + " - \ud83d\udcc8 Writing `IoU` metric inside the `LightningModule` for measuring quality of segmentation. \n", + " - \ud83d\udc36 Results visualization.\n", + "\n", + "\n", + "> It is expected you are familiar with Python, PyTorch and have some experience with training neural networks before!" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# lets look at some samples\n", - "\n", - "sample = train_dataset[0]\n", - "plt.subplot(1, 2, 1)\n", - "# for visualization we have to transpose back to HWC\n", - "plt.imshow(sample[\"image\"].transpose(1, 2, 0))\n", - "plt.subplot(1, 2, 2)\n", - "# for visualization we have to remove 3rd dimension of mask\n", - "plt.imshow(sample[\"mask\"].squeeze())\n", - "plt.show()\n", - "\n", - "sample = valid_dataset[0]\n", - "plt.subplot(1, 2, 1)\n", - "# for visualization we have to transpose back to HWC\n", - "plt.imshow(sample[\"image\"].transpose(1, 2, 0))\n", - "plt.subplot(1, 2, 2)\n", - "# for visualization we have to remove 3rd dimension of mask\n", - "plt.imshow(sample[\"mask\"].squeeze())\n", - "plt.show()\n", - "\n", - "sample = test_dataset[0]\n", - "plt.subplot(1, 2, 1)\n", - "# for visualization we have to transpose back to HWC\n", - "plt.imshow(sample[\"image\"].transpose(1, 2, 0))\n", - "plt.subplot(1, 2, 2)\n", - "# for visualization we have to remove 3rd dimension of mask\n", - "plt.imshow(sample[\"mask\"].squeeze())\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jg4_bxKV5BaQ" - }, - "source": [ - "## Model" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "execution": { - "iopub.execute_input": "2024-08-18T04:39:44.502757Z", - "iopub.status.busy": "2024-08-18T04:39:44.502418Z", - "iopub.status.idle": "2024-08-18T04:39:44.507639Z", - "shell.execute_reply": "2024-08-18T04:39:44.506577Z", - "shell.execute_reply.started": "2024-08-18T04:39:44.502728Z" - }, - "trusted": true - }, - "outputs": [], - "source": [ - "# Some training hyperparameters\n", - "EPOCHS = 10\n", - "T_MAX = EPOCHS * len(train_dataloader)\n", - "OUT_CLASSES = 1" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "execution": { - "iopub.execute_input": "2024-08-18T04:39:44.509551Z", - "iopub.status.busy": "2024-08-18T04:39:44.509240Z", - "iopub.status.idle": "2024-08-18T04:39:44.532055Z", - "shell.execute_reply": "2024-08-18T04:39:44.531224Z", - "shell.execute_reply.started": "2024-08-18T04:39:44.509528Z" - }, - "id": "PeGCIYNlVx5y", - "trusted": true - }, - "outputs": [], - "source": [ - "class PetModel(pl.LightningModule):\n", - " def __init__(self, arch, encoder_name, in_channels, out_classes, **kwargs):\n", - " super().__init__()\n", - " self.model = smp.create_model(\n", - " arch,\n", - " encoder_name=encoder_name,\n", - " in_channels=in_channels,\n", - " classes=out_classes,\n", - " **kwargs,\n", - " )\n", - " # preprocessing parameteres for image\n", - " params = smp.encoders.get_preprocessing_params(encoder_name)\n", - " self.register_buffer(\"std\", torch.tensor(params[\"std\"]).view(1, 3, 1, 1))\n", - " self.register_buffer(\"mean\", torch.tensor(params[\"mean\"]).view(1, 3, 1, 1))\n", - "\n", - " # for image segmentation dice loss could be the best first choice\n", - " self.loss_fn = smp.losses.DiceLoss(smp.losses.BINARY_MODE, from_logits=True)\n", - "\n", - " # initialize step metics\n", - " self.training_step_outputs = []\n", - " self.validation_step_outputs = []\n", - " self.test_step_outputs = []\n", - "\n", - " def forward(self, image):\n", - " # normalize image here\n", - " image = (image - self.mean) / self.std\n", - " mask = self.model(image)\n", - " return mask\n", - "\n", - " def shared_step(self, batch, stage):\n", - " image = batch[\"image\"]\n", - "\n", - " # Shape of the image should be (batch_size, num_channels, height, width)\n", - " # if you work with grayscale images, expand channels dim to have [batch_size, 1, height, width]\n", - " assert image.ndim == 4\n", - "\n", - " # Check that image dimensions are divisible by 32,\n", - " # encoder and decoder connected by `skip connections` and usually encoder have 5 stages of\n", - " # downsampling by factor 2 (2 ^ 5 = 32); e.g. if we have image with shape 65x65 we will have\n", - " # following shapes of features in encoder and decoder: 84, 42, 21, 10, 5 -> 5, 10, 20, 40, 80\n", - " # and we will get an error trying to concat these features\n", - " h, w = image.shape[2:]\n", - " assert h % 32 == 0 and w % 32 == 0\n", - "\n", - " mask = batch[\"mask\"]\n", - " assert mask.ndim == 4\n", - "\n", - " # Check that mask values in between 0 and 1, NOT 0 and 255 for binary segmentation\n", - " assert mask.max() <= 1.0 and mask.min() >= 0\n", - "\n", - " logits_mask = self.forward(image)\n", - "\n", - " # Predicted mask contains logits, and loss_fn param `from_logits` is set to True\n", - " loss = self.loss_fn(logits_mask, mask)\n", - "\n", - " # Lets compute metrics for some threshold\n", - " # first convert mask values to probabilities, then\n", - " # apply thresholding\n", - " prob_mask = logits_mask.sigmoid()\n", - " pred_mask = (prob_mask > 0.5).float()\n", - "\n", - " # We will compute IoU metric by two ways\n", - " # 1. dataset-wise\n", - " # 2. image-wise\n", - " # but for now we just compute true positive, false positive, false negative and\n", - " # true negative 'pixels' for each image and class\n", - " # these values will be aggregated in the end of an epoch\n", - " tp, fp, fn, tn = smp.metrics.get_stats(\n", - " pred_mask.long(), mask.long(), mode=\"binary\"\n", - " )\n", - " return {\n", - " \"loss\": loss,\n", - " \"tp\": tp,\n", - " \"fp\": fp,\n", - " \"fn\": fn,\n", - " \"tn\": tn,\n", - " }\n", - "\n", - " def shared_epoch_end(self, outputs, stage):\n", - " # aggregate step metics\n", - " tp = torch.cat([x[\"tp\"] for x in outputs])\n", - " fp = torch.cat([x[\"fp\"] for x in outputs])\n", - " fn = torch.cat([x[\"fn\"] for x in outputs])\n", - " tn = torch.cat([x[\"tn\"] for x in outputs])\n", - "\n", - " # per image IoU means that we first calculate IoU score for each image\n", - " # and then compute mean over these scores\n", - " per_image_iou = smp.metrics.iou_score(\n", - " tp, fp, fn, tn, reduction=\"micro-imagewise\"\n", - " )\n", - "\n", - " # dataset IoU means that we aggregate intersection and union over whole dataset\n", - " # and then compute IoU score. The difference between dataset_iou and per_image_iou scores\n", - " # in this particular case will not be much, however for dataset\n", - " # with \"empty\" images (images without target class) a large gap could be observed.\n", - " # Empty images influence a lot on per_image_iou and much less on dataset_iou.\n", - " dataset_iou = smp.metrics.iou_score(tp, fp, fn, tn, reduction=\"micro\")\n", - " metrics = {\n", - " f\"{stage}_per_image_iou\": per_image_iou,\n", - " f\"{stage}_dataset_iou\": dataset_iou,\n", - " }\n", - "\n", - " self.log_dict(metrics, prog_bar=True)\n", - "\n", - " def training_step(self, batch, batch_idx):\n", - " train_loss_info = self.shared_step(batch, \"train\")\n", - " # append the metics of each step to the\n", - " self.training_step_outputs.append(train_loss_info)\n", - " return train_loss_info\n", - "\n", - " def on_train_epoch_end(self):\n", - " self.shared_epoch_end(self.training_step_outputs, \"train\")\n", - " # empty set output list\n", - " self.training_step_outputs.clear()\n", - " return\n", - "\n", - " def validation_step(self, batch, batch_idx):\n", - " valid_loss_info = self.shared_step(batch, \"valid\")\n", - " self.validation_step_outputs.append(valid_loss_info)\n", - " return valid_loss_info\n", - "\n", - " def on_validation_epoch_end(self):\n", - " self.shared_epoch_end(self.validation_step_outputs, \"valid\")\n", - " self.validation_step_outputs.clear()\n", - " return\n", - "\n", - " def test_step(self, batch, batch_idx):\n", - " test_loss_info = self.shared_step(batch, \"test\")\n", - " self.test_step_outputs.append(test_loss_info)\n", - " return test_loss_info\n", - "\n", - " def on_test_epoch_end(self):\n", - " self.shared_epoch_end(self.test_step_outputs, \"test\")\n", - " # empty set output list\n", - " self.test_step_outputs.clear()\n", - " return\n", - "\n", - " def configure_optimizers(self):\n", - " optimizer = torch.optim.Adam(self.parameters(), lr=2e-4)\n", - " scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=T_MAX, eta_min=1e-5)\n", - " return {\n", - " \"optimizer\": optimizer,\n", - " \"lr_scheduler\": {\n", - " \"scheduler\": scheduler,\n", - " \"interval\": \"step\",\n", - " \"frequency\": 1,\n", - " },\n", - " }\n", - " return" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "execution": { - "iopub.execute_input": "2024-08-18T04:39:44.533601Z", - "iopub.status.busy": "2024-08-18T04:39:44.533123Z", - "iopub.status.idle": "2024-08-18T04:39:46.413802Z", - "shell.execute_reply": "2024-08-18T04:39:46.413012Z", - "shell.execute_reply.started": "2024-08-18T04:39:44.533575Z" - }, - "id": "8d_wsmYArTt6", - "trusted": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Downloading: \"https://download.pytorch.org/models/resnet34-333f7ec4.pth\" to /root/.cache/torch/hub/checkpoints/resnet34-333f7ec4.pth\n", - "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 83.3M/83.3M [00:01<00:00, 74.5MB/s]\n" - ] - } - ], - "source": [ - "model = PetModel(\"FPN\", \"resnet34\", in_channels=3, out_classes=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "v-YUI8oH-sfL" - }, - "source": [ - "## Training" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "execution": { - "iopub.execute_input": "2024-08-18T04:39:46.416557Z", - "iopub.status.busy": "2024-08-18T04:39:46.416192Z", - "iopub.status.idle": "2024-08-18T04:43:23.201628Z", - "shell.execute_reply": "2024-08-18T04:43:23.200521Z", - "shell.execute_reply.started": "2024-08-18T04:39:46.416531Z" - }, - "id": "WvKlqPH6sKtz", - "outputId": "441f8a2e-6159-4e06-ddb5-c47df93d18c9", - "trusted": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2024-08-18 04:39:48.833488: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", - "2024-08-18 04:39:48.833619: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", - "2024-08-18 04:39:48.968760: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n" - ] }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-18T04:37:36.751747Z", + "iopub.status.busy": "2024-08-18T04:37:36.750812Z", + "iopub.status.idle": "2024-08-18T04:38:26.758872Z", + "shell.execute_reply": "2024-08-18T04:38:26.757586Z", + "shell.execute_reply.started": "2024-08-18T04:37:36.751710Z" + }, + "id": "DYNdz8s56qOu", + "outputId": "7f343747-532d-417c-fc72-fda5c713d4e3", + "trusted": true }, - "text/plain": [ - "Sanity Checking: | | 0/? [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAESCAYAAADXBC7TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebR123nWB/7eOedqdn/ar739vdJVY0sysiwL4ziAiXGqKCicAA4hhMGAQTLsjEJQGTipxLhqBJOYFFADEwjlwKhBT5GCEBgYW26Qhfq+uVe6fff1p9/dauZ864851z7nu40sWbf70H40ztX+9tl7rbWbs+aznvd5n1dUVVljjTXWWGONNdZ4E8G80QewxhprrLHGGmus8WKsCcoaa6yxxhprrPGmw5qgrLHGGmusscYabzqsCcoaa6yxxhprrPGmw5qgrLHGGmusscYabzqsCcoaa6yxxhprrPGmw5qgrLHGGmusscYabzqsCcoaa6yxxhprrPGmw5qgrLHGGmusscYabzqsCcoaa6yxxhprrPGmwxtKUH72Z3+W++67j7Isef/7388nPvGJN/Jw1lhjjTsA6/PGGmt8e+ANIyj/4B/8Az74wQ/ykz/5k3zmM5/h3e9+Nz/0Qz/EjRs33qhDWmONNd7kWJ831ljj2wfyRg0LfP/738/73vc+/spf+SsAhBC4++67+fEf/3H+zJ/5M2/EIa2xxhpvcqzPG2us8e0D90bstK5rPv3pT/MTP/ETq/uMMfzgD/4gH/3oR1/y+KqqqKpq9e8QAvv7+2xvbyMir8sxr7HGGrdDVTk5OeHSpUsY89qLsd/seQPW54411niz4Zs5b7whBOXWrVt47zl//vxt958/f55HH330JY//6Z/+aX7qp37q9Tq8NdZY45vAc889x1133fWa7+ebPW/A+tyxxhpvVnwj5403hKB8s/iJn/gJPvjBD67+fXR0xD333MN9Gz2MGBQlaAAEFcGoYkWwxiCiOCNkVuiXho2hZWez5ML5nHsu59x7d5/LF3I2Nx29nsP2LfRyzLBEegUYQVUR4g8qQAAURFExgAWxiHGIEZD4azSgoYXg4/M0gHpQBe/Bt+AD2mr6HSCgEl+HGIs4G+90FlwOrofYAcIAFQtSAwHV9vS41FE3lqMT4YUXlL1bgaNjpa4CtEJohRDAmJbBwDHZCQx6UNHjhRsDHnlyzJVrIw4OCmazHtXS4NWhGp8nRpJ7yWDEIcQrUVXiZ9FWhMUMPztmOb/CcvY0zfJ57nnonfzO/+iPsHlpl/rEMztpKAeG7UuOK08e4RtHsIbDm9dYHM5oWs/x0T51taRqGxShLMfYwlH0Mnw1pa4qFouadrlk0Ovx1nc+xFNP7lO4HuWoR9suUYSrN5SWAWIFtEX9AmsqnPUYCRQukGeenU2DCSeMByW7OwMuXxizNXHs3XiBZjHFGos4h7UWZ138bASMie+LcxlO7Op+5xxlUVDmBUWvpOj3yfMSl2X4EKiqJbPFgmq5pKobqmpJ1VQslkuWi4pl3bBsapq2ofGBECAoiHFk1lEUBb1ej+FwwKA/YDQaMhkOGff6DPs9yrIgcyb9LQAGRARB4r9FT28ndEXfeF/32eptv1dVjo+Pue++exmNRq/yX/yrh1c6d/wW/n0c2Rt4ZGus8e2JloZf4198Q+eNN4Sg7OzsYK3l+vXrt91//fp1Lly48JLHF0VBURQvud8aizWRDahKPPEqWCuUFrbGOec2Mna3crY3hLvOF9x3T59LF3tsb2f0h4I1CiJIP8P0CnRUIv0CcQ7RAKFFQ4jkBOLZWQRshtgMNQ4Rg2o6w0t6bIhkRkkrSlA0gLR6SkoMkJn4e0xc5YxBrQFrEJMhLkeNBSOINSAGaEGWiClQSYukliiRkKGeoBU7G3MevDiHuiK0SgiKqIJY1BZo7rDWYKwHsWCVtqk4ONzj6lXhuWsFV64PuXplwPW9HgcnBSezkum8ZFH38JSIKRNpi6RFjAMN+GKGz4ZgTTyedka1WDKfBtxhxvkLI7JBoJk3uMJSDAL71xYcHBxxvHfAxmYPW2Zs7L6VqgqcnExZVnNUG1QrtjY2uXV9iXFCr5eTj3doFjUHB4IxPUabE9oW8sJQ1S3GOowMETyIx1oht9ArDM4qZd7SLxaMexXnNjd5y4MXuXBhTLU44ZFHvsRTTz9LGwJiLdZYMudw1mKMRQyIBIyxZFlOZi1WhDZ4AiDGYBFM5rBZTp7niDFU1ZL5YsF8saRpPMEroY1E06si1pBlBWUZScjGYMhkPGYynrAxmTAaDRmP+oz6ffplibOOPItkxBhBEkFfMd8XlTREItEQeSWC8tISyFmiYoy84uNeC3yz5w145XOHI8PJmqCsscbrjq9zfnkx3hCCkuc5733ve/nQhz7E7/k9vweIteEPfehD/NiP/dg3viEBESW3hn5u2BxmnNu03H2+5PJOweVzOec2HRsTQ38gDIaOou+wIpALkjsoLWbQQ0Z9TC8H50A9GjQqH76J6oaYtIhbMBasS+pJuixFu0tLtLtNgBCgbdHWo41HWx8XBGPQzCXSkS7BrQNrEXHx30j6ECO50QBYQcSABJQa1BIVHIPQINqgWmN8Be0SrZbQNBhnMc6CyyArwORoaJF2GfdnBaQlcy3nduDctvCd76hZ1scsFpbjk4zjecbxScGNWwVXrpU8f23I1VslV64NmS5GtL4PaqKSlBdI1SCuxLoR1k1YzOeoP6To38Oi8sync2aHc649f8LseIZHmU0XtI1SL4WiLBmPRxweHWGygDQtbT3HWs/85ICgLdWiIZMMbIaxBQf7NdWsYXtHyPt95icHnBzOUN1AbEC1Ar9EpKY3MExGOern0E7JtOKBy1u897seZGNzwHR6xCc+/jm++IWvsKzrKIJhQA1G4oIvpIU6rf/OOJyzGKMogRAk8k+NfglE4leJRBjTE63LcVlBb9BnNBoyGg/Z2d5mZ3uXjcmIQa+kV5aMBgMGvYI8y9N+BCOgSNpH+tPolLz0h3LbyaBT+Dh7kjh7snhl3/zZ7bzeHo5X7byxxhpr3BF4w0o8H/zgB/nDf/gP893f/d18z/d8D3/pL/0lZrMZf+SP/JFveBsPPdDnrXeV7A4NGyPL7lbG1jhjdyNnUEJWWIrSUg4zslGGHThskYExmF4JpUPyHHFZOqFHMoFv0LZNyoYgJgNropIhJi4qQUEbupUpqigBFY/4FrxHQ0CbBlnU0AYwEktGRlAhbqdTZEiEKCgiHk2kRW0OkiHWplJT2rd4opICSFeGSixGWwgN+DpuuuyhmQOTISaP+wsttEtiUSaHrnQj3TFFLjboQa/Xsr3lgYrgp7TesGws85llOndcub7J1164zL9+7C6efGZIfZwhdQDnEFsgWR/rBixn+zz9yBdwg22wGzz36OOUZU4xmnAybZge7oNkbF24yObWDg+8Y4Os33DzV68xn56QZRaXZ8ymc/aOl4jt0SyU3vYGXoXesGS0uUFeZFx9+gajLUdv0OPoZIlBMFS09RQrLaOhoVc0LOdT1Ffsbjre9dbzfOC738J4o8f+4Q0+9clP8uUvPcqi8vEzVjDYyD3jf1AgaGQFgkAWy3eqGn+CgBrQQDCKJrIgzuKyjP5gwNb2FpsbW2xsTji/s825rS1GowEbkxH9Xh9nOyOZYMRgnHSUOH39hOA1fnRoKi+mUs4rEYp0M4RwR5lFX43zxhprrHFn4A0jKL//9/9+bt68yX/73/63XLt2jfe85z38y3/5L19igPt6+HP//e/g4rbiZAmuxuYtLs9xzoEPGGsxRYFkLlZGRDAui/6OVJaJ5+YAvoLQoMEjAQxxgcX2YpkCRUJAQ4iPT1WNrh4vXtG2QTWVdNpwqiYMslj+sGlRafyKmKgBUYnP9018gDGQl1FRMQ4wcBsBSYcQgHSljoTbJfyQ/p3l4ArEZXGhhPg6mwXSeigHYDJWBgW6K28PEN+jTg0CxCq5hTwXRkPDOTXcddkwvHeXr53f5tb9d1HtGdrrM5YvZIRnlvhFjjUDlq3w6Gc+z2DzQS48tEExGHF09QYP37XD3Q/ez2NfyLh+9SYHt26yfW6HYIQXnrnO4f5NfFuTFwOmx3OqZcNgNEG05LA6pK2VIstZLDxZPmNz9xzqPLPjPe5+4DwnxwU6h6Ato0mfrPTUi0OqpWfYC4zGgbffP+A3veceds9PODo+5HOf+QIf+9inaZq0yKtdLeqqGr9PRKIgChjBWsG5+LUJQVCN5TrjMvLcYVxGVhSMxyMmkwmb4xG725vcc+EiW5MNTJ5RlgVlnpNllix3UZ1R8F5PVY/0GYlGwhM8qyoOyU/S/XT//mbQEZaOZAGvS5fON4JX47yxxhpr3Bl4w3JQvhUcHx8zmUy4+fyfY3NrlNbWGpUZYo5RWSBY8BaRBkURsai0nJZikqEUvzKyCpFQqAAaIokRS7c4n6ocLfgWbcOKCIgx8aJaJKosNq0QIflYNKR1P6QyUFrYkkqDdZCXkUgkr4mqrLwv3YcknRUmBCAqLkpAxAOnht74YACDkqUSlSChgXZJ0IDkAyQriEteUnGUFZGJtho9s/dk8o1+ZIJxQM5JfRf/7Knv4J888Q6OTzYRjZ6Z0Braq4fMHnuMo0e/yPGzX2BzaPie3/Efgt1ka3eDonRcvKeHOs/nfvVrXHnhJm3r2diaEPycujrE5ULZG4KFk/0DjvaWuLJP7oYcH8y5+8FLvONdd/HYo/vcuHoTlyvVssaalkwajBlx7p77OTg6om4r6vmC3NaMyor7LxV84H33cvflMePJgMPDW3zyE5/gEx//DPO5RzGp2ibJU5Tek7SId2u/MZYiE4rS4pyjyPv0+iMGkwlbO1uMN0b08pJ+v8/mxphh2SeKWzkb4zHWOZq2xVpDkWVkucO6+KmEkHzWqogkf0n3jUwEWYMiNpaPTCojdVipKpySj7Mk5Oy/V89QCEHxQbFGXtZv0v0dHh0dMR6PX/qH+iZEd8z/Lr977UFZY403AK02/Ar/9Bs6b9wRXTyvhGzwFqSYEF+GxbAEuYroCyAN6mz0aVChVICLV52iaWVJJ2fTlTXi70TTYi027cmfdt9gkkHWInmIaoRGVUVDiyiIetQH8CGqLiS1o2lRNVGo6DwC1kEWPRRYh1oHKlEQOfNaTxuDfLqn87vE1Utp478VxNjIZIJGsmOE6Idp0NBEf002QrN+9LNoIm6dgmISAyESJCXE16MhEhljYrcUDu/7PHOyxSMnl1nqNqglVEpQjwSPZEp215hhdi+ysSRbHpGPAw+95W6KkYFBzgtfusH1J17gxs2blL0BtrAElohtcUVB3uuxXC7Yv7kH6qjmEPBsXugx2dhm//oRn/nok5TDIb6ZsZjWGGO58NAOB7duoVnOtWs3aVoF47FGuWu3x3vfeZ7v+a7LnD8/pG4DIbR88bOf5WMf+SRVS+r4gaBCV1QRFGPioq9djSWpFMYIzjpG4wm7u+fSzw7ndncZjkY4V5BlGb1ehqoyX1Y4Ixhr02cXQCwiyei6IhNnjK503VKsiC6QSoYrfnw7OksUURExxpwxx768vKKqeO9BTfTepMevscYaa7xeuKMJCjJBZANwKAZlglDG3+k1kArBoligR1QTmuTxADCI2rjYiE8qQjSLdjJBJAY2+UwkEhgC0EQVIxlW8Yr4pKiEeFu7BcQZNDNIlqFiogrSEQft/CgKTR39L2JPFQ+RpLakY5FIGQhKx7NUo6KTXhHqfSQWNvllUstzJCgWKcaQxfdJg08lHB/JDp1xs/PaRHXJaGy0jjs0iFi8WA6bLT527SJfu75JNZVIyIxg1IENkDuMGCKxKziZTtm78gRvffeD7N0qufbpF5geHFL2+xT9Eb3JEM1aFtMT8BUnJ0fY2Yyi6JPnIzb6fepRycHBlLaqycqS/taQtlqyd+sqtoBz5y9zdOuAupojxrJceLyvwAYubvfY7nne/dCI3/mD76DsOY6PDzk+PuHLX/kyH/61j1G3ybRMWsRVCPj47eiUMk4NriKSGrCEXr/P5tYW586fY/fc+WRyHTPo95HUXeOMofWxLhNIalhnuGXlj6ajpdJV3URWpKX7bnWcQSR6tyV5UjplJJZpzhph9RXJxlkx1fuAbxXnJKl0csrX11hjjTVeB9zRBOVgURKyktwZcuexEoAC1U2QI2CelJMcKAGbyh8aW4hTiScuveHMln366RZsg2IJCCKKEjM5xBiQFvVdm0YRH++SoZbOn2DitXdnXExtqdFPoqsFL6o0RJJCVHa6i3QVR9ftI0RvgyqIb0Ac5NnpVXhSQwSJTT6rUlCOFCPEZZGo+ToSkFWbcGp1Fhe3o00y7cbVTzDJd2PQYGh1zBdvXuaTNx/guB7HxdOZaJsJgeDBliVhOCGbLCkWJ1QH1/jMpz/DjetHXL7/uzGmZDadUlVzbG5owoxmNmV6uEc9X0YDamjRuqbIC9761ovY8UWe+uo1jg8PODqoMc7Q1EuapiIvLE0zIy+iitUbjNiYDMikwYYZ3/WOgnc8tMu73/UgRc+yf3DI9ZtX+fxnv8CnP/1FFlU4U1RLCobptCXBdO06SvL/RIXDGKHsl2ztbLOzu8PW1g5bm9tMJhP6gx55kcXnAqgSOhlEwXu/6uaSzkSbvokd2RAr8XvWmatJqgaGjql25OQl6EiKnBKa01/pS24rkaAEVYIPWHtmf2sVZY011nidcEcTlP/lkwP6g4ydUeD77nc8sDEnkyVKhrAFuownby0QKYAMaBFaVi5XHBBSP0Z3X1fy6O4zGEwsddACRSQ0krwf4qNa0F3qahsrRJrF54tHpEWIV82qieBE9hDViRDAhEhcjE8ZLLFUAknmF0mSu0ulAFCXIUTyEpWWbuHr5JXUGWSz1CItEBYIzUrtAYMas6opaeh6ms2qFKUaiUtXRwhhwLNHl/jla/dx5WgHGpcaW8LqvRNrEGNwozFF6wn1nP7JHouw5GB+wkUD/UGf+dEhx0fH2EzQWUW9nNHUSzQIrijo5QM2t84xPV7wtSem9DZuUY6G7B8cxPclVBQ9h8cxHI6Y7OxQHV3HLw8ZFwUP3Gt564Nb7G7k3HVpwl13nUfFc2vvJs8++zSf+NjH+cpXvsZ8EZIukjJrVl6PqFZ1YhR6u3fDWGHQ77O1tcXu7jl2tnfY3NxkY2PCeNynTLknBEWIhCSWhUxnbUETGVAHxkrc90odicRYzJnMkkBsl0djU9eLCMpZFUVMp7Sd3d4p0egeFxIZjf4TUnlLIQjuZTyyd6B9bY011riDcEcTlF95YoTrDSmywOP7Nb/vPY53bgnO9FH6CAPgGsI0rSynqkhER0g4c1+npMSyhHS+jM6vQg7Y1fOjP+BUtYhvqYI0qVTURCKTthc7brrtyZlVIxKTKPqbuEIYRdQlmT6WGGI7cDhjSunkd3fqWZFUiggeCdEzo2JAG6StkND5aQIqmozAEveZzMFxOwbFnKkdaCx3hYzjepdfu3kfX9m/j7YtIelQENWEqPxE2mcHOTQj/GKLerRNPT2iv3GZopiwvTPhxtNPUbcNxgo0c5aLOYv5ktz1CNowKuD8pV1UjljMFty6fkTb7KN4jHjy0mHzjO1RH20NedGjNyy5fM8ub3nwAvfft81992yyMRngrNC2ysHRAV/8wuf41Kc+xzNPP8d8mfxBEhfl+HKj52TVCU5XMrn9e1gUBRubG+zunGNra5uNjW02NzYZj4b0ihJrTaTAiTyKxJRjaw2rriwTiYox8jIdM5LyTU6/q10XkaZ25y50bfU9fYnSoauuntU9Z15ICIr38bPzPsT2Y86SHW4jZmusscYarzXuaIKCycD1qIzymRs5J5+q+KPvG/Cd2ycYLcCUQIXKFFmFmhlOi/ed2zAkomE4tR06YjdL1x+cykMSY+s1haOtou8loJoMrhwBi0g6CERCY9MCHlWU7so8Kh8ebMpUUY3H2ZWAOlk+mhVSeFz6EYnBbquFrkW9j55YDForZFk87lAjWscuIpH4WO06kJpYRhGJbc2dEiQSk2FTJ1NcpAy1n/D5W5f48NV7OVmMEbHgosoQvKYU3C5pNMoOZlDgqg2yrfP01ZGZbYosZziE4eaQiob57CB2GSFYdYwHY/LhkPnJnOMb+5RZTsh6lLljNp9xfDyjHOV4FeaHJ5y7cIFi3EOaGb/pOzb5vu+5j52tHkVmKcsCEUPbBo6nh3z2U5/iQx/6Vfb2j2l8iN4giMdrhLOjDVZ8krS8p5ILImRZzmg0Zntni+3tHSbjDcbjIYNBjzLPyE4NJYSOIKRqWu4sIUTDqm89xlhsFsPXbs8vYVUevB0daZbTf54hUqfPv/15L1ZPQgDfxhh9RfHxxupv4bTk9Mr+lTXWWGONVxt3NkEREBd9D14cXzu0/NzHlvxf/p0J9w9uIDID6lRaaUgDZCIUYtBZQyQNiYyks7ysFBELmqfbATRL9CIZDhPhQPNkmpwTCUiPzuMS2UVIPhdZ/Wi3CK5eTvw4oiUkBrEJTSQToukKX+Nr7vwmIfpYMF0XSLrCNwL9ZBgOMTxOQxuJjJXTUowxdJfHoil232o6FpsUgza+NpOjOuTK8m4+sv8wN+YXUXVRyUizXoxNC3oqUSgaS1ilxYz6FBu7uHpCc2vBU49fZ3GyhykEbEVbTekPRvjaY6XlrW+/xHj3Ip//1ONsnZ+wNVby/oRFA4fHx3zq489zeP0GWZ5z4dJlFnPPZCLcv1vyg9//EJcvjyAEvI9hZEEDja/5+Ec/wr/6+Q9xcFzhz5hNDZ2q1C360RfSVctWn1MqmThnGA57bG9vsr2zy9bWDhubW4zGI4qyOE2OJdlENCoeIe3TWUdrPE3T4oNn2M/JXBpd8A3i9ONL38czXTrw9cmJiBCCol5p2xTYFuJ3qisDxdKQxuyg2xS/l/pZ1lhjjTVeTbw50pd+gxAraN3AvEGXDb4JfPUw43/85TlPHPdRzVC1aFp6lCYt/LFzRkVjCUPzqJZodwnqTpURmkg6ZJk8KD6WbqQhelUAzYhEZAos04JkEXVAQewg6gNDhD5CRkeGlICQIzoEiqjMEIAapUK1RYNP7cWa0l7TTB6TDJLqoW2g1eh7cYPYQowi7RKaRYx3T1ksGmKHESaSpPi6QCSLqbmSYvzFgrh4nylAS/arLT584wJf2b+Ab/OYnJobcII4sLkkq0rqYjIQrCKFYPMMY3r4qcdpy3BrwLytONy7Tn20R1n2kawgz3r4yvLMY7e4+dw+k/6I5dzw/AvK5QcnXLi35NrTz9HOZhjN2b7rfvLRFovjY9r9F3j4nobLF3tkKeTMJHIym035hZ//ef7ZP/t5jk6WZwSHRCTFIxI/gdPCXiq5mNhui1GMVVwGo2GPnZ1Ndne32NneZrIZ1ZPhYECR51jnViQFOrUi4L1fxd8IsaTkjCVzGdasMmJf+n3vSMOZn0ilXsoUXu6xL6d8nFYKU/Ktj0qZMSaSTmPSMQfUE9XDM6WkNdZYY43XCne0gqJBYynEuaggeKGtAo/rhP/10YY/8d5tRtkh6C1EUslFlfiyG7qTrHbSu0os5Uiab9Pxt27oHwtOFZAcNJllqeOPdITl9LmrJaFrx8GlAX+dopIC17oQueh8jVesmqPJgBvLS12MfZqQHHy6NJdUWkq7DXVqea67hK/TTScvCargJZYqjAWbE9TFDJWurCMOwaIqKIYqTHjk5B4+detBjubjqMQQLcRoWCkEKiDOppec9gdo8NS3jvC3bnHuwpjxSJkdz2kWc6xzFIMBrRdGW2OoAybL6W0MMfmMh957Hi89psGwd7BgWXtcPuLeh+9FxFLNK3Z3St56v/Lu77yXvMhomoAPkXxcee45fuFDv8BnP/clqjq2QkvwyfSa/BmpmymkwZNBSeTNrN5jYxRrod8rmWxM2NnZZmtri8lkvCInvbwg68jJi7+zJI9L+kCMGIxxMTk2s1+3yya+nfKS+19MFboyzMupKC/eXkjEJIQQhwu+aD8hnHa3+RBQSQM2ORVT1lhjjTVeC9zRBCUsG6Tv4km/8YgKtiyR3PLJa8p7rgz5rXePcSa1GK/aKMMZ2yvE0k0n6afOm9sMtMTbKe48dudkiVR0P5FY3GYE4OxO0n0SVo+N7cspc0UKoEHwKfE2ZaysykLpuLvwE5MWka5FWO1pyiw+lYWIoXJpFky8P5EVJXX1FGDzFHefEbuD7JnXH0tfQftcr+/msydv5cr8HF5syoSxdLH4q9cpL8q/9YJWHn84J9w6YmuSM9lWlrOrLE72aesFAUu1bPG+xYhiC0crOQc3p2ioePIrV+lt9nnkUzd5/oln2btywDvf993c9/bLoBU3rxxilg3nL47Y2dlKpYlA0Iann3qCD/3CL/KVRx+jbn0cuBjMqmRm5DSzJo16TDHyMbk1toXH+40x5FnGcDhksrHBxsYGk8mE8XjMcNinLHIyZ1OHzRl1gljaaX0bE2ONxRmDiOCsIc/cKUH5Jkonp3kn6d1/GQ/Kix/bPb4z/K62kQhI91hr7UrxidacqNx1qbJrrLHGGq8l7miC0lw7wrRF7HspHPlGH1ycbzMLBb92xfOd5za42OsR23MbonLRGWBtKvlAzEoxoPaUYghJDZG0EFvSNTCnWSnKqqunM7auWMmLCM5t93eWzLRdJZV3YnmkC4sTGlj9RCUlLiJ21UEU02STp0XTMZkYpqZi6cbpapDoRwnp91kfXEmsyXTtyuk1a2cCjp1J03aXzx/dw5f2d1m0eTR8KhgTktojq5cWjaRpUz7moYSDBc3zN+ipZ3MrY3bwLDee/BqDzU3atqFtPbnpkxd9mqrG2pLx1oBzd29yePMqX/3Cl5keH3OyP8NkA0bjbYqe5eDmnOnRMYe3bmC88NxWyTPPn/DwQ5scnxzx2Ne+xof/9a/x9DPP0fqQVKGoiInVKAIpK4OoojE/L4Bg0rTgUzOqyzIGwyGbW1tsb22tCMpwOKTXK9OE4VgaiepMiJ+QBpqmZVHVgEaFJWXZOIEsmWNfCS/nJXmxivJN0waNfWohBcCdKolRUbHWYK1FNZZ4gsR2fGMs1spaQVljjTVeU9zRBGXxtRv4qwFT9rC9gjCuMZMct1liho7njgqeOhlzoTfo+ijS4u9TumbynUgXZU5SL7pWYkt8i1LWSVI/VsZYzizM+BShnxJY0ZX59HZyEpWTUyWF022RDLiSEUPlQFkSS0sNQoNSERNyUwszGkmEhDhFl5Dagu3K6KmiaFOjdYOEEIcHZgPUDVM+jKyOjdSpsyJrYmn8iCfmF/n43iVuzgZRfzKyUmygi7/rVJ24wBkFCYLOa/y1PczeLXquoV7scf35pzm4eozrb7KsGiQ4mmrJ1vY2TdUwm1Uc3LwJ7YKDW3vs3TqgrWGyvUV/PGQ42eH6cy8wGVzF5Uv87ISNiw8xbQ17c8uVm0d88dMf51Of+BRXrt2iDSF5gzolJJKUOOUgHbNq6uMSutC01VQCA9Y5RuMRW1ubbCeCsrm5yWQyYTAYkGcZztqUYRK32ZVP2sazrBqaJlDmjsyalc06c44sc6ckJHXQdL6Rzh/y4lLNS8o/5qVE5pWhK7XFSPTZrMpPJu7Te49zgjE2tSHHROFgUwx/+Lo7WGONNdb4lnBHExRpBSpBQ4tfKOG4Ra5X+HJBPbbc2jU8Pqn4zqEw7HlE6jPPTvNqEjmI5Yo4/C6WNbpMkmZFbuiWYU1n5lX29+3ZKdAtHuHMVW1X9rBJNSERgbMtIlEZiaUiRywdpXISxGMxS5QFaEX0vjSISSUdYucPktSTbqZQU0FdIyZHihJcP05ppkBX+aZJUYo1rHT8nqCWq/UGn9y/wBNHW1RNJDFdZ7Okt0PTwhZNuIl/BUGXnvaFWzQvPIerDgmmYro4pl4GTD6iWQSszambQHuyYH40o6lrjm8cMtrapdkQpGfpDXKGWz1+4Le+g5PZgkceOaDvGi5uKttbGVeyAvqe4UYPNnp8+kuP8JFf+RjHx4eE1YGe5tZIeo8gREWJMx0xSXESoyme3mBdwWA4Ymdnh62tTba2t9lI5GQ8GtEvS1w3P+c2OSOG8HnvaZoGI4YscxgT5+8YiCWhb3Fa8DfbUbNSYCTeti6WczTEqLqggTZ19DgTByBqMsua1kfFZS2hrLHGGq8h7miCkpWDOLTPGsQ64mydQFg2sGw4vNnyj5/b58nPzfn+7+rxrodhZyIYk4E52x6ck65lid6SOMU2KhSp9fe20g5EhaFTUiCqKWe7G86Gt3X5KsnHsiIcerotunJKt1C1qLRJpejuy1A1CAWRvCRCQgNUibzUqQwE4NG2jWrAYIKYEpEcKFDJiN1HXddIF+nPSvlRdcz8Bp8+uItP3zjPdJYTWk38TJIalWbWqMZqWQ3ilTgeyKO3DqiefBbdu04uS1rfULeBetly38NvgQyO967T29hgMjnHxbsv8sIzzzEcbRNy4eR4n+O9ffp5wdvffjd33b3Jh3/5SbYGGffeVfLu7zjPQ2+5hw9/5Ek++8gBD7wtY++g4fNfuM7xSU04oxSoxNTeGN3fmUBJRtqUyIp0Lym9RrDG0h8M2d7Z5ty5HSYbEza3NxlPJozGI/q9kswmxWvlCdGkQgR8CDRtCxIoypw8z9K+A9a5qLr8Ou3Avx5e7D152Y6dFykwYiQSEokt022X33fGkxJCVOQ6lcWv2rZDLJmtscYaa7xGuKMJCkUP0xulWSEpLl4UcQo+5obsT7f5pc+P+cgXLvCWC8/wW3/TlO/6DuHSxYqytFhsKps0yXBaJMJSAkOgH8mFxkyV0580wZjT8lBEiqZfkY+OkMRyy2kybUd2bCqlRIJ12tVz1suiq/ukU1kkpdJqmRaUFmSJsKCb4AyK2BJcDgyi1yR5Sk6P47T8pGnfsXPF0eqEr03v4qPX7+L6fAOvpwP0lFjOikJLXKjiPMIQFRQPfjpn+fTT+OtXGOSeMlOqRUB9S1tPOTm4Rn97wnI5J7MDvG+Yz04YbPTJhyOe/PIjHF2/RZb3cRsbXD82/PK/fp4QSh64f8L9lzLe+963U7dKyHc4mS+4ebNifM6Sj8a4YohvKtS3nDbpSAxC695WJQ5gNCYqKUkd694fsYZy0Gd7e5Nz53bZ2tpmMhmzMdlgOBpQlAXOulVmSJdxgkY1IoSonFRNjbGWMs+xxtCGaDy1xpwm974CXsnw+nKdOiFlmHy9x3aP7xQUTFdijOTNd507SU1Sjb4cay0+kZau9XiNNdZY47XCHU1QsuEIcSVdiUU0xaxLiO2zGj0nQTKW/l6+dO0Sj/7zEya/cJX3vW2fH/53DHddmjPotZSFYqRIi0VX6hmClHFlk0FavBpgDixBqlRa0dNjOBP21nUFaTLlyoqYRGIDeSr3xPJKVx14WbvjKlJfTpWWLtsimj+IU517iC4i6cKDccTQuM5L022nPeUmyYMTiRigcXbvM4tNfun6Zb66t0nVRgOt2EgExSs0ZzIx2hTyBtAo/uiYxdPP4K++wMAFMhMIbY2EFt9UUHtmRzNq39LUcFgvmM8P2L9xyM6lDZ5+/HEOX9inNz5P3hsS1HFyeMTm3TvsXtzgHW/Z4rve8yDGOQ4PpxxOa6rWMZst2b6c8exjFSoeYy1Bfcz2SGbQTunQbkwAEgUVSdF5qvHtNYai7LG5tcX5C+fZ3d2OnpPxmPF4xKA/oHTZKeHpPjqJRCUET+s9ddMSFMo8w9n0J5dIgzFJseme/nVKJy8mI6+klnwj7cVn9xd/H4/DBIkUNRGdOCPIYzKLcYLxEtvO1+WdNdZY4zXGHU1QfFCcxvyGmI6qyW8QTaLWGvLC4KyynNXUC6i1z1F4G7/w+RM+89gR91865m0PzXnP2xruvShsjCBzhhiwFhA9JppHu7KMQxgRg9caukC1eLvzrYTTx2pGN59HOR0AF30mNiV0ps4ddMUZbsfZ7p9Tn4t0V8CrlqOOIA3jMYpEF4xm6bddUF1N1xmkEkBdKmnFPbUh57nFDv/q6l188soudVtEQhICGlJCrJdY4WojOQltKgu1Hj89ZvnM04QXrjAqPFkh+NkSbRsa7/FNy2hzh937HuD6809jvLCxPaG/McaVhtnRAbOrxxgZUA4m7Nx9CacHvPWeHttbFdubJe/8jrsQJzz5/B5PPHmF+RIeePv9NLXnyuMHHF95Nk6F9qdluEhEThf30L13AhK0m5REF4SX5znj8Yjd3V12d+MAwM2NDUbDIYN+nzIvyGzXFZQ+qaAg0XDrvadpW1rvYzknGXSULv/EJC/M7QbYl5Zn4rfilQyzZ+9/8TbOlpxMamtefav01Ii7KhElYkaIibqBGH1vgjk1/6btv1zOyxprrLHGq4U7mqCIhMhF4j9WJ1yTZYhYXGbwbcPycEpbNaiPE3Z9ZsAMuD4bcv2xi3zuOc+vfvGIdz2w4Dc9fMIDl2vObSq9skLEr7YflziH0rUeC7F8U0IXp98lzGrnPTlbuumgaXudR0VPf5I59SUtEqqnpl45jc8/G7sv3aDBM2WluJy4dBwFog2nBuFuqnOLplTc1juuzrf4yM0H+OSN+5gtx4RaoPGRkIQu/Tal2AZBG0XbAL7Bz06orj5H+9yzlH6JWGjrBq3r6NnxDaFdsJi1DJYngDDePMelB+5ntjjk+NYNVC33vv078FRou2Bo9rnncp93vWOHC+cGnLuww/Hc8/wThzz1zE2ef+4An53jnrduMD064vEvPMLhzRfILDQ+pMVXTtt/FTCC1YA3MQPndAaTYsRgM8dwOGArdet0WSf9fp9er0dZlreFsWlHjlc+6kBoY3lnlSNi0vTq9JxuEvLZRf/l8dIBhd8IzmaknM07eaX9xOMx2ADBBEJSxALRS2NS5k5HatYEZY011ngtcUcTlFC1MWo96xbiuABZE19WM6toFvO4OAYFseS9EabM46RgG694m2XFk9d6PHuj5qNfPOC+C3Pees8R73pgydsfhNHIYxFEMrqQt7NlHEkDBaPJtiMRiTgo3G6u7bp7TklJ5/2IDT1+paasIC1R9VBWnTYrEnOm+ya1RetKZUkLiKTSkrZnnuNAinhFL3Hejw+GG8sxH7l1Lx++ej8398fUC8DHELxVi05qg42HEAhNg7YNOp9SX3mO9spz5M0UY5V6EZAQMBoQPEEbVONrPbqxR1n26G9PqP2Sk8NDXFYy3NqkV4zY6FXsjAf0y4x7797m3e+6i3PnN5guKz735cd49qpw43DB1JcY4GDvhOce/xph8TyDPKNtPJKUB0SwJr6GqBDEz96orMY3KpE8OOcYDAdsbm6wubnJcDSi3+9TliVFWZLnGc45bDK3Bo2LuWo4tUiHpJ60MSG4yIvYSnxWhTBy22DAVyzZdLn43bdOeNnHvVxJ5zQIdiW1vWQ/L/WnRGOwJJIcQkjf3tTp0z2fNdZYY43XDnc0QdGmRRtP8CHGrUucAtxWDcE3tFWFNg3iwRQFbjDA9vqpDCRYazC54jKLrTL80nL92LE/Vb5yXfnYV094+OI1vv/dM971sDIczBGJXT8rs2rnK1GfWlhtUlhsUlE8MWytm6ScclhWJKQjJ2dUlM4n0plfaZL/xUal6EzXjWie1JEE6cyv3f6hM9nKajhiynPRLO3Hoars130+tn8fv3rlQZ47mODrWPQwNna9aAjxcEIihI0S2gbfLNHljLB3HW48R744wJpASGWgGHTmCcHHqbk47n3LfZzMK5zLUFGWyzmqNdWyob06I2xusjvZ4N3veYDt3T6lFSabAxaLGf/mVz/Jxz/xGLNmm3nbJ+9t4QrPjevXOTk5ZFwGrAEf2lVJp5sto4k8WmNRzpRFOpUly+j3B2xtbbO9s8vGxiaj0YjBYBDVk7Ikz/JT5QTiii66+vhUldZ7mrYBgcxllEWBTVMGu306+8qprC/xeCSO8uuRgpdkpSSC8uL9nC3vnN3JWfLTvUbvPS9GN/RwjTXWWOO1wh1NUIwzKUTK45uK0AbwAW0bUL8aG+/yITYbIK6IflcraIBm6eO8PWexueDKjNIIvg7UDTx1a8gL+5t8/sl9Hjp3lR/4TXPe9y7LZBjLALGdt+v86BSTGBd/mjobw9Q6VUM64tD5RlSI6sgy/qQpxpoUEukSawUi+enCOhIhw8UrXUnKyOpi259RTLqFpE33JdUmpdWqCofNBv9m725+4fmHeP5wF99koIpz0dwbQgCvkc8gsd24bghNRVhOCQe30OsvUCwOcbYmKDTBJRoFIi1Ba5RAs2zwlWe8OaYcFcyOTrj+wk2Or92kqZXMjTkYnXB47RahaphsFEiz5NKFCQeHh3zhy8+xdwJKRdbPMcs9RBz3PXQPg5GQVQfo4hD1dcy3kdOyhCrROBsCwXfZsYAYnLMMBgO2NrfY3jnH5uYWk8lGirEf0uv1yLM8KicrlSwt5p3fJ3k2fPArImStXZETOPWDdBOgf1101UBN/zhDcl7sPzkb7tZNOI4lp/Qd+DpVGZEuUTdpg8bQvoicnH0vX464rLHGGmu8WrijCcq7l5/jqfpeDhnHwXdiCN6jvkGDRyTDFQPcoA+9HKyNrbCtRnlf4kJL49HC4pwhiCKFwdrYsRBCwa16wt5zl/jU0/s8+K+f4Yd/c8sHvsuzMaowsoxGR81QCroFQRI5EZrTBWalmAhoQXz758RaicRY+tVcoLNwvDiwLeJsUJxZeWMioidFV+pJp9p0x+Eh1Kh6jtoNPnLtHP/i2ft57vgc2maIj4u5tuCDTybZ2EGkjaddLqCtaKs54egQblzFndzE+DnGQBMsPsTBciaVkDR1VVlnuHbtJpOwzXx2wK1nnqdZCKFxkVdZw/RkynKx5NcOa8pRiUoscfV6I5ZNRtsGemWDaw5pmhbjttnZKTBVRX1jirUeJEdDjRgXyzoSsCZDRGh9iw9+pSQ4aynKMkbY7+ywuTVhNBowHg0YDQb0ypIiz5PqkZSQREziih7NrqsW3DaVezQSFtVAJJNRbTlLTH49b0j8pcbgvTMqyssZZs9ujzOm65SPG79nL/OcdKinX4/um6XRLHuWCFljMKw7edZY4w3Hi/6O9/7o9/LX/+u//LIP/S+++gcY/vBTp3fcAX+/dzRB+Ym3fYIXJp7/vXmYz+71OD6o0anHCxjNyVyJ7fVxgxJbOjRA27SoKk7iS5c0uBcC9aLFWRuHo4iCtTib6vhqqSn56tFFnv75Q/7Fx57i+79zznvfYbh4LtArPdYsouIhJYpH4kAXUEWIKbba+T9YErNKFqfyvdrY6ZP+G9WUZLLVtLBpF9DmOL2a7so5XeBbR4S6lFgFSdkoGslN54o5bjb5V9cf4Jeef5gXZhfQxkXS5mOeiYbosFQVaBX1ntA2qF/il1N0Pscf3CQ/uUnfLDG50tRKW3fH59GVkgPBK5fvf5C6zRDrOdk7RCSj7LtYMhBDZoWyyNHGM5/tczyHbFhg84y2qZkdzynynN3NIYOBIZhNBuMLHO8f0xzdIstqfNXG90Gy6PWwNmbCeE9dLwner6L6jTHkZcnm5iY7O7FbZzQaMhz2GYwG9Ad9iizDicTcku4t5faSy2rR73wu3uNVVzSyM1vH8omNj4GXEIaznTedWhE0nFYBu84jOd3ny5aENBEL0lRikTh+QF5euTkt70Rq0/pTFfLFKo0mMrbGGmu8vjBliYxGAPy+D3+ePzi6evo7Po2V/GWf95F3/a80z5+qnr/zD/1xii8+i79587U94G8BdzRBKTf6nLvvEg9dfgfHWY+DxtMsGurDiup6Tbsf8LMMEwx4RazgTDeRWE6rMihioOxlCBq9E52E3yVuipJlGSJKq1s8erPPoz9/yD/+8A2+68E9vvc7ah6617M5XlD25mQWZOVH6SyY0VR7OlsndeGsJih7oFqVXk4vZU8TW8Gi6uJC10W4w+k+OlOudB0+gZjXUpMMJHHxCZbnZpv861v380vPP8Stk4u0y9SNoxLnHrbJENl4aFu0bQk++m1oloTlDH/zBnLjKjkLjKsJbUvbZsmaEx9rRPEaVYXgDb4NVPUMa0LcpnrGW5sMJz0WiwWGwPlzQyaDwNHeHjdvnVC3S1QNxlm27x9Fc6lOmS83CAQ2z3k2Ngqq646mWmANWBFUzCoMzRCo6iUaOs8PCEJRFGxsbLCzvc325ibD8ZjhaBhJymBAkedkzmHtaZuudF+fMwFpHbr+rrMKR2eOlbM8IpXLVi2+rxTIFm+k2x07uf1xL1FERNIIAgiJaAQVMmejVevrdAx133vVEDNvVmpJ9EcFQNREL9caa6zxusFuTHj0//E2nvyRv3723m/4+ZmcPvZDf/vnqLTh/3T5fa/iEb66uKMJSmt2udG/yA3XYyGG0DO4SUFxd4/N9wl5Bs0LNbMvLpk/5anmqYxiYzxa13OhYlI3T2SXxpo4yFdjZLwYwEssCZDSUtWidpOb9YRf/PJlPvylPe7ZOeId905598M1999VsbMR6JchTn5dEZRT02us5BiikkLq4EndOZ3pEoiG126AYUhG11PIbZfVq0E4cR9UafstsfHGMmsLnpyd55euPcCnrt/L/nRMqIAmkR4vaAPBN6hvoIkzWbqf0Hqa5Zz6+jX02gv0wwxXxPbhtgYfctoAzngMbSQ0qvhgyHtjgrG0zYw6BMZb2wwKS1OfIB60XrK3N+dof8mgbymyBldCLzdYm2GMo1VYtpa2dWR1zWAwpzq5wfG+4nJLM/XR92Gz1Hnl8W2N70YTdIuzEbIsZ2Njg3PnzrGzHWPs+4MBo/GYyXjEoDfAuSxFo5x20qygpwMBIXk0ILYZe48kM3aXFhunJZukfpAyUOKmfEiDDDuJJniCrwjNAt82qFpc0ce4EhG38tSsfL6r1vXu3/F3KwobAiFENSke+u2EqGsrPiVXnV+mS8ntNkQsWX1DBpo11ljjW4U4x+Ef+G5uvQee/JG/9qpt12CY/r7vZfgPP/aqbfPVxB1NUE56O1ztb3NohdZqzHAwSr8Hg5EhzwyDgWF00eGfWnDzkQUvPD1l/8TRmAIVh191tLC6UvQa4hWvIyoVJnpWuh98ivvWgDEQdMAslDx67RKPXZ/zr7+8z0MXjnj7vcc8fP+cBy4r25vgXLwCNas49GgeFTwqAaVNq0o31ycQW5fzWKrQmLUi4uG2qPpOmTkLj0gbSYrG0lKjjhv1mC8cXeIjV+7m0VuXmc8HqDeRhCRuFLt1NHZJ+SaODfCe4Nv4Uy1pDm4Qbl5l4BcUWYU2C0Sb6MUJimjAEBBto/clgLEZZT+nrY5oF0eIKhsXB9z9lruoF4fsHyzIreAb4eR4wZEvsVmPLC/JnJLnsQunbgxiHJOJ0C8EZxua6oD9mwtY3iAzgohNk4o9GhpWvU/domyELMuYTCbs7O6yu7PDZGOD4XDIcDRiYzxmMBiQZRnGWqyxmC7yNa36XRdQCHHejpzZfgiB1kei5KzFJqOxMVHRiSQlEkpNil6X0Op9RaiPoD2hXR4jYRHLftmAEPpQ7OLKCXGu04u47KlBJf6zCwKUOHfnlTpvVmWm5J+6raRjJCkynZqS3sJft6dojTXWeDXw5P/9fXztP/2fXvXtZmL5e3/hL/C7d/9Lzv3sv3nVt/+t4o4mKLf6F7hRTJgCKAwJ7JSG7b6l5wPDZcNkMWdrecTmYIp9aMpNe8hjzyhfujXgqWqXIzPE2yIRkZSFgUvydvJ4SHdlmWRvDUneVkJQjEaPiCI0TNirRxw8VfPFZ4/Z/dwRD128xTvvO+St9y25fFHZGMXJuZ00tyrFcNp5oSiiKW4fQ4ym77JPOlLSXTrDqpOouy0eTcbYgDBtxzw+3+KTt+7iczcv8/z+Fk1TgDexhONTS6oCIbYPa9uiPv4E7wltizY1fnqAHlyh50/ouRYJNeJ9umJP7cj4lNYaYpdVTN0HPUEXUy7vbjAYBO69ZLjv3iFoyZe+9ASHB4f0BiW9geNkNqeqHNXS0hpDaD1FmTMe9bBWGfZ9DOgPc0KzZHZ8SB5OyLOoIImejbDvhgLGd9y5nPF4wu7uOXZ2d5lsnrYTb4zHjIbDWNJ7UVZJh1VUvuqqY6dTFF6sTHQLeRcfH1TTca0OB++V0DS08z2YX8fPb6DUBO/JrIArYlmyqVHJCFkfK7crIaek9+xxnvmK/Dp/T51i0rUQh/SdOqvMnH1t66C2NdZ4bfHkn/8Aes+Cr/7Az/J1W/C+Bdzjhvwf/tiH+eTPfuOlotcLdzRBudY/z77JcEG5x8KlPHBv1rCzqJi0S/rVEeXxVYrDa7jpPmZ6zP3tgnfuBr6vX/LE8Raf3LvEF44vcMtu4rMBJnOokXhxGjq/QbxEDXiCxqtI09Xyzp68Q4hdHeIILmdBj+emu7zwlXN86qsHbI/2ue/cHu95+ITvfGvNpYsNRd5tK+acrLpttEDppW03CJ3pszPamuQ56XwAXfkhxu+jFQFlERw36i0+f3Qvnz68zOM3z3N43CNUNvIh320ikRsf8FWNr+Zo00afTIidUd5XhOkh7bUXKOZ79KxHfAuhxRDn3QSVFAsSSULwnroWrLMUpTIuK0Zj4dxuxt337nD+3DbDUY9rV59jOb9KXZ0wr/v0R9tMJo7ldE7bGrA9rMtxmaXXU4Q5mVWswGK+pPU1mZxgshmmyDHGkhUxr8ZXLerD6v3LspzBaMzu7i47OztsbGwwGo8ZjUbxJ/lOus6VLgZwtThrZxyOcfZewyq0DT0NezNtu1IwVrNtzpDKzuTqg1IvjqlvPA7TK9BOqeolYPHeszBxLEJWzHFFj9yUSNmmGT6nwwHjN/FU4ejMrZ360RUCvy7OGmJX25FEWPQMWXkpaVtjjTVePTzxMx/gF37fz3B/1l2kfvvhjiYos2zAltY8qHPu9lPOz4/Yquf0syVZqNHFMTI7gukR/uAWTI8Q7xlljsH2kLsuWb4Lw+N7Cz7y9C0+c3OTG8ttfD5AModYgxgLQaIf42wYlwGspPAvEALGOkTAOJcMioLXQDAbHIUhR0eXePZwySce2+fS+Arvecse3/3OOW95qGZjLBgTktW1TxwkqCAVorraB12LcKeyAHSD/gigFSoLajUcNBMemV/k4zcv8+jhZQ7mI6pjh6+jAVaCRr9JSFura3SxoK2XqHpEbHz9xBk7spyhezdwR7foZ0scgbZNPhPxBG9Wl/ExtLVh2Ro8BWUJpa24tNvnne+4yM72JhvjCa6X8/wzT/Dxj3yEJ554Dq85mW042a+o6oLBsM9gBNZVFLnimxnVSYtvA21uMUZp24CwxLolag1CiTEGH2KIn/ex3VoFnItlna3t7RU5GY/HjMaRnIxHY3IXyzlnpwDfNhFYT8tF3fRieZGyYE0MYVvNv0kdSrErR7GJXHgfWB7vUT3/ReT4WarFgiAOtY4mNLQecIIRJYSKVhVbLXEaImHgRd08QVdekc5ga0QIq2P4OqRC47fsrDrU0V5N8pqkUDpjBGvffFdca6zxbwOe/bO/mV/5/f8Dd7nhG30obyjuaIJyl7/GhfaI870po3YP1x4ivkWnHk7mMK/QhUenc2R+TKhnqM0w+QhTTshHI3YHBdv3BN797jlP32j5yJeP+eizA56fbdFmI4KLwWvWGVpRxFuCiZ0paCC0aVihIXoURAgpwCqEONBPrI1kJVjE9Zgz5rHju3js4wf8i09d46ELN/m+9xzxPe+uOLdl6ZUulnMkSRykdmW6UlPcHiuKEqcsB5Z4rTlsS56uLvP5o/v49M3LXJ+OWcwy2hlIo7GjSTUGlbUKbcA3C6grJCii0cMhYglNjW8r/HROe/Ma/uZVBjqnoE2HlWYCJdNkMMlsqYoVg4jHyBHGB0rJuHh+zMNvfYDNjS1qaXnks5/nl3/hX/GVR59FKbC5ItZjZU6RjZjOlKbtMdnICX6J0ROcVXAOwUJQMlkg1IQAjXfUTRMXzxB9HxrCSjnpD4ds7+yyu73NZGMSf8ZjRqMx4+GQMs+iofWMBwNOb3czd7pyCKqnRtfQld8SSbHulNRIKjcpcR6QQGiWzPeusrjyRTi6ymw6xYtg8kHM6clLulqQiKHxAV+19HyIXqigcdhk4h2dyrE6tvSNMSkVtitVdQZYTl9duiWr/++8WEZMNAArK4Uo+Jix8wohuGusscZvEM0Pvpe/87/8ZUbmYwzNtzc5gTucoLzNf5FdM0AWM6yJbbu+btHpDJnWtAcNHCyQ2RKkwZQWih4qReyCMAaTZ9hBj6zM+Y6LwsPvEn7oRsWvfvY6H//qIc9OR8xlQPAFxjqMsahz6aSdTKg+tikHd2qE1DS1Ng6nOxMMp9FnIuKQbJepbPPZazWf+d+ucvmXb/K+tx/z/d9d8dC9NeNhwNrT7pBT/wmpjTglzaqnxXPcKE/Mz/G5k3v5ytH9XJmd57gu0VmgOWwxagmNjwtbaPGtR5uAhAZ87CwKskphIbQ1vl7ilyc0+9fwN1+gDHNy61cZH2gMYouvN0OUaI6VQGhbhrmjLDN2t0o2Jo6L56NiYSw8/7Wv8qu/9Is89uSzVL6OXpc6QzKHsxaXe4oiZtEuFgUwIjM5zrRY48nwBJ2DaCQr4mnqhiZryDKLxcXgPtUz5GSH7e1txpMJ48kG49GY8WjMcDCgzHNcIhXee4wxhODPKFVnFnNJhunUbxyipAKczrN21mLPxOt3HTHGCH454+DZr1BfewS/PODkZIl1DslyrGQY18PjMM6QWRdNyiGAWMRkScEJqTwocRYQp504cNqN44OPYx1MbFXvOn/k9EXFVyWsjrU73vjaDZjT1umgCh5av24zXmONVw3GMruYc/HbXDU5izuaoPT7h5jqMC7WWUEwMbDMmpIQWkxdEeZTdNYgatCFxc9apDfD9j1atfiQ2igzh2aCM557LwR+9LcZvv+dR3zqC1f59OM9nj7Z5kjGLGyBtAWYLEbmS2ekjR4UCUpo0mA/MQQTx9SrBsR2YWoaW5u7xc5a7OBe9u1D/PxXjvjEY8/zngdu8T3fccL9d8/Z3mgZ9gTnutbOhmhCDXj1zNTwwnLCZ48u85lb9/P87BLTZQ9fGcLSo7OAeImD+tou8EuREAihTkZYnxagZAIOAdoG6jnt8R66f50hDWUe72/qZL81KVJfhOBbtK0x6gjaItYwGVtGvZa7di3nz424eH6DVpc8+vlH+bVf+mVu3tzDWENmlHm1ZF4twDiKoodroSinFLnHiRDaCY0paMlxBoINiC2xxqcpzQ0aarwP+DTgUAWyPGcwGqWyzjaTyYTRZBJJymjCsN+nzPPUmnxqPI1R7hJJKCEpKyQikqYkS1ykPVHVUCWGmwHWGpyxaTySJHUj0Ez3OXrhS8yee4R2cUzTesQWVMFgWkNZZIjNIhnwnkZjCUkVCpeBzSKJTF+fcKbs1LU7x7TbriQVVsRIkxISKz63ySir7XX5JxGRZN+W96KRCK2j7td4PeDuvZv52y+s/l384mfRtn0Dj+g1gAiHf/B7+Ph//+p36tzJuKMJigwdMuhD1oO8h3F5bJc9OYYQkGaKaQxBIZwonDRQVygnsS15PEQuTgnVAglzZFgQLw2XZNWS+2zFXW8Rvm8sPHal5Es3J3zp+CIvtDtMszGqBYgBYxBr8MvYkosNiLHRl+DbVdONKog9TQYVIaoyNpYVPApuk5v1gJ//wnn+zSM3ue/cPm+/b8o7HzrhvotzdraUsowKxSLAs8shjxzu8Nm9+3n8+C6O5xv4xsWunDrga0UaCKFJpacYIyYh4NsabStoowE3dItsG1UZXy8JJ/uEm9fo1VP6rsU3DU0bcKox50RrRAIabFxMvSeEuDhOho5L5wwXN4ec351w+f77cYXjC5/6BJ/8yCfY2z9CjKXIY2uy98p0PmMxm1EvK8r+EJU4N8jlJZlNCk3ICMHQ4kBKPFBkQmZqQnNA2yxoaospDEVRMhiP2NraYWd7i8nmBpPJhPF4g8k4kZOiwDl7Op04nFWtoDOoRfIW1YpoUI2eDaNQt56mTQt2Spy11mJN2p4GVBvqoz3m1x9nfu1xmukJQQwu72HzEoPFuAyXx2GEGiKZ9D4qVuKhNSbpOWblgznbEnz2tknq3Wl5h/j5v7jLR190O5WIROIE6LODA08zX5Sga4KyxmsDcY5r//n3AFB9/wmPfN/fWP3uO/5f/zluHm+Pn23p/ZNPvBGH+Kpg+h++n9lFi1r4/P/1r77Rh/Omw6tOUP7sn/2z/NRP/dRt9z388MM8+uijACyXS/7Un/pT/P2///epqoof+qEf4q/+1b/K+fPnv+l9yWgTs7ED5QRxRfSINvM0IG4BskRcQAoIrkIParT2UMVSSTCKORFkGpCDGbIwBGq0XiLLBl16bOW5GAI75+G7NkuePXyWLy3u5vPzu3msOs+xjghi8A0QYhZLsBaMjZkRad4LkvJFVQkShwxGz21sZw6dzyEEtKlpa8f+8hz70w2++PSCnU/vc9/5fR6+75i33NuwdaHgqhvz8b1LPH7rIjfnW4SmD23qGAmkaPo4FE/aeBWtxNKNNhWhWUKILcaQ8l8UkKis+OkB9dXncMd7uCwmyWqTIvxNi0iTgtgEr0LjLVVtMNZRZsq4p1zczRgXwmDUp24rPvuZj/PVr36N2XQZhzQqFHkes0R8RlkY5ouG+azG+9jR5IPHZQWDcZ9QN4jJwFdIcBjjkFYJKjRSo80UsR4fLFkxYrKxwdb2Fpub22xubjDemLC5ucVoPGE0GFBmLnbcnFmAO9x++/b7zja5hABN09J6jxhD5hxZyj+JeSgB8RXLm4/T7j3OYu8KofVIVlLkBVlREMRgTI7JCoqyB8Shhh1Z8FVNaFrycoDrbaDY23JXbvu7OKN23B6j//IzeM4SlO516an79rZtyGmE7jf+h/oN4PU8b6zx5sbT/90HqLc8T/3ul1+wv/RfnN7/Px9d4s//tt/FA/+/BvvLn3m9DvFbRvXD7+PZHzb8zO/8e/zI8PiNPpw3LV4TBeWd73wnv/iLv3i6E3e6mz/5J/8k//yf/3P+0T/6R0wmE37sx36M3/t7fy8f+chHvun9hKMZmk8QadHgopLhHDLso9kmaj1qW3ANtlR0BO2xIFNiXb2XI4MA4QSdTtEFEDzqI2kQEcTFxdt6ZdRrePvkmPvlBd5bez5x4vnlm+d4ar9EQ4GIXdXqCaeTcq2LQ/4kjdThzNWuhK4jRAihxS+XhKoGSYm2klF7wwv7Pa4e7PDZJ2ZMBkvGW0o9GXPQv0goN6AoQCW10xJnAXqFNr0eVcRrHKRYV2jboNrGq/RwprzTtoS2IswOaV94Fnt4i34RsNLSNjEV1kqLIQ7/0zTErvXCsrIYV+IywbBkUFhcWNI2wq29G1x75Ms88/SzLCsfg2BS8JcxBrEWsZZ+r09Tw+HJlPliFjUKgSbvU1UVoa3IaXGikaSoYoyS4aL6Y2ycf5M5xuMRO9vbbG5vM9nYYLK5yebGBttbW/R7PYosw57J8hCS0TTEEtHti/8ZAyp6pmsnzqxpkx+l850YE0tDTdNQndykPXia+voj1NMD6nmFKwYMRn2yspdKKBaXF4jLCcHHFNrWxBlC6X/WGYrRJlKMOJ1qzW2kw1p7RlWJ3Utdd9nZ2T6npENXrclnX6+IwRhNyo/c9tzODL4KrnuV8HqdN9Z4c+K5//o3M/6+G3z4O/8C5+zgG3rOH59c4Y//B3+d/+r738Vn/vi70U9+8TU+ym8N9i0PsP+XDf/Huz7M/23n0Tf6cN70eE0IinOOCxcuvOT+o6Mjfu7nfo6/+3f/Lr/tt/02AP7m3/ybvP3tb+djH/sY3/u93/tN7UevXUe9QSc1TMaYXi95SQrQEumXoH1wFZQG+jlmSxFvkCApXTSA1GhlowHRWqxxeGdAXLxSzUvE9mlsj6kbMs23OXI7BH+O4YMTRvsZs2st1fNz9LiJ5MfG2r1RIESTYfAt3ocU+AaYNC02eFRjUqs2bUqxdWkgm0Y1RAxBS6YLx3Q+4sqtNo4DdIdQnGBHJW6zh5v0MGUePS6+ITRN5+CkbWtok+eEbvHRVbibNjVaL2hPDvA3ryC3blDaQK8whCbQti1CizGpBKSxlKUITRvTXfNccTYwclDojHoWvSK3nt3j6q0prRisyWKsuwrex1qyEcicYzws6JcDXFawt3/Mcr7EGkPuSuYnJwTfIMMerjfCr7pJNM4Iit8KxOa4rMdkPGZzK5V0JhtsbW6ytbHBoNcjz7I4GJLOVxHNrVG1ST6SM8pB7J4+XcADneIQ8CmLxqTMk8g44/s1P7zKyTOfwZy8QD0/JgRDVg7oDyeYrMATS0u9oocaScnGikFomgoayG1OqFvILHYwIkh2W57JWd9JpwRFkqVYm7igggZJAYEvUl3OprhJnNCcWUvbxr+POKFZcU5i5H/oSNGrq6K8XueNNd5cmP0H7+e3/ze/xs9M/p+8Ky+Bb4ycnMWfO/8Ffu7/c4Nn620+8f4RYbl89Q/0W8R7Pxu4mH+aH9985o0+lDsGrwlBeeyxx7h06RJlWfKBD3yAn/7pn+aee+7h05/+NE3T8IM/+IOrx77tbW/jnnvu4aMf/egrnmiqqqKqqtW/j4+jJOaPTgjlEOkVWHqIHRKcAzEYKSHk+MahS4M6gX6GHWaILdFgkLqBaokuPWiBFiWaZWAyCI5GSiq3wTTb4KCccNjb5Zkw5qmmx5WmZN9bZiLotlBuGYqHJrQ35tTPTmlvNYBDTZZ8DZ4gJsbVG1nN+onZGIqvl9GYmAyIpm0JrWIU1HR+g4DBpKt4B6r4xsO8xt+csjQBTMD0LW7UQwYZtp8jhQMb4+pRnwhRSLN2fOpE8nH/ixPCzauY4xtkssCKok001Iq0iEYy1RkWNLh0Ba70BgarS7bGObvjhrHus//k89x6/ll6wz6bm+eZ0mcRKsDS+pbWJxKmgjUZ4hz9HlgX25z3949YLGrEnlD0RxiB+VwwWUmWZigFAl5SYJkIRZaTF1GdGPRHTCYbTDY22Zxs0C97ZKmkE874N+IiHFYERQ04Y1I/k6bW6TMZIcQW3y4rxNo4vTgqLS1N5ZnvPcv0uc9T3XyKNnisGsqypDeaoNbRek/mov/mZDalbX1q5zUURUGZJ6NsXSO1xxQFJiuSByaOE5Az6kYXBmeMiWTJWqztHNzJSaOdqZZUppFVGQlS9cYYbNre6QxEXXlUorclbexVxKt93oBXPnes8cbDXb7ET/7aP2Xb/BoPZkOg/Ja290cn14BrfPqRGo/wE0/8CO4Hn31VjvVbxf/5Kzf5ExsvvNGHccfhVSco73//+/lbf+tv8fDDD3P16lV+6qd+iu///u/nS1/6EteuXSPP43C2szh//jzXrl17xW3+9E//9Evq0wDWe0w1I8z7+PkCWw6Rso+4HHWCskTaCts2YByhCUCB5ENQ8LMKZYyXgpo+S9Nn6oZUgzEndsJ1BlwvJ+xnG9yoMvaWlsOlxwcTQ2ZVCcGgRrCZgjO4e0dkdw3Rg5rlkyc015ZUSxBryFyOWofa1HKKgg80tcdIhloFq6uOipC6R2LtwaPe06ZFSMSkacENvk1XC75BgyfMWpprcXJxMAEcca6QFSgybJlhMgdOsLmLio60iK/Qg2sU0xsUtoI80DYNzUJjO3PwEFrEdKuWwZuWJpS4IqeX1fRtxaY9ZtweML/6CDefukrTePzshB3jGU/O00qfhQ8QWlofF9CAwYcQF1Fn6A1LdtQSVNg/nLFcLqgXU7Y2N/ChxdczJHNYMdggqI1llTx3FLml9TVBA71eyebGhM2tDYb9Hs651WIeYkLdqmPHp6m/YiRmuJiuUyaWM9rgV+ForKgLGCNkxJwcgtK2C46vPUH1wucJx1dplktsUVAORuRZH+OiwpUVJf1BPw2kNFRVDQFCHchsTm4zrAhIy6KeYYyjajxeavJCsNhVA3SXcAzxexkNv/E4bwsb7vJzOoJ5+qzbSArENmm/ao82qQSWXrucaft5FfBanDfglc8da7xxsBsTpCz5Rx//J/RNDmSv6vbfW+QAfOgd/xvv+P/+x9z7Hz/+hikqZjTie39tb01OfoN41QnKD//wD69uv+td7+L9738/9957L//wH/5Der3eb2ibP/ETP8EHP/jB1b+Pj4+5++670bsvwLkL2OEGMhwhvRGSDWILMBbpC2oyNHPo/ARZ1tA6QuhTN0MO7YjrvQHXexOu2gk3TJ+pGzATw8JkLCk4WSrLacCrxAAzkmauikqIC39IgWddF7Eocq6g3MkpDiqWTxzT3Gio53NclqeFpZsKXMV6gYkloTjlOECe4YyJWSTVkuDblNmVFqS2QbQhhCWhrWKLc1p0ROKgQCXELqLWE4JfrSd1Ku2oKmLB9JVsIDi/wM4OyMMcS4tvWyS0+LZB8JhEloLvzJMxSVYyoXQNWyPh3Nhj59c5eOYxTq5eRRsgBKpFw43nb7DRKjsb59in4BCDkUDQ1GlFbKft4kWGwwx0DAiHxzMW8wW6MWY06MWxAy145zAo1mbkpaPX79HLLcYJi6ZGnGE4GDAoy1WXTjQmh5TpEcUgr4EmlZtcnBIZ1ZmUDaJp+nRQYsIvpLbieDuEgPqWxWyPkytfY3n1K5jFIVW1xLiM/mAEJiMYQ916ykEPrONotoyZOGIwriDLMvp9R+6y6Btp0+eQWbIy53g2h7aHOJumDJtUfoq5OyF5p9A4ZgCNvpTTuTmx86iL3Y/qUSpPvWiW0NlWZXNGLeqUl1fTg/JanDfglc8da7z+cPfejd+d8J/8nX/OHxgdAPlrvs+v/Oa/zf1/+Y/x9j/zOP7g4DXf31m4uy6T/Z2Wn9z98Ou633+b8Jq3GW9sbPDWt76Vxx9/nN/xO34HdV1zeHh429XQ9evXX7b23KEoCoqieMn92Xf9e7idy2DLKBEYE30kAGGOtj2EDEyOuhNCVtMsC/aqTb4qF/hqfo7nTZ8bPue4FiqvBB8Ng76JV8PxnG1jx01QSJkm2snpIlCkGSudAUFZXb2anYLh9nnqwxpu1LS3FjR7C9p5G0PSMHGxsSRfiCAmBsE1ywr1NYSANTZuVAMaWgg1bbNEQgyok6ToxEGGHsHjQ0x7JRhi8mw6vJROKyjiG5wPyHSOLg8RXRBME820bQtti4Y2ljPkdHETieqGl4xSGoa5suEa5OB5Dp5/nOZ4Sm4tTa74WvGN4n3LredvsLlYMtk+Ty19lJxK49V497+gcYyiMcpwmCOMMcZwsqy4tnfIrio7m+PY/RIUxWOdo9cbMhz06fcyjIW2aTmZzWlbvyrLhODTc04VhK604/3pTB2RmKESEb8TQTV97ultTfNtUKVZzji8+RwHT36KfH4D2mOaVun1RtisQIkm2KLXI8sLVHKCGIpeD+cKXJ5FdUc1GpjFY4zF5Q5ai4Q452i2qChcLMfFoYPhjDWmG2ZpaNsW79to1u1IyyrlFqQLmutKWGcNt938oFQ66tqVV79f4bWbD/JqnDfglc8da7x+cJcvsf8D91D8p9f4le/426/7/p/6XX+DBxd/gnOfgMk//ix6puT3WsCeP8fBb3+A9j/a55Nv+Yev6b7+bcdrTlCm0ylPPPEEf+gP/SHe+973kmUZH/rQh/iRH/kRAL761a/y7LPP8oEPfOCb3rZM3g69rZXJT7raiCqYEkwPTIHSp9WKoxqeMiO+kG3xiEy4UlnmVep2IXbS4AXfhjgQ2EQjbeg6Y4i/i5kSBrGx5VKiQQQlYGzMqYiyusbBgyjZhkP7DnuuRPYKzK0Kf1gRpi2halEfTavx8CMRoW1i27Gk7IsQfSOhWRDaBXHSXyQbIZoLQJpouNWQ2ofjQpNGv8RFSQ0iBjWKcR7aKfhDnM4wWkV1xjfQNmjokkQ1KQaCGoMPimQZZa70zIIRU3TvCouT6+RakY9d9FQsPYilbaJpM4TA8cER/aZm9/xFhv1trk1jm7DB4FVxqlFREBAbSYoxY+zhjOPZgpt7Lc4q53a26JU51ma4IicrClxe0O/1KQpLS2Dv6IDDkyNG42H8PM8M1luZgzXQtAEf4sTlzl6xGvTX0Zk0DFJU0eDjdGRVFoc3uP7UFzl57iuM3QlhucAHcGUfU/RwRQ+TOVyW4T3Ui4ZAS28wBrH44GmnDW21IDQVvdwxGA+xRUmoW9rFDGcUtY75vMENNE7aThO00e4Iiem+EFUiTR4hCfggK0KtSR26Lafttg4eSWT4dlLykinNr+E049fyvLHG6wPJcp75r76b+qEFT/z2v/aGHssTv++vwe+Dt77rP+P+P/PR12w/dmPCI3/uHp764Tf29f7bgledoPzpP/2n+V2/63dx7733cuXKFX7yJ38Say0/+qM/ymQy4Y/+0T/KBz/4Qba2thiPx/z4j/84H/jAB35DTnwhS9kiJGJyOqwOHJgMzXIqv8mzVcuj4vgsGU+0jpMGWk4HoqkYQhsNoUDyeKS2Uh+VDSNJCk/TXeMQlHQdnsovuprUlq40A6kERPyxkO0OyDZ6+HmDP4pEpT2Y0x4sCbXvCv1xgUjzXbwGVGN2ifoK8CAe0oRlVUXUR29AiPkhhniFDT51pITYLhNMbGOWgIQZxh+RmymWqNiEpgFfJQXJJX8KeASvDvUWrGOUB8ZFS768guxfR8MJQlRbvI9X9i4zxLmKEpWMoFgMy/mSbO8alx8omAwmPHsUOJgGlq0kb4jQRcwbowz6FpcPGc4zZvOKo5MpeZ6xuzWkPxwyHAwoen1cEbNEEIPVhuV8wf7BARvjCSqCcw5nbPR9JFWs9bHjRgExWYr/OBPtHrpkWjBWVrOGQjXj8NrTXHvsM4TDpxi5Fr/wVIuaoj8gL/sEkxGMxbkseWRSSqxYxMYwNjEOY+1qAnPRK8h7BdZZtKpR7/FGOFo2HM0Dgw1PGzwuBcatEmWTutOZVyUNJ+zC3owIWEvnfO2Mri8ZikjnoT2dxHw2AO42kvcq4fU8b6zx2uLp/+4DtPcusTbwtR94c4WPfe0/+Z+4f+uP8dY//slvaTv6fe/hif/spX8BvX7NU9/7//6Wtr3GKV51gvL888/zoz/6o+zt7bG7u8tv+S2/hY997GPs7u4C8Bf/4l/EGMOP/MiP3Ba49BuDR+nSLFMQ2m2nTUNDjxtS8gXxfCIoTy49y4UkyVwRNYSQujTaeB1q0kk9zqzRVdtwPEGnjBQrSAYulySZp8yzthM1NBKboAQPeMF4JTQ+BqaJYHoOk1vcpEd+cUR9MKXdO6bZO6Y9WaCLBppuEJ9HtUK1iZ00AohiCbEzR+NEYSOKlYAxAeuihF9XUR0gZWeIBeta8MfQHOPsEhuWECpoonISfRZmlZUS1ODJ8Wqw1tDPAoP2mP5in7y5QW6q2M7aCr6JpQ9norEUUawTrDXREExgOMgpCqEnDQ/dP+FBn/P5J27y9M2KKk3ktWLpijFioF9aer0BG+Me00XDslpwMoXhoEevl7G5OWI4GmFczvF0xmyxwCxrjo6OOTo8iq3F/QHBRMOLEfBBaZoWH9qVgTZ+lyI98iFQty0afMxMUfB1zfH+NV547PPcfOwz9PWEzYGjXixZNp6iN6QYDvDdFwPBiANT0CoUNsOH2MZurMO6LMbiW8Gpp9cvcZnFL+dok+Rom7E3rWjbXhyn0Jl8PSt/iG/j3CDrHG7Vcnz69xAS4Q0qq5ZofZE6Er0prIyx6Ze3EZTV414mJO43itf3vLHGq43F7/keLvzpJwD4F3f/TOrKeXPiy//+z/Kev/fHuP9HP/+Kj9Hf/G42/ofnX/H37xl/lH+189XX4vBedzxSz/k3/+X7yfjUG30oL4Hoq3mWeZ1wfHzMZDJh79kPMx6PEMmRrI+4Mdh+almJC+yJhy/XgV+de76wpxwdKe0srFQE9QFaxYhZtVF2Kkgsh3Rqt8YcCgcmV/oDy85Y2BkIAwNGA7WHoyXcmgn7Ry3VTAmVog1oGyfR4gPWWbAG2kBoooGV4KP3oInzbPxsQXMwpdk/xs8X+HkFdQxXE/GYkEpKxiPEjiC1ihGLSgZkqBqCl9hppIJxFpMFjF2g7R5UNymYY3SJ+BohBrhFZ2gM9woayUnjHUFy8txR5p5hsWC4eJaxm1KYJtp+00BEI9FAjAbauqGuQyQEhnj1HgK9MmO0NeLu++9he2eL0WTCjaM5n3/6iMeuNNSk9mUsIU3OdcauItubEGiagDXC5tYG99x1F3fdfRdbO9sYNdzaP+Tq/gG9Xo9L57Y5f26X8+fOsb2xSa9XkDmHNZam9SzrCjGGsixiRH1q0w2q1E1N1cQU3bA8YXpwg8Mbz3Lt6S9xcuVJtgYZG6OSulpiRbBFgS3HYApwljzPyPMBWdEjiEXVkNkemFiWMtZSZDlGPI6WPHf0Bz20XdDMprTLhrpqkcGIz+0rbnCOSxcuMxiPyPJs1YXUReNXTY1zGWWWJdXmdI4OxG6hqEol8pHkkq6f57bHiqwC687G/3fbPDw85OKlXY6OjhiPx6/DX/63ju7c8e/yu3Hy6naPfLtCf/O7+cm//Tf5vvK1K/m92jgKC/732V2v+Ptde8y/129exyN64/CxpecnH3jv67a/Vht+hX/6DZ037uhZPPrcJwi9HIKDbIBMzmG3L0O5C2ZEIGemwvVGuXaknOx7QhOv5BXFVwEJJpYk9LS992wuhBoTq0WpQycbKpe3LO/cybg7D1w0yoYVcuOYK+w1ylfn8KXScWXPc3zSEhDwkOUm5nsYoW1jC2+oF7TLRfR7JPOtBgXrMRNDPhgQ2gL1FVLVhLbFtwHqllDXsFS0NvgmZr9450AyDBkQcIXB06AExLTAMaG+galvkuscR4U2NWgbVRhVfCqVGQJqDIulw2tGr2/I3ZKezhn7A8b5IZnGfJUKjxWLaCAQc0FCgLyX44pAaE+H7/XLPuOtIVvjTcpySNu0LI+P2O31+IF3XqLvrvLV64FZ40EMKkQPhRFcZiEtyIWN5s66rpgv5rRtiw3EDh9t6DllXDgyk3E0q1jc2ONk2TLs9xj3S4apO0RVV5kngtC2DaDMTg45PrjO7PAmi6NrTG9eoT64wfJkn3p2yHjYZ2cyYTGf0VZLvHFkrk9TtxgHg2JEUfZwWYF1GaPBEGOySF5MjrEZkSXX6HJJ3rP0ehn4BX4xwwQBLL5tMCYjyx29wQCXx2ydmAGTyjKp7Oh9iG3gwm0e1tWMoRCZYugISfJ2d83GtykpiZi8knLysrH5a3zbQJzjf37yVyjlI99w8uubBRPT4w+O9t7ow1jj18EdTVBkOUOoYwnFzcAsCVmFhArJLqJ2xLwtOKqF6ULw3kCjhCYumHiIsZhJJfHE+5NqIpmJNX4gywLDieGhbct3DpWHiyUXM2FkDZlJc1FQKmc4Z5UdLI9mcG0Ei4WQNZ6NMmeQG5o2MJs1HC8yjuZwcBiYz5Tl8QLxHtqGkBZJcTZOO3aDFAnvMC5Lc3xMnNJceZqTGe3BgjDrZg0BaQBfLPR4RI7x1RVYXiczM4xpCHUFbYORloCPQ/+CxkXTZFSVJUhGmcPAzOnJAjd9FsIRbRHQNMsGDK0PeJ/i84mzZPLcImJwmcFllqJXMtnaYjQcMuiVBN8yWwba2uBbz2hD+Z6HzzEojnnk+RNmHmqNsf/GQJ7HidUEIeCxJs68WS4X3Lh1M6agZo5mOaPAU0rLqIBePydzlrCcc1AvODwWBkVJryxw1pJZQ6+XY4NnerTH0d4L3HjqS9SH1/DLEywBv1zQVDOapmbQK9jdGjGbzpgv51hDLMtINDObAMtFDcbRtzmCUtUeRSjKHOdipoxRwYaAyyy5E3R5QtPUqGRxxk9Vkfd7nODwpqAo+1jnEITgA0EUSUF+ddPQek+e51jjouckURHUrMo0kbeYlW/qtknFsGotfnFZ58Uwa4LybQ1z/z3c4968pZw17nzc0QRFWwP9DexogpRDyHqo6yPkaFtTtzWHteVw4VjWgdAEtFJMkzwodO3A0ZOgdTSkgsG4WIvPXKA/sJzfzHhw6HlbPuUtWcUFE+iZAmNKVHLiWyn0UO7LhY0N5d6+4eZSqCrPyBi2e0JpPHUTOJq1XJ+2PHfkeaKX89w+3ApCWLSEOsMUirFZbFEVTR1DkQhoSFfI1kSvSPDYSYGe94RlTXu0oD2e448qmDeEek7wxxBuYNsbZOGE3FSgdVRjvCcQ5+MEjcqHqqVpLVle0MsCtj7CTm/h/AGuPqaRlkVtEFtjM4cVi3MGYw0ud5gU7S8iiLFkRUZv0GNje4feYIDWcTEd9vr4tiGEhqZZcnhzSW844j33jRhkniduNezPYRlicmsm4FwMIRNV8txQ5hkug3Z6i1vNMX0HxldoNeP4RgN7m+S9EZkYbJ5hihEmK5lmBS7vrciPr2dxBtHJDab7L3By6wqFi4u/9x4TPLlVtre3GQxHTKcLZtMpYoV8MCKow9cNeWbBRNOy+orQ5lhxeGryXo6RQFsvCdUC5wN50aPs5wSFpbcoAywOpMYVDjsZczQTbFaQZTlGbPJRx5JabjKqtma+XJJnGWVRxHZphKAtsY04mpYl+WoMupoBdJaMdI3HHWl5uSGKpN+vFZRvX4Tf8h7+1t/9K8CaoKzx2uGOJiiyfS/m8kMw2EKyIZgc0RRS4YXQZFS1oVoo7VzRhRKqrschxE4dJKomAcQZcIJxBtcTJiO4NIb7hpYHysBdpuKcXTCxc7IYjIEaC5yaIQUll8CuEzasUheRAGQGrImxWt576qLlqNdysW/o90tM2WcWlixPGmxLVHWMAxFMmtcT+245HQSDpoF7Gk2zmUVMjsvBDDx1OaO+dYuwfw2qA7IwxekcyyINC+xKSk10sXiLKrRqCOKwuSOTE4rlPnm1j6sPyWiwxE6juk2+BBNbr51zuFzIQ0aRR9NnUTjy3JEXGYPJmMF4Qq/Xo60raCpa9acD+hYVhRWaI4/L5ty1WbAxcLxw0HD1qGJeC048hVkAAWegn2c4TjCVR9TjT2qsUSS0NIsljW+pb8RsE0vsVin6A4x1IBabFdgixwgs5zNCs2R3MmBghUZafOOpq5q2WlLkGZuXzjMY9anqiqpa0rYVoRXy/hhJ5tM2BDJjcXlOkRfkmUWkochzMlNj0Og7cT0cMUit1kDwGaaYRA9Qs8RKjevlMNrg4NYBWb+MpbNYg4zvuXWoBubzOH++X5ZkaThglPVSqKD61LVjgJiATEqfjV+n20s73e3VfSt1ZfWfNb6N8Qf+xr/k4lo9WeM1xh1NUMz5h5HNB8FEY6wgIHHRxSgO2HDCLsq2hUUuLDV12RB9FkEVyaPx0jhBCihLYXcLHt60fEffcJ8Tdi30xWGljwlFXABMNKQKNuaWrEwsMc8kEyWzRPWDrqMiIEZxNqPMMyiEG2p4vrFkvUBdS5oQ3F2xagpIi7cBJGVc4HWVdxHqmtAsaeZT/OKIML2Fzm7g5vvY5ggNS8QvYxuw1vjQpCyM1A0iOV4zAlk0bjqlpwcUi2u45S2cr3DiY9dTyppRISaZqhK8EmhpQ/LX1Iayb7BZG0szZYlxJSB4H6c1e1Xq2SyFhnnauqaxgjM1airccslkMuKhc5btEo5mC6rFnFBVBO/Ji4xeKDHGMpvPMAIWJXMOIeBymC+jwdWIsGxqNCi+WdIf9jHWkEuGpCTVkTGEQiiKDGeE8+fPUzcV06MjKBxFWYIRjg4PWCyq2EodQFzGsqrJS4uow1qDzWLrMBoD48R4ZAm0DdY6vDjKrIdmGV4NQTJsuYlzJc3iGHw0Lxubcet4waIK9MdZJLnpx7k47HA6n1E3Db1eGduYUxda5LOpJV5TuUe6cPs4Z6dV7WTEl1VLVvN9JPVli6w8Wnecu36NNda4DY16/vDf+THu47XLhvlWcEcTFO3vomYYWziJHpB4mRjTVZ2Bi87zrr7DmoxRD67OArMKqjaeZMUILo+kpFcYMhfY7RseHBkeHggPOGHDCJkxCAVIQRxRTFQ5bht7r3T9EIiJag5+lSobjzF6KIwJiPHkNpAZxQpkzgJ1vKZN03RTWxHBe8RIVFKCEtoYY68SCE1FfXhAfXiTZnYA9QkmzLCLE8L0BF0ucOKxVAgthDZOOg7Rn9BqhlIQJMdlGblrKZo9htVVRuEYK4sUj0/07KimmburFhCMxNIBMcIEk1usWKqqRUxOPtyiGE4iMfEt+Dh00ABNGzuYQuuZVy0igTwr8G3gQANFZhk5pTdUqsywOGmoF0tEHXkIjMY7FJmlaWogTsUltKtAtZP5krr1GOIMGVGfPD4ZwSl+WWGMZTAcUvT7OJuR5xlFkcH8hNJ7+pmjDZ66XqIhZsU0TYtgKKzBNxU4G5NqVanFEJqGpcZSirMWawy9Xo+8LMizEvKAzXvk/QyTl2iwqK+wUgFLgq8ImnFt/wQfYvy9MTb6blzc3mKxZL5cxs6dokwdNrFQox2R0K5wY5DuZiIYPg0cfHG55sUJspHkhDSfKMbcm7WQ8m2Jp/78B/ht/Z9hXd658xEI3PffvDnJCdzpBMVYkDbK14BqQJopWk8hVEizZBAcD2UjNhhyD4YXjOFaLkxNRmtjzkYvFzYGhmEB49xyzhku5MKOg76AMxDD1+MV66rVJx7FGcU7yuexrt/d59OPic9XiSZFMaCCs4rNlTwz9AvHsZMYs68e9S0hxJZi39SxJNN6tA2EtkGbmlAtqA9vUR/cxNdTVBuMtklNWWDrhkIC1tRIaGK3TvDRYIngcTT0yNyAwloyqemHE/LqOv16n1w8uYtdSovW4zVmh4QuvVcEQ0w1FaPkmaMoclxmqBslG/TZOHcX4+0LjIYlhQ001YL5YkFbL3EmBpf5NnbsdLSnqRtQpfU18xBLZHnu6OUOGeQMehl168nyHFVlOBqT5wVNPWe5WKLe4H0dy07O0tYNLstwzuKMkNnor5G0UDetZzqvsXmPpl2CsQStCEEp8hzJMur5nOPZgmGvINDi8oxeniPWYE3AakNoqkjU8pKmbqjrBsEiKmTOUVeBXi/Q6zu8BJy0NPMltrHkGWjmMWGONkuCDxwet7ywtyQf7mCswZr4epyztK1nsVyACGVZUOR5bI8OGlWpFTmJ39FTIS52/4QQEBP9PAZuU+1eGuAWQDSZs+NX3ofVl3yNbyO87QNPcf+bOOdkjX97cEcTFOOPkcpDGwfiUVeE6R6c7OPnJ5hegWxs0yun3OUKzpcZ71DhUA3TkLP0BqxlkPfp5xm90tEvS3LrySTg0jA2cLepIF1jZpfEGe960RUokNqEXvKjaFJXLIU1bA9hY+4ZuYY9aWnqOWFR4Zs4D0frFvWJWLQtuqwJTbyKb6d71Ee34uwcWqxVjK/xsylSTcldILMV4quouHReBCN472ilH3M6rOJkTt7sUyyvUzb7ZNoQRGiDYi2UYmgaZbkaEhdLDdZAnmcYBxKUxrdY6THc2uTeBx/gwuWLZEWOaE01PWA+XxLUgsmo25ZALCP4EKKBU1vausL7qOhYE6/+fdtSSUCsw9OQ9wcojkU95+LOefJ8wP5eJBVVVcfylwj9XhnzTcQCildPwFE1DZk1ZFlBCNDv9ZmdnCAuY3o8J3cBawJZZvGLBS7LUBxeDWLjsWVlxnIxx9oG1KLqyVyJs9AqjEcTyrJErCPLSqyN+SvWFajJab0QaEBneD8nLJcYaaGpmLWGxw6POFyUXN4sYgaMlZhAC1SLJd57irKgyLOkeHTfw0758KffN9VEAiEExSuYEHDG3hZn35WIum10M5LoyMkqgG6NNdZY47XDHU1QwjOfpTHArEZOljCrCLMT9HAfSoe/uIttTpDBAMFSLD3uZMmkjgFmGgTyEvETXO8Sxm2DrZA0FDCOAc9JxSNWBGV18g6rxNEzk+VYkRb86sQea/5hZVzU1VVsFEoHbU3fzMlkhl9O8cdz/LKOfpqgqI/5KKGu0KZCfUUzP6E62oN2iWrA5gbjK8LiGNeekJklztbgG7TVVQnKa6D1DjU98qLEmYqNgWHSa5D9G8j8FjZ41MR8mDi8TymsxWWKNoE2XUZba2iDsqwabCMM+jmjjT67F3fZOHeOzc0RnjntbIpvWqrFApv1kEwJS/D1EpoKMVA6JbicplFycTgRnLUEbbFZDCU7nM0QhI3hCFUhywuKMobDzeZTlnWD16gOOVsQwgKjihQODYa8zDHW4L2wWMwhs/SKIT5AUy9xNhKamVSoV9o6Tp1WKzRtw/+fvT8NtmxN7zqx3zuutfZwhsy8N++9VaWiShIgBAhCEgJMONyhspGwxRiEBfoACKMALGxMd+OgDXTgxkEEVreFFMEQDhxAN8OX7pDtMMiBIQhsIyQGg0BTVUmlqtLVHTPznLOHNbzD4w/Pu0/mFSBVqUvKytJ5KrLuGfd599prr/e/nuc/BA+2cTFKreS2BushlwTG0W9WWCd0pjL0htg5XIzE2BG7DoujGs9SK2kZMeOE95bsCsZbjPWM08LNWHh0ZYjbc7rYY9uYyGJYpplxGvHe03Vd493Qxo4njkjLEBI13DONxH0yIzxZ+v/Uug1LvB0xcvuxtODMp+2Yu7qru7qrn5t6sQHKD/0gtRrq4yM83sP1DTIeqF0gvP8+ZusxVwYOI+VwgJsr/f6UIVfAY/s1PHiAuCvEfxArL4HvEeub22xRrwjxqHwGpNnLG1OeAhdpd5qiUmWdgBS1JH+GjCpFKGL0LhQoYjjD8r6V5RMhs3Ezj/OBNB2RKd8SeS1ArkheqHkiH3ek3RWyzNqqdxWTF/L+CuYbgpmIZoLl5IbYLP0RSnUYu6aLgfVq4XxjuXfe0XlLrYE8GxWSCKSivI1SLbMUgjEM3rHUSgaQQhc8/dDRryL94NlsB2K0RKdS4PlYWKaJmhPeW7quY15GnLOYLlLqQimZcV60G7DasEwjOS0c9nu66BjHox6r83OWVDkeZ5zzhN4wrDaM08g4J5x1ZBNxDkLwDEPAUEi5ME4Lq75nnBLWCOuhB6ksy8J6cw7WMs8zy5yI3mP7geNhTyqJLgRKWRj6npxzM8qxlALeRaZpJFh1ki1VSMcdwXumWkhpoludgVhyBhcDIpllHjHlyNobQoWaE7V45gJzykyTkLOqgHzzm/HeI6UyjiMCxBjxzjW7+9qI4opSpAlvNIun3nqe6CCN5v9j3iPKuXVNNoBp6cjtrL/9QSO3/Ja7uqu7uqufq3qxAcrH3qBWB8cZpj2SF0ywhPMIg45vanFAbcm8CyIjxiyYlCjHhBxXGFOR7QDrNRJ6jHVQHOIqhqR2+Kaiyp/CyXVVgQpPSYftzrI55GuHRDTr5VamWdE2u3VqiNUkwz3CSmZCnZGs/2rOSK6Ni5GRlMnzkTrtydNBlTs5gSkqq93vqPvHdG7BdwlITW3jVMpbwBhPFyLBCdtN5qWHW1ZnHd6CKZa6uqCEd3CzBg4aaygYxFRS4yBHKtEavNGRg/MOZyuUhZzBOM/55QNiXLPfj6QCORdqSQSvnQdDwUii1qzjn8XoyMGAMwUQSq1U0TA/h1PVTzEsVfDB4fuOJ9dXTPNCCD3WBuZlZJlnJbp2A0KmFoORwma9RsQhVpVRwaCvi7OM44gLER860jyzjj1Cpe965lHwztJ1a6QWpBR8CFQjzNOEWw0InsM4swk90+GAPyU+GzWqm48HxjFRqyMMLVk5zQyhaPfGKN+mYKjGY5xjWPUMNSpoC5EuRpyxTPPEvCw4H/DO41pMgxjTOCJyK0UX+17TNWvtbf7OqQliTkMcEax96ovSTusGrqWRjLVbeOqn3NUvvPq33/9B3vjQ/k5mfFc/5/ViA5RHe3VaNQmGgokBVgGzDsimQ0LEWNO8QsA4hwQPaQaTMK6Az0g9wuEKuX4Efa/dEb9GSRUBTGwfC1JnKAvURcc0DYzoRRzAUtXZnoryEEoBYxzexcYHACmnBB292JdcyfNMmmbKkijLgsxZk41roaSJMs/k6YCkIzXNSMkYqqYYzwfK8RonC32oBFsxVR+71krOyuPovONsbbm87Li4t6Jf9VjTcJYBu71H3p6TxnewBXwUNW8zliSGmiopV7wRnLc4LJRKWSrOBoJzxBC5uVmQKbJarehWPZ0RyjKS5x0lTZiaMDVTlllTfn1gygnvA9M0Mo8HcirEGMhFSAjee8ZJxzDOB5y11FKZphljvKqdUsE7Ty6ZXDPTPNGHgHWe4ANJDCF6liVT0Nwd51xzFy5Y73B9oJRCSkn/jjcMqzXGGqZxpOpshOBt8z2BhMd0TsOrFRZRyoKplmgcplpC8FQfMQ5qygR0fDelBVszQibVAs7Tb7Z47zlbDXTrnm7V0w8DVYTDOFJEGIISZi0nEMJt5+Q04qE8TSMGbh2PpYUFGk1l5JZvchoNlacE2VO6tGk5SCcF0KmjeFe/sOpL/8j38nc/8iX8/vM3n/dS7uoLvF5ogGLsjAkGGQSzidjBI32HxA2mX4O1yDJpOu90gOmAmY7INEEtij18BTPDfI288zoyHTCrLQwbdaft15gwqGKoZjilCdel3V5aas7kJTX/FU8xjmoD1TuqjWB7bAioQuXEBdCNohjLnCtXu5Hrm4ndzUg+zsi8UPNCSVnVOtOo/JMyU8qE5AxFsKYQbKIuO0Id6WMluoyjUJv9vFSLt5bVKnJ+3nHvcmBz1hPCKa22qXGcQ7oN5uwl0pMrfC24thFXdXuhYMlAyerDYq0ahoVma+8MHHcTKwvrdc9q1RODgZooJZOctDyhREkz3inpslIxznKYZo6HAyVPVCyyGApq8S84uhggZ/KcOC6Z9bCiVCV9CpUw9CzLQl5m5nGklgItCyfEgWAt8/QE5wLGeEQKuVSs8/T9gFjBWKi1EELEWEtOqJGfCxhXCLHinKHUgjGBlISzizN219fsbm5A1mAU+HgfqDVjraPkCbyQjjPBBryzlFw1u0cWvNMORS2ZZTwAgfPVBTU4YuwwVThMI0taGGJHF5rnCRrUqKZr2rU7dTjsScTTRjel+ZqoYKqNglDp8O1I5zSurI1DdSK2GABLlaK/d9dAuau7eqHrK/7q/4oPfp56oMALDlCqTNB12HWAwSF9B6st1vd6YV2Oeju5LDAekPGauowYEUwGEYPYgikL9rhDphneeYfiI6zXuLMLzNkZEiOnyz85Q8rqxFpFVT61avvbe/AR6yI1rqjdGvpAtQYj9db7Q0PeDKlWxiS8viv82OsLr7+958njA2k/UZaFPI9KiJ0myjIhpWAkQ8kgGUwlxkIvI6kewS14K0hNTFWUQ4OlD5bzTeDlV87ZXKwIwTQPi2YgZ4STQYbxEb++z3X6JPYwsllZNh68rURrKdaQvSPNhbpUchU6p+RLi8G6QNev2J5tOb93zma7wplMmhJTEUqiOdgWxFQMzWa+FlKadZyVMrVUQu/BOvKckSJEr2OcVBeK8bop50Kphs6jo6tuIJfclCkw9B1ddFhn2+c9dbPhen8gl4SzFu8DUoWlCiUvdFZHOj5EHfdJZRh6+vUGs7eU5JjmCZHCajUQxVJTITrDMRdEDLVmcipIrQTnsUUQZrz3GBPA9swJdvsD1liG3pHFoIGNGVsSq26NqZWbYyZcj8xzJeWZLgb6vlPQUwWxYBuZtQhNZqzcIeVzN84IKGH4NAqSqmsV4RRufKsCauM8TsZuRr9YpWhWU/v8rn5h1n/9n3wD3/CXv/2FCwm8q/fWh//Cj1Ce9yJ+mnqhAYoxlurUsdP5jmrXUDoloEpBSoKSYD5Qxx0sk45McqVMGecDYJEyIfuJasAUgQziAnm7wazX2C5iDNQlI+NCmWZYErW0u9EQsases+4wqzVmWGNXW2S4oA4TZtgiPrYbUWnaHkMpht3e8ONvLnzircwbjw4cnuyph4k6acqw5JGaR0RSc2xdlAdDwbtEZMKmGzozUm2ilsw8JWo1XGw67p0PnJ9ZLi42xM0a62ybAZza8089LwTBGEsYVpTY82T/iP1ceHBmubcOOKm4KjgMWMMMlCRUCqtVpBs6Vpst9x8+5OKVV+nXGwILy/HIMk6UVNXnrWqXopRCxlByYplHJYnWyvZ8o1JkAyUVnDVE78nzgRod3nmO00z0keWoniWC8kHMbsd6tWZz75Jus0EojIcDecmsegWaYjSBeUlCN2yo3lOWJsPGcBhnvBX6QfA+4IKlUhhWA6UKJXlKKVRj6FdrjAsc9gd8P7CxnuA9pRp8jDhnmecJMwvOB6zpEBGmZSZlYXc40EfPNEH0vkm2FVwsuVLDmnv3H1KAT7/1DnMtrFcrzubCdjWw7psM29qmuFLQeQIcperl55Z/Is+ClvaaP0uDPRmdcOKfgLXS9D/PJBvLU0v8u/qFV93/459xUHnfXd3Vz1m92ACldSZMceRisbVRUzNQW35NmTHLiJkm6rw09U4DCvOEHEa9GcxZyYKmqHjHergJ4DoKFqkCS1FVTC3aNrcGkUJ1lho9boiYzRq259jze5TNNazPYbWFOGBiBy5SamUqcEiO1x9bPvFW4fW3F959dMOy21MOx2ZdP1Nzas6yyn8RFiwVZzI+j6TdFZQRI4l5HpmWidUw8P6XL3jlwYazdUd/1kHsQKyOloz6WJRSbrv3T51uBULP5UsvI4/eYe2hD5YqhiVV6lIw1hK8I1lDKkoedjFgQs9wds7Z5RmmHJmv94zpSJ5mpEKuibwccLbgg6Nmw831NUYq0ziql4q1TOM1xnlqgVwqse/JxuGCY3ezox86VnHAese8zJhG4JyWhb7r8MEypZl194BuWNH1a3aPn1CB46SZNcZ7nDGIgWmeKMvczOB6Vust83TUoVZV59sSCtM0E4LHO1jlnnmckKzpyT44vN/SrStOhHmemecFh6NiyNOI805HjFVIyaDxDEKaZ0LfE33Ee0cpibEUxtRxdv4a55eX7KcZd74F5ymokd0b4xWpJKJ3nA89fdfRDwPBq5vsiVlycpK1Vjk3UquyR05yYXeyv7e3kuITQdmap5Ynt+RZY56qfe7qF2z9L7/qt/F3//Xff97LuKufZX3kd38z7tG/fN7L+GnrhQYoZX/E9AaJHjMHjKkgMxIdIhZqgjS1YLw2Sw8eYyNSBZcqdTkihyOIUD2YGLQDYwPg0S/quIBQwQeUeVgwNSGpQJ4gCTIZZD5g5hGTZ+wyIdMBO54j6y2565hNoJhIro7d5HjnyvJ4pzkzy3GkHo7U+aBOsTljio5CYMHYjKkZR8LmiXLzBLscyV4oeUJy4f56zauv3ePhw3O6lWfoNBivNPAlTXhUBe08tDvqn+ok2q03LFa4v3JEA2nRkY4ppjnrVmJ0GFPZbLdszs9wq4HYdTqmyAmHYdxfU8UgJiJAzjNzPoIY0jQpVyYljFRyWsAYxuPCdm3pELypIAlvDPO8kHJmvd3y7s2O9z18QOw8y9IM7RrgWkplWG2RaqilKVOMsKQJgyqKvHPkZULyEe9jI+p6qJXr3Z7LizOkJow19KEjNy5Tf3ahTrcFHj/eM6crVmWg7wfGJDx45SFWCo/eeYt8OOh54yObswsO+xs8FpGCdzpm88ZSUqbMM8e6IAg+RObhJbrtBzm/fI1cVcXVR0/sIjgPFeZ5ZpwmROA4F67HPfb6SNc51l3UkVdwajXobQvH1A5WaeZ4T2+B7VPp8MmBttn0n8Brbc6xdynGdwVQnzzhn06FX9vftVFexPK7+fN+SPtCAxQb3a20klqRMuvtXjFNYJAVpBRRQqB32LiCuMZYi8wJTIdIwCyTApwqUDzWdkhY43wPaPscqhJla4I0I3lBkjq9GlG5qpgRWytVCiYvmOVIWSZympn7DSX0TCZyrJGrY8fjveXJzcT1kyP56oZ83CPz0lKGK5gFmDA246QSqNgyk8dr8nRNpVJS5axzPHz1Hi8/2LLeRuIwaEqvdU/VGmJOvMgmIX2qwjg1+fWmWgjB0IdAnjKLMaSl4ABTDUYE5wxxE+iGwMVLD7m4f59SC9Z5juNIYKFzlmHVcRgXxnSk5IU0HqnzEWsNx5uRgmC9xViHswapwna9QpxlqYXVesOxFNI8Y51nu1ozrAbEB64PM5fbnmAcN4c9+8OBJRfEBPpBXWAd6tcSY2ROKrt2zrFaD5oiPM0sOeN8pLTsnu16gJJxToHpvMyU6ci4WmFXa9bDmm41cHZ5zrtvv8Pu5obLe5dcPnhAFzsqsNqek5ZELYU5JXzwxGHdDr5hs95QUuJ4syMdjgoYA/SxZyyBH72uPLl5l48eP86D8zPOhsD52cC6gvMFax3RO+LZqoX5WeYlc5wTtQo3+4lUjwTnAcN66FgPgS40zxQDztrWCTGYquTaqlnJSK2tc6LAXr183ns5u+ug/MIuyZn/4tf/Jr7uH/wwf+Tyk897OXf1BVgvNEApJ3OqkpAkiCzY0ECLUb2l8jgKuIBxHuIGGbbQ90pwPZtxN9dw/QQ53CDzBKWq94lkShoRowBFTa4y5IW6HKmTJuvq2EgwvmKN3Aar1WmiHCfSWSUly7K2zK6wI/FuqnxiDx97p/KpNw9cvbUnXx2ojQwrImALzsxYZqKtBARbZ8p8JI07jBS6aDnf9Lz20hkvPbxH1zusj9ignSC5bZc0EHLyvhBpJN+nX6ytvaKO6JbtJhAOhZwr3mkoorVgvKE76zh7eA/bdfTbDevzc0JUH5KaZ8bpgOkdAngfCSWTy0zOmZSKurPWxDKDOMvmvMc5xzQtTHPCBK9KJZY24rHaPShWs3RiT9iesxt31FS4GRem/URaKl3skIszpBaWZSF2PdvzC4xk5sOoIYAWur4n5wqlYq2hpETJmbDZ0HXa8XGmcrzZYWphPO7ZSIZa6ELg/OKC3c0NT/Y37G+uWZ+dMc4TLnRgPMOwZndzRSmZaVJvlhA8JSXm+YiUSs6F/TgRYoBq8cYx05HNmjfevOYHXv9+Qjxnuxq4dxF56XLDg4sz7l2suNj0bFeBoY84r94wF1E5KVVU2ZNzZT/NHMeJOc9YA8EFnHN0wVFXHbEK1bqT3yAnDZBvnZJS1cUYTt2TZ2TNd/ULuvKbb/Fdf+Qj/JH/5q8+76Xc1RdgvdAAxSwTMifERDAdxkTEGggBxCqXFIsJrZXtOyRGTBwwcQOxQ1YVs1ojXYDHDnn8BFkWHdMcZ6p3FGvAWZyziCmUPFPnkbLM1JShKoFQx/mFuizIOFN9IE+GtPRMU2B3EB6bFa+ngU9Ohh/dZT75aOHRO0eW6yN1mpsRXAVTsEwEs9C7iqsFmzOhLsxpZOUNw9mW++eRy41nte40eNAHbPCNOKAA5Knfrbk113qPjXm7SzaY5usiGN9R40oDBwGMxZpK1zv6bcfmbMXmfAvWEFwhLUe6eIY3gLPEoWcad+Q0KzmzVso8UtMMtTIvC2Uq9OueKRXGMWNXjlp0xLGkhegtwVnKMito8moZPwtUZzGhoyuZ3ThSq7DMmop83B0otbQogUTnVrg44LuOeTpSysx02NOvzrh//wE3ux3jcUf0gLWshgDW4YKn5AUxhthFXLDkaaTEHus9q5WqlXZPHlGWiel4w9nlBVbAuoCPPc4G7VYVwTiYp5m0JH0+BsQ5bBfJFaxYBIv3llfOBtz5hquj4+p4ZL/f88nHlY+Jx/oV/dBxtul46XLg5csNL9/b8ODelsuzFavBE7wjeEsXA6uha+ZqwpIScymkksBAOSaMJNQuqBK8w3tPDL69b9rZccrnEeUF6Ul0N+p5kcp+xZfx0d97/rl/3IfT5/wx7+qu4AUHKJSMEatkVWvR2/sAttM7PmvUql40KddYB9YpAdaqaVY1FvGefIqoXwR58gS3jNicqRaqAxc91RnEFHLWID+yUEttohgBUympmbO5SvKWfUrslpEnh46f9IFP1sAn5sgbh5EnO2Haz6T9iCyLZvXYirUVZyZ6OzIYwabCMs4Eb6BM9L5ydn7G5eXAZoDowfQ9Pg7go+4bJyfQ+kwr/mQNCj/lDvi9HANEMC5g+y3H/A6X3uEt9L1jtQrYzoCrpDS1KMXEvKvU6YhzBmNr80eBWmbmqVJLJuWFeUrkOZNLZV4qdkA7I9aylMphLpx1HaFq5s2SElJbonRROXBJlc3FCuc9ZrUmp5G03zFimI4zyzxz2N0QYqQbepblSOwHbOhxXY/Jmc12Q+wG1pszQh948kjdeGnW7sOqw3cdIj2WShcM1jssljQrGRdrWJ+dszo743D1LlIL0QesD5RQkGQJwWIlknN5qpIKEd3jKzZ4QvSMxxkp6q0SnTB0sLIWcYZVL+QiTEtlTolxuWFKlv0jw7tvG/5tVRXb5uyMlx5c8OpL57x6f+DhvRUvXQyshoh34J3FuUhvjMqovaeKsCyFcVw4zMoBssZiG0emD44YPDGqOgnRjor3+r67q8/v+tG/+as52yox/Je/9Dp/74N/+zmv6K7u6jOvFxugVFHeh1NwokTMiHNR7czzrHwS48B77aw4jxg1tBJrSM6TgRzXyFml5iYd5glut4d5opKxs6bIViqlZKRCTZVSijY9ClQnZOeYbOSQB94pK94u57yRL3jjeM5Pcs67ued6ciyHmXycqVNStVGTDhtZ8MysfGZtE3VeWI4Zb0WB0Xjg3tnAw5c3nG06jKm4PoDvlATZDLSetamwoO6nz8hHnyU6qq35s5uNwTrLsL3gxkb2y8xLF5Gzy0jXOUqpSE7k4wGsY1kqw1AoeVInVmcxNVHrQi2VmjNLyizzwnxM1AI+eMzgVREUPFLVMM2vIhmDc0Hlx1k5FX0X1HDPTqxWK+Za8CJYHH2/oW5Hrh/tKNPCMk/M44HpuGK9XSG1UHLBdQNdrXTeNSWKBW/xXWCz3WJKZZpHhvVaOTEhAobtPU9ZJrx3CnINOAxLzYQY2JyfIXnk7Pwc3/UU68mlknIm9j3BOnb7PcuSibHDeU8tmZIr1IprJne5CmIbT8r1eBPxtoJx2Cw4axliZdMXVWQZp3lJqTIl4TAnPvWJHR/9+NuI61ivB155ecP7H2543/0Vr9zveXC+4nzT462qmCwgDmzv6TqPcx5rYM6J4zhzGGd244yxqgKiCN4ZLs42dx2Uz/P6if/2y/n+r/krrGx83ku5q7v6WdULDVAMGSMZEYelA9Nhfd8Myqp2U4Jr1uRCEaGUhM0L4gPLNDEZ9eIQG5FuDZdquFatRQzY64I5Zuys3IOSC7VALRWlLxiSgcVZblzPld3wtt3ypr/gdX+Pd+0Fj9LAcfRMM9RFqPNMnWZqSbfmbdVUvFuIdmLbJTpZyGMiHWc6LDmPHI83BGs5v3yJ9bbHBYtxERPiewCHObl8mpO1+ekLcvs9Y0yTmj7DT8HcEmerGGzX4zdrHr+x56wGdThdiqZAS8FZz3p7xlIS4zRj08Tm7Iy+j4zXO0qZyVm5Lcs0UxaBJORa6HqPi8qVOO4OYCreB7zRUEMpifVqYFdmqmi3pZqCqwvLUDAh4YzhOBeGfqA/v+DipSPjMTMfdQxXcgJRs7oTO3hzfsmyTDhjiDFirMcidP3Acb8jrjpc7EhVcL6jVCXQpqymdNZbckmUtCBViN5z7+KSOh1Zby7ohw2pCrnvNU8pBHZPnrCkhHdqz2+9J+WMACkpiOn6nnlJdF1PCJEQA9uwpreeeUwcp5FxnKipYAV1JDZCsB7Xg7FqtldqYkrCbs5cH0c+9WNP+KEftoiNbLcr3vfKli95/z0+9OqWh/c6VoOhswbvLc57te+3EHxgiHp5MGJZcuLJ7kgqhUUs6ebINB5/nt7pd/XZ1I//H34d/+ff9Zf4qvh9d+Dkrv699av/7B/m4b/+vue9jJ+xXmiAggN8wLiAVIsRhxiLcYFMpjZTMilqQy+iia5LmkhiScmSo2MxllQBCeBWmI0FF5HYQeyx13vKfg+LgooikDBMzrLzjke24113xk+4e7zpL3jbnnHjz1gYyLOlLBWZF8qUqFmVQJIztSjAgoplYTAj5zET8swyzqSlsLaWwS88ubqmHBZe+/D7Ob93hvUeggfvlD3SLM/NMxwTMQZrDLVWitRmGNtGWchTUuQtibbxDUpVYnFRG/sslif7zPngcEnlxlgHLMRlJnQdwXqMKaRl5lAT03FiHkfmrJtbHTMlCaGzbNYDUivTtHA8CsM64JqdvneGGHtqccxZyavSbPDrCRjYJxipSB4wvqeIIcQVl/fvIcvCT37qMburic1ZYUmJvh/IpWha8bQgYiimklMB7xDrqD5iY0d0hmmeMcFzc3PF+eYMixqy1ZxxUdcxzxM+DoTgGKcjFw8ecPnwNXzsCQJDH7l2sCwLQ4hImkilKKfFWrr+gmWe2O92jEtm0/eEqK+et5mVWTDRcr6+xN2PHKaZJzfX7A675r+SqRWs1XEMqKFa5wzroXKvLpRLyMVyXBw3U+L6OPMTP77nYz/6NiZ2bNaR+9vAS5cDrz1Y8fDeilcu11yeRVadw3sNg6xSMFK53A7ETr1alrny1jz+vL/l7+qnKet4449+Df/2934nwTjgDpzc1b+/+ie1iRA+v+uFBijWa9eEYqjOYEUoOZFq0vRfZxErIAkpiSqVUgvFGlLnSXRUW8nOklAbd+MdGUONIOeO6tfU1Y6yP5DHI8uSmWbDTQm8kzveMivesme867Y8kRVj7iniYTaQ5NZsrWYdi9RSMLVQygJVo+UsC+s4ce5G7DixpEJOhTWV+xGWtCMd9zx48DKvvu8BwybgotdxA7fNAf0YaR0kVRKZ6rByinWT23TaE5hRI6+T3PgZszYEkUQpSpw8znB9qGyi+tQtqTDlmWyvWa9WuOAI0VKXym43kXNmScKjRyM5V85WnqUWKGCXgjGGnARjKsuS2HS6+RlrWdJMSRr2J0WQpSBZ6DpHDI40HzjuhbX3DHEgOnA2EM/uEYMhpcLm7JxqRJ1fc8FgyeOIYKi1gAibcyW0GuMRtNvifUeaJ3xO4COH8YALDh96ckqUXLHOEvqBEAes85xdOFbrNXFYMY4z837Hk3fe5e13n/Dkeg+l0PvKprN0m47QrzBG84i6rmNOC8uSGIbIuMyMhxs2qwvmtGecBy76Fa+8dMa9ywt244H9fs/xODJOE2VpHTipymFqVamIqTgPZ8FwvjZ84L6limfOHfsEuyVz/Vj4idef8E+rwXvHxabnlQcb3v/yilcfdFxuOlaDY9U51sPAkhPCTOc8l9vh5+NtflefQdlf9ct456vP+f7/5C9yZ+96Vz9dfd+ciPsXI+jzhQYoBUvFglhqKaTpwHIUsrXqBusNxVeEoqHAxlNNoOCZccxYsgilCLll48y5shRIuWeWwOgGptUFs0mMYWFchOsjPE4dj8uKG+k5Zu3GUC2SBHJBihJDSZlaCrVk9WmRSqnKPbBGcMys/ZFN3WMOC+OSyDnjc+KshzAndrsbog+870OvcHa5oou2jXRE84R4CipOTqAntU6pGYxmtWjisuhGJlVzgcSAGLXQbzMhqZWaFpZpxEklOs1wyVXIxpGkUozhuC+UOmOqEHtHLspTmI8Th10iF8FbSzWGKVdCb3DeMCUBK/ho6TpPFdNSmQVnBOMt3kVcceSUEAMhBDDKpRlWPXFY0XcBI4VgDcNqBcZSN1telo5aFnxcYazXkVTrD/lgGY8LYMk5EZ0jLVmJxMYyzQvT8cgwBJVXe8/F+pyK5TgvxOBYdx3dak2/3mgWkUQeP77mzdd/hHc+/TqHR4+YDzccpsI+K09qcI6Ltef8wYaLB5e3r8NmWNE7Q64L1zczgiWVHXG7Bw7sckcWx0vec7bZslqtuNiccZwmDscjh8ORcTwyzzMpJZQbLlhjoBmzeTFUI4ipBBLBFy63la7TbKM5OXZz5eoAV4cjj9458JNvKPCNXWS78qzXHduhJzjL0AdeeXDOw3vhubzv7+q9ZbqOv/d3/9bzXsZdvSD1e/8v/2s+8H//J897GZ9RvdAAZVoyYZwoU6YaQzWQxZCdR4JDPOSgeT3VddQQKa5nNh1HcRyTMOXEhDAVx1Qt++I5LIF9chwW2M/CMcM0F5Y5M8/COBuWZKg4db1P9ZTSRq1ZPVRqUXfTrH4qUrVjIlJb5mzGycjG7FjlA8s0MmXIKSN54eUAfam6YSa49777nF+s6ByYWjU3CPuMdwUYUVAkAmKMdgsoGGnhcLXl+dRKlQaclkJeZqQkSi5AxRpDWRLz7jGuzGyiIVhV8iw5U0VIBcZUyDcKtLbVIaOQsmE6LMyTBiJq8m9ThVgAwTsdtRljmVNVAFUNVSoOteP3wWGcgq+KwTqP846u6wiDpkMvc8YGT8wFvyRCUGnv/dfeR5lnHJbYb4m9hke65FVam494b9Tvphac95QqmBjJ8xEfLNZYKAlvIjVVxAo5F6yBYbtldXGJM448Hnjzk5/kR3/oBzjsnuDtwsMLw9kDT54cT3YLVxKY3BlnLz1g6Azn5+fUNCI5YWriOM+IdeTqwHpyEg7HBaKqeq52O7AWay2b9ZrVeo2N2kULIdJ3HccGUkouz3TA1OvGivKAWmAxBkOwgrcF5w19FM43TzssuVrmJIxLZUqVOc3My8zj3TX7BQ6Lp5pHbFfP771/V0/r03/sK4Hvfd7LuKu7+pzXCw1QXp8rWzsDM2CoYilYUrCUGKkxkkogh4HkOxYCS+nZ0bNLPUe74khkly2H7DgWz26G41SZZ1jmSk5CyS2FN6OjmvIM0GjA5GTuJq3VLhok0wBKc4WleYxIItYdG7mmqyNjWrg+zFQctiYubGFFYZwWrrKwBM+GmZu3f4LlyuGDA+fxzmkekVV3UEoiL4uOlKRirQcLKRWssUhNTXVUqDXrZlYLy/FIWRS85BPAkUo0lcFWXHQEY7BOXUdL1c6N2soLu72Cm+AgVVgyjEvFB0PAUbJgTMF1HnNrZCdIEmoG4wzLUrA24ZzBuza6qpW8wDzBdV5YioBbSHWn3JpSsU59OwyW7Xrg4cMzHr7vZS7OLvAhEPuB0HXkUnDekUsmBo81hlwKtqrBWQww5aRmfD5SSsWKoRRhnBa8Fw0TtJVhWNH1PWla+PSP/iiPPvmDnHUHxpJ4fS68PQsP2fDBly748P0J0w18/ElHfPAa9zY9D++vMOXI1btvM09HfHbkapCSsDaCHUh2BXbA20gtws1u3yz7DWfbDV3XAwYrFmuUCxxiVMdgQ1OiQVoWpnlupNzWPWthjyIa2Hj6miY7O4IXVh2cVVFfnKpE6yKWnC2H2XAzZp7c7J7PG/+ubutH/8tfy/f/z7+dO77JXX0m9Qc+/T/gff/oxeGOvdAA5Xv9q2zFEKRgBIoYsnFk48nSk6VjygOjrDjmnikHxuo51IHJdMx45mSYF0jVKBBZKnkRyKJE0VqgVErOIJplQy1IVVv008XdiDSAIs12X7NhpJT2e9qdqJIIZc+mPCaUI4eUOEwLiwjRGwZXOPMZqTOPUmaPx0vi6t03Ob5b6L0CBYwhBou1jioW5y3BiG7qKZFTwRirJFMj1NL6LG3NVSCd1puFXApFoFQFUUOwDCuvviYiatpl9O7bWYtzkBzaaUBIS0UslGb2hghGG0mq8HYgpZIESrYYCr49Zl4EkwqmSDM007ya46Fw/TizT5UFVfwEA/fOHNuVw68N0VnycmR3EH7inUd84sctFxef4st+yRfz4V/8iwj9QJVCsA7rHcFAnSdurp7g0PWurMdah/cBg0VKwqE8GanoWM4I1qlLaz+sQODdt97g8ad/mG2X+OSThR95Z+KAx+TCkx5ks+HVuvD+leFL33+fH3tyjVlHYt9zNqwJIXBzdYUbR3LOhJQ5zEWl7MZhXMT7nmpUgr3b7XDeEbxnu9ni+6EFHgqp6JjKoZ2p089RClNKpJyoIuSUSFk5OGoyXKGCbTZ+pdDwi35uTOM4GSEYQxdgPVheOofx/I7r8Dzro3/x1/C93/BfsrLr572Uu3pB6h/8yC/hS//fn98Bgc/WCw1Q/v76VzN4i80zlrY5Gkv1gaU6ikTS4sk1UE0gV0teCqVaHc1U0ZRguAUWtRa1ri9CrUW5G7UiVWXGVL1zFymQT+qgpo4R5XlILtRS2kgnU2+NUiqu7BjKI1wdOaaF41J01u8tnS1sjWDqwk1O3IijOPB5piyzcj+s2uqLVPWh022EIhULBK8y3aUoH8VZg23W51JFNzSUT5JO+SvCLZfFW8MqGrbRsekdSKEawFhKrVgpOCOIUct5C3jH7fFPAtYJ65XDt7XUAsY5sgjzXClFWA2enCrzVLHe0EWLsyAls8xC3lf2UyVVRwWCVN5333Jv7Qid4Wou7LD0wXN/bXj5okD13Bzg4z/5hH/4//1XPL5+wq/48i/h5dceEvsNNgSsgc3ZOfN8ZH84sPIWi1rO4xzOWLIBH6KO6KoCJh8Coe8ILQvgsN/z+I0f50E3QYy8cXSk+DJuKSA7bvZ7fuCjH+WwqazNlg+/9Ao/eT1y/eQJ470V5+sz+vWagsFvNtxcXVHcQjSVuWhMg7EWH1Wp5VMl18LhcOAmRmII9H1/20mRIsCBmjPW2lvZuQ2eIQRWgLcKQ3ItlFrIubBktffPKWt3TapyqVCfQ9dALqf3SAMr1kC8u2l/bvXx/9Ov5Z/8z76Nl93meS/lrl6Q+sOv/1q+7E+9w+e/dudpvdAA5SfS+/F01LzQrDl1Q7GudTZEZb0iSNU7TCMKPIx4HYEYAQq11AZQFkxVYocRdYpVroK6jAJPOSYCIpaaZyip/fwJmAhPiasZUxZYdvT1Cl+OTLUwl4wxanzV+cpgKraO3KSJsRiyLYQyQpkoVYFMkYIxoBm16v5qjNXxTBWsqxjUw65SMWKIasNKrUa7JJhGlNXjqMpjwRnYdIH728j5KtA7IaXCPqvaqO8dVoSaLNOcwYJ3hqFX8NJ4u5op4z0VHRcFr2Mh5yxdrxEEMYDtLEN0YA0lZSiiLv8YUjfgIuyeTESb+aWv9QwrQ3Lw5iT84LuVXRG8GXm4NvzShx0f2Douzwpnfc8PfyrxsR/+FGm356u/5it45Yu+iEphu90w1cjZxX1qLpiWw9PHSBXYXd9QS8JUp66pJSPLRG8Nw3qgjCMlZfZPHrNcvcnlJrCEyEEqX/l1v5VP/eiP8fjj309YjizzDYtYxuORcnxCqEce70bSfInIhn4YsC5gp5FpmjXoTwzGeEq1OOuw3qsFvqu4osBit9/jQ+DSWfqux9pBux7WMY4HUk4AGKMJxtYoSHVWDeq87dRMT199pApTWkgpsaRESlnPHTRtGZrvTy5U0a6KMUouv6uf5zKGT//vfh3/+nf+V2zsHTi5q8+83p425E9++nkv47OqFxqgMBtKrkpirKURL00ji2g3RKNtWpgf2i3QnTRTb71I9EJbW5ucU9hfTur31sb2goISkmgHpRERqRkpuXVWpNmlt+C9WpAyYZYdq/IELwdyu8j3DkJQANE5KPPCMWUOGcRUPJlQZ6yoNXwVwVqHM5B1J6dW1KfCai8lF3nmTlfpuGMqOGNu755Ta++3VEBO/IMuGta9ZdOdCLGVZdExjkGVQMsipFnddq1VFdRuqnReGHqLVJgXzWvxwdINhpwqNQnW1KYSgt1ex06SdPzjnVBtZVhHzu+dMdTA9SHjro584H7gfBsYa+Emw0cfFQ7FqwsqhtefzEg1rHzP+88Clyv4RQ/hB97MvPPujh/76Cfw/YqHr72q5moxIKnD+YiIjsSC03ZAiBHJ0Ht1zD0uM/M0EfoeMRbrA0MXeWJgmWbohX7redhXvve7/yZ9d4m1cEgLzllqyVjpkHwg7w+IbDDG0HVrwjAwPn7MbrdX+3xnES/sFgXA3lkwTiMcvMNWXdOSM9e7Hd55nFHi8Hq9posdXdexH/ekZWngu7kEt3PBts8F9VAx1uKto+sHlZ03Qm0RdUnWfKbKPM0cDgfmpF3DkuvTTJ67+nmr69/9NfzgH/6LQP+8l3JXL1DNkvjUzSWXvPu8l/JZ1QsNUOZ3H2P77qkNt4F6Mk0tpSUSn4ipJ5lthZbiK43kakS0Q1Eyp/vK2qTABjTHp+rXSkmYigKUqtwSqdo10TTgqkOX1qmRmjDpmiFfsZYRnLbHQ+OSWGMI1lDSzJIW5ira0mfB10VDAmkJstBAiual1Cpg1XbdgrbiT+RHaZ2UCplKFmlSHzWvq6LOulILnfVsvOH+KrCNBmomZ0tKlZR1o3QWcq6UqsZdelcOtQgh6hhgzjr6gYpxGiWwmxMRhzWQlkrKQk5tHbay6h3eGUwLIhzOBrrNCieOdx+9xeAql5ueROGYK28dLdcHAVdZnd/H+47pyTtc7xb2SyUZy2rbs5mOrIJjqYbXP/26HnNrsa89JHaRbjVwfu+S/c2TJlavLLkQQiCVxDyrlw7NS0RyJU8j0RqO4wERiMMZh/3bbILnV3/wPuOPvMNbN+8yC0hdOPeVe73npQdnVAvX08Tm/iucb7eEqP4nu92OcdxjqaS86AiyeLypxOgwfUduacIWg7euAZ/Cfr/DWQvG0HUdfT8QY2AYOsZxZJ4njSVo4z2smvdV0c6aiMXI6ZyyKlF2hug81lqcsfR9TwyRUjK7w4Gb/Z798cA4jhS5Ayg/n2XXa66/2D7vZdzVC1ZJCr/xB34nl//Tjz3vpXzW9Vmf7f/4H/9jvuEbvoHXXnsNYwzf9V3f9Z7viwh/+k//aV599VWGYeAjH/kIH/vYew/M48eP+aZv+ibOzs64uLjg9//+389+v/+sF7//oY8zffzTpJ98xPLuNenmSD0u1HFG5lkt5Rf9b5kn8nykLCNlmahpQVLrfOQEOWNqhVKo7WOpKtvNaSYtE3WZkbxQywRlUSvzPCFpRtICeUHKQi0LpcyUcqAuV4T0mJUc6ExmsEL04Ki4lLE5k5fENCam5pkRbMLVCVM09VaA4DTZN1iDQ7sZ3hq8MXgD3upIqeRKOQEzbRxhmvImVWHOSR1NG/jqnXJNHmw7Xtp0bIagMuOqVBzBttwaWBZhSRUxBpy5fQwKpCwsxTAvao6Wc+W4z1Ac1kKpwjjCkhVIhs6wWnliNMTOEYeI7zv69YZ+taLrB7rOK3GzVnIpGjqYM87puGjYnPHFv+yXE1YD3TpgnXJgQheI3rHqAmItaSk8fuNNPvZv/jVvfOpTzLP6oAQfcMY119yClcoyHQjOkuYjx+sr0vGoKL4uBCcYIxz3O8bDjp98+5q3Hh05XO9YlYmv/uCWD5wlLvzCq73wxZcdv/iVM4Yu8IM//i7Fn/Pa+9/HZruh1MphtydNI3VOTOORaTpSSsaIgQpDv+Li/IKz7Rl93+FiwIVA12mnpIqwPx64vrnmeNTf9c6zWW24vLzP5b0HbLdn9MNAiAHvnHbDjHlGbl5vPXOgnSe5sORCaZHLIQY2mw0vv/QSH/zAB/jFH/owv+SLv4QPfuADL+R140Ut+WUf5of+4F983su4qxes3igj3f/kx5/3Mn5W9Vl3UA6HA1/xFV/BN3/zN/Pbf/tv/3e+/+f//J/nO77jO/jrf/2v86EPfYg/9af+FL/xN/5GfvAHf5C+17bkN33TN/HGG2/w9//+3yelxO/7fb+Pb/mWb+Fv/a3PzmxI5pm0XLE8eowJFttFbBcwnWbwWB/UEt7QAvnU5h0s4or2JJovRJWqsmA5OY02CcrJAL6RYUUylNy6I/WWl6Kln9eSqHWCcqSrB7aMrE3FOoMxgpET36WyLJWlqVvEaPdCPTJm5Xs0u3rhafqwoZlxYano06pUmp5IA/pOKTxCG/9YHVGhox9nhN55eu+JVr1VUlKeih6WSk7qV1JFWLKQs67BWqumZ9bimg/LkurTx0a5OUtKWGM5LuruijVE7wjeEKPyV6wFFwy2c4TYEWJHjJFoAhfnA1eP9oxz5SKqBHtlLZHMcfY8/smf4PGbr1OXiZe3hr7zOIya5GGIZxdsxSNXb1IoHK6v+NTHPkbwkZdeeRlrDMNqTVpSe10K5IU5wbLM5PlIpuLWG6ZxYsmFLniCc8y7HU+udjxJC3MuXGwDwybyle874zBnakpsgif4wMfemdiZe3zJl34pX/S+Vwne8/jRI959900Ou2uOuxExKpm2olrtmhbydMAibFYruhg5ThNLSiBCoEmES2UaRyV7i9D3g/rB+IBznj5GSinMy8w4z5SSnxLDUWBQaqFWwRp3G5lAVaA7L4vKuPsO6xydc6z6ngtr6bvPnCX7+XTdeBHLrlb88B++YyXf1S+s+qwBytd//dfz9V//9f/e74kI3/7t386f/JN/kt/yW34LAH/jb/wNHj58yHd913fxjd/4jfzQD/0Q3/3d380/+2f/jK/6qq8C4Du/8zv5Tb/pN/Ft3/ZtvPbaa5/xWmpdMEaATJ2FOh+A2vLhFKC4rsN0AdNFnI9gvcbEGzWukpPzaklIKZhqQTL1lhR74pk0aTEFTcCrt/edJx9X5b4kapmp5UCoR1YysbGZaKAUoVbwBnLJTKUy1UKSqhlCknBlQrKauuV2BwtQRNrmf8odlmb4dhrnmEZePBFk1U00SYEM3jlt4WOIztEFw+AU4BhrqFSmlDDZ0AVHcBZnhXmp5Cy0CRpB3dawqELIGMip6B25uNtjseREBe3moKMfA3hviYPFtfUZo68VRpOCBTC+o+8GHr7yKjc3CzdXV2w6S+8MYck8PIu8vi+M4xEELlaW91909ErVIC2Z631mzGCjw3qjZnHBMR4OfPrjP8qqM2zOzwkxYp0nLSPH3Y6SF0qq1DSTl4mUkjrtNoKprHquSmGZE9bCUixvPE6YsKX2K9J0RMRhTORIx2LXnL92n1/yymvcf+klqoE3n1xz/eQx83HHuL8hpcJqs9LuRSkUHOTE7uYa2VyzPruki4GV6XUUUwsITWKuJN8ilXEaG1eq4oqqeZxz+BBw3mOdIy1L8z6RRnhVcC6SddTVeFzO6Quec2acJpW1R40iMNYSvSfGz9xJ9vPpuvEi1lt/5wN84qv+6vNexl3d1c9rfU45KJ/4xCd48803+chHPnL7tfPzc77ma76G7/me7+Ebv/Eb+Z7v+R4uLi5uLzIAH/nIR7DW8r3f+738tt/22/6dx53nmXmebz+/ubnRD26Jqo28ajRYTnWzmTyPlINoKrwPuNjjhxVuvcJFbf+fuisKUFQVg7Sxj6iPqbSwtFPgoIi6c7ZF6M/UitQFkYmaJ1w5sGJmYzNBGrhpvJAswlgqh1qYQW3fTYY8Yqr+XWN0bamocuLU+wGVf9YmQ7XoBd46qz4jtWrHRHTTaiHGlFrxzhKAaA2995hayU3NY/CUahoXp2gXqmoHZlF1NX04hf6Ies7MagB3kinnnKH5oCRRUCTU5p8iOGcasbcSgkdKIWVhyhNxCdSkm63tVzjfsT2/4EMfrvzEJwzvPrnm/MJzb2ORXSWsLdNaSaL3usrLnXARPMv1wtW+8Objwji/wdnZwHbl6btAcIFU4a3XX+fyPODdB5GgwYXz4YYyH6mtQ2HRUVLJUHLCD5aaEvurkXk6EmJPFzVzKfge61dc3n8/6/WAGPChI3Q9w0qN4rpuxX48kuaFx++8wzTtcSYxzSO1WJX5itUAQOexMeBjoEhlLjMdgaHrcdaRs3bCFGC3ztUzvibKtYKSM5WAFwVXMUSssdoxKVUVZ8Ygtei50uizt+OfqiOtlDNmmqhV8MG3DhrvSdD+71M/V9cN+GmuHS9SGcP3fOV/A9xFC9zVL6z6nAKUN998E4CHDx++5+sPHz68/d6bb77Jyy+//N5FeM+9e/duf+an1p/7c3+OP/Nn/sy/8/VaSsvFEsByuxub5keC+joYAWohp5G6v4LHFtdvcGcbbN/rZbmNgAyGkjNSEgaV10rjo3Ai2aLEQiNKGK2SgEyVGSkTNs90dWLtErHmNlpRdVAVw1ThWIVFKnLyppgPRBZy0dGRaR4mrvEF2q9TqJozhIo0BIPFUIpuSlX0c28MRXSwYyw60gG66NVhNCVELHOpDNEypUq0lmjVmXRMVVU26PEV0WNsjdV15NMGZqgYllLI5WmaMqIcGQGctYjY05ep2ZDKrAxe6xXQ5HxLOJ6nhXQ48ODhK1zeP8O713jzU5bX337MKnpeub9q4KuwCobeG4aVpxTDOzeVR08mrPW8/96K0DnEKaAs40gRy3E3crjaMb10IKw90/HAuL+G1kUTIzhr8N5i8HTR473B92vmeeLR48c45+kCjHUh9mdUo/yNOKzYnp8RY69dL2s5HkcePX5EzoX9bs/N7oo+GGLnuTi/ICWHGCH6yEKhGIeNHaFf03cd0QWCdXQxtk5Z6454p0Z8IrfZPt46hn5QhVUuFCkqqzfaTdF0a0v1CmBKKRQLnYtYnnJTSmmOyE3Nc5IZ++AxBqJ3tzL1/771c3XdgP/wteNFqo/8mxs6cwdO7upnV3/wf/x7gY8/72X8rOqFUPH8iT/xJ/hjf+yP3X5+c3PDBz7wAUQmRMLTC+UzHQ/dUIsqWdD/a9/FVCjLCPt3sbHDDQOm67DOqhEbYGrjnpzUOtL+0UYWAFWokjRoTzKVCVszrsz0NhFaByOJIEYlm3OFscBCBWeUh5FnkIRpNvPabxAd8aAbfG4W5ohpUlAhNdaJM20zvbXaF2rrrtQ2BnK2bbJWwU6thlQqSQSzZCye4io47dVkaZJlLKUIxppbl9kswpT0+OSyMBcFKdHqWCg6iLcjJ5Uxq2wVTG42+V65QHURvAXrDaValjEzHXeUtDDNR7ZnZ2xWaz70Je/j4uVz3n77hsfXB/zg6Yc119OBJ9eZ+rb6xHTR8YEPvsrl+RaL8OjNtznuZxYxiDUUY1nGhZsn1+yePCLMM/M0UvOojsFiFMSJUJt0vMyCtwNiM857zs+33Fzf4Kxjs9k28inMiyqxdvsDISzkCuM0YVpu0M31NcHC+XpNKRPX13tygVIt55dnpAImBDAdYX2O7zY4F3SUUyrHeWZeFmqpxBiwYnA24JzT0QtWycNdxDlPyoV5WSi1qPuvtfp8qvoEee/JpZAk450jiHnKaWrEZJXqV7JkihRSVXDU9z32s+fY/7zXf+ja8aLUr/yXhv/03o8+72Xc1Qtc9cc+9byX8LOuzylAeeWVVwB46623ePXVV2+//tZbb/GrftWvuv2Zt99++z2/l3Pm8ePHt7//U+ukWvh3SpJ2SqpCj0YEASm3H/IMwVRpo0XHOtLcYsc9+QhiDcZH3DBgY4/B6x1la11oInJuZmTNtr5Wap01CFAyhoQtC50p+OaFkmp5hisiHHNVKXFwOAemzNg6t8ds45pGJkki5FrxzYitVOWkWIyOrU78FCo1Fxy2ucYacq04tAvTe4czBmcV7CxZlTiZlm5sLXNWXoM3lkAj5ra/WUU7NL5YYm7pz1U9Wbz1WCNttCA4q6GFRRcIpRKsa/JqXd/JSI7SrPLVEUxfHRFi9Oz3E/t95u03HnHv/paLiy2r1cAXf+ghpQrLspCXREmR4AJd71mtBxzCMPRY4zgedqy3PUYq85L1eRcFUOPuwNU7j1lfqMtvzTOlVIL31KURVose7yKVNE2UZcHHwOA8teu5WvZcvnQfSqazlhgCuQhRhMOoycRiNDU5p4IR7Y75LmBxBO8oNRP7iIuRNGVwgTDcw67uk6pF5kUTtp1DmqNrcPq2bWc91qiPjT1xQ0LEO3drzKZyaXWFrVZUrdbK5YwTTwieznqKCKXoKLLUQmrW+NLUPrUKx3kiHo+Ez1EH5efqugE/zbXjBamNm3/mH7qru/oCrc8pQPnQhz7EK6+8wj/4B//g9sJyc3PD937v9/KH/tAfAuDX/bpfx9XVFf/iX/wLvvIrvxKAf/gP/yG1Vr7ma77ms/p7VRK2lltzNKDxPHSzN9gmo9TPMFYVNDS311vOivJWajpS5muwARuiAhYXsKfNwZrbmX0tiVoSIg2ctH9WMs7oWGepFSuCt9p3GYuCE/Ee7y2uLvo386J37CK3suL2ZDBY7Vy08ZNKRGvblJT0WoQ2zrFgTkwCA0bwxqraprnKplLV5r5op0SkkCoY64jGkMQwJh3PaO6OgpNc4bjUW5fdrAYat94vDkuw6IgIlSCLVDC+uZfaNokzuOApKeNsc3jxNHm1wfnYuCqCd76ZhI3srgs311d439H1Pf3Qce/eGa651/qg/iDBBYzV1914iKtILgs2WFyqzHOmzOC7SOgi3nuWJZHzohv4POG8Uy8aaT04Y7BUHEKddfSlk8XKNI1cnp9R5pl5mTBTT9d1iLGItUgplGVhSYs61nadGgYaiw0dq9gT+g3VOkIfWGqHrO+T/ZpxKXgmQgyYEPAh4IMnhEDsIjFGXCMWl6YKM8bga5MIg4b/BadjuRbR4H3jkZyI1yKE4OlDUH+cNroTqSxLZlmWW4BSciHXwvE4fs76Jz/f140Xoeyv/KXsvvScD3X/7fNeyl3d1XOrzxqg7Pd7Pv7xp/OsT3ziE/yrf/WvuHfvHl/0RV/EH/2jf5Q/+2f/LF/6pV96Kxd87bXX+K2/9bcC8GVf9mV83dd9HX/gD/wB/vJf/suklPjWb/1WvvEbv/GzZuKLzNTqUCO2E2FWuySnTfoZw3nd4E9OsXBrhy9SmxqoWdWXiZqMKk+cx4UOGwPGB4xt+TQ1UWXBSMFSGkApeDSvpohQ0MZArdo9WQSq09GH5ImSjkhamrtn45Q0BQ6n9Z5eKGeb/BfEqswYgdyC/2jSX8PJH0V9Vp01RK+kWR0PnYzchCyVImh4nDf4cjquyqdQPmylNN5xFphFjeZEIBe13feqK8ZaQ3SmdYHsraRIcsV6iwuG4A3eN/BR9LibRqK1TkcUIVqs6ymNTBuCI3aRlHSzfPTuFRcXG8bdFV0X22ZbiSEy9B0hRLDKl+lWayqG8TDSGQ18NJue8/sXhKGnVAUQaZoQpyDP0iIO0ONqsBTrMM40UKoHwEvl5vE1Q9fRrzrmeaQi5PmIC55qLCFEVl3ERE912sZLqbAUg4sD3nuwHjHafZGwxgwX4Ht1eXVOHWNdIPhA8JG+6wgh3Jr13dr4GUMthWVJWGcJ3hOcAsTSeCWKEc3TrB5rcUCMQbtHIoTmMCzNwE1TrE/8rEIqmVwKx+kzT0X9fLpuvAj1I99yzo/99r/yvJdxV3f1XOuzBij//J//c/6j/+g/uv38NN/9Pb/n9/DX/tpf44//8T/O4XDgW77lW7i6uuI3/IbfwHd/93ffehkA/M2/+Tf51m/9Vr72a78Way2/43f8Dr7jO77js158qXObgwtintpNCc+qbNqYptE3b11laRbxp6+eCLYnfkm7gyQv5Dwik8V4lViqBFNaaJpgJENe8EbwjZibUcJqOY00DBQDxhkdTaUj5EXJiEY3GesstvFL0JBZ3UhMg1dGfeL1v3KrpPBtmmJRZQc0gKDyDqoIHk25nWpR35UqVITSiLalEWyBlmpcsI3zktpIJwT9Q9boUQpOOSpWIDqricUNbFlrEQPWCs5bvHfEaHHeYGzVCILmzhI7Rwxq1hZCRGrFemk5OQ4fPL4b6HrDvIwY7+iHnmUacVZwTgnRiQVqpnSZoV9hjCX2g5Jw58QyF/q+Z3u+pjvbMs6ZMh+ReUTbKpp/U3IheI9zXv1qEJVXNxBWqzTStDAfJw7XO2IX6Iee1Ez9Yt8RVyt86BHJTOMerAcckhKlVjAaTigYjHUUa3BxjY0rXNfjgh6PLkRCjIQYiEFHWsZYjTsQIVinXiVGQZmxFme9dldE/VJyaXEJLSeq1lPHUXDeE53XjtazXTxjGilW30PWqlIs56KZPdNnPn74fLpufL5X/tqv5Hf8+u973su4q7t67mVERH7mH/v8qpubG87Pz1mvvxxj3G2XRLkljVjaPtc6aUvaPEBEE4bbRn+SVp7uKqVRYUHlm+ZEvEW7NNa2pFdrbi3frakENVjFVPUl0fEAiJHbbBxTM6QRyROm1hYOp50czbw5gaVmatKe0wmU2KbsqSfZstHOibS2/OmO2Bq1v8cZgnHYBr4WRO3mayUBqeiGFJ36okRn8W18FIyCpaVq18VbYYiOzulmXdFgRi+GaAVrtRvitKWi1JJgiUGTjWNncUGt9ktWYzBrC11n1U4/Boahb69UI+e25+R9VImr0U6LMZCWmeA8OS0Yp10mI8JqtWK93jBPMyF4pvHIcXfNvJ/oVwPbi3uMpXDc7WE+4qRCyeqPI2Cdo+8CQ99hXECsx9v2+EaB3LJkxmnk8ZMbjHhe+6JXCOueYRhIy0JOCd/3rM8v6buOw80V1/sJ5yPRWsQ5+tWKfrWmYrk5ziy2R9avwPp9dNt7xH6g63r6rsPHSAiB4F2LddBzwzlH9Pp1rKWcAv0wTT2lYCo3oHU71jmdm9YwxI5V16nvSaX5/ciJ4nQbr+CshdrOnZy5vr7mV3zZl3J9fc3Z2dnP1dv9c1qna8f/iN+C/zxUxpiv/hX8D//q9/GfPfiR572Uu/oCqa/74K9Rp/PPk8qS+Ef8Xz+j68YLoeL5D1WV/FTWeqpTB6JxHhSS6OZsME+lyO/pmLTxjrYsGtej3sIUkYyyEfT3TCOynkIET4mxUG7N0E6PX0HzcgxIWSCNUBaMzmXw9pT3YxrZV3BtZ6hUkDbmacDLVH087ZaYRlyst+Zawdg2ympus8YqadhaUlOpGGPUuK1qJwWj3Zos2rYpQBCD80rGFbQLkwWWUpvdvkWkkHNR9VMj7VY0+dYag6HS+YALFuOAYAhRibXTuOAchNBhncE6Q/CB3IiqMUSMsaSUFIy118P5juA81kHwUYnKKNcCmveK60g4uvU5tWSwC9YFurUlDiuqVPyS8GUBY6m5UJPymOYl0YWAN4bsHMF4BXtGRz9SinY+rKPves62ieurEVkSycFmvWV1vmY8jqS0MN9cYVZrhn7NMidwVTszPhCHFbYbOB5nBQbOMxbH4AI+RGLs6Puevu9xXjscglr/u9P4x3u6oEofVd1Ucsm3I02MUYn1ydK+nd/aSWwpx86280jHkU+7ieYZcPz0Y2t0fNTFF/ry8XlZ00v9HTi5q7tq9UJfYWoDDafhjhGVtPIMQHgKQU6z+tP3Gonzmd7KqeMip5zcxmuBUxpybd2S0/dMS4Rt/ZY2dintDhZnblOGqTNmeWrEpvCkGdKfft5oIFzXVBpFlAtRRJR30jgptd0NY7Sb4hpAsrVZ3rcxTxRDDB4QppJB9I5aRzsVEf2901hIeSaFYiy1GvJ8er62eWTo+MdY8EbVRVNWXkNzxYemIPYBhi4SowNONv9tBGQcfd8pqLB6jECdfa0xakBnLf3Q4RbDPC/UmjHGEYJnNazZH240n8ZZxlFh6Hq1Isau8Scq8zzifUc/bJCaGfqeEFZUKSxuwnWRPB0Zb66RLMxTZp4LnQ8gllwMFCE0abYRS60Z7612Kwo422HMzDRnLrYD8zTiYmBzfsE8jaTlSJqPdKs1F/dfYnc8IkRWmzOWCldXB9KS6YYVswSyKOcpdh1d3xG7oARgTJMEF7zzBGtxbSxTRSg5saSsRnttHHMC541apK+jaT8v4Bx0LmAxGmNwer+cOFqluc06Pfdq0RGiVFVD5eX0yHd1V3f1+Vhf9w3fhKQfeN7L+FnXCw1Q9I6uXTxvuSY6OkBKU7Q8vVCr9FiVJ/q1etvGlvc8bm6jHzVqO3VpnOEp78To18Rozo1F78BV0twyZgx4KiWNlGXG1qfdGmOeunYaTh0RVdzIacxjwHr1rlATttoUOUrgLZzk06bxDbTDY5taRowll6I8DSy5/a2K3Nqq10aGRNCkHtEsHXNaozmxeIxKixVFUDGNoKmjggJQBGNFCZfBKGfFFLwzOGdwJyGUMzousU7dfK1V4y8Dzhuc961zA8NqTTesyaWyzBNQub5+gjFwPIzqx2GC5vfEjtB5JfCm5ZYw7GzEb89YDSuqCczLkU13xni9w0rCrNfsijCmRdVGxpAzhG6gC1u8y0TncD7Q9VsFAallO9VA121YxNBtzxBgmkb62LFer5m84Xg8siwz27MLus2W3VS4mSvXN3uownq9omC5HisuOLDqa0I7BmqcpuoZ6x0xeGLs9BiisQmplBYr0HC20GzxFTmeuny5VA15dIboA95YBSLmqcy91tKEbdo1kdw6YnJSbel5lnL+uXhb/8It65gv3PNexV19AZWEF/t8eqEBCtC6Iea2A2JQcqtIbrKYExBo36PxNp5R7pzM0doDcuqaGCrGtJwbUA8P0cfEOA1XQ+fyYlvHo4EfKwZfK0EyQRayKVQjSDWU1sHw5ml3olEKKKKBhafEWWmqGQtglKBrOe0R6huiPAPd/Z11CkKavLpiSEvBOCVP1lJaW98hprbE4nao4NaF1jYOg2ljroqSK0uBackMzhGspYuoysYZQtCOSCkFbwXvDCFY7bh4S4wB5zV1GKkq8+1X5KxqIOsd3ju8c3TBYY0g1mKNZgfFEKi5YKyOrkquTOOEdYEQDXFYE1cd0/6GZZywNK6Q9zjX41xESoacMM7SBUsftowYDvsJqiqSgnV0ztM7S+cMMfaqjAoB2/WIWIyxrPPCNE5c7w9MCLFbY0zBiGjYYDlyPI6EEMjTQrwfCestC0d2057tZqALjmo8++wZiyFWQap2Bk+eMSUXStXOSR8inQ8NmNRb8FLaOLBRxvVVE5rUW7lNWYRiRJ+796raMerIfPI4KbWQS9HHLArCdQSnwNiZ1hW0jvBZZPHc1c9QxrD7nV/N93zbX37eK7mrL6D6f/53f4OP/O5vxv2jf/m8l/KzqhcaoIjopm9PPQg5dUmAtqHq56cRTYMazVSMUxfkvf+noxyj9vAn/Y8atD0zKJKTSVbjmkhpoX3gjdBboSfhJWt3JWhY31KFpUgzMpPbFrxtnzdnlgZa9JmVJoe2KGlXrI5lrGj3pmb926f0Q98C/WoLIkwIkguuGX3lNjYqp78mrUfSeDDVNI+YClakBcQZfOOiTEXoo7rX9s5gvapxbMv1cU75K9Yq6NCmhN6Zm2KwRpU5zltEMjEoIVZqBQIYTzXqa0LbqGOMOOMwAjlpJyWnonfxRlTqTKUsibok8jJzdnaBD3qKe+daJ4F295+w3qmXS8umcSHSRct2s6UfBjYX9zm7vIf3BisV7x2r8wuWWchzYpyPjNOCAOvNGZvtJVUWpvkAIuR5ZpwmHY2lwuOrK867LWF1wbldKV+qVg6pclwMEiI+qNzXO6d+Mln5JM45YlQflCrS7OfLrSrnlMlT5DTONFjrEGOwVkF2PXVOold5s8CSkj5/ER0h5UTO7XERnHUEGwjGE53ejYlREEe4Ayifq3r0v/i1/PM/85ee9zLu6guw/s5//Z385v/0P2b7d/7p817KZ10vNECB0sYqaupubqkn8rQlcDtGkafS4VMPXMzTj2+HPNIGRloGvQvnVtdjdfRhwVgFMm3fV7WJETorrEzGlqy/Z6BzDgtEqSzeMOfapL2NeKsEjdblaes+5R42rgmtY0J9Kqm2Irg2Yrk1ckPU2lxgkWbO3/gs1ipPpzahkJxCBRvwskbDDBGhWv3cikCpCgSNpYhFjKHzlmB0s5RGkLX+RLw0Tc2jMMw2qbFzjuADLkSs9VjvsQjOecQosMp5ATxIwBnBGY+IwcWox8FUSlpwXrC+pxsGVquBmjPTPGKlEEJkyZk5JYJzuL5DpFJLpevW2OCIXSCNIzXNbC8K2S6IFIoL7KbMzVtX7MbCKw/vcbbd0HcBCq1DMvL4ZsdNKsTzLR/40Ie4/8pDrnfXjDlh8qIJwtY0YKHEV+c8hI4olmVRIHA4jrx9NTNSsN3CtCTmZQFrccETvcqLjXNtDPcUjNKAiYZK1lsytTW2gUuVGpvm4hsa2TaXTEr6r6JuzKVmanMUNla7RApQHNG5Wz8VZ6wSmu9GPJ+z+rt/+tuA9fNexl19AdYDt+Yv/rm/wDdf/lFe+kvf87yX81nVCw1QGieTE3h46uAtt3jjRMzUL8vt56feiHlG6XNLsX0WdDQAo660mkmj5lUWQwIplKqAoDNCbxKRTBRpI4qnLBjXLviuVrzTvJuKgpBSpW0+NLt6wZjayI6qxMhII6voHnWyOG+34rdS5lKFRMZgyc32/uT6Wau0BB/TpMfqQis0N1LUPdagZEiMKmyi18yjXCopFw5H2HiH93pMmnWL4sJasWgHQKro2MZ7hYGqQ8b6gI9qsnbCks7bNgJyVNHjVfKCLEk9WqyatqVcqDnTdxE/DHT90BQ/mWWeCVY7JTdPHnPY7zi/vMD5ezjrid6q4V7oiH1Pt9rQr9ZsLo68VCrjpNHNeRbG48yb716Rp5Ff9KEvwjjd9Jclcz2N1G7g/R/4Ih4+vOTy5ZepOPZLJrrAMo6shh5nLllttvi+x7qILTPWWRYKaZm4OSTevRq53i0UL2xSJpdMqWq338WePgZ8Oy5Px5gKuLPRoMXcTv7TOeEbgVZPZiUdB6ddqVQy4zSRc2mZA+09A03W3Tx3bgMGbXOX1XgD55yqvsodSfZzUR/9K1/Nuf1nz3sZd/UFXL+q6/jw7/4YuxesSfdCAxRV4bSt94RWGjfj5ILJaTyjv3HbnWhxN23co52Qp4Cn3YVSuXWkNbZd6xWcWKtAoJSMFQgWvEl0ZEJVqbA/mbrx1Ma+SKXUptZpm39Bxz5zEqoBI8p1Mda28Y7RjZ3GbbHK62hPt4EgS6qVRLn9O6FxBywoF6c9xsmoTuQkqS6nwdXT/7VN3ljdqFJqiqd2fCcr3MyJ6JWrceLyWKNuseodk/Eh4oOm7mIc1geMc9SaKUkwweN8wHuHdQ4XAtbphuyMGrvlVFhyYVkmcqqYYon9mm4z4F2klqqBgwZMSdSiz3t7vmK9Hehij0hlOh4x1jFsPJ2zDLEj9gNlc0/HTxa2q3OePLqhiCXNEzdv/ATz1ROWJWMPCzktYB3F9tx/+DIf/qVfzObefUox7PdHrFPPktlalVJ7z3FemHYHvI/064R0C2PxPNol3nh84K3rkbEaOi8Yr+eMb52mLgSs95p6bU8ZSTRQKFAVZN8quZzyi5zVkZagBoDeqSlcSdplylkBrG1jRNPCwKucQOvpnHDKq6o6ZvPeU4vyVHK5vSO4q59lfeyvfSX/8mv/Ap1ZPe+l3NUXeP0XH/i/8dv+9/8xH/zTL04X5YUGKFry3k/N0w9OSpj3fPn2TlE4hf6pPPbEVzG3XZNnHwtoYEO5HbkUcp6RWuicxRvobUWWzFw0pbhY8BU6b1iHwLwkvPc4U8m53m4G6iticGKYciGjnZMTCKpGlTcnqW8utSk8GtCohmDU3l7aug1eFRqGNn5p0KyNjayzZFT5oQa1cqtZKrSsGdT3xBu5JZwaYxoPpXAzC6voiQ5CMG0koBY0sYs4b7G+RRFY7R7lZSEYizh1Qo2dvyXfnkCK9woGiwVjAt1mw+AseV4oKbVOkZCqVSmuhWUcyVPC2MijqydQK/fO1xx2O57MjxhWa862Kw43VxhjuX//Pqv1lmF7SbEOMRbnAtFF4uYS5yOHmwO+Fq5FN+Ob62vmecGv1mQfePnVV7h48ArjktjvrpnGUcdWYQ3mhpRH0iL4ENgMK2K/ZX12STx/gGzu87JEHh4Sx+PCXDLiPJv1hovzC1bblXaInPJxmsmvhjs2I0AjouCkOcA6p8fY3IITuQ2VNKJqnyWpe7FrkmMaKClFM5VKbQGSBoK3t+Twvu+IPqiVf9aBoPyUt95dfXb10b/0a/iXX/vtXLo7cHJXP/f1ZXHF/+v3/h/5TVd/nFf/q3/yvJfzGdWLDVCkcOKEVGkKHXimW3Aa7fCUn8JJudNGMM/+TPvgRJVt9FhVQRhDKbkRCp/+1zVljZeMrwoslAugrpxTTszF0niumKrR9sZbci465qngrSEawQVHtYExqazUWNPIo4KYU0/n5IWiZY1yTZQY2f6ONPt/ecbqX54Kp1XxYZR/wDMpw43ecEozpgpJPXEJzqpU2KpTXM1wyMIGcGK0i+GEaoTjODEMPZ2z2GpwYqHWljekR1gbLwVjHVUKuSSMBIxV7w897p4lZ4Lt6LeX1FLJZSF4R61CMpZpHpmXRFh1dHTcM4UhRoxVwJPmEd9F+mHNxeV9XOgpBfb7HVkc64t7xK7HGM8wrHDujGoMcb0BI9zsDzx5+23SeMAAvbF88a/8El563/tYxDGOe5Z5otaC97DZbqA+oKYV5Fm7QT4Sux7nMna+wpoZlsCPf+JdPvXOnvsPXubDX/wlvPrSQy4uL4l9h3WOnA25xQKUUlpHTbtsT89Vezt+McZhTDsHT2PLKmTJ5KzjoxN5vMpJrVPIKenjGoN3nhiaMZx3dH1PFyLWGqQUVYA1Yu5d/ezqU//5r+ejv/k7CXedk7v6eaz3+w3/9I99O/P/JvO7fvMfQP5/n98eKS80QGnhwk21ICdRDqewwGeJr7e3oI1Aa0+Ose0n3GlDbhd1TD1xbKk1q2y3Zqq8lxjonMGbiqmZKVeCEaIL2JaBgw2ICDcpM7iAo7IUJaU64+it5vTMuah1vICRyjpoENyYWhjgMz0gxUwn9xeDN2otX2u9dcMtwFyKEitFgVapTZJsDFIbAbYBLOXFGjBCpZJKueXh+ObJoYThZp9eYBIh7ycojpfOe86jx3sdF7gGEEW081RF1K69t0oedeq2YlzE32bNeEIY6DZbJc86R4hrTWHOM9M0M6cZi2OeZ1yZwVdKXuhMZR0HrIHBneOc11GaARlWCvzSzDtvvYFxHeEDX4Sxjn5Y461gagUPS84MMZBTpgoMZ5e89ku/nE9iePzDP8z9l+7x8hd/mM1LL3E4TpT9geV4IOUZ6yNjAecGzi89dT5wnPaMy0yZM65WyBZZLHmGR8cZ053zxb/4VYZhw2q9pogh5YIt0mTo0EVDrZaUa+PFNgtjeXqOPw0AFGqz7Zd2/GtT5ZRablOmpVZNJi6FkvOtG3GIERu85vOESPSR4EOTvevJdxqZmmdOybv6zMtut8wPCsG82B4Vd/Vi1spGVkT2H96w/le3d+6fl/VCA5T31q2upelg1P+hiVWeft88zdzhVrvyLG/FNACg8tNSc7ugn3gbp98zt+m90QheoLfqmppOXiNWya2mKVyOeSFahzTwYozFV4MzQucdc9Z8IJUr6+P3wSOpMJf8tG3fuj3O6igkl3yrvLDGUEW7KwVBmky1CXOAliHUjkCtQi3KcLVWdETDU7KkbSMdGr/EysmfwzTvDTgulZuxEJzDOssQlcxqvce03BnxgeojLnbYoMF3YgDnEBtJGKo4VYQvmSCWOs8cdteUAqVUlpTIOdP3A+u+o+sDffRQB6gwHiZynrDeYuaM5ESa9pScCdHTd5GLsy226+mGnm51RrfeKu/FGo7HHTOGw02TYlfleJRaWN27R7zcsHn4ELfZMqZEHY+3M7PgtOs1zZnOQU0TZZrJxdD1F6RSoVuR/JbHs+WweOwQGWLFeMf2bMvFxSXnZ1tiFzHW3EqIjRhqMVAr0VmM9/q6VUOWqlJ3Y5tNfTMorE/Peo16aiZr7TFLLuScmwmgthid97gQlAxsLTFEutip++yz77KTR8/n9P37C6Pc2Rkf+8++nB/7HS8YW/GuvuDq//Odf4VfF/8gZ3/781d+/EIDFDkBkdtuiWnSWWgkjcYvOXVPWrZO+3kDyj0Rbomhp++XcvLHeK9SQR9KN+7gLNFWAlWluA38OCPNR4VmzyJ4sSQHS1EDM2dpXI6qcfdOLeLFgMWSixprgZqcJZwSORvoqlJx4poax1CNbkC1KWKMMcT2nApCqdohqW38Y4zckmBLhdrkTI5TVsszpFkRUlOVOKOhec5qV8ZZhwBTMUzFsLIBG3psF/F91PBA01RPGo9MSolS9S4/xAAmK+BZ4JCUWNoNK7xXea4LHev1lo1xTc0Dq2GgixFDweSMkUroFyRPpMOeMk8YL/j1QHD+Vn01DBu6zRnWd1QcSxHq/ohBmI5HaIosvEeMp2Qhl8w0joiLZGexIeCipg1LrWAr0zwjYjjbbHEOSJ4DDlty84MBnEcKHA4zN2nChY6u67g4O+fe5T3OtluGoVNQJ+bkQdhOPDUN1BO0kbC9xeMVTDVb+lupceummOZ0XKS+xzsln7gmJ/DpLL7Jop11dF1H7KL6x9w+HqeWJTyjdLurz6xs3/PR//yX8fHfdQdO7urzo/7Rt30nv/lvf/XzXsZ/sF5ogPJevkiTtZyunm2kI6ewvdtuuJxaJqeHaHSTkwk9IDrKEerthVk3fZU6mDYiCs7SmUJHAx20rJq2q5T6NBe5tta4M5wgBQZV2ihRsSmGRG5t3kuRW6uW3lnmWp9xvVVuStGb/BYgqM9b2ujrZMefs4I4y0mTpM/ItPAcZ05P89lxgaYiS3uu/a2HiaFrbq8iuplbo8nNu7FizIIUWK8Kvcz6wM5hYoc06/UYepwLOmoTo+6uVjtC0Xt81xNiIHQrun5LHNYMmw2xX+N81N+lkpcRmQ+U5ZqaJ0qaSOOeMo0gEPqBoe9I80QtiVoNxVisCy2E0GBi1FOlVKzR7pYNARMiFc9xPrK7OTAdRozxTHNlP1UGPL42Ca7JSBiIEQU+y5GchdpfYFxgf9zx7m5ESuLqODNWh4kRdwIIDWa6BuKcsyCunTfK9XBWOzm3pmxyGm06lYVrVkIDok9VYzqirCxV3WgppxGPjnuK1CZNdtim6okuEF0Ao2owZ5oarp15tHGSsac+3F19JvXDf+nL+cRvvHOKvau7+kzrBQcoSqTUOt3OnWik5haDaOnV2jxj1ianzaF1H+T2TjFxyqe5leYaC1jEgpGCM4Kn4tq4RzN0NETNWtvGJPq9iiGVinnGb0Rat0VQ9UXJgrOab5MbR0XQjoeI4I0lWE+qamsuaLfjlDRsGhAT+/RIqJ9X1VGN6HqUv3tiDTcasNXAQWOUCOubd4tvslUdJyjpthQ4loxzVYm9trbgvMJchbQYas6YGulCj48BFzw+hmfAXiNlSsGGgBiLRd1NV+st/fqcbhjUun7Y4GOP9QGMZUmZ+fqG8XCD5Jlt7/AyUZYD037HdNwjGC7vPWS1uWCZDyAjfb/GhogLEawlDL0qbkwAPOLARafcE+fJxbDUypQqeSms+hXdA5WbH29u2G+3HMfcuDWeoYv4Pqi3iLEUF6kmsIhlZ1c88Vs4PuamZIILHA5HrEvc7zqGfkVsnjBSpZGU0eiCRhQ+gVclZ9en57bY206LOtuomVqtCpDnUknNKVdKRUppHbWqXThrCC608ZxrnJPmWaPtNuRkVNOAiQJhBWd39ZnVm9/1ZXzi1/zV572Mu7qrF6pecIACJ9/Vk3oHGlA4uce2bz6NkJd2GefWSr5KQchAy7QxJ+Cij6nX4VPvoakjjOCs/o1ShSQF52/NJKgGHGoJXqtgvadWzdmphhb6B0mtYvFWw/xyA0m2jTLAUHJhprTNSmdYJy8T05ZrzS2bhlqfIrNSa0uxPXWZ9A78RCK+fYxnuDmnxOdUKwFLLprZE52Or5RzXDA2IEWoNWOtBgDmCvu50nfCMFcGUwhRuyRSi3qeBK9rsQ4bOlwIrDYXrNdbhvU51kUM4F3EGMs8HVnmhVIyplSVyYbA5v5LHHfXXO9GVh7iasPly68RYs8yz+xvrjBSCMM53XpLyRljLKVYNRzzHdU4UipUDEEC8yLIvFCWpM+pFC5WK9x2pSOqOmFDIKcjwgQ4DsmBcVjnmZaZmjPzkpnnAzeHhcezYfHnPDi7h18OPD4m4uqMVQishhXDaqDr+9aRUMBRUO8R61x77WhdC68S8MaZqiIKJNr5WmpVZVTreqRSWphghloQo8ClNp+g2AzgnHGEPtLFoHlPthm+tb9124aUpwGRd/WZ1eG7P8z3/Yq/AdxFA9zVXX029UIDFM2ROfm0PnM3Z57ZiOUpWNGfMGpOdVI8SKbWp5b0uvsC1nFra//M6MiIwVth8NDbovkzxpCplFwJVuW8JzfyUpVgm2oB7+gcresCxlmis9SkG0pu5lju9k5Vya7VGqRUqhXEGUxp7fUT58ToKECJkG3g5TSl9nTnnQGpyqexrkG1W6LjiSSrkC7XSjQQjUeqbnTe6ihIZcZqZX8CgJ239L4ph8RgpHI4jMRwcpO9wUW1lnc+YrD4vif0a2K/IsQBFyKFytWjd3EucPngIRi4fvw2aZ4QIMTI5uIeZ2cPEIE3fvLTPHr3HR5cnnPx4BIjhevrK8Z338I4w8VmwzQd6ddnzQDNELsBbzw2dBTryAWmcWYaR4L3LPsbggirlQb5qTmZmq9ZB5YeEzxzypRaMGFAhjNm21NDzzRlxmlGUuHJo0csyXLYVyYO1PWWi4szttuePC2cbVY8ePCAs7MzYoycAiKVQK1goKRMtU/bYtba2/Gk0OTmVSXGt6nHpZJSIRXIObUO26mb15KyW2Ck906dZptqxzqvxn/WNBVRG+ec3gdGidUnYHtXP0MZwze879/QmTtwcld39dnWCw1QAOVcnLodzTlT7/jU8aO5fmiXgNPs/EQELXq3iWbJ6M8pwDAtqdja2jYL7XAoH8Dirao3ci7UdvG2piIVJXd6qEVb6T44THbkIhyLMES90s+zSlmVmyLNrV7JnNqsMa07Ap13pJwxzjULc5RD0Z6Xsl2etuJr68YYearKEWuecm3aXbdtgMMY2za7pyZetR2f0x28Zgep2kfE0ZmCs5YlCZ23RCt4DP2gvI6b3UieJs4vB7ZDT+g3dNtzTOiJw4Y+BqiFfLxmygvr7QUPXnqIcY7d1bvcPHoLYyr9+T0uXnqN1WqDMYbd1bssy8Jq6Hnwy345GHjjjZ9k/+QxxlQu7j1gc3GBl8KDB5GUM1I0FG8RqNYiuTLPE9M4k6cbfJqoUuktrDcbNpuOmhOWTAwDzoOzhdqMzigVbx3dasAOA8ENpGoZMxQClcpUPU/2B6rbUKvl6jgypcS9szUXlxdszs9Zbzf0fa9qqVKVT1RKc/JVSK3KdrkFCiJP+UMnzmpJmVIqKVXmVJlLgabWMgaMM0gRpFRcG4FqQKW6EDurnRqpFWc99hTBeXt+3BKVbjuK7g6g/Iy1/3sf4n97/7973su4q7v699a/Xp73Cn76euEByu2F3ChX4kSElVqeCg5uEYqBxrUQKbeqHvRXbjcA1zw6ThdmaZ0KWv5NsIJDHVaxzb0VIXqvjqxFpaPRO0ouGAHvlLwanUVqVfBgLN4YdaU1mnCcauvK0HJV0MTkIijZVDSt2ADFWpbWFTltWt5aaEKO08RJOaDy3udqFdg4eyLvGkoDNqdMos5ZYtC/WaqQqiBFTfFqqVRrMVUI1ipYco7zwWEDpGop1kC3grglm0iWiDUBbwwy3nDYL3hniMOa84tLBMMbn/oYUmactZoQfO8lujiQ5gOPH79LHFaszi8ZLu9hvZJd333rbabjSL+9YHV+j+3mgidPHvHS/XP2y0zOSgCVmrHJYDLEqN4xq05HPaEaWBZc0IwgHwPFgHUBF9Wuf54zse8p1hGiI4QOiR3SHFx3xxGRyng8sEwTxfQkK8xLIfaBlDMJYRHwXc/5+X0263Mwmo8j/3/2/j3Ytj2768M+Y/xec6619uM87+3bEkqDMKU/ABODMUmZggijFipSlBS7VMEPBEiOQK4K2IJYqYpDucoygdgpqAIqTkw5Lkj5kQouFzGY2Eg4UlvogXgIqaXWo9/3cR777Mdaa875e+SP8VtrnxYtqVvq27ePtMetU+fuvddee56111pzzDG+388Xm5CIgDbtazc1Muwxb+pWK3UUbQMlW0bSvFTmxVRKrufmcBBX9+f4QYPU5JBw7NA+7fPevfRS6blTP0sMe1gF6t2e5+ct/4Gv4MtPLt7rw7iru/o56//4m78GePZeH8bPWa94g3IgZ3ZWR5+YtHZrDT6MpuUQXmOTc1rNtB4pbxMYRcR1vYa7vXptBjWrh6ZBzX1TSmauBd8XTGAJxbXvdvJkaPqDPuS4TFGOWpPDdKT2Bko6MbaCYep7UxEObBaxnsoC/w4OEDXRr+1saGrzFNenI6VfcdtmwI7V+rnDOgHCUdQrlE6VVRXECc6Br4r6/uiWg+vUfr4HVh5Cko6qD4QU8Kqklac0x7I04lzY5Rvmq0vSoJw+eMi43jAMK0qZuXjnU+Rl24FlZ6RhTUoD8/aa3fMnhJhYrc4I6xOccyz7HfvpGbuba/JcGFdrxpN7DOOGhvDw9TfYXV9Tq5KGFdM0E5KSxkgKHucEbYVEhbKjTNe4YmwQRFEnSHcMSRAyDR0GXBppIuRcKWGkaGSeK/vpkmVaqPNEq5Wb3cxNFjSMSNkz55mYBtIw8uC193HvwSM2J6eE6Dtrxh5/p+6lSQnHSZ4R5xpGT+5C1VqZl9nAbOL666GvbsQai9I5LVIsdbp2l5g9N02HYplRDt8ze7yaM8j9Ai6du/bk569//O2v8dMf+K/e68O4q7v6rPUv/dRX0+Yv7RHKK92giGFX7U37MOKgdXvtQTtyu0OnX0W3lu1ML32njzdb7fF27uiOsemJNR2qgpKpJdtPqiDulmCb+57faUfKH+BvL72V7+cuxqUdhYy1Wu7JOjq0Ktsls7RqdFtgX4rpBJzSpJH78RyspqYfsSajdh7L0moHd9HXT4crco76Bo5rrQPcTm4FkAKlwlL6mL/ZGurwPcE5UHMgpeQJsZ/ovDfwG5CiszDEsuPq6Y7WHKcPzhhX91lKoFw859n8SULwbDYnbM4eGw5eHdPNC3aXTwnDSBzWqDfU+rS7Yrp6yrTbmcBYlBASwxBpdWba37A5u0fNM2kIpPGceV4YfGJMEXGwGgeiV0qZSQJtSZSYkDLDPOE04IZkqHzvEW/OnwpUl4ghQc4UCdzMle1uou53zNOWmgtLaeyrMM+FjE0qmsB6vea1117n8Wuvce/8Hiklw8YDzlmGzkGgfIgDqLUhFGq25/eheVSEnDPL9po87UmrDRJXJqq1p71pVHKl5GzalA7tk07j8zEQYmSIicFHC5b0tkL0vgcO3tUvqtr//J/mn/9NP/ZeH8Zd3dVnrX/uh/9XPPiWHfXq6Xt9KD9vvdoNCib8bMZM5faaTl/SnBw+3bqotCAtI3hU+t79cCOhg856cwLQDDNuZFVzsoTSJS4Cua+VajO7ruEo2vF0f3iLf1kAGfoY336G6UJqaUxUC9gTYelTEi9iGhegltIR9wdNiN2fOwp5u2iy3YYL3mpz7KTnRI4rHOdcd33cUkGDas/nsX+7QUrtH1tKB8Q5hwaHC2o8jVxwNKoHTR4XlFwKu6trap7ZbCKnZ2fo6ow0JC6eXbJcPSF5OH10zub0PuoG8rSnLT3TJkZOzh/i48rcO1KZdpcs80TebY3im0YkjKTVSP+toU64vnxGUGVYn7Db7ii5kMaRpTTD5FvsDN5FmhaEgRAiLc8QM94HNAS8sxRhxBsbhUYujSoeSYnd9Z6b6x1XVzdonShl4nJbeHGTudouPVpAQJUUEycbCwJcr9bHPJtlyabx0cNkS4/P1cPI7ECINbKvg9bJruoIaYVzHucTC86aNux+Wi22TsyZ3IGDB+ZJiEaJTTEQQ+whg6Y98p15c1ghHepAW759Lt9l8fxc9dY/u+K//Yq/814fxl3d1T9Rv+n7v5H3/Vsz+ROffK8P5ResV7xByfbm3YFqh1PvgT+i/Yq/X4tCy0i3YKr6o3bFJhG1NxrdKXx07dh9qirOF3OyYIObUoXST+61WkNwEMfa97SjKPcAYBO11YuBW6U7cEyIW1pDG3h15JbtSrgBKrRq2hDXBFWb8JgVFYLz1hTVSun/WndozOptA9PQo+7GXEDWkEDXyDSOayURCA6iQvRKKw3nHSkaZr3Uyn5nfI3qhBAScVxTyoJnQbOtOs4f3CcMI1UdkczNW0/IecvJvVPO778ONXP94hmzV1QKPkQ2997H2aP3sdtu2e+vWK9W5GnHsuyITpAxMY4bmgg+DtRW8M7cTvP2gpwrklbMKBcXLxAVtjGi4lEfuImRzWbD+fkpqh7nDEbnV4LMC+oUnNKcp2FrK1ywc3Wo7KY926uJq8sr9lfPLWU5T2yXwovrwn5xzHNh6ZOvECLO2URimWe2Nztybqh3BwUryEHv4Qjas5UOTQrGQ/E4SlUqpnuqRalupGpkKY15yYAQna16lsbR2dNqJYRACIEUEyEapdf3eAK4/f3bgK5RKX09eHC9WR2mO/rS5+7qru7qS7u+463fwPf8H/453vej71A+8tPv9eF8TvVKNyilTn333g3Ecrjgkz7iluOb6QHK5iT0vf7tiuRwHXjU2NK9ux3jbs1EhZpR7VkmrR5pnflwUq9QsiUCH7qd4JTgLP9mtxw0AAfGSvdQeO33p9S5IipEdbhGn+7Yzzosh6QZ4fNAy80HXYKYDsQgXHK8EC/N7hOxJqdhzRA0tCnBG720Vqi1ADbR8dGzGgMK+CRoNTeMVCE4wYdG04COK5YMbz+9YO0brBz3Hp7yeDMybXd4n2ksbC9eID7xvje+EvXK0099miAzce3IOIZh5NEbX0YYVjz55M+QhhWbzSnb62fQZpJP5jiJAZ9McFtKwXtrTZftFW2ZyE0ZhoEXz99m3u3ssd4qS28aRB33Hr2Gc19BTAMqynqVaM7BuKbR8MHRmpArJgqeG00by3Zie33J03fexLWCtJkgjdqEm13hxfWe3BxzydBuJ2g5F15cXpObMmU4PRVCSj3Smf6caHjXmClHzYlZuj04A/5RmpF3G0g1BsrSStcjNaLzpj0phTnP7JeZhUZwnugj4zgSU2+YnDs2Ka1W8lK6nV2sKe7Hfpic/Oy6feXc1V3d1ZdqfTpf84e+5puQ7Z7ho3+X8gt/y5dMvdINSmt6vMI8NBwvX+l95gjaNChV1AisB7dPT/C9ZYIotSmCM/JrA5GK14LLO5zrWSalTyLENCelVUortg7C8mcQWCq8mBaiF4LzuFYNdH8EydnHokpeTF/iKgzBGBVLNTrtYZ1kaxqOolkbktjXa/+5qooXc3bghCL077P1kTRzeHgg9AlPzZZefJqU5D1zz2q52mU8MHgYvDV23hsJ9+T8lBQ8L65vuNnObHeF1YNT1vcfcL29Yrd9xr1H57Y6KYWHr38ZTR0vnn2KTWisdLIgwewYz+/x8NGX8eydF9T6Kc4fPMZ7x83Fm6b5qYU6Njan91hyY6PB9DjzzGpMwEItNzh1nKQRlUqZrknSqCLMyw5ZGm3eUUrh2ivXp+fM+7eRBsNmQxwHhnFF8J5p2tvqJEQqyrTbsb26QBG218/ZvniH4IXVZkMRT3YJ9cLmxLPkhk7LcbpmYzcTDM9ZWKqQ+1QETIxsGihb31V6yrTvoX09S6i0Zlk6pRzdWZVGrmZ9D+qOzcmSM8u8kJcFdcI4RNbjirQa8b05sds7tBm9WGvGOcXQKLcC2c/WoLTenN/VXd3Vl2a9qDuWVvlDv/H3Up7/xHt9OL+oeqUbFOSgpuC4rjlaKY9OnoMYFQ7gNVNU9AkDB9slR6ZKO9xPtxob9XUhOmFZyrGZEW7TfhVzTyiN4DtErXNJcjX9RqsZ362jtVs9wVxCXoXB93A+NZVJLnYfNkQxV0WtplOx29lVdO0OHtOJWLaKd+ZEaZhOR/VAJG0E9T3R2BxPrdqJKnhFBaY+SlKxxqWoNT5Sq2lgVFmfnjGXievnT1mPifMx8Oj+GatN4ObqHXJuPHj0gO31niE6NvcecHPzgvnmmig93FBBXeL00euMQ+LNT/w4zilnj15jf3XFdnmHOAYExYdAy5Xt1RWrk3vsb/bspxvCMLC7uqa1TJ72iB9ICXZXFyTf8N7TckFyhVEZ0shuvyVp4fmnf4rL509APOeP3iCsNozjKfv9jmm7NYFvzazXJ6gqz9/5FMNgOUBBM2NISKssJfNit3Czz8y5r2SCmk5JlbTasDm7z8nJOavVmjQMxJR62rM9v7SzZ46sERHU28uzYi4ce7bacy53Zs1SMk2F4ByujxCXnFmWBZpNTsZh4OzklGEYcN7354DDiVnea5upvTkxMF38rA3Ky02KaVG+4K/ou7qru/ol1o8vN/zY/Ig//we/Cf0f/h7w/L0+pF90vdoNSp+KHEBjh+2OTUYO7/UHsJX2z3XnTDt8jdsGRtROhl0bAvQr24zWhVIWuhOYg12X1nC9UVC1ZGLp1uXD7YKzw/LikI56lSZd59KM+KmGzvfYhOewirHmo18tl2qalWorIydi262eveLECLKlVnZTNt2MimkaOi/Dq+tZKs2cHD4cH6PWKnPtTiRp5ipRITgYoiOqEIaIeEdZrolUXHQsrZJWG2pZ2D3fMgwjp/fW7HY77p+dU/Oetz72caK3xywDuyWwOX/I6cNzXrx4yvO3L1mvNoyr+2wvXlDLns1moGbBh2hi3GWGCovecJP3rMY1bZ7ZTvueEC3M05Y2DJT9JWnwUBsaPIIxasQ5ViePyEtld/WEULZU9Wwv3qRc2Bpke30J0gg+UvJMHleM40C+forIiU1ZxhUxrlhwzDeZpUBzQlkWA8MB4v1Rm7Nan3B275zNZmMiXPcyX+SQqWS/TqdybCgtbbqvFctBYdQnMypGxe2/05wzuZkotpSCU2fNyeaE9XqNqoluBdBWaC3b+g9r5JzzqHPHxuNlJ9Fx+dkblVorJb9Kw+K7uqtfnlVa5Vs+/tuPH//Af/YbeP0//F6Uv/ceHtUXpl7pBuXWPtz5Hn1C0Grp7JHb2x1YJbWaduM2d4Y+OTnYbSNge//Wake7gx4AZnrAx9uJxDtrJkqfdDinPTVYjoFs0GysLmbvPPBXDk4j1VsXjvar4Eq/SsasvAeWyeFkZZHHhzwWQAQvNt2o1US3etDi1EZUm440jLtSWyM0iM5BK8y5UmtfAb1kJ3bOhL/NOdwQWEpl/2KLQ/Ary9JBheura6iVk/MT0ukZZZk5Ww9MV0/INzfEqGgTYgysz85ocUNwiZtnbyLLjiAOFwI5X9PynnFIBOeYpqlPB1o/eVauXzwljpGSF/bbK7xTltyYasEPa8q8Q5aJSmFYBUotxBBopVpqcgzs8g2rMTCO95mmhbzMeC3sLp4heaJII2tAaiUzM8vIyTqSgtmnCYHLqXC5z9zMjf0iVCwpWRCGYWBzcs6wPmUYN6w3G1brNT5FnPP4LmSlNnK1lQ3aIwzkJQ3IQTRdcndtVdNEiYC3tY40KMvCvCwsJVNrJXjPOETONieshrFnKBUOmVS51U4T1uNzs9XKUmaaDzjnzJbcbpv9g3vHXlOfuU69q7u6q3evvup7/hVq/eyvt1qUX/2//uHjx6/zvV+ko3r365VuUG6bkuMlX//8S+JYXvr6oUR65nG/gj2i7R0iAVFvq4xW8c4mKFIrXo9yXGsYRHAIwSnizIGj3lGK3fsiUKUn1FY7KfhuVUasgSldxGoJtn0KRIfLqaHJa+2aFbHE40Yl98A3oU9I+gntQBl12JoHaRRpt8KogwODRnCWh+xUwfehigq1WVKxdvEnLlBQbrYZT2YcFO88zhuwjFxYR2F1dk46PbWhzjJz9WRL1EZMSkyeJsrq5Jw4rln2O5b9Beuk1DgShhMMsrfggiPFRFkyKThW0ZuI1Eem3RaplejWbC+f0eqCpIiqEVOdDCz7G5w2Sp6ZdzfWvPn+exVnAYJOcGlDI6Buy7y9QaWhg8O5NaVVvHNHKvAweMb1gO+JyJf7ytuXE5eTkJs7ilxjipysV5yenXH/wWusNveIacAHjw+HyYnh5Vszgzwi5qbpcLRjdEEz0XJzrouo63GaZs9e060c7Ou1T8mic5yMAyfrFUN0OEz8egjRrO0Q/9BXniWzZNNVtVpJccCHYAyWl6BxcHChGVNH71j3d3VX73r9mv/8f8NX/rHv+wzL/6+UesUbFDg0KXa12V5yx5j7whJib5uU24ZFaeKRPk1R8dCbE+88nQVvJ5a2w2UM0d51HsHZ+kSb4JrgFTImYmwVcnc49LahZ9jIMXW4tYZ3HpVKULP9LrWa5fi2der01trXQuBdx771VU8uhdoqWm0t1ei49NaoVDy2/srNPBcO+6XbybCDwFRI3h9H9yl4Uj8pavAEEebdnqiKX3nGdSI4c5wsu0r1sLl3j/HkhHl3Q533uDLhEyyTRQC4YUUaR2iVcvMC1QZaUecZ06qD7zJ5mdicn6Eq7JeFNIw2EUsDtSx4KuPJCU5hiEopDpWKU8cwrHDOsb25JgWHDx5t+WjvcmJNQC3FTrKq5oipCykp3nvGVUQ6WfVw/i01mzYjDmiI7Ktytc9cbjP7EmgCPpgrZ316wr3ze5ycnrLenOPjCgneGunDL46udcK0PV4FddrZIyZirq1RmkUc5FLAieHv+xpIpU/qSiWXTC4ZJ40helbDwGY1EIJH6KsY60j6+s660VIKpSxMi4FhnCoxJpw35o9ztj6yl1YDMbeYTf0OQMS7uqu7erfq1/3fv5V/6jv/fnfp/cqrXxYNygFDL92t0g424ZffQA+hgmqALMEjWJKriKLiESIiDnUJxOF8z1xZnuP6bGOut6LbeggONOEJbbltIpxy3NGrdzaeh9sQPxV8t5Eq2k+gtp4pNOOviIlnD+GGUjurpVuNo3MmsFT7eCmNTD3yX1QsxG9ZMkszsNuBRDoGT/KevCzmDpLW9TPgUdLgEOeRWmlLoalQEDRGoCHFRJWLNsbNGRJHrp4+R/KW2ip1qaSkhEFJJ2tCTORpi+SZUhuaHFVgtTpFvSfvrhBtBO9ptYJUxCmi3hrN1mhlxqdIGgdanmnaGNJAU6AZadd7R0qR1jIqjegd6oNNmKTiTbmKrEbmUnCtUl3FuUTOlTQkw9wjtFIIySNuQFzAi6eoZzc3buZKlWA5Nt6R1mvu37vH48ePOD05I6WEuECVblWXwyISW69QcGJOGu/cMTW4Srcct4b2yVvtzbV3pqlpPaH78Nyfpz01LwzBc5oSm9UKF+yl3VqlIfiuJ2q1kZfMbp6Y5sUaZa+MMVrSc4xYFJVFPnzm9NH+X/WgSbmboNzVXf1S6tf/h3+E933PDTU6/r9/9T/mTz/9tfx3//r/7Pj1X/0P/xF1u30Pj/C9rV8GDYqNzNtB1YpxPA5OnNYOkKn+pxkhUznwU0wYK0RUIiIe0RGkiwXbBG0PYqnHoWeXeLE0V6emFWnYFWipzUioovhgjgn6yQaEbAaZjtDvLiA1auxUi2lMEHLtbBMPrtlKxosawv6gp1ks9XYuhSEEgkpHo9sv1qvgaUhw5LkizdoyL7ZEqD1pOUmDYtMl72FcJXb7TM4zZ6vAEME3hwsJWuH6+cToFT2LnD58COK5uXpCbJVlqiYwXXmaE9arM3OW7F6gtZAX04M4KqinVeH64gIR0+ps1hum3cRqUFouTNOeYTyh5kxryrg65eb6ksErMUR8iNYohmhcm1pYr1cs8960Q8ER48A0zzQa07wn+UhQCHHsa6FGzYV5Wpj2O9ana5tkqf2evAuIN2jb9b7y7Kawy9DEpi5xHLn/4AGvvfaYhw8eMgwjzjlqt6nXPsVaqkUQHOIPblOC6foTwTWbmNXj7ez3f2D2lFpotUADJx5pBdqCk8IYEptxIIVA7W41uM2CqqUwLwv7aW8EW3WkNJBSInpFNXSxeUOarSFbs8cAjKVjSdqt023vGpS7uqtfTH3l3/4mft2/+Sne//QHaMuMA77uf/o1tGVBnv794+1+pZOGXvEG5bAuOTh2Woek9eZDDrD5nseDIuIBs9Xax5bF4zSCRNQFVKJNYkolt4k2T4RSSaKd7mpXtQdHw1wqC1C70iOpoK0hpRo1VkyvUjlMAixttiJkkW75FAanFKl2QhA5MlCK9hBAU+MaVVYheE+pdv9zyUR1JKcd8IVNjVRppZDUHisVjo4XFZvaJBXS0AMTnSPnQivZqLit4aNjMyR2u5k8LbYCGUZWpyfUPLPM17hqyLuUxNwr60BardhdbWGZWY+KBsUHxTXHbi6cPzyn1MIwRlq1OUHNmVYXnIxEH9BkItw87VmtT2lNaDlTRUnjQKkQw2BW2xAppeF8oHU7du123FqrOVWCEFJkmXaMPkBIeCcs+x25zMzTQt7tCYMnxEDyCecDhMhugYtd5tlV5WYuuJBI0TD+9+894Oz0nHFcEUI88nEaUEq1xlWsYVYMN+/UHdc+FVvpSFfGltaFrDR6QuRRIO0RYlC8U3LJRC9EN7BaDTSnzO0QcyDkZlk8tTWohdLTr9dpJMSEOHere2n23LIoq0Ypy1EMaysoW5faxNI4LXd1V3f1+dV13VOfR/Kbb33G53/2x3cFn/c7zN/5O3+H3/t7fy9vvPEGIsJf+2t/7TO+/gf+wB84CusOfz74wQ9+xm2ePXvG7//9v5/T01POz8/5Q3/oD3F9ff15H7w1G4fU4YPbwKYi5hN2NBRDiXtEIqo2KTGibAAiqgNIQjSARJqoaVAwwqbrgthMJbcDB6UTYVUJ3mixB2GuV0epMBWz7TaxRmjJNt1J3jP40PkXQqmFXV7Yl4XSKsE5ghdSVGJwhL5SKtUYJ4MPR5fQAcrf+slI4Aj4EhFKaUcxpOkK5GDBQFCCKmMKRoZ1jpYXolY2gxLFmiAfBpZlNnFpVO49XDGeRrY318z7LXR4WBwcOjimKiiR7cU1nooqbPeZ0q3d85K59+A+82LZO8t+R8sLQ/SEFEhpsCTlEBEJ1GWPF8PZU2fjtfT1FMV4H7UW5mlPXiZaqV07oQQf+26l0kqh1WyZM+rI855WZuZ5QWisx4HNJrFeJcYYCaqE4Agpkavjxd7xfN/YV8BH8MEYJ6f3ODk5tePuNnbtDnDp0weoeIHRK2PwhC6KtSgEbNBWqlnJW0MOf6odNzXjpJIcrJJjCB5VE9HGEFmt1ngfOYiwasvkMlHKwpJn5tlWa049QxyNw6KK8tK65iU9eZes4Jw5r4L3poxqgtNA8ANew+f8Wv1Set+4q7t6r+p52fIb//a38mu/7fve60N5JerznqDc3NzwG3/jb+QP/sE/yNd//dd/1tt88IMf5C//5b98/Dil9Blf//2///fz6U9/mr/1t/4Wy7LwTd/0TXzLt3wLf/Wv/tXP61jsTbSPomt76bOBQwbOYZqi4o8rHOQl144GRCNCsAbFeUt77Smy0pz9nGoC3Og9gpCL0TcL1stUwbgkwNLqrXAXm7CYdkRtHdGbm66GMDVMn7CUVplqRruQEjGXT8FQ933uA/SfJ5Y0LA2zGYvlrwhC9MGmMa0aUV1tfN8wPUqTRlkW0tiPe5qPwlnnHeMqkOfG7npLjGqQMhET7ZYdtIx6I94KDcQRhkQYhGW/pcwLLgXiMDJNOwRlmjPB2YRj2d3gUsCp4lozaFx/1HJdoCmihTxv8a4x7a6OuUQppd53VJZpR24NdTYha6mRS6HMmRgiIUKMEXGOZZm4ev6MYRxtrVcz3tlqzntlSCujsdIJu/2xutxXPvHkhrcuZ+bqGMaBzek97j94zPm9B6xWlrh8EKIKtm6rvZl1TvAo6nrT3EWypVqGUqscP9tqhdrw9CDHfhlxmH55p5RSmZeMU896PZCivcZqa9TaQxH6iig4R/TWJNfaXrK1F0ScNW/9uWNaGMWpHavrvBZz9DRjrvQsKOc/97TjL6X3jbu6q/eq/rOrX8tX/iuvPp/ki1Wfd4PytV/7tXzt137tz3ublBKvv/76Z/3aj/7oj/I3/sbf4Pu///v5zb/5NwPw5//8n+f3/J7fw5/9s3+WN95443M+FgPJHiyQx4xewNkbLt2dg0MloGriV2nm4lGNiAbUJVvriEdTQIKnLhmVjLQBFnekwk7FVhmdt2b2YATpuSumL7FDUTG9B0ButoYRZzySAzBL6GAuhKWYO6N01i0c3BN0IJytggQL+Qt6a1c227NFu7RmJ5RaCurkOO53TindYqsq3QEklKXYtKUHxaWgxvpoFZVute6hci1XyjzjowXcSYOSM84rISZUhbLMZtmNns3JGlSo1TQgqsowrpj3e5JXUgxGe20HZY3dJu8n/BCQOuOkGZemZMiZEEZqyfiY8F5Z5tlWOC4Se+pwjIF5qpSy4KoyjBs0BBuulRmVSquZZbohpTVxXPWfbU2v7+LWqsq8wNW+sl0apSkhjZydP+Dx62/w6NEjTk5OGFKyk3efUJlFONvzQJ1NtTBXjGUeVWrLaLttSA7gEzk+FlgIpJgzyzuPE7GcnWXqmpw1MSVrPnqTV2pFjr5g6U1Id5gB4vxRsWvTQOmcGew55joC/6CRQXpzop1Fo4iC95/728eX0vvGXd3VXb0a9a4skb/ru76Lx48f8+t+3a/jW7/1W3n69Onxax/60Ic4Pz8/vskA/K7f9btQVb7v+z772GuaJi4vLz/jj5XrHYHSUFoL2PTE9z+2xjk0J0JCJNnERBPiRtSvEbdG/QrnRtStcGEw4FaIuJBo0gWPmKhVMVtx7Dv43A7k2NtMFYd0u7M1UKUWvIpZdUWJqsR+Aig992appk2RrhXRA94FCOpJIgTVnrfTU5s7GyU6IXbrc/AO3wMID81Sk87IUEdUJQBBGqfJEQWk2hW9D6Y1qLnQamMYnH3OS9dCFOPBuIaIY+lOlxADZZnI+z3Ldub6cmaaMvmwGgpqgtPgWPJCzQvJO2rJqIL3aiGJIRGdM5hZUPK8x3uPNKXkgsPh1THPOyOnloqqshpHUhrw0eOcwdRWY+raIyh56ToXAVV8iKQ0EJxS855WipFdRXrqtEPF0Zrjald568WOq6mQ1hsev/Y+3nj/l/H4tdc4OztjtV6TxpEYR5yPVFx3TXVbu/TJjkifqJhLyX65Jg4Wqf2PNUnG3KlIq/13amuhUhq7eQZgNSaGFKE3pDY1Mc3LtCzM80yeF5Z5Zppm5pzNFVQqORfmUmwqFwJpTKSUSMkSj713R9KtiOC87ywXhw+9iXGf+wTlc6kv9PsG/HzvHXd1V1/c+vX/lz/C/+0/+F++14fxStUXXCT7wQ9+kK//+q/nAx/4AD/5kz/Jd3zHd/C1X/u1fOhDH8I5x5tvvsnjx48/8yC85/79+7z55puf9T6/8zu/kz/1p/7UP/H5w7Si9caAo124C2TF28fH9U6kSV+SqEdcBB1QTagGux+cCQX7ON7JiIZAmxQn1SBknbfixdQFpTaKluMJZMHsoa1VyrGZwMLZnFJLe2nVUqkCyTnWXRFQW7OVj9jJxhoUcw4t3TFUWl8kHCUExqZQd+vkWSfHEJxZl5eKc7cUjuCVSCOp0mrB+8Z6iDivzPtMLbVTZB3TlGk1g1ecEzYnAyn5Tru1xouaqXM+ZrTEIAzJ4aTQsj1u4jytCVfX16yjpyZbK0gruBBRn3DqCWrrmjrNhvyvfdqTK+v7J9Ra++Qh07qOx3tPHBKIMOc+qVJlSENfiWQoSwfrBfJiriynBxFzxjtPa5grSyrORWoTrueFy32l+YGHD17j9fd/GY8ePmZcbYgh4ZxH5NAQmiPL5DbGydFiDbQ447GoCCp9NdaFvKXU22d1A6rB+1qHpdUG+1yYpxlaY1iNpJT6WlH6lCpTSyHnhZxtzaOqx0mJoDRnYt2UIkM0vU+Mfc2GMzZMBwYe9SAHOJvCy9biz5Zw/Iutd+N9A37u9467uqsvZpVWef9/8HdpOb/Xh/JK1Re8QfnGb/zG4///+l//6/kNv+E38Gt+za/hu77ru/jqr/7qX9R9/tv/9r/NH//jf/z48eXlJV/+5V9+/LhzU1FxpjVR3y2QhiUzOmxf5xzEsaIgHtWAughqD4XJOhxNhTgEvO5pN4HqBSndrgnGo+hIea8Hvkmx8X6tBOdtXdO5Jscdfi5k5OhaaQKllJ6r4gBz8JR2O0npOyFytWlBq80Q6TScc32nVHE4knMsWEPgRVEqQwxMNXMYmCm2xvEIremRfCul22q14ZPDBZiXhRC6e6PZz4BugwVb5UjDBQH1duUtsN9NZgNWWOYFFyMhReZlYbUOLFNmWhxjsLVIKQUfbLpUy2Inc9dYDwPTkllqxnnPdrsjhQCtEaQQKJQC837Xr/pN6DsX02eEaCsf72wiUVqzNrBlaq64YM2F8zYRKLlwCGJsCtMMc1Ukjtw7ucf73vgyHj5+jdPNmZFh1Zvup9uAwbRBtekxWNEdBKi9kT70FCIVoWcjId0ubwC1nKuB1Gq1ZthHo8pSSCmSYjTLL43aCmVpLHli7uuuQ/NQShduO4f3gTSMjMNIjJEQvE3LMDeXF9dzHfS4Vnq5Xkbdl1JY5uUX9Xr+bPVuvG/AL/zecVd3dVdfuvWu24x/9a/+1Tx8+JCPfOQjfPVXfzWvv/46b7/99mfcJufMs2fPfs79s42e0z/x+dqhaSrBpKbiujOn55xIMLZDtxCLxuPa5zhhcckmKeK649PG5OqVsB5wmlguHNNi43ZbsQhzaywdLa4cBLkdG9+psca7UmozN8TgTNewLAVE8c6amYwwZ7Mqg1Fqg1jKbexX3aKOuWSjxqpH1SBkDmFeFtQrzoF3HEWfg3cEsZbKeeviU1CcNMpcUBWGUViyfR9aiMkC7gCmaTGcfwDvLMum5crucmIebHQTfWNYJ0qtnJyucE7JU6Zutwa58za2adpIyeGcsMzCmAZaWWhNj7ZpFSglE4K35sfZ2megQZ6odUazkW6qqyw5mzqZRs2NxXtEPTGG/jh1PUezkMBSC3QwWet6j9bAeSMK11IRNcx+SJGpCNvrmeulsj494/Hr7+PRg4es1htCDDY56cLmdrAIC11k2u25R1eNrfFariZ6bg3ppN8uJQKphp1fFnKxZ0MMoacmwy5nUoysxhEnjtLt6vOSbcJUC9KMx2PTD3vexDh0+/NADPFIrLXtk2U4aScn03Vd/wThpBmYsJVmtulSXpr6fOHrC/G+AT/3e8dd3dUXs37v7/wXafkn3+vDeOXqXW9QPvGJT/D06VPe9773AfDbfttv4+Ligh/8wR/kn/ln/hkA/vv//r+n1spv/a2/9fO678PkRPrURMQfJym1C2RFgolhO8YerFEBEPV9ouKRjvQWaaCCOsEHjxNH7fRVirk6vHN4bP3ixBw4Ske6i9j6pesNLJ3W9Bfa4Wyr4IzcKuCcIy59rePN4VFaoTa7SnVdjFqmTIqe2ipLNgdRdDBGT1JPrkaArRlyMddIa42pGGZfRBh8IzlDnTdnDpE8Z2LwhCDEpKzWiVwWpr1NIKAYIZdsV9jB46PaCWopLAUWrzSEi6dXjKuB4JVhHMg1U5eKOiUlyzdqrbJeb8jLwn6ZuL7cwZHgutjjrI3oA7lm6HZc75V5nihY8u725pqaB/KwIkVHiIGlZhPtTrWvPwz5H0KgdYgeNFvvqCJqz5PaBCeOVi3aIPhIrsrlvnE1gYSBBw/u8/jRA05PRlx0xjhp1dxcnTNiKcQHMCC0cgDyVZZabDrT1y2lVmti5ZC9Uyl5obZidGIfWI0DYxqouXB9c0MTFVtSIAAAtL1JREFURwoDtSq5Zkot1JZtygLE4PFqBGTnejqxj31aEo/o+gNN+OUcKxFrhHuXbsffjlRBWm/gjKlisMBc3r0043fzfeOu7uqLWd+zr8jVzXt9GK9kfd4NyvX1NR/5yEeOH//0T/80P/zDP8z9+/e5f/8+f+pP/Sm+4Ru+gddff52f/Mmf5E/8iT/BV37lV/I1X/M1AHzVV30VH/zgB/nmb/5m/tJf+kssy8K3fdu38Y3f+I2/CCW+aUuc2pWzEOyfJAFFbwWypOOKh+Ok5Tj7MOHkcZ2uhplHqcVDsxOYqrlcKo1c6RRZPVp+awe2+X7V3LpA9pA4jCi52UnJq33di5CcwzvIVTvUq3R8vR6zcZoI6j20SvCC90JZ7OfkWolBcaXhFWNnmA7UoGbNPr9KSujwtlIr0Qsh9KZMOzW1FvK8IA6cNMKgeG+PjffaVw2OSiWURouOJc+GnBNjizgnNG2s1iv2+71h/Gul5kam4Jwg2oDC6dmam6s9+yWTEXCeGDxFhKqVmgsLsF6tAHOY1NJI6vCrE+ZcyNud/Z58YIwJ5dYe27ErNNtadK5HoPrANC9HZ1I1Swo+BFI0UfRuyjzfZ7bNM2zOePToEQ8e3GMcBju+OlMLnRbbLBunA89olVILy5LJuZBL6enBPWdJDqGAPQSw2td8cAxxYExd8KuO/X7Hi6srWoNxGMjIkaej4lDnuzi6o/7V4fu/xTmPukDoolZbXfUVU6/DrKRxcIv1j5o9l1rXw+RmE5Pam5IKx4iJz6W+tN437uquvnj17/zBP4z79A+914fxStbn3aD8wA/8AL/zd/7O48eH/e6/9q/9a/zFv/gX+Qf/4B/wn/wn/wkXFxe88cYb/O7f/bv5d//df/czxqx/5a/8Fb7t276Nr/7qr0ZV+YZv+Ab+3J/7c5/3wZvmpDt16A4eDlA239c6vmtPuki2HVwVnTbbxOwWPben2YwcFWWZbCS/TI2yWDx99MYtic6ErwdrblBz0EhfVWinb9Uix97HYG3VnBOKaR6qQdbMB9SITo+BgBW7n8MkRqQ3BwpuUGo1e3PLNsnxYnA384UoTugANukY/mqME9dYrTwpKZVKbXaCq6UyzTPDENhsUl8NGWm0LIVSClIrIXqMElNIwZqKJj1czntrdkSIMaIYNr0Vm26oONOLYA3T+mRk2s8sc2G3ncihcHpmJN84RBqO6+3eeC0hGj21NlYnp6RWubm6tFVfM2LuIZen5ArOUQvkaSbFaDk/CCEEa/gQs+iG0E/QgvhAxvPsesdbF3tkdZ/z8/ucnpySYjKdS7MU4krDoVQnfdVoa6RaD0F82U7iYjEF4lxPApbblYoISZUQIsM4MKSI946WG5fbGy4ur8g5M44DPga884acdw5Vj+8k2MM0zvvD59wxOVn0tiOR3otL796sH7FnqPSPa7N1ZqvS04/71KSa5fnWnvy515fS+8Zd3dVdvRr1eTcov+N3/I6fV73/N//m3/wF7+P+/ftfELjSoTkRAhxWNXhUI+242lFEIqg1KCrataKdOCudn9L9uOocboigzlwU4kGDXZ06ITlP6AF9rVa8E5qzd33L5SkmtJVmIXDBM8+ZXCE6sSkGcDw50LqLA4JTGkaL9SrMpWtegEqlaSM47a4ZyGLsk+gc2kWagrmLxDWiV4K3YEIRxbWuf2l24gqDnTSn/WJuEYVh9AyD8VZK7VfXuZjTRhvOKSIVFz2u2ZRnvdmQq4kml2kxLcyQCHEwLUUtOKcE76itMfgES2baTQyrFTVYpk2rcHN9g/PK2b0TVIUUA7tdYXcz4XxAYmSeJoIENqdrXAjs9lu8F0L05Fz69KhS5mz8GqcUtemBIjQP0YcOUoMgll5damG3ZC6nzFuXey73lfc9PuW1x494cP8eMY12f6VAK9aIqnCA/y05M+eFeSnd9mvuIukNr3bH0YHs65wj+GD2Xe+tcVIlLws32y2XN9eICmenJ4yrkSEmvHb+jOoRl69q7qqj9gRrbJ2z3Jwjm6c/745OIYxe27qWyuCBHQ5HNft+O/jNOnywydGB9nLj8wvVl9L7xl3d1V29GvVKZ/FIF8GqdBGsuK4z6W6dg8bkwD3BTkR2wnZ9knJrw6RBU1OaivO40UFZocMK2Uak5qO2ZCmFIEpUR23VhjAiRGcn4ZxNK+JUKA2WnlWzTkpQR66NaSnMuVB7+rD3HRDWjPZ54kwE64JRaHNrsBS0ctQRNMBpZUyeOdvEJwRltQrmXFFHXuyqeBg9m5NIXjrLpNtIV0MipsGsuC0Tg6PmnhDdoW40IY4J5x3LNBMEEEftQLYkkTiM5Dmz7G9QEcaTE6b9nrrsESouGFK/NQEnSA4suYLAMERbP+WFedpzfS2sNytWw4oYPPfOTllEcUNCa2WaMmEljKf3ieOaRsOHRG0zlUZQhXkhOIhpg4aIYMJjdQ7UIdRjXEFMA4XKLivPrxeuZkHSmtXJCev1GlFlzkufOBREbWJkOh1HLQut5s5bsXVU8AHn/XH9cpieWOyA6Uy0k5C1O2SmaWa727Kfdqx6MvGYEs7ZmuZQR6AallKsB04h3VLcd1q1GWrlMO9QOaR9t+5Ea8fNjsU3HBFxSDNLZCcAmT6rmfDbixDcK/32cVd39a7XB/7rb+arfuRnePfUWr+865V+h1HxKMEmJBKP1mHoNmLoCG+HqOvrn0MujTUwzS63kf5mreKQZqRN9Q5JI20YWapQlsoqKE3pmgslt0IuDWrFdw2FSKN11klp4BFW0eBsqrAUsxAn78i5UkUQ52il4EJgCH31Uu3krdUxRrtKnsTEnqowqLlRlpIpubJZR6RBzaVnwDT2u4pqwHmMCqtK7ZwR5+2kaSm5C4g5o3b7BacmEhYnBG+ZK5vNBlTJcSLvdzi1pqnmSqmzkWddwEXjysz7iTismAW024RLbQQfUJ/wa8fFxVNs0hAQYLVOlJKZdnuWpaLNMw6BMQ0EGs57xvMzlrlxcfGccnLCOiVSOkQYCLks1NrMRuuFGD3iPdEHQMA5cqnUCiEmfIwWnFcq19cLn7645maB04en+BjYLxPstp0U6zpu3mzkrTVa7fqMWggeYgx4P+J9MFT8sTHpfx+naCY2bs3s4q1UpmlCaJydnrEeBoK/1Y/Q+opFLGxQu5bKmCXd/tt1IWY1tr8P4mBBqP33TSfYHjQx7di4wKFdkQ6Kk/69cOCidCGwfO4TlLu6q1+J9eAHPOWdd97rw3hl6xVvUCzczxoS28mDsSlUTG8gTW/txxL6+kWPzh+6GNW8wYL0PBcCNBWcS6jfGEMCz8qbtsT2+DYeN9dFRGjMcyFGJXphKY1azYFCrWzngkojOKO9BmdCyWWuiDim2dZEaVDqUrquI7KfZrxUCyEslnYcozImu9qdJkvOnXcZRyUFg5GJa5yeDd1+amLdmjNBOZ7QDUimaDPuxXB6Ri3mNkkxMuWFJWdiCOynvcHsGj1F2a7ORRRplWFILCXTnPSoAYx0Kg1tGZYZaiFo6hqMxupkTV0acUjHgD8vFXWem5sdz589Z96suPfgITFaEzquRjjx8OKKvCxmL17MrRNjxFXPPE8srdJQtFYSDXWOEJNZfMUxV6H6wIxntytc3ix89MkVb19sCetTTk42nKzXlh3U7GTs9JBN01H2/cSdS8apsh5HQowYoaWvdDg4e25Jr+2lzJwQAtEfwg2VGALRhVs3UO8Dbpucw2NfgJ4XVGrXiZij50jF7b93E/BaM/XyquXQoLban9OHnqNnT0mHylnswS0QsXSdzV3d1V3d1btVr3SDYpqSzjARj0jqmpTu1NGXWCjieu5On4V354Z01WDHrxniPAZaUGiVVj3IcPD60FrpYWnSmxMMW++gtEKpYhqEPpIfvYHBalNiKHjvTRib7Qq+YYwU5wqKwdCWvbmBnFpYXhpMO7HkiveWLjsmJSVL/wlBqAVidKhUVJqF7DUI0bQO8z7jXEC9MxhbNH2MOkeK3girPpBbZTcvaKvMs2UOrcYVwzBSl5k5L+am8SYUDeKJMdKqklIiipFRa17Y7a5RrfhhYBUjBEdeZlpbcD5RW+X87IRpn5n2O4ZhxTgm6rRntRooNRMlgDpupowEb2C2WQjDitcfPzQRKZVlLoyirLxZsYdhJKVzdrsbc0fVRulNgu+8FHUBcYmbfeGTT1/w8adXPL2ekJA4Pz3l9OyMzWbD5uS0U2UrOWfmOXeRqjWrIhCCJ4ZEigFRo9G6JrQDHbhaY1lyI+fFNE1dd7JKCafuCP47aDsO+g9pnbVSoYkFKrZWjVrcYW61N5pBPVGducngqDWx7J96XOlYo2H25nbMATqUvRa0N/2i2j/XjILccv83feFIsnd1V78ca1kJ7tEjypMnLwvB7upzrFe+QTGmietNSEBc7FOTPgnRaJMTNWKo/S3GPVG19GIauP5GTQetYft9HBAGmvPULFQ1bKitKtTAaKZQNWtzawTn8L43NH3SsB5sPZCz2We9tytXL47gjakxrj1QybM5JmiV5D3ew35fGFIgRms6DuN7W0sJPllQnDglRMcwRuapUFshuMD6ZMOyLJ0+ag4Sp3bynGe7+m/i8CEwjkA2F0p0alC1WpnnfXcYZdIQjcrqEvS1wv7mmooS4sC42lBbYz/NDAi7ZUbV4X000mpttnoisErKdHMFOZNCYO+gKqQxdgFoNCDZvCAhUnZ749yosh7XNO9Y5pnWr+hTDIyrFSkkfPDspz25VFpeGEPCx4EqHlwgN8fVNHG5W9juG+IT9x884n2vv86D+/cZV6uePaMgAe8DrSyUekhe7pZygVIzSxZMx2oE2VwqpdnEpZTcVzAmoB5SJIaICMyL5esYmt7WObW1riEx23LNxdZ5Nfdmw35OjJExjWYn7iBBOVBgW7UwSThOCuXgIKLRDkLoo1Dc3GK+5yEd6La1g9rqgSLcmglq7+qu7urnrL//J/8C/En4Hd/8zaS//v3v9eG8cvVKNyh2JtAjpA0NpkER4YC4V03gbIKiByCbenC9WVFnnstaoUkHUjVkqYh6nERaSGQfkKnRysG+axyTwQvRHVDnigRrXqTbVufK8QTmFcRBHGyUb6cGtbUSgjRjrIR4aJKkszuUIR3WBZBzJaaeGzPXHsKn+B4S6JyN/A1tYSelsmSb/jglpZGcM60Wgg+EGEyrkGe8U4Y4UCOUZYLWv089q/Wma2wg58K03eLrwma9Yl6gupeuyltlHEaur1/Y/WogxIEUE7vtDUsurIaRXEzjMIwrO85aqNkaxdVqTYoRH8xufGM7MGoxt06rDR/s3+iccVScU8Zh4Oz0HMEeO+cd+/1swtjWmOeMDpG5NC6ub/jE28/55JMblhY4eXDOo0ePeN/j13n84AFpGGhHNj3WBASbQpWeoZNLOyLqAVxznRjfRaY9zG9ZFg4rnRQDyXtarWyX2XQealZpW9UY9baWQi2WfJzzHlrBe8cQIt4nQkjd/eMxZ1o77mlaF39rP/7aU7JtEtj68+8zYW2illztnevf99L05dCY9MmOHvdBd3VXd/Xz1Xf9R/8Rv/V/962ky8L41/7ue304r0y90g2K0Nc5eFv3aOoMFBPLilrTIuo74dOmKuICrZ9M6Z/Xw8lVQFylBTuZ232t8H5Dcp5NUjzW0IhAUMviKcWycoyCaguh1qcUYBP0/VwISm9OTDfinMHWcs6k4Bm8rWRarVCxEX7BruJVcM5OZIIQB8dqBXku1lRJZ3yokJdMGhwueHN/1EzOdhLy3mEYdGOV+APBtpgmolEJ3pPiQCkL0qSLMA96Bm/o/p4GnPPct2YdMEeDZpkxyCkqDWphnvcMQ2IcB8JSSEMi59nSh8fBsP+5MOWCn/YEHfqVfF81uMDNfkK9Y8mZacnmtuoMEFGHc+YMurh4cdTE0ISYBjKKiyMVYTctPLva8uT5NfubheSFIUYe3Dvj8aNH3Lt3zjiOFlUA2CjNqnUthlMlBI5J17U2ai3knDlA7Wwil6k5G6smeIYhkoKnlIWlLGZXRml16W6yilQLbGxtsealFbyzhjKlkRhSTxM+uGsW+3/VPvXoDYpwC1wz35K9do7j5to1Ltac+N6cSFfyHoIM28EOXyulg/ncrdr3ru7qrn6B+r5//y/yP+4Lf+A3/Rs8/nv5rlH5HOoVb1DM4mlv0reANtXQG5PDic0Q3yLOVjoHkqxIz9FxiPdICGZ/dRV8FwB6waU1Ydzg946glShCiKb/6FE5FrjXg+FSD1ublkLp2S/OGcAteI9Tm6Z0aa7xPtKBrwLqxcb3rREOKynA9fuhVqY547wyjgEFpv2CUzuhzEs1UWNwjJuN0WXrQi3epgEdy+686Ue0r0iC127DtVNZSAOxJVquTPMekUatZqdVF1hv1kirzMve7tNHO6HnTJlnqnQHUGtHce+yZIL3DEMgDol6s/RVjCOXwjTNhMHcJU6EslgmTZEMzlY+4g3XnksxR5NzJkhtUJZsDh5nDic/JGOsGNQGHyIaPNcvrnnnyTu8+fZTXGvcOzlldbri3kni3mZkiOHg2qXLS7tLyFg1hwmCCbIPZGI6oM1ycQBqLZSa7fevjhiVFKDkPblYIyM4Spmpdenq14Y0S7TWvjpSqYiz31fwwY6jQh+12eqtu5gQm+A16aJY8wZzyz22V88RGKedbtsJvED/nd1OhQ5U49p3liJC+zw4KHd1V3cF/9zg+LFv/gv8mWe/hv+6fTXjf3XXpPx89Uo3KLbGsavXhvYrfdujqOsNigRb6Xhn+5WjRfKQNusQ70wwGwMEh7qKOLvCDAPQNhBXJo6tlZAsT6e2wlIac640FcZoPFsESmsMydmKRiBGCw08JBw3lCY29XDSiMEw8eps8lKLoKitFLwYl0StgaBrTcYx4EOAZpAwVUcIHnWFVoWgSpkXQrCQwpBSd3PYWqvUTM7VwuiC0FrBO7uKph0cK46QAilFaivUkinZdBCtekLw1Ooo2VYGMUQkeLZ5MViY99RW8DoQQsB5mxRMS8NbR2UBdBYBiPeO8/NzvDZCcCxLpswLPkSca6QY8GkwvYlYBEDrzwEEm8hoYH1ySkoRnxLS1xKm9wksrbHdzjx/+gxXFs7HxFlqjLpjWJ5SLwb2Hjh9iB83OJ/oTxmEZg6m48m8ZxELXaitBB/shF4y87yn0HC9icnLzLTf2Ym/taOBt9GOVmEVtWwgTHhtEy1HDIkQBtSZxdh1qzu9qZB2aFDsOSgC9WCjV2tQzNkDoLc2ZZVOP+4rnT5xOaQiHyzvthay3KLDtOyu7uquPv/69vs/ydm/v+M/f/FB3HfdYfB/rnqlGxTRYH/EI+hh6X7Q/2FiUINy4ZwJaOUQCohZjJ1B2VAHTY+W0EOzMKwUZKTESG6HiQfkatORJkJwSvRKikBr5NpIwbJzLKkPQse/izZcU2puqLYeQgjTvhCit/TijmuvpVJaIWrEDe4WgV/A+YpqYdouzFPBeYcPjhg9tQrLPNuawQneOZZaUWdwMqWRBqOiTtN01DuoKrXQMfWHVZlQ2m3zIDEw7SeSMx3GPE99utObwoP9VWyysk6BcVgdj2eI5rSapy20QnCOWgo51z4hUuLgCH39NqTIfLOjlWywNW/gOBdG0/p4Z5Opjn8fUoD+O/QhGAK/O2hcdFTg6bMrPvbRj3Pz4in3NxtOVwPrITL4QszPked7LrfPmB/8Kk4efwA291Bnmp9Wze8lzdKLzXVrzaTUvgqh0UolTwslV4OpIUz7HUuejG/TVzAHoJo9J3vYIJWFrleJlg80DGuCj5Z3pNoTrbUnKB98yH2lQ1eVdKjgcVLSDlMgATEn2qGTOdyFZe/IkaNimpN6O0HqkxevjuRf6bePu7qr97S+5exT/D8eBtbv9YF8Cdcr/Q5joXADIgGwq/7Wr8jtarTY+29TA7o5zzEcsGeUiA9osAnLwflgzAvD3scYkDayrE5ww0isGSeQ+4RklcyZ05r0MbwQsSamNqU103bU1vCq+KiIE1pt5CVDBT+IaVjKwjLbbZwofkhAZbudoMHZ+QbRduRoWCBxJSTPer1mGBLqhGm3ww3JQGrLhPNKbYV5f8DVOyASQ7IFmRp8LpdCHC39ltbY73a01hiH0YBhPlAqpOSIMSJS2e229nhKMwtxaaS0stTdUllKNuppGqidxOvUE0LEqyM3awTVJVIarJHwMKbItBRQZb1eU3KhUggu4aO3NOc4gECKjjF4gg+UVnuYXuX66gW4hHeOFCNSG/uy8PTZM56//UmGsuPEeQZ2sDSaRpxXVt6xzM+YnhZiHPEpgVtjQZT0BtYs667D11q1iUkphd28Z5kXqK3b2iEvE6VlRCzQ76icFhNX11b7c7ai6gkxkaL9LpwPOO2OJnV4tclcE3PfmHH+dt1yaCYAXG3H1c9Ba2KkuB4aeGhYOqOltUZu2dZnufQJis0oD3BCp44YHPN0t+K5q7u6q3evXukGhZ5YjETUBXMZdOCUCUMaiGWzaOurjW6nVPR23dMFgk2teUBurzRVHBoGGE9oYyRMPao+V8iVRewEX1tlaY2UAlKqkVid2UxjiihKrRknxhahmW6gSj8xYJRUaqEtlSoNHwNpSCzBkUsm10IrlRjsxJWX+SjwTUOytOVaQZyB5YLpZFDjpDiRzuLI3Fzd4MNETJHV6gQfA8s0k/NEyZkUE+MwsJu2ltxbE62fsGIwRPv1zZXB3cY1tWaCc0hvmuZ5b86d4JnzZEGBauLWBYFm0DQlo9KMzOo93gdKzUy10fqJtHThcskZX6xBdCnhRZlzRggMw9r0Grsb2rKgXafhfZ+kOE/B8cl33uFTn36Hs/XIJgysQyMyYwHLlVqUWiODj2i5orz4KGV9gvcDEgMu2FSuiUeptJoRxNw8y8yyzJQldxuypThbMnDta5xqmHsX7N+vNjUpmKg2xkTyCef9MUNJ1SIatDdHBxcO2PRGDgl+vU0xGcsBS98dPYcv9FUYh1u/PDmhQstQF5yAD4epSRcIH6nMRsM96G7u6q7u6q7ejXq1G5QmGHferiHNxdO5FIdrygOD6vBmaqONTjo15kQrQAaCmCNIBSjUIpRiYXAaVqjzqAOksV75466+1cY4CK0prSz9J5vlt9ZGDNaslGzZKEOyn1GyIfHVCXnOlKrg7bbzvHBzs2faK+rh7OwEgFqXLroVVCz113vfceWVadrjncc5035M+4mUIqthpNRqKybVvi4Qpnlimq5pmMYmhYj3noqivrFyI87+0agI8zwzTQu5eIQu+nVi5zZRCoVaTffinGee9rTaGIY1MQ7EGJmXbJZbDYQUKHmhNIjqiClRamC7vQZqtxA7WrMwxSCQp4XVemAYI2M18N1+niwxuBmfpkozpssw4EIkV2GaClc311w8e5P7oZHGU3zv4VxrjN4xBsfgIQaI6pmnF+Sbd0hnj/HOpg8NaCUb1yQv5LKw309My2KNmDskFZv2xCYlHu9sheWDI4SEc7HberU7kNxnBAq67qY5aKYOLqrDhEQPepOuwbp9Xdh65p9UiMhht3kUibeuLenfiKg5wY531b9mm6SudTmKbn4pL967uqu7uqufv17tBuV4+deBZUrHpbv+htqdO9gInmIjdOmWVJrSiiLV+CeKEWmRYpMMgVIjLkQkrFCXGGLEtYVaq7lDgHE0q6ch66XH3JusZVwFvGvm4vCemiFFjyg0T3dP9EydJdtJTZV5FnK2+2xVuLnZ4UQYV5GYAiVXSin4ECzArywm4O3NivTEZueDuUdSBFWWztzIdSH5xOnJmV3B18zSDJQWQiB3DY93yXgc1SYYq3GNc85Ess6cN/vd7rheU7VcnWFIJuR0JvS18MRsQl3nkFpYlpkQbG0yDAPDEO2x6ym/tU8Bcs5od0zlklEmWh3xusG5Rl4W8jKh3qPegQYKwrDe4FwX0frAzYsd03bLw83AWWysok3DitjUx9XKSh0pJoJ3FOcopVH3l9S8hbqiNpuWzMvMPO2Z5j21FpuY+cFEvN7WMNobD7P/OsvkOciipIu2+xRDe5Nda+UAsC+19ialrxxfcs1YsnCziVVfwoAJXA8Cl2NT0Z1mtNatyS+PTQ63PxqQ7fXS6NM2Ow5UybUyTTOlNPa58ezZxbv0ur6ru7qru3rFGxTRLnoV6e+xjaZgb/oGZBMXesKxXeVbA2F25JcpmiZZabB0IJU2CI4mdsKTOCAh4qtNVQiCiwZ1qw1qqeCVFN1x1eSdw0c5hv4F52nOoGJLR8aLmDXV4Fgddd4qQ/C4wbPkTGkW+FaXzDSZrsGrI6aBJthaoZbOLonH1FvnTCvi1JHSSK0VJ0oI3qyvnVnifMCLUHoib621p+86og/HpkZE8DHgXcC3YOTYWkjR9BGlWAxADM6uwkVZx2SrLS2oM+GwSmM1DjZncmYZjsERoutOKVubeVXmZbFAvYOoOUNyQi2ZZZ5MeNwKUYXaCqoR1OPVMaQBDZHtNHO53XNzfU2bZ06GxL3TxGbwxJiQ4M0DLg7xkYbitHNB8OxqY7/dkblmLo0lZ+a8QKvEGFivTxnSiPPBghD743844TfbvnBICVRpt1qon7V2Ocwy4NZFc1ilHG3Eh1VO/9Poq5xuUW4v/Tlg69tLkyj677I1YamV/bRws5uYcuVmO7MsBp+7utpyeXXDfsksVbjeZi4vd+y2Ezd7mx7d1V3d1V29W/VKNyh6ALGZ0rC/W7fuZLBRNmouHemkTWm9mWnCIdkYQFoXOuZsNploqyN7Q/fgEjUk5n1FnVC9kkVQD3jjfXiHkVaR29F4NStppZF8nzz0FFlEzOJcMrUu5vy5NWQYMVQcOduJf1lscjPvbpibEtOAD75fqdt32WpATVRaK94Hmyw4Z6GBHJgtdmVeymLTIvMvgWCfa2q6nmqCU+ccIURqKRTmzvlox/A8E+QuVEBdZLebGIcVFZuo4AI+eAO9AYi5i6S7b6zHtHUVCCfunFobicY873FmD+p2WHNNlbxHQjKNiUD0DhfTMXPJDQPiE/vtzCc/8Sne/tSnSGVhnZQhmHB2SIm0WuFStOPE4gbUOdR5qkT2zbG7vkZmm8qFEFjFSBoS42pNiEN/LpqbBwwLf7AR305IDpsRscaKw9qkHVcu1sz2xvml7I7bhuO2Dq4flYMT51aLYjbhQi7ZpoeqaMnUImynwqef7XjzyZ5PvnnJp9++5GabudkuXF1PgKM1YbffcnV1xf3790jjmt1UWaaFZT9REF57ePIFeR3f1V3d1V19tnq1GxQ34NxgJ4GXTwiH7bu0l65Q9bjasZPx7R7empMK9AwcCrIHdY3lekYKyOKJfg3qGIeAOtBWcCK4YKA1WsV3SmxrjVIrwXk76agQYkCKUVWDd4Q44mOg1oUyL8c8lVoNL2+6zUqIAWojRmdX1M1sznOu7Odt559Ehk6RBQsUrLVSlomcF5Y8G5wNodRKitH0H7WR5wnnPT4EKg31ylIKvscGxDRQckaAlBIhePI8MfhAa4VpnsnzTM0LruPbRZXdfmIcByrmehEVvArR++PJeBgHajVbrkozyFoIDEOgVaE5pbZTUgw4BaVAqTi1RN2GY7XZ4MKBCOzJTRAXqOq4vtnyzvMLnj55h+nyKevRs44nDE6N3DtYkxKG1MMDI2ijlsrUHHsZkbghDYm0XpGGkdAR8xKiRSaIu52IIIbrp6IYbO6gI6m1HptAe34e/+fowrnNybltSmoPEbSvf+bfpRRKd+CYBfhgDW6WLF0KKsoyw0c+8Zwf+cnn/OTHLvj4p6+5vqzcXE3UZjqeXIo5y0SppUCt5j6LkbUkvAsUv2dzdsLJyQkXl0/ezZf3Xd3VXf0Kr1e7QRG74lW1tQq1mIakD75Vu9ak/63OAuI0hFv+RO1R87mveRBEArVY1ss8L+a6mSNLWeOrg92Ok/XQV0VGvii14jpqYp4nDtj5GCMlW7jbXGZSMOCWTVHsG7wLpHWkloo6j0+JUiwrJ3YdwlKMwFprwav07B8DtJngVGh1Zt4LIUaqF2KI+BDI/YTeqtl+D1h/VU8IQOuxb2qrI+8jPvQ1SxgoteC8sL1+Qd1W7j14TBpW1LxQS2a1jizzbM6TvrISlDQmQoqUWogpdC5LT5mmHdchrTV88ISgx6TovCyIKCEk0rgxbYcz8bKqErxjv5upteGjJ52sEXG02gjOs1Th6bMXfPLTb/PmW2+RtzecrwInyZGCEqNpbXxQhu6WKnj2uVgisU/MSyBsXuPs/H0M6xMkjUYc9hFptsKyx9EhNIqNLYyV01Hwh8kJcJw2/Wz3y2H4Bwb1a2JakpczdA7TE1ulZcPkZ/v3az8OdxA+YY2oivLkeubDH33K9/+jT/IPf+QdLl8I0wzgqLniNFCq8VKcH0ixpy47y+0JPrDs4Kfe/CiNxsnJijfeeD9VIvdOH747L+y7uqtfAfXr/vK38oH/+odov/BNf8XWK92giDOMvYhCfUl02K8kRfvJwzmk8+XFeZwPiDdRYsOcNOJaT+U9XK2ag0KTg+DJ9R6kB0g6wZXC9mYCgRiU9SrYm32wK88hRbTbf0tZqK2R80JK5rqZ54UQI2BrHPWeWgrqKrVUYhoJIRnDhGqWT0dvdvrJPw244FmWmWVZmPLCspjgURVyXtju96g6xnFlTA5xaHKUWsitUkVo6lhyIamx952YmHO726LSaGEhd4GsOmEYBuZ5zywOWiF6T0rBmhnvaZh4OM+FMUVqqzgRlmyCWB9GoFLzgqpQS2UYUs82skmXUws03O5uUNeIrjJ0om6j8zycI64GpEHr2TMueHJrtCIsc+bp8wt+6qc+wu7iCa+drnh4eo9VdMehWq0VqvFuxDm2u4XtfiamwF4TUzplde8x49l9XBgQF2nO1nCuW6CNpipGl2197SIYZ6c7bKQ7oA7NydEi/Fn+v3Xb2a2lWMgVi/RpzfRGZaa2YkGI2nU71O7eqbSmXO6FD3/sOX/tb/0IH/6ZHfttpcy22qzF4he8j/g4sLvZmcusQHARjfDgwTlXl9dMu4X9Unn9jfcTnOfjn/4EP/7hH2dIiXF1R5K9q7v6xdSLuiM9E9o0vdeH8iVdr3aD4iOqsTstK6VYywE2Km9NaZ3iKQeSrPP95NHXO+po3k4urVrWDLl1AqzgUkJTBD2nXj3gcu/ZDCZoraWQl8J+C6uVR4IFrSGN3IrRUAXL2BFvXArRrkPoJ7cubPTBo2IW3xADSGNZKi4GW9dky9pR5xhXG7M8q+AWj5tnTocHzHOmtIW2zNQ8M+WMi8n0K1PG9RVRDNZQtFot8wVrTmprlFat8QgeR8F50OapzhgdjUIthRA8TRy5ZTZxBXQCbYgMQ2S/3eF6NlETcN6jFEqeLZ+nT1GOsHi11YiJW82ZNK5WDCmQUrBjr3ZV7709dtWZoLYpXd9SoTmur/d8/M03+fSbb7Hstpwmx2v3Tnl47xQnsJ/2iP1IvLeJVXOBUhc2Jxv8+gzn73F+8mUMJ49wfkRcoqlSjmRWOTJGam2drcMR9icqHHhplvdk6pSXRa/HqYgzcJuo9OTkQ8Nit/G9aWnNeDEio7FIUCoKHfJWSmE7VX78oy/4b/6Hn+bv/8hTLp8XKAFplfV6gAbLXNjtF0J0LGRef/8j1mnk6dNn5LywPt3wFR/4cj7+0U9z429AhXuPHjMtlff7wNWzd7h48ibbm/mL80K/q7v6ZVb/9N/8N/in/s/f+14fxpd8vdoNijg78R+omWIn11qKaU70cBI5kDMPqcUvj9XF2ChiTYpW+n1k6lyoS0ZTJA5r6voRNZ4yLU+JyUb2dTEr5vX1zH47s1oFQrTAPe89Xnyf5rSjPiTnjO+pxLVVWweoO7oxcs1Is6tZ5wO5NGIYicE4Gc6bviTGgWFc3Qove27KPE0m9FVlmgwaNibp2S7VrNg9MNA7s0rnZYFWjM4/Z9sUOG8cGMUQ8s2mHEvrtlTrCFmWQqn1mOVSCrgQe36O0KqJfKmZVuxKP3hb6dRsD7/zgdElnA8Mw4g6IdViLpsYaeoode7rjABdxCpoHzco85J59vySn/n4m3z6zU9z8/Qd1lp548F9Hj24x8lmzTLvzZZbTAcUx4gbEs0l1ucD/uSMtrrHsHo/unqMuITiUTHarntpIHtoNgR7LO052T29x5uJofG7Vbd/4/E+VLU3NZ+pLbEpoNwyR45+nduf3WhobYBSqvDW8yu+5x98ku/6vk/y7LnDh4fceyRsb26YtltCjGw2a5YM7mqLUFEvnJ2fEjUgUpn2Ey56PvbxNxGXeP+XPaDUhfe/9hpvPnvOerXiwYMH6K/9SrbXz/mhv/FLfRXf1V39yqq/Oy2sfzy+14fxStQr3aCgJnylrydEG605VLPFyXfEg4iDqsf391u7Jnbl2oFrluPjjJpfCnUq1N1CCwuMHr+6hz95QLv6OKLZrpq9HEf7OKgiLEvGVaX4Ys2KCjElu8rNphAoNSNFGMbRnCvdHeJ9D3dDcCF0si3UJsS0pjVLlDX+iZFXXfAE78h5odXCOK7sHClKnBamad8R6Xo8QUu1K+6mQgyBEFxvOrq409lEI+fF0PeVY4YMpaIJaMZ8ERGGYcUh7C7FRG3GLNnvtninaDBNhHhb4Ww2axoFN7hui2420XD2eHmn+BQIKVF9pDSbRKgIVYSae0SkM3twFWVaMlc3ez7xiU/w4q1PcW+TeOPhA167f8rpySnDEAnBkYYEDeKwIp2ekcOK7Ab05Aw5ex+k+0g4AU2o+KPGw6Yun6kfOTzvbMhh7JFbh45Nj/rDYo8ft89Ba07kcDccggftBnrb7HyW5qTWSqsm6t5PhR/5mQu+5x8+5R995IrrFyuSdzQRzs/uc3G5ZZln1mtPGhLPL7Y8HNZM08yD8w3qHbt5x72H97m62bNaRSrg8IQwsEwLF9c71qsRobHkhdUwcrO/G0/f1V19PvUj844/+Jf+Td7/p++mJ59LveINSs/TUTX3TsUak546LJi1+Ojg6bko7di5aLco354YpAnNEtgouaDlEDbnaWGDjI9oNwMik+37D6aMWvHO4ZpNEoIz4WTOBUW65deSgpsoaKPUhZx9bzQcIUZUOoxMBefNYbKUhWXa44KjZPDq+v1zS/4URb1AXozfMQxUICTQnTUzag+NoeVVWZbMUgvOeUoGp960KtrD7aZrVoM1DAaQMzdOV7uawyd4DgTSI/VUhbpkUnAETRYyKEbtDeo6PdUjqkQfupDUpjMpBvtdYVu2Sm+CUAipO8mLoeWrsOwzjcpuWri83vHk6Qsa8PjxI9734JT3PX7IvdONsVqcEOsh/E4gjExxzV4SOt5nPH0M432aDoh6vB4CEw2GdtA3AbfQtCY9R6frOzgM9Ow5dBiA2HEf4Gm3epRj39EaSOkutHb8fkPW98/14L5aan9OwrPLhe/9h2/xd37gbZ5eOdbjPU5XC80J63Xi+nrm5PSUmiu57BEJ+BgIYeDs7J5N8gRiUoYxEceRnCtzzpxvVnzirSfkfUG9J6XIkAJNlN3cWI/Du/Kyvqu7+uVYT8oN//L/6dt5/1+4a04+13q1G5R+vjDoqY36jaxpmSdyWOuoXbnjtY/ZTWx5G7Mmx88bQMLZydo1Qor4GEzL4c4IJ+8j7e+j+QrjcQmUgpTGEATVRgiRkDzBK8KBwlqR5pDWSMlOlnY9XVimmeAjXgXnPCkOoCZgEO8p80RKQ19FFby3SUsrZrkVjPLpxOGTWFPk1CYhKng9wTnHVGaWOpDnPTEmxjgQsjVDyyTQik1jYmKZZ8CIqq1Zng2i1GwnavWOMJiWRZ09rjkXQInB02rGKayGNSqG/C+lEjvUjVaOlltxiveBQwJx6yuv0ip5zqiYC8slB80CHsMYkCxcPnvBO0+e8uz5NU+ePmfOmeHkPvdPT9icrWEzsqRIUWWpjSk3llqREInuhDic44YT4uYeLp2AG62ZE3vu2EQE62ehNxIH/YjcZj+9vDY8NB4ilnr8s6YuhwneUYtSK4em5AAPFKm3vQuNVm09ZyJY+/hiC9/7o1u+++9tWcoZr98beeviCi+eZWkMWSml8mJ7zb3NKYFTrm6uee3+PZrA1fVCCIFnLy55cP8e+6ly8eIZISbW44q3nr3gdL2iDZVpWRhiYLubUNcY/Irt9dUX/CV9V3f1y7V+3//2j/P4/3XXnHw+9Wo3KLVR9dClNDvxeQusoxW7cnVyFMUemxWEeiBPqDUn6jp+vkFdBPGNdpjMiIkwXVoTzx5Rnm+oi5C8UuaM1Ma4SsRkI/sYItqhbeq0I+5n8n6Lc55wIL2qNUrOOeZpz7geCSnaesfbzy7Vrl59skwZ9QGvSs1mw62tGRU2BEu5beYG0loRH5jKQhzWeCfIojgXuLmGXC0nJsSRcQjsuuukAd6ZJXgcE8EHttst3jm7eqf01GRnKcXqEe9oYqRcUSWFQPIOJxCC7Vpba+ScSasR76Dl6YiCdz5YBk/OLBXiGBH1RKAK1NLQ1o56IDeMVFFazUy58mM/80l+8uNvMS3C5vyc9z94nf3pA67XJ5QU2UVvk6um1IoJXZ1SQqK5Nau4QeMJzq9wPmJ5O5Vcc0+iPuhrXNc29eA+7PmienCPHbDxvWmpn0l1PQhoVfVIiT00Nq3dTk1U1Z7DvWx6o31i1mhV+cSzhb/5fW/y4Y8XUnrA88tnaCtIa+yXzGo84eLyhtPTkftn5/zET3+M5BNLyVzdeHyMvLi+Ypo8m/Wa3W7GO+XR+QNeXF1BrkiGty6e8/D+PXOKzXtSSHhxXFxfcv/e6bv8Ar+ru/rlUaVVNv/VD95Zij/PeqUblJYXGguiXTsiHd3eTAty3Ns0Y51opSth7WtN+vpHFLPICJQOfOsY+FobJVv0vMRAdRvS6pQkA54dg3emjQgmQnXeE8bUM2iMyRJDgBCoweFEmecFVQjNqLPOVXCBZZ6ZcybGxModwvs8MfTpQkzUnG3ukxJOheANh6/VIRrwwQGVZV5ILpLiwDRvEQmEENmcnHN6/oBl2jLv9sw9tG9YrSl5MZdPjBC9rYBKIaRAEGXOCyklxnFNKUt3mlSWecbHyJgGSi4s055htWI1JOZp6idwGMaRNA60WmjaCN7hOppeQiKtN9RSEBdozpPnGZ8Cy5zJcyW5QO123lorVzc73nr6gncud1wXx+mD13jfr/oA7/9VH+D+gweshpEUjLWiYsTVRkOOdN+KojTnmSu0mvG5UmthWRaWboX2zlG1Rx6oh2KMEkto1ltNyOG/Y1PCcYWjIiaU7Y/ZZ6Ru397MbnsQ0b4ESBEqIo68eD78iRd89z+44tPvJF68uKa1C07TwDuXL3j88AEvLvZcb28QhIunN1xdTaxD4Hp/zYP7D2lVubi85svfeIOLmytutjeMaeDJk3dYr0+Ypz2X1xeM6w0PTs95cvGUe/dOOfEj1/uJ83sban3B22+//a69tu/qrn451NQWvuYP/xFWH/pxWn7xXh/OK1evdINSyh5pAdVEa8G2ItqorWtN1MSXtVUkZ8QpIsHEnN09IV1fUVtFcdakdNvnYX1TpoX5eqJFwdcVId1H54EgmeiAcjjBNNNUeGfQso6TdyIUJ3gZcIBz0U7w/cq81WK5PK1Qc0ZiIJdCEEXxOBeo0sxGK6DOM44J723qE7LxSHZTxhFBAy6YMyfqwEkcmaY9NQiFSlqd4ENgiAOiwjztKbOahfXY1RW8GhhuGCPkxol3HaHf8N6xnyacCwx+JHaB75iS5QZVWGq9XZf0EEE72ZvItdZCCIqPkSIK6nuaMcy1MJ6syctCK5ZFNC2VJg0nGVXH8+dbPvXshrh5xK++/wEePHqd+w9f5/7Dx4yrFa7rZFBj5DRVlIb9EizrxzuHE5sOzbmwzVtyXpDWOuguGQW3h/kdkPKtNQshFKP9HhqT2l5KB+4CFO2rosNqqJXb2xyam0Ojc3AGHVZIxkOxSVOtwk98Ys9f/9BTfvyjNwS/5v76jI+++SlkaASUp08uGIexZykJ62HFm0/e4eT8AWdnD3jr2VNoUFrmydMnFLHf/7zf88ajR1xcb1lvNgR1PL+8wp2tuH9yj4uLS+aQEQc//YlPcLY+47UH9784L/S7uqtXsD6Wr/kX//ffzvl/8yHKe30wr2i90g1KLTtKcTQpSI0079HDVe4BZY/2K9dGnRabogSjmYq7vS/tqPCmfRoiGGq9ZdpcyExAxMuKGu4zrO4ztoqTTCtCabmTSQPBeUOhi+kLCoL6RFDFa6XOmRAUJ/Qk44bzjtYyIsq835sQMg341RqaheoFH03Q2H+OqIUOBu/ZLzO7/YI6024Iyma15pDNE2NgqTMt71l2ZlUeViscFmq4U4dKoyyZab8jdjv2MCREheoqPkZUbHKSS2btA975ow5FRAkxUeaZeVrQAifjYE2BYBbj2nCixDTifJ9aOYVayfsJZcCvEzSbOvlgtOCaYM6F/T7zzlsXTBlebCt7OeHhlz3k7PwRm80GHxKlVnb7vcUJHAS5XeyqagnL3jmcC5b23KmvpWREPKE710WF2lkjfdkHFdwhQuEglJXWowlecocdyz62bJ4Da6cc1zqHm+dcjk2JYMJbVQzZ35Tr68rf/6kLfvjDWz72dmMVz5n3e96+eYuz1chunhnHNblUdsvEelxz8eIFpRYenp/T8sLFfMFqsGZ1PW7Y73YsNfP+Rw94fnnF04srVuNotvkykYJwtb/A+8gbrz3k2YsbTjcr3OS5uLhkH/K79tp+1Wt40viunfI7xvoL3/iuflnVx/I1f/7JP89/+5/+Nl7/T+80J7+UerUblHwDUm16UkakGM9C3cEZAqC0WuwqFKFOM1Icil0Bi/PdzdOx5d4cNk2FVpRGASbAUoRDWuO5T/QPGNpMXXYARKc4rzg1V446RwgOh2HEyQXVgPNK9A3vrPmRdtuktNrMUdM6LbUVpv3OaLCr0TJrmglNS2vU3BOCg6eWTBo83nsGn6h1IQyeFAxD31pjiJGSK61OtCWjfm36Gq+sT06otTHvdzjnKGXGO6PcztNkCHkUP6xMT7LbkpfMKOBCoGkXujqPaiWGWzZLO5yzfUB97Ff3EMZEc2oThVyMsKsD4jwhjUaNLQV3OuJKI9/seOvJU37sY0/42CefcP7gNR6+/hU8ev3LOT0/x4fQtSYWiFhrZamF2sQ0QTEc053VuT7RCRhzxHRIUUZUxL6/VYsUaNXYKUZOA6ztOKxijIWiR03JoWw6kruw1XqaWg7EXPr3HoISQcUjYqRXh2H/5yy8+XThhz5yxQ//xDXR32c9ZN5+8sIaE21My9Lpvzu8CwzquLx4zvnJBgGWuRLTwHxzxeAjIQSuLi4YNytWznN9s6PSiGOgucZqGHhxPbM5GUk+8fTiBbtlYjUmcsnUXBiiZ5nvRLI/V53/px/im37bH+anf9//9b0+lLv6Itbb5Ybf+V/+W3zlH/8feZ275uSXWq90g5LLc0RukKIoCVlGnBtRN+JcRMqMhgGtieoKTYMJYmulYg2BhIC4Cq4i1ZuW45Aw6xTRgPiCi4JzzbQiuqLoCtWBGD1KozSIQ8KHSHAO74RaZrRB8p68ZGprVBTnHVXtutzRuvyxEcdkOPO89DRdZZ63oJ5p1xBRa06KaRlcp7vGEBh9B6mpJ3hPKfNReOm9N0qrc8Rg/7ZcKjVPOHXE4KyJEmVYDUgLLNm0IftpYSkziGOuSu0nUXGVmvfcLBUdbI2jPqLqGAZjsoTgzAVEQ5xl/GgIOD1MtTwu2b9Za0HicsxIqgjaIXWtCbU5ribh+a7x9LpQ/Ao3nHJ2/xFn5/c5OT3tqcZK64wXMEu1qusTE/vjvTfInx5+18JxlNGMY6LOW4IyzXgjrR0dNHY7+7tiNN5ajcRbS+3f02hirhtovRFRnO927G7Ldn0NqD3Th9bItYI4nl9Xfuxnbvjwxws/8dGFwob5ek9V5XQ9cnl9bStFYL9MnJydcfniiuiVzTiYo8wldnnPk8vn3D89Q1S5yTs2Y2TJC+Nqw82+MoyR1WAAwJvtlvVmxWqTuHw+Ef2Kss+UOuOjxzshrRKTW38RX+13dVdfuvWB/+YP4y48/lr5yn/nrjH5QtUr3aA0FoOYUcjlBl0cRQKiI05XaFihfsD5FepH1EVDlruANoOVSS6IyzT1iFdaUEQjBD3m/IQh4mOhSWPaVXbTwLREikIKDtWGd5GY1uAsWVildseNOYyc87jWKLXQOgU1OrPb1pzxIjj11FYZRgtArCXjo0IzuFmdJ5bWyMvCarViiIkYIrRKSqNNirSLN31Eu805BGsSovcI4ERQFeY5U2tj1RH4u91E6MySECKtOurcqHEgl8x2N5HrTBwG6pJZpTVhiD3zSC0JWASnjaaQhoSKEsehh9EFtJNryaVj9RXxHiiENIAouAjFTvitOrZXe65vZj71fMv14nj0vq/gkQ+cnz/kwaPXOD09YxhGmjgTvjohJodXEwyb60aOkw76+gbsZwDHr8NLq5fWv0cFJ7YWPAxRaqnUVszlUzN5yZS6dOmS6Uh8dzqJdrt7/xmHxkhUbj93/Nm2Dvr4OzM/+GM3/MTP7MllZIgb9tPCepP41DsXSIOoyn6eWA0rNicbtvsJaqYUJZ2tCT5yvd0yrAaaV/b7Peod0TuGuCLkpYuvhbOTNTf7PdJgiIE5F66nhaUJ61Vit99R5oVpv+PsbMOQBmj7L/Ir/tWqr/yrM3/yt/3T/OnXfvi9PpS7+jnqX/jR38vT//LLfsn381X/z39MubgTwX6h65VuUGgOlYjE7oyYF8qyR1qmlB2u3KAuUnRA3Yi6wRoVP6JhwMWE+HDrzlBwQZGwoDVC6BjxpeGckmmUueHLiqltmLMQZUvoLpE6T/g0UEsld90JWHhfCMYkKXkGzElUuzVaPUir5GINhvbViIoQY8RrAOfJtVLbYqyX7FhmO9lP057N5oToXGeQVMRZcnBw3pqUaBOBZVlsrSSmSym5WFaQdnt1XTqR3QLwvBQ2yZObZz9PbPczZZlZpgUvjtVmg4u+W2qVArY6UY9oQINDx7Wh/Puao+SCDpYPk5sipZ+0faCpJx+cU0tlXhpX24VPP7ni+QTp5D5f9vqXs16fEoeRIa1wzpsrpzWCC3hRKgZ6cx1qp73ZvBWgGv1VRI+k15/15Op/W17TQcQq0qcjrVJKZp4XSlnIeem/a4tVaCilesSpcVzEgHNmzbbpjQ1u2i3vpBaeXGd+6Mcv+PsfvuGtJw3vB2rJTHlildYsrfHgfMWz5xfs5onXH7/G9fWOeVnQJvjgWQ2Jq+sblnzJ+9//kHk/U3YzirCfZh7cO7VJX7XpmWbh2eUFqp7NZsXV1ZZ7pytoysQNue6ZczadVXIspXD9/DmvPboDtf18pf+/H+ZDb38A7hqUL7n6K1cP+I//yO8jffyCRz/+oV/y/d2JYN+deqUblDrfoC3gViuaGnVUDlflTbt4cemukoyWPZpvELVJivh0TKlVFxHxllYbA7IkQ83HQF0arShFjXA6M7KrZ9SWkPwcV4UU1KAdU4Ey4dIKbaZvCDHZiRpQZ0GAJU/QUW2tKVWMECsI0vno3vtOn7VU4HSYPiA4Gm3JlAbkhWW3pXlHbZEh2tg/OCOz1rwgtZFrZplmvNpkpfQ8nlImWq1EV40FUwtahe2yx6sQvYeQ2KwC8zyzXwoXeaaUzG635ySdU2lMpeJVWHJFnWeuwuB6oGNI1FqpJVt6sLeTdyfCQMuIT+TcqKVws1242S5cXy9cTwsST3n/o4ecP3qN9ek9nE+Ielo7TCDc0cKby9KD9RzBBZwLBpPjMB15CZRmrvKjg+Yw/RARWoXDuqaU2qclhVqzNSXFsotEjOZr05IeDCjO1kidGnvA2utRSCtHWi5qmpmPvrXnb//gU376Zxq72dZS+2nifQ8f8NZzobhGngpzqbg4IDeZn/74R7l3dkrJjfsPz3j/esOzq4lVW/Pi6hJoxBSIO8+8zJyvRp49e8awWfPlrz/iIx//FPdPznj/o1Ou54X7Dxw+rNluF1qzFOmLFy9YrQLnD865eLHD+YGNC7z15K0v3ov9Fa3Nv3zNn/+ur+DfuPfR9/pQ7qrXj85b/ur/4vfgP/mDd43Fl3h9Xnnp3/md38lv+S2/hZOTEx4/fszv+32/jw9/+MOfcZv9fs8f/aN/lAcPHrDZbPiGb/gG3nrrM9/IPvaxj/F1X/d1rFYrHj9+zLd/+7eT8+fvCCjLJct0wbx9Ttnf2IlWJxqzsWIlgKbjdKRRKHUi5yvyfEHdv2C5uWC5ecZ884T55hnzzQvy1SX5xQXzxXOW5xfMz18wPb8kX1+Td3v2+8blsmHbTkFSX2U0tE34NrMKyjoI66isYyB4T61KwdP8iqYDcThB4wp8QtOIHzek1YY4riB4C8PzfbLTKq0s1LKYNVbBtYyWHb5OrILDSyWKwDKzTBPLfmLeT0y7Pcu0sN9uWXY7pGTyvCdPE5Iz0TnjirRm+gznDDQnjaRwEpTkG77sGaRw73Tk0fmKx/fW+Dazv7lie7NlP83UWojRjnkpjQUlNyHnxryfqRla89TmaM3RiCzVkwlsF+F6X9nvKi8uFi6uCx998wUX+4Ybzjm59zqvvf6reHjvNcZhYyszFbwTvDfRa6mVeZlRJ6zGgfVqRRoSPvpj0+HUNCjB+76COaD8OQpXW23U0oAulK2FkjMlZ2rJlGrPVe98z0+KhDAQ4oAPAzEOhBBJMZBSJEbj05joWI/5Sg1LQv7Uk4n/z4ee8P/+2xf8wD+65mYRSmtMS2E1rPjkk2c0bSzzws3uBs2Z7dUl5/dGTjcrBGHOM5c3N3zy7UvqBBcvrjgZBq4vJj7y0U/w6LUNjx7fZzzf8ODeOb4VlmlHKRnNhR/50Z9gmSZ++meesttv+Z98xQZ1ldUwWJhj8EYCFri5fM56NfDGw8/dZvyl9t7xxaryzjv8xO7xe30YdwV8Ol/zdf/s1/HHfu3vIH/yU+/14dzV51Cf1wTlu7/7u/mjf/SP8lt+y28h58x3fMd38Lt/9+/mH//jf8x6bYK5P/bH/hh//a//df6L/+K/4OzsjG/7tm/j67/+6/me7/keAEopfN3XfR2vv/463/u938unP/1p/tV/9V8lhMC/9+/9e5/XwS/1EmWi7BLeD4hPAD2nJKBtwYURZETxpinAHYWYrRWoEyZ4qKCZWmZaDkj2iPc09eCEZV/RVcSFRAnCRbjPc/d+7sk1J3pF8EIMDh8cIXmKVlQPQs1OPxcTolbnaCp4HUyvUQpSM00a0srR/TEVc38E7bj1nj4rmGYheAfNGChIYxw8pWSWPFNQyjRTmp2Ah2j4eVXPkidoGcXTph14xYvimk0vai04AT/EvoqozFOm1okgnhQ9/mwkusLzq4ntzRVVHSkNDEMi+siSp56Zswc8c2moM4FsaRV1jZAcN7uJzMSSKzlPPfwuM2xOOHk4kktjtT4hjRtaE6bZQHWWAxRREcsqypPZopNRaX0Xj9Izcuji2YMY9hh82MOUVOUWrnZID5YO7WuNRgYpnfFneUTCIX/IrNxgdnDtxNjbSc3t5OYwqak0rveFn/jENX/7h57y9FlimmfOV+dcbbecnKwAmKmsUqJoZjVuWHYLT955izwv/ORbb7MakjUpojzcrPixj3yU1x7fw/lGcyu211s2PvLk6TXLXHE0ri5f8GXvf8yP/8THuLi8xD8yjdT5yYa4vUFU+PgnnjNtJ9A9037Lg9MNz55fkJc9q9VASHtee/iST/8Ve+/4YtaHf/PCt//Qb+LPvP733utD+RVb/93O8Wf+pX+d9okfea8P5a4+j5J2tCV8/vXOO+/w+PFjvvu7v5vf/tt/Oy9evODRo/9/e38eZtlZ3/ein3dY055q6hq61d2aB4RkpgBWcIhjCBgTHw/4nMT2tZ3ECTEIntjm+vo4T2zHyXXwJSfJSRwPJ+fkmOQkOIkHQkxsxxgMMkEIEMJCU2tsdau7q7ura9i1h7XWO90/3rV3d0sCDSB1t9jf5ym1dtWqqrXX3vW+v/X7fYdlPvShD/F93/d9ADzwwAO87GUv4/bbb+ebv/mb+YM/+AP+yl/5Kxw/fpzV1VUAfv3Xf52f/umf5vTp09HF9BnQ7/eZm5sjL66N6ggkUqYonSNkEpN3Q2N/T4aSXZRsR76KSBAyRcoEZNOGl1nstjR6TxEaZ1ndcBekAh1QLXAKVFaQtzLW2ltclz/Awexx5vIxWRrv5tM0R2ZZdP70IHUW02GVQugMr4to8uUs0/3QWWQwaOEI3mCrMRIosoxESRKlcD7a2xd5QaJ03BRdVMtIKRoTuuiOG9VEmjRNMdaSaIEMDqTE46MnC/EcvJIkOkF6j7NVdP/XAkTDrXGGujZoraPdvoyFUN2Yp53eGrA9tnid02r3SNMcH6K5mHWWdqcTCyaRROkxQICkKDDWM6osiGimluY5Rd6lNzdPtzffuP02RZlKEFpPLfKD8xhb451HN+Z4SiUNWReaGc3ZrJsgIJzloHiaiz+xrUc03yOmnBMI0Ix1xMQ0TSTRzE9wNvSPs8UIMC1SzsUkLLCsLEdPj7nr4TEPPDZmd+gpZIYxjspYVJZQVRVexcSoTpaSpYr1kyOG21usHz9GkiQIHQnJdV0zKIfMzS2wtrZMmmRs9kcsLyzw2NFjLHe6bGxusbl5BhHAuUCSa7RM6PY61MbQabfpzc/jEMz3Wuzs7tJqpYxHFdsbZ0i1oL3QZmmxy/KS5hU3LnDlquZlB1fY2dmh13tutvcXeu34Vr4LLZLndM5fE4Tgo098gUQ8+6Juhq8fXvf33sXCB792rskMXztsMHySjzyrdeNr4qDs7ETW8uJibPXeeeedGGN485vfPD3mhhtu4ODBg9NF5vbbb+fmm2+eLjAAb33rW3nXu97Fvffey6te9aqn/J6qqqiqs9Hu/X4fgBBiazeGqdV446MPicqROiN4i7MDvB3iyJGyQIoCZIqSGULmSJmC9Ajpo4IkyOihEjR4RTSlDYgQg/JE5gjSYGmxE1Y4jWFe1rTVCVrKRP6LUKQqiZwYQQwGDIFECYQKWFfFIDxriQzZ6GTqHASdkKQpWZKiQiBLddMt0UhTNYZtmiSJxQchQxLN27yPBm0BYjqyVARnSKUg1SkhVFG1oVPENPk5oW66NojIlyGYplYLEHy0n8cjabpT3iOIKp2sFT1N5NYu67sjThpAVBRFF6Ujz2WMIc1aVM7hvUAp2SQme3SSorIcnWRkWUHRatHuLJDlBWnRio68066DaDJtRCNFjnf+adK8ZgJCcNTlAGMdOEdwtiGiTjxLIilWICb1ylmJb6O4CRCl0OcUHYluZMnN64U62yV5OsTLeZYASwDnA5u7NQ8eK7njnj4nTntM6SnSlN3hiE67Q+0cQjggdjsGuyPyMM9Of0CqNOvDHWpTEYKllbZJ0gQnPNdddpBh5eh2OoyGNbtn+rjdMYPN04zPbNLf2UUJkEoRfKAeGxZWu7RbOaKCbq9Ff7CJ0pqjW2ewzpCuLXLsiePk0tKa63LgspxX3rjAN10zz/49GaPh81ctXOi140VHCLzsUz/Kw9/6wQvz+79B8ctbl/PPv/AmrnlofKFPZYbngeddoHjv+fEf/3He8IY3cNNNNwGwvr5OmqbMz8+fd+zq6irr6+vTY85dYCZfn3zt6fD+97+fX/iFX3jK560bR3MrqYEkun36WGgolaHTFiE1ODPGVjtg+yhyhCjwMo2dE5liRYpU0dcEEgQSFVIkGciMgI4FixJRnaID3pWUVZvTepme3qWbGYpwmkxPNl/RbAZNmJyPG6USAak8SoCVAhsCSI/zHk/c8LwXBBICntortFZkSUqrVcQQwEYtIlW8A5RCIBNNImXsFgQXQwSDI8sSFJAmCuPiy62kInjHRE2UqBSdJNiyagzj4vl5F69ldFglhhIKEVN1CSQkqCSh02shvMe7ASfGnqGXKDISlZFkKeiEpN2hlbVIkgwpRCQgq4QQouoHGa+bTlLyVoc0TRFKxQ1exTC+6OASmogCiU7zxq23GcN4h3e2Yb266O7qXTRZYyInjh0mGrlxHOFEzgfeTTsqoSlGhJRoZEPqTWI37SsVJfiz5OxGJRRwEAS1DTx8subLD4x5/IRhqw9laekWGePK0llos7s9ovIVi+0Wm5sldTnm+Il1sqslxkk6vTZKa+YXFqjrknI8oqzh+pddSZoUnDp0lMPjk2xv7jDuD9hosqqkUAjn8EqgkpR2npPlGqkl/dGQ+YUF2q02ztdkWcLRM5u4uuSkL+m24OqrV7nx+hVe9bJVDi63aOequUzPb/m4GNaOC4Fr/+YDXPW//R0e/d7/40KfyjcM/tU9f5Frf+SLF/o0ZnieeN4Fyq233so999zDpz/96a/n+TwtfuZnfoaf/MmfnD7u9/scOHCAEBy+KUqECHjhIscjuLiRiQ5J3orJtb7G2wrvS2QYoXyLQAEhFiTCDZCi6agIjXMCYRJEnaF07L4In+CljOMPRlhV4jo5sreHQjoSJVjSQ7yUeJ0gtSZYTxANn0V4tJSoJCHVCXVVx5xaHQmevsmcqWtDXZcEAlalKK2xHtJUkyUa3Xh7BKkQTUfBOo+zvrnT1435m0fJBG8rqmqEI6pJrHONw3xUJSF144ch8ZVp9m0fCxKdNB2PyOGQxM6PShOEd4RGXlsUGfv2CJJ+zbZ1ZG1Pu6XJ8hSR5qi8Rd5bIe0ugEoJonGeFSLmIk3cdBvpL8E3KcIqGqdJHZOTG3pIaFim8XE0JxFKR++ZNCdvDNaCd00BEwOTpiMZQWNVL6KSJoRmKhR/lg9Nxk4IeBHHIkHEiEH5pAIlhKZwghi7wKSbE91sN4eeBx6v+R/39DFVxm4/vj9VgJ3dIbWL3aCN3R32LnU4enQd4UFK2H/ZZSRZi8HOkM3tXcpRSVWN6HYLlheWefTYcfp9w2hnm53NLfIkod7dRThLOR6hlcRpT7vbIUgoihZISW9+kSTRKOEJzvHY4cNYW5NniiQJzC90ufzAHC+7Zg83XbvMvj0FvSJpVF+RT2Ps0xdqz4SLYe24EPBlybX/fgzfe0F+/TcUPls63ve/3soVR0YX+lRm+BrwvAqU97znPXz0ox/ltttuY//+syY3a2tr1HXN9vb2eXdCJ0+eZG1tbXrM5z73ufN+3oSpPznmyciyjCzLnvqFaf/cx8wcYQlCAAbvK4KrcG6MmGxuqYjyUF/iXYW0I6QoGg6KAeHA2ykhNXIfFLbptCiTI+ssdkgShdBjfNXheNnCh70EnUCyjtAlRd5CIHGmpnbR4j1TjqBFHFtohfAB7X00UBMSZ2N6sMaTyihRNtZj65LdaozQmm63R7eVYlQSR1rB0UpTTF01EuVAlqWRjOojsTBJEmxdgozCZu8bVYZ3JAi8KRFBNpKuMO2+ROdVGbsLxJEFjTNqmHh+COLoQAsSmaFCoDcuEZzCjzcQNkGnBWGYEEbH8dVlpAtXIFtLqKzVmLSJqXFaaH6Fb1RLPsRxkmi4KEzGJt7FYyc+8TS8j6lfyYRr0rxVQuN7IhuBrzgnKngyOqIxhwsB5T060CQeR6Kt9wGBi8nF3sUx0uQnCNkQih0CjZIJNYETm4GP3bnNiTOBwmmOnTjN0nwvviaFwpQ1O7t9ghOM+gPWa8OpjQ2Wl+ZwpCzM9zhxeou1PQU7Z7YIGG7+pqs4tn6G0/0+1WDMxqktdja2GY4G+ESSpQkhTQgySruLVouVfWu4AO12p7HyrylHuzjvyHVGNR6S54ruXM7By/dwyyv38fKrFpjvFqQCtBIoJWLzaZJdIJ87fe2iWTsuEOSXHuSmf/Fu7vm7v3qhT+Ulix0/5h9+51+nc+9nL/SpzPA14jkVKCEE3vve9/LhD3+YT37yk1x55ZXnff01r3kNSZLw8Y9/nHe84x0AHDp0iCNHjnDLLbcAcMstt/CLv/iLnDp1ipWVKL/72Mc+Rq/X48Ybb3xOJx+omsWysSwPkhAkCI/HRL+IqkaiotlWUpDn81EhY3ZwZoT3I7ApUuYo2UbJNoJI5py06L2vI/HWy8ZOP0MkOTqrCb5i5GqO0aPV2suBq65G7/NkcxY33GT38BbrGw6DYt+ehKXUoFVACI9KUxIVXWKds5Fcay0qUQSfQQDrLNY6vASpUhCKQWlJg2jkxh7rA1mSgLMkUmG8x8s4YkIGkIqsaOFClF8nQkeb/xDwPnZMqG1TdsS7e52kMUXZh1i4NSMr7xxSx7GTx8XuBiKqf5xDBEsmLNLXGGOwY8XIRY6LzgrqzaOMF06QrVxLa+UgqrOEkHHU0/wndjsE6DSHxvUWwDsbx04NvyNWDme5IJEMK2IvQzShfCHE5wCRWDq1tT//7n/CJRGT/5eyIVmrpqMUMMZgqhpnTeThTLo/IhJwrW9ILSEwNoYvPrTDZx+sSZMFtjf7bIYY6Hfs1AbtVgsRJINhn6X5ee6//xFwJT5RXHVwL3O9OY6tnyERHqkUBy5fYlDu0DYF6+un6W9s0cpiAOV4Z4dytEumE8bjEcPhEJUo5hd6iDzl5utv4omTGwjrSJRmNB5QjUZsbW3Q6bTIe4KVfV2uvHqeN7zmAK+6dpGlTnxvRkrzOddL+MZhFzL97F0KLra140LBlyX7/+nnuG7+XXzph/4FmdAo8eyv4wzPjB/4C38N/8RjF/o0Zvg64DmpeN797nfzoQ99iI985CNcf/3108/Pzc1RFAUA73rXu/j93/99PvjBD9Lr9Xjve98LwGc+E/MJnHO88pWvZN++fXzgAx9gfX2dH/qhH+Jv/a2/9aylghMmflZcT/AlwY8IeHywnF1M5XRGLoVGqgxUglYdsrTA4fE2jn0maholMrTsIkUPqVoIkaFEVL1EXoeJm6KI5l8i0cg0QSZtdKtHp9vjuquWefMbr+X1f/4gna5hc32dB+95gLu+tE6nu8KVBwUr6Uk6ckymIdMCbwM+GBIVs1hMQ+qTOiEIcNYgBdjgsU4RpMZJgQiOdqZR3oGtwTmUEGgtKfIUlaQE52hlKZlu9DMhEKxBhDgWy7MMU9cTmkczygEXApJmXCYCSZo2XiCGVGmQAhdAJlkksXqP845Rv48tRyRCYGtDaSyWQFVbPJI0iwZ5Y6tor1zB0hU301q9BtnZAyohhICzFqQkzeI4IrhoKR+sgeAbfo+MUuGphX1EALyLWTw+xPwjISRZXqBUEkc5Ex7JOTXKeTb3zb8TD5QQHME4rLNnf8vk94a4hfvmZxnjOPR4xW1fOs1O1aXft2zu7HDD5fs5sbUbs5u0xBuL8Ibt7SGbZ3ZwZsxiL2N77Fhb24fHcdlawfFTAx4+dIIiKxjunmHvygr90YCqHDPqj7DGIEUchyV5jq1qZCJpdTt0Ox1KJPtX93Lq5AmErxgOxjhjyLKUVjdnYanD1dcu8fpXrnHTVQssdjK0mFyepxZy5/0d7vaZn5t/Vmz8i23teNFVPF8Bwz+8io/f/J/ILoJzeSnhj0YJ/+IvvAl74um5STNcODwXFc9zKlC+kmLhN37jN/jrf/2vA9Fs6X3vex+/+Zu/SVVVvPWtb+VXf/VXz2vBPv7447zrXe/ik5/8JO12mx/5kR/hl37pl9D62TV0JovM3n3vxvsRpj6FcX2sHeDtLp4xnrhhx4FAVGRImSBFhtJFzOkRCUIEnDOE6CJGcCBFgZLzJHoerTtRvtss1H4yPpCO0IyFVJKRtBaQ+Rx5d5F9+1Z487dcw5v/0hWs7s85euQJPvw7d1PqA3R7jt7wEHvbm1y2B9qpQdgSIWx0I0WAdygtY7ZMCBhTkWgdJag6x3rB2MZNu5XltDOF9mO8KbF1fN4CotpHSrJEkacJWkkEHhHclEuhGnfaRIH3DoKcWu7HDCEJMo6lorGYb8IWPT7EbButY7FQjksGO33seIytojtt7SxpnpHoBB8COk0jwVcIVJaTdpaQc/vI9t2M6O3D6zYizVAqmYb+eWunhUJ0jZWcN6CJGuFGCWXxTcdGJQlaZyRpGuXiE5+T4EGq2CURcSwWOzdnfWD8VJocpvySOMZp1D0yetlMHGeH45qNvuXhJ0r+9AvrrG94pNb0WhnGWoamJE06rHRb3PvYEZbmexx+7Ci+LClrw803XcfiwhyPHFmnLh3W1uzb3+X0xjbeBE6f3KB/Zpt2KyNvdUmyhO0zG/gA1tTYOsqTi3bB3NICN910Ff3tIU88sclSb5ETp54gyyRJIskLycpKj4MH57j5hjVuumae5U6KljE4UTQXNf65f5UCpfk7fFYLzUW2dlwsBQpA/bHL+aMbf3cmQf464xdO38in3ncLxSMb2Mcev9CnM0ODF6xAuVgwWWQOXPFzKJESggEZ8KGiqk8R9ABTRXdYZwZ4PyL4EtGUK0JIgsxJkjY66SKEbHgFsUNA8MiQoWSLJFlAqwWULBAyI6o/ZCN1DXhfxeOTFNXqoLMWSXeZPctL/LnXHOCmm5dZ39jm8188w9ZuD1yNdrvs6465arXmsj01K90x3ayi3fIkypMlEiEiV8R7T2j4ILUDIRXj2kXjMwJSarQMdFNPIT3B1th6jLeWpNlMZfDkqYq2+YnGO4cKISYue0+aRamytQbnIgkkTXUTPihRaQqJRrjGP8Ta2Mlo7NsDAm8dO9u77GxuooLFNpJorZP4b+PYKpTEIyiygqQoEEmBExq5sBexdDV68RpEvoj3YEzdqJJ8E+rnGy0PTUowDRm1KS6a7keik6gWShJkQwBuZEjNsbahoOjogSJCtOFvFGBChCbIr0k6nhilnLdhx9ThygZOnxnxuXvWufuhMULOc/rMDs452q0W27u7rCx2qcYVw7qmlWUcevAIgkC7kxOc4NSp01xx+QF2RxVaaHb7ffr9bZx16ERy003XcuT4CebbBZub2wx3hgTvscYQpIxFZvAsra7Q7s0TPOSpYGvrNMHEcVnaSjlwYIkrD3Q4sNbiqoNLXL6vx0I7I+7tkycYzhYoX6U4Offv8Pn4oFwoXIwFCsATv/NyVnoD/uTlH7nQp/KSw6s+/9fY+/+ucQ89eqFPZQZeRB+UC43gAa1RKkUoDUiSbAWZSZwbYzpbmPEGttrEuC1MvYmz23hXgSsxvsKaUeyoyIQ4IHAQfBwB+QpnRii7jVZdlOoiZQuh8yhXJkXJPC7tQRBKMHaEM+uslxWfHJV86YGTWCEpTYobjQheIkSb/rjg8JZhvmVY6ZXsnTPs32NYXbAszgUybUh0wGORImA8ONl0VdJmm/aO0bhiPBqz4UuWey26eUq7k5LImNRsTE1wFmTDMAkiZtgQsHiU0njvsTZu0EIKVJohG5faEFsHU8fV4OPIJPJNPN4FamMZD8cM+oMYLiMFSZJGDxgpG3WMJzQjES0lUilUXiDyHIyF4Rm8CxifkqwWyKRLlqtm5NIoa7yLHRXnpqnBhEj8FVKilYq28zptxjgNuXYCJaehht558JZIhpYIpVBKNRLkcLaoOftrCAS8B+sDO4Mx9z92mmOnDU+sj7n/0GlGY81lezsEJel2Bf2dXarxmEce6SMEzM31eOzkUUw1pBzWZHoJoRT7LlsmCMH2mW0UCmermCA8GuKN5Z67DyGV5PJ9K/QHQ6QSGBfzjmSSkqY51jv2LK9R1xW7O5vUyoKvmVvqsbTU5mXX7+Hm65e57uAc8+2ULNGoc83kmi7UpAB7fvqcGZ4v9r/jXtTSIjf82g/xwLf8Pxf6dF5SuOu1/5HXveFdLMwKlEsOl3SBIicbkJBMev6CFHyCTtpovUSa7IuGbsJS11vU5UlseZq6Xo95PH6MNf3oSCsUDRuWgEIIjfcGJ8b4MES6fvRLCS0ULZTsoFQbKaODrRQSZ2ucG+BMha9GVMNFZHcemTbeJUgECh80Q5sy2g2cGnV5aMMzf9ywPFdxcMWxf8myumjJ84osDUgtSdIoic5UgidgTI1XJTJrMRr0ObIzRO9YLlucY3U+J5U1iQSFQjWeH0LETBitYtEgA3hbIURovEckIm2cUglRotOQTGMTIyBCvLcOzlEbQ7/fZ3enjwzEkZAPaCnxwUc+TVNcaK1p5QVSC3xd48ZjklRH+/66wg9OY8XD6O4iaq6DlxJ1jl+JJCC9JzTKnqlTLDRk2kiGFmLiAhsx5ZcAQglkSAgyKnHwAmTM8oGmY+U9QYCxDmM9xkXZ8bA0PPDYKc5sOY4e2+a+h9apTMbq8j7GY09ZDtjd3qBfjmCxQ3AB72tOr58gBM/W6Zwrr9/LTqo5NjxOORyS5C327l3h2PpJihQGOzsMR0PyIsP7QK/XIwSLVpK7/+x+nDUoKaMrsUzozs9Tl2OcM2yePoHzFYmCdi9ndd8y112zzKtuWOaay7osdHMSPemMiKeOXWZVyQWFO7PJ1T9Z8Kr/6d3Mf8+xWTdlhm94XNIFimha8KHhD6gm9K1ZfmMbX2UgcqRK0OkSRXEQfI1zu1TVBnV1irpcp65O4twwWprjgJrQuMIGkeJk7GYIN0L6FC8KnCgQIkfKHCkzpC5ikRNsFJeEGpGCVhLtBTJLCSqSUAXRQl9qTZCSkQ+UQ8vpkeXRUzXzRc2+JctVlxXs36dYmNd0tCLRAZlICq0BT3AepQWDQZ/tM2fo75zhsY1d+uOS/Ytt5rIMiQXnp7yTEDxBKHSeIYPHlm7apRAEpNaQZdE0LjhcZVA6epPgGpmvg1FZsrW1xWh3gAgelWi8tQjA6VgIESTWVDhjGI9G+LqmaLcZ7w5IR0P2ZApdFKA8Wjgk2/jB44T2HoTqIoKceMBG9Uijmokqq4YPdN574uzI51zi6ySxWDQEV9lwUKKsOTQ5Pc0erRRlWfLZP3uUu+5bp7I5VS3Y3h1y5vQIYxVKara2S5TyVKMnqIyj3c555OGH8T5w6rhmYbEHGvbtW2Hz9Aan1k+QpB6l26yurjIYjNna3GK4u8tg3OfK/fsZ9ftoqbC1ASHp9/tcddV+llcXuOe+R8iEZHcwQMpoYueDQSSwPNcjbyUkWcHeffNcf/UcN1+/zBWrXebaKYk6S3o9l7/zTHjyBPgrcUlm+PrAPnGMlV89hvrYVXzb5T/KD/7yf+NH52ZEz68V7/lff4vfvOsv4//s/gt9KjM8B1zSBUr0qDgre4xm6CKG70Gco8t4ZyyCQIkEr3OkUiRqLxlX412Jr3eoBscoy1MEOcZWG4yHJ3B2t7k991g3RogaITRSJHhZIRnFfB+rAIXQBVKkSBKEyiI/o86xuwJhol2+LHKkKgDV8CeIZBNifpD3mtoqdseaY2cM9x6u2TPnuWwpsH9Ncdk+zdKiYr6TUrQEWQtksOiWZ0GmtLsLbGyeZP30cU5v7XL13nmW2wlJCGQypvkiQKgEZAoiIDMB1iCDn5qYySyNpmkOlHLgfHRabQzM+ls7bJ7ZIFhLpgTOeZw3qKZHZJoxjPOeJE1QQpCnGUWRUXS7FFJjvcfWBqEkUmtEKydpZzi3iR8eR+krCbJJShRi6s463SQbe/unbpnnFCeOhnk04aycZVac/TmNQVwz4gjAme0xf3bfaQ49sEVpFEp3sNZzcr1Pr93Da6hGNd6W1KZC64SdM4JUKULwlKMhw+0zoBRXXHEVJoBOE6pBhcWhZIJ1NdJbhtt9vDUcfuwIxhgSFSXeAKPhkMOHj3L0yNHIDslz2t0WaVFQ5BmtVo5OBYvzmj1LGVcdXOC6q5a4fE+Hdj7JaGpCCgmRLv41FBmTgmVWqLywcA89SvIQ/O6bX83vZim/+6e/NVP6fA34p//H/8Le+75woU9jhueIS7pAOUtcnLh8NnfJMpIoQwxaiZ0WGRUnk4RbIRVapniZEVQHna3SyRW6l1BtHmN88gms2cGaberqJFV1Gmt3cWKMpEJ6jRIZQSSAQqAQdkwgJcgUETL8cIRzI5Ksh0l20MMdks4CSWcRmRVIXcTknKAbboRvWgDggsKj2DU5u6cDj5225I84uoVhac6zvABrK4rVPYFe29ApJK2sQGcZi2sdFpbWKHc3eWLjOKd3hly5p0NbgfcWLUP0YJEKH2p0luKkiK6r1iCNxY9LUBBMjfAx+dnXFdXOkN3dEeVwiHCOXEmccwgvoidJI4cWWlLVNYkUKKFJ8oxWp0vaKRA6QeQFIssIUhKsAwmyyKDdRukEV59GjBeg2INUk7fpxDr2/A3y3E7Jk7/mhZ++WaZy5OnXxfRnimaMFAIYY3nw8U0OH9nECYFKBM6MGi2YYae/Q1XbWNH4QJZmjMcVVVXisyiVbnc6VGXJaDjikQcejhbz7S6jUQlUWFtHlZSIGiGdpzgfUFphTQ2NpX+epySJolUk9OZ6FJ0WeTuh11HsmU9ZWyk4sNrlyv3z7Jlvk6eKpOnSOR/pPbLxkomipadevxkuXthjxwH4riveQHjNDfyf//lXmZOKOVlc4DO7tJBtBYKpL/RpzPAccUkXKFPL8RAtyKd312GSvBJAqKgcadQgk4TeEEK0Mm/4BrrXRRUZvh5BVdDu3ohIMwIWU21iRutU4yeo61NU1RbO7mDdGPwuQcjotRKyKF0OKcrHTooPQ5zbRScdrNnFjDZJd8+g2/Oo7iJJMYdUOcHHwkSKSNSUssk7mW6+ilpIzlSSrTOSR3dAPxHotjzLLcfermTPQmDvnoT9+1osLs2zvGeF1X372Tz9BOs7J+lKy0IKhQgo7VCyRquAsz7utc4igiM4j+/XkKbIROLrEmM9w60tNk9uYJ0nUQnjsmRoarIkJSCwrjGC0xoZogttp5WjlSTRKVmeI9IUrzQkKSLLUZ2cIDTeONAKkbURaQdfBwh1fI1Fo9ppOEdCPLsuwNPe7T/d9zXtkyAkPhgeP7nJZ77wCI6UNFWMytj1yHXK4nyH0kFmBKPBiPFwhDGGuo45Nj4YrLH0+7Gbl6Yp1nqcMwz7JSBIE4VQ0ZnWGIuQknpYk6Y5SidUwuKcIUs0c4sLdOY7LC912LtasLaScuXBeQ6sdFlZbNPKErRWTfcnNI638W9ASlAyck7OTVp+ttftKdduhguGYGr47N387YPfwvpP/Hne93f+M9/efpwV1X7WP+OEHfCx0RXTx9/beYKOzF+As7248KWqIh34Zz5whosOl3SBElUVNs7WfSRAxpXaT51JhRcIHcdBIlqixFa5FyBU5IFmCbLQeF9hhrt45xFaI1WKlG10Nke+eDld8WpstYspN6mH65T9o5jxKYzZxLkBPlT4UCLQeJHGYsUZlLEQDJoArqS0Q3Q9JKnH+M5oWqTIJIuZNPHJxeciBdDYqEPsPsiYslwby8am4dQpz6HgWOp5Xn2tZHk5pd0qaOcaIZdYWF7l9LHDDE49zsAPUCqgTY2UgbSVRcUSUZ0jmmBDX1lsWaOzhNHODsPhCFNWlFUJAQb9AcPRAEJAy6rZ1GIXKM8zilaLRCQYJBLFRJ6N0sg0RegkepHoBFpdpJOE2iJUG2SOUDQ+JUw5KM9UmJxrb/90nYIpXyVMSL9NqF8zagvCMxwb7vzyCXZ3A6assF6SpQWj4TY4T5pmKCRjZQkuRXjPcDQiBIe1giCi/4ozsUARWqATgRAeU9cIJM56lIxeOmmexPfjxIMlONqtjFY7Z2llidXVBS4/UHDN5W1edtUya0st8iyNbwsEwgu8BUeUhEcalkAoMS1wJ6/NMzFPLkHHgW9IrP3zz/Af/vl+fv7Xv5fXvPysMuXK9hn+ydpd08fvO/FqHh8tTh9/8e6rufbWO6aPf+m3v52b1k7wn6/6+Itz4hcAfzRK+JkPvIs9v337hT6VGZ4HLukCBTwEe85GJqOZV2imP0JEb5MqNP4WimnSLTRmXhKRBkw9RlQGX9tYKNDYfKsAOso5hSyQSYe0s0Zr/hrcwhBXjzD1JoYNQtii2t2gHvZx9ZDgaoKrEcE33ZoYdy9UQQg13lfYahdXLJAWi6h2F7LW1PrdjUeIEFB5B5FFom8QAbwh2EBwPlrTe0+eK/bvK7j+hhYHD3ZZmMtROvJNMu9Jryjod3tsnXiMzcEpHCaGAwaPSjWCBG9rsDWutBhbUVcGW2rK0YjxaMRwOKaqHdY6hoMR1seOhq8dWqrGzM1hK8fQjslSQ6IT0k4bqURjuy8RSYJINSFLCHkL0nYTgxRN5tAeRAch89g58aoZw8jndEf/dMeGEBrDtslHLCQQkTD70JFt/uy+deo6sLC4zObODju7ffK8RZJmbJ3ZIlUpSkCWKUwFUsYxkbeWJFUQBEkSpdzO2TgaCj6aiQnIkgRBQBiPD7FWzlsFzjqyPGF+ocfCnjn275/nllfu5xXXL7C62CLV8X3ug4DgpwWF1HGMFs31nvp8nwlPySz6CtduhosL1/3Y59g95/G9L7+eq376VdPHN7x/F3f/Q9PH17Jx3vcf+L572JGKqz74N1ld3uH2V/zOC33KLzree+f3c8W/nhUnlyou6QLFWYOUIIOOao8wSa81KB0D24K3eF8jk3xaoHjnkVIQhCFM/E9qgx2OYrefQPCGIBUyRNKjaCZEhOaONCQkxTJJS5Cr/YieIQSD2Rphdnexox1stYMpN3HVVrTkdzXWjEGM8bZEuzHOtvD1AFfuoss5kvYCqtWLbf/BJr4ckS3sI00zHCF6cjgbTdQECGHp5IFvuq7Ft7xmjlfc0GZlLo0yYqKtu5IC3VZkWU67u8jOqcOUG4cZ1iW5tmRaIZKYJChCNGIztWE4GFHXFmMMg9GQ/nCMDxLnA16nBKKSJGiP0EmMBMAjlMJYSzUyJLqMScRKkjaFJFIgWikUHWTWI8gcmu6BcBLpU6TuIXRx1u31WeaVfKWNdboJ+9D4qEQ3XEQzVgtwZmfM3fdvotQ8Q7NB7WuELGh3ErwLDIcVRaeNNZ66qkmyjN6iRKWCZFRS7sZcI+89QUZn2ylF18fXzgbb+I/4Rh4tSZOMTq9DkJ68SFlZm+dl1y3ymhtXuf7AIr1OOrVQm9KuhJxcGqY8GiZWhM/xmjzpc+ce/+THM1y8cPce4tofPufxs/km77j2h7+IvvwAN/7wu7nqTY/x0ev+4IU6xRcd77npU/yn7/t22r99xzMfPMNFh0u6QPG+bjwvJN47hJiMGRwhiGhq5mq8qaP/lpRE5udk24ikSO88wRpcPY7y36gNinekNt6teh+TckWQE2ew6F6LJ21rRKKwwxwtFkjaHlrRAdbbEmd2cXaHerSJHW9j6x2s3cWO+wg7gqwkhBGm2qEebZO0FtBJgS2HOFeRhhKVWLwAVzkIjrRQ5N1oGd+VcPX+hKv3FyzNZZHjIM52kYRQSJFAkpOnXXrdRTa7c2w89mXMTp9lNHnmwBrcuGKnP2BjY5ONM1uMxyWRwaoxXqCSBHT0DUl0CoTm2kfzs0QrvDPgogPtwAjU2JO3JC2p0TpBJAkhTZGtNsgMHBgrCckipIuEpI1K5gk6B6mbbtbTynWeHxrCtG6kuiFAXVv+9M5HuOueo1ib0O4ssbm5iQiWJCtYmJvngVOP0uq0qOoxve48o9EAYwydTpflPcs8/thR6nIc04K9R4qAbCIEkkzGbolxCGnIshxUikozut0enbkW7a7gwGUdbrpmmZuv2cPqfItEqWkhEUL00jnXgl6cl8r8tXc+pDwnfHE28vmGgX38KAf+0VHc793ID//aG/l3l992oU/p64L3LjzOv3qVpP3bF/pMZng+uKQLFBGibBIgBDdVksauiSEEBRi8KxFW4WQSZ/MyuqRO/g0OgjPgLN4Zgowum974qA7yChEUIknPKm6aOZJIAmhwJfixQLjIBUAm0TBO5aj2HELsJa0NMjicHWPGm9SDU5jyDLbq48pNhB7g7AhfD7EyR4gU1c7JupD3POXYYIcWQSDLFb05jakqBusnOf7AJqP9Ar+8ik9UHLlIiUBGInCId+BSSXTWY3HtepQu2DhyL49unqarDF3pqMdD1k9ucur0JoPhAGsded4mTVtxJCI1Os3o9bqNA63F1BVKxy6D1oqqGuKljynNQlGRUZJhyFB5i9BqI1S0eQ/C4W1BUIvo1hJKF5BmIBo3WJ7JcP1ZvlcmG7cEQWNC1yh3vA88cWrAxqYEmXPi5OOkaUG7PU+Stzl96jSnj5/CmZJee5GTgzMMBw5vHAu9Ltvjmo7M6HYLRjIwGI5JizZFmlJWI6yLYYypUuRFj06vw9zCIirRpAWsrha8+obLuOZAm70rXXpFdHo9ywGPtvuTjKCzRQp8LVXbk9VP510nzhYps7HPpQ/18ut5x29/6lkcuc63tR4GOi/0Kb0ouOXP3sE1v/wo9pkPneEixKVdoDQjd+Fd45NxVj4agmMaKecMvhoTRBqJsQ0RVUtBCJZQO4L18dhgzo5ziOOdIBVaZAilomWJdQitCNIjcoE1Fj+SCKsIQUU7eGIXBxFNvRCKJE2QUqFCj7S7Snv5Olw5pNo5ST08ibE7IAxCGpx3YEd4l2G2WpRaYWxGcAkBGO0EvKspxJhr1nJefvMccyspUkMIFmcdXjTjER8dZBGiGSwEkAm9pctot+c4efwRzjzxEFs7G4zObHPm1BZlWaFUQZppWp05HIJECLTStDsdpFYoJMYNm+sZEMJT1wZrY3PZNyTU3XGNGhr0KLDqM7JiDlEUeBIQS4jWKlmy0PiyTMzxGsfTc0me593Qn9M5mGywT5Ybn/+fcxxlI39DhqjmOr7R5zd//3McOTzCB8X+/Zdz+vQGhx99lLk9SxRZTr/cpa4HHDvyGEWvy8LcMseOHCFLLa4q2XFbtFs9lpZXOfL4YUxdMxiMsN5RtHJa3YLlxRUCkqwd2H+ww03XrXL95UtctqfDXCtDK4E8hwg8ebqTbpiU8mkLhmfqdDxTYTErPF5ikAohBZd9Oufv7/1DABLxafbrZ1t0vDSKE4DNfpve+iMX+jRmeJ64pAuUuNFYoAl1a1xOhW8WXW/xPhCEIPgKUw9IdWNpLxtHVRfAOrw1gI8JusKe7bBY02yYAUej/PEB6VTjViuxZUA6HTs2XiKExjEhdAaCb5RDApw3cXSkk2iRr1Jk2iLbcwBCTT3YxA5O4+UIK4ZYP2T7+FHSrTE6n0N1WsgiRcmMPVnKa1+2wOte2eO6qzt0i8ht8NY1kThxlEHj3xEm45jmXxcMIJhfPoBOcp546G5ODI5R1YG86DG/sEBWtPABTFWSJtGTQzTFoJKKVquNdSlCCKypceMhiVaNVb7AWoc1NbuDEa1ulz0hg5Ah6CGzvZCsINMeiPPfiuJJxcd5RE7vokJLxWIwxAsMU6l5PNZDtLFv7O8n7xoaq34XHFv9kjvuPkldzaNzx05/l1NP7NAuuqzt20tV9tne7rOyvMzVV13NQw8/wnjQx1nJ3NISzgQ63QXanR6H7n+APXvXWF7bR13usr29wUJrjvmlRVSiWFxuccNVLV73TQe4cm2euU6BkvIp5mmTzsWTy4anUzGFp7k+k8eT458vj2TWObk08fA/fS2P/NVfbx69dIqN54qBL6l30wt9GjN8DbikCxTvLWCiugMx7VjEoLio4AnOxXFLMDg3pC4hQSDSHK9MXISdjWoYAWhBsDXeGYTXSJ3iQ3RFlec40yIlQkic04Ra4J0A6yBIpIx+K1FVJAjEDo9SSbM/CgSe4EqccRAESmVAQjFfYIo5zGgTxqfBj0nyFjqbJ8gWWMF8FnjljTlvfPUyr375EsvLLTItwRucdTjvsM7gTIVzBm9Nkwbc3IkrNSWrKiFROiVr9wg6Q6cFrdW9zM/PkxctamMRItCdXyTVCdbHJGO8RQpN8IE0WIw1oDW51phxiRYyGpdhkFpiTM2oNBjdIXQuJxT7EMkcQuVECfGkFnl65U1U38BEyoz3keviw9TeXjTmZqLxkhFN6rQQUzbpOfwjGIwqbvvCI/zBH3+Z0UjSW1zgqiuu5tChhxlsb6KV5vKrrsZ4w9bGGTY3d1nYu5eVlRaHHzqFc4LSVNhxjUdw5ZWX4UVCOa5I8zbdRcXinnlWVzWvuGGBV1y/yvUH98bXKjyVN/J05nNfCed2Us79/3PxlVRMz+bnP9djZ7g4oPeuodbGF/o0Lgr83SfezHV/a+Yeeynjki5QwJ3toDR26JOxjw8S6YDgY25JEFGZ4wyhHEY1R6KRWhJkdASdfMQFP8p3BSJ2YJQGZxo+x8S5ViNsIDhFsI5gIiFViEDwPpJyA0D0F/E0bXrnCMaAdXFjTTRByOb7QGYFabIEoqbsD6EeowrQ3ZyFhYSbr4E3vrrDK27ssLSgY8FFiN0YFVDOoZ0maB15C85OFSVM/E6EjOGFMkWIgAgWLQTzi4vMd1vkeYEIgo6ANGsKK+/RaTzeViV1ZTC1oaocSqeI4DFVHd1YnQMESZo2lvaO4aBke1fSFmuodDl2oxp89eKk+f9miCeQBCmanJ5GiSNFExQYjwhfzZwsQGUM9z5ymj+75yStbJHd3Q3GO1s8fHqLNM+Yn1/i5PHjHD96jG53jr2X7WM47GOd4dTJAdYGpBzjgmXfgb2cPrWFVC28NYyGO3TbbaTQrK5k/C9vu55XXLVCmqizT3FKbv36KGaerrj5WguLWWFyaUHvXeP+91/Go3/x31zoU7ngOGEHfPL2m7iGz17oU5nha8AlXaDEOzzftLGbtn+j4kE6QkibbgXNhpyA91hXoZwE0UhlfSM7ppGg+qiU8cEhfUCoDGicVkWU0k6KIMY1opZ4CwiFxOKDhSSJHZ0QkCSAB+uxIYCNoXs0hlrBW0TQkfsSAqhIbpWqIMkXYnHgHK3M8LIrNK+4MlCYY6w/dJpqvsfC0jytTk6qM6SMYyV8tPzXyKhmCmC9AUAncTwVTI0xQ4KtqHZP0c0V3ZVlOkVBlmV4Z6fUD2ssMpGkaRr5G0IhE0cYjVFKIwiYaozTCUFbrKnJ8hxT1zhbIgVUVcnW5mlWxiPSbjiPH/K0r+2EdnKWz0rzChO8xzfngYqdEhrOCpzjMvxkiCj5PbEx4hOfO8qR47tInbG8tpf5bo/77r+X1XabM5tbtLvL7Pa3GQxOMDSGtctW0brk0ANHmevOU7Qyjhx+gpNHTmCNo50n7Pa3KYoWSM14t8/hR0/xxXvmaacJN1yxhGq6fc/+/c2Tiqzn3m0577u/hmNnDrMXN0bftJ9H3/J/XejTuOCoguFb/91Pcc3fn/mfXOq4tAsUX4OMluGxmxJHMSEoFDZuZDJp/CMaToiQeBwyGESI5lqx26FiYeJrCPF78RaPQKUZSI/3FhmiHbrQAjGWUAMGBJqgohNIcAJ8DMEDEbsXUiGCAO8JTsScO60b7kVjOBckQTQWcUEgZYu0nSIkZD3NwQMJr7i84qqlIa7aYuPUkEGSYfbuoTdfoCVoIZAi8itEM2LyzWYuBGidkGQZwTtcXWLqquHqVMzlEt3qoVTkbNTWUo1HoCStoo1QCmstdVWRJAlKRSt3IUU8Lni0jmTg6dhBSJI0w47HOOuwdYWpq0aNMqWBnse5CMRuDZPU4uZz0QQmhhZ675BKR0XLOdLYZ37PBHYGQ/74f9zLIw+dxBnPeLiDtTk7G0P27dtP2s1g9wSD/hZSSvJOjzOnN5ABVtfm0SpjPBpRlRVF0WU8HEVisjN4Y3HaszvcptPOqEq4/c5NHj18hnf/4Gs5sNpDiaZT0hRgT/YdeYoXyfQqzTDDDM+E1/2Tv8sV//tnLvRpzPB1wCVeoEz4Jz7yEmJfA990CqDZ00TcxAIKRJQmB+8a7kmIfAYp8c6BM8R0Wx9JuAJklsTOiquBFCF89P2oakIZED4m/ooQ00Yj98RHwiwgnI3W7hDHSCH6sQQpCDLErkdQTQdITMdIQurIpUg8+1ZbvPJKweXzW3TZJGk5lnKFCI6MM/iBAK0IQhIQmLrEmjp2lwQIqWO3QSqckjgfO0FKJUghmwIJamOwzsfgOgJaSVSi8VJQl2OssY2iRJAojSQwGA6oyhLvLEEIUAqdpgTr0EJR1zVBREWU8xPy5rnupb75NzSk19gnQYZ4uZoxT+zcxI1aKd2oFeSz7iaEEHAB7ju8yaHHh5w6vo53gW53jlar4NETx9kZZBTz8xS9eZzZZef0ZjSU8zGt+eEHHmVucQ8Oz+n10yQ6I01TentajAZDxuOKrFigrgbYVEPQnDpxhtPrjg/93iHe8bZruXLvHCJMNPHx9SGEaajfhFwdR1WxqJo8NyGa9IPn+rfydeh+zLomM1wK2Pd//tnEcWKGSxyXdIECDoJtHEzj7ainjITXoPAOhPQIofE0vhKNK6knIIXD25rgfMy3CT5uCcFHmTA++qYgoFGOeOmjZbt3cU83k7t8h/CGQIJUGuEcuObuX8p4PI2nhdaN8EgAPvJlwsSrpJHZ+okcGNJCsrYoWUw2oDzGsOyTJYp2u43WGhU8MmjGoyFVbSBAoqNkVacpRdFCJgnCx3hb62wsCqTABYdSmuDAGMN4MEYpRZ7n5HlGZSoqU1OohDzNCEmK1ApnHVVpcHXFaDTEu8bZNoCWkrEdY2sbFUCmQiuBUBrvLFU5AmdBJE13IHJxvIvy5Kiw8dHOv7F09yF2yqSSKKWjmmjKOXl6nM2gaVRUwXHs1Bn+2ye+zPY2LK2uMR7UbGxs0OvNs+/gPvatzXHHHQ+yL12m6HRQePobG+xZW8PrDpXrc/rUCZKsS29hgeFgiLEGR5v5PXOc3n6UcVXS7vQQSpKnOUmi2dzc5NCjff7d79zJD3z3q9nTS1EiIIVEqcgH0lIhxYSMLZthlsB7B03RK0QAIc5JKP4qIYDntqS+6jXiHJLyV/hRs+JkhksA3/bDP0oyvPNCn8YMXydc0gVK3Lw8hMbUubnLFjKODPxUlimQyKl0OMQyIK7f3kXibJh4StgncQRkHMmEKB8Gh/MGaQWhMuAVXkBwkTQrtSJ4E4smB9FxVsQxUACps6Zg8Y1/S9w8PSBciP9qRXCBYD1ap2TtBMIG/ZMPM6gHiLanqjxlVZJl+dTEq65LpJCxu5EmtNsdhA9sbGwQnCNNNKlKSNIEoWJHxdnAuB5jaovzLspeG8v7wXCEUopOp4cQirqu8CFQjeLv0VIwGg2p6xotJVqraK8dQAmNDYZEgNIKT8CKgLcVphxhrUFJHYsR5/GTbJnm0vtJF2VicSIliZZIpVHNaGeCZy5SIOCprefzXz7KkWO7lP0xC3uWCWmHlU6bw8fX2X/ZAdbPeFZX1xgP+wSfo7IeTg448tgxdJHRmZtjdXWBB+9/lMViDS8Vwo3YPLONVCn79h3gxInj5FlGNaqphhWdVk5Zjjh+5BTj3S4f+q/38H1/+Vqu2jsfm2kBnHWReD0poiHGLCo19T+RouFxO4ttSMDT8kuIpniTqAkVJ8DT8V3Oz96JsuwJSfnsl57Za2XmNHsRQQhc8eziIF6q+Jb3/h3afzyztH8p4ZIuUFwwjc9HDIDz3jULuZ5KTYOXIBt+R3AgYqCdVJGHEYIjYAl+cgsZJaxCCIKc+Ji4KV8g+ECQHu98M64JeO9ji16CEDbyWfBN5oub3p1KGQ3ilBKgm91GxkTa4B22HkcTF+NwZU1wCah5ElEwOPEwT5SfZ5Rt0Ztv0e3NUbTbtLptOp0CKQLW1ggPaZqS5TlCaVSSstQqMHWJKSvG1ZhxVaLTPLq/etf4o8SAO2s9znmqcoxQCpWmjMYlxhpsbZqdL97Vm7qkHo9IEo1SKqp1nKMux1TjId47bNPcss6C0lRlyXh3BzMeEoSMxRVMN+XYU5rc0U+6BAqlkmac89wCA6GRFYfAQ4+f5u5DuxzcdwWHdh7i1PEN8l6HdneByikefPBhsjznimuvxFjNieNHSVVCCJIsLxjsnEEFyeF+iXeBM6eOsbCwzMHLr+GLX7iP/Wt7GQ8HWFMxHGzjrCRNM/rDAXuWl8mLFqeOn+SRhwP/PX2Q7/uOm1heaCOJnSzbFKxCxG6REALlXXx/T0oNSbxKTcfNT1jE+MbvBZSU0UX4nJGRbL7vyXyW8/1lmsdNoSSfdpY0Y8RcjKjf+ue47Vf/9YU+jQsKVc8K5pcaLukCBe8IwkDwjVfJhMvgCCQIFxdmEQQ0HimEKLn1TXptmBBiQyNZdtEU2UvVqG9C5J40Rl8hRCWPCB4XAoJo6hZ/mMR7g2gkyiHYxnY/NBwYjfcKGXTknBAQQUTX2GDwYowQHleNscNd8DlZS2G2N+iPvkQY3MdQVxSdhFanRafbo7ewQHeuy/zCHK2iQKcJOs1wLjAejRkPh6RpQpom5K02Ks0IPqB0gpISYwJBSFSR4G2UVXvp0YkmL1pIqaiqEkFAax23Qu9pFTmhyLCtHKzHVBXVcIg1BlvVVNUo1m8+qpSkUhAU3laM+5uM+pu00wyR5IjQuM42e54gWrtLrZuOkJoSYZ8NQkMInvw0AGMdj5/oc99Dh2nJLsuLixgHx46vs32mT6+dkM2vcnL9GFsnT5AVOZdfs0b/dJ/+9gipNEWnRznaxXtP1ppnPB5xpt5k2C/RKmV3tEs5rlnes0CrlXDi+A69Xo/t7R0Gg4pyHMm9o6Hhc1/aJMkf4n/6S1dzYHWelNjZC0RCs3OTrkYzpgpNepQ/ZxTTdJyaMjq+54SICcpCNlwqELKx6zvH6C0WLbIphGBiXjcpaEITARAaNfR5UYQBgggYO9sQLjSqt72Wuqf4zD//9Wc++CWMX9++jGyzvtCnMcPXGZd2gYJtjNAsTLSoyGZmHxfb4OOyH0TsXDhnmvGPIs71o6Q4piBXeG+adNsJUTFMC58YGlgSjEVODNvO4TmAI7iKKNZxzV2ua04twQeBCk0SsXeRQiNiQaVSgVRFnFYlGaKdR78UMcLsPIodPISxI0aJozaW8bBisLPL9tYZ2u0O3bkerXaHolWQZxlFu01vvkee5kihURLKYdnk5xiUkrRaHSA6vpbjCltbEMSxApK6NiRJI9FWOkqiQ2jkx5EzUpcG4T1VWWKqMeV4hCljwGCqFSKA80S5dxrHS0gR/UuIauuJv0m0eVdIqc/rlpzriPpsEV+WyesXePz4Nl++5xhLC8vsnhmyPdrGBMHy8hJVNSA4R10N2bdvL8PhkDNntpibXyLJWuQtx3B3TJZ1qEJNCIHxYBAJwdJTjQcU7TZz8z02Tz+Oqx2Dfoa3sLV5JhYcRlGNh/QWOmidsNvf5bOfP0IqHH/lTS/j4N45lIiS8Ik/yuQ5TMY4kxGmn9YsviE7wznVXVNYnM01nhQWzvmmmIlVjRTRR0YASkTpuQ9xXHk286d5DcLkuobpaMm5WcLJhUL5na/jzMs1//bv/O+8Jpu5pf7qv/ku9v6PmXLnpYaXQIECPjhEo4BBKJobQiIBtQbvJkt+LEQQhKCJxYxpiogotSW4RurbbAshjmmi94nDUyNkwLvGVC0u73Ek4Q0BEzcV76bqDIQkBIVs/FqCqwkWRFBNXk48LgQJTsYNukgQ2iHlJuweR7s+gcC4Brwnq4ljF+exVc1osENRFPTm5un1ejhvUakmSTK8d1R1hTMGGXwsMIByVKGzDKFiMUKAPM+QKm5pVTmmHo9J04xUJQgp8HicFARrqccjfFXhrME5i1KaLMsQPuAMQKC2FqUkOkkJaU4xt8ji2n4688voJMMLGbk58qzrqxAKpdSTX+yn4Mny3Cf/f/ABHwLDUc2X7j/BA4eOodMWVVVRtAu2T56GEGi1Wgx2txn2hxgDQTryVoszp09TtFuEIEnSnLLcRQjIWnMMdndRWiJR1OUIW9fUowGpTnCmphwO0XmLclAiZSBPUwaDXVAB4fsIAdubjtu/cIrKBn7oe17B8nxrKoc/m958lgMSmnZGvDKCECQ6eM4WM83zn+qXz3qohDDhbDXRD2HC74kp1GeL7Ph5KSfk8EjUjlyVyUdUnj0fNdEMXzvG3/U63v7//RN+eukhYFaczPDSxSVeoHiCN5H8ymRNFgTZ8E9C4y/SKDicj2MHoQq8V01R4JsOShzHEDxCeoLwDXnQRd8TJCFUgEEKiXUGvMAjEcLHn9t0a2iky2db7DoyZPGEIHC2JohA8AmoGOwVfGyp43w0HUsEqqVIzQBVr+NsxchbTBV/R2YluVNYJ/DW0AqeNNFYW1PZCtV0M+TCAlme4YJHK0mwNZWtsdYRakMuIbhIGU4SHbseBKT3aCEw1mDqgMxzBApbV1SjEfV4RDUeobWmquvIkmjGAs57jPHRgE5rpEpQSUE2t4e55f0Uc3sQSUZAoIRASN0ocjhruNbg2RBgz3181nlW4J3HWMehx07wuS8+hKkdwlXsbKyj032s7Ftk2B+ycbqEEEiKFqUZoxWkaUGSCpypqUpL3mpjXeyMhWqIUhrvLSOzQ6ZzrPOMhiOSrGiCJj3WjvEBtFD0d06hEeAs43FFkeeM6zGnTnk+8alt8jThr779RpYXOgii2++5z2lyLc7tJMXH+pxREE19cVaZc26BI6bOvc1QKDSjozDp5DXXr8mymvxLU5CcHQ/FjyR55iJyhq8/Tr9KN8XJDABvuPt72f/RU7gLfSIzfN1xSRcoIdTT1rb3NCqIxvYdiOOLWDB4N45k2GZT9I3cJDRD/chFsQhCdJBt1BQxXC+OdJw1eGwsTGwNQSJENFIjxA0ZfOSrTNrzjUpHBBOJuKIhEShBkBLRcG1lEARnwUlwApkn6NQiR6eg2mRQOZy3aAR5IlBN2KG1AURK2spJOx2yTpe80yPNU5I0I0kSpFBUZUk1GiCBJE3otNtIrRteSexc2NpSjeMYKISAVkkkXRIYD0a44KmrkvF4BLbG2Zqqjp0KJSTjsqKqq2YsEWIKdJrGIiXvkM+tUMyvoIouXmiUiORXhG7k3+G8TTW+xoFzeRPnbs7nZdH4ELlFTaE3+fqZ7V0+/YWHOPbEGTCCMoHlfatsnDlJqz2HTDO6C5LTT5wmzQuc8SRSMdzeZmFxD2e2dqjHI6wxqCSh2+3S39mh3e5ijWBkaowxBCHBS6pqiHeePM/xwaOap2JsVEiNBwOkUIzHI5RUFJ0Oo9GYL9y1wVznQb7v22+myJPp+5bw1CLtqY/PuWaTxss5Jfu5wYFP/jmuIcZa6zDGNt8ZgyAnvitKnY0NmEYJzBQ8FwTj73od/9cP/ysatvQMwPHDe+gc+tyFPo0ZXgBc2gWKL6HZXJEiruee5u4zyjYnRmxxHGQikZVRNMpq7lJjKzsal8VZUGx5n7XPjzwX7ysQHmct3tbROl/KpgMTf0csdiaKINE05GPxEgjNZuzxTiCVQISYPmxKosuskSidxDFSuUO1dRhVDQkhkCWKRAgSIJWCIlNoHUi0JM1z8nYbGp+QdnuOrCjY3t5m0O/HAsBb8iwFIRiXjQVu8BAkxrroZdKoQZDg/IhUpxSpohyN44igcaBFCoJzKKkIAurRmLoc45yLDrmykcgqjcza5IurdFf309mzl7TVI0nzKDOWZ/Npvlq43ZMRi6hzihMf+RihUVUJIQk+cPzkaR586HFGZSRCm3FFUsyzML9KomBrZ4QJ0JrL2NnaROuCImsz2Nph48QJhNa0Wh36233yPDAmbvuj4Yi6HpOkWXy9vUOoSMhWKnqYaCVjxICxKKFIk4xyPEQXMQYheM+wv8NgXHH8iYLf/i+nKIqct/6Fq+m2suY3ydjVe5J6aXJZhHi6ayTO+3dSrJ0t6M5eW9N4zfhJ3SzP+rJEDsqT1Txnf+ZMyfPio+op3pDPipMJ/vL938kN77t3Zsz2EsUlXaB4b+NGFIWpxLuKyBWJchPbKB8MUBONrjT4IQ6LkGnT9pZNZUOUviIRzQYigscLwDm8H6NkwJoqdjt0VL0Ioaa8kzjGkY2gUzSFgceLWBBFA7gQJ08IUAFwhNLiCQiX4KUiYLDDddzucVJnkDKgQkAo0UyQPHUdeSzl2DAejWj1OqRJhxA8w8GAgKVd5NGro1HCGOexowpP7AKV4yFZmmOqOvqZpClSZxRFgbE1tq4xY0E9LhFCkGUJAUk9LnE2yo6djQoS6x1Ka7SORFikgrRF0l1hbu9V7DlwDZ2FvSR5F9mQMpt+yHlmY+d2Rs7F5LH3vnGcjeof7z3OuYa0Gc65yxf02oqXXakod3c5uS1Ji3nOnDpBkbfJM0WmPdJAr7eHemyph2NsVbNnZY3R7g7luMQJj85irtN4NCRrtciyHGOrOMaLsx9KW9NOC6TSmLJGJgl50cLUNShFNY5dN1vX0znJ9rCi226hMkV/AH9823Hm25q/+PqrSXR0Pp7UAeddjSlv6en/Ns4b+zzNF62LpFnnG/VbIOYrybPE5EkXEc4vHicFz8y87cWFeO3N3PH/+7ULfRoXBVzwvPPoG5FvOjorTl7CuLQLlMkoJ/jpaCeqG6KbhpgUHtSx+zFtezdzFTw0WT2TDSMWLCF2W5yPpNsgcL4meIPzBu+qWCQ4gaRJLw7xeyKPRUCjgJgWTiGSGmk+gzdEykt0lQ3KTjcdgSI4iyhPk/gxlampCCgpyWSgk0mEliSpQqaSpKVIsrTpvCRImZCmGcLDqN9vOkyxo6GUjkWdECSJIgiBSnUszgDvPFXVxwx38SEqfrRUJKnGW8doKDCmjiTcJIndFtdY89NIt0UsTmSakrV6dBdXWVg5QGd+L2nWQ8gEQmgcgBv5asPZDN5PVShxk4wFqHcB7y3Wx0LEubPGbg3LAojdC5rHQgT2793Ld77ljWjxKT7zhaNs9g1aKYT37Gz1Kdotqsph3TYLy8u4RceRxw7T68wRkGTdHqPdIXmaYp3D1Y6gDIOyJNEavEdLUGmOHTiMs4jgEDLKfYeD/tRozfqYYaR1Qm0NUsY/v9IGzHafYC2PP7HFf/2jEfPzBTdds0aaqWaU6KfjTJqrNmVdiVi0wYQMe5aDIpqU7EmHxHnfFHTRNyh6B028UwRSBrRW067J5PsmuUnPVU01wwwvBN559I088c2DC30aM7zAuKQLFEQsIKYyTCBazkev2NCYuDlfEYKJ44SGdyJCdJcNRPKgF/GxmHyfN4ABmYIPeF9CqAm+bNQ+URUkpI4bbYhhgnFsAngdv7cxfxM4hBegYrLxxCcFr5CpAiUQId4xB1HjqgF2d53MjOOdtI0maFWT7+ODIAiLTlIKqZqipIXSCS44hqMBOIMInizLYldDS0QaCx0fPOMymrLZqlEeWdPk7UQisGo4KlVVUo4mRQjUdYWQCp1lpColTRNUmkRjN6kid0VpZJqTdbp0ez1a7S5Sp1FBZRsCMdH3Y0JW9t7FrJ6GA4EAF6LDrXcO7y2mkYkrHVVRYjLim44cIuE4jiYkQmr2rh7kLW/6i6Tpn/KFLx3h6IkE41OCkIzHJo5wdndw3jDs77K6d4X+5i5V5VBp7NY4V+GspzPfi863ZY1ORZPkrDBVhdIKIcFWFVlRIHUS85Ak6CShNhaEYFRVSJkQjEdJMMZhzZC0yChrw30PGf7z7z1A+r0JV1y2AMJHxZhS0yI8OulGq/zIgTqHOCvlWe6K8LjQFHjWY6zFhxALT63IkqjOUkqRaH2Odb5oDAibvyoXpgUPMCXYzjDDi42/dO93kb7lyIU+jRleBFzaBUqIvJFpSx+I0uJ4NxmLjaYQIC7yATtdZKPyJmlUCqrprdSRfhbOLs4hWAhjwOFdLFJiMaGaROV4Jx18TfRkiaUOIcqgJyZZAQdeNAojmmLEAimSNH4NEaXRw1MwPI01NUGCFrE4CD5QW4dWIHVKkkmyVoaQknE5JgjIsxytRJweERgOdlEolFakeY7WGlPXeGdJtKYOgXI8JjiDreuYC5PoeAUF0TwugFZJ0w3wCA+aSd5PFrspaYJKEpRM4jXJWiSdeXTRwTgXuwnaIIVuaomz5NZJfRGLDomzEz8Pj/NxdBNN22STQ6POK0qsizygiQGZOGdcEYDL1g7wV779O9i794t85A8+w2PHSor2Cqby7G5tIZRkNB4xGg3Q2wl1bdBJghmPY+7PRLnlapxxIASmrAipR8ucqq5I05yARGiP9QFhLUon2LrEGItWGd6LRkat8S5mPakQ/UcSFU3vrAg8/Hifj932GG/6Fti31o5EZNU4GnuPalyJQwiNHX7sokgROyHeNzk+IuAiE5YmxgedaNI0vg/0OZyTJ9vaSykJ4ixvJYRJNhLN38+suT7Di4MfeOwv8dkvXQfA9f+fe/Cz4vgbApd0gRL9SRoianNHGT8voqoGN9HwME3IFfFOXcqG/oEHXJT8ShVHN6LxVAkykml9wPthbJW7MhYlaPCy8fGQkSTrozwZBF7G/g0+xOydhrSJcGdHShC7CA5CHfBBIVUCjLHjE6h6G+fjHXDQMYtGBUikIM8UrSJhbrHLnuVFEqVQWuOMYVhXyBAosmw6dhI+2p6PR7topREh8gxqEbNdynLcjFoCWqd4iD9vIkryxK4GgjQr0DpFJ2nMxklSdF6Q5jkqzRE6Rxcd0s4cre4iIu8yri0yDBGyjCOmEFUtseiJAYpCSoyNYYZSRtdaJgYfTZdEhFjHydDc0TecE60UqHPJm7ED4HGEIPAukGQtXvOq1yGV5j9/5BM8/sRRsmw/3sbrNhj0abXalMMRAUeSa4yvsXUcJ7bnelTjWMDKJKGuPLZ0eDFCSE2SJgyHFYlOz6rDvEd4HcmywSCa/KPgTKQgqZwgHAKFkAmjasTC4jzGwp337IB4lB/+nleQpyIuyiK+3yXxsXFxrDTJT0I2xbYIDT8nkoMFkGhNmqZorRt1ThxBnvVKeeqiPxlPAU8pYKbubTPM8ALh17cv49f+9Xex9tkB13425uzMyuJvHFzSBQq4ZozTGHFPTKvwcXjTdDDCRE48kfgCPphmTBN9T4T0SJ8S3WXLRuEzsQt3hFBHF1pn8M4hm46GEAEp1FmJcWgkot43WT4QvGzyZeIGPzG9mkiSg418BYQCaRF+B19vINwY06QEBxzOQt6od/JUUuSaNEkQSExdo6TGGotOowrHmAohoq29MTXKS6wxJOqcsUpweGend+JCqtjOlwGNJEiBUBKdJORZgU4kQkXnriRNSNIUmSSEJEXlPVTRReZtkqJH1p4jaXWRKsEFosqncdaVRKdSrRKkUkgdC0QlmjGJrQg+dlHc5I5eKbROYvoySVOcxLGDQsQRyNSmPY7RjPMYHzkrHoESkptuegVBaT78X/47hw8/iJLLdPesMXh8EMdcdUmn3aYaDtCJxtYWaw3j3SHGBnSSEJyNeTcIvKvIspR6HEMXVWM3L6TCWBPfJzp+j6cm0S18w6GpXQkykGY5tqypyzGmnTHcrrA1fOZzQxJp+O633kyvm4MH4yx10+lSzVjGe0eiFN4FqtrGTpNSZEoiRdJIheV0NARExdV5br1P+vOahgg2D88RBw0qx5cP97/Of88zfDWIBw5z/f/9Lg79zZc+UXbLjfieH/u7pFs1a5+ZOcR+o+I56dXe//7389rXvpZut8vKygrf/d3fzaFDh8475lu/9VvPWfDix4/92I+dd8yRI0d4+9vfTqvVYmVlhZ/6qZ/C2udum+3DJLvE4VyNDyVRHuNwuKaDEu17Jv0KIVS8o/YeF2o80f01hBrvKlwY4sM4FhzegTMENyZQ47H4YOL/B4sPNd6VeF83HIoq2uWHiqlJnDcQTPN9TT5PqPC+wvsaR4XzFd6a+Lt8hS3P4MebGGMYWc+w8owqcEHQ7RYc2D/P8nJBogPVYMDWqZNUgz6j7S2q4QBXmmij78CMLf3NPoPdXTY3z7C1eZrTG8c5s3mSnf4ZtrfOMByNCMGSJJJOOydNFSI40iyh3WrRabdptXN0KhGJRGcp3fkFirlFVHcePbeH1tIBipWr6O29hrm1K+nu2YfMOwwqw+ZOn+3dPoPhLraqEMFjm022KkcMBzsMBjsMBttsb2+xOxhSjkaYakAIBqmiJFs2BnzWBeq6wlqLc466NgzGY0bjMWVVMy5L+oMh/dGYUVlS1xbno9y3P9xlMCzZu7KP//m7v503v/FKDq4M8KNjLC3P0Z7rgreUVUVV1RhjqZ1lfnEPWolo4pakOOeRInZCXKCRXDuKVCKxkckkYgdFKYlUDoUg1xmuqrBVDQGsiRED1WjIqL9FsI7+5hbeGWw1pjKaux82/NeP3YPxjrIeE4IlSzR5lqCVwFpDWVfYhmBMCCRa08oyWkVGUUQ/nBjqeHakE4LA1I66sljjcY5GHeVxIfJ+QjMyjX9jjnFtOXRsxO989iT/5uO7l+zacSnC7+6ycP9Lt2v1sn/9br7jW9/Bd3zrO/jBb/t/kf23zyM+82cX+rRmuIB4Th2UT33qU9x666289rWvxVrL3/t7f4+3vOUt3HfffbTb7elxf/tv/23+4T/8h9PHrVZr+v/OOd7+9reztrbGZz7zGU6cOMEP//APkyQJ//gf/+PndPKBGEG/MJey/7JFsizl0KETjErH0mLOy192OUeOnOChR0+ASACY6+UszLfx3nHk2AbOV6jgWFrosby6wMJim36/5LFHNqhqR5Y6Dh7scOU1a9x112Mce+IURcuzstrBWtjcGHDZZfP4EDh6pGR5WTE/v8D6+g7LKx1aeZfjJ4bsDl3klgTRjF2awklEz5DgDM5HnkpdPoEdbzddmVhFOh9IfOSDJDLyP+qhIck9eUtjaoMpK9IkoazHDJwlyRJarTZKxuaRlJ4k0/jg0TolTVIgIIIkSVOUjr4kRZY3RUFCkuVIpUiyBJ1k6DRHJilCpYi0TTG/SFLMo7MuKimog6DerXB2FAmxKmb7CNF0G4Sgruvo8KEEiVToJCGRGqU1VkQvFu88dfAkxHFOVPVYklTiXMxOMkTyJoALrjlGUtYG5+OoQzTZTFKqOPLxnjRNEcGzsrSHb/0Lf57lpXv53B2HePyJEt26grXLDnLm1Cm0arpDOMbjIcZblFQM+mdIskgONhhCUFQmqozyIofgUEQDPJVEuXo9qGl1W4xHNa6qImdHqfhcgyX46JdTFFlsVTiLrQf0+9vsbhUcftQxN7fEG169TKeI13VUVgQRyNKUVGu00uhckqbplKsT32NP5y8DWoeGrxLHNt55PE0qt2zsDhvO08ntmsfXh9x3dMiXHzV0uj02NpJn/bd6sa0dlyqkg4Ev6cj8Qp/K1wWn3JC3felvsPJXn+BgeUcMTp1hhgbPqUD5wz/8w/Mef/CDH2RlZYU777yTN77xjdPPt1ot1tbWnvZn/NEf/RH33Xcff/zHf8zq6iqvfOUr+Uf/6B/x0z/90/yDf/APSNNnny3hg2WxW7BvX5cnjp1m//5F3va2V3P//Y+w/8Ae5nqLjKqKhx87iVQSGRyvftXlHDywRlnVnPjdT4JSXHn5AlnRYn19E+9KrrhymeuueyV3fuEhFhdzoGJ3+wyX71/g6NFjXHvtQeZ6CXMLPbY2BySJ5uabb+C22+6i22mx/7LLWF0tGI09CwsZ/WHJzmAEIY3E3Ubt44ND2oQgBd4LCA5vtnHVKbyvo+qnmbhKCYVK6OUJrTSwuNgiTTrIIMiyjM5cF1/X7PZ3ECFQtNpIpWi3W3GUUEKSZCgtEVJFHwxjEBKUTsjSFnmekiRp5NUoSJKUNG0RlETmBSItEFmXoruIygsQKTLJcEmCcY5gdiN3R0T1jJQS6x3WRqOyQKD20amVAEmaEjKFqU3kVzQhhEIogoieLT7UIAw0I6HReIAQEq01ztpYuGmNczYSOGHKB7ImGp0ppQhB4nwAH7C1R4lAEIG81eVlL/8mtEqpPn0Xjx9/gFb7CopOm+FgRDUakOc55XgXmaYoJtJxxWA0RjUeOFmmMEbgrSOIs0RSnWpsGXCm4cGkiuA1SukoWfaeJFPUVY1WClcbnDSEIKirmqzQjWtwzh//6eN4N+Dt33YtWinSNEEnOsqdpyTiKM0GzvNRm/JHoLnG8QChBFJF756JAy/E4WlVW45tV9z90IC7Hunz2NEKWwa2zmhG4zHps69PLrq141JF9z9+ltfe8JPc/85fvdCn8rzx8bFi27W5e3yAz74iYQ8PznglMzwtviYOys7ODgCLi4vnff4//If/wL//9/+etbU1vvM7v5Of/dmfnd4J3X777dx8882srq5Oj3/rW9/Ku971Lu69915e9apXPeX3VFVFVVXTx/1+nH2H4Oh1C4q8zVb/OJt373Dd1Zfz6ldfx1x3HmMDm1t91tZ6LMz36HXaHDy4xmg0YHe34sqr1ui0WszPdfnSlx9jY6vkppv3o5MUJT1vectreOKJI+TFMseeWOfBB08DiocfPs4VVyzQ7XWoastDDx3jssv2s2/fHm771N1IJdnaGlJXgfG45tTJUUwpxp9jnRWzfhAW50tCEAgsWVrSSgBfwESZgiBPJcstTSuJTrGEWEBAwDhDXVb0evNkRYsQHFJJlNSkWYFQAuMsSZpSFG2SLKOuHWUZR1EqyUiLLlnRQiUZKkkjHaaRqjpEPCYrUDrHqRQrErwTBGsIlUEgYsihkNH8y01C6aJbjW4SilWiSaRqPFACwXmQInJTXPTraGRUcYTnHULKJrVXRm4JHq0nMQbRq8W7OIIQEx+UCSm6GVUYEz9cFOAgVXTARSiMF+y/4mq+LS2443N38eCDh4Bl9qytMtwdYsoKKRR52qIcj8jzNF4TIjHWWIsUCVpbrI08JBHAuthd8QKyVoKtwfmaRGuMMSAciU6oy4okV7FAsQKhQGuFqS3WSYINmPEux1XGJz+zw/61BV5x4xrdIoveNlLEoEUmCdvn/PEIcb7faxND0FionHd85P4EBqXl2Jkxj5ww3P7gkPWtDFEvcOzoEFuNCNYgGOHM6CusDM+MC712zPDi4f56xAfW3zp9fPJvrOHun2UJzfDMeN4FiveeH//xH+cNb3gDN9100/TzP/ADP8Dll1/Ovn37uPvuu/npn/5pDh06xO/+7u8CsL6+ft4CA0wfr6+vP+3vev/7388v/MIvPPULwmGdYW6uYM9iwekNwyOHj/La17yML9z5ZXYHA6666nJe86rr6HW7GFNTlRVaZ3S7CTfddCWmsngHaSohWA4fXucN3/xKrKnQOlCWJQ8/8gSPPrZOXWk67YS9e+dIU8np09uUY0t3rkNZlexsDyhyhVSOLAskqeaxR09RlQpIEMLHzaEx2RJSxLttVyFcQOeS1T0t9i0dIE8s3kZJdFYUJFqRKei1M/JcoUUgK7LoI2ItQmlGSpHlPdpFgUwU3gekisZgiYicnUponEohF2StFB9ApRntuSXSvIi5QE2y8MSsS7iAcxaDwDoJ1iNkHKMgojFbtJevGxJm8/KISDJufkq0rGtCE1WThquliKWKC9FLJjS/V8TfKXwUixtj4/NpZM51XUfzM2eRDUnaedfIogXOuShZbmTGSokpv8Iah/eSgKC2DuMcPgTme3O84ZtfS7d7L3fedZThZkXa3hu7L0TnVZVG9ZKrTfQ5sYEkSbC1xRiHTDWmMmghkFpirUMKhUoUtqwJlSe05FSdZL1tYhISahs/p4KMr6kIOBOo6hE6SxiPxhxZ1/zuf3+QPFO87pWXo5V4ijnbeZ2Tp/zRTCzvzxq/hRCoas/Wbs3j62MeOl5x76NDTu7keF9wdCOqhmTaQdQWIWqyxDN6npv9RbF2XMJYvNfxK9sHuHX+6IU+la+IV33+rzEcx46WfLDN5T93+zlfffbcpRm+sfG8C5Rbb72Ve+65h09/+tPnff6d73zn9P9vvvlm9u7dy5ve9CYeeeQRrr766uf1u37mZ36Gn/zJn5w+7vf7HDhwAIJna2uHnZ0dbrzhAKc3dgnB4j0Y46lrS1WWFEVOXdckqcLUDqkDWgueOHyKY8dPs7gwz8EDSwQEg8GY4WjI44cfpXYHuf/+x1hf36a2gVZL8s3ffC2dVsGJkyepa8uBA8ts7+zy8IOPcu11VxKCY+P0JkIkHH7sFMNRQIosOoESDbSizDgQfJTNuuBRaPK8zcKiYHFBk0mLEJC3unSXlmh1O+RZStFqRZMyAlrHl8+bGhE8UggUHi01KkmaO+UQ83KCRzgbN+mmOyFVCkEwNgY/GqMrg7OOJElxzTFa6cbg1jcZM5GsKrUmEDNipIrjGxEmHiQCIRVSxY1ZSRk3aSmmhYmSEikDzkfjMNeMhqwDERw6SQkBjLEo1Zi2+Sgbd9Zig0UnOlrsByIBVCucc9Hfo/n/qXlbAKkVCrDWYo3BuUBVG2pTYZ2jNg7nAtdfdy1FnnP3lw9z7OSjqHQvc4sLnD55kjwvqOsaZyxJlmMseDQ+VBhjyHSC0k3HJyYfxJBHlRK8Q2qFULEAVDqLpniJnj6vNMtiWIMJJFrhnYhjrFRAqChHJYePSP7wTx4hzxJuvmEfSssmQdk2HjHyaXkn0DRLxNmYgOHYcfzUmCc2Ku5/dJcjJy1HTirGI832lkVIh0wDXsXXRcqADQrnCqD1tL/jmXBRrB2XMDq/dQcf4jvo/qPf4Yd7Gy/I77jyv/8o6bHnPzK7+n+7D7e983U8oxm+EfG8CpT3vOc9fPSjH+W2225j//79X/XY17/+9QA8/PDDXH311aytrfG5z52fPHny5EmArzh7zrKMLMue+oUQGAxH/NmXH2JpsYdSiqqqWF//U0LwVJVh48wOaaIxBpI8oVPkvPzlV3Bmo8+DDx1jc2vA+sk+C3MtqtoyGFr+9NN3MRzucuTYGc6c2cHauKBbO+bI0XWscVS1ZTgcsb21y05/yO5uyWhc0t8t2d4eIqViNPSRnCvi3TCy6SOERhI9MV9DgJK0WoJOJ4lSXhRpljG/so+lvXvpzfdotQvStCDNssayPhI/na1iLo53OFPhrEV4hzM1wXsckaiapo06AgCJSlOiLDugGh4DziGVwjUGaUJIRGMOJmXkKTjn4iZqo5xVJRqpNUmWkhXF1F1VCBFN5nQkq4qJd4mMPBgvY2ZREJEEHLzDCxVpN9bHz03NwKKnR5o21vhEUzJk9AOZeKFEe/zoM+N9VKCIpnvjm1DBEDy1KSnLEmcdZVXjvEcqiaktxgb271ul023x6GPrHDnWZ+wTlldWGA6HVOMhSiYoYsJ0sNGZN2ulOOuYBAUaE63kpZA4a9AqEmeD8+ikSQtGRfdfVyODwJZ1TLp2HtP45ug0QaOpy5KsaDEeG+4+tIVx97Aw3+LyyxYjr9b5WHhOghobD5MJ32TSvfMexqXji4/usH6m4qHHxjzyBGxueca7krFROCcR3oDo0yoStrfHqLSFbs1B2sUMYpbVc8VFs3Zc4uj81h3834Pv4V+txCW8WhT82U89f17KB/sr/Or73zF9/LI/fAR38tTz/nkzqusMXw88pwIlhMB73/tePvzhD/PJT36SK6+88hm/50tf+hIAe/fuBeCWW27hF3/xFzl16hQrKysAfOxjH6PX63HjjTc+p5MP3uKFYjgqGY/rqIaBqXvrdG8TsQgQSDotzYEDyxx9YoOTp3cjB8E5xmUklwYE66cqQrAMhsNoSR8dwChLx/2HDsfNF4X3jjNntptjBPc/8DiNOwrxDDRKCLwUCNEEGAaBFLqRHHuE9zGgME3Ii4DWAeujk0uWd2gv7GFhzyqLe5ZIkgSpdOMYOmntW2TSImvpxkhu4nES/U0Ihno0xFb1NCcmGBOjiIxBIZFZgvDRk0ULgQwCpCbR0UQtNEVVVIXEDJfgPUnTwfDB4ypDaRzlsERKHY3egkBlmjzPY1aQ0pFwKxSWOHKZOAH7RoGjmy5K5JC4aTKxkrHYkbJRPkHDbwnN5mxQMgYQGmOmxZVvVD6x6xS36SxPowJMRUffzBicsyRJDI801hMELCzNc9m+Nfqjms/fdZRHD+/QbnfAGsrKUdUGJRTOGUTjsluVJTKA1hlCGZSU4AOmNKRpFkd6vkaqqO5JCoUxNQmxlnWhudZJgvfgnaNIBHmq6Q8Cro7y7HFZs3XmNCpI3vKXr+PPv+pyEqVj6daEJ8YMnfj3IBAx3sB4Hj66y9HTJZ8/VHP/YcWon7Kz5QhNjEIQDnyJrceEECiTObzTCAO+8qgsRXUzrHz2G//Ftna8FJD9weeZvAIiSXnLZ3/kef8sNaxYuPvsGGZWYMxwMeA5FSi33norH/rQh/jIRz5Ct9udzn3n5uYoioJHHnmED33oQ3zHd3wHS0tL3H333fzET/wEb3zjG/mmb/omAN7ylrdw44038kM/9EN84AMfYH19nb//9/8+t95667O+05nM2/NENg6jke/Q0CLjHWMQNOyGyTeBjHbln/v8XVijyBLdtLvDWVKlaKiXISb1TEYENIZvYsqpgKDOzvCjmVo8XgrZdEgcQtQoGV1pPZMAvMmxvuEfeHTiyYtYyHg8Ump0VpC2OgSpMCZ2XLDRc8UZi6lrhIqW+0pJkkQ3nuSQZBlSF5RmjGwXtDqC2pQ4U+Ftha3L6MfhKkJZgw8IHyKfQ8WOSCRgyobI0BRdonmWTZci+BgSCJHMibdAHUmvPhBGkMhYgBVFiyRrNd8rkTrunt7HJGkpNVqlWM+UA+O9x9q6UeKAD+OzbrHnBejFURZBUNVlY2Am8S4G4+lEU9eGqirJshyaDpHWCe2sDT7gvIsjJRmfY5IkZGnK/HyPy/evctvnHua2Tz9Gb24et9WnrhxCJxhTIWVU8UgZomPvsELJ6GIsJeS5xIVRfO1FIElT6nFNkWQUacLu5i7FfI63Na4KyKBxzqGEpCxHlKMBUknK4QCVahJZUFbwhfuO88jxI+yZfwv7l+ebvKkncVKA2noeX9/lgce3uecxw6kzKVu7GWf6aSzwfI1wFrxFSosxYwQaqRJGuzuxCDcKUytQCpHGAuzc33UprR12kpn1UkFt4DNfeN7fPitIZnixYHn26wbhOYCmB/Dkj9/4jd8IIYRw5MiR8MY3vjEsLi6GLMvCNddcE37qp34q7OzsnPdzDh8+HN72treFoijCnj17wvve975gjHnW53H06NGveC6zj9nH7OPF/Th69Ogls3Y88sgjF/x6zT5mH7OPZ7duiGbxuKTgvefQoUPceOONHD16lF6vd6FP6SWHCZlwdn1fGLwUrm8Igd3dXfbt23eeeutixvb2NgsLCxw5coS5ubkLfTovObwU3tcXM14K1/e5rBuXZBaPlJLLLrsMgF6vd8m+UJcCZtf3hcWlfn0vtU1+siDOzc1d0tf9Ysel/r6+2HGpX99nu25cGrc9M8wwwwwzzDDDNxRmBcoMM8wwwwwzzHDR4ZItULIs4+d//udfkh4HFwNm1/eFxez6XhjMrvsLi9n1fWHxjXZ9L0mS7AwzzDDDDDPM8NLGJdtBmWGGGWaYYYYZXrqYFSgzzDDDDDPMMMNFh1mBMsMMM8wwwwwzXHSYFSgzzDDDDDPMMMNFh0uyQPmVX/kVrrjiCvI85/Wvf/1TEk5neHrcdtttfOd3fif79u1DCMF/+S//5byvhxD4uZ/7Ofbu3UtRFLz5zW/moYceOu+Yzc1NfvAHf5Ber8f8/Dw/+qM/ymAweBGfxcWL97///bz2ta+l2+2ysrLCd3/3d3Po0KHzjinLkltvvZWlpSU6nQ7veMc7pom8Exw5coS3v/3ttFotVlZW+Kmf+imstS/mU3nJYrZ2PD/M1o4XDrN14yvjkitQ/tN/+k/85E/+JD//8z/PF7/4RV7xilfw1re+lVOnnn80+DcKhsMhr3jFK/iVX/mVp/36Bz7wAf7lv/yX/Pqv/zp33HEH7Xabt771rZRlOT3mB3/wB7n33nv52Mc+xkc/+lFuu+023vnOd75YT+Gixqc+9SluvfVWPvvZz/Kxj30MYwxvectbGA6H02N+4id+gt/7vd/jt37rt/jUpz7F8ePH+d7v/d7p151zvP3tb6euaz7zmc/wb//tv+WDH/wgP/dzP3chntJLCrO14/ljtna8cJitG18Fzzpl6yLB6173unDrrbdOHzvnwr59+8L73//+C3hWlx6A8OEPf3j62Hsf1tbWwj/5J/9k+rnt7e2QZVn4zd/8zRBCCPfdd18Awuc///npMX/wB38QhBDh2LFjL9q5Xyo4depUAMKnPvWpEEK8nkmShN/6rd+aHnP//fcHINx+++0hhBB+//d/P0gpw/r6+vSYX/u1Xwu9Xi9UVfXiPoGXGGZrx9cHs7XjhcVs3TiLS6qDUtc1d955J29+85unn5NS8uY3v5nbb7/9Ap7ZpY/HHnuM9fX1867t3Nwcr3/966fX9vbbb2d+fp4/9+f+3PSYN7/5zUgpueOOO170c77YsbOzA8Di4iIAd955J8aY867xDTfcwMGDB8+7xjfffDOrq6vTY9761rfS7/e59957X8Szf2lhtna8cJitHV9fzNaNs7ikCpSNjQ2cc+e9CACrq6usr69foLN6aWBy/b7atV1fX2dlZeW8r2utWVxcnF3/J8F7z4//+I/zhje8gZtuugmI1y9NU+bn58879snX+Oleg8nXZnh+mK0dLxxma8fXD7N143xckmnGM8xwsePWW2/lnnvu4dOf/vSFPpUZZpjhEsFs3Tgfl1QHZc+ePSilnsJePnnyJGtraxforF4amFy/r3Zt19bWnkIotNayubk5u/7n4D3veQ8f/ehH+ZM/+RP2798//fza2hp1XbO9vX3e8U++xk/3Gky+NsPzw2zteOEwWzu+PpitG0/FJVWgpGnKa17zGj7+8Y9PP+e95+Mf/zi33HLLBTyzSx9XXnkla2tr513bfr/PHXfcMb22t9xyC9vb29x5553TYz7xiU/gvef1r3/9i37OFxtCCLznPe/hwx/+MJ/4xCe48sorz/v6a17zGpIkOe8aHzp0iCNHjpx3jb/85S+ft5h/7GMfo9frceONN744T+QliNna8cJhtnZ8bZitG18FF5ql+1zxH//jfwxZloUPfvCD4b777gvvfOc7w/z8/Hns5RmeHru7u+Guu+4Kd911VwDCP/tn/yzcdddd4fHHHw8hhPBLv/RLYX5+PnzkIx8Jd999d/iu7/qucOWVV4bxeDz9Gd/+7d8eXvWqV4U77rgjfPrTnw7XXntt+P7v//4L9ZQuKrzrXe8Kc3Nz4ZOf/GQ4ceLE9GM0Gk2P+bEf+7Fw8ODB8IlPfCJ84QtfCLfccku45ZZbpl+31oabbropvOUtbwlf+tKXwh/+4R+G5eXl8DM/8zMX4im9pDBbO54/ZmvHC4fZuvGVcckVKCGE8Mu//Mvh4MGDIU3T8LrXvS589rOfvdCndEngT/7kTwLwlI8f+ZEfCSFEueDP/uzPhtXV1ZBlWXjTm94UDh06dN7POHPmTPj+7//+0Ol0Qq/XC3/jb/yNsLu7ewGezcWHp7u2QPiN3/iN6THj8Ti8+93vDgsLC6HVaoXv+Z7vCSdOnDjv5xw+fDi87W1vC0VRhD179oT3ve99wRjzIj+blyZma8fzw2zteOEwWze+MkQIIbx4/ZoZZphhhhlmmGGGZ8YlxUGZYYYZZphhhhm+MTArUGaYYYYZZphhhosOswJlhhlmmGGGGWa46DArUGaYYYYZZphhhosOswJlhhlmmGGGGWa46DArUGaYYYYZZphhhosOswJlhhlmmGGGGWa46DArUGaYYYYZZphhhosOswJlhhlmmGGGGWa46DArUGaYYYYZZphhhosOswJlhhlmmGGGGWa46DArUGaYYYYZZphhhosO/39E5mg7t9VYJQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAESCAYAAADXBC7TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9W6wsW3aeB35jzBmRmeuyr+d+q2LxVhQlUm1KKhVaBtqGDMHdbXTDhGHoQW0Y6jdTDy4IaPPFsp74aD+Y9pNhPwmW7X6w3W4IsGjZDcuiZBQlUVVkFVXXU6fOfd/WJTMjYs4x+mHMyMy1zyFFUudU1QZzHOyzbrkyIyNixfzjH///D3F351jHOtaxjnWsYx3rR6j0h70BxzrWsY51rGMd61hP1xGgHOtYxzrWsY51rB+5OgKUYx3rWMc61rGO9SNXR4ByrGMd61jHOtaxfuTqCFCOdaxjHetYxzrWj1wdAcqxjnWsYx3rWMf6kasjQDnWsY51rGMd61g/cnUEKMc61rGOdaxjHetHro4A5VjHOtaxjnWsY/3I1RGgHOtYxzrWsY51rB+5+qEClF/91V/ls5/9LMvlki984Qv8g3/wD36Ym3OsYx3rGajjdeNYx/qjUT80gPI3/+bf5Etf+hJ/7a/9NX7jN36Dn//5n+cv/IW/wPvvv//D2qRjHetYP+J1vG4c61h/dEp+WMMCv/CFL/Cn//Sf5j/+j/9jAMyM119/nb/yV/4K/96/9+/9MDbpWMc61o94Ha8bxzrWH53KP4wXHceRL3/5y/zyL//y7nuqyp//83+ev/f3/t5HHj8MA8Mw7L42Mx4+fMj9+/cRkR/INh/rWMe6We7O5eUlr7zyCqqfPhn7B71uwPHacaxj/ajVH+S68UMBKB9++CG1Vl588cUb33/xxRf52te+9pHH/8qv/Ap//a//9R/U5h3rWMf6A9T3vvc9XnvttU/9df6g1w04XjuOdawf1fr9XDd+KADlD1q//Mu/zJe+9KXd10+ePOGNN97g3q1bpJS4fX7CT7z8Em88d5dVv6BTI2GAgWZcE1mFLiVyEnrNpARuhnnFEXJeICKYVXKG0Qvr9ch2UxHPIKAimDhJFTEjCWhOPNpc8d/83S/zwaNrhIRqpusTtQ5MY8U97tTmOzYRoboBgSZ3d3Kt2fb0fZ3vfiC7x7o77k4SRURQ1d3PzGz3O+aOm6MqIIJZvK6qIgjmhls8FwLLRc9quUTFcTNAMHNqrfGa5vE77bkPtwcg9454x1JP+JmfeJnXXlly0hkn/QnLfomqUMvEOA2UWsjplG1Vvv/eA55cb+hyhwhsx4nvvPUOHzy+wKTDzEheyF1H1/eknFnkRN935JzoJFFdKD7yxz97l7/6//w3+OnPvQ4oOSnusU8Eb/vKsFIZJud6M5GX53SrU1QUNyOlOI54QjShyMH7daQdR3ff3QXM++DGMWoH1AXMAYzEBAju2v6Bm5NKxRDMhEqhMhJHq8O9glcwoEqcKylOi1ILgqKqWDVwxdziH0b1iqrgdcItgXW4KxDnv9kUJ5877kY1p1ajVig2Ub3gXqk+UYoxTRmrcHW95v/x//rrnJ+f/37/lH/g9btdO/4c/2cy3Q9xy451rD+aVZj4X/n//r6uGz8UgPLcc8+RUuK999678f333nuPl1566SOPXywWLBaLj3w/aUI1gQXYyDmx7BKdZjIg4pgKZCWp0iUlAQvN9BoLeZUEIqSciXUlkZLQu6DmSFXMMoIiqoiOZBW8OikJ0gmnuuDk5AR/eAXERR5Xco4LecMEu5pFPzOwgIPF7ffacQ2gyAHQAHbgJBZV3YEJEaFapVIDjJiDB9BSZrCjuBguAVZqrdRayV1Gu4SZY1YOtoFYxA+29VDGVAokEqgAlS4LJ6ue065DrVJLJQtIEk76Bd3iBN1A33XkNLFY9OCVakbOHSoK7f1pe51SDNXYArMATZLa+xKhy4lb5yfcvXWOxzuNY0JF1EkJwKhTYVFiv6LQpdiH7k5KmaQ9In37CM602/+qCREF9qDl8DjF1/E+AFylgUAn0YEIboq74AZugtQ4F8wKxQaqKQa49OCOuIPt97uo4zi1FtzZAxQTAo7Ff6WBYTFDvMMtYQZOxb1Qa27HMY5lgBOjWqFUxcg4jnlhmowyKFbj+ebz+AdRf9DrBvzu145MR5YjQDnWsX7gtbvf/mdfN34oLp6+7/mFX/gFfu3Xfm33PTPj137t1/jiF7/4+34eQXCg1Mo0Tpg5IrEkJUmo5LYYt/Wy3al6rWCOeCy2OSeg4u1OE4eEklXBG5AxC9bDATcwi7tNNyQJi8WisRrtQt/u1Pm4g3CwoD/NQPxu7/P33A8HzIpqAKOUEjklcsp0Kb6e94XM2+DBBMwLe0oBSMZhoNayA0+HgOefVbHYtjVfhaSJLi9RSUxToZaKipBTQhDGcWScJnDHzCmlBJBCbqC1eC4lpYy7UKsFs1Pq7vHxXzAJKSVEG5gQRUV2h2JmmCQFO1KrcXlxxeMHj3j88BFPLi65vrpms9kyjlP8m0amaWQcB8ZxYpoKZapYNWotO2BXa6VME7VWzH137pjZ7hi7CA3ptR0lAcK0Q5KCOjRopWj8nit4RiSjktAkSDu9RLS9N4+PUgkwBimnAF3miKT4XVVEAQyz0p5H2vNkRDqSZpJCUiFpHK+kOc6nnElJSekHe/n4pK4bxzrWsZ6N+qG1eL70pS/xb/1b/xZ/6k/9Kf7Mn/kz/Ef/0X/E9fU1//a//W//vp8j7owFq8Y0FcysgRGJC+18D+mGmCASd6Gmhu0YEUFUsFqYeXN3QTSR6BBKAA+pCBY0eJ1fm1gcRem6HlzQFHf7bh53qa19cri4iwjiH4Mg5ePBSCxs8tTX7fN2B38IdGawIcTi7BqLnIlSG7DyWAOjVYFgAqKCW2UqE+PUGCAzanu9FKgDN+NpOCUirYUSbTKoaIo2kFWF1NP3QqkFVOhSj7uxHiqleGOHwNwIGBUAcn7bugMaigutbdYWeG8tDw1mKBbgtAOT3hb8GcREz8WRpEiN4/T44RMuLjcgSn+yZNEvWS5POD25xWKxRJOjWlHNpNyRtANXUtZg0p4+lCKkFAwJQgCMuQXntt+OBhlFBE+AWLx3k2gtorEfXIHcIHmN99XOwWg1ye61vDX4xAW87TMMXJh5ugA2DlgwQaIoipkiEH8fUhCBasGYuSSSGp5BvSLpBy8y/SSuG8c61rGejfqhAZR/89/8N/nggw/49//9f593332XP/kn/yR/62/9rY8I4H7P2i3K0Ye3anGBl7iTFpkXbyc7ZIm+OwjWbv52bILUxnwYIh3qwc+oJJAC6rhCokfcUE04sUiICovlguhGxIJjFqBoBhCxudJ0Cb5beGcticjvwZPMaxw3wYm0Vs2sg5hbP6nryJpwM8Q9QJwZmpXkM0sR7RyJlaoBjHgxd5jGka0ImvLBdnPj4+H2z5oWtFKrY1ZxN0oxtlunF2ntG2ecKpoyi2WHaWUzDbvn6HKHijOW+X3HO3digXc3kLaImpFTgKhSK0k1iAnVHftjXqO10cCNtPaUt+cVEbpuBSSuLjZcbzaYRgun6zrOz884OTkhZyF3Qtf1LPpT+n6FSqbrMzlDSmn3bw8WWysoCdFJDNbDrMa5uTuSjSXRAj6BlQC4JXQ1phatHfcAke5x7jUEF8f3QOfkc9swADKSUTrw2sg7b20qQXRuU4GgJE3YDFutiVxwqjsBcywYmt3v/mDrE7luHOtYx3om6ocqkv2lX/olfumXfukP/fsBKGJBrdWjDVMLThdgQRSSIprpPNOnjEmIBiezuMu1FKBG4yLt5iRN4AFsVBOqhmnBpaC6hEnQnELbIYImYblYoG0hNzNEnUwiadp1dOyA6pe2mN5o7bTfh337ipk9aRT+oRBzbl+YGTlnVJVxHOn7nq7LlKns2jNmtmt9AEzTFNvU2jz4/vPQsRSGYWC52utaYnP84ONNSCWtdZGzotrYHBJuwvV6YCrxQiIwTgVXQSTRd11rlVSQvmlpygEzNOs35j2jTKVQxhE5P0U6oZQCmiA1sKSKJCWpRXuvKVXdoRbBBbRL5K7jhefPuX3+Aj/2mZH1dmQzDQzjwDhuMCtM08B6c8V0MbLdjoyDgSdS6jk7P+X0bMGi71kul/R9T8452imayV1Hzl20k0SQJKhWEEElIZII6sQwHVGvqBtWhDpCdaGmCSyh3uNN22OUPXtC6HCAXYtSRDGDapC6aB9h0UYTjKSCS7A/UzHUDcQbChbEpTWZQlhMDdH0zNJoBs0/HJvuP+9141jHOtazUc+Ei+d3K/do1zuJy0G4qCuez7eoOmHpKhgQX+C2YCKBFiRN1KJgjiYDSbiFW0NF0ZRAlOoVuoTnjjIZ2XuyC5MBnTHaiPkU7aQi3EqKJGfAyNKzINNph8hIqVPTpMSCZG6NMRGQWbfi+0U/+j/gQm1AStwR0VhYaK0Z1QBUKVoB7kbXJdwrZSo7ZuZQPFvM0JzoklK3jtUabS50L0iShGtiqo5vhxugZs8OxGIYrRZvrw9Cj7qinsgsWfWnrHrDbYu50i+XdIslDlytN9SpkCTTZ8AK0zBBDlBTjX27TfctuqShEXIVyjjF7sqKeKEXYZmUZAXqANrjtkR8Viu3NpVUChuyGIrTaeXuLefuvQUl9Yxyh3E0dC3UJwOjVa6ZwJy6HRmu13FMVhk57RBg0S2CmcmZlBN97ui1o6FlagMleT1hyehTRXJmWwo+wuVm5OGj9zi51ZOXHdWdaZpIGIv+hCQ9lIoyIOK492FU22lBBCzOmYUmOhVyMsZ6zWQTSmqMWGNmqlOqMrAhaU8WQ3zEKRiFWjxadB5uNcYAup4qzoTp9gfzh36sYx3rj2Q90wAlFlZwcYpVplpwD8FrCAINkYTT3CDsF23VjKaKeEUbIFDx9q/i6rHQJt27ZxBc4g7dREkkgmxxFimRJDQp+7t9MIE6gxBrVk7mls2eEZlBAOJUq/M73IELVbnB0MRPZdfSCL0DuNdgRxKtpSH7NpIqSWTXJog7/T1rc1NYEltYa7zWLLy90ZJq4sxDR1G0X+LNV3NKqUwykbPQ90ty11FrtJlSSiQJMLNcrlguK0imlAoofdfT5Y4iqalHyk7U6w1wmRmlFEQSUixs1wTQ1JQxgsFSdN8ySiESNUnMGpBgHhzxgkwV1Z5F7XjrG2/y1d/4La6mCRYdPhU6F+oQNmlvDRE1Auj0HdoldLkgLZfcOj3j/OSU3Pe4Kpoz2YWSjdOcyV3m/OUX6E/OuHr/AW+++T2WZx3dsqNfLkkp0SUYtNLlBTkpyNjaj3FeZs/QHFuzUBupVECkMkplkmBBdue3B/hzBPU+3D2SMbwxfdpaRdGqi3ZmQaQ2KJtQ/+EwKMc61rH+aNSzDVCIu0fx6OsPw0AtFVcN2rwtQLMg0RwwQUmI5uYuLSSd9QA1FnA8dJeaSFna3fseFMQiGV8pcaFf9l0sHnUWoVZKhYlKVXYWUaRt0QGYmTUTs7lDVHbAIL4fWR7z78xIQkR3YCEcTLFfdmyM7PUvtbV4NGn7bb/BrMyvtxOTyqyZCRdPzpmc8z4PxffC0LkVE0DHMJcdOKmlYhkgYa6MY3O61InlYkHXdXhVhDVepbUwlJSb00dDcBy7O8CVJm3C5djcWTRbq1C1+V+kA1JsY7Mki2kwWQlQBcuIaxOPhsJCSoihk8P28Zavf/m3+cpXvsHtV16lX/Y8fOcBMhWsFrbTwDhBryeMmw2bqyfcf+E+d5+/yzBecf1kQ4fSK3FuJCAJRYxRnVsuvPziff7s//1f4uTuHa6uLtluN1xtHjOVwnJ1xtnpGctFBls3/UvGpQBG6hbhQus6UhNCO5A1U0TIjY0zrRQHNyWJI2q41RDOEmJcV6OK4dJiVlzwEmJqcwMvFA9ARg0BstoPXoNyrGMd649OPdMAxalxF08DKNsNYxlZ5oyZRvdcg1WAuHtMiab1iMU+kVouBe0OOpgMEUPFyIkILZttLy23wrwC1lgVYdkvWHYdOg2IGdXDUjtRMGKNlFnvMYsQZa8bmBd7VSGhYNaCwQjHxgG7oToLIgF0p2tRhZSUnINRmYEQImEOaY4mZ9akzJkqsX/mvbr/6My6l0OQEnfY88/m7fAdwEIPBLWq5C7A4mY7oSl0DzlnFLBaKVM4aaYS4KfruwaMSmNJFBdBpEYXox0jbYsy0ISioblwwsXT1BOI2k44Gu+pIC4BTkx3i3BkpTgRGyI8ePtDvvW17yLLW7zy+T+BV+He82/g24FSJ6o6V9tKLR02jvzO1/4Jy1df5cd//me4vN7w7vcewDhRttcMZcti2XFxdcHlxZZHT56wvNxw1p/QL1YUqZQ6cufubTabK6ap0HdLVt2KjDDWwmQjdRopNgZbIpeYR4sv57DUC0JOOdxMzT6uOUQj4kZq7JH7hHuIdTtPmGRMElWgarAmMrFj7dxr2z9E7pBXavndrfHHOtaxjvXPW880QNEUN8JeKyCMZaDWAfdZmCqtpVLijlqCVYAAN7ihukRlsV/orLk70ha8RlQFwYjEfbg2C/EMenK4eHJm2XfIetgt2OaRZqvx5W7pl6bZgP3ivnNWtDaENvcsLR9kzmi5KRw1ZoAS2xPgJOccGS7tFaPVkygtfGvWvMzszAyQ9jqYuYXD7rFzS2axWKCqu7ySPdMSn88GZJdofUVXSzERihs9Qt/lcMUIDNspclAk0m6rxf4Zp0KptVmaBTejWAntBeEgmZ1P7k7xitMSUxur5AguRgCSTFAYhhPpweKLJiZtrhg1rBpjMUjOe++8z8MPH3Py4z/BpRuPH1/wL/z8/wEbBzabNd3Jkqka68s156sF3/7g66Q7iXufe45bLtz57KucL5asLx+z3V7SrzrefuddypPEb/z634dN4cU3Xufshee4Hq6YysDJakHfwWq5YrFYce/2fVaLJVOdKFYYy8A4xT5bb7eMw8A0TUzjQC0B6NSVUgulGipKlzNd7jDr0DS7dwxVyFnopOAkqqRgoFKkweXah5AXpda5NSmRAURhHI8alGMd61ifXj3TAKXrcuSatAWn2kS1EdUF2lo4qKMSyaOSHadiTKFBUQlB7KwKOWxZtPvvsCq3bAqsuVNmlYU0bYvSZWXZzxbkQCOqsCDsvnXWvuRmATXHqu0AQUpK1+VgS6zuAIrMrIcbtbkzZgbFzBDJOxZjBi/7ZNO5FeQtjM4ZSyzGzGyHCNqc1NGDmmGUNhdTRLKbGdM00XVdC0GDmdaZ3U8zMxMZMbmxVKFF6bLS9Qm8UspAp5nFqidpZiojZhOixqJbkJIy1oibR6TFt8//gGafnltjcfQMo2LW2BAiwt2poStprAjt2CKhHUFbc0fAxZjGkdF7lqsTprHQF+P6wwf85pe/zDgaL7/0ApdXT9gMW5Zdh6lwsbniuTu3ubJrLuuaB+sL3GHVnXFyvsDlBFbhGjqd7pK7hG43nC0yz3/2ZfqzE9759lt87Wtf587tE+7dP+P2+YJlb5yfZs5WK0gLtIPihiGoZKwxW+MwNtfRyGa94fpqzeV6zdV6zXYzRhjeZst6mELf5IYmpesSXZdIaYtLwiUQvyeL9mddINKRJGMWjquwUVeQwjCuP50/7GMd61jH4hkHKKptoTcL+3AZKXWD+bK5TDKoYeKtRVBAyg2rpMvAWLdNn5HAY1FW4q5SFVQMl2ZXFZqbBIRmExVh2WVOFj0R5hYtBRHlhES1ie1UsCRYklnAcqAZCQASICPmqMxMQC3GDm7sqPamK6l19zt7HcsOZcXsoCYinW3I0frZx+tLE9lqEmplxz7swY20fR0gZbYxa2NoZoFsvIcD11D7XqmVUhV1j7kvdWQctmCZvjtBJZM7wXyk1IGUM7lTuprJTThszcmkmm5s1zwqwOfWmVRMHJMpNBM2i0kr5pVEhiQgBl7BSwzIEdBsjNOWzTTQre7Qn9/mNC94kY73PnjEt7/1TXK/5P/38EOejNesr69IU8Vzx9T1LBc942bNdDnw+L0LLjdrnn/hRc5Ob7E8WVKTcuflF6hjYfzGN+DqMc+//hJ3PnufKVXeffcDvvzl3+Bn/9hPcP/+jwFbsIKVE6gJVY/AWTFcQnOSKixSZtUlRE72dvKcmXA2pTIOhboese3ExeaCy6srrq6u2W62DENhKiPXmw2lQJ3CNTTVLbjTdbeA1NxnQtd1dDkj2UEmhmn8lP6yj3WsYx3rGQcoEZveht61xXOctpQyUUXwLM2OadTqJCZyF2FuPs9JSYVKhHxJ7gIoaAoAYhGR3lZbVBK1LcTMqZ0RxtJyMBbN9hyzTPrcc//sFjZOPLy6ZE2hejhj1CNGfI4yr1YppdJ3LZrcwb1QrRBJnzMY8N0sHJgX7/jcXXdhZ6GhkV17Bma3T2oaHN9lm0QMfv3I/o02ku+AwLyPVTVC13S2SNtuiKB2cUptx5FHTy446YWy7VmsOlKfWPThdqoYT548Zhwrrif0i56UlM32GtUTanWGcUREWPSROkud4jWa3mQubyxaZNdIO4ZhR5Ys4Tax2XHi7dhXUp2CTcoKagzThmEYWd5aINME6w13CnRpQVmd8zM/93Nc+IQvM7/91a+wefiYvJmQdYHpki51jB+8w8DbrLrM+E/f4Wqx5Ikql9NI7YKh6K+uuF9GfuqlF3jpjVdiLMFQeeONN3j99Vc4PVmATyBGqWtKPUG10lkKAGYRo6+WMJeDWUnxHosXTBMpKcvlgtwt0XPjrpwxlYlSopVZpmiljTpQizFsJsbNlnF7zXbY8vjJxGa7Ybu9Zr25ZhiuKLWwmbZUm5jK9En9KR/rWMc61kfqmQYo1BRD0TwixaeqrMcOo0e1o1liSGmB1oz4SGIK90vtkdqRs7NMoZUQU0wiZbXQYS64VFJKDAWgb2CgIsl24CXaCtecniVyVqwkkmQ6S9wuMVTugius2Y+19fMLbSpuC8capxEno5pivlANnUtKSqdEPgns5seYGXVOIZ2ZBd+7msqsk1Gh1gmRmKVis9VZtaW+Gla9MTNhu92LciPwK953wt0Yx0pKIbjEHavR9lJJUKXNkU68/eAxHzy5ou8S/aKj7zOapA12VFbLBctuwbIPImMs0RZaD4KmnuXihMQlbmU3/Tms0do6PbZjcJImaolGjy5OkLyIgXZN+6NioCV0QVXJKcOiDZpEsZqw8QyrA93JOdMA02VBNKNuvPHZF/mJL3yO//G//59IU+azr76B/OTrLJKyuRzopgRjZdhssOQ8uXrC2WpFUeGVN15HXLHtyD/96tdI5nzm7l2ee/0V8mJJvbpiuHqH117sOD+T8CznjKliMuL5MZpWWImE42DyQjwc/bWMao5zQmIoopsGKGuiaE8BbpNmUiZi8DvBbMHGz+JsvDXhVnB/LgDMAMO0ZRw3jOPEZjuxXhe228IwXvPk6jHwtz+tv+5jHetYf8TrmQYoc3qmtBh0c9hujVI1bKMOQm6WUwHXmBor8TsiXdD8M0sgkZVRrQQ4aWFkOSeG0akeUfGzv9XFEG9psZJZ9sv4nGi1FKt8uLnEBa4oTIlmY448lVg4wz7s1bBSGcxJqSIOOSU052Bn+tDMmEOtxnacAvCY78Wkc0qtxJBDb4FwXZf3wtGgPOLnLTXXxRGtNzNTnkpxnVNLQXZD/UJ0eiiubaralpEyVWeqE5uxIJvtzrU0C5L7vqfLiSRhKc6adoLOLvesN8OO5VFpjpwD9uhmhktzZs05IDRL+JzVsXvvABoLuLYxADhWBStC6lYsz8+4ur7k6uKaqRhVjfvP3eb5V+9itmH7eKS72/PiG6+yXHZQhPe+8y73b73InTu3ebJ9woMPP6QOxkac2z/+Cm9/53tM2ysE47mTM05XC3SZ45y9vmaYtpyuumCyxHaDDpvMGcgouYmNouVoaYr3LVB9ZBdL4m0QpsXnaLQdbX7/OzzbsmxMcZ8QKUR6fTA92Sp97vCVUi0mVZcilArVtjy+ePRJ/Skf61jHOtZH6pkGKObWRKrta3PGYi2BNCbzqklIaN0QD3usS4RqaYLIR5nHxjeXLPMQtgAQKe0DyQL0xBXeIog2pvPKkmV3ikrfFmmnSuWxTqEH6Ham5JBBMAtxQytSabknQBKl69s8HXf6nOm7FPkfIkxTZZhKs5VazI5zbwtQgIucctOxxBwaEXbBZvOcmll/EsLWfX3c5OJZrzJ/fxwnzOoNq+8MYObPD5/D3bBamQU17s7gA8MAEMcxNS1NUiFrzzhMVDNSDg1Ebdbr/WtxA1TNYKqUFgM/zwdqWSfWRMY4WHViNk2EjtU2JJG0CA3HdsuTJ09YD1tGdTZXVyQ3Xn75OT4YPkQ7ozvJdKtM5z0PN4949cdep797QroeeH75Al//B1+lv38PzYmryysuv/c2qwn6PkBW6jIqysOHjxkr9P2ibfde7OyecFvi1uEpRggE7WaolNaqM0oTFatovCd3FJsVzHgtuDS7+qEW2hWtITB3KpFgl+NYlW2AG3EU6DWTu4TniOq3kjjWsY51rE+rnmmAMie27sLIqrEtEUrFPBjQtSW41qZHaeBDm+VYFBOLi/mc6WEttVVm0ec8Udaa9mTPLsxshFhilU/J2jH6RMgejCnDZNGWUTOSC1nnu/3mRomVv2k7FvGvj9k+0zDiHuJFqSAp76y/1hblOdUVDx2IWbRfuqyxeJV5rk1qIts5dj9AXa1z5sp+0T+sWcfjPotwQ6xbiu3EuTPoOWRqboKInW0ogE5LATYMb4+fB/sBiJeIcdc2JBDw5nt+ejtnkezusQ3ERHiZHrx+m4HkYDbF8STC20opjMOALBJeKz4WpnFga4WhFur33+e7v/UtXnnlDS4ebRkcHjy44KRL+OSU4lysN1yMA56N292SOkz0Xcfjh49ZaEa7JSuduHNyzq3nVtx/+QUU4Vvf/C5DgWW/2OXYqHoDVwn3jlqV3SDMUATPvUGgUmshp6YVqpFZolKbo8qpHvH0MV27vXWn5cEkxGKat7TZSUxOouBWmisq9llMNjZEnHoUyR7rWMf6FOuZBihzzQtSqYXNsGU7jRgnzd3SBrG5BWaRWV8xW45bKuacFNsCvFSD+seN1PJJwkkzB6uFi2UWuKoTs1dyZk1cuB3Hi5HMSUmoHv4ZZe4SBRBKqvQtbKvrOvquZ7VY0OeOMcXQv+20ZhonXGtoUZrI1ec8EA2QM7t2HGnTm6P2d+SzYyi+DrZhz6DMQONg7974fE6XVQ09yszIzEzMbt8etInm9lmkxO5Ft3HsDCNEnvOAxDnbREURld0N/zwYb34/88eYpBxMF81xshuk2DixWTCMJObGifscRAbTVBiGkS4vKNOEmpNzhy47Ok+wMb78d/4h93/6x3niwrCeuP7Oh/j1mpN+QZ9P+J2vfpvFyQLJQn3hOdKdc8ZF4tonbr/wHO989z3OVgtWJyvOXrzH3VdfYBi2fO23fofnnjvjbBlDHrs+LN6OgGSQ3FqCFXMltffkNRg1bUMpRbpodzIiMocYBjgLd1nZHc82Z5s297u1gZxI/A1AqtqEz8T5glgTZWu0Tmv3B/1TPdaxjnWs33c90wDl6VkztVamOjHWKQK6Wgsk7vjaRZZI0oz2R6V6XHjzzj6sqOQAF+3OUUVIKYBL8cj70LZAmhOiTyp9D8s+mBtvYtOu5ZbUalAbNd4AlWpoL1aLJSfLJV1jTXIOMWvfZbqUmcaR3Cvbcctm2MaAP6GFmMHMokC0ocJ+rBQCcOTcA5HMumNf5sF5tMh7cyih93i6NRN5KDMQ3LuG5gTblNJBbP6h9XjPdkQmyszEsD8eMrdi5hek0VgeMfftdaTNI3JrrBXcAEAxPDAhGVLKu3yUvQX5JvjaTYturbsyTcE0WWV9ecXVo8dcXV5yOWzQlFiVnvXjgbPnXuBPvPIqV1fXPHjzHd5/+wn3f/w1yD2jGcvVijff/Dbvrt8md5kP3/w+F08uuC0L9OEVgyz59vU19Y0eTjJPnjzh+997h7v3fnqXCBvzdvZATrNEto4YJJDU4w617CdUL6Qn4v5j1EA4yeMYu4QmK0mASm+zp6SxWl4T6i2szg1PjloDmNXxllBMbaGAVYBEkuUf/o/3WMc61rH+GfVMA5SPK5PCWLZUnzCEUi3gghoh6tSYX5IDQJSWWUaLxFdP0QZQYl6JOlr37RNpgMTkQJPhoDqyXDjLVYpo9QitoKbIQ5k2I9Ut7sqb7qTvOlaLBavlitPVSbAQbQGvpVCbxXaRMoMlUh8unnGqMVdI9mmueGNs2nwfc28TkPeZKWZzyyqcMLXOepQWid7m8nycBmXPvsTnMziBvZsmBh7uByAezujZP6cyZ6ZEOdRoO1SrMWVaNdozKVF3Mf6NMVEhpBUH7IwqSophfIkWShcx+tUcobZwubm9YzsAEJqVGmm2CGfn55zducUF7zAMA0OZUK8MmzX9i/e5df+cD66ecHHxkO3VBXfv3uLlz77M//6Pf5OzW7f52Z/8PDZdsr265LOvvcat5Rm//eV/zIfffotzFgxXG7h3wtlnXqJ/4S7v/KPf4cEHDzGPmTo5J1ys5dU0NkgLmgMoCrm1KQXRNleHmEllYacKDYq0QD73HUBxxgNAGyANlKpdtAbbrB1XgW4eFphwKqU61cBEkK4B1e44i+dYxzrWp1fPNEA5bD4gsUBPZWIYN5Q64TnTjDmtX9+GozU9hoigTaMgYvuF04lhdarUxiDEXXZFc7db5FIbZgdC0mBQFotIWXUEc2HrlS4JpbWFXGIu7Gp5wvnpGcu+p0uRzlpKWKCtVtbrNVPKyBk7sWyXMl3fU31Em7tl1uE44S6aWyD7fBTfMRddlxsTEjS9Wwt+r4eAYc98iMTcoRtgZcf+7Ns6tVaGYaTvO0TSPjxN5CNgZt/e2beLsJndip91KQe4ay0kNKzJwUvprgU0b0c7/LTuUgONRrVIlhW8iZlpC3GNdl+odbFaMauICv1qifZL6lSppZDaxOd1uebOvRPee/AWy/NTbp0m7DRzujzlw+sPuKqXTOvKxfCYk9tLyBPl1op86y5rm3gyXDPKxNntM+6//FJYjJc97737PturNcN2RPW0vRFDJSY9B+AbG9vkuGlrVyophy7E3EmSW7pvmy8koU2J8F0BzVjxpsea1UDEEMsQ+LQsmzkzJyPeRRihh5VemoC52harhepHDcqxjnWsT6+eaYBiEvSHyZw0KlQX1qMzVo0BaFREantMJmmmuqFVSJrQJp6latxhi6I4YhNZjeo1FsgcSasx06TpQELUgqTI/VApnKw60IRZRn1Eq5EUqht9znRdAxtZ8DqRPJPFSWJUjbve6gXNkemxnQZyzqSsdNrR98Y4zVoCx23axfqrAsnRDvKsP7CCAKkNPWS2Gc86jGp4DX/RzKAAO9ZDY4nCrOI1mIekwVZU9yZwhVKdVKHrpAG6uY0Wr5WS7NpLBxaSaFUdAJpZd9LkvyRVqlkATqC2+/4Z/NQaTqLCSMpLMMhmZAoqhqSOlNri7iMiRupaAo0nxJyOEa0DRiGfnTGmjG+NZe0471dsx2s2OnJZNqT3PqQ8eIhVGHMIntmM3D6/DUPh4ffexpKwuHOPfnHGuw8e8N7DB4zJuXXec9p1ZIfF8pTpeqQfCn/m53+Gu3dOQJck2bBUyCK0KQoIJ60hVWYVN8FE5WBFZGpBdX24chCgUL00AXfX9teKSgTAQWMExTEfglHSNvG5tXsmH5voWjELN5Q7WO1CdM4xqO1YxzrWp1fPNEDZ3wa29gYxiXYcC1Ntiyfs9CI+3zoa0QqZb7vN8Uo4f2Rvmw0Ny94lE3eXTVDa9BPmhoRBExVh2Xdo0l3rSMxJSLMKdyz6Lu7scaoXfNZ3SKPpfa/hMLeYsVKmsBSLQNLd+5H2vmstwSRowqy2r3Ok48o8NDCcN2ZzC8baYMSZIfEbwWeHkfkzpNAU4EE1rNs7UJFSC6tjp88JQBK/GeabQ3fP73I4d/v0Ztx+aGb2oGYWzM6lqiFyloxVw8oEXkkqOF2z3sZAyXAkZZzWynKPSdOA5o7l8hQhw+ScdyuKrNlOhVXXUS4uePSNEcvKcrlkWm957M6ozlAnllV459FD8tmK8xdepDze8uD995k2A123pBThYrNm8ZzT3zqH6rz60ovcv31OPUlMw3W0qOZxBKK7WU+xf2bbMMEIehjV20kcfweuIYDdWXXihA/WLLVWp0Qrp7UHtcX9C4lIWY5ntfnUae2wGayId8Sspmf78nGsYx3rR7ue6SvMjE/aJTnkDNWZxolpKuB7gLHPfmg+kXYBnwcGxlDAmNzqzZrJHAQnEnS7gdWp3ekfWGM9YIsmZbXo6ZIwjq310piI1Gy9KWeoMNZKygmSUoEyDUwWc3aGaQwmw9nH0WsMzTu9dY42UWrKiWQ52A3fB5RFYq00cCG7fdVgStNlxHe9OWNqa9UctnqgtYCaMDheMwDSVMqBQLa1D4jxA5LTDpTM/+Z5OvvMkqdaRzMAu3F8ZecwOrQUH9ZO8CtNhFxnkNX2vwlWG9Ml3cECP+Fs45h6olQhdUsW/QorsH5yxXazYbvdMJXK6e1T1GB6csXd+7c5BSarFKk8LhvquOV8sWJlCtNIeXeNp1MWQ+GFPrO5nmCoVBL3f/J1nv+Jz2Be0V44Wd5C1bnSLSlB0ozqAte+udBiUjXNczOf63smKv4K9t+bmbLZxRPgFD3Y7x5HF4S0I9UcrJ37SrPZN0DZwuPUHeiaCPyYg3KsYx3r06tnHKDEf7EQ7afpTmPZhXXNj4J5wTTmBA6B3YA9VXZiyzmV1C2mJIeoNpN0YnaxxB1lxa0iqpj3qAgniwWdSFDgGkCo1phOPE4Ty+WClBK1TEzVGKbCNBY2w0Bpd/l1qjvWpkwlZrWkHK6jBlxmDcgseJ3faUqZRb9i0fchEq0lgFFKjdoPl5G1xSxsyXvmZK4ZCMygxomwu9rAGD5rGcKm6hrtokiYNXLOu+c5FN4+DTDgQPDKfvH0Bop2WpMD99PHngtNo7HbJ61dZTYR2t05KyaOb6h9Zw0NMeW566BbgMGEc+2FtTpT32Ou1HVhGrecLk7wqw0yjUzJuZyu2NaRPBTOz+6w0I6hjqyWmcXqlOvJeHvzmKtxJJ+c89qf/DznLz3H+1/7Ou89eJfFyRmv3L1HWp0xDte4Cyn1VGIsQaT86tzc4kBxE+Jg8k5DgtfWzvLm0mnJu17w6k2LRWh6akustZjcHYF9Acx3bp/mgor5VL5jyeKPq3zMkTjWsY51rE+mnm2A4nFTOMsaYjF0SrEdQPEm8JsHyYUDxFukOK337k00Od95azgfxHcpszkpXRLmZA13b9Hy86CahIqw6jo6ideg6TNqrUhSailYNbq+w4GpFK6urvBqTKUgbdAe1cldF3esSekWPcu+Z+PGZrNpqt9mKS51Z/F1d7quZ7lYsugWjNPANE07YDO3Odxl1+oxc8oULafD6cA+szDMabMwlYmphKMma25Jtk2EO7elzJimvf31kDEBPsqSzMyJ+8xt7QDXLHjd61Nkx8QcMipzi0c00mi7rtu9D/NCooZARzMwA5RZxxHsUTFH+w7rF8CKV3/mp3jjX/hjpHffZTNMXJXKUCZkHFgnQW1ktbrF1VB4cJ2p4mwuJ3yrnOZEoSIP3uN0eYu+LNkMxpPtyOlL59x64yVcYLu+QtRZni947rn7DKnn4YNHzUqdmo3eSSnOUbf9nKRw9LTwPYjWVgWoYUne7c147C5Ftv2ue0xMipbQATM1f2gE4oxbRVq7SCoupTEqRw3KsY51rE+vnm2AcvB5WHTDpRCpoFOwDbnZgGU/N0bV44Lb2gMuhticXwLqHZIV2t0lVlEKQmmSUeI5ifZQlox4j9vAouvostLG1u1Yga7rCGeJ0YuQJYEJUqVZZCGljlIsJiabtFbTbPcM8HB9vUZTIncxVNBsoutycwGF7XizHagNgFSHYTs2kencagqAgrd95qHNgJsAYseiVI+gugYkkip91+07CWZQYwHTAxvxDBIO2ZSnwcXhxxvHdgYmHM6k2TNeh0FtAV7YaTZUFUnBpIRuprKPTp1D4cIRFK4qw9VJyx7LCaTj1o+9zqs//3nqc7fYDIWLybnYDixy4sN332UqG+rpiqvrkZETLjfXfO7F+7xx73mW5my3DyjTh4ybIVpzd1asTp/n9Z/6DLdevIuUSp+UF156jtN79xhq4Xq7Bk8BsCRRxUIzovPco7AYE2dGU6YEQHGnZZlUxJ0gjeIRJgEwpAX8xa6SdrQUku46Q3FuC1RIPutXGqtiwUi5DkTL7MigHOtYx/r06pkGKDNFortFNRZ1M2M7jBG8teiDHpdZoLEfxCZqGEObWZJDOOgBOgwQnRdmQ5OhWqDG4MFYEOdWUWK+s81J6TR0GsUsfiIRl193bQeLzC1RVv2Ck+WKUgpVhfV2y9ZGphKtHdwZx5G0S/GM4YUppUgd7brd982McRzZbrcHbIhFQBuht6lmsVYjO0blYId+hO0Qb/OBUkK7LuJdUrNMIw0QGrU2FqXJG6LV81HA8zSDstOjaKTsHrZ4EHbhbHt25XBOzU1gM7uAVFtCalJgQUz0nUVIHiwATdTrEe5XfKRXb6+njOs11+OWKUHpMskrp+68+vyLdKXwD3/7q7z9nW9zPW4xVcjOL3zuJ3jhuefI6w1DUYbuDpRKeXSFjBs+/2f+FD/7p/8Fzu/fYnjwmM31NctVz8mi5/33HvHgw3c4P3WW/RJTx3xqVutM0ubEITQpYYsPoayZ7IdgSrAcsQeaRqQFvLk1y3fbF9J+Zm0it+/+hhwTwS01HUsT4UJrNfUBj/yYg3KsYx3r06tnGqDEnWO0IuJOOwSi1Y1xmiglJvtGLknjqq0lhewYg1kEGIuXNGGge2g9kgomkYui6liJFlDYkdu8HzQ0HQ5Zlax72tx3bAG4G6VMbfhbsDVJlOViiaw0IixEGEuhTiVeRhJmxjCMuNWdKHUuFWGcyg1AsE+JLQ28xHu0UNQwCy53S5LMQOFpJkPoc6JLCU2JLrc7cquYtCWuJfKWauGOaiCglEKtlZzzQQz+TZbmI62fjxPJygyU4jgfMig3LNHsAcycMBzvR4EeoeItiGwvJA0b+VRHxjKyKCNaCiLK1XbAaiF3HUtNLHtnonK27Di/dcbaRh5uLtlOI5VCXmb60x5dKQvteO7uZ3g0Tmyv16zOKnrxkDsvPsfdN14hnZ5QH16FzV0swK4KpThIQjWFAyspqrYTQM8zm/YunrlN1faWBhNWW2ZJTG3e7ZkbgmJpOpUAao2189kJ1PThtZ3fbX8nlRDRQmh57JiDcqxjHevTq2ccoGhz3sj+YiuFjTlX08hYosde8TZnTSBnqijqQraE6AJqxXxqA/Ri9kn2HONJJPI3NGXImWkcSOT2uGBQzI2JLcknFproFwvMg653d0x8t4jUlpqqKpRa2dQR31zRdYtgPKwiGF2CPsUE42myBmicLse0ZHdHZu3HDUErNN0w+/VfGovUaH1teRZWGyZooM0/ChJy19Hl1IwiGuJKc6rQUm9jAF/uFPMabauDGUDUGEmgSSm13AAl8zEDwGJoYGq2ZTySZesBwwL7Fs9HmB5JbajB1GYoZUAxCupzq6xnHhCpUjCpVFcmM8Qri1Lxqwt8lai2JfUdp64sujOqVy67zFUtfPfiEY+YkEVmISNm0FvGxsTD9cT9s547Jx3desuFOYMKY7/Ac4I+gRuaAuCVCtN2oPcJSRVXw9MEKYOXdq6d4b7AJbQ2lRGRKVpXdYHIomXhWHNdZdwzuLYQvhZKyLQ79kJGNdo2IkMYfCQYk2oSQxuTNY1RaX8DcW557TBvoPFYxzrWsT6lerYBitPYjGZHFRCMyWFdJsYSY+hFjeSQRGKRDW67gZseo8Sd5q5t44jXXfPDPaG6RGXEuEaozcmy3w7zSpJKbhOJUY15JsyvJajmBkAkBKQ4Y50YriZy6sJS6qGX0HY3TMtZoW07wm46cdyBh4vGOFgsZpDhe7bipgvkoOV1YFX19p4O2zAxyTY0CuM07qL0S9PTRPuKJuiVA6DTfn+e1yNpJ5r9yHGM5tqunTSzYi6yE99y4AJ6monR1lKrgFPbrBltRqMKO2eWNrEGjU0ojNPEOE6IwyItMINy/Zjt5gpX6JdLUuoYtwVy5jvf+z5//zf/Me9fPaZPwt07t1GB7fXI9Xbg+zaxlQX9+YKL7SXfffSQy+2W1aLj505OoEtYcUotbIctdar0WZE6ssgNOHlpAYMSc4qkIYPGKMXwv7bnZI7An1mxefpz2JHr7LaSdoSboFsa6zg1sewsQq6VNkU6BTh3O3BPtclWLW0WOYpkj3WsY3169UwDlLkO2xNKLFRTrUy1UKuR0n4w3ey+qaIkMUQLovPPQ2QYTExQ2+YKdCRdkKiIbABuBIfFghCWh6TCYtEHwJjFhc2emVIK2j4pncZU3alUylSoWuj7ZXNXxGPnxX2O1Z9j5WeLcThlJkrZsygygyzf45SPE6XeXOhprMx+nwYrQbiArLZZL20QYVuonL2Y1Wd3TbNWB0NjzDZjSU85hD6uzHchbR8r1p2Zo6cEsrPeZv+7bbGeASQeOgyPrQ5LesW8UOvINI5YVdw7Ulri08Bmfc3V9hpZnFHGK4bNGquFd997hzffepOhF+6cnnD79h1yEj6sD7gYLrjYFi5KQlcdT64e8fX33+Lx5RWffeVVlvfvk1Zn+LZQqzCOhSIDm86RMrFUDSDdwGK0/BxnagzYnIWSgK5pUBwoB/BUgxnBcSsEhRUsl9fZrtx2t+2nUc8tyQAjAd6rNuZOwF0xb61MrQGau/p7/Vke61jHOtY/Vz3TAEUb2xGLeNxxak6YCpMZUy0YwZ5Ym0wcjoRY5CuKqJNEyM15402XEN2OHFknZJIkVHrEFEnsLvSzXVdkXqSVZd/trZsNYNQaM3lSSi0VNiE5QI0rdCmx6BJTcUptYObAVjsDFBFhsYh2UCllr7doK9TseNH28VBQOg8WnAHdnOrqsygVmW+1289DtzKVSvK0m3szW6/TrAeZWzUzQNDZJeQgEWZXTUjNSbXXyexrVow47BZN85shb0+3dg6dQjFUkMaOzds/J7jYfMIcCCwCZtG0RlYSw/WEbCZSGyT56PIJ10+eYK4sRdHqDOOWcRyw1LHsFyxzz7JT/PYZ7mumWnny4Yb1ZsPlxWMu6kR/0vP8iy9w++WXkW4BQxz/vusJ9sJJEi4cxXchgNUcqQYuaGtl4uHgiZ3VnGnMWpyIJJ6FsvHcJSZ7t0yU3X5pWT847VyKQYOqGlk3Hpodc2eezO0t6h6xpvU6tniOdaxjfXr1TAMU84r6/g5a4pu4OEOZWE8T1ZzOodQQP0p3IKZs4ll3wTw3Z05c2E07TCM6PcSzRkq1aSDY6V4gwEoSbRf4GMoX2zJP+I3pxBECF04b8UpOEY2/7HtEIhk2WJxY6Oc8DxFhHEeGYaDrup1td57Kq6qo27wMsxu8J/sMkT0oubkP42sPS/W+qbUDc6pCTnubcNd1O9BgZhEVn1LIhdvrxDbP+63dmbewtkMWRRrzZO4t0n1/bA4TaD+u5n1fa21BeMGc7YL5fRYpG05tz9sSblsOSJnC4SQItRibqw22HbBlR7/oMCofPnrI5cU1ear0JkybNbdOT7mikjWRJuO0S9y+d5t+AZ4XfPhw5OrxJZKcW6dLVrnnzumKRe5BOvAtVgqqiawdqkLfJ4btdcTze0v1TREsJ94jNNDLhDO29xnTo+OIzTklrc3VWp4z0DOvzSBv7djtWbIbOUEIUDEPhmkO9KOd33He52DJ6jN9+TjWsY71I17P9BVGDiYURwomxOVZGabC9WbDME4scianNs5WaRbM5nDI0a8vJX6ck8YcGe1xMrQ+vEqh62rYhW2eAMwukKxaaZqRmLuTUlvuG21ePSzL2mb9rBYdyz4sy7U601SYhglJHQDb7ZZpmiLBNiVqrTtWZbPZUEphak4lmMPUYpt2hpgbGpSZgZCnd2O4NIA5gfSwpWKmlKZPALCmf1GJQX6iegN0zC2qmJo8vyaUali92aLZ/Q4BKrVtxz7Txg42cT8Z+el5QfP3q3nMj4EdwHIi5wYy4hkwNI2x2I5dm/ArrK82JL1CvKKDsbm4pJRCnxM+bHjy4DGnacFCEy/evYtfXtCZcLZccf/uglffuAu5sh4rWRJ1FM7OOugTVgp3Tpaw2TKsr9FpS1I4PT2hSLQObdpS6sSq7+hyh3jGUbRqZOVkbaAjEn0bTxZC8d2Z3xpvXttxaLk0zYa80974/Li0AyjzFOo4r8NZZBZC7NCr1MZFCe4JR0m6+MP+6R7rWMc61j+znm2AwuFC1xZGV0xDSbIZp0Zdd22YHm2+yEyhG2LBcCihDZF5TL03wadIExdC1+Ubw/x2r20eE4Gddjfc0aW4+FeL+/pIas0HugmIu1mYk03dnVoK4zi2JFzfAaBpihlAM3sC0QYqLcp+DjSzJoqM+UJ7piHeylM23lkQTHAmT7Mr8XyGTbYDSmaG1UqXUjAIGvvPrLEkBOsC8zTjAC/aOisz2zXvu7A+SwMnew5Hd/vpYwAVfORns4Zo932J97TjVby1QMSgDX3EevAMPnJ5cYnmk9CmTFCnwub6iqvHj2EcSaWACcv+lFuLE7bVOEl9OFwWHWcvrHAd+OA7D/jw4QN6PePenXuc3z2h73pee+MlTu6c4AkkFdbbS95//wMGK/Qpo+OW0Tecp2BU8pxB4lBtxOnY6awkgBYz0G7DD5GCMAWDYkQLSDrEUwMtW/TAqLUTcPt8PFprrp3vyePc1/Y3URkRF9wiWp+6/dhjc6xjHetYn0Q90wDlwKTaFukQEorG0jSV0rQJRikEe5KIbI7Z6GIGJCRF/oQzNd2JYS5zFixCtDpKjYnAubEZEO0bb5ZdUW0BajkEo3XvgGgSAmqtDNsJSrNJSwS4TePEaM44lfb+4rlLCX9Kzh3TnHfSnrXUBtRmVqIt+DdqBkQWj5h1Jzf2pe+f9HDhj9bZvvWTGvCyWqnEvhQRqtfdvJxDzcjMriQPnwkz8GDf3omXuymKfRrIPM0EzZ8fCn1VtAGbWNh3YW84PuuIxcPKa4YVCRCAst1sOS1TE4TG6AOvIzJuWHhl0WfG9cCTy4Gr9YbtOPDc6Tknpyt8IWxlQrQw6oR3zZKbKpvtJZutMPqILBLeK35dmKaRy8srtmWi1x6GDfm8NFGxIU1wHW26CfdoUQb4zMyeJXeJ9sysLxFr9vN5Z85tIgJIKzvNUnxswLbW1gprLbI2hVuQFhlUcZ/i+CktmO8IUI51rGN9evVMAxTx5mzweUGMGzslaPHtMDGUCfMuBqe5QoEkceM8CxJVIUmFRmOLJBIWokXJjSUZ4zHJKNURizAtbaFuWQQ8YUVYpswiBVuDpjkTrukznVIqmmKKbFJwMYZS2dSJUqVN+5l5jRkeKJNLRNi37cYiYGt+4yaHqbqzjWcfFW9NBLxzGB9oROLhuhOrznoVEchJ9sP63MiacE1MZUQt0eccWpicUJcd6JhFuDknsjbnk0gbOEcDfRp3/w1QmEQWyizwnQHOXIegZXceiJAktl+9BbiLodIBi5aBU0HX0QYxbfNunMkTkyXGbeF0dQv3BFJYdM6JX3NPNlhXSWewFeW9x5c83G5ZS6FfZm71S/I4cfFgYG1bhkk5u3VKnpxOBa/G9TBSG6uTxopsjTo51QSblKKhgVmJk+lI0kF2JkbUOzrrgy9JAYTVFaEjBgQW8C1Jgv0QuiaSbrN3mNq/2uLq26nh0Z7DibwfpwGUCj6E68cFSJhFovHOpm0ak6Pt49mtYx3rWMf6JOoTz6r+D/6D/+CgjRH/Pv/5z+9+vt1u+Xf+nX+H+/fvc3Z2xi/+4i/y3nvv/aFea74Tj7vnEEi6V9RAqjCUwraUSMmcWzsmeI2+u7WcEaUiUsBLW1SVpDF/J0lBZUJkJOWJ3CdQqM0VM7c8aC0EN2GRMn2es0kEJCbK1hp3x6WJFGv7V9r3xmqU5prYTVtpgwuNRr+r4iItkKuxNji1TFgt6IE4Njo9zfrLvhW2y4y5sb7MDZb20eePzenSoJIQa1TqYh5Q9cpYpp2gNiUlpRY3LzOzIfRdx6rv6XNHTmk3Mycl3Qlk95qUGSTdZEwOU2RvZKCotmnUgkoOwbLMDEGP0Medf6pIsmh7SIclZ/LY75v1hk5zW8CNZQenXeX+Kdy7I9y54zz/4or+LDMmRxYJVadcrikfrnn/mx/y7a+9zcN3LskTnPcLes0ownLRcX7rlIyQpopPFas1tlkMkYncO312+oWinTFK4fuPLvjqt97hnQ83PNk47z+5ZnSHrO3cWCDagysx9K9HWbSPXYiyLTQnsbsUcwEijDDOQdm1Pn1GLzSnVrPYmyVqTdFK2oE7jdyeT6h+kNeNYx3rWM9GfSoMys/+7M/yt//2396/yIFu4t/9d/9d/of/4X/gv/6v/2tu377NL/3SL/Gv/+v/On/37/7dP/DrGI66IzoP1ptDpZpduBpjCSdPou5aQLbTJCSKVRBruSQtvt7ni+QEWhBi0JpKYtF1DBLzbKzNeDErqCtdytBaQX3Xh9zhYHtrG3jiLpQGLMydapWpTDu9ytOyi71WxKFWxGISc0rK2WJFSpmr62umqZKa7bj4PuNi/zzsWiyHzz0zJR83vE903lfepianAHfVSBpC4zJNoYZQaQxUtFtyVlLT0HQphguW1r6wYWoW1v3rfVxL5+nclEOL8mEbae5piMaQwFmPE+2a1AYdNh2SRoiZ6UDVymQD19dPqOM25jKZU6eRMm3oFpWTk8Rms2YcK9OyUMTJkinbke14Ra+V6ytnXa7pFh3LfJuT7oTttiB9JS+gy462pN3ArE7XQ62FWgspT3gqeFe49jXfee+S/+V//QZf++23+Myrb/Dyqy+AbPnin/4ZfvanP0tOhpogaYlZjhlTAnjFbGxsWLAf4q2dxthsUiGGrbWB9rrZCZVBcOmxaqgFCFEBTxHoVnzC23BLl8Oz+5+/flDXjWMd61jPRn0qACXnzEsvvfSR7z958oT/7D/7z/gbf+Nv8C//y/8yAP/5f/6f8zM/8zP8+q//On/2z/7ZP/BrmfuOBrqZkQGlVLZjbcS1xd1qW2CrxcA/19ZymN0vLs26HEJEp2JAkojF7/IIvmkW1rDTikoDQdGU0ZxYLhY7tmHu2IRDJRbYKWInUK87VmUO4jpMSr3BFohDcbIKi9WCk/MzzroVfe74EOXJxRW1JeKqamx9rbtFPGm6YUXeazl28GfnqhFmYCSNGYnoeFzocmasI7VGDktSDTu2Of2iQ5PeYDtmx4+Z71owoQsqaFuEfi8x7Md9/vR7CNGIIpoQTY21mttl3sBKZTfgzpyiE1Urw7TFbKROG2QYcJxpu6WMI6szODlNlGQ8uLjivfUHDN6z1CXJYyr1NEwM5kwS7/Hy8cjj969I58obP/Ect++csFp1iBfqCMICTQu6xYpqhfFqQ7WByeHxuvL1732f/8/f/jL/29//Lo8fjyzy1+m6xGqpfPd7b/GX/9L/lc+9/iK1bBBZornHrYIXqtU22FKpJQCmkmM2lbc2KNGhcQ8htflESsG4xEglZ6qF7Il5AjJUTCpmJdqMJs2C/8nVD/K6caxjHetHvz4VgPJP/+k/5ZVXXmG5XPLFL36RX/mVX+GNN97gy1/+MtM08ef//J/fPfbzn/88b7zxBn/v7/293/VCMwwDwzDsvr64uABopsq5LRCZIInQpcZF1tiOhWJONqGiZE07IafnJoxVaYJYbSxKiqnFknAvEQJnPaQFnW5Rb9FfAm3S237gmjlCYtkvSBLJm2Zh20xdJidhGEc200jWIOLjplbJKVwvtfpHQMrp6ZJlSvTa7L1dIq+WnEhPkkSfwuXhrUWEHHpiZpeLoLs8lL3ld89W0D7O+hXidzQGFE5TRMOnVFmuOiYMqyWSc1trqe97ck47BsNqDUEqtMF1hFC1sVze9EO/W32c5uSQFTp8fzGvp0XkM7uwPF6vuaSc1rpo2SClTuSs/PRP/xQvvfgCYKSUSWmBeMd4vUZkQzrpWZwtWJd3eHJ5xcISenaXvOwZqFyM1zyxGC64/fAxXiZWtePs4oS7L96hWyxDeCrCMCnTlHDr6ftztnnCTXl0ccXf+Qd/n7/7j77FV7/1AY+vJnLqGavgk7EYnf/pf/2HfOaNF/g3/m//ErdOFtg0knWJIFQfMB/AR0qBWgToEMl0XcKmOYlWSDnjLkxlJOUu8mRKRTW34y1k73ALUXe4hGIOUwjL9VDX/InUJ33dgN/92nGsYx3rR78+cQ3KF77wBf6L/+K/4G/9rb/Ff/qf/qd8+9vf5l/8F/9FLi8veffdd+n7njt37tz4nRdffJF33333d33OX/mVX+H27du7f6+//jowA5SYCWM2gwOIPgqU6myGiWFyqilmcUftRFps9dKeYz/LZja7minVM9V6zBaYZ0qhuXdCJcL8PFZwCdtytdCjLPo+xJ5PZXnMWSbVnUK0G+a7fve2gMg+72NemEuZwConXc+dk1POlkuSOqVMbDcbSi1NZ5GQnHZtmVmjAS3afF6oD/7FHtv5N0D2n4fOJgSzqnOLxxmHEdxCW7JYcnJywnK5RKQtaI3Zmm3SkWy7ByYiNKblpu7gd2NJnmZS5vd1090Tmh1pmh+f9UlqJDWSOqkdO3HHilGnymKx4o//3M/xyhufgS5RiSj6y8eV99/a8OSdyvRkidQ7nKyeR+lZpMzd2+fIquOJFNbi+KJnUOWxVa5VWbvy5rsP+MZ33+bqamizlGJ/jmNlGA2rHcIK855vffcB/+P//Jv8xj95j4vrDrPMertmO25xTZh2vPtwy9/5377C17/9TgiTtTBN15SyiXPEQbVDJDRCKUtYob2QgIQjVvGp4KWQDMrgZFmQJGOlUsaRJFDrRKlTA6wxRBAUzRnNOp8tn0h9GtcN+N2vHcc61rF+9OsTZ1D+1X/1X919/nM/93N84Qtf4DOf+Qz/1X/1X7Farf5Qz/nLv/zLfOlLX9p9fXFxsbvQODQQ0MajVcOJUDYHhnFimConfU/1FsLmDowYChbBaEmkDauL6PbqA46EgFOAlkga2R5zZohT5lAsT2A1RLjq9Llri7LtxKelFLLOwtXQRVT2mR+ptVrMYoE/jLmvVoOyr4ZaaGsuywbfOkk6Uk6knBlrgQYFeErLYRZtmEPRLHBjkT+sXV5MNUQqKomcI1xunNYsemG5XNL3OXQO834RbzZujyj/PTVDNaNMhf1ARPnY/JXfT90ALRFluxfHNp2RYKiN4KUlvedofRk7c4tq4va958irFTVJaxH1bK6U4YHg1/Do4Zbvl0sevjew7E+5f/cuL77wXLyPac0ix/vdFmPQylArdTTKtdN9uGZdZqHziMmW6huKDVh1pjKCZJ6snfcfXzNYDc2HGdqG+dU6sjGlV+V3vv0B//Aff4c/9sYr3DlfQamRjVITXmCoE9vtNtgiwp5+dfmoDa8UFoslOQc7EjrxxDhVzCZylzCLc0hTimOPggle2zwepsaQfXKzeD6N6wb83teOYx3rWD/a9anbjO/cucNP/dRP8Y1vfIN/5V/5VxjHkcePH9+4G3rvvfc+tvc812KxiAnBH1ttMT74v0jrvQtMpbDeDixzT5caCyDBJBSzsGx6AyGJ2W+J+0CsdhGcJckRj+mtbjH8TxoDUSGCyMybINFinksoTxsgiIXerOWKyN5VIznRdR2oMJYKlB2g8CZ27SRsoUmVrIKNhaurK+rauX3rDrfu3GZwZ3N5gbU8MpzdsLf589ng+/RMm6CePh6omFkIYcXQFO2enBLLRcT0p2anBScl3bWHzOasjggVcyLXZZqm2Ff68UAkNuWw7TRbnj/6+B24mv81u3G8XkwsNhsjHyR6ctHiqYZNDhaAJK9W0PVsS0GsUKpQx0xd92wH5VoL724GxrVy7+4tzpcrUhKKw+p0yfUwMl1fkfsFWRPVnbEasnU2W8esC1GqGsY1Lhs0TdhkmE2kPmOuTG4UGfBaSO2/qQxIKphligsPnmz5R7/5bb74Mz/O6y/d4+LxBdfXI48eXHF9NXK93XB1dYm7sTpZ8Nqrr/DWW2/y5MG7LBYLPve5H+ezn/ksXddTqzMU43vfe5Nx3PDGZ17l/HyF2chmM/Lo4SXDUCOl1wopQe6F1WrB9AlrUA7rk7huwD/r2nGsYx3rR7k+dYBydXXFN7/5Tf7SX/pL/MIv/AJd1/Frv/Zr/OIv/iIAX//613nzzTf54he/+Id7AYMkSk6h5ehSousWiGa6pEgS3n/ymIvNJQtVXrp3j1unK2qBzhN9J3RtJo9ZoYo3FUqHU3AmVHqSJRLONmckdVgdEVfMEy5dZEzUSKIVKaQOUs4gkVpq1hZvQqXYeRsQ2Pcsuh4QSi14LY05mRNZnVoLpS4Y1LEkdJrptMNMGWwCVc7Pb3G12ZAu24we952oRGhW4yA0PqI9AeGGIeMGo+FIkh1YSm54rSySsOxiMRYMk2gSze2VaAsJc4S6NXZrbhnFVs2aCL/xknLj1ef2khIUSDAKu5lFzD8LlidpisGOZJQxjqu0tlrbL+6JsTjbEs6q6gOTVjaPHvGbX/kafUro45Gu6ygWgtGH6lywYHkq3FstuN+vSLljUwpZM7dOboMpd+6eklR58Ogx62GDFaMbMz1LkET1LdSRRU6cn55SpxgiWaYt/bhFPSPW0ndFG8Wh7TyP1OJhLPyT3/4O/81/9+u8eH7G9YNHPLm44sHFFVfbLWONCdmlFm7dOuNzn/scH3zwPt9/6zt0OfOZzz7gp37yMYvlIkIDJ+O73/k2ZRr58R9/xPPP3cPNuHx0yXe/8yaX1+vQUmGknDjpFty5vaQ/7f5wf7O/j/rUrxvHOtaxfuTrEwcof/Wv/lX+tX/tX+Mzn/kMb7/9Nn/tr/01Ukr8xb/4F7l9+zZ/+S//Zb70pS9x7949bt26xV/5K3+FL37xi38oJb57tGZySvRdRiXo60UfltbcsjgeX11RfWLR8lLM7jKViW6ZOe0LslqQVSkCipE0k2UVLIuPeCRYkGhZHCkWXHGinUTGvbSvK0gld0Lu8o7fmVd9t7DgrroF56cnLJYLpnHi+vqaUispZ5YpMY6yi7sHYyoGYozNipw1o6nDtDDVWJi7XSicxRrOU06X3XbsmZI9kzLPDuLmYxsbRcsz0TbMLueeLued5ifcIfOAv4P2UWNOAiSxdxNZLLa4oUk57PPMwXLOIc5qKcG0tpV7s5QHVxJ6lwi+U4l1XSW6Pt5m8JiX+S1hwORQSqG4s76+4p9+5bv8zb/x/yZ3C37ipdfoTzpqr2yGLU9ceFIr0icWSVhoppgxTBvunC559YX7rMdLXn3ljNNO+epXB9556GjquHPnNsssJCrFBgTh9vkdFvmEx48esV1fMW2v6Wohkemkp0rYozFHpoRVJ6U2lsCM7737Pv/93/nfuJ0X6HbCrLLBmVpYn5kzjSP9oyveebxhu92y3gyIjHz/yTf4zW++0xiuOIevr67AnK9+8x2Wiz7O5bHy8NEjqjuStQURC1qg64y8/OQ0KD/I68axjnWsZ6M+cYDy1ltv8Rf/4l/kwYMHPP/88/y5P/fn+PVf/3Wef/55AP7D//A/RFX5xV/8RYZh4C/8hb/Af/Kf/Cd/qNcSCZaiy6lR+xKR8WUOFJsDwCMArbrzwZNrtkOllInUJc77ns2tM56765ytOsig6qguMQ35rEoIX6P37qRUW+sF5jA1IUSfbgEOckp0Ke18xqLxMzPj7OyU1XJB3yWmUhhLoV8tOUkZUt4Fn0UrpGWZlEKBsIsuDFTp+o60HSlTiYm+Lf8jpAH7DNp9u2jPnDwdEx+PuwlafP4m7MS981DCmNIs1Go7yqPWAFMgO/Cwe32PwDBNiZyhFNu5hW4CpXkbZu3K/B7a8LsU4wec4FPmsL4wU6X2uzUW3wZszLRlhLSJyVKAMcSjBsNQuHhywcnpkldffZmvf/N7/PqDr/DG868g2RmKcFErE0Y1WJeRy2mgvv8e2k+88uI97t+7w6PLCbNLNC+5c3fFk41x/7nneO0zL3PrVkbrNaluKQYpdywWwrvvvsPXvvYVbp8tSTmErTklxAyaBV52uiff7c+hVD5YX7LJW7oKSRMlSQCbErOEai0MW+Nis8Y9En01Kev1xOP1NWYVTYlpaGJq4HK7RdxiqOXshFLBKkjEHlNHx4cR1uMf6u/24+oHed041rGO9WzUJw5Q/sv/8r/8PX++XC751V/9VX71V3/1n/u1SqnBGkiLnW8pqzOVXyu4VdwqJiF4fbIZGSbHqXRjpoxQ6zUIZD1jkXtQYaoFFSMlpUshnHUrKHEna3iLFg+OoEpBCAGpuNKnzKLLEWa22+JY4E9WJyyXPaVMlGIsliuWyyW1Vq7WG4ZxxAxUc+g+tDlTvDBMI2OdQMPKPPV15/jputTAxixW3eequMsBOHnaujsrOJ66I/b2s5aQG5qOcEvVDLuWi8cgQKu+a73MTp6w/0rLeomwvAA3untpOxDz7vdUY0ZaWqm0wXWpDUE8nPcT70XA57C+0LlMKVgIMcFl1sY4TsG8ARQXzIRhmPhjP/fHee2lz/A//c//gL/53/23/Nb7b3Ovv0XplLfXFxQS01RIPnK26rnYGq++dg9dnVL7M/rTjne+/w3eHq+wcUnPiJiRVcjuME1kEmNzFkHl9OyUH/vcj/Hc3VP+0T/6LRZdR58GRpsTh5t25ikmzCQYoE21ADwiVIuAPjVpP3dyY6NUlckdG6PtJY0R81rRtKS6xzwpi0C+lBMTQAP9Zg7etCi1MWpzpswnUD/I68axjnWsZ6Oe6Vk8Viu1VsqkSJ7ZgZbw2tLXahlbWFlHyspQHEnexLLKaHA1VBbXI2ergb4LwWrO0Q9KInEhdsFESThdbiFgLiRAvFIpmOR20XZUEn1OqIalmLbYhhaist5uCX2HUqxyeXVJqcYwTvvWhUgsvI0LcYSCUxQ6jeTa1cmKaTM0pmU/wNDNMdknyR5acmGvQ/EZhBzUzGg8PfCvHogiSw0GKeW0E/K6aGNLwNBYCF0iUfdQ5HqAg3yeLfSRbBMhSUTYh7A1xK+p5c4gc+Po4LlQRFv8f9NrzNgrGLUAVO4TxQbGaQzQpMrmekNOiVdffY2f+rGHPH//Ob7y5ne5SgUj83iasOGavu8oJN6/uOBuv+DqYuRb33qfs1vRwrl6vObOasX9u3fpXrhH7RJiYSWGU8QH3C758IMHPHn8mFIK9+7doe9p7InSi1KBySzs7wfHYT52qY0KiHZVm6htjlmlNs3P6AEKc0oxQqExVo7iXmfJMCKK1RCAJ9EYGVgqo8xBiELSaBvV2rQ/Iph/clH3xzrWsY71dD3TAEU1IrsnmcA1FnYpYeN16HLaxbOrdGhKkMIpoWEwQbOiHvbQJ1dji2pLnN9e0qkgJtHKkYSkJVlGutQjMrZ1tiISQVYxdE/BlOTKomk05vk+IlBq4fp63RacuDMupeAW7Q+YWY551s8MVhySx3w2baFkIvSLHqnBWNyYPNzAjfs8E2d/Bz7nmsTDZhDk3Gz7yG4fp5QbS7NvM0xTZbMd6fvcnDIxaLG2tsye9WnA5mBi4mxHFtnLY29u3374474dxU4jE7tgD2hCUJowUVSdnKMVND8HXhs4aQs8smO/VIRaRi7Wj9lcrVnduc2q77h3fs4iZ8owMdQxpmJbZdWdMpXCg82aW/dfoGyMshFuP79i1V9zVzacpcfcP9si3X0ebCay3CLnU2AJtVKK8+TJBY8ePcLqQMqVaSiMZcJKCV2VCtL2g9f9/pozcsJ9HA4y92AKIWZEFbVdpL85lN1xm7Ni5vOq5STbiOMRACiNEaw1BD1Wo9XjAuZ0MyMjAnIEKMc61rE+vXqmAUqIKGOBm+PVrS3uqhouGo+772SpJYy2RXSerCttOKvDZjQWa+OkcxYnI33XlJY14dJDCidF14Kw4s7WSD5RZB5xr0gLKVt03Q6gROsjZthM08Q8pzi1NFvDIjq8sSDhBmpsjGrLZnGKWQwqnFkHFzwHgNC8Z1BU9p+L6I3Ffw9CPn4y8NMWZG/shWra/axWYzuNlJaZwcF7lOaoimO0z2QBx+qcYJsOtsEPgIjvwJs00a006/fudWhQQ/ZgTEjRxiGG8KW0nw3kPgI90qLKIOFVKcViyKJPgDJNheHyivffeRPKyGv37rHSUx48vuR7jx5SU2bVdTzZXjHVAig2CdvNyNXVY07OL3n57sCdfMGtZeF6Gnlv4yzv3CGn1NgidsDRrEXw14kybRmGgTKNZBE61Wi5BC6g1hJW9HZMpOX8VOLcLRZzqWIvS2ScEIF9U6m40VprYQefdS1RLc1XjFIb9+XRWuok2muptTI7zaTGapkbT/4Af6/HOtaxjvUHqWcaoMxKSVWly10DKBECoujBnXckiAZpEmLLuc9QMaZaGEpiocqYnO3o9NsNfR86j5jLE5NcRSdS6tm3RQyk7hZ7iDVURQOgHDAAtVbygQ3X3GIxn4WoOdP3C0QTpRasVoYDN0yIUiulVvrkZFUma3N3rLZ5QbENohKb9lRb5zDifgZJ8678uFQSM7vBzsRC1tw5DqXGnfucfyIHv7fLV5nBUZ2HOR60ZoSDbdgDI219mY+EyfHRYYqHP3e3BojCVu1tnpJQcU9N/JnBM9JmAoWqWCnjxHW95u1338brxKu37/Fcvs07G/hg+oBpkehTaJ5QoxZjGkdSHbnaXHCrv2R5Dh1O3T6mS1vunt2hWzmiEYSGV8oYk6dzykzN1ZNyH+29ahG8p4b7GBk2bd8cDn90oAoBut2bPb79wPYjIFS0TWh2rFQgZkdFO1BvgJTALrXpsaDTOI/VodO0a/Xk9v3p04tBOdaxjnWsZxugOMRdc2sndJpbjz20H9rEhd6obMNJksN1I42JKDUutm5MVhm8sikjeWOcrk4onZBTRWyKJE1VJEVKLDjVwT0GCbqBSzAKnSgnfUeXElOdZ+RIzP2BiKQ3p5ojCl23iLj4fgHmTFYZtwPDGE6JlBKiQqJDqqAWybOTatwN14lOero52r4tHofMxBwMFxqChmRayNocZz7/zuFE4ZglJActAJDUUnYbk7PLeJHQQZhZAyxhCa5AncWe7djJTIykve1Z2vcFicGNTeg7R+anLuMiTGO0XWAGVrF4Jk0k7RDXeP4aAyIhBhqqKio9SkfWRC8rppoisGx7zWQT739wiUyZe9Lx/HrgtBjfzZV3e2GsE0l6coqZSavJealbcX6+4rlbzqkZ68cXbJJz9+XCc4ueaSHgRt1OSKnUaUOfQkiNLVgsV5RpYBgS1LCtZ3U6YHRF1MPkHsrWpkueNTYS4TbRh2wAJnRPsy44eUyQzjg5Kbnv0NyFFblWRqtxfBEkZbJGrlCHtGMBuQGU5lsLUPVxSPFYxzrWsT6herYBih9kZVgsmvMlU5G9C6U5GgCSt9RXj5Cu3ObLiETOQ7XKWCdqUcwS1RWREBR6VSyHJiNrQiW0DUZHsg58AnVEnCSJZZfpUjhx5qF41l47qWJeUJSu61n1C3LKaLtl7jS1Fk60ATSlaOG44sWRvrEWJq1NUMhCLC7aRJHmB/uqMREHs2+8tV126bs7FuJmy2euGaQcijVFdLco7lxCSpv03O7uG2BxDc2Hzm2oRnTEbMMWFjc/JwE2ZnFoSiFeTn3GVRlSYjsMYeuWWLRj+yKobU89KHi4q/BgcGS2L1tCak/yDFS8Ousnj9m++z4rd+4uOm5fXvNyn3l45wW+Ok5oBVllLq43nI0bXj1Zcnt4xMVlwe6cUG3k3h3j7PaSdH4HGe6zuPUKy7svQl1TL6/YTNc8fPKA66uB05MTcnfCejMxTnEeWzsuGSiiVMoOaHuza0MbzyDCDNMEyNLC8SSFRMQMLNpdZ4uOxWJB7hcYwno7Mo4TWeN8zPN+FyWrxrm4G+aouy7bTJzUp0xfxzrWsY71SdYzDVBoOQ3R9ihYSsxmkEPXSND4vnvszCZouyBnYsqvNm1KnSqlKOPklBqX/ozuXq/LEQy3GQvAbu7MrB1pW0DXZXKetRb7xX/Wpbg7XdfFkD2PyauulS4ltMt0Ocei0OymStqLbtvdbIhQK9ai8EXaezTZiU1nQBGfp10v55AlESJLI14uXo/dO2nSDzkANwc/q7afSHz4/vF5QGADR7Vtj0RYW06KB06Iu3GPUQE5JbrckXK0yHLOAU5SonilmCHLJdM0MZbSXk52wtlYyG2HfrwGDRAvMUVnUCFpj1FwAVXBRuhL4fN3lnz9/fd4/OiCuxfOol/wf7r9Cn9iEC7qE1anmUl6bne3eOXWHb5jl3z33Q3/aFTeXW74/MsORfGrc2r/Aree+zHynftMY0Xzgny5Ip8tOe2WPHf3PjkJm82acdwClSR9iHil6VRau+zw3J2Pp4g0x1prXFrL7klCnUJPslwsOOl6Tk56Si0M48RUKmOpiEIvkb2SNaHeDqodtNx81hHNe5fdeXisYx3rWJ9WPdMARTSWafM2CG9mTLiZq3EzL8N3i69hMaumVqgSbZf2DGWqbDeFk2VkSUhOcdGuE4KG6NFt54ZpDZxYGFulnEk57Rbt+XW9BWGpKjlnSinUqaBAyqGXSZJJbdrvTn+ARhibarg0PMLcxnFgpYv2PlPLgTlkOeb33xa2A7ChGnfM83463Gc+L0wI1qY1A6RmV52f/+bv7oPb5kGHXd8HeLDYX2n+fsrQxKw6zxnKmUXXRxunVESErut2AGU7btmMW8wieKyUtg0tAwWsLZ4WChtNWFGkaS/cm2MlWQyO1ILpREKo05ZuGnnj5ed5PFzz4ffeJ1lP3RZO+4kXFh1SEre844WTu9x2x9aXPOycV+6ccSE9DzZn/JPvL/n6W0ZajOjibX76ztu8vH5I1yXy6i637028/OLI5mLDeL3hg4cf8PDRAz788H02mzXdMkc3RxUv9UAL7AcAcH7fTTTcmKmEIi7UGrNzckqcL1acrk4YbMv1dmSz3oT1PgfDt5AG0pnHDjTxrrD7e9jzJjfPk2Md61jH+rTq2QYoB4vkTQEou49PP3Z+/F5fUamHFtpGr08lMknGUlnsIus97MAaDApzGyVJ2Dy9NhFuXM6TzkBmvi31HVCIbJGIWh/HES91P7VV2mKkB4yExP8ic6TGnXIW1usNm8srlm0xWfRNLGwzY6K7HJPYDNvdAYc7qO2bg/0Tbo+oYvv2VOhOD6S1+/81MMPOzYPIHMWGpsRqsWTZBVCZpzerCKmL1lWZJtzmNpjhtmdrzCxAXMu98WrUUtrgxESpFZ23bXYTyew+avtQfDePyL02VdKGKmuqjOTcIWx57713+J3vfI/NxjjhjC53FIf36sBiEa02Gya2k1M655HB9yaly879fuCDqyseTB0fPNhSdOD+PeO19RqmgWwKU2V4cM3D7z/g8YcPWV8+Ydg8QTvh7HTB+emKqRKDIUVRCaBl3ASas2haJICF5gbyEKjh7pEKfVLcnM1mw+X2mqmNT0gpBVOlSk+KvJqDc2M+JXausPnvqLVMG+F1rGMd61ifWj3bAKUt2LPPJZiGPTCJYXuy+3noCa39THf9++K2E8mGjddIrpRSmKaBslCyBaOQ1EkqLBY9KSXcp9CvNHBjTc+BOClJa/HMwGkGT9ZC5oxpFoYSk349BZMA3lJwYxqxWcU97xamOddiHEeGcaCUJU6wNq3j9BGAUmvduWAECTqfABea9m2bQ8ZJcdz1oL0TraQZjOzWqAONBA0AVjNsiuC5GRQuFgu6nFuKaezrWmMgn/jc6pnJsEOXyfw6jaUyIyVIWTGvzbF0GOU/tyVmgEVzrQh4ADjzislEkYFVTniZePDgMd969yFlMO5NHeQFkhPlduHsVsfzywX2eOKtD9a8l2/z/vIuD9MpXV2yuHrCk80Vax/44HLNatXzyvKU22f36KVDh2vYbuimClPh4vETVJ2zW3dIHfyJP/553r0wvvPmg2DZmLVC1v7JDVAg7M+dPdMhjV0Lh1gFrrYbfCpMbYL03F7LqnSqZG9s4vx31MBeaHJl3u3zU7d0N2Ji9rGOdaxjfUr1TAMUb4AgxRftlq6JJtnfQe8f/9G+uQEFKBijV0aMpYOLU60wTltKFWqenS8BOHLOZBVKE13GSzaWpC0VqtLcLTOD0l6zMQLm8fmi76Ea4zTRqeCLPuy9LfxsXuB3zhi5Of93ZhnChjo7dm6mx+6BQyw2c1tlP/mYXWtm9/j5c9gJS5t79yM6lcPavWZ7XB1HplIYxpHlcsGiW8R2lggUk65l1Uik4+acmlD25vbPwWt935EktC8qLVhsqq25c3ObjEJ4iLTpOQBTvCp4H9OoSeS8ok7C9eMtUiITZV0nxlToxRm18IBK3y3Y3jvhG7rid+Q+D7kN+TZT6Vhyl9KfUqZHpNMlr9117vc9K4xkE7UOULd0C+P87imLhye4JCZxqhZee/0l7t//Pt958/1wyaiiNu9Jv9FSFJqAes5WEQmXEkIlQLe1PF81QwxUoqXTqYQGB9+363bodGbJ9qfDAVF24/w4alCOdaxjfZr1jAOUdmep0obROSkd0NPNNWIQ1pmnLqpO3EVXrxQXigsVxzQASrGJYXJK7XDPpBQLoFu0FESIAYAaWgfmloLOLRoh5X1uRSymTQvSWIyZbZgX86lMMdU46cGsH9rj5/c8i3yDpt+xFTbP7WFHw8M+yyQYngO6vgXAyQHomYW1sX9bci2zzqcgVaht8OG+ddU2kP2+j89l97FaZTtG5sy1bOL7TeMiOUSzKiGQXXQ9XcoxVTolUgotT6QCK33X4X3PMAwBSUplqI67tPZR265dS6sNezTBTcCFWpVSMrV2OEafz/B1olxXbmkmnyZsGBjrBtUe3wgPRuVqM/H4/ISHr98h5TNeRDhdXPLt9wQ9uUept+nqKa8/9zw/nh5xq68suMTtmiqgqYPFRH97iZyd89233uf9Dz/gtZfv8LkXlzFTp02nzinBeIAN9nRV7Fu/CRTEW+KLxHksKm1cQ6LrEh2LEMOKI15DTDtDXWknWGMd8Tam4OnXlrmdtxc/H+tYxzrWp1HPNEARmq3S4+7RELomLI0VWhFNbUFubZUD/Um4RgyxAi1nYuZAapoYgWHqGQeFZfh45gCtrEaXnJQUlwRWW1shBra5OF1yVl1CslCq0HlCzZFd66cFtlkJEKWCa6Zqwl2o3t6De7QxWmuj1IJ5T+9Cr4nqztacEUG1o9cMVpt7Z3Z/xN136AvCUi1Bs0TLpAGmQ1ARkeqRPOoeSblOpOeGrmPvjvLm8JA9pNq1mA41LuE4st3iamYwzW0r27mJkmpbWDOLPjJizs7P6FJHUqHWgkoiaabL4XphrCwkgORgW9QziRXVFfeESGstYThbim8xaS4gc6bNQJcTd++cclonZCFwMTEWo/NTeh25zM5vXd/n9OWeF+9UugR/7CcfcfqVkRdenrjYrvGUOKsr5L17LFLH7Tun8doqqG+p1XnvovIb37zmd77+ATJ8yGeeVzrAbWjAtM19Agq6G20Q2SdNwCoSE4YlzgufamvX5bb/YKERLpeInBMV350DDSJTqDtNEgj54EjuMciuUbprBh2OGzjWsY51rE+6nnGA0u7+nR2DUs1A8n4WDAFe5hbQ/kLc3DTuiPnuTtGNmNbbXKqlCqV4W6gtNBgISb2BIW0R6xbZJrQ2gjtJYdFnJDXtQ21OljmYjN1A+91CnroOQ3ftE2l31NpiQsVbiFspOy0BjSWqhBNJd0BkxgU3h/GlnHe6lPl1Eje1JzumyW9G4wst90Tq/s7b5xbEzT7R/PyHoOcGaIFdBk1Yoxvp4U20rJFUu9kOrLdbrtZrbp+fcX52EkxA7howElLfs77e4D5G8FsWfIo5QC4Fp0XBq+BeKL6hyBUuGyQZJmuG4Yqum/jpn36NnkIaBy7efp+rD56wzM6dF5e81Z3x6MkthEteOTMun4ycLC54/qzwufsfUqxjDWzLwJsP71HrCX5yD2SJMEGBRxeJr/zO9/j+B29zerdwMnTcWjpWtpRaKB5haAq7YZXWMlwa6RYtmHaA2yilaCm6kLocAluchYYQFmtg/AYI1Z24WWQPLeegPORQ83LzvNgd+2Md61jH+pTqmQYoczZDTBb21sqYxZKOYWCzBbndnbce0C5LRGgzesKgGs/h5JpnpptSJ6aayAaqeQeANLd+EoImDRbCDWnqQRVhkTsSxJ2rxLYFkKpN13EwbRhBVKPNUyamqTALYmsbCFhTuFaKVaobpbV2SqlcXl4yjiOlxu/BRzU3M2g4nHK8Ewx/rKYkVr95Fs/8L/b5/jl3Dqo2efhpZxXsAcp+3o7eAC+HeS1zLsfs3rm+vma9XnN9fcHZyQn37t4NRkU1ZitNhrqSDFIxGA2vgtdK8U2E+GlCyJF0WyZqLZgVpnEinSm+TFQfuHf7NndvndEzwMsd2ye3KKakO4me+5z+1inbofLkcsO4GSKRNvVgt7h4YFxXwU+Vr7xbudNn/pyd8LpmbNyy5ZSvfPctvvfeO5zffsjz97dM7wbINRdMhGpOFQsnT0oIFS/tuOWwn89Aww/2f06JXhM599Hqaud826k7NmQ/yXrfpnEP59PMqthHZUmzEqYJaIXqH3e+HOtYxzrWJ1PPOEDZf/TGoEDMHgk3zX6K8DyobedAgR374k4TrEb0fLUKvkAb01FqZTtO5JRJGi2alJScclvYodJmoezuQx11Ydn3EYBVbeeI2OeaAFhzHsXd8TTFPJZSpgY0fKcr0aSknGJgMrAZBzbbLdVgnArvvf9htLHMd4MDD4cD7t7zvDi17z/Ncsy/M4MGP3AEzdOhzQ08z72dWOiaPmH+eCPs7eD1Drcn2nF8BMTM2zV/b2Z8hu3AsN2G6HYqLJeLcFNVC2t3jmNaqqEGaoYVkFqRFPvGTZGakdLjQ4qgMu85OV/y3Csv0z+3pL+1ZFxPWE6Ubolah3cDK91yvx/4+rd7Hn7fuHNnyfXWuJ4qH15WLtfKB48TwyLxiOdZ3X6Zsbsd2hfgrYdr/vb//lU22ycs+sdMmyfY+Dyb9ch4tqCaUj3AXybaKIf75CPe3r2kqc2kyrvE311ssTeB98cJXee/I5mnWh++RLQs9/Qi7TENWB5Fssc61rE+xXrmAcpOCIpT3RCJWPNdHgoxZwSN/v18UVaNvr6Z7WbixD+j1tBdqAqiMUV4mKBf9PQWVuP93e0ecJjMgVnKPIpvmTO9KuIFaZJEIwSIh7qMGQTM2xhx5oftH+i6PiY0i2AaybPDVKKFhHC9vgaHvosUVm9AYV7c5+eavz4EAoeMxj4Gf85EmVticgA8IhQsGKgD4fEhm3LQAjhs9xyCl3jfegOgzI+fhb+HAAWEUicur64ZS+FkteLOnbtIl6AHvIKGrdiTU8tEB+AFLzVsz5ao6y223tKNLUZ+vWah55zfu4XfXbJ45QW66Tk2V1dcP75kui7UzQVTGXnj9BHf+c4pb32wJK2ci7HnSUmsP7xF11XkllJLpl/cJvU9w3rN+EToThLff+8x33r3knu3e1JZMa0LuSxJGOvtxGYsOLpznM37MaUI4DP3ncj5MIRvZymXiKxPIrgoLjHMUeWmjfypv6IbAlzYO3l2YuP5Z7O4e/fvWMc61rE+nXqmAcphhQumCTl1BiDgXtpdn+weNwdVSbNmWrNrho4FSmunxLobGSelEI6PlkQa7SLdaTDq3N9vvXtp2og+d/Q5gcWieTNAPnr8kXGyByiqiZwztQqljDv78LzIVJzixqaMlGqItFlC7qgQEfFN/DqDjkOAMtdu4av1I+2d/aIXEGzOl4mF05qLadbS7BcqeypJ9uPYkEMQc2iNvglo5v89vU1Kar+3WW8Zxwl34d7d27ywWnI3wek0Mb7/YdjHhwm1CSjUOsVMPdOYfXO9xacNqvDw8QPWdcFmGJi62+SzJaJKlVPK6RmeHUsbTsolP/XqyMVobL41sFlf8e034cH1HTp9kcWykvslXjInw8jJ1dsM7/QM56/Qr+5xfTEwbJY8ki1jOqdbJG5bx7IXJhO2YwimS/VmU09ImXb7cm5lzmMJdvtGdadnCoCiuEpL/22uMYGPggp56vMDsCINqPjsOrv5uCOBcqxjHevTrGcaoOzp6blNY8yz40L0581xYAi5LY57gEIT14pHpkb1YEvMHSuCe2SexADBwmR2cMH2/eLPfjrw/toe/3UpxUwdMyRLLOAaDInudCIHvyn76Hezg9yLtnhPtYZuok4M2y02gy+RsOPObg/2d9+HoAS40fY5BC5Pi1nb5gCRmzEHhcW+jU1+Wif5dAz6jfYEe4Ayv/Z8PPZf3wQq83bN78HmdkV7f9NYuLq65vnTEz7zwj0+c+sOd6fCo9/5Zuwnm9Actt1a94zMVAwmJftEUqjbic0AY6mYP+GhbXDtIZ1RfclUOsah0HXKrTPn539W2aQNv/W9C37rHwqXds5qOXB6suT0Fsi45ez6IfflEenBCVbuUsrIWVqQ7Iz333/Eshe6u5kfe+EOZ8vK+5NzvRmoBmKVLmtkwpgiZmhKeBu8KKLonJ7GXmLiFiBVW0vTZM7MOWQ/9uwLN4TNeyAvgEnLWWnqZWkpwA5NeM6xjnWsY31q9UwDlJtWlRblPgdY1QozONF95qZbjbvwlKm13FgkZ3dE6FFyaCwomE9MBcaywT21xzXRK4BHBHpYceftiIU5aYAUzIgUkr3uw2+4Wea+/qyFCRHnrEFRaXkmpQarsktIXbSfh4MntRbTPEF4t7A3UGIHbZPDFsHTzMq+DiBXYzBiO5vF2D/ud27WDijNoKe1mebWVtuF+0M5v277WnTPuhgOKiHGbfoKzYntdsvV9QXd8/fpO2WqA+4hhhUTtFvgFbAKUmA00tBi4gWWsoIOVgysxFiN1wx1TdWBacpcXsPjMlD7Ldl60nnl1Vsjm9vwwaUwTBesL7es03OU5+HFM3jpZOT19IjnU2LZZzQrr734PK+/+AIf/M67XNQCL2Z+9md/Gi7f4oN3v8vDx08oFuGDtdZwZYnEgEQElURpCcMyn3ON03Ms0nG9iaRVbuxHZG8Bn4/L4TE/bNr4wX+2a7/5juWrNv99HetYxzrWp1PPNECRgzt4aWhBxckq4AV1yLlv4VwZc6GMxvI06PtpmuJ32nOpQ3Vj8IlBtlR1EEPVgYlhvGLY3ObkNFOlIlrJqdKJMNZozbhXzKG2O01JxqJPJFGG4ohmqIUkjsxaCZsnHiuIx3ygGu4V2OdTTMO0s5sG+MmgYf2N32fHvFQLcOOzCNiMaZoope7219P6hbntdQia4JDZ0LYvQvODtLQMP1zg9izMDTZk/vwQyDSQYj6PByBA3Hy33oDXTnxL2G6dCCFzAavehj0633z3ARdp4KXPv8Jzzz+PbuFEMifnHX06YRwKZhNX6zVvP3yHq8tCnTqUjpwE1YHn77/Iiy+9xtmdMy42T9BF4uzOLZ5cTHz4+JK3P3iHt7//Ieu3HrIdhbtkbt3teTE7Q1FW4rzw0j1+7NX7PF8KujG6kzu4C9kLr77W8X/5P36Oev0NPnhU+IXP/TifeeE+v/39N/nmmx/y5PIJph2mwbqlAh1KsQAhqmkn7MZtN18o2oyE5bjNHgpQGSeGme9GG8zHagbkSoAfp+lWZg1Uc8BZA0GyA/Jx3u5sXMc61rGO9SnUsw1QIO7i29e1VqapkHMmpSbMrI5IxkVZb7YM48T53TsUKzgWQWtBmWC1YilSOKuPWETK0rULvZWJWgSVjMjYKHYHN9xCoLhrOc0C1SQs+gjpmpwQlppDmtsaAMGGgAbAsY/RhLSef0xBnhmjlu8iez1J13UApLJvg8z7Zk7endmQp23Ah20e4CPCWRHbDx5s/Z2kiTzPDjrQLsy/f8N9ciDAncFHsE7GnPkluwEvsW9nbmDOtREBq2UXc++EEHYlwu2zc976/rv8t//z3+e9n/xxnqtKVyZ+8uc/x0/+1B1O7pwgZK6++4QHjz5gvSms1xNZexDnzv0Vr91/GTu9R759h7Pbd+hXiW6Vqf2G0zvP89yLL/OTP7Hl3fce8uab7/HuO+9z9fBDNl1mGJVNeRMv9zhJnyGtzsAUW2eeZ8np4oxVZ/z8TyS2799h8/9n78+jZcvuu07ws6dzTgx3vu/dN2bmy0HKlGQNlixZssFyWVWWDW5jXKtRo2owuBFDu1dT7tUU1AJW4WYtqsAMbbdBReGFy2ADBXSJLqiSMTZlYZDlSbOlVM7TG+8YNyLOsKf+Y+8TcV9mCjnlTKWedH9aV/nujelEnBNnf8/v9x2au7jnrGL/8V/j4MazPHf9gHndEpQgCpVUW0KgkWihcgcpuxb3XRQpl+M2lsdHFkcRxPJYSWZ1aV+c5JOIJM+hd+WJpFGnWowak/oJ75Ex3V+SOiqndVqndVqvVN3RAKWvhSKEZGJmgkzGsLLvBESmzZRp0zAerSKVxPuAFhovQvY+ydk3MbfNPQQXwSe/EynSdMA5hwseqQVaJSv2RvR+EzGpeBALG3ctJFVhUq5KlIurzxjB+3wlikTEkMmq6aev27ocPWk1B+aF0I+lbuduPN9vJIGTkyTZFx/HnCSu9s9zEqD0Kcd9Z8Vlcq3QJl2wx9zZ4EUAT7+QPu89KamWXRWxTHvuXUyTu6xEqAQAESDiCYt+mfw4hPS8/d6LXDpS/LtHnsBPC3735QucG0MpiwQSjSK4iqO9PeYTgbPgmoAwksY5zt+zjhkZDia3UEOBGZRUxYi6s9ggMUXBxmjITmFYXdvg8sXLzI5bHnn6GR7bP2D3cMZTjz/Nc/uP8MTNG4z0CC00W1ub3IjwhuY13Htxi9I/y+UNSzNz2P0nmOztEmxk7/AY5z1IT4geh4SQPHaUSp4wMQSkkFlBnDJ24oKsnMBJz8Ei7+neL6jfx3knJLBJJNsF5eMoHVeBiIonuEv5QiD0o7h0uJ/WaZ3Wab1idccDlJNdAClkch/NgMEoRQwwb2qmsxmmGrC2sZaN25Zy1yjSyCKwDOaLPoKLib8QJSpKvHc0tmXsBhiVk2CVRkhLL14RIks6Q+qyKymoyiItHL6f56cFOAaIIjnOpoVhaSi3WGREuhpWJwi55JGIUirribLJWvA422bw4xdAwXu/ACknicL953cSMMByPPNi3iV9l0ZIia/nOOvAhzQiUxKRP1cEt3df8tgmsyJQsgddCwrn4r3BMpGafH/y2CHRdBIQSgBFgvfUznHh4jYP3bfOE/v7PP7cAd9072v5xne9kUvnVxmUIwIDjuaSWzem+DYQOhgPxgQqvBBs71zEMaf1U2o7wsqA7AYcz2u0NpRGo6sCrRWb2+vIbc3xUcdjz13n4OgYFzVeKybHHXu7e0gxxUhDeXDIk7u3+KWP/nt+19vfwDfdu8GZszt0s5J2VmBHZ7n6hWscTj5DjGlg572nC4EgI0KXaK3pnM+fzbIrteSRZBJsn+C9ACK3gxV6QnYUi9t6smx83vfJ418wqktdQt/vptM6rdM6rVes7miAcnJxhXSyDZl0EfIibK1jPp9TloYzZ7ZRUuLaDiHBdm7B54g9QCH5byRVkCQGQYjJ8yMEgQtJglygUsCdlFkJFBfhaqLnAOS5f6UNRkpqt+QG9IvIgpQYQ1qASam+z+9e9ITUSFiQFdP7zsCl7xb1IEalcVMPTLz3+TGcIAXHxefW//f5nZj+c+5/nEsjtMLoBdE1ZEm2DgoE+OhfsP1SSLRcHm4CkeXFIDmZ+JwhzAkQBUlNshz7hMydYLEN+43lWMO3fsNlvmv+Bn7633yWX3/uWX6XfQOXK0HdHQOSm9fnHB4c4lyHaz2jtZLD4w41GDFeGTGdX2dUaZRRSK1QWhOjQAiN1ApdGELwmKLEWTiaznj25h6PPPUM5Wgdh0KYEu8tnW1o6Diez7i1e53HXMNIeR64+G1sDscYoVCDAUGUHPzWEUezhrhIcE7jHB/BxARQpRQJDLIMnuzt7zkJKhcklfyJSpU+635seAJdLMHpssvSk6BDIEUs9PchAaDg80jvy//qntZpndZpfcm6owHKyVqMNXxAoCBEvPNEHxhWFWfPbLG6ssatvUNiiGijMk9k+Rz9P0OMyc2TFNjnA2ihEBJ8jFjvGXifAthU6tosnyGTE7PRmiRSGkNhFLSWmMPasknLiXeQ75/HOMuFfblNvYomK4kXP72RW4yc4IiAzyTHeNvrPG8E8Hwg0T/+xGOeb+pmrV041UrVq2lyB0guH7PsvpDIv8RFkGMi7sa8+PefXd9fITv/Lkc+/ZiiV5b0n1h+E0xay8O3dvk9o0v8J2+7nyeOW37508/wCx//FHff/Y1srQfcvObG9Vt4b4kiIIuUndS0M85ur1MWMJlaVle3KIqCYlBRGMPq6hrEgAK0lNgYsUEwqTuevHGLx69f56kbNzFVg0bSxWT659oGF5I0XPvAikwjreO6JrpIKT3KRGrreOrmLnUTFqMwISBKlUirIXGZUjhfAoMy5z/F7L+TW0v5s17s6gwushIqnDjKT/BHbuuw9J0SKVM3bwFqT+5L0n7jtE7rtE7rlauvCYByG/ciRPApL06ESGUMW+ubXDyzRdc5JlFgpURpnaTG0S3GC+nqM53CXQQXBY5EbjVSIQuNDy226/CFQmqN1ikMUMiehBrziKcHKFAVhrIoiXR5i3vVijwxygGFQAuZ/FFET0JccjJ6zkUCKHmsxRLE9ITd1EFK3BPn3G1urFIq+u7NSZ+U5/uVnLS/f37FGHHWAqT335MTYooB6Feu2/xXYiK59gTd29xjM+1S0CcnL4FK/2SJECx6FXl67IkugQ2Bh598lsevX+S1O2P+02+6n+v7U37z4Uf5XTfu4tylc3STY2ZHB4CgC5bhqKR1DVJ7Ll1aR8uWYVkwqsZIFEYZnLWUxiBiShcOziGk4WDa8vFPf4Ff/fineeTqc+xOp7jDOQNRII1CaoEMgag0PhNQRTkAUbB764BjrRgPJavrA67u7vPY08/go0aLsFBCpdEjiXeidHYozuowKSAko8F+3LUY//XdqUxk7onIi+8IZMl3zNzlLDMPMQdfiuR0HPPfY0rTjrHvYMEJ78PTOq3TOq1XpO5ogPJ81QkxEoOHECi0STwNNKvDEevlgDo0rA/HNAImXY11ftkZOJHaixDYGJMTKQmsRKWQShM7lw3hAqq/ko0nFEVpNpR5ImmhKI2hNCbdtvD0gJPdjAQ8BCqq5docF/+HUjp1XXK3YbGo5KbNomORr5oT8TcBlF410+foJDn0C0c5J0c6J6XGJ0dB/RgojdJAq5THo7TIi2e8zfp+sX+CuC1XZtGpCb0Dbw/nIHnXyBP+J6mjkj+xF3BkYoxoBfvX99ideC5uWx46v8LvfugK//DnfoX/8MlHec3dZ5g+0zE/KphNalrbsrIxoG0sK6sVFy9uUk9vYOuGo71jymHFaHUjLcQhgRQjFZ21HHeWz3/haf7Zv/jf+Mwjj3GMow6eZt7i8ZSmQJXZ3RdNEwQyRg7mjoefuI4JgfGo4tzFVe4ajnnquUOevnZAWLSfFm6DRGSWCKfuk0TgMxm5By/EBFwSUD1xTAm5HFkSUHks1Ocf9R0psXhMin+gJyj3n7lYjv+WJW7rwpzWaZ3Wab3cdUcDFIJYkgLz1aCPERcizkt0XuvnsyntsGJlNCYqw7WDQ7qmwXUeY5JKx4eIixHrAipRO7Ah4DyEIAk2MJSCaMY429I1nlKktr8KARcdXkRQmk6K5FIaQAePlBFdCqL0aFEgQuZvECmLisJofHD9tXEab2S5RD+6UTntOIETieqNzvJV8smAv4VLrgsoFGTrfynkAlAlULU03uo7G32lPo7gBPpaZPD0C2U8sWiFmFRGgZ7LcBJIpIXUxxQPIORye0NI5mMQicEhEWhp8ASs9yilUCISfEAiCR6iEEiSZDbEnFodJW0rODhsabqS0Urgyt3bjIYlv/KpZ3nw7C7V1NKGSGenrJUDjJXMu8jW5W3UcMCNay37+1Pm7T4bmxucOW+YHc4J3tFWKSgSFE0L7WRGaBtKoymrFSobeHa6hyxHOFnQeU+pc+ijdSgpiaXmyevX2N4YcsFEpkfQzs/yzPVd9mZTpEkjIBEl0WWSqkygVsaIEYJCCrroSbtCIJQmeAgqopEgJCFLsqVMDrRpDCgQ+THxxH5NRmzZBE5C6tmksMFedpzM//IxHkNKlIqek2Ll0zqt0zqtl7vubIAC9H3m/urdx5C4FzG7jYrIdD7l1oFEGI0XMK9nuK5djFP6gUKaVCyv2J1zWK9xIRJsQGiPR+E6TygTSDBKo4SgDR4vRDK48gIZQEW5UAlJo/NoJrfPWSp+lFS5C9Jb2ycy7ZLASG7LJ95GXkPSgk14kW5IHjFFsieMuk3pJDKg6T838ngrBRRy4nnyKEX0nYo+4E8m0qiQL+CELC+yb1cBJeW0J4qYSbEnsnlEjgBQiePRzxCENMkfJQakTPSWkGdwy05MkoR3XjJz8PhT13jzfWP82LGzWXHP2TU+/8yca0/PWI0C21lciJRBUc9aUILN7U1s6CjKgnPnz7N55jyrq6uY0YhQN9SdJwiBiB3HkzlNBztnz/B//L7v5drBPodNw829I37tE5/hxt6U1oFUikEpcAGMEFRVwdb6mNDWTNsZg9EGUkQO9g957ImnaYIjCIkPyStHLEBCMg/03iMzqIzBJxdipRBRIfpIBJF3QCC5Dmbytowge3VVHmMu9i3LDsmyo9I/VUpVRqVxTx/OEGRcAKTTOq2vtnrrxwO/8Rb5pe94Wl/1dccDlNvbzkuQ4bxHK4GQ0IXArdmEbl/gPBzXs0zAlMuxzGJBJRNMky+KCx4fkllVyM6dzjd0zuNjgVR9F0dDFNm1NoEQH/JiIAWFMYkX4ENPogBBdo31y42nP+8vrcf7EVA/8uhzg5SSC/Lo7fwRT+p0vDBf56SnyUkeyvMN2/rHkEHXSUCT7usX69PtiiBObMcS8EglEajs4wJk5U66Rm+TCkmpZCzm/EKmHUIEGTNBOSTeTnyhoZxQAhsD1/dm7M8U0gSiEqyvjrhrq8D4gG8j1kaQmnJljPUdK8OC9fUB0U3Z2RqzsjYGPaJaGVOsjTi7MqI9mlEoCK5F6QnHc8toZYPtMzucP7jF/nSf2eUzrFWCz3zhCY6O6wyWO+ad41gGilIwLAUuCho3Z+9on+grbhzNeeypq/j+s4kJ8CmRM5Wy501SYaXxS6QHFRIpAlGIxdGSYXmSdft0bMjMKenBR9o5Pek1EXBF7JlY+bliTJ81kOKjBBqRujMkftKpkexpfdWUVIz+903++t3/M1fMmCeemvJfPvn91N++218dndYdWHc8QHlBCYHzKUzPBIHWGgTMvWd+eIi3HmcDoEjZuzGbXZ1YaLNUM8QEVIIPBAI+BLSRCBHobIt1HVKXicwYFXkVzYRFgfMeSQSpEi9BKpzr037zSCpzRRagoFeu5Pv0XJZMC1i05fOtJ9525tJkUKCkJKrbAdyCP/IiBNiTvy45DGTC6gtzevql7uTz9FyXk6qPvpTUyQF1sdV5XNR3b0TiVPjgiS4gMzfFhUDUqRMWRe4AcTsoijGihSd4y5M3jvhffvlhpHJ4pZlNjnnHQ/ezTqSuG5p2jioExchgW89ofUhZRSQNm+srrK4MmfnkdaK1RtpIM62JWlGtDDh/aYNN5yBKXOMowgpr2tL4iHGWcaE5nDVMm4abh4fcOpwQc9eqsx22a2m6ObuHB8Aq125McGh2zl9CKU97PMPNmwWAkIgU+Jd5J0oKZJCJzBqXUt+k+MpdJcSi25ImOScVN2K5kxedtz4HOSuqehLyCQJ2OvZyJpRIyjbBKUI5ra+Oeuofv47P3/8PgDEAV8yYDz3wc7z2H/0h7vkDn3p1N+60vuy64wHK8xfCEAMyJM5DzLd7QVLjWAc5xl74flwBmfqxGE/0nZSQ5/OpI5OvYqPAlIYYOqx1SD1ASZP5EgLCMkQwiJSjTJQUukQhsdEjTpi5Bh8IKuSxR/qzWhB3e3ltTpXNoEYqtQQs8XZw0QMdH5ZdE7i9m/F8/5Pl7z0XZdlVSdvUS1yXIEcIuXQwva07czuhtq9+iVz6meTAQiQSjSYmd98gGOiScaXQOjBtPLPW0eEzTkojjOeTZIkOQeDGwYwbv/oFHB6h4R1vuId7L2zQXZtx7KY0bs76xjo2NljhGK+UKNmhpWVQSZQSDGWFMiXuuObmk9e59fBTFJVh5fwGq+fPMRyPEqlZRaTSDPQIXyrEWYkphtw6nvLktetc3dtnXncEaSiKEucsjY1oqdjaPosQkluHzyGKgsoMKbSHxhJERyR1qGJW6/QE6EQelnkkGZezyUyO7lU7iIUmajHGS5CwvzOZj3JiXy8eH9J9+/FipiHJHGmQ9n3qop3W126Fb30zoVCL38vnjvAPP/oqbtGLl77nLi5uHr3am3Far0C95EHdRz7yEb7ne76HCxcuIITgQx/60G23xxj5i3/xL3L+/HkGgwHvec97eOSRR267z/7+Pu9///tZXV1lfX2dH/zBH2Q6nX7Zb+L5nh1pzAML6XBM3RCBpChKiqJIhI6+UdFzKEJIZE7v8dEvVDDWO5x3OOeJwGg8RpuCprXM55YQZJKSRpLaIgbAE2UihoYgMKpAkzoIvRS3N5ZLIKnniKSrVin6EMOYclcWaoxMbowR5x3eu4Vi56TnSUpVjjy/UyKlXPBSTo6AkktJMkELsf/xCzDy/J/+E3++Z0o44b3yfKO3Pkn5ZLJy4vsIVBdZjYKLqyNef89F3va6e/imN1zh9fddZG1YLazcfH7syZ8UjghBKKatYzLrCF3k/OqIN957GeUCXT2ntTVCCZTW1HWNUJHV1QEiWgotKcoSqTVlUeHmjue+8BSPf/oRbj5zixtPXuexTz3MY7/5aW499QyT3V2mR/vcuHaVvRv72LmDIMHDwf4Bzzz9DDdv3GIymeFsRBdDhuMNVta2WBmsMB6tc3A449rNfQ6PJty8cZ2bN28ync2Isc88ykD7xGd3chwZwgnu0BJdJ2AixAK7BAE+AxSf8A5RCoKEIAUWcAI84IhYwMZIGx1dDNjo8QtSbfpyiRBfkojnq/G8cVovXt13vo3dD7yTH/uHf5tf+Ic/ufgp/u4x8s2ve7U377ZS91/h2b814hde9/970dvfeukZxNve8BXeqtN6ueolA5TZbMab3vQmfuInfuJFb/+rf/Wv8mM/9mN88IMf5GMf+xij0Yjv/M7vpGmaxX3e//7389nPfpaf//mf51/+y3/JRz7yET7wgQ98+e+CJUiRcumg6lxyipVIVJBoFFpotNIYo3NuzJIY2MtnQwh45xMo6fNxYlrCTVGxuXmG9fUtlKqYzTtm8w4bPZ3tiNEzKA1FqfBYXAiEKDBSo6XK9IslyODEa8MJwBRDHvcAPXk1LzrOe7quo8vpxM65hZ1913W0bYvPHZOToKW3qe/Bie59XMTCeYM+Kyh1UVhcoSdeQjb7OtFpeuF+WIKUk4tqjEt/jqXhnCSKQAwNQ2G5f3uFdz14mW9909287XXneONrzvLQlfPsbKxQZh+Q2BM5xe1yY4HC+bTwjscjNoYlD17c4ty44uhgSmstQXmKgWLezGibhrKQFDp1X4ajEaYaI8sxTRd49AtP8ImPf4ann7vJsYdZ4zi6usczn3mEqw8/xtH160yPD5nZmjmOqe+YzGccTQ453NujOZ4wlLBmNMY7uskEO52ifaQ+avncZx/lk5/8HDdu3GI2O2ZytMfh4RFt2+Y4hAROTna+gg9JcRWXn/1SRZVTsEPAEfAi4iV4CUHE/DdyNzGm4zWkn7ntaLyj9o65tcxtx9x1TG3DzDZMu4badbgYMv9FoIRES/WC/f/F6qv1vHFay4rvfBOP/bV38t4f/SV+47/5OzxUDG+7/UMP/Bzxbxwh3/jgq7SFy5KjEY/9tXdy7a+XfPLt/+iL3u9nr/xbnvi+la/glp3Wy1kvecTzXd/1XXzXd33Xi94WY+Rv/a2/xZ//83+e7/3e7wXgp3/6p9nZ2eFDH/oQ73vf+/jc5z7Hhz/8YX7t136Nt73tbQD8+I//ON/93d/Nj/7oj3LhwoWXtD3PJ3oGkuVXPzwPGXRoNCAJnSeoiFQKEXyahfC8K/14IpMHQCRFhVQqjWuKiqHWDKpV1NQydxXTg+vYumY8GHDh/Fm89Dx9reP42IKPaKkxSmUr+n7l763x8zT/RPeD/PfkHQrWudylWS7+Rieg1ef09KDMOZ/GDzJ1SvpORv/v3va+HweFEDLlIT1/D2BijLgucXCklIurechX4QuuyvNJtkuuy4k9xZI9078WROGoBpF7z2zz9gfu4v5LW5QjQRA1rQ9sjg1ba2Oe3T3EBpK6KS7HRwufluCQwqN0gZeao7bl8ecOOL9xlW+6927Oro/Zsi3zEIlOg5UU4wrXtYiqYDQaI3RFawOf/OSn+eQnP4vziigKDiaHrPnAfaMBdTPl2YcfIwjHyoUNhtsraDMgCMG4GnG+PIsoBOsrFbs3d3nq2i43DqYcHO0xb1sqU1CtbUFUKGkYDAeIkMaJMSbycg/EhJRo1atv8hEjRZKAL7xS0vESQkjHiXAQIy7qE0Amdd9EDnvsQXjIwYAuhGTgJ/LIMWTOlRQogACVMshKUCidEo2fN8L7UvXVdt44rdtLvvFB7vp/f4F/femj/9H7ffjBf8Uf/Dvfzqdvvo5L/8VThNnsK7SFJ0oIdv/JRR79xr/zlX/t0/qK1svKQXniiSe4fv0673nPexZ/W1tb4x3veAcf/ehHed/73sdHP/pR1tfXFycZgPe85z1IKfnYxz7G933f973gedu2pW3bxe+TyST9o7/yP3mi9CJzI06oTUihdCnRL4EP52xeQHO3IqRo+xgjUQqU1HgpaGNHFAqj03OIziNsxAwLytGAck0yXl/l/HzE9OCQgSlYX1uhDZ5LF+7isSefZTKrcd4h8RA9MUgSSTe14kMM6GxM1i/pi4VcCBzQuZDloQEImEKmDoAER8DF5BFC1EStaGSJDo6Bd0RliKqgjR6BB6OQIRKdS+9LJpawDz2MSBkwUiqkJruQpgygnlh50qelJ8WGEPJoKvlx9F2iZN4mUAqMT141QStCiBQhcu/GiLe/5gIPXlhlbazojOTYDXA4hpVidaVMpOXs6RFFItOmz4fk85LJtW0LjWsoomXvMPBLn3iMRhb8p9/wEA/sbKOFp3YdpqiwrcV5i4iCOghuPLvL409e48azR9Sm5ObxETbO2T2cUNQzirNnOb+yjps0PPfZZ9iqLWtXzjI8oyiUYdVIlEjKpNTRUUwRaC3ZGg9ojQFt0GVgNFSMirOURrF7POVwNgNVgEvRwiJ7zUDmoaBS94xIdiLJo50+QDGkMU0M1D4m8H0C2MQYkd6d+F70nZcETkXIXb2Q7PPTjQKfydoKmXx+RMwxU3HR6fmd1it13oD/yLnjtG6r9uyI//5LgJO+fvbKv4Ur8F/98pv59OEF/LdffYW37vZa+cgWP3ff//QVfc3TenXqZQUo169fB2BnZ+e2v+/s7Cxuu379OmfPnr19I7Rmc3NzcZ/n11/5K3+Fv/SX/tKLv6g4wW5laaEeFxrIdFKFkMYTIjumnOROhLgIRYv9yTdEnPN4GTFSEL2naVpMKOi6jmpYURSaoS5ZX10DvcFsckywkbq1HO7uY23AuUjnuqxwyVLOfMUaWb4e4iTOWrqo+pgM5KJPYEqIiDGaqizQWhCdpXMO6yOqFZRSo0pDjDDWgrODgnIwhmpEU0+Y1zXTzmHJdudBImNESZ1Iwd5nvk7+POWyQyLy9uZb0pbm28OCHCxu69r0FSTIEFEIpDZYAlpELm+t8Y1XzvGai2c5s14RjKaRmiACwc3RGkyhct5RBkeiTzZO+hQhBUoroipoAkg6tjcK3nL/fTz59FV+6eMP00yOeffrr/C2197LaiUxRYEfFkymNVd3D/ncc5/g88/c4rlrtxgOx3QCrh8e4UVyctXdjD0VuLy9jb95yI3nrtLFgJfJYM5KhZvU1HuHdHsHcOuIwUHNjhcMjcaWJX69RFVDGmMRuqCKktp7OiBISesijo7gEvjKh0uCpAJ8TD9pyiOIpHTj7FVIEH3njwWn6WTJwBJ8sNzHvdibfBz2B2J6eLrNn1CP9bk+LxM+ecXOG/Alzh2n9Tuq/27nE9izv8H3/9Lvof22L74PXq569p+/nh978z/m3ZXly2AnnNYdWHeEiufP/bk/xw//8A8vfp9MJly+fPm20c5C4tqDgJ7TIXortv7vYTGakDL7mwQWIXbee1Qs8DGgfGCtHLCztoXKQEGUGh8D0+MZMUQ21geMBgNCYSm1ILjIrO64unvArVt7zOdzgk/+HVqrtMhz++K9AEu585NAgcQTEmAIARmTTZYxBUVRIJDY1mE7S+stWki2BiO2V1axGm5NJ1zeGvP6y2fZ3NyiGI1pZkfcuLbPw8/c5OnjI2qlkKJCBpU/I7fohPQ+Kb0M9SThNYSQGyTyNs+UJZdlWYvsl8xlsQiU0ghfs10Z3nLvJd503znOnVljODLMosB7UBIK79N4LI89TrCalwAoL+JeSKI0hM4jY8dqMeD+yzvcvLbHE9du8ovHn2PSHDM6u8VD586ScmYiEsfx3pQnn97jmad32T+eolf2mAvNgbU4AYPSMNSSZ2ZT5I2rVDOf1Ei7R4CHpsMgqA+OiPOWMG8o5i0XtGZtNOBYGOT6Bq4a0inDJHbU1nMwnTOzHZN5TWMdddMSvAcXUFJR5PedxjExd0KW3bVFPtNtY7Z+ZPm8PRFvH7DlP/Uf5om/njDRi4IgMnU6ZFKu6pMcbjf2+2qtL3buOK2Xp4xQvHHtOX6N3z4f6cupL3zw7Tz6zR9M/kCn4OTrpl5WgHLu3DkAbty4wfnz5xd/v3HjBm9+85sX97l58+Ztj3POsb+/v3j886ssS8qy/G1tQz9uWGS8CMXt4XO3K36SfHfJCFkQETUUQnF2vM7O+jbHs2O8d6hS01hLjBJddzRqzrgYIQtBWWjQAaGHDAYVh0dT6rolSEnUoLV5sa24rZsTexmtPKEo8h4tQGm1UJq0naVtHdE5SqM4s7rCvRubnFldY3c2oWkn3HN+k2+47yIb62uUwxHCrzA5u87muKJ8+mmeOppTd4JAkUcFSz+Wk59R76/R/x5j5vmIFxrBEZdBg4vnEgKVLEnxUmC9ZyzhoYtbvPGuM1zaHjFcMXijiUGirGBcVVCU2LpNgEYk63XxvMv2/nOzWa4d8q6OPlDbyHHnaaOhbh2/+fQNdj71BWQ03Le1RSUCdB7ZOEY+cq4cMhYKtVXy7LThxnROFwMDLZDFkC9cv8Hjz97g9Rfu4bXndxh7y3T3kCIoBsYw3z9Ax0iBoNKGcqwZlUO2RhXmzDa7jeWZ3UPq1jKznr3jY67e2uXWwREupO8BIfUzjExmbUItdWaZH8uCp3yCA3QyVqD/HtxeJ297vrz89vst/7WY391m1rcgKb8Ajn559UqdN+ClnTtO68urTT1DvuHtyN0D3PUbL/vzq61Nio0mg5PT+nqqlxWgXLlyhXPnzvELv/ALixPLZDLhYx/7GH/yT/5JAN75zndyeHjIb/zGb/DWt74VgF/8xV8khMA73vGOL+t1Ty6SUoL3gRBEsuOOYnHVmYieaV4fY1xKc+m722JxpRiIFEqxNVpjUFYcHh/jItRtx+6tXUqlWB+v0Gx2KFkw1iOqyhCERYRIORgkLkdIZMYQUuDf4go4LtvoC8ls/kMfxHdSrhu0IBqJ1wKPp/MWFxyrRcXO1gp3bW9waTxmqAuabkZVVaytrTEcDTHGMByUDI1hY6WiGCrGa5qPP3qNzz99zDHJfEtJhVIqZfz0oClv10lSZFLfJPLH0hclO9cupgTLhVNKiRLJ0FEIiK7h/MaQt9x3kctnhqyuFaihoY4CnGJYVKysbRJDy9HuAQtLsH7cEV4MpKTEXaRCB0nTwmNXDzl0EqcUgpKDSce/+7XfYnZQ85YH7uXSaEBoWnaP5wQpWFkbUTGi3F7hRnOV2azBxshQCYINXL11iJKa1bUJl8/vcN/Fy0yelTSzGicsXWsxRKJSlKOCcG7I5rkz6NUxky6w/4UnuHb9KtePWxoBV/cPuXl4RGMdIBeAQMSkK+vlwsvu33KEE0U8iSVOfhq8oHvyJWo5CoonfkQ+RNN+DiGm8RKJOCuUQoaXB6C8WueN03p56oc3H+eH//XjvPFX/0+s/oN7WP2lR/G7ey/b8z/9f3mQh3/X337Znu+07px6yQBlOp3y6KNLs54nnniCT3ziE2xubnLXXXfxp//0n+Yv/+W/zAMPPMCVK1f4C3/hL3DhwgV+3+/7fQA89NBDvPe97+WP/bE/xgc/+EGstfzQD/0Q73vf+74sBc/JhTBVmsuHGJMraYwQJbeNBrLRV69YQKY2utSaGEW2kg8orRgMKqwPNM7hpeJwMuO3PvN5oo1cOHuWK3ddovOCi2GHrTOr6ELgrEVqhSkrhFTpyteH5GpL5k1woqezAAOQNnSpLOpTiJ0EjEoGWc6ihWM01FxZ2+LizgbbY8MoghQOXWrK0Qg9GNEGiQ6SUTHEjDRKNtw1Mmysjlgrhij3FA/fmHHUWgJLBU8PUsTJ7ePEZ9iDBm4HL/1y+vz9EhEEERDRcnZseNO953nNpXW2NivWttaR5QDlBWHqkWrI5uYm1jZMD6bUTYOzPvNcbt+W5XgPRPToGNkcDhjrgqeffI5p3SBDh/SRGATPXj1k//AzfOLxZzgzXmUgIbqOwpSoYpAceJ875tHrN9id1/gQ6FyDChBQnLm8wzN7t3h8VPGmuy+ysXOWW1evM5vOEEri8VjpMOtrlPeeZ/Puyyhd8uynvsCzT1/laG/C4bxl4h03Dg5pnEdIjQgCJwMiRpK4LGJ96moJ2SvLUsRByiNK3KoX87p5qSDlxQEKy9aKOKGIC4kXJYV4cXz0Reqr6bxxWq9Mfert/wjeDlf+xQd46L+y+JeBkKzuv4J658HLsHWn9XLW7h9/J+1GOi9Uu5Gtv/fbI1i/1HrJAOXXf/3X+fZv//bF7/189w//4T/MT/3UT/Fn/syfYTab8YEPfIDDw0O+9Vu/lQ9/+MNUVbV4zM/8zM/wQz/0Q3zHd3wHUkq+//u/nx/7sR97yRu/UI5kmW2IyY5e5Gl7Go/ElE6c2+G8YHFjmfnCMkgv5tyd1ntuHh6wN5miqgEqSqQcULuOW0cN5cExVkqiNwQHmztDQojM6jnzpllIeIMUGF2kDsUiPZgFmTFkEzZ5YvHvJbQ9aFBCYLzDENlYHXFuc4NzgxVWx4ZSWZTzNFGx38yx3iYeCQIbBG1Q+GLIeGWFNWFZH08YGMVoVLH52Sf41Uevc33msNYu+CcASt4+2ukr5Kv852fi9N4dfWelfw9dBERkZAJvvPcSb3/wLnY2NGfPrjFc3yDKkiIahEgE0tXVVepaEULi+7Rdl5VDLwQoST0kkDEw1pK33n2Ou1aHPPpckn5HN8dagdIVXRDsTi232gM+p46R3mJkTFlJxYBCQmxnTDpHJw0ugG882gfWVwcgYHJ8xP7hkFt7NxjZiAueoKCqSqQMDEclO3ddYLR+hlINwEviLCBmoBuFiorZdMrkuCZEiQyS4ANOZMUZGaZGcMEjQsCFFIKZ4LdIKcdxOR68ff98cXDyfHnwi3nZ5DtmJVY8AaiX5m9kxdBvt76azhun9crWE9/7d3lg7Qe47w99hujcl/08+vw59n9c8sk3fXGfk9P6ytfV/+e7+Jn/69/gjUX6bv5qa/kD3/wn2fm3mrWf+ZWX9bVeMkB597vf/cVPaqQT4I/8yI/wIz/yI1/0Ppubm/zsz/7sS33pF9RtYXRS5gUsBeWJkyOcqBejlBDDcoYus1yWpepHyDTmSc6xjsPpMW3XsDeZMI4w1BUXLtzDrd0j9g/3UfsTvJbIehffOcrheeRQ0dQ1ztsETkIgCoXSGilUOs2faKGc5A4sFEhS3PY5V0KjPYy15MLaiMuba6xVhiJKjAIpAkFGWufYnR8z7yw6WgotMFqClEhdUlRjhgX4QiFEx6CCrSpSu8j+I7cWksxF4vHzsm+WXjEsyL4v6KA8r3sSYsSRxm8722u84d4LXNocsLZqWF0bgyqZzR0OSVkOKMZjRitjIDnN1nWN7SxBKKR8cQ5KmqRJiui4d9Xw9ssrPLQpeOy44wt7NU/tT7l61BJah5YGHxzIDGZDpG08vm0RIiBiSK8VoRKG6CJSRBrbcnh0wIVzZ7l0/hwyeIL1ROcJ3tG0HWWpiGjmhxNcY6mLXRAGd7NmU63RxIDwLa6zeB+IUaKixIUARi7cWSMZADgAvwiI9EKATNu2GPvclq30pTsnJ2MM+t9P3Nr/MSmDesCU/5zCtJPU2L+Exeer6bxxWreX2jnLfX/lsy/rcz7y7p/id/+r72PwnU98WY+XVcXGP2/4V/d8+GXdrtP6ndXVP/Mu/oc/8eMLcALw9tLwxHf/PX76W7f5u833M/rnH3vZXu+OUPF8seoNyvrOSFrz01sK+CTLJIXMke+rpCT6BEqklCCSQiJ1XRxEn0ihXuBjYNLU1K3DZiJk00ypm3TCrkqFwFKYkoDnuVtXkauO1TNrHEyP8UR87iBEHKWRDApNO28gKvLWwcJmXiGEQiq1UEj07893DetDxf3ba1zZ3ObMYID0U4QAX0pqJ4jC4Fygi5K6TWF2axWoymJ0TVGNMFqgzRBTgJKBqtCMTOQ7g2XeHPHJJxtmsUAI0DRE1+AESKFy919kFoJLVviAEjovY5A8MyIyOqJSeCGQUqMdrFWCb7xviwcuG1bXAsONNWwssMeO2dxiRWS0MWR9fYXxAOr9Kc2s42hqcbdl/yxHEkIkcBqcwEUIwjEwgfUysl4OWR2V3L0+4Nb5NT53/YhPPnuDq3WDD4HSZ1O5rKxSvXyZiAoCYkAqCCYfE7Hg4tom73n7W3jjhTPsGEHbzZFnFPWRJExbfOs4PJgzPaoZKsl4vIIuSuzRhIGcsTpqEQcN1lsCEuEhKgfaorO8XNKD6WTOl1lTywM/elJwn0wGez2oJXULFSnR2gWPj3EhFU/RjElq3HOFtFZEnyXiIpHKAZSQGKlOKIWyLB1HF9LrufDVr+I5rf94Ca35/v/9U/zg2ssvE/63b/jnfP8vfRf1t70IcVYqfu+nd5HixY8hReBPrD/3sm/Taf3Oavrajm+uXlyx9YdWd7n4V/8e/+3uH0L+0sdflte7owHKC9wsRZLnJmJnWMzto8gxaTEuTrgxk1dTPGteBIIHQupyRMmgGiCNITrJYFiwsbbCM/Mjnr56k0IXnN1ZZW1tQKECUnoaO+e5G1c5sDN2D4+o247OuXRV7lMSr1GSGFy+UE1UyLy1+OhvS+sNJzggW6OSe7eH3Ht2lS2jqaQnqjxKyQZv09Zx42DG8aylc4q6tpSFphxoVCWRIg0IlDGUxSqjQuCNpFaBN0bPrOlow1N84qkpLrFRiSLgQkplllEiUNmLJC2bvfQ3suz+9NtsvcdKKIJkVSm+4dI2b73/AjtjSaUDRhmUMDQu4kMkShgOB4yHQ4Sf006P2DuYcDRrQMm8b8MyYTcmsLJYXKVGFxGjJcFbgvdUAc4XsKkrVqWhkJKP37jFk4cTrBOYKEh8Uw8FaYRkffL0QxKiA+XxQhN9YHJ8zNXrV9kQHXJ7jWElGK8oVosxcmOV4AWN83TOIZ0DXeKRyEKiKyg8DGqN8z7JtIUgRIvHIaNOx2c/sjwRENm/6WWfJJJ3AgKBESLLsQU6pswiF2TO4Inpu0HvTxMzxyg978hohJTJoyaTmiVk5VV6bO/J44PH+qXb8mnd4SXkKwJOIIHcf3r//8p7/833od/zNI/8xDv48O/9G4vbX2NGr8jrntYrU9f+H+/iE9/514HBF73Pdww8r/0HP84ff/d/gXv8yd/xa97RAOUkSbb//SQ9sHfbjLGXvrIICbytRHImVaG3eE/YZVBViBips4V9YQzlaIwNV5FBsbW1xs72mGg9OkAxHND6lqPDCc28I/hemdMDDo+UKRl4sZ1CQvTL/JpsYd4raEKMKK25Z3ODB3dWODOSSJ+syKMSeB/Ap4V2Mqt58uYtjqYtRlfsHR3SOsFqOaaqVgidoK07RoO0OBpTUIyGKL+C7zxvfUPBTAw4bD/No88eYFFIZRLvWEgQiUS8kKfGpc8J0UEE60FIg0DQhRSWWMTA3WdX+ZbXXubu1RWGoaGkQgVJoRSuiHQ+gCkYjgYgIvPpDGst+4fHTOd1bxGzIED0cnLIo76YRkham2R3HwXOe2IwRCeg86zLgjec2aHQhkpKHjucpZFPlEQt6UJe85VCSE0MCQDImDpwnYw8vX+L2a8f8fD6mAcunuO+7XUuDkvWhlXqwxiJHptEuGaICAoZJINBwdp4jDs+ZhSv4Z65njhHMgdNnmRN33Zoiv6DXhzjiQQO4CFCIQWV1FTaYKTsbUwIIqYuXszSeSRRQBcSOHEx4IlIk3KiNBIVk8uEBIJa5iiF/Dw+JHv8EDkFKF8DpS5+cYn2y1FGKO4Z73P90kXkRnsKSu7g8gWsyS8OTvq6pMfY8+uIx3/nr3lHA5QXeHBkhQGkE7kPMUuOA1GqtCAgkoV7jOD9Ys3rE4ETQEkGaUZrvHMcHx0yKgtEiKhCM15bY1SUbG2ssLFaIH2kbT2mXOG4kcxtQIRk+d6bZyX1SUrSFTJ7egiZ/k66Ig4+4IVP1uZ5dNG30VeN4uy4YKw7ohA4IZkT6KyndBETDS7CYdPggqQUcH1vn92jmot33c3KYJWmc9TTmrqaoXWJVJ5Sa8qqYmU8YCcE3vH6C9w83OdgcsStWQIbMoDsM2ISCQElJDHK9FkqkUY/Io1MlEipvkEIShXYGWje+ppzvO7SKqXv0F4xKMcgoG1naDVgZVQhB2OUEsznU1zbInXB0aymtm3iQsQ+u2i5z5dhgcnRNUaJkAZdVIQYcFbR2YhtHSK2bBcFw7ObbI4KNm7u88TVGxzMO6IoUUHjoycYyNbC4CMipE6bUNDawPWjYyazGVcPjnlsbcz92xvcfXaDsYGhgaqSSRJeDtFRY0SJ0kPUyhhjDO7mLi5392RYHMxfRJGTOSPASepSzB0UJUALSSEklVQUUmUwk0DPwuBNpfs70vFoRUSq1H2zwecujESGiPSJdOxVjiWI6XvUj4xCBon/MU7Jad0Zdd8/u/aKv8ZP3vXL8Kuv+Muc1ldR/et/+lN8173fTDgR9vnl1B0NUOB5BM1epBPzkh8DIfQ8jxP3lxIZ5dKALBNqe4v23n+kMgYjwChFaQpC8BxNJiAFqytjRoOKQoOQga5zlIMxTkQcDqMaSqWZhhrrLUYnubHMC9/CNyQDlzSSSsRIKblNxumc43g+A1apjEJKaKNk3qV3JhFooChKirLChEBZFOwfz3jq5iFvFobVakRVRA4nhzjbIilQWiGjgaJkMBzg7JwdD+9602VuHk75D5+5xtHMZbKsIIokg9VKY3SJwKCVRKpsN68UqY0CwQac9JSm440XV/mm1+4wrjx21uDKMaE06KGhaRsGSjEer2KGK7S2o20tldEIVXAwr+l6/UgMpGv7JTm036dKgo8e5yK2i4Qg8Qg6IWilQBQKTUQbx+qwZGd7iwvbA359GPmNp29y8zgio0Gg8NQLOa0ACIJoPUKlfBypC7xQ7E479ucHPD2tuXw858rGmHs2hpyxGkkDZoZDMQuKloKjoLk+bXj02WvMuy4HW4JUEoRadKSeXzLHN+SW26KjgchJ3TKxS4TvzQlFOtZidlfplWEi8VuaSMqdygDFB08QcmnQGRK4cblr0gMUH/NQTywjD07rzq4vvFPAU6/2VpzWab143dEA5fmJuUsvERaXmiHbby6cTU90XXp5cv/7yStCSaQqCyqtWF1ZQQlBPZsiQkBGj3cdIUZMMcA1HdoYiqLEeiisZFCWjIclx7bB1h2QqLDIBJB6kJJev58t9AFw8YShW8Ray7OHR+y7s1xaWUW1FtrAQKWEZonEu8jqoOTC1jphb0ZRGqbHcx5+6hqHkxlXzkdW1laIwaFVIhgrJZDRI7RBVgMGdkhVz7h7c8h/9s2vx1n4lU89zSxESiPRSkEMaK0oVAExWdIjIkWpKQqNCBbtJUaVeBxDPeUbr2xyz5kh8+MJnQ9YIbAS1jYGVAyIrcKUAq0jzazDCBgWFY9NbnBtdx+PQGkBTrxAUdTvO3JnwLnI8bRhMtW42BJUhSg0qlRUhWBQSrQJGONYHSpWqkusVQM+8eyEp/cts7rBBIcTApROz+18yhHKRn/pAFFEJHWA44ljd3aL5/YOubq5yj2ba5wfV1xYMawMK2ofuXEw5ZPP3eKR6/s8uz+lFUl1JEUEqXJnKCyO42VniAUBvL9NkMBHTJux5JVEj80hjpI0SpT58eTRjZKksZrwIHrZcuasyDT6CzkU0rqAJ8mb4wLm952/F51IndYdVtF7rvzcD/LEd/7kq70pp/Vl1HN/9l206y/PN3H9Ydj8+y+fn8lj/81buPJnf2fPd0cDFLjdnyOkFgWQZvex53SwlEkCC68Obuu+3H7luiAMCsGgLCAERFRcOLONsAYZBTEIrBMcTmq2NteoygrrJaUVVKWmKiVSgfMeqdJVbRRkeXN2uF1cNaffdW+U1m939j+5Mfc8uT/ntRe3GIoA0VOZgojChkiIlrFS3Lu9gXWOSQsuSp65vsv1m9eJD+wwrFbY3l6j6WqsbRMfRgYUmqgLRDGgMBWq2+f+rQG/5x2vYTazPPLcEYOqYjAoCd7ibUf0JgfGeZzvMCgKmXgfSim0LhA+gabzGyOqAMe1gKAwRYXRAmLD6tYWIVTYWcR2NTJAZUqEDTz11DNcvbWHlwItBUoJgn/xq/cYPYSA94q6bmnaEqEjUgUKaTGlZDhUDEYSiUMKh7Rw90qFvnSG9WrEb9045MkbLQfTwDR0KeBQaqSKECRCpg5RCMn7JBLRQqek3+i5Nm04bGoe3z/k7KDiysaQu3a20drw1P6MR25MeOagpUOBlogQFsnA4nl+MwsAnf64eJ/LDKI0UtNKIWQK87MypPThGBOnRKauSYp9AEXKpSqUxEudwJFWaGXw1hMROBEIGSjZPgMoj4kQMoVD9v43L9LtOa07rILndT+yC9/5am/Iab2UuvF/exf23Uf8y7f9Va6Y8cvynP98uspf/L3fw5m/N6T8337td/x8n/4//xgPbvwpXvPHv/znuqMBSm8otsyPCSc8WJNwOGYDtEXFpYX8i534e08JYzRSZHM0rRFAaQyj4YCwpRFRYW3k+s19utZx7lxFiJJBNUSqgmk9o24LNsI6s6bFdg3ztqNt257necIZdbl549EIrTV1nVxM+8Wq8YYnrh9y4/Im2wRcZ2mkAzfAxkAXA9I7tgrFSim4cTilc4G9yTE3dm9gu2O6bsho9SyyFnR2hiBxYmQALyJRV2gzQPqAshMeOj/mdVfOsXvskcCgkAQvqX1ASo0QGts1eJcSdZWATggsBmclPgjKwSplUTE7rOmOA9oIdBCUMaBsTfQNYjSmUIb2oEOHSIFkPm+4+tw1ZnUDUuJ9hwzLoLDnc1CUAJWVPjEKTFEiC4WWkgERVQi09hRagAjIIJF6CEQ2R57XYNiuxjywVfHIgeMLN2/x3NEUFzwKQdSKLvOJpOq7dQEdPRqBR2BFYO6hmzbcmjY8OpmxeeOQoVTMGs+1qaeWY4gznOswQmTjPhYclMX76c35Mkh5viEexAWAFiIkibVMfi0iRlz06BjQeZQpRVLphBwmaJRGa0k1HFJWQ46nx9jOpp/oF+qg/JVJgChzo/ppk1Kn2ShfC+WvXucb/uaf4tP/5amd/FdrXfqVMaVa+g79uc0P8u5BAF4ecALw/eMJ3//On+GnXn+Wf3TwXviVT/2Onq8Uhv/u2/8nfpIrX/Zz3NEAZa1SGG3QGUB477EikThDcHiv0DoRRnX0mccQkQQkgUhAS4UVuZUdAyYECqEYaElVqBTSFx3aaPR4RAie1bUB3kuOpjXO1mxtDImqoXMRITRSBsbDkhg2GY0EddPw+aePOJ42WJsJiIlFmySlwSM7x87WGm+5e4fr0xmf62oIAhEDXksElpuHjsefO0JvFIhoaWVBdI7GW5z36GDwQTBrAnXtcC5QC8HnHtvlYGrZ2DpG+pLhsKDIXiegktNpTPMaWZQIOaSbH7Mi4bUbQ55Z0Ty9X9PmZOgYS9aGCiUCEx+ISjLQJaNyiI6BUsLIeEbGcM/GgIEWOBcp0cjQYqcT7GxAvT8gOo8qjxHKIINACovwDcIHlACJBi+SEV3PEuVkMF7fMZNIb5HaEcoEKAyOQop0jBjQOvF1IgaBRGsJMjCMEqEkK8OKc5uKi5uSB7YGfO7aLo/ePGRv3jIn0pEiE0z2L5Ex8WG8iMTAorPgQyKxNo1jOu/QMRKCwAmNlJHoWlTMnCeduDEygyiJRCqVu1AapXJUQkxjwEgf2pdGhSGkz0HKBNY9kEaGQOz3V8/PSjwasllhNRiyvrnOvO6w3mGdw3lPiILoPUWftdSPc2IimYsIirgcd53WHV2xbTnz8fbV3ozTel49+g/ewk+8MxkTvnf4lds/P7B6k/9xraB4GZ7re0e7/Oi/+s/Y+D2PfFmPv6MByua4ojQFRmlEBOcdXvaZISkNOI1I5EIBghT4KAk+uXPKIMH36h+B9QFJsnsrtUFFB66hC4r9yTHBdwzHJdYG5nNLqSSjocFjCV5kImdgOChRDAgBRoOSmbXMOov0SXkRo0tXvV5TBLi0Pubt91/mDefW+NgzLQ/fSi6evUeKkJ6ZhWdvHXPX2iYjI4leYYNLxNq81Yezhv1pR+sSr6Dzhs8/dosnn93jgXvWsPNjKMeYkSHgsG2NjgEpI8ZIXKnRVYWgpp033L0iefOFEd5HnC7RUjJvHeMiES699RRFwXC4wrAqGReStUqzXirWDJxZMUnRVErWNhVSRLQJzKc1N/ZaKtMwHg8JRqIHEMMx4zIw2jrHmXNbjAYlqp5ntZPPsuyeLyROTBkkIjqUjDgjaVGYmIzirARdKGQRUx4QEKXI6qqAMYKIQmsYBMlIay6ubnNxbcyljSMevXXIU5MJN+sG23kUipTkrLKMPeQU4j5kIbXElEvdEAtARESLDBZtFEJotNYYYxZSbaNv75KI7OsTIjifntO5QPAuGQ+G3BHJgZh9iGICMz0YAx1z5yN4pFT43vZNJF7UvJkSoqcsCyTQeQu9L0ruTi74PqT9nkjcpyyUr5Uyv/CbvPm//VN84s+edlFerdL33sM//KWlU/JY/gZGvLgp2itd/8tP/n/4A7/7fb9jL5NSGB7cvMGXm3F9RwOUtWqI0TqZXfm0cCTLDgGaPN7JJ+reSkL2HiQBFcEHQRcFNoAVKYitE4m/QZQUUoLrOJw13NiboFRkY32AEBIdS8Yba4xLjQyGEDSg0FpQVIZCKQ4OJti2wzufzLFcUm0YIvj0+mdXVnjHvTu8/cIaw0KwUmlKFWn6bkGIaYQQBbcmx8zdBhsrA3zjUUKBizgvsCFyNGuYzC02gpUQheDa/j6f+fzjfMc7H0SIEt9J9ECjCoh+CtohowIXiHiqoWRl3eC7mjUiV86PmQpN8jqF67uHOCdQakhVSgbaoI1OYX1Ko02JMQZtAlFIWhdpK0c1CJSlpioLnPdMDg+YiQbbhaR+ijVRHHL+XMna5QsMt4bo0iNkR8QlJ9koWbrWLitmAjJSMrdw0AQ6BaWASjl8iAwiqBjQInc78qIrERipkV4kbxAdqGLg4tqAlcGAuzdWeWL/iMd3J1zfP+Cgbjj2HquSMZ2MMW/RclzXE7D78Uz/u5QCo8UiBFJrvfx7Dq103i3GkN4naW/v5WOtTWPIkLpJ/ZjLn8hA6kGYDWm7gpCEvI3ChWxeKGinDUd+nxgtG+MRo9GY6fGUWzd3kVGgZNrfvTyulzrLRSPrlIPyNVMxUhxFPtfNeagYvtpb83VX6qEHqC+vsaG+Oj77sayo79+mGpSLv3UbX94FyWYxZ+/iBdxzV1/yY+9ogDLUBp0VMUFlB80T5m1BiBwemBbqmEcEUghMUeBVJEiBFhraOQfNnE5pBtWAiMF3jqKCSkI3n7M765BourphVGg2RpsMdcVAVxAKZEhpxUo4ytKgEDx5eMD+/j7O2cQXAEL2WymkYFga3nLfRd589yY7Zo5FsDE0jIxgPnepixI8QWickOzNaq4dzdhZHzA04KPBEWhdwAmBReCFxKmU8xK1Yt5aPvvIs+zu11y+tE6QBpwH7TFGEqOjmzc085qurVHaM16V2EYw9aArw3AUmLcR71LHRsQCKQxaOpQxhGDpXJPMzjrLYGPMSCta65m3gSAbPIJNM6DSGqNUIhHLgHMTJjPLrJ5TDDznz28SRUnTtbS2RZA6RMkcDCDeTnqOEe+T740j8T2uH9VU0lMOFUMLg9YyLCODUmGkQIpIoXpTMoHuKaTRAQFcS9FFtjGsr5WcH57jvtUtnhiPeWTvgCcnxxxYTyciUi4JowkDyyV/RKR/y2zgIkQCx/19TmYJueCzH8/SIM2HgPU+dVKCz12S7JicgY33aXQZQgq4JG+P9wmgCwFOggiS4DwxBCSC4Ftc51jfGrK9uc5wMEQLwfHhIdFHdAbHSQXXb2t+v5HsvHxaXyu18T9+lN/75h/msT/wwVd7U7526pvfSH2u+pJ3+//++N9kW311mdj94k/9vZflef7W+V/ngb/2A9z7B7/OAIr2AQ0Lfwetl9khvfla8J40dEluscF5hBBoJSmEAiOpCoMpFS4G2pi8H4SQuK4jahhVmkGpGDiD7SShs3jvQLeUSLQw+JC4HFJJorcE1xGCYnJ0xMHBAda6lEmjk+LDi8BARh66NObt969xdhjAekQUbAw0q4XkRnBAkQLkhMADx97xxK19Lm+NuTzW+M7ibOqYRFVSlCYtjDGkaYiMRG144tldPvf5x7lwbgVVaOrDGS5a9EAQRUM9mdLNGkTwRCyeli40TEPg0EuObWQya2jbjrlXrBYVOI8Iya5fyYAy0DUpbK+qDMaAjx3WQzeNNHUkWI/CU+qAMYHBMNJ1Dbatqacdphih1BoHBx2PP3WLWe0QQSfVFCJfugd6kLJwVs0DByEU3sO08bQmUnSRJghM4zHKUhpJqXQi9ao5CkEhNENTpgUZEhcnpNfwriUiqCjZNAq/tY4oK1Q15NqsZtJ1dN7inAMESqXOSE8w7SnbSTnmM6mb21K4+06LzyAjZLfW7D1I8PndxYgUiTwr1DJ5WxARUpImRJEoey+U3PmQEEQG6Sr7/+SRp4qC9ZUxo6rCWgsxUFYlrnOILsua+4+9f0fZAM77U4DytVbbHxf8zHdv8f6VvVd7U74iFb71zVx/5yvXtfje9/87/vLZT/827vnVBU5e7nr3fY/w1Le8GfHvP/GSHndnAxRSez2QM2mEQJ8wX4tSEKVOYAWB95KYT6oyJMKhlBGhNYNqRFkYrh9POG5qGLS4tqZTgUFl2N4YIyuHFIL1gaCIllJGRqNIEDVNI4mhZGgGKCVS5o6LeGfpmpbgXPI/yRyKQknuP7/Ktzy4wz0bHrqOxmiwjvVCsjksEGJOyEudzFesrRQ8czDj6sGMc9UIa9NVstIJlJQ6MlSRWiRlj3UtVhbszzoeeeIp3vVN5xh4QXvUMjnuEKWmXClxnSV0DqOTt0rTthzPa2YNdC5SFobVkeDIBwSOQWkIsmPWOYRIVu6FLjiOUzZXhmxvDChpwUtMoYm+wFuYHFhoj1gZCYZjw/raKtEXYGcUesZ4s0KawGcfeZJf//jjNK1EUkDOjhEmwc20YLPgfIisKDFKYLK/S1rIBUgIUtBGgXUw99n3w7vkDhwsgyKghSR4h1ERIzWlNrTWMW1q5vaYyTxw2HQcukiLxxSagRJIJ2jarPCRAkT25+mjivIx2XNCThrNLRVo9HKZLD+Piw5IjEvzwD6KAR8RMhK8I8aIMRohFH1iNyK9Z5FBXSQQhEAZhUYgfACXOi5GF8ymc27e2qWxlsZaggtU6BNcmF41lYCblKDNqzMfP61XrtZ/+qP89f/8Pbz/bf/k1d6Ul62+9Ts+zS9uf9OL3vafvOlz/Pxdv/wV3qKvv/ofLv97HvzON3L3v39pj7uzAYqSab2PkSBiukqMKSC+T2CF3J4WWQcbdSL/xXzdLXKYoAiIwjCJkS44VkqJiB1126F0YGVsiAaGReD8VkVBQVdLhJpxVNe0tcSoVQYDhRSB6B3TSU3TNAlg5K6Odx4lAvevr/Dtr7mL12yVGDcnKEUTBBrPyEjOrI0oiinzLl29agI2dHQictDCtcOaertEq5KUwAzRdaxUknt3NqgOFNcPDvHBEZQmqArrIzK0+OM5fhqI04DtFMNxRTUYMbeBtnHMjmsODmvqmSc6xUALNgYKpyWF9zR1zXAoMbLguD0mxJaqHKBFpJCRURkpVEcpO1QBVQFaKGRQCBtwbU0toRwYwDAoR2ytS7SOqLFgMtvnE595lKev7lEOBhhvsHWNt02mdyYwcJvVuoiAp1CwUhqGKgAWFTxIgQtJBSRkgbOSuos4Spx1eGuBJvE/bEepkiw3hEjtHHPb0cbArOuY1R0WRRcFnYPWOYJ3+JASj3uQcZKjkTpg2WBNCRByYTC4MBrM7q7pYUtyak98FULkgL/Mm5EJyPQcEXWC59KDlqgUQvSdmYgQYZEAHmIgCEfwnsOjKXXTsru/TxcCQYrMy5Fokb9LabJE79CcrXtO62uwNv/miJ/6O2f5gdWbr/amvCz1k3f9MpyCkDuy7miAIiTJP4LkgJKuPGW/IuSrvbROSBTZvi2deEmEyiht6riEpK5ZKws21le4+8IZBI7dg12EsKDyAuA90gdKrRLfoZ7hKHCtQ5Ua7weEELEW9vf36Jom+agIiVIaXGBtWPGOe87xjWfXKWNN23qClkTfQLBUqmR9PKAsDdPWZYDiCXhaL5gDe9MaFzdYHa9yPJ/SuZboE7i5tL2ClILp8YQuS68dAlVWGFPRHR9iJxbtDeWwYFgItNHMQmR6NGc6bWjriPcDYgyUhWSEog0dvigolKXQgdXVEr3rsTFSFopgLZtrYzZWKirtGVUSESIxtggsg0JjCoWtBba1HBzMqAb7rI3rTGbu8L7g4NaMRx57jtZ7dKkJnUNVgWg8tY/EkJN+n+ckK0VkZVCys7HKtvTYMKUVAddJOh+YW4dD0DrFrLV0MuCco+06fIzY4Oi6jrIwBBepmxaHxEpBEJ4YLS53HYJPnY0YPcRAYUziOp3YppS+3Lu/Jh+RxI06cQyf8N9JY8Cc2oxI6pzQ80jEgrMiswuwEgLRewHlrqFSCoMmBI9QiWRjnceTjNhEHo9JLZAqyfOn84bOOnQ1wDuPdclvwTuPzDydsOB2AeRsHn+qM/5aLPVvf5PP1RfgawSgnNadW3c0QAnBp7HJ4uTZW3tnp3ufrlpFjEiZ3DVTfkk64coYkpkVAi8F0+BYWak4f+E8w6pk7+AWu9M5MXSMioJxUSCc5GAi6CpD0ybPC6MqOjdD0jK0LV0IGCmoD48gWAoNSmi8HlHaI9501vDWeyrWqoZ61mE7RdsGmujohKAAzo2HXBwOODo8wqlkOKcAA8jo2Z3OedZqxqVCzD3SJ6VPQDAIsFJqdGkIs4B2ERlrJvOaTklUIdLoKUbW18YUY0/XeWy0dH5OCB3D8ZAYCw6PalSEcSkotaHSiroLhOC4sH2J69dvsTc5RuOIwnH3hRGXz2/STmesDjXGCJpZC9YSY4suSrSMzGeetrZMDvbQokRR4r2jrSNP36i5ut+BFAy0wuEIUiFjhbKe1gZsTKTY3nBPICgFbI2GVKUhRGg6zX7Tcth66s5Stw4XaqyX2JA8Q2z2kIlC4KKnsx5pA7ZNvBJlDF4mIJLk4UmW3pNfS1kSVMgmcWIROikQaKEWoKX3NPHB0/kuBVH6HkinY9Ln99GXlIIoknutFGLRhTEm81BYWuArlUMug0PJRELOEYpoCVpqAm7hnix6YkkEax1CRTZWVxBKcjytqWc1oUvW+TIDpjw5QotMnD2VGX/N1qffs8mv/Jrnm6vTMd5pvXp1RwOUdNWdGyYxd1TylSeAiNmuHoHKi0AfutYbfUlS96SNnv16hiw0lZEcTo64fnjE3Ae00AxEiQiGeetxB57jwhGFQpWBUoGNCukd87ql9i0qwnQyxbqO4AOgsC5w71bFt7xmg/NbYN2cxkPrBMdtR4tHFSVRCLaKkge21nh295hdF/AkdUgyCQtM6prP7845tz1CEjDC0MiYjOA6nzQphcHNLGVI3ZnPP/EMj169wUNbFcXQJsfVsSaIjs45XOgIscEUUJYDWgdu4imEoCg1rQddjhiYksefucaoHLK+usa8qSlUIk1ujOHCzgqPT46RQXHu/DbN8YyjG4dMZx2FsIwqg0Izqy2+rWnmgcHAIHDMZzN2J5bal0BHpXVSJUlFKSpKE6ibjka0WOeT900MaCmosiz2+sEewTvmXcd+13AUPNZ6rM0ZRyHPJ4RKRM/c2chimJxBExFaImRE4fJxlYzPQuwBSTJI0zKdxBP5WuGFghgxKkvgQ0Bl8zXhIkiFUgbnPMEHrA0oqVBFP9ZZRByjIHX6YlyMM6XM4CUDNCkl2ihCSF2PnnPVb1Mi1iYAdpJP0pcjEZ219FRVgQwlOgSs6Og6CyEgxbID2bNmenv+0/raK7+3nyIZTuu0XqZyw4goS2jsb/sxdzRA6fNAkkInIoJPBlNCIsVS6QAQRCSGdLLVSqNE3yIvsAEO5jW7s5rKGfb3j+jammhbBkIwMJpBzsSxIdC0Ftu1DIYrKKCzXVIKKcl83nLUzLFNw/HRnGkbaGJBjB2jMOXt99/FQ1fOo2SHjR6pJVF5uhDpQsToiHORCsE922ucv7nPwc0JIAkCEqVC0fjAs1dvsrczYFNKen8wl6/epdQoVPLPkIouan7riWf5pV/5LGe/7c2srK1isBgFft7h545uXiO8wyidRh+NxxjP2uoIJQw3b+wzXF1lNBzx9HNXOZwcU5ZDBtUKRhe4pkXIRN6s6zlFdKxv3UdYrZjtToh1BCMwQ005VEjpCdZha0+h01X5bDqnayNKFAi6lMgrkreMlBqvQaHQQmKNxzmXSKFKURaKqfc8ubuLdRYrYGYdQail06pPfCAAa9vcdZPE6LPKxiOixGiTeD0xIFQ6nqxLQY5CipQgnMcuKnNPIqnbYLRKHa8MXGI2c+tFL8aY7P6aRzm255akTmBKhT4xLpK9j4/GWYv3Hons/eBOeKxIhO6PA4tWabTYJ2UTWVjd994rQkiM0Tjf0bZdSi12KRnbaEOYzujaLl8FpHGpzdt62j85rdM6rd9uPfoHP8g7PvknGf/0R37bj7mjAcpS8ZB+AuRxTwpPk8i+mUKUMQcAKqQQqNw9cWgmruNW03DsHdErjo9nGBUYlSWlkgyNRol0XaqUzF4q5La9TEZaSEJUTOeW6bxlejylnnbUURHMEKU6Hjo75B33brFWKupOEoVCaIHUEqkNMqTgv9Z6Su04v1px5cyYJ/dmzFxAao3PsmmJ4ubBMVdvHDLa2sS3DkfEBg+k1F0l0n+dBG8KduuaX/iVR7j/3EXe9Ya7iNQILNJKuuMG29RUJlnO7x0cEkTB5UubbJ/ZYnqr4dqTz6HWPOsbFUUpuHXrFl4UJB2rpCwKRqOSwdAgVcT5hnLVoKRiuGoQzZDVjQHDcZE+eeWZTyE4SVdbQgxMpw1Hk0iMCikUImb2kFRorYhRIAOYHphmsqyTaWF3RI5slzxwpKITAhUFUhQIlcYSCQAsfUNiBiIyGX6kwUlkkclkCk0IkeBbRO5mqPx6RioKbYgh4pxbgAUvAlLJBKCCz8AjSeGjjDjnF/4oLSmmIXVk5PI5fO545G6IEoKYQY/WKvNwQibMnkj2zoBIKpGk97nz4t3tQYshpE5MWRQIlzozznm6NmC0oBpUtJ3NHUCBD720OAGpcApRTuu0TusVrDsaoCQJZvKKSB4ZghAjLiTpsRIp20RJgZRqEXTmfFL6RCGYOsfurOawtVipCELSWocxioEpGErF0GhcsDgCCoFCoaREqiRV9t6ldB9h8CGNe2xQOGFoXbIX3x4q3vnADlc2C2LX4Jyg6TzOJX+WCIQocd5hHfjoGEjJfec3+Nz1KU/uHSfypEx25wpFbS3XD+fcs30eEQPBtQgEDiDE5PehkjtqExValHz2qUN+4Ve/wKWdVTbXW3QrKP2AtukQSlAqjZ01tLMpUg04s32ZnQcucs1eR4tINdZs7AzY2h7zyBO7CDVGOIchMhiVbG6M2d5Z5/KlHdrjI1SpGKyvcNdDFwnn55RVCULQzus0DulmNA3M6+QU29jI3uGUeWvxHrzwyXlXJVffmOZ4aMVif4cY6GwguIiPPs39jMb7RKYVQaSRjUjqHCnS6KYsUifDBUeIMSUDawNR4ZxFiEhZlCidgEZZFIlH4h0pukhitKZUiihiIlAvxicxG5nFpTeKkCgtF6CKGDJIkFRVtVAm9e6wUkq0Umhj8M7TdV26b1milKZpW/puiLWWmEdPUsjFCEqIDIpSy4YFQjmpOMqfyVLxHLIM26dtlSek+4JEzBWC21RUp3Vap3VaX6Kmv2/C+r85B79Nz7Y7O45UysUVb3IZjbgIDrDeJwVLSEmvzkeaztN0jsZHGmDqPHvzmoN6jg0h5/R4AoHWe2rraKyj7hyN89gIRVFQFIai0IsrXiGg7Vp8CCAkLkLjAy5KnA+s6MCbL2/wDZc3KEiW98ELgg15vg9KkjJWXCRE6HB0tuXM+gr3nlujUhHvut4kNC0YSvP07jG3jlucB986ovMIJFoqqkJhdETKRNxsOziawycefpaPf+4Jbu5PmM5bJpMZbdeCDPjoiESGVYnRAq8FcXVIsTZi68wGZ+8+w8bldV774CXWVzQiNlQ6slYpdtYr1tYqVjZXuHT5LCtrFcIoiq0dNl/zAKN7ztEMSw58pJElxXADoUo8iroTHM8jjVcczBumbUvnPK2z+OCyIitA9MToshtrzD9QKkWVE4kUAuWBNqC8RAqdumz0n13qhkkpkLIHGilYUsnlj9YmubBal9xXBalzkjsfSiZOhuu3cfG/ZCfvM0DRWlEUBq2TkZ9US4M2pRRlWTIYDBYqnd4fpaoqqqpaphYDWqaAzIVJWy9fz90WKdPIxhiN9w5ru0UHx2iDMSVFUVGYEmMKtNI4F3DO45zPIx8DCOqupbM2BQl6h4uBKCVSa6TWCHnKUfharv/7j/6plGx9Wqf1MtVn3/kzHP9E+aXvmOuO7qAIofJVcfLACCESlVhmh8Q+j0cgQ27pK0mUgtp55rblsGuonc1kR1AKpIYuRKz3OBxz2YEIKKMpjEKqXjqa3FqTDXvAR4/IIGfW1Ni2JXjHuVXB269scH6txPqOLkiCjygkRgPRUyiBkQJnJchIqx0+CBSCu7YGPLJa8eTuMci0SEkh0Aj2Gsuz+4dsbG9SKE3rA15ElBIMKkNhBF3j0JSEKImy5LiNPH31gDPrsLm+gW068JEyu+qWozHD9XWEqhhsbxPKIeXGOjt3nWPz0iaDMwUPPHiB68/d5JlnJtTzjs2x4vzWgJWhRuvI+voA365ihiNmteDppyc8+vln2Lu1T3084/zKmDdevoQqB8RmTuMih8cNc6doRWTubSJ6hoAOAhU8MgUtEUUkiuQeG6LHeY8kj8tEGuvFkNyCZcjob+E+m3xvRDypgFFpfBJj8kvJfiOCtPD3lu7p32mM0o9ifAw4l11hderKhRhBpn3Xy3OllMnHJESssxmEaJRUeG9p23YBTnrw0f/eNu3iNZVSC6VQDCG9t5jGjUVhOMkNOemnopSksyF3d0T/FUnfk7DM9IG8rSEQCKAE0Qv8otuzjI9YknlP62uxzv7t/4D9r/2rFlh3Wl+b9eHX/0s2fpv3vaMBSiQipUIqhYhJiosQmVSYFqqQUtYQUZGIpoLaOVpvmbuOWbB4AloojDEMSokuVOp+OEcdYhrTZBOyWV2zUhmEUpnjHvPVdiIjIiK6NESRRjdawl0bA+7brijwTNqAs0AgZcJI8D5SKMGwKnFIOtUQB4IgC7CBs2sFl89vcmMyp3GeKORigXBKcf3giDee22GlWME3DXMrQAZG45LRsOB4NgNhUMhk464L6g4mU89s7hB1SxEjA6kZDYaM19cI1RA1XkOe2UAOVynWPes7G5gVDSWsbY+45/IZ8JrDvSlrQ8nGWDEaaCSe4bhEyTNEBL/60U/wcz/3CR578hZFVTBQnrPlTdZ1xc5KiSwMtbXsHTbUpoDC0AaX9mEUFFriyY7BpHENoleRJHVNFzxRgC6SCVp0ASlMSvxdiE1SGKJAIJVCiUQGTs+VwIaKAiUNwcvscRIXIxMpkgOtFAKjkzLGO0+UERRInWTFzjmQubsWUnaNVAJrXVr4Y8wpxkseSYwnxjo5QDCEgIhLrxSt1IKbEvJ9UwclUpiCqiqxXUdm7KK1wRjDfD4HAd73ZFuxAC99NIRSBTHaxeNiHvMonfKlkpV/lkH3/ienE56v+fr93/eDfPhf/INXezNO6+u07miAUoSIzt4QaZGBkF0vRf67EKBFyhwJUVB7z7zraKKlDZ7OJ3WIlIIyBsbSUMgk14TkUJvGAxIXJdOuoSgUlVDoWBCDISrQhSKQyZCFwAwM/iiyM4DX7aywUSnsvKOtPQhJqRRaKWK0aBVYGRWUQTI3aWTkCg8xWfOPlOGh85vs7u7z2I05XUxZLzK0BCm4Pply43jO/ee3WJMB08yZGcVAVGyvrHFwa463DlOURC+Z157rey33XJTc2K1RtmFnLEFWNGHM3vVIJyf4caA6Dpy/5BkVgdG51aSkmXV00znjlZL1lRLf1gzGErOSgg3tzKNKw6Aa8lsPX+Wf/M8f5eEv7HF2+wKdm3NuZ0ioj3ji2h4r1Q7Hs4andyfsHlvEqERElRRZIWaibPKwEQhs8EQp0ohFpJFb6yy4bCZG4lkkm/hEJ5ZCIHJScAiCGARSa0plUkYOCVwQRPYv0WBU5nVkhU3IBmkyARMlZFqoY3purfpuSKCQGi9yx0bl0MAYcdaCEAyrAVprgk+jlagSSGicRwpJVRRImfgzWmu6tl2QakPwSeorBUILogiJp6JUGu/FmPxSZMoF6nkwPfektz/p7faV0kmpJJPxXAIuieMThERGQ5AaKyVdlwzchF8Y9n9lv/Cn9RUv+eizr/YmnNbXcd3RAGWApBBpNNL7odgo+8hbhASlEk/AOksXIvPO03qHFQ4XLESdAUpAOc9QSEoEc9vmE3kiZgYE1gNK4YVEolEMEFQE4ZBGEX0gqpiNuRSlFjx0ZsC9WyNECLR1QFqJLBPfQStFaxuUhkFl8EEiK0Fwgto2+NihpUE4xcWR4HXntzma7nF9lpYGKRUyBo6t5XPXrrO5NuBMJRmryJ4WBCe5MBpyOKq4NbEpwcYHDidznrx6yGvvPcv1G1OGJrI21MTWcv3WEQ8/ssdxe8iBFUgFb379Nu/63Q9x8cIZsJ7ZjSMmtw4oywHjYUEz0pRjjS8je/sTumbM5uVtZmHOv//ob/Gbv7XLmZ27ec399/LM1d/i7ntWGMeK2dWQJN5HE57ZO+K4Lhhg8Z1HZzVWqRRGKApdIEKg8xZjCga6RMSI0ooQUzpv9ALn0nuMXiQZt0qgRSAJAUIQgEzgL0HY1AFThiASB0eLBAyMEnRdh/eeLjiEzF4mEUQg28ErEAnUiCiI3ifwQcQGS6F0UotZm7xRCkOpJWncFNGFgZDGRDqTaXUPaiRoY7J1fcAYTddlx2QBxNThGJQFtrVY59KISyYPfO/TKEhrc5tvS4wn1TiRiEWwVA/FYBFENGn8FURMHUodCSEpoWKMhNOwwNM6rdN6BeuOBihSKYwpgID3MgXyuXRhGyRInbxDOueYO0trPa1Nya6BSAyRSilKY5A4JBGhFZiC2NiUkixkDmuL+ADFguioEllQKaIGmSxYkudGDCgkZVlyZmsLrTVNPcVZgaDMxllJDRJCRGcL+EoVeBcJjSd6n8c5GrQi2sj57S3uqxX1M7c4rBssSRqrtODqwS6/9bTkm65c4PLqBhUtxWyOLzw7qyXHTcOxmyFQdNYzrQ2zuuNg4tErFUIU7O93fPrh57i6d8g8Sj7+hX2OJsdcvX6Z2gq++/+wxta64bg7pvUtZ1a34HwadKkS8IHJYUv0c9aD4Zmnjnn0iefYPn+OjQt388lHn8Y3M7wr2N4ZsH/YMloZMFwrMYOCZmrxTU3rbRpFCYU2Gl0YhE6SY1zqgFTVEHyyqk+dD5lVWh7y+CKEkLspywybflzigoec56dFMkTLfakFH0OpNPbTWiG9yqAAovcImW9TKjnR5vv3jrEx+AX/RAlJ4z2FMWhj6DqbVEBKYXR6n0LBaJASTXtZcYg92E1f0+FwiBCCrm3xpFFTlYmujaspjEGKNAILmYOVvh9kCXTaPmuTUZLWOo+V1AlfFjL/hWQEx3Ik1FvdC5m4Qad1Wqd1Wq9k3dEAxRIpRAoDTOZdoGICJ1ZEbAw03jF3jllIHRQbeq5KCtirlGJoSgQS72NSAGmFKAo0yVLcu4ANLsXeh0jwES/j0nclQEr3SXwIJSIGyUpVoiRM5zXBOoIrCFGCljiZCJ5KawaDAmVSsNtApoWuFAWHU0sTSE6qNlIaxeWdVebB8uSNXQ6mNcKCLDRHruPhm7usDipWigtsrlRsDgI2Ss5uBY58xE5qmtbho2NuHdMuUB17jBe051Y5OgpMZpGzlzfozCafuVlQFKusXHyQf/frT7F9+Qzvec9bUOOLqPoaxVAz9op6PiLEgAstSgwZrozwQvHkEwf4EDl3cZt96/jkY09wadUh3IjYwebmgO1za8zsjNEzLWH/iLl3dNGjjUFKjdCKIJINvFGSoqiS46vP8QHO4h3QK2h7UJCTo6UUEEMK48vOrjHmDGSRRjtKSISPiBASmTqGxGdRGqHzCEQkoqiSCrTOZoACpRUR6LoOYxLnQ0qJs4m8a/FEmYjaSml8iHkUlRgdPkRkBsnloKRtWrz3Kb8p+5dEH9BZciwQaKWTfT1ptEPmtFRVlQBFJvWGEDDG4JzLhNtlijIkgJRu64Fb7hlKtSDpIrM0WymET+OllNIsFmGIp/W1W7Ft+eZP/Of8ypv/2au9Kaf1dVh3NEBxeDpvAUGyL4PSGDzJ26K1lmPbUQdPTaQj0jmLby1awaBIoKLSGiMVs8bSWgtW40IKnyNCFGLhSiuJSdYsBFEKopDEEBAxWeYjJNFbhO1YKw2SSNsm6/kYNU3rIDSUXjAcaoajIbrs/TxS0vFAC8rRgEJV7NeBvVlH3dbYACuF5IFz6wxLzbM39zk46Ji5gFUFu17wiWsHTOeeK2dHjFeHhGqD9TMr7MghdbzFfpgQvGDattw4mKJGmubgiMs7Q6LYZGVlm60Lnt1Wc/eDDzC3gUeeu4Y9POTTn3qMN73ldaxtXMFNa9qQopaNETS1w7YdUipWtgZMfccz1w4Yjwfszq7y6c99nrY7ZmtjwMZggOoU91y5yMrmAP8MaQTnLU2INNbljkkigFrn0FIihaEwBc4FvE+yX60MZSGwriWIpKZJ/igBGUVa6LO/SK+C8cEnkzEpUEhkFIiYxjVKSKzwKCXRSuJJNvlK5jEOaQFPfiiJmCuyUVpv1BZCyF0SgcuScm0Mrfd5DJO8R0IOA5TZ6yTGiA/JsE0lqViWpHvKskyRDUJgynLhp9J3hwaDATFGrLWJUyMFWmu0Tpb6Wifp8MluSE/I7Zouj8rIYEQkKXfeTpElzvQqI0TqLqo726XgtL50hfmcjf+6gP/11d6S0/p6rDscoCTn1HTCTAuFl5HGeebeUntPEyK1D7QhMG862nkLLlAWyZnUBYcUkdIYnDU0bYeXDTiPEooo04gnkSflQkmRAEpuifvkeyGFgQhtU+ObKasbazm0LV2x+xBBRnQRGY4LVlYGmFLgQ2r5Oxdx3qb2QFQUqmClNHQWnJUo7xG2AyXR6yPGSnK9tFyfzDiwHV2I7LWO2dWbPHmoGY0GlIMhHsms63CtzwZ1inkXub43YavaYqg0w5WSjY1tDrqGUh8zuX6Vw4MhVmzw+c8/zdmRZTqpufHsdc685SLV+hphfkAUlhAdXTsnWEdVGaoVza3DOc9e3UcUnu0BnKkats8qXnv3iDJGtFvl3Jlz7O3vc+vWlNlxmzoOIeB9TLLh2Lv/AiEkbkm+aBeZo1IYneICSLLs2OtnQ+oYQBpdxCyNFQtPkT4OAETIJFIhEVJilMhKmsQViVEtXAGl1gt5stQKYuow9Mob7/3Cqt4Yg5YSXEAXhq4NSCEpTLHoxIUQ8d7RWYfSWa2jTZKtW5eDEFl4pPRjJCFAI2lDwGXZsc22/1LqTHhNVvrpcxDZYj89x0m/Fan0csQjclI0S3DSj35iHjktqLGnHZSvixJPPsd9//hP8Nj7Pvhqb8ppfZ3VHQ1QfAhEqbInBbgYmLqGedcxt56GSBcD1gU6a2nnLV3nkFGgQsQT8ST/Ei1LKlPStRbfOSotUmpr6mdDNucyyiwAShASEUW+kvagVJKMBkelIyulTBYcQi7m+cORYbhhWN8YUhiDtQ0+CoRQuGy1H2Ok7Vpc6EBUrGvDaH2N2loOZ3OOZm3KjKkU+oxkbVUz6SKT2qYgvXrOkbXs7k4QYopUKo2vQsRFASopM/YnM6abIy6cHbG5PeL8xRHP7VbYOGNkWnavPsfu4RhXz1k7N2JYFBzemuCiY2V9DWSgaQ8I0UF0jCrDcKVEmYJZXXPjVo2MMy5dWedbHtxGyciDF0vG0jAq1jjcm/LMs1fZu9EgnEJLkQihPqLQKJIiRkuBFoJCSNrgkyEeJpM6kx+NUukz9ICKESUjnbWE4NMYJC+mMXcApBTomPkemZ8Sszuw1hqpsuonk2hjSHLywWCAdY5ZUxNiRGUvE2MM3vuFYVok2fMrrYn49BJCoGQGPiISokPkYEEfHHhBYQqUlASXcoZ6UBVDwFmbRkOhB8RghEIoQWs7gOwKq7Lza2/Lr7MkewnYvPeLjk/vMCukzEA6ZFB0YozTd1Hys6RnO1XxfD2UPzzitf+vh7m3+OM8/vv/+1d7c07r66juaICCTH4W/ZVrazuOXE0dAp0PtAHakAL0QmeR2RwtZk5DECLxVYKDGKhMQW0NITgqYyiSnzq9eZVSmoFQaB2RSiONRkaFDEntEgj4YDFasLo+YmWYxhSJEhApq4Kts6tU6x1FIYnBI0JajCMGKTRSenzosKGlbSwGKCQMS0VlFHo4xqiKSdMxipGKlo1OEkPFvI0c1R2TdsCkdhxNaprOEoQiyEh0yVcjiAhSM7OO49kUH0uEiqxulVy+vMOTT97k8s6A++4a0sxbNi8UPPiaM8gQeOLhqzz0loaL26swcDRighCe0ghGlaEqCrxVTI4FnlWUjaxT8OA9Yza3RmwNNWUYYecljz36NDeuHTI7VAzMkEHZcuxatFBoYVAyUCqNkWncUpmC6FoIqdsgSHkzuKwmEYm8KTL5tOlzZPIx0ncAtNZJuZPd3gPgYiQGl5xaReJ6eJfGK2kRTym+Sghcfi4ffLaINwSfeCpprKIRziWreJLsvWk6PCGRsCNZ9hzRWqALQyGKZAYoVeZILbsm5kR3pif7phgH0EaDd/ioISbZMiLzXbzH2jSq0VLhvF36n2R7/NQtSeOvHm70HaeFIPmkPX62yE8meV+Rb/lpfRWUPzjgtX/m0zyw+QM88u6ferU357S+TuqOBihSaKJQNMEz6yxTa5kR6VzA20BEpkU5kJizSCI+LSwhtec9glnb0pYVA1NSGEPbWVyAkVYUydsMJQVIMCKmro2q0hUmDuEjUfnUVu8E4+jZqgqqwiQmZhBUQ83GRsXmdkHUnja2OJKzrZYKZSQERzv3eB9RUWNIclvpO0KbvC1GRjGoCjZXC1yIzFG0jUNhaK2gtoa5H7I3s+wdzZg1LS4IWgt1mxN7RQRRUKiAbSOHs8DNvZr7vOfSXWe4+nQyj/v2N93FXRszpApsra9z9dFbHDw34+pj1zm3fglhawrlKVSWrDqJnXnirTnTq0dcWl3hwXsv88BrxmyekayOJcJ5mmlkr21p5h1tp7BEqsqx2gWmraLRMXUzBGhJ6pBIDUqhosKkBkTKuJEKi4WsyhLZIyUSUl5PzI6okNOHwZhEclUhuf764DJPJb3vWeOTD4lLj6tUkW3iYrLftxYlFUqrpB4igdMoIrpQQECIQAiRNoak2IqJHKtDkr4rqQhS5nTtSGEMUZIcZbNUWRUGby1apY6PixEXfLLaz2MXGzw+dz/IIAlJCir0FucsWimCz+MnKREnOkqIPt05LACHzOZvfRhg3xHqFT3EgMiuvKd1Wqd1Wq9UvWSW20c+8hG+53u+hwsXLiCE4EMf+tBtt//AD/zA82SJgve+97233Wd/f5/3v//9rK6usr6+zg/+4A8ynU5f+tZ7qF3goLPsdpZDF+iiJjiBsDAIisJFtM9BfFHkE3pAxoj0aRGazOcctw1eRpRJnJFZ3eFcREdHFVsq0VFKi1RzogcpK6LwRDknSEeILYGIjpEV27EpQSuJKQSjFc3m2QEbOxJV1EjpQUeC9ohCUQw0lQloNceHGd51FEIy1AUDo9EagowoEyhNw2pZc3bkuLgiuHd9yAM7I+7dKbn/nOGhCwNef2bAgxuab9ipeNulEd90acDbLw751rvX+bZ7N/mOB87ybVe2eOuFs6wXIyYTzxNPTXjqsWvEOOfipR1oFJcGgm99zYC33D1ijMeIgth6Dp98Cne0T71/ExXmSNfQzRrqo8DB9Ql7T1xn/vSz3L0S+PZvvsg3f8t93H33BQYm+b7sz/ZwccJ4lLJmzDAwHtVsjQUrhaaQEqkjyqTOFFiCCEkq7nwyYYssuBwxkztjcBglUCIicJRGonVK3Q0ke/xElhWL3Kb0XIHSaCqZVD9T23Jc17TOJ16QDXgEGA1GZxKqxEidDOREMkeL0ROio+0aIh6tUufFikDQAAIZIzqCETAwmoKI8hasBedwbZvymUhABgkh5OwhERep2ta11LZl3qXjLoRAcD6PZiDgQYDKniveu+wPJBY+KIEE6LTJLsj5J4Gx9D1xMSTnXpkcmrNRPoKAeQlnj6+q88ZpfVl14w+/iX/6ztMRz2l95eold1BmsxlvetOb+KN/9I/y+3//73/R+7z3ve/l7//9v7/4vSxvDwd6//vfz7Vr1/j5n/95rLX8kT/yR/jABz7Az/7sz760bbEdXVsz957ae7oQwIFxUAWFQuKjpPNuMd5IHhUAya5cCQjR0TQ1dlghVUq5bZqOrvM4KZAxjZK0MrjYIWRqzSstiDFf3QaNdwLhkzfF+P/P3r8Habdfd33gZ63fZe/n6ct7OVfJkizb8jXYxGUbrMAQiB1fMFMBK5NxkgpkwlBhkF1FPBMoPPnHFYInFJVJJTPBMzVJypnCoQI1QBUUZBjAJmBhYxvhGGNhycayLuec99rdz2Xv/bus+WPt7iMZQ3RkiXOO3OtU13m73+6n9/v07mevvdb3+/meGOPG2Jw07t4bOL+T0dg9gycmNgEPsrOEtshx2lPm7muesIbZ5eiJv7XSDPKYSMmFto7YB90YpbmwdBs21CIs0yV3gnLn9IRmizudupLShhiSrwJMIA08uLjg8dMLHr78Cu//qcbbn1zywnN3+MIvfCdlmTAx5lp44cUzvuidX8g//tmPUC+fsPvwxzjuH7G1xu7xxGG3oLLn6smei/llHj0ojMOItIndKx/jwcMDh93EsUzspwWrnWUxolTu5kg+fYaQKx+9eIrkiRgDwf1SeESBs0uWVp10mhOocjweWFq9QaTerECC6z9qN2pb7bXmF+ppmjyfSYI3AjmRhkRZZljXHa1VRxDj5w/meo8eAuMwUObF1y8p+mRhcbG0it5YgpsIS4dlXsBgjBlrjSYe5KcqxCFj1llqYVmqT4Bi8BTh5qtIh/IJtrJeGsZUCvwyce716qa3Rm3dc6g+YVXjeT3ZtTJ019qs6xxbkf7Xk5lqdZXm2E0ukSJ+PK/KUj7139U30OvGbX169dyffB/f/hv/AD//Tf/1630ot/VrpF5zg/Kt3/qtfOu3fus/83OGYeDFF1/8Ff/uH/7Df8hf+St/hb/7d/8uX/u1XwvAf/lf/pf89t/+2/kTf+JP8Na3vvVTPpYn85HaOxVh6cZcK9Iqo0VOGdEulK5crloCzIWOzRxyNeSBzSjUNcV3Lo6xH2KgEKgVCAOinlKsBFTNCZ/Rhbm9y3pRSLQixGqkBNsxcHKqnN2H03MhDU7hXOfkpBCJMbAcjGl3ZH91cP0AwTWLuEtFQweFbRjIm0QIFXR1d2hHYyVFZZ6MeZ457P1ufEskmKP6exRCiigGZSIIWFJabKQ7yr3NHWyTubia6R9+mXk68NYX7vJ573iezfaMYVTS+cjhmLGrAy9/5BU+8sGM9h0H4OLRzDRVNB54fHHgIw8OvLxr3DmfefjKQ9DI7qJxnBOXh8b+WLHWWK4KtjTujwPpZMvjw5G5d1rwO/8IqPkUQWJwqUn34L9pmVdMvU9HWm3rJEXWNY8Lm3up9F5Whohbxq9D/sr1x9XFtdci5xAUIZJyQsUJwa1WDoeFWl2fJOI8Esxps8viAUsiYc2yMaw3UlRShaCRk2FgPkzUtSHIKaExgkFloc6FIWck6KualhRBjJBcU2LVOS9OoOUm5Tit0LWlLLTWiTEQQ+Sa9Zrium5cy4XDq9Dco8C98f0EuJxJ8yDB7hk8QZWCYOLsn5Q/9ZePN9Lrxm3d1m29OeqzokH5oR/6IZ5//nnu3bvHv/Kv/Cv80T/6R3nmmWcAeN/73sfdu3dvXmQAvvEbvxFV5Ud/9Ef5Xb/rd/0TjzfPM/M837x/eXkJwNEaaKA2Z2fM80JolRAi2+jo8YM1t6deWyTXUMGUMmPORO3EPBDVQVx0JcfIkKDUzlSMkIOj11nBXOLhb+48NTBH32s3EoVthvOTyOlZZBiV1mGajRQzKblFVCnU0jnuJo67SquONVVVQtIV1NkICVKI5LxBAtg6uvdv3kkSMctcXF7x9OmB1hQ1p676Xa8LPq0qS2kMIoxjpIVGjZ3TFNmejIzP3KFnc+dMHKiL8OClC1SPbM8C51MGO2W6OvDklQO/FB5yNnayCMddpdSGxJmnk/Dxq8DDfWPmwMcfXLK5cx9CQkOgFNjvO20xyr6xxQcV+92RBw+fst9P3gCKsUkDQYxaFiwFqvhaTtEVP+9ZMg4cW905q8W3r4AzWy+4cm0/ZiWjInQqpXV3T/XOdjPSS4E2kWMiqAf2ITAMCSyCuTsorM6uWivWjRQTIQgpRbp1x9DnQA+e1RM0kCVgKbKvnoqswX9WKQRSToxi3tyYN8FBffXSWr1xB12nHeuqNQkrdyWs05MgctPcaIxUeTUrqJXmCdurZkXUYXNtXZGx4utDWJ1xa4PLDfU2sZRGs4YinI5b4NEb9nXjn/XacVufXn3+n1b+s6/9Qr77/s+/3odyW78G6jPeoHzLt3wL3/7t384XfMEX8KEPfYjv+Z7v4Vu/9Vt53/veRwiBl156ieeff/6TDyJG7t+/z0svvfQrPub3fd/38b3f+73/xMerKCpKaQtlKR6ohqAaSCFC87H19dbchZS+6sl5IMeEWkE0EoJQamdQ1waUBFe7HZe7DpuEJUNtYRwEC9Hx4ADmYlszsDaRdebOqXKyVYIKdYYyuS5At5G8yUClTo3pMFEOM3QhqnNVQnACajdxN0pWJApRr2WKHlzo/x4PLDxcNS5eKRwPxmYz0PHE3JgHRBPzMrMshpBgvdD3FXGeNNJFeO7eluEscfH0kiFmlMw0VVpdqN0ITFAX5t3C8WB87ONXPHs3czYEt0ajlNm4rIEHx8CxRs4xHj858OzuHifn7jJJMdIWOFxWQk+EITCb8bEHl3z8wSXWlTGB9ELsmRwVEcXU6btRAzEI25ShOv8DM3/eTMD8Il5X1LzHIVwHCPrnXkPbtLOuQBQMWjHaUolmDMGThnupa9MTicFXN4fDwbEp638pJoYwEGNAFOZp8udfI8V87eN29E6Mibhm86hdC3cV7d2fd/XPC+oTH6fmdkqbfT1Z+w3d9XqqUeu6gkqR7WZLL4Xj8eiNl8qNYNZdSf3GtnzNQeH6+VgbIFu5MNdrHVYyr8RICE7JHTRyPmw/Q68an53XDfinv3bc1qdX+a/8Xf7K1W/hS3/gY3zbdnq9D+e2PsfrM96gfMd3fMfNn7/yK7+Sr/qqr+KLvuiL+KEf+iG+4Ru+4dN6zD/yR/4I3/3d333z/uXlJW9/+9tZVjR5Lc0v8hKcL4FQzAPOqnO8HUu+Ul81JjabwXfwXdxxYX6X2qohXRlzZMrBIViY6xtaQSSjEgmaPGxOfB2j0lEtnGwbz93PnG0DkwnLXJwyG5U6V4oYyMJ8mJgPBekBv08uaAAVd1hIUOIgxOz8fukNsb7SOwNYoLfAfGhcPDxS9kawRDB3FvXutlEPnRNUjZwTEowm3S/6FVL25mnoM3fHAd1mjvPEZekgie02cv/+lk3uvPJLVxwPC3Mp7B4VSt9SzxLbDEECy1zZTwv7eSED98aBtIAUON0kZBTMErunlenpJVECFeXB4cjHnh7YL8rJ9hQZC9qNbTohiLHESA2BZgUZMjkmNinDUpnmyYWyKwPlOkem1U6zzhATMSi9NXcGIT4hCIJKol1PXlDa0qB2ToeRGJOn94bgeUu9UbtPs4IGaJ2oAYLQOmuGj6cWs04kokZKWbDqbiFrQk6JTVKqKGklGEcJ9F48eBAP47uBy5kQQqLW4vBAIK7sn9bXvJxr945BWGGCi7gmRlS9+S5tdfGs2pzWKG1NJ/4Esizrc9h683ZY9Lov9ume+ExumzIn6ZM1Ir+a+my8bsA//bXjtj79kr/9fv7v3/Kt/Pq//v/mbfH09T6c2/ocrs+6zfgLv/ALefbZZ/ngBz/IN3zDN/Diiy/yyiuvfNLn1Fp5/PjxP3X/PAzDPyGYA1iW4nfB1VBTFKVLZbbGri5Ih2MrtLVJCQAhklNkHDcILmgUhWYB0eiEzwphUIbRybIShe3JwEnsDrySSNCMqXjgnHRUF3KG0xPj/EwZBqgl0G0mqk9TpFXKNNP7xHxo9OJQrdqWFeZVsQ4pb4lDIoygCSRAJtBqW+90E2VRDofC7uElh93MkAZAEFvIqaKMWGmYdcZojEnQ4AJT8WQYD5tT/3jfPWUZjZO8oS7ubIrDhrNN4vRuJtGYpolSZyQ29odGf3ogSERPMyd5pDeY5z2RzrMnW971/Dmfd3dkbJ0+7xnHE565c8blvcru0YE6zVweOk+tsWuKDqdsxzNC3JNEiGRqm9EQmQ2suBNFg/mfayNrXJkk9ZMEstRKr2tg3zohIAQUx+DTIKmSUrixgl9Dzk7H0UW1AikNSAiU6hO63rvbdm1teq/R+c0dL+7CXYW2xWjFs2vMhKAJJUBbGGPyRqe7IFo65FVHwrpCQRSVDhpIGm5AcEkDJspSl5Uc+2oScW+NUQMn45a5Fcq6EkKcJOvhl95wXxNvY4zUWm8yesCbGz+E1apjr4piA3CSRzYh/SpeGf7Z9Zl43YB/+mvHbX36JcOAfexlyi0H57Y+y/VZb1A+8pGP8OjRI97ylrcA8O53v5unT5/yEz/xE3zN13wNAH/9r/91eu/8xt/4G1/TY1vr9L7CpMTJsGIwWeWJTdDhqi/UlYPBynMIKRFTxlbeg4gHySUiUgq1G2PrjCizwbIYFjIhCVM1hs3wqt5QBAlCr4Hc4VQFsUapPoIfciJeryk6SO+0qWKtrzTRDlYJQWhdEY3kcSQOhsSGBggpMmhkYfELlwWWQ+PqycRhVxFJpCHSe0NCJybXxJTSUBopgUQwqmsP1mZuk0dSBKQipXJ49ISTu8bZZksPgaKBkITWFigFsYlnzpWkAx242C3spsT5GNlkoSAsRdhm4Z1vPeXXfdmzPLcdefnJBY9/ccfd55WzO2ecDJEYlafzkSdL50Iyc8tEjQSMiGCmHIo7bvI4MNfCfDzSxdkhFZ+KxJho5m6Xa0gZ4Jbc4Lh8XfOUbHWhtG4IRpfOMAzkkKmL5/1YSK7ZWdcvMQgSXMszhjWFWgJVmk8XxByC173pAUNEqauw1jOd3L48pAHpnbIs6DjcUIhLdQ1MUM/uUfVmeu1dMIWUEywrbwUotVJ7R8SIQQjqbBVrRhMhpEQASpugGkl9vVhqZVl8qid8cuBfa319358r652Af0xkDQnsrunJOfLZa08+u68bt/XaS7db5O0uRH7hB17mv33H/wTcTk9u67Nbr7lB2e12fPCDH7x5/xd+4Rd4//vfz/3797l//z7f+73fy3ve8x5efPFFPvShD/GH/tAf4l3vehff/M3fDMCXf/mX8y3f8i38vt/3+/j+7/9+Sil853d+J9/xHd/x2pX4ttov1VNhWzNCFw50jrJgAVpoWHNxZTPDrDt5TQMWlNIX1BqJ6KOKmCgqnPVGkMiiI9Oxcbnr2Emmy8jm/MxH9r3RrEIS2hxJVTgj0+bAHIPj19dJS0dAjGgBrQGVRtMCzYhRCWHAUMJ4StpkJEyorJOhotQAtmbNTLuFp6/sOV50jC0aA/OyR9Spo6U2Si1oENImQaxUmq8qzCmkEgQZBIuRGEZUZqwdqNOBYZM5v3vCkcTm9AQxYdntOE3Cr3vX8xyPR0hP+J8/uFDbCb1tWMqRyzJzqCMhLrz4zg3Pf8kZm1Y4/NKBl1+aCXLGGI+0aaYROYTMo7rw4KoRWmeTKmmsxDhyrDCrcpSIpkxpTkQdhozGSO+dQmehYSI0VapVz68RR9+PY0Y1oBopvVOb0dUnE0GhX7euEXopWGjEmCndV3eaIqYNkU4QYwgJ1cCuuMV4WgpVjKoVBTLRrcYhsLQZi4G0kmQjQg7iU5YIS1tQU3p3omtUZWozZSmemSP4WkqceNysUzHQ4ARkhJhcz6TayVF8pTR3DnNxh07r2Lr6zMPgWVCwrqw6rTRUYWmFmJI3b9UdawRPijaMqA5lq82F40SISQmvwWb8hnrduK1PvTQw/fav4eWvi/zs7/uvXu+jua1fY/WaG5Qf//Ef57f9tt928/71fvf3/J7fw5/8k3+Sn/qpn+IHfuAHePr0KW9961v5pm/6Jv7j//g//qQx65/6U3+K7/zO7+QbvuEbUFXe85738F/8F//Faz/6G21JIJlRBebkkxTF6a9ZFZphDZJ15moEGlYnungOjypr4Jy7ckLr7Knk4KJAqwvHsnA6nHIynPmd+XqXfRNhL6DRnFUyREKON84R3+l3eqm0tgoQNaLiPZGqug1UBMsdDZWY/GPXQs3AFg2Bw/7Iw1ee8OTJhPSN31HXGQOiRnozv0NGyDmTU6KrJyz3Aho7IRkhGJoiKQdidBYIeorGwNILUeGtLzzPs5/3PDJd8uTRQ07PTrj73IscuvAwfowPfPhIq8UDEg+F5VBpywQ5cv8LvpDTL3sn9eFHOI4f5qpecrHbki4jx1LRfErKEeExKVVSiqsgtrMsi7uCJDNmaH1hLou7eMR8LSdCre2GbirXhFScCWPmKxxiwFZaas4RQWnNJw8hOnRtmmewjobsWhICrdVVtBzd5twbhrhuQ3zqZubumRgSvRUQQ4N42xOUzTDSamU+TvRVUGvma7ra2qqXWZOQW+PqcCBFR9d3VSQIQRKtd2qXm1A/ESGrh0/O8wKqbDYn0IM7nlatSYyBUoQQlFIWpmVxnQxyA6iD4K4ykdWqXCml+vMagruIzJjqwjR7evg2J3IIHuL4ZnzduK1PqR78/ncz3xP+wXfdNia39frUa25Qfutv/a2vZnP8CvU//o//4//iY9y/f/8zA1cSP46IkETd/rviHnw8r2sSriFrOOC8CgPbfGSuBQsBiYG2LL4yao2oguTOneQsjFT9xX0R4Twlaq3uGlnLuttKh03wsLysdAURQ7s5nKs3WitYg6jiF8OgPiWJQoyrQDF2NDhTo3f8QpMjapH9YeLxy5c8fbSnLsKYI6qO9JcVstWaMaTIMAaGjV+waxeCJV/tWCMG2IwDp2cbticbh6JtIhZgOh44TDPT5VNyHtnfPaMdZx49viJK4eTkHZy/7Yv4/HSf/CO/yP7BJd3O3C4rA4GJcHrG/S/+KuI730bLwrNf+oQ7L3w+59sTchameCQfGroPjKczz54VknmMgEin9M5ogdaEqcLUGwSIY6YbtOuQO4xWK2ZCE0+0RoVW10yaBaIlQogI4v9O8/NEgrDY7I0jPiFB1jTpbmsYn9JMaKUhzXk0rRsalcya/Gt9Xa0FwuraWZbFhdXYioV3h42pUWun1rI6g9wBBMJSFjQGQkyUZaHW7quekAjRJ0EAvTtJV9RjAGpx91LrRm/V/y2qpBR9umjNJdhrmGCMEUSdH9TduuyJxxUTXRuvFamf0s0atLTGsSwuPE7JG6nXEBb4hnrduK1Pqf7zP/Qn+S3j630Ut/Vrud7UWTyYJ4ZgnWyRSEBLQ4JC8JA+E0ebh+ypr4MFWu1OKe2VspIytbnQsfXuiPpkbMzYRg+quzgeePD0KafhlCA4hTaoNz9AKzMpN4YMIYLPv41eHO7VbNW6JCWgSEhYCIQAGpxMa9IxrWh0fY11v0ABHC73XDzcs7uYEEuMw+DYcfUJTO/QSkE1stlsGTaOxq/NyDGSe6LXQByUYRvIWRlyZBwDMQlIpyyNsCzkUihzpTx6xO7shB4i8eQuIS3U0xPk/lt4/svezud/+T/iZy7/HktXTocB2zeQwBd9xVfxwhd+NQwbwrOVt/z6SD5U0rKnLhOvHAqP9g94+WLHTCENQtbAoOtzGjZuH6+N3bzQDjOqRpA1aK97vs0wDL7qqY3ejVIr7qla/7PrRJnmPh1TbE0IHoeR3itIWzU5Rq+V3h16FjQhK8hsqRXp/YajktVdMNe2ZUXJMTnDpC432T+9FHqr5BwZx4F5WVzwLGkN8+vk7GLZ3huaPaHZyjXNttG6r+2upxWCOh/FGpgnNasI07RgmCc9d5DqMEFH3Qs5Jw9P7OvEMAjaZNVf6UrZdVR+jEor11RBQHw9Ws2bpjEGkgrYNQbutj7X6h99/2/gK9OPAJ85K/lt3dZrrTd1gyIC3XxNgwWSKVLAglG1U2hYFHRMDCkiMaDWqFoJCGpuoazW6dUhVSLOImlmLK2xjUYeEpQjlxd7DuOBIQVq8c8Lwbkr0iuRgthCkAETobbiF6zWYHVaaHCCiUbQ6MA3DUaKionSpfjH44CsjJWr3RUXD48crzrSAzlGIK6QsHazJnD0emYcIxIWuhVCMHLMKIm6KGj0C3Vr1GVhOs6E0vzfv3SkF8IKnxt7ZTMqwwtvQ9/ydkyPpGfuY/lZxmef5av/5X+Zp08uufyll5C+43KauffCc3ztb/5fcff5L6BLRbcTpy90ePBR9LBjERcx78qBJ9MTDstCRBkkMIbEZhwYt1tCcqfJOI7o0dcWqkbQiOJheEmdrgoLmJG6W4tT8InSOGRnh6xNrFijtkYUTzLOKoi4kDapkoJSSiUmIaSVg7I0UvCpS2ltbaAEmmfj3Fhv1S/2Mfr6wxCntfZOSL7uW+qCiLDdDFiHJm57vqYcX0/agipDSixzpy6VTqF6JLavNFdEfWsVdAXgteq/C72hrGyU1VLdzeFrIpXWCt1WZw+2/u64NbvWQu/4ZE8Fqw2CN869Nbp1gkRSUAKsK6Lb+lysf+M3/hj3wm1zcluvb72pG5QYA611au0UqwwWb0bU1jsW1jvF9QLTrK+WY10hZYHQzNcvq4alYwR1x0JZKjUUz0yRyGG/sLu6Ipyd+NSigsVACJ2EMQYjWIHmtNleF4ROTgFT9XA2WbkbqRGzH5tTP93m2ldKbZKBXpTDfuLqYsdxN2ElESTRzbkaGvqKKucGSDaMQoyVrs1XCWr05jTW3laGShM0Okm0tULvBbqTd8184lANFpsIyTi9fxeLdyFVdHsK4Vmw+3zRv/j17C4P/P3/71/j4Yc/xKzKV3zNl/PFX/2lxDFjBLplNGR6TFje8PTRjo8/uIQ48syLzzMcdrR9Q4tPsHa7I8epYEGQKOTNhrIUoghpGEgx0aq5w0X9HDBLyHVYXjckRHKObLdbn4KsJNZe1yA9M0orJF0BZBiblIgaOPYOFCJQ8bVTTpFuwmFaPHTQDBEjxYAEPwdLq4TeCTExRteNKNfUWijdGwOfhgjFPLEY88mPALYKgXOIRPVzQYKS1Oi2xhuIEs11JYoiBt084NKkYyvjhlVfYhi1VlJ2ivG8ZgiJOvuk9earyHVl5hOWa+1VQxSqmf8ZiKpkUZTb5uS2buu2Prv1pm5QUgyY+l5+KZWpG109rkWiEoaEZH+RnhbnoXRZo+nxsX6yThKQGGlilFb9It2h9M6kxpgyOUSO88zVxSVnm5GQXkWDt1bJvbHNkUGAUqjV5+xRIA8ZQmDqxfUyITjjZHB9AqZrWqyu6bjQKxz2M5cXe8piRHEHCK2vEuCVB9Jde7EZEyEKIs6zaOaJtykIS1toi5HC4NqUU2HYJMZx8Lvu1pAQMVVEAtvt1qc0wwZiw6zQNWN5g8RzlHO6jQx338ZX/abfSr16yt968BJDyHzJ176Lk+ciKk6ZVFXICcYt0+7Axz9+5EM//4SXnjT0zsjdZ07Jdxq2VGwuHA8zx+VItchhB+xn5jKTUuBkSCCJuRVar7SloeK5MtbXhOpuxBgYUibH6OA0Eaooc18c/9460zJxGhMxBnKIDBpccyLQKITVhithDYPEGzqsuahU3XpbamGqldBBm7IBsgTKqo/x5OROLc3R8jFQa6PV4ufQygTOKdF6dTHvOnlJGhiGRBSPLfCpCKTg0wsTHL2/LH5eJyGmgHTH3ccUMXNibFsDFcUVsY7FD+rTFOUm5VnVhd3OeEmI+qqKbg6B00BagXQityCMz8V66c9/Of/pC//9630Yt3Vbb/IGJWQqhZnOJJ2mhgQlxEDMiTh6qFupzeyzXwAAqE9JREFUhZXNRTdvaMrSWIBNFFJQYoAonuXikwW3YS6lkRNshoHeYT/NlG5sU0TWEfdSCvRKZs02ERdextARC6uAVRh0zV1JiuaORA9oq62vYkZByfTaOV4tPH2857CfUPULhUnF6K4h0PXiInajJTEq8zJRu9CJdIukIEho5NE4PRnZnCtxrKTs+pd57n7HPGQ6gZwH7jxzHx1Hlh6pU6PsrxjuBtp4RuME6U6P6wibe8/yBV/5L/AzP/l+5ta58/w5QXbQn2LdEJuwUij7hauHM7u9YrLh4uIVLh68xNm5cu88c2czsjkVYlaGMlBkRHaN3X7GJKHBpxLLMnGcCqUWevcQPVHnjpTmzyUq1GbsjxMRY7wOyhP1ny8O4+vV3VcS1kZBHV4myZODWzO3+dKplVVo601N7cUdU6Uwt0aUgJpBbai4w8tdZuoTuvXjiqLBaJV1PSWEIMQY6d5/EESppZBDYhgyvdZVT6M3k6PWm+uOevfGJUCSiIRELY0uHp3Qm69vSnFXUrWOXhNnVSAEmjVKKZ5fhNB6JYiQw7CmSIsLtkVIboziNRh4butNVkFvp2O39dmrP7u7+yl/7pu6QQlhIHVhojDnQBHlPCQ244gEcUx9rXSDEKOTZFujtkophWadXe3kFNmSGWNkCJEUI4MKR4OFTlElqzAG41IiV1Ph2XuJ0F1U2VUJocMCpQb0VFAtRDrKSDeh18owBKe29grFkegyRCREAuoOkzIw7RceP3zC/nLCmiDifI0eg9/hdrBmWDGGLNy5k9HUKLWxFFiKEOMJgUgtMxImhlMjbhMxRJINhJrpi1N4h00mjRGGAdVTas2Ux439rjGVCyhCOrlDeO6LaTr4hZeKWsGWic3JOc9/8efz+OlTbGm0y6dIKrSp0utMn664euUpH/nHH+PRw6c888wdvkQjH/rgxIOPX7G/7MS3DoSNw+pKT8zlyNlGCPGE/RzoAofpkmWuLEXQkJDQmeaZWgu7qbA0bwZi71jKtKUxqEAPvtKwQFvpujlnkm5RcYcK2hhipKqza5bamIrvhEKAapDDSIgN65VaCkFGAsIYGwtKj4nSO5Tik7OQnM5qQiSQk2P60eIzMLtmlXTEjBjWXBzzn68EJaeRxRYOk0Pq5la4Ti/2lU9nswnuujFjKZ1jbYChta4rr9UBtFLrvXkywnouVYu03kAMCx33zMPcjaUYuwVqV6JUohaG6JOWfnsdu63buq3XUN/z8lfx4//mO4Gf/JQ+/03doIh6tskY3emSc2KTMzGmtQmprgUInm9zwyRpfQ36g7l0Sl0oS+OogSFGf5xhQFIEcydFCI7Cz8HYXV6xPHuX002G5sm7NlVoCiWgLZBCRvvsaburtVPEXHjZjbp0T4pdjJggpRFpxnF3ZH95YNkfoXZPIzZbc1c6Ks71aN0dKyenI7reUYtCytffrzMvO1I0zu4MnJw4F0MdEOPQ06Ccnt5xi7NCq4nD8UBZLlhKo9bI9iwTamN58IAh3yOdbPy5DJleJ5bLV9g/fZlxk3hG7zIdGk9fmdDQOez2lOMO5j1PPv5hfv4Xf4aPvnKFjvfYbE547rn7pHFkLsbu6UKfEjEPFEuMQySFzmHq2Lra0C4EM6J0d+30xlwaU2mUdh2A+GqmzPUKY2mVIWSGYUDpN+m/vS7urlIPwEsxkTRRaiWiZPV8H+meEqxAWRYsdHIeUUnUY6OX5iLZ6ARWAHWNr+tM4CbrxsWqDU0ZkeDnY+3rz+9a7NzXFUxYsfRCHgZKq8TeCSuyvlOJMWIYdKcktzUOQIQ1L0iREGmtouY/fxOgy2o17vTSCeDaFVF68OOsCzduJV2ZQzkmckouJO+3Lp7buq3b+tTq9374N/ORP/iFtA/8xKf8NW/qBqVdp7giRA1s0oiJsJRKqa45MRFqN6xXX+00t6SKqAtFu18kjqUxW+GohTgX0jQzjHm1nzY2J5EcMicDHI97Lnd7xs2GrtCkUSvugGgdrYLGgFq4uTCJArQVtBVQsgtxp0I5LPR4RNvMdOws+wWKrbt+D4FrCLLyPFprpOjo8nFUmi3My7ym0yZSFmqf2Zx0Ts4Gzs4jOeuqNfA76ZwyMQzYCk/XFmkFjhcHpnki5ci9Oyec3z0jS6A+fIT0XyCeL5Dv0McttVaW/Y7eC2954S30LoSw5bBvtL5nf/GYsr+gXl1w9eQRS104zhO7i5ewPpLihuefueeE19qZ58KDR3s0V97y/B2SdsahM9fCshSyRtIgtN7ZT4VSK3PrzA06njETVtHxdWIx4nokCR5ylzUSV5vtMVynYEOvLg5NKZA1gvpzX3rziALriBV6K1Rj/XhZhbne9Ii5JiaFhKwOGcWdPS5A7bRSyKH7SkgDEhI6BJZSWKxQS6FX19GICPMyM5eFENNK0vUJlrNSKnH9uK+LXBsTTRE60gwxt80HjfRqSHeQ3NIKS1+zhSS6qJs16FAj1oSlFEopjryPQlRlTJmogSDX5/Rtfa7V9r+7y5//8lN+58nu9T6U2/ocqX//I+/mw/+nd6F/5/2v6eve1A3KXAvR1EmyGggIx9ZYSvHRenAtQKmFpa7EV65dPA7aWtN4YL17bQIdYVoKi0BaM+/PUmUYNmyysczCoydPicNIznkNVWtohJwFlYaYo+5jCs6iWN0knvESCGFEEawK0+KJvDShTp22dKTLGmLn7IkhD6BKXQqow7LGIaPqWgwxt8wGDZhVQuycnY+c3skMQ1hBcELzMCIQdxqpRESMOsPx6kidFjY5cnK64XSrjFmJgBz2tPJR5seX9PEc7jyH5i0pDty79xzn22do1dCkNCvsd0/ofY+0PbQDvTZgQ4yNshx58ugpd8+VF144QbeN41E5LoWpTOTYKHXD8biwWGC7GRlyokwHF5uGQAjVqagasVXcKb0Rgv8cSymrxdizbbRV6JUhZYaU/eI6JHJy5kdvHvRXS2EckiPrDaIEmkHv1ddHKoSYWWpFg5Jzpi+FqfY1zFGIKYIYS3Uia0oJUaGWhaBGiL7uUXUbeVjFvJ7D48+fdXEbuQCr3gjcZtyuGyLc2vyqs0jIeUDWdO8g4rRahBQiTTxXp67Ot+adFyquzVIDUQ9CLEthnmbqyvnB8HVWSt6cAIHbDuVzsU7+7I/yvv/zu/idJ+9/vQ/ltj4H6o8+/DJ+8Q98Efrj73/NX/umblB6cyjbNWeitEY1T7A1dUJmadVBXnV1zKg3Jb3b6pxx94bbMp3+6f8pHksilN45lsrJKAxB2IwDu+PMy4+fcPfuHbbbDYSGZmEYAj0Umi0kHfxCuLodzEA1EKOTYXv3aUrURCBDE1pZXF9i60oHPHE3ZUrtjiQfMkNKqBqlzDQ6MY6wtltI5/R8y927I+M2okFWVgpo8Aas1QoSHBhWK4ermbJUTk8GTs62pKxIqFifsQpaKuV45NAuKHHDBjh99vMYxjvI2Qm2NPpcMCaO84FJD6jsaXIAZpzbsmGZJlpNlAWm/cwyH8nBmGtjrkc228DpaQaMy8PEVDvbU2EzjGQ9ZX/Yc6wFY8XbK6g69VXEJyi1Fr+4m9HXDKKoAenmCHdVOs3dPjmv4D6hlsY8z6gotbl2SUJEuhFCIwTXPaHJc5OSA8uaCNVcZOqLHWeMqKyuGByCZuZJyEGDr5iu7fBl1aKYEUOkB/PmATz+QFxQG0JYGxMco986tb2a4ix63Xj7WtPXNItPcszXel1YxbC+2nKg3TrZ04SEQJ0L+8PEtCygHutA80bZAx0Fd+Lfunhu67Zu659d/2j/PPbjP/1pfe2bukEJGpwjooHSG7Ut2GqjBN+flzXwTNRXJWbegsiq8AurPsUMzJrfjfbuJmTzULZicKiNXa3cFde99Knw+OKKpo61X3Y79ve2dBkwaZgoxOjfF1utqY4SD+qagKVXqlUIkd4CZWrUAl0UE7+l1eCOpNKgzgURGIdMDHLD9zANpLShm9tPN6eZu3c3bM6ElKA1Y5lco2Gx060Sut//zocjyzxhqoxbZdgocRC6dIRKt0Jp0JaZearMc6fInuHsLuHefcRmzCLNCjBT5x31eIH2iRgaixUOxyP7feF4NPaHhVo6JycbhihcXV2iNTJXmMrCmBJ3tltqE3rM9D5zsb/kOB0525zQNa7Pm/rPrDW0u1VW1p2DX7BdBCI46+N6EjFbW8XNxTU52V09IeqqVYpoiNBdvAqehByCkmNANXOcu2uCWkNMnAiy4vODBjQFeu2EqO7O6Q2zRs6JYRzovXCcZ2pdrccS6GLU5hOelCLgwLWOsXwipt4MXa3qIJTq50BKCcMdZbU7b6WJ+RAOmOrCXL05qb3R0VXz0ulUB/jFQG2wP87sDkcanqatGn3NI5G4rtAEn+7d1udm/dRvPuFv/8+d3zTeTslu69Ov/+7yWR58Q/20v/5N3aDE4OP92Sq1OyU0aFiR9Q5f63gToupsiH6NLJf1Xrc3v6BZR3QddwuOC2/QBKoYh1oJ05ETIqKBECOX+yPzoyfs9le0MnPxTGYqgwcGppGQtk6M9ft2evdf9tY6x3Jk6QXRiHRlKZ15aszV02sJgSCgMVCscZwWQBhycthYX+/IY8YkEiQDQhoCp6cbVFd6KqvrpwutFVorDENmyJn9xcT+6Y7tZuDkfEMPC0s7UI/F1xAbpUvDWmcuE9NSOO4LtSfG3WPafA/ZG4tESi1IKzA32jQR6GxSZgkD+0Pl4y8/5vHjid4r25PEdtwibeHJ5YH90eghrLboAW1KmV1IqgrzdGA57piOE6Urx7oyQERJUVHtdPPkRbN+w/Tw8F93sLTesRA5tkIrns00yOqksk5rEyG4MNUncd31Ss3B9Tl0p8gKlOrsmwpI9O9ZzX9ucbW5O9NESSlRiicUp5SQ4Fbhqcwr6n54tYEyW8FpHtzXm2cCmThQLudMrw2rjbJyfTQ4wj8mdwztj0eaKGKdZfGU5SE4oO1qWVkouK05hEApC01XgJ342vQwzyyt0a1itZHTSMYYsvOAnCKEf9FtfU5W3+9ptyu82/pV1J++usef+rK3AYdP+zHe1A0KsOaVdKo1Sq/U0l3YZ87ICDESdM3MUWedGIDKuksXR30Lrvmw7hc2eVWXUoG5N5hnWlZSiIwpEqJwddyzO3RO8kiVBJIJ2ghxwHqi1+LLfV51mLTuF9Eg7pYoiwfMTdXvok3NVwEx0HpnKgutN063Z+SYKWXBqKgaMeWV/1FJOTJsBJhYlu7iUDEMn8JQA0lHYkjMx4Vlnjk52bIZM60tNFlWOm/DeiCnEbVAmSuYUEtn2h+pdWG6eko5XNBjpGj0lUloSHDKXGsNsYi1zHSEp08PTPPMnfPIvftbxiEz74XW4fJB4zgVTs9POD09o80zh8MC40gKkR4HShXa3GhyzTxZ6N2fg01OmARaF7+oB58S9eZWWl+1BGLKSHfQmokxl45JI0e8qTWfmkxTxWgstWAoJmHF5wfMnPjrQtx+w1CxpSKqhKQ06Zg41SZIQKM3ySH4+aWqVHU2Th4ypbhTJqfRQWodX1FaIyJsc/Smy8dwEGGeF2++Y/Tvj9w4kmLwj9XafdKiwem5va/J2QGNEcVXnNU8H0rNoDdfEUWlFrDuep6cAmNKZA1urZdbEspt3dZt/dPrB379lwLTr+ox3tQNSqmzOy9ihCprpPyMiKe5pujalOtRvQsYs0POWlvTaB2brvj4u1d/kZcg65TChRtNhMmMXYV7CidqbKKxF6NZpFlnbm4J3SZDB/Owwq54jnLFA2kTy1xhCUSN9KXRpkZtSg/Oy+jdXToxRqZpwkwYN0IeYCnGXAVNgWF0TQW9k4fKyakQ84zGhZDOSTEhWtAwI1IYdUTlnKuLhVIL29MtWKMw0WWlskpEMLabOwTZUvdH+rHTqzBfVZb9gmiiXB44vPKU03BOPs0UdY0CuTHLjmkqlH3n8sEVh8uZthhDFJ6/03nhmUIIytOemM8CT652TFeu8ZAMx6Nn0kQraIfeA60nDkuF4NbZ3vCLPWCt+HqugYbMdjNSiyskqi1uNZdAILHJI61MFBpVgdo8XyZtKDRKc9eLYSTMg/NqQC0y13DTQDphtVMWDy4MQTk93ZBS5DgdCEnRGgkW2IwbgnZn0vROFIMgVHMia0qRpVQiAxgsdaFWF/kOeYQIpRSmaWJZFp/KdEfa18V5PmUVh8cYGeKAGaRB6b2zLI1uSpKwirGNZpWleeayppExKGNvbHIgnA5cFmVZMs1gmSeGqJzlyKAKFqjcZvF8rte/+z/9e/zcN/6/CLd2rdt6jfWbfurbOWsf+VU/zpu6QendbqbMgqwXCmdDxBRXoqdfTFR0zR+xV3Hlwe3J164IWoXg9E9bH3PNVMO6szd288RJjAwxMIbIEBOHxYW5V4c9S9sQYkAUSl1QbYTkjcpSKvO0o3eI6mm2ZenU6m4Luc7hSb6uOR4PnqOSEkHNeS111UWYizhVK5ttIuWERiWEiKhhFEJK5CGgGlGJWI8cDzPLcvS1RGV1cRghQtoErHbyOBI0UqbGNO9Ylh3LbOwPO2AhxUaY9+xffhly5mzz1hX6Vel1YT7suHy85/LxkQcffUiZdjz3rBNYn30mcnY20m3ErhaWdiTFQIqCNcf0D5sNpRnHsjCXylQ6h1I5mvNJdNWEiER376gx187SGoqgREzdkaKWMAqtdRYWIokYhCFGojSG4Oh2a52gQsgDY9wwLwdiDwzDhmXxKUIpvkr0511v1kcqrLoRqM1D+jDDpNFptL4yeZZKUNAEEoID2YDWCmAsdaKUgqgQYmAYIqiwrInY12/X5/51TIGJf34WwVqnzcvNsdXWmFu5WXu15sF/1tfmRJVIJ63J3ePmlLsnJxx7Y1mKrx7nhW1K3N+eMgRfDUXv6P+5/J7f1utTX/x7fpIv+b/+AT70v/3+z9hjfuWP/lv81//iD/AbhvQZe8zbeuPVne+CtmrnfjX1pm5QVCOqPnY3XG8wyLDCsOTG3RBEb3bu1/oUXcFbrp1cwwRXW6bg05S2TlfEzJ01wNXSOBtHcgxsQmKbrnUjxm46ciyV2gTtBaMTkgshe1PK3Fnm5g2MOIlzWWA6VmqpxBBIefS76GWhd3eapBQJamtDtmasCLQ2M24COSesF1/lpOxj/1SJQyOlTIwDbelcXh7YH+Y1IwaqNTQGYsxIViwKHWWQCPOEzg3KgbbMlF2j7xcGMTapkZfK4fFT7GTD9vlzUhrBGtYmApU2z7RpgjZzuoU7d05JGc7vDCDKw6fGk13hlUeXTMeFk03i5HTAeqdVt+JqV2prHGthXwuLGKMY0TzUDlwYe32x7Wv4Hd0Fwd69ejRAqQ3tOKo9KjkrrS1kEaJTQ1ATlqVQSaSQsKCeddTdPdVYs5dMSDl5uON6LGad6Xj05kKdXKvSQCpLNdpcnacSg+uLtNOKW5fdoSPedFLJMXtKdvCE4Xn2X/SUMjGsycjF9SFupXbBOGsCN6sLDIGlVqfPqhJxEJuKXPdQKMJW4c4QuRMTJ8nDKKsZbVhoXeldyCmzSZHeKyZGUBeb39bndn3xH/pJvvzJH+Af/v7/6jPyeCd/9pyf/NJ38huGj35GHu+23nj1rj/1f+CLX/r0XDu/vN7kDYqPT3r3V+MUE6BYX7kQQFjvdIM4aKqbM0OuOSi22o1DiMTgTYAHrPnXt+ox8+4AMo5i7JeZ05gYQmQbIofYmK2ynxeOpVObEVsnxIiJ55wsk1IKqCQEb056g7IY81QJQchDIqgwHRdaK6QcVxKpQ75iio7Dp2FqpJw4OQ1uHW7uLspDRgNYakhoaIwETVxePuXy6RUgSOignd4Lopk4bDxksCwIGxpCnTs2NZ4e4WKvHC+gHEY2SdbsG+XSFobLPeeHA2kTCWJIDNw5P2O6qGhRBjWEmft3N6RoaAo8vVq4uNrzyqM9V7uZqI0xJ042ibk0jktxRstqmzURKoal4Nk4K2/k2rLdmiBWQZwS3K17vpGISzaC0tSwtSMNQcg5YrUQmjctqNIMpmmmrpk7ZkZri08cxGm9tTVEgr+pQfPmIcdArS5KTiGv2p/uWUulUFsnaaYjLK2v/7aw5g3jeieEmCMq6udMMWp1C7CLbKM7f8R1MGYunO59tcibE2uvNSjF2o1oWPxbeAqyhptzKohwJwXub0bOQmAUxZrRTbCgQMQsubMJY+qNuTef/tgtSfZzvawsvPNPvJ9v/J/+PT70b0R+4V/7f35aj/Puv/8eTv74He7/zz/Hn/vQN/A7/of/irfF08/w0d7WG6He9jcq/erqM/JYb+oGpa9i09bxoL1fARUe1lF3ECGs7Ay6rRmybiGVFTwFfkHrpo4EN3O7ra04t5VKuy8LU6+cp4FNiIxh4ViF3Vw4Lh3MaZs9BGoxlrlR5o7qQEiZWot/bOk3F5xxHEkpscwzpU4+Ro+KmSfRRvX8lWad2gt5EE7PT9mc+NcHHYgho0FBGhbda2FNmKbK1dMDbaqM2wETF4dqhJj8ohjqTGsLczjlwcF48rRx2BU+/GTm4cXMvDO0CWPqnGyN03REU+feds/Z5ZHt+QkxBVIaiGcj83kjWeLOacLsyJB8BXS1P/L44Y6HD/ZcXs40g21SxmRYnVnmTl/dA6JCHDKpd3Re3NWq5gC8kF1Q6ss9oglSK+twwNd760SsWqNp97NdOt5GBJTo6y1RNChBIBeh0+hN1pDHNSVBhFrWc+W6MV5zdFKKDDmj0gEhaMRoiLoV2OhI8MmNdZhLJeg6fRBcpN0Fjf5vqrWyrKsc6xBCviHG9l5Xy7rzVHp3R5qKkpO68NWEpVZa89+DpE6tVZM1v+ca7OaJ4HfyyElMZDHCCuvv1mnX9vh1z9moBPXU6DXr+bP/S35br3v1w4HwN36S7bv/pU/7MV55dM67/sZPesTGw0fMt8O3z936DP5s39QNimfq+F6da6S8eEKsr0bWMXxrKw3TEGOFZ3ETOY/ozcrgujqv3sHDmt4qwtwrh1o51IWznBliZBMST6uxP85c7Ru9+9SidqMuiV79rjanDSKRVoxlrpSlgUHOLtw9HieWZSYEYRwHRFwcqSoMwyrupbIZI+MmMQxKjBBCJMVhdQhVRDvEhFngsKssu4m2dIeVmU9vNEDMgTyOoJHaElc744NP9vy9jz7ho087l7vCS1cTl8dKmZrnulCJyXg+BZ47S3w+ytlbdty5d490nqD6ZCjkCKGTcyQwctgfOOwWHj/a8/DBgauLeX3MwOlJ5O7dDdXg8tCwkBzdbu3mAjuEBLWRgjJEd9S06km+TsP1JLxggreb67nRjblVgkRyUEozltKY1YgWSbI2uFIhKHmjlMVTon0tqBgFCZFUQY+TT9nw1Y7n7bgzRghYh1obnY4EQddmQpPj4q0brSlLbRjdE4UNeqvOKbnWQyE+4VvVUMtSfJpkrzbmujY/ympDHgZmndkdj0x1ucnQ2cZhBcM1Sqn0UkAcwT/mxGkciCjdChVBzVhKZaIyhMAmrjZkfP2ZJPpa7HaC8muq3vZ97+Nb/vjXAvAbf+LI7777o/+LX/NnL7+av/HVd3hX/6nP9uHd1utcF/3Ib/2//B95/i//yGfsMd/UDYpPS1wvItf0TlVi9NG/OyH9YmNrLL2qrrbTddSt4uLUVU8A0Ks7QK7zXPQT9va9C60XdvOROylzEkdO0kAoylQnLi4njvvGsFFmOr2OBOFGS7Ishd4VsxV+FXxqM88z87wQozcnMSq1VkJwlkaKGaSxyZnT84GYHeYWoh/fCnUhJJ+KNEnsd5WrxztYxJujXmhrSq6vR5ytsTsWfvHjyk9/2Pg7H/wo/+jxwqFHF3xqpKFrrkyj9AWbGq/sE89MnWO84G0vXfLiC0diCIh0B6gJNFlctKrK1b7y5OHMfmcsc6DMhpqwGUfOzjKbQdylg2sy5l5RMxcFm7FNg9/ha1/Jp4bIyjhp/Yb3Yeoo96X6WqVZx3S1o7dGq1C102IkhA1Gp/YFsYJoI0Rbs21cVBqjOItEO4Jbg0Pw7BoNEbHi+PvrsMCmzMcJE1sD/TpDirS60GzCOnRLlOY/e1/dKIdpZn+otOoapZwHP/+iRx4cDs4SyDm79b0UZF3piKxNS+90M+bWaP6XRA2MIRGDMjejC1S7XkUpY0zE7p/X8a/vIhRR9h1qd4fbqN4MefKyv2y0cuvi+TVVZjfBnX/n1yf+Dr/5U/zCTx/UdVtvnvrqP/8H+eL/22euOYE3eYNSW1tzbfSGKpuikZIrxF1D4HeRQYLf8Tnhy3UqYli3NcxP17267/Ot+R2qijtyrpNmR4GFzrEYh6VxmoST5FqLuQgPj42nu5lhrJQBgiT/fuDhdkuhdUPF1yFIZZknlrkQJDLmDGYcjxPdGsOQCVEorbDZZLaniTQoGjppyIg50NMMNEbSqBiVad85XE7Mh4VN3KzTl+uE3UCOfkG9XISf+aU9P/xTV/z4L8587OmRPm4IAVKUlbpqWOhoYiWXdkrY8rQGXrmYePDwgscPnxCYSXlgs92uDBql10I1pSzG06eF3a7x9Gnh6vJIDMrpaSAnpVajd/W1CkZaybC1NKQbY4hIUKpV9tNEiIHTky3LkpiOBevmGiRRtDnpNbSGWvP8IWSlDAdPFV5Tho11ZRQTmt1F1WrneKjUtuCu3JnaZkrzBUhOCdXoPJvugXx1WcAUIaLSHSFfDcSQ5Foo6T5VsVqxVgkhuUYKQbqxTYEwDoj69+nddUbWO/Pk07RaBQ0+Demtk1MmmFCXytKv83yEIWS0GQGHx6k4H6Wq27mjKkOMDEGRbh5cKFB7pQdgHIjdo49n9UjJBj5hQW/+fFu39enU7/mHv5u/9VX/n9f7MG7rM1R/c4KzD4bP+OO+qRuUZoAaMSgx+p1kkICuGobrVB3HkTuwypfqPjhv652+B6J5s0LvPmUgkEIEHLrlJNpKq4UhJMwi+x6Ze+dUG3fixOPJ+OikPDl0ni+NeJIwjtQCZVGCZs++CQshGkNK9B6ZDwvBAmMe2A5bWi90NVJUYgbCQswj2/MNMRu1TwxZ6LaQyynaI1UaPTgz5LhUdk8O6Nw4HzIqRrNCwdBY2ebAGIUjgR//+T1/7sce8aGXZy6vDnRmcvApRIgQcKeURHemBMkgSguRQKUvlYcvP+aVl7ZoS5xsz1kOpwxDoC6Nviz0pTIdC48vJh68srCfjCbKnWeM55+tbNOGp/vI0jsxNcalU6zT6AxBIXg0XcwRDZt1Vrb4c1Abgk/H5rY4sM2MhUaV1c1jxjxXokbGlBlCIupA1ILSiEnWdOdMa/5cxRTWSUyjW6TUSkrXwtZOxNc4tjaImLktGEG7JwHLioWvx4kYMjGO3iynPXM356HUxjxXQuvcG7zZPi6FUm3NaOo0FtI62bE1Q6h2h7aFKMQqjGm4cRQl87M/rI2JiTcYrp3xhmgMkbMQOVnzgZZ5pllnv8z0NZYhSaCFzq5OtOpCcekQKRCEJdzyMW7r06vT3/Fh2i/2W8bK50j94Q+8hxf/88/s9ATe5A2KqGtIvEHxALY1l2/d419/Ip8g6HtVIAirTXWdtLTmd+uyhryFIJijwFyA233SEkRp3YWIxwLbQdmOG64m2B0qV8dKs4EkidYB6wSFGITePZnYguPKy7KQc2DMmVaNUhYkGCEpJg3ECDFydrbl5HQALbSuhFXwSexYr87wEGE5zBz2O8pyIKqS1FcC1l1YGlJCYqdm4eGV8KN/7xf50C/t2FlmaZWYMmbBuSEiJJQcExIcYKdJMVWCdHIaqM346MM973hy5LnnT1DpXD5+yH53RMwviBdPrnh6MfPk4sjjix29C3fvDzxzX7l7lhhTZjcbda5I9GC/tiyupwn+PJS6sMwL280JJ9st09JZ5oV5mllKpbbmmTUS6KKUpdDVf+qtObtkqQvHSdlGWd0uARFbc3xcL9JESGnAbKH2sgqojRB8RWdmiBmtV+JKp7Xujhi37jZiVDRkRJVSKtchlH2NXxBRxu12JdIqJkoT17ksrVNq8waERi8g0tdzPNINQopOo62VaEpMztiZaqGKrcJwb7i7NWLwqdFUFtrauKAumO2tsm8GVW6ouHSDbmyHRBc49IWl9hUeGJhroTaj3U5Qbuu2fs3XXzkMyA88B3zoM/7Yb+oGJcRw05gEVeIqInRtyqtSYmdC2LVvZ33z93rvtN5p1SFh8ROYKSHoL3ssZ1x08TTX2iuHxTjNAymOpNA5HAsXh8rcT4j1E3UxSkpKLcIyF2o9MJcjhpCGkVagtkJnYUiJoNCsk8fMnTtnDJtASA1HqwoajBASmsB6I2ii18r+8opynF0srH3V1QQkJV9lBaUG5WiBDz8t/OIrC7sjlFDxOVKmF6B1igbXZISKSEcMWodugRQgpy3dRh4fO48PguU7nJwm6uERDz76mKvLhvXE46d7dvPM7ujJuttN4t7dxDN3IkNuCI1hSOjka40uUOx6QhYw7RRriEG1SgoRMzgephutiOpqvb3+udo6EVujDUTEIxFqoVlek6Ud69ZboYvSCLSlYyFQSmOZPe/G3TB2c+6EEGi1+c82CBrdjrssM7XWmywdF18bMXZy8vdb74hGQojruWceLKmRuXXqGv6oqpTWsVrJEXJKhBCZloVeqq9xVJG+xic0Y6KuzaOD53xdufptRCi4NkXWIEV/E8r6jp/7A9Y6Yp1gPgGK+Ho0E8iaaNqcdnsbFnhbt/Vrvn50/0Wc/em/81l57Dd1g5LW6HqVFaZm6xj8l9mcvMFwp49cj1hWL1Rf735tFdqq6mrx9c+91ndcC3JDCGBCV6C5IHFXnVGSQ6bUhadzZ1+EoRiiRkxxFbpGaMauLEzzHqwwpC0qME+L4+aj+mREO+OQOb9zwvZ0QIOBFpBODEKI6g2U4CusUjkcJqb9AelKyIrRab2g2pAAaMUkMPWBX3h54u///CWPJ5gWoYeOpujwuzYR60IhsUhApZNU2IwDpRZKhyQdswpxYLbGS09nPv6k8OL9Led3zlEJPH7lIcdJuTp2pr7QpHB2suHZZzY8c3/gzlkgJaHUjO5lpbR6wKOJIBqBAFKxtRlordJro9ZGWdzKG6Oj17UqrZvbf21Nb15PBlvBfc0c1LeUhZM8rllIi4t/AyylYy1SSvUpDFBbJ8ZXR9GqSsPzhmoV0toou33XnS3dPLV6GIa10XUQm6xDitabNyjNWPsImnmzEnNcJz7eNEvwKQ69UZeZWo1hGBhiAnG+iwSBAKZg1Z1AqkoMgRiiPxf4qofV9RNWcW9ImV7c/SbXo0XzEE5rQrVGF/dFdWurZd8It6j727qt2/os1pt6AejiWNZGotHbKuj8ZR2Kg9dehVZd3wkb13eZTqGN0cMFdbVkmtUb0Sysd9zBKa665qksGFelYd1D60QDl3PlanGiaVJIIRIkURfjcDgwTwd6a2hIaAg08+TYmNw1YtJIWb05ORlBu8PVQgM1NAZCiHhOst89X13tubq6uqGe9h6AiKni3uqKxIVuMxe7wt/72Qf82M98jIeHPce50OvasLXKtk/c14WtFULvpC7c35zy9vvP8+zpHc6GLXdPz7BWaH2mi/Cxh5e8/2c/ws9/9GV0E3jL2+5x935k3BY2Z53zu5Fnnh157oWRt7z1hLv3EjEpaRxpGnl6teNyt3PK78p8STH5oeOiTgV6Lyzz5Lk7Gp3OqtcAslV7ZB4SCC6k7qw5S+bi1dYa8zS7TVjcdi5AK5WyOJa+r6sYj0+4JhP3m/Wfr4eg1UKtC2Z9neL4+VZLobW6CnDdqlzrAlZROmKuf8lRGJISA2hUNMi6cuqkKGtI4YqwrwVrDcFIQclBycFtwXr9/a8bdSBqYEgDQZReK/SOmBFVGWMkqxINhhD894iO0lExNBizNI59YbaFpp0undYroTcGFTbxTX1/c1uvY1mt/K//1e94vQ/jtt7g9aZ+hXGXjdwwTnp3V8+rkxS7gXnZJ05YVh1K704cRdT36yE660Oc8dBWK6vgwC3nrOAuDfHGppqwq43zXtjkDYslLuaFi2lG2JCSgBjz1Lm6PHJ59RgojCdbcl5Fmb2x2SYMYVkmUszcuXvGeJLoVgki1F48mVcD3aA2WYMQlf3lgYunO2idIQ4+JWiQQybGAFZuyKZLaTy9ED76YOYXPrbjSakgETWllgosvO3ZyAsnI7902SA2XriTeOFO5N4ZPIid3QJnn/cOfvYXfpHHj54g4ZSrfeEf/txLJB5z5+xLeMsXPovJjpc++oh9USQObIbEOApn5xtEYJkqUw08vCw82a2TgSxE3FXi19RGkgixgbq9uJqH/6U4uO7EHGfvjYY3JjG6jfuaI9LAWTkxIqo06/TWqYuDz3LOlKmyzDOsMSHu7nJSb2sLpSxst1v/PilgptQ1adrD/ZxQW4o3yq01Dgcn3IYgawOqRIVafAWVcyLExFIbx1qp64QoqDBukiugTFiuJxsbnxAOKXkyd/NIhiQwAAug0ad8Udc8nlKYp4lOJUpgCP4WeyWakdfGxfdeQqMjKlQr1F4pvTnsTTz1OIXAoIFym2h8W7+KkieX/MS88DVDfr0P5bbeoPWmblBWfqyD16xj9uodNHAz5nbC7KvMCB//N7eJXl/SbkBvfqfM9a5+/TvrjtCXuGb3YA5iW4MEp/nI+XYkxsBu2XNx2FFroFVovTMdClcXE6VUNlshhEzvmd4LQw7kHFjKTDc4O99ycrah9plulRQytTUgeOifs9HpTZmuCtNVRWogxAQqr66sxDNaunkTNM2NaW/U0qmi7EtmdygM8egMDBkYB+NfeOcLvOv+Fv3AK9QIb392w1AODPuJ+2psN4G0yZxuBuTuiFnlyeXMxcXCMs285fk7/Ktf/xV8wbs+n/PzU5buq6NNNhoLJkYjsruE/dPC1VSQeML2ZEBkpi8z9Ozpw2lACejiuUHuqIoc9g1BGfLAVPbU7pj769XJUn0tcQ08A19RIIKuE5FWK3VZPCgxuJYJjHmebwSpqk6GbbVg1okxUktdGTZhhf6tk4WYyUNC1KjVMAvU6qC9nCNI8JVKb6vlWInRUPGE5KM16BXBG83t4GLl3hXrDhQM0X/+Qd2ajOAJwyuaP/SO4dZ2DHqtLPPimpnV8RYMqBXpnRyEME+uU4mKBWFpa16RRAwP00wxchIzGYf9EZTpNizwtn4VVT/+En/4f/f7+f/94H/zeh/Kbb1B603doHTra1Dgmq2zsk38erSucsSnJtKvA9LWFNjud+MpONMirMFyvXvDEeKKxTcPi+N6PdQVFVgfzi8CGLsyMdSJpIlSGpe7mePUSBmWYhyPTg7dbgZSMtpSqOZ31pITnYqEytm9Dad3N5gutDaThwjqVtAY4wppT46wPxZ2uz3dhJw33mTQICgaHE3eulNXywK7y8Z0aLSekHVCVE0JrRGlUZdCT508BM5PBu6PnUeLcLmH+XJGJVIk82Ra2L/ys5gd+dJ3PMfDxzs+/tEnXNaZear8zM8+4svevuPXf8kLvPXtJ1Rbp1n9yHHecZhmuiWWVri8mrm4nJmWRvMrKlKK6xxiJKaEWWep7rYJq/h0Oh5opROyUqbGXMpNQJ6JC4yv3++9u+DWHCPfzSi1MZfmZpbamaaFpANj3tCmeWXirBk2YW1waqMsC7UsRFU2ORLyQO+VWgtRncETxJgp1NY4OcnkFAnq66kgSi8dCa+SjkupCEbEtUc5KEMUeiu0anR8KmOGT/mCEgWwNScKSCIkVUrvzNbdTGzr74iApoDiTqPWGoYTebcxshkDmiKSAk1haQshBtKadYT6hDGHSI6ZcdgSc+ZYFvir/9x/7W/rtm7r10i9qRuU1jtVPHvkOl4+0NEgqw4B3G7ZVwy5TxIabb2TdvePur7Q10W+w+FaqnKtWXHia0foYOIUT9Z1T+9c0onzkftZwZQnTzuPLyOmhcPxCJbZjMoQAlIFoRCygSZaX1A6m7PIsI1IPtKkIrkhcSWWBmdgiCm0yHS5sL840sJME8FauJkSheiws9Y6BUfAX14Wpl2kSaRZ4CQPDLmgTellQy2Bqo1q8HgJXLXA21485TmNzAx8aH/FvhhTazx6emCRiS956ynPhcrHHu/YXy0cZCFr5KWPP+VnPvBR3v55z/DcM6dEW1iWRi1bchxpcqTuC8u0Yz4ckdbJGeZu9OZJwjEIrc0U60y9UFeke58Lde5ENTQJU1ucmSKuKhJ11H1KgWbQewWr9O60YD8HoBpUhc2YSYJrPFpjmxNjUKp1jrXS1S3KmOch9boQszKGQKKyiZmQRqbZ3VQRRYKhWahijFkZY6AXD40Mmmk6Ym2mFUOk+fnZO1mMqMZ2iIgK+7nRxQW4GxvptRPWzKFBAzEHelCmeaavgtjWC6VVtAnR3DrdA9QArXmDhkHanvB5L9zjfoB094RhO5LGRBwCpu6MCighRZo5lG1pFTQwxJEoih72r9ev/m19jtTwi4/4DX/vf8OPffWfeb0P5bbegPWmblB663RRFxXaq6FmcJ2do68yKoybBgV1N06IehOgZquuwQPZ/NZbWC3K14/5CTt3B3TZzduCceiVrXqC8OXUeeViJkjFemPMkDRArzQzYlJiVid/BmV7siWORlBb3Z+66msUJdC6B8L1Khz3B3aXR+rSkRGwRqs+TVIVD8QTI2iitMju6sjF0yMxjqCB6VBJKtw93fCoLdRSWFr1XJc40olcXM3c2Zzz1rc+z6UFfvqXHvDK7ort9ow755EXt4l3vHXLK/OOX9hdcIyKhYzKwLSDf/wLD/m5D7zM5ivfwdnZKaozorMPtVToFJCZzca4fz+S5s7jC282QsrkpJRaOM4F6+0mP6mUQm+QoluFl6V5iGI3ql2LpF3YrKvFOIjSMKw1F4u2xnCSONkKJ9uI9kpf/OI/JJCuLK1D8cC8rh3NfWXurOGBvVMMolaf9GhiP+0pS0WDa5VSgCSg60pRRIgpMuiGnBNlnlnKgrUGZow5YmIMMWCi5Gg0lByVcbOhl+oW8u50Y1+V1Vcnidahday7bqV3P89VoNc1/6kBwQibwNve8SLvuLMl3b1PSsGBeNHt89YLfZ4wjKlUro5HyjRh1RDzUEObp38+v+i39Tlb9Rd+kf7n3w1f/XofyW29EevN3aCszYE3J4Zd2zm5oT/QV60I7dVgs6Ar3E1Xy3Dvqz7lVZulXOsXPoGZcv1+60Zbc0+utYXNfCd/iGuDUhsPd5VT7ZxkIeWAdKOLQVAkKV0MTcr2dMuwGTCbEdZ/j7l2QntEegIy3eCwP7K/2FOmQgqZXju9Ncx8leMaGkE0UKuy2y1cPDmylM7JqVCbcTguJBHun215aersZoeDte5RALUIDx8dKCeBebxiHzOXVXh4WLjLjs9/5owvfjZyLAd+6mOXfGSaaHEDGtEwYF158vjAP/75V3jm7jnv+PznycOGqH7BDxFSMk7PEhKFzdFITyamY2fG3SmqECPo0kkpEIhUa5QQCLi93DN4lBQSRTtBvTHptRM0uMBVgBW2V+eC9k7A2ObISQ6c5oA1nxxJ9wmGiltyt6KuYxGlpowE55qU2jyTCaXUjpYOqItmWyN0F8MOKmgz7NpSDJResb4QY8CC0qph4oGPw2aDxYCKUXtniAqq5CiMWehilA5KoFpnMW88EP/Za4UogSh2jYbzVVc36rxQi1ERplCZmIhD586dgaaNtswstdDMGSdWF9I8+Tq0GXY8MlgHU3I9kgSklX8ev+a3dVu39Wu03tQNynVQoHcIjYBdR+14swHOxVjFfCqyJv/qTT6JfUJjct2cqOrKP7luTl4VA143RY5Ed80KgEiii3AonTDC3gIPj3BfYTwNqAV6LYQUIAeaVIIam+3AyekGpGMWPMiQFb7SFTRhLdJ7YDrOXF7OzMe2AuOUZWoguIYg+O1960opxv5y4tGjA2XpbMYtS4GreWa3nwkWubNNnG8z0hNTTMztSOvG1aEQWuXR5Y7l4RMeF+PDD47sSiTPLgC9mgM/9/ApP/fSgalFsjnPIyRDfTfGKw+e8I9+7ueJGd7x+W9BQ8JavQl0PD07YXPaGPZHWgss08g0RVoXSp0xOikqGiLNFMo6WQqRvvJDVJQogRwicYyUlRobVdGYKLM7ga6NQJuYOM2Z05zJEqEKvUKZO2VeqLEzJBeZDiH5ykiVph0LnVoaEQFz6IghlFI9TTgN9NA9QycEtsmJrt1wJxbQ1pA/tYhYQzGGFNlutgiKZEOlUZoRDESVLJCkoCNIzvRmHOa6np8J6Q7vCxhDGpzh0psLps2otdKWSiDRA4g2lnLk8uohxxOjN6OUwrIsALRWETNk6WjvDCIwF2LOSBBar6g1wic0/bd1W59uPfen/j5f+C/++/z87/p/vN6HcltvsHpNHJTv+77v4+u+7us4Ozvj+eef53f+zt/JBz7wgU/6nGmaeO9738szzzzD6ekp73nPe3j55Zc/6XM+/OEP823f9m1st1uef/55/sP/8D/03fhrLBO5pnJTaqNUtw231j9pBWPrC32MkRyTQ9MkENY1jjt9dAVnXSflXjt/HEfuT9U1cMuhWq9OUiBIJMZMs87UjF0THuwKT/YwFQeIWbNVK9Np0sinI2d3t2i8dhwlVBOm0ZuMJtQeWYqwv6o8fnjgsGuYZVqLHOdOt4TqBtFMRzmWzn5uPHm68PjJxPFoaNiShlOmxXh6tTDPHe3GaVTOxszZ2Rl37t7l3jP3SMOGR5cTr+w7H3yw5xceFj7wC0/5pY9ecpgE0zOe7IUf+/kj7/9I5TCPpDYy9shpyAzRSKkyZOV43PHhX/olfuljH+Fqt2OeGrWCdc8lGodTTrcnnJ8knr9/yjs/71k+74U73Ls7stkExjExjgkB6rI4UG0plO7cGUyQjpNVzSdjQQJJ1bUa5pM060YUZZMSp+PA6ZBJpkw74/LJzO6ycHVZePLkyINHO15+dMHl1UQrkIiMIbPRwCDKaUzcGwfujJkcwFplOU60pTiJVZSk/n8xfOXSGn2pK4a3E8UJNkMMbHJmzImTcSBaJwLbFDnfjpxvM+ebxLNnI3c2yv2zwDN3B043kU32CU2WNXmquuYIfP3UWsNUVmYP5BDIKmQRTlJkE5Vlf8n+4hH96ceQ3cvk6Qnbcslp2bNdDmhf0JV7ElpBS0HLAhSMBTc1vzlfO27rjVP9cOCLv+vH+ZK/+bspdtv03tar9ZomKD/8wz/Me9/7Xr7u676OWivf8z3fwzd90zfxMz/zM5ycnADwH/wH/wF/6S/9Jf7Mn/kz3Llzh+/8zu/k27/92/nbf/tvA+4g+LZv+zZefPFFfuRHfoSPf/zj/O7f/btJKfHH/tgfe00H/4lgrk+Es4n4esQHK9dwreBvQUmiDrRa7/Rv2LKfwEq5eSxfuqyEUH9ch5y/2vwgEEXJMWKtUK1xrPBwt/Akb3mmK1NrxOgXj0ple+eEe8/eIwZjOhyxLrQuVIwgvpGqrROarxMOlzMXT3YgkHKi1o5ZY7MZ8XTmztwaU2lMc+dwWbGWGc8yOQ6U7jlB06IgmRRgm4QhKofqXIyz7RbpnSf7I09bZ5LMNt+lBWhtZjkcuMyJi4uF3aK0OJKi32WDkuiMURmyEBDq0jkeKw8fPeIjH/0Y55st25OMSKDWTKtOQI1h4O5JZAyKyA4LTlSdJqW3zm4/UWqhd+eg9tIQiS5sLc2blNaYykyIkc0wMpdKqZ5kHSUgKCkIm5yIdJbdgbl0jEoITnYtTVhq47DsMDljaxkNkRg8LiCGlQYM1N5Qc5uuNdcLYZ3D8UC3jqToq7zVOVZKcQGzKkIjqU9NujWOxz3WKjkE1DrbIROHwFQrQSPnw4gxkbLRTYjijfZ4aFwuB2oHS5mDCXWaaXOltIUgiaCBIQ9kjS5U7pXzlHk2bxma0PZHCDNJPbk7mniz3zolZiw6cbZWqL2AVVBBrGOv4fbmjfbacVtvsOqNL/iOn+Jf+ov/Ju991w/x756/8nof0W29AUrsl2NXX0M9ePCA559/nh/+4R/mt/yW38LFxQXPPfccP/iDP8i//q//6wD87M/+LF/+5V/O+973Pr7+67+ev/yX/zK/43f8Dj72sY/xwgsvAPD93//9/OE//Id58OABOf8vQ3suLy+5c+cOX/r577xWsd6EAwrekMQYb0IA40oljWteTxbcpglUEbe38mqD0rsLZkHW4DVuJitL92C6WqtDw8Ubn6iBbYj0XmjJVw93mvKld0/5khcHvuA54fmzRMpKPAk88/Zn2J4PzNOO/dUVfQZ6omfDwop8r0JvkbIo5WrmuDv6REcjHQURUhQsNAidFmBqsNtX2g42cSTmQC2FaVq42s0cuk+BaJVXmvGTDw68dOkhdWGAmDL9sIAG0rN3CRK5evklDk8esEkRySNXRViWQGJP0CNzTSgDd4fKO5/Z8NzpGadpYIiwPRNO7yrPPXuHF+7d58UXn2MYB+a5cdjNaCqM4wyLUpbOxbRnssLlvrDbGYcjPHp0ZCqutbg6VC4vjz4haS58JgYOy8zueCTESBoGprkwr46VWh1+loPw4p0ztlrduaMJCR1Tt+u2KoQkjJvG2XbL2WbkJKmnDhdh0A2blOm9srSZWTvVhDIZKuqE2nn28zAotpJlwxrAF8VF2V2FEAObjWPwD4cDQYSsiRQ65+cjIcHcOzEkNighFU5OI6Ubh70x7eF42Xj8+IoHT3fsNfPwOHNxnCm1MFmlrcTbbRqIzTDzgMNnTja89TTzReeRe7EgaSJpJGgkSaaXTu1GSb7Csm6UeVkF24pZI0gnpsA3/7d/k4uLC87Pz99Urx2/lX+NKOk1HfNt/fOr/+Ej7+OObl7vw7itT6G+98FX8CO//lOH7VUr/BB/4VN63fhVoe4vLi4AuH//PgA/8RM/QSmFb/zGb7z5nC/7si/jHe94B+973/sAeN/73sdXfuVX3rzAAHzzN38zl5eX/IN/8A9+xe8zzzOXl5ef9AYOqwpB12C/cEOJ9eTYfoMmvwa0IdeIe4d6GwIrKv9VjLn+MqHsWs69ukk9NvOLUliTlFNQoDmqHL9wzgYP54Unc2Eu/h1PNoFnnj9le5aobab15mLe1kAaS60c5sY8wfHQubw6crG74vI4MTeYm3EsjdKhtM7SO244EUoRjoeFw2FCgxBzdDpt8fWXu00i0n39sYmRe5uRMfnzMBfjuDSKKMe68PjpEx49eUBpM+M2cnpvAwlfT8VCkgWVDgoxBc5PN9w5PWMcNsSUGMaRFAfmo/H44QWPHj5id3mgLjhIxjw3pzZvEiUYp6eZ+/e3PHfvjLsnJ5xtMiebxJiiU0xTJObgWiNVuohn5YTE6faUlJLn9VhHV1S9qEJQUgxsU2RQYUiBk23izvnA2dnA6Wnm7G7k7l3l+WdG7p07KG1Izh0xa8zLwnGa2R0OPLnccXGxY391oEwLvXR6MdQcT5+CZ/QEhRSVzRjZDIEhC5scyVEQKr3PhFjR2NaAx3WyJ3Bymrlzd0M+SYScMYm0KpS5UeaCtM4Q0wqVc+eWZvG3EDzSCRf+xgh3xpEXT055y9kZd4fMGBNJM0E29J6oTVm6URC373eDWmjzjHYjiZCjr9CGmImfQkPwRn3tuK03dn31X3vv630It/UGqE9bJNt75w/+wT/Ib/pNv4lf9+t+HQAvvfQSOWfu3r37SZ/7wgsv8NJLL918zie+wFz//fXf/Ur1fd/3fXzv937vP/HxIKugFRANSPO7vevsnVcbjlfD/kwFU6HhtkzrvrCB6zWRNz1ch6uZ82qbubPiet7koYKKrONugMUcqOZUMJhpPCgLzx0ix2NA6sLdO5mTZ6DoJfOx0EsghkzYeIMzNcNqok/KfCgca2dqE6W6S0QMWl1QmQkBBg1kHWg1MM+F+VhIdNLQ6LpQqzItldYNDZB6X5OSjY3CW8837OqB+aIxL4rVa8hZQeajA+46LBJ5dKjU2pDaEHPtTW8jm5B45jTzwp0tZ+NIlEpIhTRGRI0cA2MItHnm4smFTxOSoTJTWmFaEtvthiElzBqlF8IILR0hF+pZwKxzuW+0umBSma0RyMytOg7/ev3SjVY9fRm82dSkEGEIyiYIJyEyjBlNiWFjWEgcpgVC4WTTub9RymJMV40eFOvenNRaUJS5VI5zoTTPrjkdBjZjYFkqQiXj+Ta0TrUKIWBAtUYSRW1wXVNbmOuRMAgiwYmvJFLPnOaBuBGKHFkWo86ddmmUuXHcLfRq2GIcSqFKd3Bg8oiG0hdCGEmijLmxSUaWxJ0wcKrCWegMsdOoIMrGMrUvEDu1F8qqOw9Nnc7bKikmTDvNFkRABmUJn15Y4BvhteO23tj1Jf/7n+aL/tPfz4e+4/tf70O5rdexPu0G5b3vfS8//dM/zd/6W3/rM3k8v2L9kT/yR/ju7/7um/cvLy95+9vf/up0hLVZEce/984N7v1mbWMd6eKQNjMUz8jRT4oTedVSbLwKaTNZoXC1uhUXbr63XmPUHT7hrqI1FdaAY2s8PkxcTIGpJ+IQybFT2wJWsB4QicQhgAqbZvRDZzfPzJNRGtQWKXVBCIgkltKwtpAyoIm+0kjnudBaZxiTJ/zWwvHYKaWsKH9AG0QDqagZJ1F48U5i7kZ9MrPUNU3Yn1V6N7S7QLjUCl3QphjuIolJuXuSee48czZC0oUhNE5GONl2UoTtoGyyot1Yjldc2UKIHQ2FhpHGU06GE4aTE0/z7UaShXqshGxIDhSO1D5zKEYsrA4tJ7j6BqWtAumF3oo7toQbF07tnRxgDLDNgZPTRBojGium0YdrUTk/CSjCvDQePz1QaqdbobQGPXlGUDNKcT1MEmPIkJrn8bhEZQ3ta9Wncx0qhvSKSqCZIKbeDPRKDtmTkYvbk7OZQ1Rio7dGa51pWZj3hboY81Shun259YZIJ4oSzJBmaA8MaUNSyGEmR594DOogOg3VoYPa1zN+TVxWnwL5Ka6eXtw9hDBE9d8H71yQYP5L92nUG+G147be2GVl4Uv+m6dwmyf4a7o+rQblO7/zO/mLf/Ev8jf/5t/kbW97283HX3zxRZZl4enTp590J/Tyyy/z4osv3nzOj/3Yj33S410r9a8/55fXMAwMw/BPfFxxhwIrQdVU1ou4fJKe5GZlo+qWzDXWXvVVA/GKR/M/r5TY68bGEL+A1OILIpE1h+XVdZCTNl7NAboW2y698eRYeWUfeLIoSzOsNiKdbVKm3qmt+EVShSSG2kJvM71HaJFeIt0WhE4Q6M2nBCEYpUKTQC2+6tCUCENCNLIsE/NUqKumxjC6VFpY6ahdiH3mPMILJ9Bn4+mhsi/CjNAtYb2g5oF0zpwRwmr1jRFON4lnTyN3T4yTXMgCZ0Pk3nnm9FRIsfsbDWsBbRN9LrTFgwmNQF9gr5mctwzbO+TtSM971I6Eo7BQyZeFEBaGJGxyoM1wKNVJscpN3EGgkxXQQO/BnyvrQGPQwJiEbYbTUTi5O9BVEBmJOrD0iXEY2V0VLvcHLo6V3dFD9qyvtGHtfp50kBCIQTARllYodXEUvyl1qdAbFpxV4g2sX+ybLdCVpVZfUU0wzRXIDCI0dU6OafNGunfqMgFOeNUAy7LQ6wwIOQRGYFONqoHzccuYN6SweJSCgbSGyELMCZNGp3GdUFRNEJU1GUKgu85J1R1x1+d5t45IR2R9zj8N9dob5bXjtt74ZR/4eb71t/9b/Ny/fYcP/tt/8vU+nNt6Heo1NShmxnd913fx5/7cn+OHfuiH+IIv+IJP+vuv+ZqvIaXEX/trf433vOc9AHzgAx/gwx/+MO9+97sBePe7381/8p/8J7zyyis8//zzAPzVv/pXOT8/5yu+4ite08GH1ULpPYpPMzRANSOstmHDnTMd56B0sbUr6fhu6FUXj0PSV9Db+sCtNUd9976mG7+KxL9+u25K/ok/43fOV6Xxsd3ES1eJp4eFOzPkjZDGhEpjP1WqNb+QLQ2WQlAjBGNeGmJCFIeAVasonlMT1gtIp9ItoimScsSAeWnMU3FmhYZVg+OrMLr/awVFa2dolecGId3PnOTIg13l8bFyrN1hX9KodEydzZFCYLvJnG0S904ydwbhPDdOI5zEgfvnp9w7HxiHgsjiTU53oiq9OV7fGqXO1G4sU0Fxd5KmxOZspFhFYyXESoiNECoqC0kd5LYZhN7dXVVaJWZhux3AIqXOtK70VdtSe0eAHOFkiJxthO0YOT8f1qiBRFkKy36itMjLj/c8eLRnfygc5+q5TGKoFYI/eQRR0tohN+u0Uuh95ixlggasFqx1TAI0HBbYBYKw1AqqNBNMAq15VlPeCEOKaFYsGqbmzJXWsFYZhw2kiLWZusyeW6SRbI3WjfNgjGPkdBgYc2CzCaQ8sEyNqyeFxTodoZlSS6MplFX3osh6nihBImYRrN6ACL0xd56LqOdX2Wuw977RXjtu641fVhbs/T/Du/5B5rf/sd/26l8E5b9//18kEQgiDLdi58/Zek0Nynvf+15+8Ad/kL/wF/4CZ2dnN3vfO3fusNlsuHPnDr/39/5evvu7v5v79+9zfn7Od33Xd/Hud7+br//6rwfgm77pm/iKr/gK/p1/59/hj//xP85LL73Ef/Qf/Ue8973vfc13Op40u4YEwjXf3qcbCG3NOenrJKWrrmuY7rAslVUlbCjh/9/evwdNkp/1nejn+V0ys+q99HV6ekajm4UMyJIRBwt5ljWhWBSSsQIbmzBngbCxj9cYGO0Gl6PDwWHAxmvLC9gO45XBDp8DPmtjE0QYCMuYRUZYWlYXsJBWIMGAhKQZzUzPpbvfW1Vl5u/ynD+erOpuIZA0TPd0S/WdqOnuevPNyso3318+9TzfC95mApNVuvmolFqmTBedOC2y8U2B65Q/ep3f7MR9QcwRNuF5fFl46Cjx2NWRu842nNqJ+OhoULJ6Sq/0i0RdZjSb0RhkSilIDcQ2krNxMNoYCaFDXGUoiZoLiCfEgJdAGntWJ5YsHEIgRMsHQkxKqrlQpaAFXIUd39JFpW0Ku11HFzNeFhz3A6OrjDWZR4cPtOI51c05tdNwau45N4/MfaJziS44dptdzuzu0zVYMeICfqqOKjrJsK3wG8dEqZXQVHJecXz4JITM7r7HuYRScA7axrG3NydnTy0jy8WAF2gbD9LiixGVLVDR4cZKGirqPSkXcjWbe0GZzxrOnOnwnRGZfQgcHq24enWFUgkl8PGnFjz55KG50SqEJiCuknNP1Sn9GkeQiAsNeKGWTIhCEz0OR1b79So4coY0+ZQ4CilnnPe42FCBISVSgS4GmnlDaG2EVosVHjWlyTG3Y8hGim66CE2DZKWMA41CbG1UcyomzpxqOHNuh6YtLE4yT/jEQ1dHFieJJna0oYNcSZrQkGh8OwVjTt0hoCJmhheMx+UcOPF41xBDRPLqjl07trhzoGmkXL3Rc+dr77Oi9ejr/yT/y//8o3xBXHDB7zwbh/c5jaKVDxzfA1y+Kfv/jAqUH/kRa7O96lWvuuH5H/uxH+Ov/JW/AsA//sf/GOccX/M1X8MwDLz2ta/ln/2zf7bZ1nvPm9/8Zr7lW76F+++/n52dHb7xG7+R7//+7/+MD96L4qe/T80QqhoXRb1MHZPJ7lvtT9a8PlW02PaIFSuWXmtOoFUrZUr8rVXBmSLEr70sZD0OmkY+n9BNWc/rvYCK5zgLl47h45cTz727sHO6pWnNPK6NnuXxQH8yIj14HKgREqFO4qMGMwctNG0k+EgtloA7Fgs/RCpFE3lMlKQ4MS5KCFO+UDX306BK0pFaTXbadruMfqCm0YqcPc9unJG1IzeOVRnJxbZtcJyZ77E3a+hCZTdkOqkWuuiELkaaFiADFS8eR0Cl4l3ZSG9zVsbB0oi7nQ7vhX65INdM27Tc85y72bnnORwdH5PLATudR/dmUBNDf8DRyUCu0DSeNjTUiSMkIlZsGiN6chb2gCfGhrbt6LqW5AvHiwp95tLjByyXjnufey85tjx6sKIfK/uzltYLvnrjvIhdbTZqs/TgGCJ4T2gDMw8hCJrUujt4xgx9LfSpkka74IJzOG/FcZ7C/dpZw85eZG+/oW0FUSs8NVVKzmh2rI4Lh8dLUhnY3Wvp4h6+KJ2LFgDYNjhR9qJw1/k5+2caVEb6Tpl5z1E55OOXT1ACrpnjfUGSAA3et9RayCWjxUZROVuBGbyfSMcK2NdQt3FR/nRwu60dW3x2YP8n3sXf+4mX8+EfvJ+3/t9/kOeF3Vv22m/v4T8evvwZ29+e7/lb53/rGdvfrcD7xszhf3tzihN4GiOeT4Wu63jTm97Em970pt93m+c///n83M/93Gfy0r/PAdmI53p7e63XjnPd6XCY/Xqp082etcmbLbi65leI8QtqrVSpm+JD1tb5zuHhhuJk8zpcK1DW3Be0EjygnkE9TywKj10dufRUz3wfznYzgjfL8zIUfHKEKlQqVTM+OGZdQx4cy0GhQtN5fFD7dJ2se+QVfPCICnkYqTkRXAdecN74F84FECOqulBBKr6tqAacTPbwVXClcDoKZ9pIN2todudkYNX31DERsrLXtsTObn4+WyBiiAHXzmhbRwgD6AjVVCK5KJQpTXj9g1NHjB2htRt8SkpKsDoZcemQU/NznL/vFLMOvFuheaCMSnCRnVmHEtHlyGIYkSA0riOPheAV50CyoyQhhkjrG3JfCU1r0mQEJLLqC1kTWRv2z5yh29nnNx9+hEtXj5gF6/h4FUKeum/SIZORXpRA5zscnnEcmTVC6DxFbSQHwpiFZSksamHMShot4HIeIi5MkQYOup05Z87tcfZsx/5+w2ymBBGkOMZxMCfaFFicjCyWBQ2FuaoVDyjtvOXUzoxu3prKxmXCbsDNGlyIaIzMxXFXX3hqWJjKyScg4XwhxF3AUUqGWm0c6Cqadfo9EWqpTJcQ4jOqBZVPPyzwtls7tviswove8E7+O/f/5P/4iz/EPTexSPmS93yt+UgB+gvnuPC/vuMZ23f4I18Av3xnFSg3G3d2Fg+CTvTUiQY7/f06dYFMuSwCrpS1ohiTFctEbK02Y6+Th4qaJTms+SlTceL8ZiSk1RQ7awmzkQ5lw7oVmWY+gqkixHEyVh65MvLIE4m9PUc779jbjygZ0cy8CRQKOZtSKHpP7Br6mimrDBLw3m4WZcyU5KiY30fAU1UsPK6Ct/vK5IMriFNEKxIsfwiF1kdUG/q+ErMw9435u3ihbQJd64gxUxT6UChlLRmuqEuMNUEt+Mnzo51FK37UeCdWiBivwc5DJZVsGUbqabo5oQ3kPJJzYVgVcgLPgsceexSZjYgLpHFAawZN5ApVKuLECKCCufzWMOU+W1dF1DFqYTVWVmmgHzN9LvQ145qGvb0ZxMhQB+Z7ymx+loNlz4MfeZTFkGh9Y1L1aCPDWqGoFY8Owbtg6dfVftZejCeUUqGO0OfKIidWGUb1ZBWymElRSRlXzYdmf6fj3Ll9zp7bZf+UYz4PNLEiRalJyMnTJ8dxnzkZMolKEGHISl0k6jDQOTNN8523a7EoyzHRyi47s13zgBl7Zl1gPmvoe8XVimi1EEtnih3FDOYc9lzEumK1VHLNSC3ECE0ntp172h6PW2zxjONF3/kufvXPXuDPhuVN2X/Ryvk/9+FpQd/iVuAOL1AiRSfOiCrmeb4uKa59ajPliXU6BEv7tXGAsU/WoWprCTEiGwdNuNYhmUJ9rr2+WrS9UEGKjYmq+adYECGkiXbrUEYcjxwkHn5CObsjzNtM8JXohLY1T5PDxUgWxdcGzUKhovT4psW51tJ0h4Gaq/nhB0WcJ5WKfQBWc5slI1gmTAjOOCcUNJjqxFdLBFYiw1gIit2QGkEcxNZGQ6K9CU5FoQ20jTmppmr8ER8icdbQdEII9hooOMyTxJoERsi1m2BgLMmykVpLHE6DqZD6IeO80pdjHn7sgPZ04uyZC8xaz/5+pLrM4IVYWhapBy/MZg0uOjQHI0K7jHNKjI6xTwxlZJUGFCFV86YJbWV3VhnISA00Crn2fOjhx/joo4e4yR3YOyAoxRfGohTAVeO2SKNUElKU6CBUR03KkAqrpIxSSV0ljxEtnpIrGgvqKotcCQ72Zi1nz+1x8cIeO3PPfDfQRBtN5lRZrgpHJ8LVY+HqsqdMCp4qsBqV4wz9cmTeOAYGDkelESFqpdCzdx7wHd4X2pgJEuhCZx2WYqNQ5yNZeqp481IRTxUbZUrJaHVTR9ChmkHqVKR5av5D+TxuscUWEyQEFlvLl9+DO7pAWVu9XlPhfBKsyatiYXIgkzwyoNN/5llRrvmmsFb6yMaQjbWxG+txj+BxGwM4cd5Ihjq1yNfCY6n2SVMrqQpXV4lHrq6451RgPlO6meOu8x1t15KdQ8YeKRY+qMUxjAM1w2zWMlYb4Ri/paBa8S6AeEq28ELVde6QbLJf3JQJg0B2dvzBNVCFMZsMVkTp2kBsohUzUlibxAjWlQghEIJjGCo6ZLwTmjawu9cSGqh1tIJtTSIWnQopjKSLQzGpatNGfBDSWEgrx5gULRHxNqYbh8SwqvjzDWfOdvhmSWhPIFZW45JVk4FgYzsRXGscnb4/MTm4gk6dlugblIpTRymKcxERTxpGFkMGhMWqcOmxJ1H1zLsZbXRTh8aylyogxdRhMUY751NXKAaP84EhjRz3PWP1tHste2cbhpXn8OpIxeTkLkATAztd5MzZPU6d3mF3b8ZO52lbcKKUpOQeTg4HDq+uOD4ZSLUijf26llrMyn8U0gBBIicrx9BnGoFZqMi8MuTRCOKqk5mh4FDipA4KzjqDKnVz/TMRyUstlJJwElEczkXzH9RCLVAw07gtttjiGYD3/JeX/syzfRS3He7oAuWaFb0aQ/Y6b/pPlP6KgvPOihO18QCKdSimm5yugwN1ckWZipO1ZLmqudQ6bzdgFWfkU1WchKk4cdPDdBBKRqRQEYYKuRQeOe6572jG6f3A6Ss9Z3Ytxbh6wTUBnyq5KDkrWgPB7eCDJ48DzmV8I0iMZhInEfNPs86J8846H6IodbJON86J1VweP40mxr4wjBWqI0Shm3uaLpArDGNGpRJ8M8maCyE4RKwQ8tlubk1UYlMJwZGzUNXjVGys4wBXKbVMkmBzw/XR080iQSpjgVIiNZtk1olDK1BBy4zg92h2WlSidVt05Iknj2mc4ptISoUxJUKjqBNWq0zfrwDrktWqBBeIXpg3jnkb6dqO3d19LoRKvnxEzQWhYXc+Y3c+Y6iFGM15101GO64KoQiNDzS+te7YdJ0QAvhAP/b0qUKM7J/e4667ZxwfZVbLEXGRcbRirZ133HV2n7vO77O/3zGbRWaziGekFiWtCieHI8cHIyfHA0NKiHd4nVyRayVpYUzVOnq+IWVHP4x4UeqOsiNKJpM1k3JlldT4Mb7QNkIHeCriIfpAzub14qYCvpZsxchEhnU+IjjzZlNLpd52ULbY4pnB9QG1W1zDHV2gqKpZzU83EcvU+WRzceOMoObMZmodt+mW3JCEDLB2p3WW5Hq9Y62six1j5RqxVgAVarE2hTgrUqwYmozhFLI4sjieXGU+cnnF2b2G/Vni9M6Kdi9CCDRtQ0mV1UmiXygx7tK0DT0rolcLnjNWCU5kssAv5lER1s97cHk6FsEF+9O6P3bDyYMy9plSHD4EmlZo50Js1CZl03mYNbNpFLRCXKIWxXkrSJyTSbGTKMW6TE5lajesje+sq1MKlKKoiKlpYoDUm8eLi2hUm55JQqswrgrLRaXWiBKREGnaBseSxdEV+pNM2+3hFMiZLCtC0zCbtVNIZCUlNXMyl9htHc+77xRf+Pn3cdf5ObuzwOmL+zz3xS+g62bU0nCsv8IHPv4OXF3/jNc/R1OLRbEkYSfTSFALwQnZKaucWY3WJWvbhr1T++w2MEpCaqFWhwu7eMmc3p1x4fxZzp7r2JlB7MCFgg6V1BcOLq948oljjg57hlFRscKNMp1a3KQwG4kxoGJeL6sxo6UQuwAxIk7MAbkoFSHnkeArjfNE086jIjRNYwaxAt5HSjbfG3Gm/sq54AiI85NB4dS9C1sOyhZbPBP4Jw/+InBrZNKHdcXhRGdwwH1/CFLxw/nsM3RUnxx3doGCdSzWdvWq1zomwKawsKqjUI2tOm1nFNhaJ4+UtTX+ZP7tRTYmcHZbqOYDoRMBdtIru6lzU3Kd9n9NIWT36GnUM712dY5FgY9cPmGvE3bbOafmjp2aafaUEBxd23AkU+CdA60WKhecgvhNPlDKmWHM5GRdHe/C9P7s2J13uDCRSZ1Zw9dSyQlSn9GieFfxsdC1jnby3wgO6AIiQhcbUMjVkUsljSMpZZw0Fr436/B+ktCqw+YeoKJU1Ezu1KICSlFoxEYkFUoy9ZDzPcGbZX2pFUSoRRmWmSFVyjiyWK7IqxVaC95XQtTJcwQ0Bvo8UoOj7TqcNIxjJmcxCXbuaULl3Cnh3nt22ZsFxnHF0F9lb/cioTU/lDgT+v4YYYYLbuomTB0jdUQfcEAtxiXJNRODZxhH+jT5uogSq9J4z44PLF3C41guBrJzpFLZWxXGvieNCjsNRZXFoiC94+hwyeOPH3L5qRPGEesqRY/qFChptsmkkqn0iO8Y6wotQq8DpWRO+33a2RzvIzllUhGyYqGKToi1InWKfPAemZRgiLPQy2qFpIrfKBZqNR+Zqo6cy+T9sy1QttjimcCe3Jrfpd9OC772H76Bu3/Y1EcSAj//0H99WvsaNPEjf/TFXCNZPPO4swuUSWkjE3+VKQcHrhUnVixMhcy6+HDTp3vVTdDf9RARgnf4iRCrtZq82Dm01qlw0Y3Vt3VdbIxiTxTTFYkC3izOAaeVAmSEq1n40JUVd5+Zcc+FBl2saBmZzyPRN8zaSJk5tFpInfeK88Y3UTy5MnUICj4oMYLzlVrM7t/FiPg6dSWsYCjViLRpUFJKeITQCO280nUOzzoawOF9MHKwZHKtk72+YxyVUqBtPW3TEFxjktPKxpyuakWrbhx4U7FCRIIQoln651QoSa1IqQXnM/hqknEcbdvRNIGxjOQcOFkuSScLvHNcvOc8TezJOZBLAmcqqn7oKScjfV/JefJFUQe14rXgGSmpR2b7iOtYppG6WCFxThs9B4sVKRfmUSejPMjJjN6s2AMj1BRElSiV6ANaKiUrqhERJY2J4+MFp7sd+nEghMr+njDUxNHRkquXj4n+mCacZnd+lpocy6MV6Wjk4OqSp64sGAZFvDdZb1GkFny1LlPCUqy9b3C+se5ULSTMjz+0LbNuF5eDqYqqoLWYHaHzSE5ozrjgERcZhsG4NPG6dGJxm6I6TJJrcdk6cTVPxcnTCwvcYostbj3eP/b89//yDTz3h585afTNxh1doLDmWax9R1BEPJ9YpNhApkw3X3DOU6v9u0zcElQ3BY3zHic68QV1o+ZZy4btddbji4mY6q87LFcnNY+lJkuxm7/UaoofAkscjy0zH3lqwec/9zQ7nSP1JyTX4ppACB4fs8lrvdK4BvENKp4xWYGRi5lXrTsKIpa27CQSo0e8txwZqjVxtDKOhXFQnApN62k7aGaF6EGKmf2ztsEnmGpDE6UotXjQhiYIs64l+EDNoOpt9DWdF72uYKxVycV+Nl3TEKKnlormiiZBq0NwU8YL4KAWj6AgiaqZtp3RdDPyosd5uHDxPFWPuXp1QHslNJ6dZs6Y4bhP5OTQ6iYukeDrjJ0IvgYOnjxmXAhjrhzmnvpkYnevp++V3/rtRynamLw7WGeulEqtgjSmhBKZxopa8MERnVCyIq4xo0Cn5DRy+coB+3uRMAvc9/zTtG3H4dExTz0x0veONpr6a3EycnzYc3j5mLrqWfXKclXBB+tmOEGLWAQC5ndTUGr1hDCb3HWVcRwZkhFwu1lL13Y2Esrgg5tCLadzrWbV78RT1c7Txh15cvk1N2WHVp18gAqhEZrW+F5SdCKPb7HFFrc7fjstrDj5n++c4gTu8ALFuiPOPh2uHWRZj3jWRYX9WdVRp4W5VqEU3ShfiposOHiP8zZntxSXOuWQ2CJ+TcAskwOtsKldBFOgTByXNbdFq1DqROLFOCReHNU5eq08dNDzu0/17O/O6XTA7G0z615Q10Wcy/SjUgVUHSVnhjFRVI0j49ykZjGeTfCexps6I5VKroUhZZargTQWvAZi09LOG9p5xYcBsTeKk0CtbuLXKNUXkEKtoNnRuI6mDcTJTyVlJkKsp6gFC9ZSNz+Hks2XwwchNh4XYBwzJeWJUBGmoi/amZ3GO6Wan4p3mVnbwO4pxoMFi/6YpMLyZOTkeMUwGL9DXMAhNMGjrZJGkzRLHWlDJbrIlcuZxckTzGYLahVWmnDdnD49zu9+7DF++8NPElykcc4ycKZgSe/WSdBr3ZfxnYKT9Y91ItPa2FCrcnS04NKTLV0j7Mwi5y7M2e+U/VY56huqjijKE48f8OgjhyyPR9oGahFUA2HiuYgqpTpT0EwFea323lQ7NFdqToxjpWYIjWM+b2mbDlKi5EJwVhTWKvjiCQreK+oglWKkZieIeHIWUjJzPy/RiLJUnFeTnjfeQg4pk7HhFlts8YfFV/yL/xcf/NZ/9qk3fBo4rCu+9h/eWZ2TNe7oAkVwk7TXrLfXdm1rmLhyPXbw4CIqVjCUUsllsnhTCwD0eJyaWkIFSjVfESauiqpaei2m3hFnrW9g45lf6zpQ0AOKL3XyQwHwRByBac7vHE8sK7/ykSucOv18nn/mAnU4ptaCqo1qdrqOGI7RoAyp0i8S45Ct+PHG7wjSkrNZ0QcXCK7BVXOjdVWR6hgWldVSiD7Qdt4Sj9sOH+2sVYyTYDOWqY9SM6UkK86qFRxd09J4byF5KJmpc+Ks5a9TQaTqyAXSmIxMGyPee6CgmhnrSCXYyKLkyWjOU7JxU8QLTaM0PhNRiDuE2JGODnjq8glXHx9YrhKuiVQNpFUl5xFVO3YbM9nf20bJfeVjH1+QnDKfrYjTFRLmK46GgY9fugqq7LWB3Wi8jKpT12J6b+I9OnXeYgw45y27Rr3FKHhBtNKImZUcPLkiek/fKfux0ES7tmKsrFaZy5cHDq8OHFweQVqKh5or0au951zJFVZT2CG+UtS4Q+JaFMFrQuuIViU4T+eFWWvKM0UpFJwqKTmoEIsjViPlVoFcPZoKPgjOK8Ngo0MfKl4njo8W4zgFj4qnukCVjPfbAmWLLZ4JPO8H3wPfenP2fVjLhnNyp+GOLlBqVbxjUlqso+H92soB4Pdm5SAUqWRRqqtTccJ0gy2gJjtWt7ZitTGBc+ti5TopM0ydhjWBcS1vNqdNYS0cWpNvuWb4Viu1Qg889MQV3vvbjvYL7+O+0zuU4SpabCQhOLpZS9iPXD3MnBydkLMiEvA+WHcGOwfeRZx46z7kjKKkMgXVjRAJzKKnbQKuaXDeW5eomMKn1mrJwwIhODN2y8Y/oZqjqo+CBEt2ZqPsVtCMUvAOvHekNHVKaqFtGmKwfCFT2FiBiCipJNJY0GBGYHlMlvnTRGazObvzOdEHhmL6lbbxdK1jvhNYjitqzbipq4NTcikEL7haoI4EEp1AWQwcHp5wUkZiEFypjLUQ5w0SAqHC3bv75hCrhWHojTczqZFUQfCICNELTQxmVW+HNV2HVuCJs8JLXKHmwsnhwKMPC12rZO05qZnlcuTkeGRYgSPifWuFgBhfaaP+yooU4+gEgTC5HnupeAZcXlFTAekQqcQodG3Ee0cWMxPMuZBSJgahCgTxBDtAnDqGXKdzN5LLxNQSb9e9D9PPXxE108FAoBAouvVB2WKL2xmv+ut/ndkjC+CDz/ahPC3c0QXKNRLsjb4nIJPV/MRLUTNVAyFj44OMUsQ+/QfvLPtEqrnNylRQiE4ZO5NCaOosABu/lHWB4iavlOvDAtcKIMW6LU4cTgXPuoAyy/RlGvnARx9nZ2fObneOHSJlSDQKWoSd+R5u31NZcHy1sloVinpEPD6Yxb6o4L1DVMmT62nKlb7PlARSHDttYDYL+DagYTLkSnUzorBzptek0yLU0bZxOELrkEbJLqM5gzqiGvnGfGLWoYVCncZgPnia1uGDnYuclZwUcLgp78X7hhgjtWZKrsQm0HaRtp0xm+2Qi3JyckI/9MzmLRdiBBkZa+JkuTC5bdfQuTm1wKrPrIYVykgXPLsS8dHjZnPm0uIdaM6sVAnRI9Exr0KpAuLop0I0hEiMFuxn3R+7BoKzxOK1e3EIEEPEYxk6wTlUCsknanHoKAyrgTI6ilaWNVFKINDgG4eq35SvwUPwSvRWrDRe2alKjIGu9bipgxKCw7vCUAvDEnCB6jJN1zCftXgnZCpKJdVEyglcxbKEPF4arPCKCBHvM+KqFerT+y+aEImINCiFECJN8ASElAtjyTfpN3uLLT63oMPAn37dN/Dz//HfPGP7HDSx84HHyR996Bnb563GHV2glFKo/toNcu0Eu3Z6XftwiJinhX16L+RqBvLqhCBMn4aZ+AYT8W/yO2EKC1TEHFav48uuxVUiYsRa5zbHUCf+glhls77f48TKnLA+Th9QmXM4rnj/R57irv3IH3vOLsqS1Wrg+KTnbN5j7pXZDE6diiCBxRDpi+metSp2vyyWx4N5jqyGzNhXvETaNtK1jiaagVqhUooRaMNUTIiHGM0N1yTTzvL+KvjWE1tBQyZrMpJotc6UjclMqp1KIWdHqR7nHbGNNK0DyUb2LAJ16va4Sts4vNslREcpI94r0UNVGxOJCwxDoh/76YwLYz+S+kRwgaaJDEnM+VSF5cnAwZUTFicrmuiZd4E9dcTG0+LopeAoaG0osSW2nkxhubKR0agyqVoSIQR8sOIkWAsNUbVfmlpw02grBmHW2LnoxNN4G4EMWKpxnLXmDFxhzI7oG3L2JBFKEWo1SXnNJgNuGyUEJUSldY6GyHzWsjPv0FoI4ui6gJC5eiXSDz1Hg1ridNPStd5M8KqleFfLYyDlAWpBq+DXLrxVabuOpk04r+SxUvK6tC6IeqpEovM0IeAppmSbRpBbbLHFMwN/9ZgPjCv+WDP7Q+3n4/mEj+cZf+v/8TfwH/21Z+jonh3c0QUKWHFQJptuKxCMd+JwyNqPBKFqIZVCSiOpFmowl9gYLOiOaq3wUurknWIt7rUvit0cp/HN1FK5oVsyOQGuOynr54N3ZqQ13cCLODyOqiaF1WLKIxc6Hj9J/PpHnuD8qRlnnDe56kI4OIqE3RbNZkcfznV0g+epgxXjONoxTZ2TVCw3JeVMKhUfI40L1sGQTKngqiBe8KLm2orZy+MtU0hEKKmaW2ip+BBouwBRGWsygzKqcYCwQk6rQIGclTFnoBLaQDtrcMG6MFKMAOudwwWHSCE2DRAoZaTWjPeQc2IYMkMyaaxzMJ/v0ERHvzjk6lNPcvmp0bw9Rjg4OGY5HlIkUAaoSTi1c5r5LLLvK6dKxZdKUCU4xYszw7smUqSwGEekjqAZJ9B6UGdEYD+F83mp1DrSBM+8DQhWTKCFEJTWWaHXOkeUjIjQBk/KiRgGRBPqhCgV9YG+JLI3Hg++GDlajAcy6zxNA00b2ekiOzGyN98jhMA4DsTo2Zk3SEm4MfHxZiQkI/PuzjpmTSAGwTtF68QJckKqFj0QszILk7eJFJrYEEKllJF13JSPfhoPVYRM20SiBy2JMpr8+Ppcqi222OIPh/zRh/j2r/9mvvSf/Rqv3vsAr5p9Zhyvx/IJb7pyPz/zb/8Uz/lf3oHnzi5O4LOgQLm+SPDeTwWGfU2m1sVaTjyWwlgnF0wmnxM1KamoKWSMV+EmRRATcXSSIW+YJGxqFq2VOo011liPndYhhOu05LVDrbVkLCdHxciYFUdR4ZHLPQ9fXjK7u0O9cjKOPH5lQeiE6C3gzwchaSbGwezci71+UWVMZpFf0iSbjpVEbxLr1rJ0fKi4RlBnHQ3JgDOFjY25LIE4DYpGR+g8voVCti5T9Rs5calrpRKUSYHixCzUQwM+GklD6yRZpU5qKQEJhCaSSpm6FtmUQ8W8VqoKOGeWHFgnKsZADA1eMnhh7ltKhTBkfJwR2MHVQHRQ8gI/HuHqSBRBgyLeSK/BCSX2jCUTfWLeCrV4hqLsRFO0mNW90jRCLSMiA/N2xm5nnbHgphFhgOAKHiF68FInwrKHxuGjUsuIYplJ6hzZWwq1KcLE5MDV4YPQdp7QOJrWOkCz4Ok6bwqsWggBGpegFDwF5zLBO9omcGanY954CzCcivCa7fofFPo+4xS6puJdJkQP4ik1k1KhFLv2vYdULKrB+0jTRkIwsniMSlIrYrfY4nbB8i+8kueEXwGaT7nt7Qp5x//Fr77c85/+xt8g/rkn+f+85H/7lB2VopUv+7++lic+co4XP/BunsOnT4h96q+8Anh6Rm23And0gaK12phncoJddy42ECtcci2MU35JpYBAECGKWcPXKYPETZ0Ru0EDWIt8Ix2eLOtFjPOh6EYKui5Q1gXTJjm5mkwTYdNlAbWcH5FrDp0YafYkOR568oh7zgidqyyTUg9XBOc4uz/He4f6Ea0jbVdwNKz6Qi423lkfk8d8NHyA4jKh9XS7HXMvOEaIijqlFrEcIFHwIyoZyIgEU6oE8J1DfaaOGY/HE6kUCsWceIuNMkqVjUS56ZTYiHVPisnBa82Tw63JZZ3YQlK1B8mIg5wqmqFkZXGyYhwTSiSlRC2Jrg2cPbdHPwjH/ZLoHN3uHmeqx4cZeeVZHK7I/RLHkt2ZsqeeOAhDrgRn/jY+wML1MGaCwkwaNHkoGfGKDx4/FSg+gFLYnbfszhuaKBOPA6J3NEGm4skTm4gIRHHEXIjR4aOQS51USjYOBLOKd04oJdIveqJ6mqaZOhhCaCLeV9qgiEsUMk0DXSd4V8lDwXsIoYJmGtew0wSikw23KjYBUiZn5bjPHB+vaLqWPie6NhkZurhNgS4yXftixFnxlRASIcbJ56aiUqwrKFuS7Ba3D77gu36DL2nv3OLkepz/5++Efw5f+93fyeqeP/j3TKrwed/2Lk7xoc/4dX7qe34QePpW9zcbd3SBYrb2k0+J6GQqtU4dNjlwVmUs1cY6Uyigd47oHGHKzKnXdWF0Ipy6yQOl1msqHPNFmciwk6hZWBcluilkNnXItVbOZv8VJWkF8biNLPnayKivjo8+echz7go8byfQuEqvnssHI04Du3OQkFDNzNpAFyK1mgGbqMeLM25NCDSN4LoKTaSZN8znDS1AKRBMIK0iOG8+G4Vo3Zxaca4SmkBsHRrqxPEoOKIFI4qiUihayVrNil0tf8g7hw9KaIy/U4vd76Qo4q0QtOC6STGVEn46J2M2DkRJwrAcyMMIwTGsekpd0Mwd3cyxsxNY5Wojp1JQGsZxxdHhiuXhgi4I+3PH2VnHfs44qfisRCe0bcRHwVcYI6QG0uiJ1RHFkWWkaQPB23ipaiLMGi6c2aVr4jTWEYRKG4XgLLemnbWTU66lBfthxLuKC0IuAIFaBTx4LzixAiP1sKhKFxyxDaQ84oMnNEZqjSGQcyVIRaIQG0FLodYRL9AECJLZnc3Z6SIy8bFchEY9fmXk46NV4rjvOd+1ltAslSqJQJwmmFNXbzL28+JxQTfjoloLuWTGOpDVbzyAtthii5uD+954Z8qDnync0QWKV1DnqZPU0wqTqYuijgqMqoy1IgUCHu8dIXi7+Yi5eTIpe0y84Ez7UAsWyuYoquYOO5U9pZSNdHmjIqpGRpRNp2TyTxFr4RtHRtBgNvWo5frgogXPFbPHzxJ4clV48LGB0887x5mm4oKj18LBMgGWIIwPtLMZ+ERqM+Ogk926BxyxVnwAaQQ/C8TO4YJJj41EHHBTt8VRECLUBi3W+o+N0LSCOmWVMrVCqTb2ctRNYKK4BNm+37uIOhsByCTBdc5DMTMx+55gXSuXcb5HsxCSFYV5suIfBsfQV8aTkbRc0ewEtGRK7oGWEDy5JkpOjClzcDiwGjypCsvlkpkXLuyf5XTbsFNH5iVbarVU2uCI3lQ3rXqyX5G6zLK3DJ2d4Gm8p+kcTWxwzpNzZm9vhzOnTtmYr2acNwWPdVdGfHDMO4+qSdVFgdb4LuI80U38JSdkKTjaSdFVkeJwsSXumHJHtRAbJcaMEJDiKUVookOCyY0r4HXA18BOiJzf91y8cJZZa74mtILEbPwZX6k5c9xnklRc6/CxAZfNK0eEnCtlTFPnJRKIk8sNBOdwzorSgppMPyu6TTPeYos7Flfe/Ee5L7zn2T6MPxB3dIHisBTXimy6GaZGMV+PkrN5gmDurcF7s5D3Mtl0m9LGTb4lpRqPQ9d8E72+T2KOrdRr6cbARsrjvNtY4q8LlFKN+DhZWuCcN+8SnUYjE4F3feMSBKeOUhoeeWrkt/WIz7+wy93dDrGpDHnJcijmeivrjoQyn3X048req8uQwKsRUX0MxNas272ztGEFy8rJhVqqpdnakAlQQgw0rT2GcaCmgrgAOGqpdvzFOjBS7JiNW6OID+bDEczyvahnXEEqmA8Hak63LuClMuaCFk9F6PvMclFZ9ZCTkpLl6XTeMZ/vcHKyxEs0IzPnaZqWgsO7ytj35AqnduacO7XDmZ05M62EVaIm88jxzhFCsJ8LihfrIKk6oijzRnDRM29b2tYxm8+ASqXhzKkZMagFBU4ScucDODPLizGYQ/BkdqfFooddDITQTK66xcZvaj/rGAKqI7hKaBqaJoImQo000RGiFXQFT6iOYEYoiDiTleeWWDz7nRD358znO6z6wvFiJM46QoDMiMRMDQP9aiAidG1DNzcCsIg52qpal8yJ0DYdIQRyMSm5C96qaV/NC6VO10Lajni2ePbx8b/53/DDf+2f8yfaE+APp4D5XMGln/lC3vnyf0WU23skdmcXKKKbEDSLxbWRgkyhdXlMlFo3OSMhBLx3mwKlTJwV78yHQpzCZLMuTJb5eq0Ycc6yUYRrz61t7ateU+6suyoWnifTDe06r5TJFwW99n3OG0E34EjVc7DMfHg4ZrfCXtvSnG8QiTaq0ohQGFYrQheYzefs5IxKT1OrcT6Ss/MSplGWViQbKVOn7odW8wNDTT0ial4YMba0bWtdIirBZcYqBPHWEUl2Xqo6nDaEyYI9+IqEQojBxjjZURJo8bjQoCFTi9I4h/cNJa1IuZLwDElZ9LDoPYulKYNi27FOL+rajrGfkcfKOGSTxq4SuXrOnplzat8zphG0MPOKSwNNMMv/XEx2HUMk+EgaV6YacjbGozgaMHKqd7RRaLtA28EwrpjvOvb3IQ8rqljBW6sQXKCKx4U5zgtpGDdSdZOeW1FqE0SToYsqNSUqFQ1QdKBGh3cN4iK1FnwwE721SKZi59Q3DjyU7EhJSX0DeKKrHA0jTywzl13m8PSMqvucP+doEIKfIgvGROcDs6Zh1gRUs3npOGc/H2dFto9QdGSk4kJFukDxBfWZUjJOWqILOEk3/5d8iy1+H/j9fR7/7/8Yv/bAP6GVyM0uTp4oy5u6/1uF3/6Xf4IPveJfTF5Itzfu6ALFi7m/Tk73pqbxVjjknMnTp11EzNlTZCLSXnOGdTqZk02Fh32qdhs1yRo6qXFkMnxbw/gjmKJHr23vnFmLiwg+2J2m1krKCT95piBCznmzH1WlloGCQ5pAdg6C0ARlHBd4HxiyZyienbbD58KYzbNkPm/BW8psVaEMnjFD9QVhCueTAN6zzhVyYl2WGALqMtUpzgVi9DDxSdrYQIWyGixkzgm4dVKxnXg3WcGHoLh2wPkRNBj/BCNqSvBUzVQEFWEsleWQyLnSJwvIW+WAho4iBZGRZt6SauXo+Ig0OkJoiRGyr4TgyCmzXA54P2N3PsO7OeOwwOeRORWfBsblgFTTzsqUb6OlmJstBUpAsxBVmM08TRsRVZoYSMNASSvmzR6UjJYy+ZkIWoxUWibSdKlMhnZCEQjBW2CjOCNhixXNwQk12zhLa6ZIIs6ncY8TNAnBWyyAd5ZSPJaBNgZLG3aVkpQxFY76zDIrg88cLUYevZxYrnpO783oV4kvLGdpZ47UCzo65r5hvwk0oniqSbh9gwPatmF/35NSplZlNQwWcyCCi0J1hVKT/U5lB8UTrmnattjilqK86v/G//4T/1/g7TAFV9xs/A/3fy3UR2/Ja91MSLDR852AO7pAaYJjtKbHRJadHDBLsTa+qmXsyBQzPxUotZrqBK4VHlZ0uE2RgghFdFN4VCpaCq6a2Zpc91BVdNp2jeuLFXvieiXQJD2e/nSbMDrz25Co4Ap7c8/Fe+acPW/2/IpjXGQOlgPzncC8aynDkmU/MJt3NLFBpJrp2SwyZhhqJhcjo0YqToRRs1nNK7QxEoMjYzfp0ERiCBZCKM4CiUIgN2XybcmT064VPVSxeIGgBGeuqjhMspoEsql2pGaoCXENWQtDzqxKxTcR7wIeJYaWPAR8HvGuEOeOsWTqqlJGs5gPPuAFQoD5vKUfKwfHRxweHrI3nyEl01LxXUPpR9JiQVBP03hTLWmiiRaWV5yYRFohOPM/6YLD+xkijn4Y2Jnv04Zd0jiYMZt6clZQZ7wdLSa3FaWJLQKkNEyFsMl8/WQaOAwJnCNGb4VOqIjzhNaKJKfgg3nwxMbs8jVXnK/mUePWHCfICFc1c5xXzM/tcGH3NE8uL3N8uKAeZx59csDrIbOoSBAYHbsxsN8FgktoNWdZ5wOiBeeh22loiieXgu9Al8aHEWdcJcWk4ZqVMo5o3Y54tngW4Dz/+7/5l8Ctu8l+1+MvR4fhlr3ezYJ/8R/hvnuuPNuH8Wnjji5QutaxGitkRdVCACs255dJsWN+FM4SisVuuiJ1Y7+2EdzY1ML+PrmjOrFP+wKImuLmE38l1oXI9Tb39bqxkuiU7quKE2hCsMJkPerZWKisnWWF4IRA4vzunHOnPc1OjxczkhtWsEyFg1WPb4XYRlKqjD1UjbStcvpUh48NQ1YW/cBqlcgDyOSH4ZwpbRyK94pQcFWhmFqjDUIT3GTX4ogu4pzRj0sqpGVPLQnvCjhnVu8xTNk+mVyVNFZKMpUUopQ6glhCdK6VIWWqeE6fOUM32+XgMHPlcGR1NOJq5cyZGafOz/BtpIyV1bCExqPMCBGaqLSdZ3d3RhVYnPTG/6jGkcljgmEkZ5MNS/SmagkW5Bi8hUwWdeSopqoJCi4TGhgHC2zcme9Rq3UWBCFnK9RC8NM4UQArANd/t6Tj9YimItNor2rC4ane40OgTjJlh3kZVBlRV2xE5KeoBKeEZp0vZTM5p55clUVVUnTsnZozyy37c8/d53fpfEOq8KFHrtJQOXd6hxgcc+fYax1tKDgp4N10vU2+NFgR5EXZac1grx/6KRDcI+psdOdM/eP81up+i1uPx77tlcCv3tLX/LX/6YtxT733lr7mzcBHv/YiH3zZzUlNvhm4swuUGPFppNZCVUctJnu1ZOLJgn4qUq7xQqwsqbXaJ2Kxoc3GRA0mzsBERpz2IXhqTlw/3mGz/TUuCbCRM8vks+Kc2fKvuStrMirTMYrYSMp7y2VxWei84+7dOafnAdeMtJKQap4lGeF4zHTVc2bXQuaWi2oGc5qhKvO5p3NCHIQYhbwqpFVmSJXgA8FPyphS7WaFQBEkFaobUMn4YFbzIQScj0hw5DHR1xHnzTwMIMZIDB2lCKt6wph7SlVcaAi+UnVESRBsNFLGQi0QXOTMmTPsnzvHqFd44nDJWJdoTJy/9272znXENrDse46OD4mnO7xvqR5ERoKv7Ox0uOhxPtCvCtRKdN6KwjJlMQUI0Wz8u85GXAHB5UD2SnaKjx5pjAha3ZJVyuALWRNlMB8R1cowDDgPXoRMtgJMdbL6V0pJVrh4K4SrFpz4afSWcMFRQ55GgDYSkmyKtCzjRDT2iPPriwkfxbJ/ZCpsK6Qh0Q+ZZt5xZmdOfzxwcVe45/wZal959KkTnlos2O1m7KrAONJFmLdC9AVhxPvWcoawMWQ1jQ5MXbiZBLRaYrPWQLVGEd4PSANx20HZ4lnAT/5PP4SX+bN9GFvcAtzRBUoMASGhdXJjnbw6xAWYOhjOOdz0KdUKCeOcTKHDZs428UoEocpkvgafQIi1mHmuHw3JJ3BT5NoYp5RqnQlnlvuCSZEN1jZxU/ekVkW1UIrZh8camEfPudmMnRjx0pj7qzdtchVlmTIHC2Vvr8E3Lfmop4yVoR8IMRNnQrs7Yzbv8C6Sm0Tve8JYqBJwONJYJp8XTPY8dZfKsGIsip9F1DUQG2LARjuSiQ3EpkPEWXZOjHg3o18pdVySaqZrnPEtamZMAz4ohIZUvBFzqznK7s5ndDMjbI7jimFcghd2dyLBFcY0cHi04PDwhFO7Du+UQTPLRc9qVXFhhpNI1p7jxZJYKjttSxkyrgghtIToiK3Zx7eto2az5bcIyUobBNc4qlfUK30eWQ0r2tjS9/1k3OdZB0j6KIi3/BxXgzkQi1BqpWgliJ9GeusbuGU0Wf5Qg/M2eqy6vvaUpnVTYWtqM++D+fqow0uwMRomhc+5MPaZcVWY7yinZpGwWvH8CzPmp3e58vgJj15aEVph//wpQgyUxYqdKLTRmf8M5n9jCd52bN4uA6qAUs0wzjlzuhWBKpRcoBbzs/F3xhx7iy22MN7O//B1P/9sH8ZnhDu6QGm8wxHMyr5kHMW6IbXiQiDGuHGIDeKs01KrLcDOWvxh6ohUbGGuAkWqKV8qTP/DpMqW6qoTyXQ9JyrKlKmzLmZMIZPU0mEtIRnqJHeuWtG6ft7MwOwGKCQpoI4udOxHR1MVSTuoD+TJLC40ylALj12B2I2c39slzmf0/SHjagQf8POeM27O3qlTtHue1C1oG8e4yvQD9P2IIAQJ5NE8WHzj8A5cVSKZRpWTVMl5pGs8sj7u6InSEpww66wzgSqhKjl7XNzBzwIikb4f6VFyFJIGSnaEHJAC0lroXeszs0Y41c24mk/QIpRFYXn1mINxxSOPLyg9lAHSMFKS0veRK1eWjOWYVOGJo0NWJ8dcbObEWnCrhFdPbFuamaObQ9cmvCQcMBRhrArF0UXLBaoV1M04POlZLaHdsWDGiuKiw7dGIBaXqTUj6qFaAZml0ueRGFu8WBZULRnnMRO7LLTxFK4EWhlRX6i+JVFRn2lmhTgq3gWctnhtKDkjqcP7juALMExyZfMncQ66WcE1CWLm4sVdQggcPOqQ0XPf+T0u3LVHutJTSmBvlmmCo7qICw0+RPK4wjWFQCDmQC4gjafiGauQpaI+oWQkBPsQUMywL28/xW7xOYAv/NFv5QXveR/1U296W2N1oeE7zv7us30YnxHu6AKl9Z42BEQSuVazUUdM5jpZzXvvYS0ZFpkUNFNIG1Nej1E+JyKgdVXWpNt1wcGk1lh3VXK1EYKb0pSvcVyudVjWvJQ1J2XdwXHeU0vZbMd0JKrVHFq1ggOJQmXE43HBo5opqsTYkJLj6GDBh353CS/oOH96lx0S9aCnH5TF1UqQEV9GZqf2aefn6JoZY+gJfoR6Qqo9tWRiHil+jvodnC84BEIiR0XGgGTHuEjUnHCxQUIktpHgFXHXzpd3lVnbMJvP8MGTcjHuw07LUCvHq2xFIJVGFCFTS898NueFL7gXmHOySpysElevnDDrAoep4eiw0tBQckvJZpsfpvPx5JNXODheUZ1yanfGqbbDjyPk0XJtmsD+XsvOXHEuo2OFImixED0vARXrSrgY6HNhuejxYgaAORfj4jjBFTHvk8nHxOpTxbtCkYz4EefWxGk2HJWqGXGCjyNSMiJ18lFxIJE0XRfeieXgWPgQsO7wZby3LKJhVamlErzQNg0+7nK8ghIaup0dFscrLh8tic2MC2fP0UqlT0ua4OiiMGsiLgjeM3FdPFYtGt9K5TouVgU3xTuYv0tBFGp1qFhExBZb3GoMeutStItWdh9W6vLOlhi7P/4F/OQP/RDPpK190ps/4r2jC5SdNrI7F+Ji4KSABiM/NjHaaEfW+TpMLq+mAhHnNtb3NpZhQ1xFzLRNtdhNZhrHrAsJC7rzkBIVNbJjNSe26wsUG9vo5HWiNxQuaz7M2vRrDcVM45xTimSqr2SS7YOOopa27KMVQ32vXL1auXr0UV7y+Rd5/nPOMJbE0VPHPPnYgtVh4XhnZGf3gLvuOcPOmR3aecRLj5aBFCp+EKomRjy1MXfRpBmNQBeQ4mBVoDo0OWpxhC4QdwJNazdowVGKdRW6tiF2nWUejZW2a3HBsRwSwTc0KRPySBDhcHHEIx/7CLv7gfNnn0uIe5ysBh565HEOj5e0h6fRbpc+rRhyz5A9q15JKRMbx7lzu6yGRKlKbD0Xz53i7tBQnrxCjZV517K769nfcbRNpSQYU0VzoGTIVRFRUxxJxXvH0eERaRzpus7k2SpIcKhUs/KfuBgWj5BRGa2ok0KoaWOPLyLEpiEEG3NpFGIYLe8Gma5HR/CNuf8WK5R1MtKzTkVGXMGFPHGkKlrNxThGUApXriayW3DuTGAPx9GycqVPFMCVRB4XBEbaNjCLgZ02os6I0lFBxUi7xEApjiIZPDgPjWnzQTwpjfRDIiWoZQo5vE6Gv8UWtwr/7xd/Gf/xY79yS6SyX/i/PcALf+ydN/11bjqc477wzGbufO2X/FnQJ57RfX4i7ugCpW0CXVRzlC2ZENspwdVSfzfMksmq5DrJzBSyUykTSXUjEVY13wxMNixGJrAhj8h0IzbXTQU0r5UMuvnUu84D4jpVz7WgQCPEXiPkXuc+q/YDEVF6zay0Ujx4BlKq1NqYl0o/kvHEZsbxUnni6oLxtz7O4Spx1/4Obr6LLlZo9ozLkTKuEBkY8x7zvY62i+ye3WUYAmXVI42nqUIqR+RaicHjmpkpcYYBIRG9BSxWrcybQNsEQjRH2lrq5J+RiTFCTeQ0EBw0bUOl4rQQi9KQcZ1nrh6I9AfHfOx3PkZ9fmTvzN3ce3GXRX+Vxx474fBkZFwt+NjHH+PUHJruArFpKSXRtJ5z53ZQEeY7e3gPZ+cNu7myDAXXCbu7gZ25I7oRzYU8mvS5ZGUcC2PN5ulSIbSBIRUWyyXz2Q5NE0y94swRWKsyppHRF2sxSMEHiwQAhweci0TvCN76ct41NrJxdZKyK0gh1zJxOTziPc5HgncUTdO+xYIwc0ZCwQWBqZBCoGkD87nQROUjH7+EPq68/OXP5dzePmNSQtsxm1XceEIjPd3M46TQRrGuVa1WhNcKWvCxQUKY/IQcEhVvpC18qYgXCuaOq1Ni9eaa3WKLWwwthR+68vl817nfuamv8/6xp3tie41/MvzowXNgvPlGjXd0gSLiiA6iVIKoBQCGOCl33ERUrOZ+uvYrmTolNVuBUXUyaVt3P9bpxLCxhF9LRZ0IWXWSrrqNB4pzzlQck7fJNcUQlt5Tro151qnLa7dR/YTuSs0m3V2MytU+k6WlkcyYio2hREllpIgnNBAawZUZlw4GDldP8pwLPXftd+y7BqlK6geaWIhLKFcTfQqcPrtPs7fHbH+XMhb6kyWsnqJNS1qNpFEoqSJDxZPRmAiTIsmHhtluJDamKsm1UNJoBWKIhCDkOlJrpm06U7ukDKlCKnjNtE1DqpXzp/coAsvDgauPPU7XdOb9cm6X5WLF5eOBg35ksTriBc+5wLlzOzQNpOxwRaEWmlDZnTsa7+mCon2P00RohWbmCK2gNZFKIY9QimMclVWfKE7w0eF8BIms+h7vA7OugSkmoaqQdOp0VSW5QggNIdpYLzYRk+BWgo+0wePDZAioHq0ekYjWTKoF55VaR6tD7IyaykwcFW8FDc5M87wlLzs/jRVTBoSmieyJ57kXT7Mc4LGrT3Hw1BUOYmC1GMh5xU7bsj9z7LWRmsx0b2/X4xsoiBVgpVjnxgecOLI3N2bnK6KFPGa0lg2HSrzDVaGWiZN16zrtW2xxDaq8/TUv4rvec/MKlPcNA1//L7+D5/6jz+2wvt8PP/ON/x169ddv+uvc0QVKkUCMhZ02sNdFfBuJ3lKCYWqWVAC1mbnqhuhpvhVrwqoF/8nG8wTK+vuFaXvddDnWWSzAdQXGug1jD+OcAFwLFKzrob2ap8j1Bcq6eKIUqoPlKDx5MLBY7dD5jqI9dSp01p/ExSveF8Q7Umo4PEocrA44t9tw7/4ud+93nG1boiuMWZAR6DMcLtjJjtmZjrB7hvnOGfIQkeEqZVWpJzb6kVEproLXyUXWbPVDNOVKrZmcBkpOeOdomg4nhSqF6B3RR3Kq5AHKaF4ybZzCAjPsNB1VQfvM4qnLXGkaso+4XNnt9njias+VywekoefU3ozoMrVUYuMptWEYFzinzDsITgkVSp6ybYKDaFyjmispQRohJRhzJauN51zw5hmTKsvVSNO2dnPOFpznvUcpFvgXbHTYNJ7YWCpy7CI5Z5wKrXe0PiDRUWqCKaGZSR/jRPAOKiPBO2Jo8BIJIUx5OGZaZ34jBe+d2eVLQHAmAVbw0dGgnNnz/JH7dph1AzKsOHzicUqBuavsxYazu8Ju41gcZxRPM3MUynpqYx0SsaJoXZKLKB5F1DpFRu6GImpuzW79O1UnA7ottrj1qCcLPv//+Ms8+Kf+fzdl/z/y5Kt47t/bFiefDF/63r/IXZeucitckO7oAmUs5msyawN7swjRbyzNdeKAOKYxhMPUGNcVGA6hwCavxzuH07VPyZpAK5NiRyenWjb7rzIt62oL+7rjbY2YOnFPgt3kVEkpTZ9G5VqxAhsCrariKiCOsToev9xz+Wpmxwd85yjF5NQSLCRQfMbhCN5BrAwJFivhysHAo6HnhXfv8/kXT+H3Wuoyk3EkEXJODEeH7B7D/j2BcO404a7no3Iv9XhBuHJIWKzw7oS0cmSNk0ldQFxLqUZCriXZJ2xvOTfeBUodcVKNxFAh9ZU0OvIoCA7nhZorwTskeMZ+YL/xrGri+IknOcmBq8eZoz5wcHnJU48dEWdCFxpcBR8F30bj4KxGZi2UmCljRtSZfbxW8J4k1YIOUyVnGMbKkKoZ+jlHE4IZlImwXA2krMx2AlrLRFgVXDAiq4in8w0xOkIjhOCITTRfEwq+FJrgCUHQYN4vMnnSrLlNTfSIV/JoFvghmMeMRxmT2cqLTIGMtSBOcC7gXEvJ4KaiVMQIqzNfuHhaOdXt068UceZhsjffYeY7zu9nnK7IS8X7AK6QckKdM3VxrsxjS5iSpFULOCvipRTAOo9VJhL5VKDYSLRsRzxbPGuox8c87586+FPP9pF87sH9xDnyw++6Ja91RxcoB/1gdtsCITiq1Mn5dU1q1WnOohs+yDpzR53b/F10rcdgqi6uW3jXXZTrVD0++ClQ8JrR2vUdlTWvRKsiTvHOb4IJgWuhgRM3ZcNDYVJ2eAv6OzgZuHw4GLciOFTdxovDOcX7SvCN3bRcQh2MeJa98PDVp7hysGBYjAz3nuLi2Y4dUQqV4pVUMro4hArduMTffYHm4r20+x2lu0y9/BBNW5gfZpaLkTxkUq0MQyLGGS54K+O8EL2F8NWklDLiQqEqpJRJuZLT1DFyoKlQteJdoJZCHnt2m0ATWg6XI3WZyCeVxdGC4WTEJzh77hSnd/aNsyFW3GRn2TTBB/phwXKZGHtIY6IoFBXGMZvkPCulCMOojNnUMC54mG68Y8qMYyLGQPBu4s60Rkp1lUwBrXhfiK3go+LDRJamIC7huFY44gWpI1RLCs4l4iTiQjQlFo5alFAq3hUqlXHs8U1n1vmlUGomesH7gGDyXsHjAqAF1UwTFO8SLQ66Papkcu0RaYk0zEKhXyXjnzTO7PKrKa+qFruWbDo5qdyYuo+m0Ck6WQpOvz4b00KxfeRbwOLfYotbjXf1hY98++cjvO/ZPpRnDr/zMb7wX3wrv/lNd46LLHyGYQZvfOMbecUrXsHe3h4XLlzgq7/6q3nwwQdv2OZVr3rVNRfV6fHN3/zNN2zz0EMP8brXvY75fM6FCxd4wxvesAnN+0zwyNUTLh2vOCmQfWCohVozkHFe8YHJXr0QgBYLawvRIY1HghDFM/MNwVmITAKKCIqjAhmlSCVLIWMKF5wzien0CXJt5nZ9seGc5bCsxzsiMmXcuM22bq0IAsQ5fAxIo7iQ8b4wkDmsIwfDklXvKDVSVckFtEST/3olKbgcYXD0/YpDPeQQePhI+D8/dJW3/9ZTfOzqiqPFMXm1Ig/KaoTD5cCVK09w+NiHKR95H/o7H6QeB/w9ryB8wZehz38+OxdPcWovEGcF1/ZouYIfr1JKz0hGnSBuTsmeoj2usRu1Ohhrpmgm1RU1JpLrGentRi4VXS6texCUXFfMQs+F3cLds8zFnRUvOJ140amG5+14dmJmMZ4wZrPlzyXhg6NtG+O3LAtHlw44uLrA+xkhzCE7AjbWSKVSqke0weFpm4gLlYqjHxMihXkLjSs0TaBrG/ZnM/aCZyYD87ik6xbEWU+YQZi1SGxN5aOKBqUEKMGBOIJvCdIh9iRCi0hDJSKhAR8piHV7wHxVJG0enkr0kRgaik4Or5PUuOJwwTPrPNFHUKVrC9GNNL4S44K2GZASSMuAC+C7kRAbomusEyTejPS0TgZzGe+FpmlwoaOIWfHXChSHyw6fhJALDYXOB5x++svH7bZ2bHHnw//qb/Kyf/ytz/h+L9cd5P983zO+32cTdbHg7AfvPF+Az6iD8ra3vY0HHniAV7ziFeSc+Zt/82/ymte8hg9+8IPs7Oxstvvrf/2v8/3f//2bf8/n1wydSim87nWv4+LFi7zjHe/gscce4y//5b9MjJG///f//md08P0w4L2jbGICrdVhqpn1qGXTBAEmHsh1nI+NU+zauwLMg4R1l6NM7rNWRMiGAGt/mmtsmYy+ro181iMcI81ey/WB6x1l7XwAkzW/ERHXRxuCo23scXh0RFbH8Wokq30aH4aGkzGxWlXGXqhJycn4E2FmapUn+xXjpRUaRz7vYsuLn7PH+X0luEznoOSGvOgYfcXJxxkWRzQXP4/ZH/kimhf9eeS+JygfeRfth95LOxR8s8NxWlKuKsEVmtMJ1wbS6NGSCQ60OkTCphPl3FrmjRVlKpPEuljKb7bz3PgA1dO1nvPtnLgX2Nsp7JyNNHHB4eERmvdNhl0LKspytaRfrehXI6vFgOZMnWXMzN4iCEqplGLnxvtI2zZ4Z8WJaqXWZC6zDXSdI3gQCjkrtRSCa2hbkGButzEIzjV4deChTLm+qqa+wQsOoWqwAmbqsmnNaM24mnHO4hh0cmn1MeB8oarJi82zJyAuUNJIyiNaMLFY0ev4H8JsNrPfg+KIbUvB+Djr+AUfHC7AOI0Y27bdXHtOBCkDuYyIDwTpqCWTSw94cwhSMwh0YqGYokLwfmNy+Ongdls7trjzocNA99QzL3V/Mu8/4/u8HbD7U+/mJS/+Vt77rf+EVj79BOiilct1xZ/8pf+Rz//m3+JUf+tykD6jAuXnf/5Gm9wf//Ef58KFC7znPe/hy7/8yzfPz+dzLl68+En38Qu/8At88IMf5D//5//M3Xffzctf/nL+7t/9u3zXd30Xf/tv/22apvm0j2fMxRbJKV8HWfNGbmxLc91Cui5M1gWE/4RFVlGcONulGjn0eqXNeny0MV6bVDnXCLIO1RtKItZW59cfA9d5psA1wmxFUHV4NSOtWQicnjesgnC0TPRD5eikN1FMdhyOxwxjZkyeUj2ewCzMSLGQi9JXz5Wq/M5B5slV5skFvOR5p3jePR17uw4hMayWEOYk74njMSeL3+Tyxx9l777PY+cFX0R40as4dWrO8JH3cHL5KjkrbZOoeWR5UmlKoXEdDRHn9hhqJWUlDTY6KVqmjocnxoAOmVLLxkQvp2Luqy6iFbuBxh2ODwa6rnD3xTnzTqnLjHgYUiJXNc+XkyNSztRRqIMRWL2vlv2jlTIlLnsR0DQVpI6cko2cyogjsbPbsLMLXSekcYTiTa1SzdZ/1gbU9QiZJgaoIyUNOI048ajYTRsKtWQQTy2BWqdASGdBiVoHmlrwk3IGFao6QuwQtyRnC+Lz3oHP4BMilVpHahXKmCi5mFlfVWothCCkZKo07wLeVXyZxnhSiI0nRE9OznKYQqSUfM28MIIvap0tlyEnhEoVR1EFCipQqBsjt+K4cRT6KXC7rR1bfHYgLpUPjCv+WDN7RvZ3tSz5t19w7zOyr9sOqjz3772Dl5z7H3nnX/yHXPA7n/Jbfmaxy3+4/HI+/idPeDG/dsvddP9QHJTDw0MAzp49e8Pz/+bf/Bv+9b/+11y8eJGv+qqv4nu+53s2n4Te+c538rKXvYy77757s/1rX/tavuVbvoUPfOADfPEXf/HveZ1hGBiui7o+OjoCplgcgalswOlkzHYdrh+/wFRGTKZt5g47kWq5VrxsrOzFFDh+sjTRTWKxu6ENvcnjkRtfi08y+lmPdtZ/Xxc/IQRKKSaBngRBpj7JRD/D7+2gsZBrpDByMgiDKBHjN5hmOlA9UEaGOtLXQq2JYYCT0lFGYXi4cni44KmDzEtftM/zz3W0sTejttrg6fF1QTi6TP7gJdKl9yPPfRF694uIf/QCp576bYZHP0o+WiBjj6sDfmwp1dH7kYBSSqAWoBqjoZYCNeMt8o40Kak2ZOZkvhxjUXL1uBg5PFny2BNHrFYZPwvE7hSz2Q5N05GrEZ5zToz9SO4Laag0PrIzczRBQZMZqlW7aQvgQ0JcJo0JEUfnZ2QKsXHszBxdVKSOaIaaFa8eH4XYimU76Q7zmSBBGFY9JMt9qmLjuRgDCBS1bpoWb2RSb5LhqhnVRAD82idn8hhBArXEyZl2faam86jZeB9MRNbJsA216zDnEctFagCHdxVKJWULH/RNsOyc4nEuUEplHKegyCagREQguAYy1DHhNHCtyL4mgy+TAq2WypCf/qfXZ3vt2OKzA3s/+S7+/Bd9B7/9V37k2T6UOwaf9x3v4pXzb+dVL//NT7ntY39qQNPJLTiqT46nXaDUWvm2b/s2vuzLvoyXvvSlm+e//uu/nuc///nce++9vP/97+e7vuu7ePDBB/n3//7fA3Dp0qUbFhhg8+9Lly590td64xvfyN/5O3/n9x6DQtV1z0SuOcfyid2Ja/5saw/yzdJ7nf/JdW5tVjjotVFOqZM8Wa99ff399ue6aHGfUt3gJskzsFH1XF/UuClsbjUMXDk44Xg1J3bQtS133zXHxxVhOeJSJi7njCtFS8FX6wfVVHHJkcsAyZJvxz7TzOcsCnz8QFmNA6vVguPndzznfGSfROdP8FrxLhOKIimxuHTEcPAU4ZFHmb3gpfgzf4y2O004PKIcXUYOH8ENCc0DI8KYZUq/hRA8uIZKIah1MWrOoErwU/p0LkiBXGDUTG0b1DsOVyv65DhZtnzsoyPNDJ77gj1EWyvkXMJEJ446Qh0KXfTMGo+XES3FLNmrID5MnQ8HYqZpTWhoJOLcyKxzdF6suEpK0GYasxiPycVMweNlTvCRVEa0eIJM3RMqXsymHglTp8RRJ02uc+BEJ76JFTh1uibFCbVMYZPMEQXBUrNVo52jaRSDKCF4ez/iEQ0omZR7S5wWk3A7deRsjrtWuESKKqUawXp9nTtnoYS1OCumSqRSKUMyMu3E/i6lkotSquVXVV0XK0/v89TtsHZsscXnMv7oN/8Kjz7bB/Fp4GkXKA888AC/8Ru/wS//8i/f8Pw3fdM3bf7+spe9jHvuuYev+Iqv4MMf/jAvetGLntZrffd3fzff8R3fsfn30dERz33uczef5tzk+OpduE5Vc520hmuL8lrdI86tp0LXFSiTq+xatsO1r09lz2Y/9ToFzvVjpHXBsbbXX2+7ORKdXrvWTZECNl+3fVmxU52nzyOXri65dDBw4VzL6a7FhcBJ6Jl1gu40OIGaRprg8FgC7lCFZQ/9aqTmTHSK10LrHOoKy1oYT2DxkWMuXV1w712Rz7tnxovu3eX0qQaiY3SZEw9u5ZitYNY/hi6P8WfPEs7fRbz4x4nnT6gHc+qTj+OOBua1UMSRM+RUECwaoG1MEVPTyLC+2Tohjcn4FBIYU6WvEHci2kR6haEGVqNwvFDkw0dU13DPPZGm9aY+GZXaQ38wIsNIN2uITkAdpdjNVDBei2oiTuZqzkeitGivtN4zi44oilfrmIUQ6ccMFES85SNJMYm0t86WnXgxmXUwm3y7NDyOxgIklY3iBYFaBSVQPJuwPy8VkWoZPsyo0+jFORPCay2A4J0dhxc/GQN6GyNN3J5NUY1D1NsoKEFsI+IiqQ4bXx7zO3HGjXIerWHaRzCJsQZqMQ8XVchpJBehFGeGclOhpU/Tavx2WDu22GKL2x9Pq0B5/etfz5vf/Gbe/va3c9999/2B277yla8E4EMf+hAvetGLuHjxIr/yK79ywzaPP/44wO87e27bdkPsux7iPeKcub2qdS/ctRqCTcCfrLNT1uObyWhtkg7X62zpZRrrSJ34JXqtkPDObcbuOecND2WS9GyKnE1LvOpGmuycKXrWY5zrzdnWPBYRs+Oy/QWKNFw+WfH4UWJ/p6E2xW78Gc6dOcc9d53lkY89Rn98iSYKiGfsezSPrEpmWRMalRDEsmJEKQKjVKooV3Lm6MnKw0eBh56Cx6+2fOF9wl2nEnFHyG2EXCniGVeOVbpMe3iJ7vIOem9PvOseuPiF+L0XwFNPIkeP48oJshoZx0odQfBEF9CaqGqBjioyKUfMAE0kULNZz4fYEHZnJOe5uuxZjhWtnt996JDDxYLlceY5955iNodAg8ue4Sizg9I2FS8mxzZJsie4aKMlEXzjaaLQdjNybwqtJkYbiVTwLtKEwJhHglTEydp2z+TD7UDxI7n0qLNsHmqdHIxb636Is8yeYqMY5LqYgyoonkHMyyQ4gGyJ194jauGESMUHj7pMyclGOWZ7bJpg1twVzEROKrmMOCLiAjihZCMrB98hLpBTj0wFRSl1c62rKip5kqoXKBVHQbWSq6dWT9U4BV+uAwUrEzPlD/zd/2S4XdaOLbbY4vbHZ/QRSFV5/etfz0//9E/z1re+lRe+8IWf8nve9773AXDPPfcAcP/99/Prv/7rPPHEtZCht7zlLezv7/OSl7zkMzmca14UGwLrtQWzqm4C+9a8k6oVZa2usUC/9XProsWKhKkTst5w6pLIujsi15FtJ4WDFT9smjU6vX6t1TgYk2LIHNN1GgW5647X9lHVthcR8C1D9SwTLPvMlSsnPP7YZRaHK0KNzMMubWyAivOgThnyyLLvOUk9OSp+Fk1pUtPEWwiIRIovjGFgETKHOH77aOAXPvgov/Cex/md34XFkwG5WoBEjQvGdMxiUVgcV/rLV0m/9U6O3vs2Tj7+FHXnBfg/+t9SP++LKKdPQYAYIAQbZzmEnJIFHbqIOE8qxjvxIdioIQYSgoaGON+hEClAuyt0e8pYRh5+7Crv/8BHePCDv8vlS5chQc1CGgoxCm0DzimiHsFGMMFHgvc0MdA1zSQhjlZYRE/XRgRTPOUEqEM14fw0ThHrVrgAEnuKLqisUOlNDh7N+8QH8M7M6KieUkCpE3dkzWFyCIGs5sOjrEMDK14qFeOoOFfwDSCZXEbzJMl2PdnZNCL2WpGGyNSBYwo09NQ88a+CoyJQ3ZQ6Xcl5rThT0EwuK5ARJZHLilJ7tBoZVyvI2m1W3dQFMgl+yZ++D8rttnZsscUWtz8+ow7KAw88wE/8xE/wsz/7s+zt7W3mvqdOnWI2m/HhD3+Yn/iJn+DP/Jk/w7lz53j/+9/Pt3/7t/PlX/7l/PE//scBeM1rXsNLXvIS/tJf+kv8wA/8AJcuXeJv/a2/xQMPPPBpf9LZGKGlkbFmtE4pwJPBlfcNU01gzp41sw5rU4EQIqlUclaCmz6tlmot+WKfTB3Z8nec/Ttl4wIkzfYhtjrcpHAQjCTrxG/GObVWcq1mqgZoNhUHqqRaUW/dFDMtY/KjGPFEoksgxyQRaicglSfHnidPMrJM+Oq4sujJv/O7jBqpgzCmxJVhxROrxJXs8BrYd55VHskZRqesSiKq4kXJ6qg0UyAepHHkSoJ3HC/5yJXEy++b87LnzDl/sTA77aipm7gJCxrX0XUJd/wopw6epH7sPTQvejX1nv8GvecM9eht+MuPUcbKCofUwmo5MqYKeJL3nJTArg+kEyj9SKbnaACnDboKHDw10ETP2TMNR0cLnjhQDnJF+8LO5SWnmkItwqNXT1jUI/Zc4DBHi+1L4KcCpWRLhBYS1IiI43iVOOhHTs0rvXPkMjKOBa2FOJoFfskDrTTo6BA3MmsdMc8YliYxVpaoVIpGNAtjvyRIJI8NKVeGPFCyErsKo6ckIeLN+bZUtCmstBDcHC8Z0Z40dEgCF2FZK1IddYysSiGtFMmJ6DxVHWNZUih0TYdqMC+QknAyw0lhdZjIOTOOV9HSEtThfCIr9IPDSyT6FbFZ0fcdRLP1H/pKGSqueoocs1pWUm7w0tKPGaVSTV3N8qjc8Pt4J60dlhL+aX3LFrc5at9zdPzM6EuOSyXrzQ/B+1xGxs7vp7NuoJ8BuEbmuOHxYz/2Y6qq+tBDD+mXf/mX69mzZ7VtW/28z/s8fcMb3qCHh4c37OejH/2ofuVXfqXOZjM9f/68fud3fqemlD7t43j44Yd/32PZPraP7ePWPh5++OE7Zu348Ic//Kyfr+1j+9g+Pr11Q6bF445CrZUHH3yQl7zkJTz88MPs7392Gus8m1iTCbfn9+bgs+H8qirHx8fce++9G7Xb7Y6DgwPOnDnDQw89xKlTp57tw/msw2fDdX0747Ph/H4m68YdmcXjnOM5z3kOAPv7+3fsD+pOwPb83lzc6ef3TrvJrxfEU6dO3dHn/XbHnX5d3+6408/vp7tu3Bkfe7bYYosttthii88pbAuULbbYYostttjitsMdW6C0bcv3fd/3bT0ObhK25/fmYnt+nx1sz/vNxfb83lx8rp3fO5Iku8UWW2yxxRZbfHbjju2gbLHFFltsscUWn73YFihbbLHFFltsscVth22BssUWW2yxxRZb3HbYFihbbLHFFltsscVthzuyQHnTm97EC17wArqu45WvfOXvSTjd4pPj7W9/O1/1VV/Fvffei4jwMz/zMzd8XVX53u/9Xu655x5msxmvfvWr+Z3f+Z0btrly5Qrf8A3fwP7+PqdPn+av/bW/xsnJyS18F7cv3vjGN/KKV7yCvb09Lly4wFd/9Vfz4IMP3rBN3/c88MADnDt3jt3dXb7ma75mk8i7xkMPPcTrXvc65vM5Fy5c4A1veINl7Wzxh8Z27Xh62K4dNw/bdeP3xx1XoPzkT/4k3/Ed38H3fd/38Wu/9mt80Rd9Ea997WtvSDjd4pNjsVjwRV/0RbzpTW/6pF//gR/4AX74h3+YH/3RH+Xd7343Ozs7vPa1r6Xv+8023/AN38AHPvAB3vKWt/DmN7+Zt7/97XzTN33TrXoLtzXe9ra38cADD/Cud72Lt7zlLaSUeM1rXsNisdhs8+3f/u38h//wH/ipn/op3va2t/Hoo4/yF/7CX9h8vZTC6173OsZx5B3veAf/6l/9K378x3+c7/3e73023tJnFbZrx9PHdu24ediuG38APu2UrdsEX/qlX6oPPPDA5t+lFL333nv1jW9847N4VHceAP3pn/7pzb9rrXrx4kX9wR/8wc1zBwcH2rat/tt/+29VVfWDH/ygAvqrv/qrm23+03/6Tyoi+sgjj9yyY79T8MQTTyigb3vb21TVzmeMUX/qp35qs81v/uZvKqDvfOc7VVX1537u59Q5p5cuXdps8yM/8iO6v7+vwzDc2jfwWYbt2vHMYLt23Fxs141ruKM6KOM48p73vIdXv/rVm+ecc7z61a/mne9857N4ZHc+PvKRj3Dp0qUbzu2pU6d45StfuTm373znOzl9+jR/4k/8ic02r371q3HO8e53v/uWH/PtjsPDQwDOnj0LwHve8x5SSjec4y/4gi/gec973g3n+GUvexl33333ZpvXvva1HB0d8YEPfOAWHv1nF7Zrx83Ddu14ZrFdN67hjipQnnrqKUopN/wQAO6++24uXbr0LB3VZwfW5+8POreXLl3iwoULN3w9hMDZs2e35/8TUGvl277t2/iyL/syXvrSlwJ2/pqm4fTp0zds+4nn+JP9DNZf2+LpYbt23Dxs145nDtt140bckWnGW2xxu+OBBx7gN37jN/jlX/7lZ/tQtthiizsE23XjRtxRHZTz58/jvf897OXHH3+cixcvPktH9dmB9fn7g87txYsXfw+hMOfMlStXtuf/Orz+9a/nzW9+M7/0S7/Efffdt3n+4sWLjOPIwcHBDdt/4jn+ZD+D9de2eHrYrh03D9u145nBdt34vbijCpSmafiSL/kSfvEXf3HzXK2VX/zFX+T+++9/Fo/szscLX/hCLl68eMO5PTo64t3vfvfm3N5///0cHBzwnve8Z7PNW9/6VmqtvPKVr7zlx3y7QVV5/etfz0//9E/z1re+lRe+8IU3fP1LvuRLiDHecI4ffPBBHnrooRvO8a//+q/fsJi/5S1vYX9/n5e85CW35o18FmK7dtw8bNeOPxy268YfgGebpfuZ4t/9u3+nbdvqj//4j+sHP/hB/aZv+iY9ffr0DezlLT45jo+P9b3vfa++973vVUD/0T/6R/re975XP/axj6mq6j/4B/9AT58+rT/7sz+r73//+/XP/bk/py984Qt1tVpt9vGn//Sf1i/+4i/Wd7/73frLv/zL+uIXv1i/7uu+7tl6S7cVvuVbvkVPnTql/+W//Bd97LHHNo/lcrnZ5pu/+Zv1ec97nr71rW/V//pf/6vef//9ev/992++nnPWl770pfqa17xG3/e+9+nP//zP61133aXf/d3f/Wy8pc8qbNeOp4/t2nHzsF03fn/ccQWKquo//af/VJ/3vOdp0zT6pV/6pfqud73r2T6kOwK/9Eu/pMDveXzjN36jqppc8Hu+53v07rvv1rZt9Su+4iv0wQcfvGEfly9f1q/7uq/T3d1d3d/f17/6V/+qHh8fPwvv5vbDJzu3gP7Yj/3YZpvVaqXf+q3fqmfOnNH5fK5//s//eX3sscdu2M9HP/pR/cqv/EqdzWZ6/vx5/c7v/E5NKd3id/PZie3a8fSwXTtuHrbrxu8PUVW9df2aLbbYYosttthii0+NO4qDssUWW2yxxRZbfG5gW6BsscUWW2yxxRa3HbYFyhZbbLHFFltscdthW6BsscUWW2yxxRa3HbYFyhZbbLHFFltscdthW6BsscUWW2yxxRa3HbYFyhZbbLHFFltscdthW6BsscUWW2yxxRa3HbYFyhZbbLHFFltscdthW6BsscUWW2yxxRa3HbYFyhZbbLHFFltscdthW6BsscUWW2yxxRa3Hf7/7FZMWQRD2q4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# lets look at some samples\n", + "\n", + "sample = train_dataset[0]\n", + "plt.subplot(1, 2, 1)\n", + "# for visualization we have to transpose back to HWC\n", + "plt.imshow(sample[\"image\"].transpose(1, 2, 0))\n", + "plt.subplot(1, 2, 2)\n", + "# for visualization we have to remove 3rd dimension of mask\n", + "plt.imshow(sample[\"mask\"].squeeze())\n", + "plt.show()\n", + "\n", + "sample = valid_dataset[0]\n", + "plt.subplot(1, 2, 1)\n", + "# for visualization we have to transpose back to HWC\n", + "plt.imshow(sample[\"image\"].transpose(1, 2, 0))\n", + "plt.subplot(1, 2, 2)\n", + "# for visualization we have to remove 3rd dimension of mask\n", + "plt.imshow(sample[\"mask\"].squeeze())\n", + "plt.show()\n", + "\n", + "sample = test_dataset[0]\n", + "plt.subplot(1, 2, 1)\n", + "# for visualization we have to transpose back to HWC\n", + "plt.imshow(sample[\"image\"].transpose(1, 2, 0))\n", + "plt.subplot(1, 2, 2)\n", + "# for visualization we have to remove 3rd dimension of mask\n", + "plt.imshow(sample[\"mask\"].squeeze())\n", + "plt.show()" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 + "cell_type": "markdown", + "metadata": { + "id": "jg4_bxKV5BaQ" }, - "text/plain": [ - "Validation: | | 0/? [00:00 5, 10, 20, 40, 80\n", + " # and we will get an error trying to concat these features\n", + " h, w = image.shape[2:]\n", + " assert h % 32 == 0 and w % 32 == 0\n", + "\n", + " mask = batch[\"mask\"]\n", + " assert mask.ndim == 4\n", + "\n", + " # Check that mask values in between 0 and 1, NOT 0 and 255 for binary segmentation\n", + " assert mask.max() <= 1.0 and mask.min() >= 0\n", + "\n", + " logits_mask = self.forward(image)\n", + "\n", + " # Predicted mask contains logits, and loss_fn param `from_logits` is set to True\n", + " loss = self.loss_fn(logits_mask, mask)\n", + "\n", + " # Lets compute metrics for some threshold\n", + " # first convert mask values to probabilities, then\n", + " # apply thresholding\n", + " prob_mask = logits_mask.sigmoid()\n", + " pred_mask = (prob_mask > 0.5).float()\n", + "\n", + " # We will compute IoU metric by two ways\n", + " # 1. dataset-wise\n", + " # 2. image-wise\n", + " # but for now we just compute true positive, false positive, false negative and\n", + " # true negative 'pixels' for each image and class\n", + " # these values will be aggregated in the end of an epoch\n", + " tp, fp, fn, tn = smp.metrics.get_stats(\n", + " pred_mask.long(), mask.long(), mode=\"binary\"\n", + " )\n", + " return {\n", + " \"loss\": loss,\n", + " \"tp\": tp,\n", + " \"fp\": fp,\n", + " \"fn\": fn,\n", + " \"tn\": tn,\n", + " }\n", + "\n", + " def shared_epoch_end(self, outputs, stage):\n", + " # aggregate step metics\n", + " tp = torch.cat([x[\"tp\"] for x in outputs])\n", + " fp = torch.cat([x[\"fp\"] for x in outputs])\n", + " fn = torch.cat([x[\"fn\"] for x in outputs])\n", + " tn = torch.cat([x[\"tn\"] for x in outputs])\n", + "\n", + " # per image IoU means that we first calculate IoU score for each image\n", + " # and then compute mean over these scores\n", + " per_image_iou = smp.metrics.iou_score(\n", + " tp, fp, fn, tn, reduction=\"micro-imagewise\"\n", + " )\n", + "\n", + " # dataset IoU means that we aggregate intersection and union over whole dataset\n", + " # and then compute IoU score. The difference between dataset_iou and per_image_iou scores\n", + " # in this particular case will not be much, however for dataset\n", + " # with \"empty\" images (images without target class) a large gap could be observed.\n", + " # Empty images influence a lot on per_image_iou and much less on dataset_iou.\n", + " dataset_iou = smp.metrics.iou_score(tp, fp, fn, tn, reduction=\"micro\")\n", + " metrics = {\n", + " f\"{stage}_per_image_iou\": per_image_iou,\n", + " f\"{stage}_dataset_iou\": dataset_iou,\n", + " }\n", + "\n", + " self.log_dict(metrics, prog_bar=True)\n", + "\n", + " def training_step(self, batch, batch_idx):\n", + " train_loss_info = self.shared_step(batch, \"train\")\n", + " # append the metics of each step to the\n", + " self.training_step_outputs.append(train_loss_info)\n", + " return train_loss_info\n", + "\n", + " def on_train_epoch_end(self):\n", + " self.shared_epoch_end(self.training_step_outputs, \"train\")\n", + " # empty set output list\n", + " self.training_step_outputs.clear()\n", + " return\n", + "\n", + " def validation_step(self, batch, batch_idx):\n", + " valid_loss_info = self.shared_step(batch, \"valid\")\n", + " self.validation_step_outputs.append(valid_loss_info)\n", + " return valid_loss_info\n", + "\n", + " def on_validation_epoch_end(self):\n", + " self.shared_epoch_end(self.validation_step_outputs, \"valid\")\n", + " self.validation_step_outputs.clear()\n", + " return\n", + "\n", + " def test_step(self, batch, batch_idx):\n", + " test_loss_info = self.shared_step(batch, \"test\")\n", + " self.test_step_outputs.append(test_loss_info)\n", + " return test_loss_info\n", + "\n", + " def on_test_epoch_end(self):\n", + " self.shared_epoch_end(self.test_step_outputs, \"test\")\n", + " # empty set output list\n", + " self.test_step_outputs.clear()\n", + " return\n", + "\n", + " def configure_optimizers(self):\n", + " optimizer = torch.optim.Adam(self.parameters(), lr=2e-4)\n", + " scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=T_MAX, eta_min=1e-5)\n", + " return {\n", + " \"optimizer\": optimizer,\n", + " \"lr_scheduler\": {\n", + " \"scheduler\": scheduler,\n", + " \"interval\": \"step\",\n", + " \"frequency\": 1,\n", + " },\n", + " }\n", + " return" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "", - "version_major": 2, - "version_minor": 0 + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-18T04:39:44.533601Z", + "iopub.status.busy": "2024-08-18T04:39:44.533123Z", + "iopub.status.idle": "2024-08-18T04:39:46.413802Z", + "shell.execute_reply": "2024-08-18T04:39:46.413012Z", + "shell.execute_reply.started": "2024-08-18T04:39:44.533575Z" + }, + "id": "8d_wsmYArTt6", + "trusted": true }, - "text/plain": [ - "Validation: | | 0/? [00:00 " + "cell_type": "code", + "execution_count": 13, + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-18T04:43:38.006150Z", + "iopub.status.busy": "2024-08-18T04:43:38.005834Z", + "iopub.status.idle": "2024-08-18T04:43:38.032359Z", + "shell.execute_reply": "2024-08-18T04:43:38.031516Z", + "shell.execute_reply.started": "2024-08-18T04:43:38.006121Z" + }, + "trusted": true + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9a1e5f393c44464f8c9a0da37029578a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "VBox(children=(HTML(value='
" + "cell_type": "code", + "execution_count": 14, + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-18T04:43:49.859907Z", + "iopub.status.busy": "2024-08-18T04:43:49.859162Z", + "iopub.status.idle": "2024-08-18T04:44:00.272086Z", + "shell.execute_reply": "2024-08-18T04:44:00.271278Z", + "shell.execute_reply.started": "2024-08-18T04:43:49.859869Z" + }, + "trusted": true + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "369c864e8d724d73b9089746b64894da", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "model.safetensors: 0%| | 0.00/92.7M [00:00" + "cell_type": "code", + "execution_count": 15, + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-18T04:44:02.872395Z", + "iopub.status.busy": "2024-08-18T04:44:02.871485Z", + "iopub.status.idle": "2024-08-18T04:44:04.015152Z", + "shell.execute_reply": "2024-08-18T04:44:04.014194Z", + "shell.execute_reply.started": "2024-08-18T04:44:02.872360Z" + }, + "trusted": true + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e17092e4255e4d5e85be91a9d1a8f0fe", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "config.json: 0%| | 0.00/345 [00:00" + "cell_type": "markdown", + "metadata": { + "id": "9H5oTdUc3hb9" + }, + "source": [ + "# Result visualization" ] - }, - "metadata": {}, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAEOCAYAAAAOmGH2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5wkV3m2fZ1QVZ0mbdQGabVKq0AQiGCCUEAgKyATRTQghMkZjN8PB4Ix2NivLTIYDNgvkrFxAIMJJogswKAcNmpznDzTqcI5z/dHdc/ObJC00u7O7Kou/Vo7U11ddbq6uubc9YRbiYhQUFBQUFBQUFBQUFBwGNGzPYCCgoKCgoKCgoKCguOPQmgUFBQUFBQUFBQUFBx2CqFRUFBQUFBQUFBQUHDYKYRGQUFBQUFBQUFBQcFhpxAaBQUFBQUFBQUFBQWHnUJoFBQUFBQUFBQUFBQcdgqhUVBQUFBQUFBQUFBw2CmERkFBQUFBQUFBQUHBYacQGgUFBQUFBQUFBQUFh51CaBQUFBQUPCSUUrzvfe+b7WEclJNPPpkrr7xytodRUPCw4eSTT+aVr3zl1O8/+tGPUErxox/96LDtY65fdwpyCqExx/jSl76EUorf/OY3sz2UgoKCw8jGjRt505vexBlnnEGlUqFSqXD22Wfzxje+kdtvv322h3fE2bFjB+973/u49dZbj8j27777bt73vvexadOmI7L9goJjie5covsolUqcccYZvOlNb2L37t2zPbwHzLe+9a1CTBzj2NkeQEFBQcHxzje/+U1e+MIXYq3lpS99KY9+9KPRWrN69Wr+4z/+g09/+tNs3LiRFStWzPZQjxg7duzg/e9/PyeffDLnnnvuYd/+3Xffzfvf/34uvPBCTj755MO+/YKCY5EPfOADrFy5kna7zc9+9jM+/elP861vfYs777yTSqVy1MbxtKc9jVarRRiGh/S6b33rW3zyk588oNhotVpYW0xj5zrFJ1RQUFBwBNmwYQMvetGLWLFiBT/4wQ9YsmTJjOf/6q/+ik996lNofd8B5kajQbVaPZJDnVM0m82jOhEqKDgeueyyy3jc4x4HwKtf/Wrmz5/P3/7t3/L1r3+dF7/4xfutf6SuM1prSqXSYd3m4d5ewZGhSJ2a47zyla+kVquxZcsWrrzySmq1GsuWLeOTn/wkAHfccQcXX3wx1WqVFStWcMMNN8x4/cjICO9617t45CMfSa1Wo7e3l8suu4zbbrttv31t3ryZq666imq1yqJFi3j729/Od7/73QPmVf7qV7/id3/3d+nr66NSqXDBBRfw85///Igdh4KCY5WPfOQjNBoNvvjFL+4nMgCstbzlLW/hxBNPnFrW/d5v2LCByy+/nJ6eHl760pcC+UTgne98JyeeeCJRFLFq1Sr+5m/+BhGZev2mTZtQSvGlL31pv/3tm9f8vve9D6UU69ev55WvfCX9/f309fVxzTXX0Gw2Z7w2jmPe/va3s3DhQnp6erjqqqvYtm3b/R6DH/3oRzz+8Y8H4JprrplK5+iO78ILL+QRj3gEv/3tb3na055GpVLhPe95zwHH22V6DviXvvQlXvCCFwBw0UUXTW1/3+vWz372M57whCdQKpU45ZRT+Kd/+qf7HXtBwfHExRdfDOSpnPd1nfHec91113HOOedQKpVYvHgxr33taxkdHZ2xPRHhgx/8IMuXL6dSqXDRRRdx11137bffg9Vo/OpXv+Lyyy9nYGCAarXKox71KD760Y8C+XWwO9eZngbW5UDXhltuuYXLLruM3t5earUaT3/60/nlL385Y51uWtnPf/5z3vGOd7Bw4UKq1SrPec5zGBwcPPSDWnCfFBGNYwDnHJdddhlPe9rT+MhHPsL111/Pm970JqrVKn/8x3/MS1/6Up773Ofymc98hpe//OU86UlPYuXKlQDce++9fO1rX+MFL3gBK1euZPfu3Xz2s5/lggsu4O6772bp0qVAPnm5+OKL2blzJ29961s54YQTuOGGG7jxxhv3G88Pf/hDLrvsMs477zze+973orXmi1/8IhdffDE//elPecITnnBUj09BwVzmm9/8JqeddhpPfOITD+l1WZZx6aWX8tSnPpW/+Zu/oVKpICJcddVV3HjjjVx77bWce+65fPe73+UP//AP2b59O3/3d3/3oMd59dVXs3LlSj784Q9z88038/nPf55FixbxV3/1V1PrvPrVr+bLX/4yL3nJS3jyk5/MD3/4Q6644or73fZZZ53FBz7wAf7sz/6M17zmNZx//vkAPPnJT55aZ3h4mMsuu4wXvehFvOxlL2Px4sUPeOxPe9rTeMtb3sLHPvYx3vOe93DWWWdN7bfL+vXref7zn8+1117LK17xCr7whS/wyle+kvPOO49zzjnnAe+roOBYZsOGDQDMnz8fOPB1BuC1r30tX/rSl7jmmmt4y1vewsaNG/nEJz7BLbfcws9//nOCIADgz/7sz/jgBz/I5ZdfzuWXX87NN9/MM5/5TJIkud+xfO973+PKK69kyZIlU/OOe+65h29+85u89a1v5bWvfS07duzge9/7Hv/v//2/+93eXXfdxfnnn09vby/vfve7CYKAz372s1x44YX8+Mc/3u8a/OY3v5mBgQHe+973smnTJq677jre9KY38S//8i+HdEwL7gcpmFN88YtfFED+93//V0REXvGKVwggH/rQh6bWGR0dlXK5LEop+cpXvjK1fPXq1QLIe9/73qll7XZbnHMz9rFx40aJokg+8IEPTC37v//3/wogX/va16aWtVotOfPMMwWQG2+8UUREvPdy+umny6WXXire+6l1m82mrFy5Up7xjGccluNQUHA8MD4+LoA8+9nP3u+50dFRGRwcnHo0m82p57rf+//zf/7PjNd87WtfE0A++MEPzlj+/Oc/X5RSsn79ehHJv+OAfPGLX9xvv/teI9773vcKIK961atmrPec5zxH5s+fP/X7rbfeKoC84Q1vmLHeS17ykv22eSD+93//96BjuuCCCwSQz3zmM/c73i4rVqyQV7ziFVO/f/WrX51xrdp3XUB+8pOfTC3bs2ePRFEk73znO+9z3AUFxyLducT3v/99GRwclK1bt8pXvvIVmT9/vpTLZdm2bdtBrzM//elPBZDrr79+xvLvfOc7M5bv2bNHwjCUK664YsZ84D3veY8AM76fN95444zvZ5ZlsnLlSlmxYoWMjo7O2M/0bb3xjW+Ug01V9702PPvZz5YwDGXDhg1Ty3bs2CE9PT3ytKc9bb9jc8kll8zY19vf/nYxxsjY2NgB91fw4ChSp44RXv3qV0/93N/fz6pVq6hWq1x99dVTy1etWkV/fz/33nvv1LIoiqZyv51zDA8PU6vVWLVqFTfffPPUet/5zndYtmwZV1111dSyUqnEH/zBH8wYx6233sq6det4yUtewvDwMENDQwwNDdFoNHj605/OT37yE7z3h/39FxQci0xMTABQq9X2e+7CCy9k4cKFU49uisB0Xv/618/4/Vvf+hbGGN7ylrfMWP7Od74TEeHb3/72gx7r6173uhm/n3/++QwPD0+9h29961sA++37bW9724Pe53SiKOKaa645LNs6EGefffZUJAVg4cKFrFq1asb1sqDgeOOSSy5h4cKFnHjiibzoRS+iVqvxn//5nyxbtmxqnX2vM1/96lfp6+vjGc94xtTf+KGhIc477zxqtdpUpsP3v/99kiThzW9+84yUpgdyTbjlllvYuHEjb3vb2+jv75/x3PRtPVCcc/zP//wPz372sznllFOmli9ZsoSXvOQl/OxnP5u6lnV5zWteM2Nf559/Ps45Nm/efMj7Lzg4RerUMUCpVGLhwoUzlvX19bF8+fL9vpB9fX0zcii993z0ox/lU5/6FBs3bsQ5N/VcN3QKeX3Gqaeeut/2TjvttBm/r1u3DoBXvOIVBx3v+Pg4AwMDD/DdFRQcv/T09ABQr9f3e+6zn/0sk5OT7N69m5e97GX7PW+tZfny5TOWbd68maVLl05tt0s3Reih/IE86aSTZvze/Q6Pjo7S29vL5s2b0Vpz6qmnzlhv1apVD3qf01m2bNkhd6Q5FPZ9f5C/x31zzgsKjic++clPcsYZZ2CtZfHixaxatWpG44kDXWfWrVvH+Pg4ixYtOuA29+zZA+y93px++ukznl+4cOH9zgG6KVyPeMQjDu0NHYTBwUGazeYBr0dnnXUW3nu2bt06I03yvq55BYePQmgcAxhjDmm5TCsK/dCHPsSf/umf8qpXvYo///M/Z968eWitedvb3vagIg/d1/z1X//1QVtUHujubUHBw5G+vj6WLFnCnXfeud9z3Xzhg/k+TI9GHioHuyM4/UbDvjyQ68mRpFwuH9L69/VeDsRsv7+CgtngCU94wlTXqQNxoOuM955FixZx/fXXH/A1+974PFYprglHh0JoHOf827/9GxdddBH/8A//MGP52NgYCxYsmPp9xYoV3H333YjIjEnK+vXrZ7yuezezt7eXSy655AiOvKDg+OCKK67g85//PL/+9a8fcqOEFStW8P3vf5/JyckZUY3Vq1dPPQ9778yNjY3NeP1DiXisWLEC7z0bNmyYcddwzZo1D+j1DyYdAvL3su/7SJKEnTt3HpbtFxQUzOTUU0/l+9//Pk95ylPu8wZA93qzbt26GelKg4OD9xsV6M4l7rzzzvucSzzQ7/XChQupVCoHvB6tXr0arfWMzn4FR4+iRuM4xxiznzr/6le/yvbt22csu/TSS9m+fTv/9V//NbWs3W7zuc99bsZ65513Hqeeeip/8zd/c8B0kKI1XEHBTN797ndTqVR41atedUBH3kO5e3b55ZfjnOMTn/jEjOV/93d/h1KKyy67DMhvBCxYsICf/OQnM9b71Kc+9SDeQU532x/72MdmLL/uuuse0Ou7vfn3FQ33x6mnnrrf+/j7v//7/SIaD3b7BQUFM7n66qtxzvHnf/7n+z2XZdnUd+ySSy4hCAI+/vGPz7iOPZBrwmMf+1hWrlzJddddt993dvq2Huj32hjDM5/5TL7+9a/PiBLv3r2bG264gac+9an09vbe77gKDj9FROM458orr+QDH/gA11xzDU9+8pO54447uP7662fcfYC8ld0nPvEJXvziF/PWt76VJUuWcP31108Z4nTvKmit+fznP89ll13GOeecwzXXXMOyZcvYvn07N954I729vXzjG9846u+zoGCucvrpp3PDDTfw4he/mFWrVk05g4sIGzdu5IYbbkBrvV+e9IF41rOexUUXXcQf//Efs2nTJh796EfzP//zP3z961/nbW9724z6iVe/+tX85V/+Ja9+9at53OMex09+8hPWrl37oN/Hueeey4tf/GI+9alPMT4+zpOf/GR+8IMf7Bf1PBinnnoq/f39fOYzn6Gnp4dqtcoTn/jEqVbcB+PVr341r3vd63je857HM57xDG677Ta++93vzojIdsdnjOGv/uqvGB8fJ4oiLr744oPmmRcUFByYCy64gNe+9rV8+MMf5tZbb+WZz3wmQRCwbt06vvrVr/LRj36U5z//+SxcuJB3vetdfPjDH+bKK6/k8ssv55ZbbuHb3/72ft/PfdFa8+lPf5pnPetZnHvuuVxzzTUsWbKE1atXc9ddd/Hd734XyG9uQt6E4tJLL8UYw4te9KIDbvODH/wg3/ve93jqU5/KG97wBqy1fPaznyWOYz7ykY8c3oNU8MCZpW5XBQfhQO1tq9XqfutdcMEFcs455+y3fMWKFXLFFVdM/d5ut+Wd73ynLFmyRMrlsjzlKU+Rm266SS644AK54IILZrz23nvvlSuuuELK5bIsXLhQ3vnOd8q///u/CyC//OUvZ6x7yy23yHOf+1yZP3++RFEkK1askKuvvlp+8IMfHIajUFBw/LF+/Xp5/etfL6eddpqUSiUpl8ty5plnyute9zq59dZbZ6x7sO+9iMjk5KS8/e1vl6VLl0oQBHL66afLX//1X89o0yiSt5y+9tprpa+vT3p6euTqq6+WPXv2HLS97eDg4IzXd69FGzdunFrWarXkLW95i8yfP1+q1ao861nPkq1btz6g9rYiIl//+tfl7LPPFmvtjFa3B7ueiYg45+SP/uiPZMGCBVKpVOTSSy+V9evX79feVkTkc5/7nJxyyilijJnRSnPf62KXA10HCwqOB/adSxyI+7rOiIj8/d//vZx33nlSLpelp6dHHvnIR8q73/1u2bFjx9Q6zjl5//vfPzXHuPDCC+XOO+/c7/u5b3vbLj/72c/kGc94hvT09Ei1WpVHPepR8vGPf3zq+SzL5M1vfrMsXLhQlFIzWt0e6Lpz8803y6WXXiq1Wk0qlYpcdNFF8otf/OIBHZuDjbHgoaFEiqqXgoNz3XXX8fa3v51t27bNaIdXUFBQUFBQUFBQcF8UQqNgilarNaPwq91u85jHPAbn3ENKuSgoKCgoKCgoKHj4UdRoFEzx3Oc+l5NOOolzzz2X8fFxvvzlL7N69eqDtrgrKCgoKCgoKCgoOBiF0CiY4tJLL+Xzn/88119/Pc45zj77bL7yla/wwhe+cLaHVlBQUFBQUFBQcIxRpE4VFBQUFBQUFBQUFBx2Ch+NgoKCgoKCgoKCgoLDTiE0CgoKCgoKCgoKCgoOO4XQKCgoKCgoKCgoKCg47DzgYnDn3GHbabcsZMa/ClBqv+e6jtT7byR/yYHQen/9JCIz3sO+pSlKqalH9zmt9cH3fxAOdf2Cw4uIBlTn3BAUHvCgPN1PXJRCUAigxaD8zPNFlOBV/nqUIMoDLt+eaLRo1CxrdGPMrO7/wfIM/YLZHkJBQUGH7/mvzvYQDpniGlJQMHd4INeQOdV16oAChMM3eZ8uIg72fMHxheQKFtAIAh2B0ZGSMLVkxovQXZGBR4nPX6vkoOK2oKCgoKCgoOCI0J2fHoP9m+aM0Ji627yPyOj+vK8IUEo9qElfV2xMFx3dSEb354Jjl/0+PdUVGxqP5FEzQFT+PyOgZfq6fkqKCN3zUBAldBVKcYYUFBQUFBQUHFaUQhkDxqCMQVkLxoDR+b9ekGYTiWPEuWNGdMwZoYF0p3b7LJ4mCqYLggOs+oCZvr19l09/vuBYZZpI7ciCXD5MExkcQDBIZ20l+fnR3ZZSILqzXXWgVxYUFBQUFBQUHDpKoaMIPX8ebsk8knkl4j5D3KfJKgofgAvBxDCwNqN29x787kF8qw3+8JU1HCnmjtBgZgRjerRhX1EwJQgOcQ/7RjEOFtHYT9QUHBsIaFznR41Mq9TIBUYnSaqrFyC/IzAtosHUj92EqpnnWpE8VVBQUFBQUPCQ0QZdraCWLmb80QvYc54iPG2C5f27WFkd46TyCPNsg0inlFTCuKvytZ2PZs2tS1n0vycw8KsduG07kCyb7Xdyn8wZobE3TWWf5Qep01CKBxXV2Fdg7PvcvusUHEsI4Kd+FqXxHcEhap/TJS+5YEpCqE79htqrQvJMKQWSR0PoFIjvV9NRUFBQUFBQUPAAUNaia1XcGSex7YIe3BMnuOKUX/Gs/ls43dYpKU2gNBqN6cxLNRqP54W9d3PHyl6+fuFj+eavHsvp/9iHvn0dvt2e5Xd1cI6q0DhYsXe369TBIg7T130gEYcDiYQDRUT23e7B1j8UDiZQiujIUUDRyVkU8kLv7s970+0UYFReAO6dRzyIyovCvXd45fOOThq8z5P5tMrFhnPC3oZmMtXdzHu/dwjF51xQUFBQUFCwL0qhKxXkzJPZ9Lt9nPbMe/mLpf/OY6M9zNMhkbIYVbuPDRgWmYALSylPPOGnvOSyX/LaZS9j3mceSemnd+MbjaP2Vg6Fox7ROOhEnM6UsDNRO1ANxfTXT193v20d5HUHWv5gohf3Na6CWUbJNLExHcGQf04+jVE+FxRKWboKRGuP9yniM0S654XGicZ7hTZmKtbhvcd7P3VeHailckFBwXHMPn8H1n3sCXzjWdc94Je/68yL8HF8zBR0FhQUPASUwvT3M3rZKvTL9/Cp0/+Zx0QNaiq6H3GxP0ZpaqrE4yPPfzzmc1z7jpfR0mdT/uEdczKyMWdSp5jWRWrfrlD50w/tTvF9RT+Ku9DHE1M5UTmddCdxHq0VWgliFEqD8gkoD6KRJMFLgnhHJikiCmUNOiihVYjRFiWC+LwDlTFmSmg8GL+VgoKCYw/T2wthAErzb7f8N4Ha62ej+S1GlR/wtv5rw8/5drOHz5z3ONzExJEYbkFBwWyjFKanh/TRp7L2GsNnn/YPPLXUoKJD4IFfLw6EUZqTbYUvrvoyL37TK7Gts7E/vX3O1WwcdaFx8IhFngO/b5epfV+7d1kxsSs4ODJdcAgEWqFchktaGO2AjDSJSRotJkdHGdqzk9HxYVrtCdpxC60NQVimXOlh6dIVnLB0BZXe+WBDMBalFMaYKcHhvS8aCBQUHKeYxYvwyxey5JOb+YeTftBZGj6kbQbKcFW1yXd+kLDh8Q99jAUFBXMLXakgZ5/Chuf08Ppnf5tr+u6hT5d5qNeO6RilOclW+OLZ/8TlL30LZ207Cbd+45yKlB5VoXEgkTH1s9qbDnV/aUhK5SsX9RAF94906jEc2qcoUuLxUSZ2bWPXlnvZuX0ro8ODtOMG2ghh2aA0eBEyJ4g37Fl/F0uXrmDFqWcy/+RVRANLAEjTtIhmFBQc59hlS1n9l4vZ8PQvHpHtn1HZxfonXYC66bYjsv2CgoKjjFKYRQsZvPxUlr3yXn608jMsMpVDingeCkZpzghKfPj8f+cvb3sxS/9xaE5FSY+g0DhAz9DukoOIiYNFMqY/r1R328Xk7uHJvufNzPPAdxZ1K3lUp17Du4TJ8RGGt21iZOsGRnZuYXJkN5I0CFVKJYSobLGhw/mE1DmUsWhTIk1GGdpUJ5scodGOWbjK0juwAN2JYGitixqdgoLjlJELTmLD0z9zxLb/toFN/MO7n8zS5xyxXRQcCKWg0whEaYV4Ie8OUlzLCx4C2mBOOYmNL1vCn7z4X3h+bRfRIdZgPBiM0lxZ3clfXTKC3LgU7pqcM+fyERIa0vkvR7G3UDaPRuRdevJjoHM/NPGAoKe8DtTeYzQlLu57knm4OVhHqoKjyV4Hi9xQz0/72FVetL03HIZSJl9PPOBQPiVpNti5aT1b1t7Njk3roN2gEhrKxmNKmtAGGAs20BgreDFkTuEyQZNSDgOyNKU1soONd8FE4jjz0Y+j2r8AEcE5D6iOW710GhvIfsWiBQUFxxb25JMIXrF7todRcDjRBl2KUD01VBjmrstaQ5wgjQbSjpEsO6aclwvmCNpgzjqN1W/o51OX/gNPLzcJVHDUdl9WIb9/6q/5+spLKK82c6ZW45CExr53bQ9aYI3glcOJRxGg995iRnWNlpEpoaE7phhKHHlbUgVoRKlpk8p84pj/K/mdCDE8UA71jnPXNPC+fDcOdXsHohAxB0dkrwt3fkZ4wHeEqgIMCoX3Ct85vE4UQWCQLManDdrjQ+y6dzUb7ryZ0d3b8UmLWqVMT1jF6ABjNGFJ56cTIDgsECiFdx6fepQHg0clMWl9F2Mbb6a+uJdqrYyoEl4FqM55rIV8jKortIvP93BjTz6Jxt/P7PJVflcJf/vqWRpRwfGI6e+j7/pJ/nvljUd8X3/5yP/gz157DQs+e9MR39fDlq778kA/yWlLGHpkmbSXjuuyYJuKym6hujujtKeN3TGMHx7BJ+kx4b5cMMsohVl1Cve8pZcvP+PTPCGSGc0ijgZGaS6p3c0XV/0uy39URiYnj+r+D8YRiGjk0zVR+aRQRHBe0KiOzUGGMh5jcv8CcYJkoLRHKZ+HL9FMRTqmJmoKVG68BqBEOjeMj3xU42AeHAVHA7Xfz2rK3jvvAKU7KkEEsjQjsJosrjO4eS3b1t7O8NZ1pPURegNHUAqwFrSKsSYgqpYIywFaK7x4XLeoGxAnEHmU8/gkIzAJsctIWyNM7N7CvCUrCHpOyE0BD9xRt9AZhxnd08OzvvVbXte/fcbyL/3rIr769MeRbd8xSyMrOK5Qikt+tpV3zLv3qOzuikqbt54uLDgqe3sYohSmrxe/cjk7f6eX+gUNfu+Mm1gSjlPRMSWd0vAR2+MBtrTmsWVygO13n8QJN51E321DyLad+GaziHAUHBilsMuXsfoP5vPFS/6e34nAHGWR0WWFFdqPbaLn9eOPX6EBIOA9phMNyDvyGJTyKO1AUpzLwCmUClHa4rM2RgvaRrmgEPBTBd8KrxRC57az8qiOP/O+87giV/54Y+/n6VGgzN5GAh5URxjozrlWCoX68Fa2rL+HzatvY2THRiJpUwmgWg6oRCFeIPOCDRQ2MtjAdDqe5eJCRDDaYG0eoVBecEYjCGk7AckY3rOHgeEhFvScsI++mKk4Cq1xGFGK9972I36ntP8F/JW9e3jsz/+DVO7bz+RPzrkwnzAUFNwH1665l6tr47M9jILDhLIBsmIpOy/sQ184wrvO+Annl9dT1R4NdK8orgapQFs0a05ZxL898XH8/K7TWfad+fT+cC1ubKwQGwUzUQq7dAn3vuokPnLll3lKKZ01kQFQUSEXnrqOrfNOhi1qTpyvR0ZoSB5x0Lpb3C0YLUBKEk/Qisdpt+p4B1FYIQqqhNZiowCwiPOIS1E6QCmLKEEJeHRHhOSTiYN9lPclNoqIxLGDmubsLQoEjVcaVCfOJR4tglECeJRPmBjezJo7f8nGtXeS1kcJVUI1UlQjTa0SUC6XEJWnWikboK1B2+55pdDkQkN0d+8KpRU4nVuKa0EjNBsTjI8OM7AsRgcBaDOtnKRTil6ca4eVP9vw2wOKjC6PCkv3u42vrfsx32328cnTzzicQys4TtDVKs/5zcZCZBxPKIWuVdnzuH7kglFeddpNPKW8gRMMBMqip9WQmmnX7BPtEE8+8b/ZtdTwj499Mt8/8XdY/u9bcDt3zZnc94LZRVmLPmUFa69dxHXP+wLPLDeOerrUvmgUT++/m88sOZvoNg0y+2l/R0Bo5Hn1iq4BXz4x08oRt+rs2bOF8fFdJEkT5wSNRRNSK1fp7e2nr38BpUoPWocgrpM6ZfIGEZJHNvbeNd7nXnJ3gneQjlYFxxLSsVaRToNajVN0Ilu5IFAojHIgGb7VJJ4YYsPtv2THvXfgmyP0lg0VGxFpTzkyRCWLDRTKWJyoPEKiAZOLCeU1WtvOudIp7BY6RegWJQFWHGSaWBxxu0mWxARBNT8/9zsvi3jG4aSkMh5q//FIBcw3dfSjzkSPN8g2bz08gys4Lqh+p8xr+or0u+MKpeGEBQw/JeUdp/+Ci6urWWqEig5miAzduVabTieqSAWUxTNfw/sX/4Lz37iWt696Cad9ZSHBbffixifmxN3igtlBl0q4x6xi7esM//G063hkGMxqJKOLUZpHRjsYXxmw2BhkDtQX3XeewYNGoZXOv8ReUN7jXUyzMUKzMUKaTgJtjEmANkkywZ7dW7l33Wo2rl/N+MgevE8Ah5IMLQ4tnTJxybd/sAncwaIZRUrVsUgeqQCH4Lul4FMPxINPcY1RRrasZe3NN7Fz/d2o1iR9oaWiFZGC0BiMMrk88Yo0E9LMk3mPR/KHBgKFDg2mZLHlAFMK0JFBRxYTWYJySLlSolSyWAP4FHEJWnVHKwf4w1Ocd3ONp5Q03/7OV+i7oU7zOU/EnnzSbA+pYBaIr9jrkmfOOJXmc57ImT1Fh6njDRVYmiv7ecqZ62eIDItBo6YeRukpkdGlu6ymS1xRGef7l/8tCz+0id1Xn41dvgxlj7rnccEcQEUR7QsfSfO9k/zooo91RMYRmk4/CBYaz+QpHhUevY5X98UR+ZYoRS4yhKk2oz6LiduTpEkd8S208VgToKzGG02mAxqTbXbv3Eq7WWfholH6BhZS7Z2HsSU0Qqf3z9Q+kHxyd6SiFQfa7n35fBQcCTpdxlBoZehO3LUIhoykPsbIlnVsXnMHOzetw8cTVEJNyVosgnJC5jxKQBuL0hpvDKIVxlowJo9odP9VoExeB+LzIiHE5x2kRDzaGXSSERhBfEaapZTwiPhpHi/dSMbhjWgUYvnwcsPKG+GTN7Lqpy/ntD+CbNOW2R5SwVFi19ufzDfe/hGu+Ni7AShfNMivH/PZWR5VwZFAGUPcbzipPEKPdvulSwEPaJIYKMNJtsxfLP8Gf/0HLX4y77Gc+O0e1LrNRd3XwwhlLfKYVUy8cZx/PeufWGYqc0pkAERK4xckqGBuCOFDGsUDnmB3buzmLUkV0Lnz7BJEUpRyGANhoNDK4o1Bq3wCn7QTJsYHGR7cRa3Sx/KVp3PC0pMISr2Aw5ggT6XxHtFHLjHlUMXEfa1fTBAfJNJpEasURgnKu05US1A+pT02xK5772HrPbcwsmsrKmtRNZoQhXXk96uUQpSQZgriPDaiLCijEKVQhtzd2xgwuSs41uSxlE4fda3zdZ1zIA7vUowRkrhFu9WgB0+eiKW6Ibfpb4IifWpus+b8f+KRf/cSTnzNQtzg4GwPp+AIs+mDT+K3r/xbarrGHe/41GwPZ4qLzr+DTU89F/2zW2d7KMcXxpBWFANBgwD2ExmHQqAMy22Z9yz+PstfMsrnTnkay7/9SHp+sg43MlqkUh3vaINeeRL3vLLEfz7ic5xky3NOZEDe+L+nrwVzJOJ2xFKn8updnedHaoVHcOLw4jpZ96CURmuNthYbWcKSpVQJqPWEhNYzNrKLdXfdwo5Na0naE+DbaEnRku3n4Nn1vSg4fugmTqFyy0ftEkzaxqQt4qEd7FxzG5vv/C2TQ9sp64yeSBNqsKIwaLQyHa+MkCAsY8My2uZdzkDjRXAiOBSiNBiLDkJ0GKHDELGWDIUYi4lKmCgiCAOi0CIuJW03iVsNxGXoTo2GmmEYM2uHruAQueOJN8CC/tkeRsERZNv/92Tq3zmFH7z8r6np+28ccLT53Ik/Z/iR5dkexnGHMpq0qphnGgSHIRshUIYlpsIb593KP1/yGea/bRODV63C9Pc/9MEWzF2Uwsyfx6YXnsCHL/oq54R21gu/D4ZGc0LPJCo4jlOnIC8BV1MzrWkW30qjjUEbgzEBRkcoZdBW0BqUcgQmJNKKahQyMdFi49q7iNttlq88nUpvP5gIo02eVLOPtijExnGE6tj0iUeLR+OQrE02OcqetXcxuHE1ychOQhcTWaaiD4HW2NBiggAbWpTV+Z2IQKMDkxd+K4UYTWrAoUg94DxKK6wotDEoq1AY0J3S89ATlhJ05mhOOrKkTbMxQZa0CW047XzP6ZYT7RfkKJiTXPTVm/nhExYXaRDHGY3nPZEL//QXfKjvOs6LQqA220MqOJp4QTtID2Dw+2DvRhul6VNlzoscf3/Kf/DHr3smt7tHMf+/7saNFR3LjkdMXy+7nncaz3reL7isuoNAzd2bAkYpesI2LRPN9lCAIxTR6LYF3evunefAmyCf/BkbYoIQE5TQNkKbEsrYvBA30CgtBKGiWrYsGKjisyb3rr2LTevuYnJ8GFQKqohoHP9oUAYk7z2Fi4mHtrPrrt+y4+6biQe3UXYtSqQol2C8oxRZonJAGAWEkSEIDTbQaCso41Hag85Ap2jtsIHBBCFog/Pg/N42usoGBKUyOgzxxoDNz98oCvICcPEkrRZpmkw7Fw/k3FdwLPCH8zbkNTsFxxXtAc0HF93RERkFDzcky4jGPLvTPtLOdbpb/P1QCZRhkanykaXf48V/9G02vekc7LKlnZtkBccLpreXPS84m4v+4Ff84YKf06fnrsiYixyx1CmlO94H0oluGEsQlgjDiCAIsUGEsRHWRmgb4FB4AyayRKWAUjkgDBVhIJywoJ/eWsCOrRvZcPcdjO7ahovbU+JCptkyC7J3mnfgLrgFc5i9H1l+ofaiUMrg223Gtm9m8+03s/7WX9PYvRXTniTwMdanGHFY00lJ1I5MYpKsTStu0GzXibMWiWuTZC3StEGWtXC+BUowQYgNSwRhCWNDRFuUCTBhRBCVCUoVbFhCmaBzrnmMBms1Ig7vHcXJdnzwj3d/B12tzvYwCh4iulrFnH0G/77tl/z8/R+b7eE8YG76k4+RXnLebA/juEKcozTq2BH30T5Cl+cBU+GN/Rv42h/8NSOfL8PjH4EKCmF7PGB6exl6zjk8/Q038f7Fv2CBOTb+PmTezJmaoUNKndo3YnDfBdMaUeBEYxC0sQRBQBCGOJdgjEVri1YBRgy222LUK1SgsMYhWYbxeWvTWi1CqYSRPVtI4iYrznDMX7ICbYPcMbxr6EaunkRkr5dHx128yJmfffYm0e37BdibZidTHZtAiUPSNhO7trLx5t+wZ91d+PFheiNFqAUtCgKDNxqvoRm3c6mpVMdgT6M0SKzQgcIGFmsVxmqsjlAuyztYGQudbWQA2hAEIVopjDF4k0GakGUZNs1AhDAICLTBqG7Refed5Y+9rZgLjhUWmSofvPNG/uziF5Bt3Dzbwyl4EJjTVvJPN365MyGYe7UY90WkAsQU14zDinME4ynbm/205cgV7gbKcEZQ5QeP/Gfe8+kn89u/OI/a9+7GT04esX0WHFl0Tw+jV5zN+W/5Fe9d+Gsqc7C260A4ETLR4P1sDwU4ghENPzWj1J2WtBrTERvamI4HQt52NLQhpahGaHrQporTIS00SWCQssFHHmxCqZwRmTaNkc1sWf1bBjevIW2OoX0770qk6fgi5CkwijxXzQJGZNamfEqpgz4KoBsJkK4rN3TOnwyVjDC29U423PJzdqy+nXRkiJIXbAo6VYiHOM2YjFuMtxqMN5q0Wglp5vGpIKlHUsE4sM5gvUZ7i3IWyRSSZkjaRrI2SjKMUmjFlFgxJu9RorzHANYa0izBJxmBaMpBiUAH4HNncU/nfBeNEoM6jH/YivPm6HBeFPLcb/0K9fhHzvZQCh4Er/v2d4+Zu44FRx7xQjDaYvPoAJNy5ItjKzrkTxb9mBPfuZbxy8/B9Pcd8X0WHH5UENJ66plUrt3Buxb+hIo+diJUHs+eRg1J09keCnAEi8Ghk/6i8miCIu8wpZTu+BL4vLWoUlhjsSbESYnMlEjSgDStI1qQDLTOvTjwnnJJUJIxObiV9ZMNThgbZukpp1MZWAA6QKm8NanueCGoTjSjmJvNDdS0n6aqGgTE+7yNrAjg8s8rbdLYs5nNd/0vW1ffhR+boOIhsBZxQuI8aeZoG0diBGcUkgmiFYLDKY9WYLTCRGHebMB1og8oXAaSxCAe4zOsAmMMJggQgTTJEKMx4smSmCxOCJzDdwSycp68I7vueLp0vcHVlA3UtCqio3mYCx4i1/bt4gt/3qD2u7M9koKCgoeEeNR4nfruZYy4GgSTR7wl6YAu85ETv8Hb3mTYbs5i4Jt34yYmjug+Cw4j2qDOPpWR19b5l9O+wiJTme0RHRIOYXi0xoJsz2wPBThiEY1phbFq779aW0QUaepwmaCUwZoAowMUFqUijClhbRmtI8AgGFAapTXaaExgCANDZBVJfZTtG1azZe1dNEYG0WRYPKpjniYiePKOQyhDkcYyF+hGL/IJuUfnNTw6F4ZaHFY5rI+JR/ewbe09bF23hub4GKrTIjkVhwSGTEM7y0gzj3gFXmG0QSmTT/yd5A8PWZqSxAlpmpJlDu9zOYAoRMA5T5ZmOOfztrjG5sszj/OC90KapqRZRpY50CbfhuRtmuk+7sO1vuCh8ZIvvxUnRy8U/JKT/pf61b9z1PZX8NAYvvZJrPvo73BOODf+uBbMEUSQVovydsuerAfPkb+GGKVZYip8fMXXGPiDLdQvOhNdOjbSbh72KIVdspg1r+rjn8/9AqcF0Zz0yrgvUvHIcISk2WwPBThiQoMpHwGlBFSeFmNMgFIWl0GWCohGd5aBResIa8pYW8boCK1CEANiEFEdwWGw1lAKNZVIkTRG2LjmTjauuZ325BhGeQIlKHE4L6DzPH1XTP7mAB4truMWnwsNpxRe50ISL2ifobI2raFtbL3rFrbecxfx2Bglo9FGkdERGUYTK0hRiGjwClKh2/O42yBAozB6WuNZnzt9K0ArjbVB3pjAhOStdAFlcu+NIMyfNyHWhGht8aJIUocX8F7Q1qKt7XQZKeqAjiQn/+lNZLijtr839m9lx4VzI8e14L4ZedWTePcf3cC9L/gMpwbHdvvagT/ejD1h8WwP47hCWm16Ngtr20twRym6bJRmia3xyVP+lclXTZA9/qyiQPwYwPT1svWFJ/Oh3/0XzgjCOeuVcV9MeqG8SyPZ8Sw0lKCUA1z+M6BEEdiIKKygVID3+QRR6wCjLVaHGFXC6gqBrhDYKkFYIwwr2KDUaYcb5sW8kSWKFJHJqEYQ0Gb7vWvYvPoO4vFhlKQYnafMAJ2aDSmSV+YYXik8uUaYkh4akokhdtz5W9bffBMT27YQZClGPEnaRgKN7SkzmbYZbTVoZRmpF/AaS4BBY40hMIbAWqy1WGOJwohSGGKNzWswnMdnDu+kI2JNHl0RDWi0thgTYG0uQrTptGW2Ia5Tj5EJEJZQNphKm9p3WtoN6BUcm3zx0s8z9vInzfYwCu6D+tW/w5+/5wtcXTs+/Av+47TvIbVjK1VjriNJQt+GFr8aPpn0KEZFAU6yFW549BcYeXeD7ClFN6o5i1KYgQF2vehsrnr5T7myuvOYFBkAW12Nvo0e3NG7MXdfHBGhoZDc50K5TkSjk7euQ6KwShTkYkMpi9WdyaDOzfu0DtE6IrAVwqBKEFTyCIeJUNaiA4sNDFHJUi0b+nsi5veWCUjYvWUDG1ffyfienUgaoyTPpxcp2lrPHaanTsFUgymXJ1JJ2mDPmjtZd+uvaOzZRpDFlCDvDmUgrIQkytNyKZkC0QatLKEJqUYVKqUK5XKZSqVKpVyhFEUENkDrPK0pd6SfVlQteaOCbrRMOqlcuQi2GBugjUV1mhmEUTnvdGYsThTKBnnK1PSObGrGPwWHkd+78pVHdX8Xlj3NRcUnOVdxFz6WT3/kOn63Es/2UArmMOIcwfYR1m9ezKQ/und+jNKcEZT4+qO/wBl/fTeTz34MulIIyTmFUtjFi9h67Vk86/U/4Z3zf0XtGOkwtS9OPDe3Tqa6rY0cv0Kj8yVWnQLuqXu8BoUhDCuUoipG23xVBUorjLFT9RrWRgRBmSisYmwJVIB0irw9gkPwkqGUQ3yCkpi+SgBpk+0b17B9wxrqw7uRtAU+Q5G7jtPpauS97wgQ2e/xgN7hAV53uAwD72vbx4MhYbfwW3Wn9F7QIijv8O0GwxvWs+aW3zCybQuBS6lYQ6g1obX01GqUKhVaSZtMC7ZUIirl3iyhCQltQDTVclahlUJrjVF5q1kleU1F3lAqf07r/F9rLTYI0cZ02iXn7uDGGpTRoHVuOGktNiyhTYC2AdaGiMDMv137mvcd+5/bXEFv3HbU9/mrt13HV7b+AvW4Rxz1fRccHHPOKr725U/xqPDYnBAUHEVEkLFxyhtCxn1wVGu9IBcby22Nv1v6U97xF//M1jefi1m4sLgDOhfQBnvScja8/lT+8NX/yh/Nv4WBY6z4ezoe4UdDqwiGG3PGR+OQhMYDb6vp8/a13QlWp9UnYghsiUqlB60D4iQmyxK6KVZ0fAgUOi/I1QHWRBgbonSe2pInZAlOhNSlpGkLcSlaMoyL8a0Jdm9Zz6bVdzC2Zwcqa6FJ830gKKWmREZXcHR/LzjCCHjx+O5EXwTlPIHPUGmT4W0bufM3N7FrywZKFkKtwAveecIgoFwuIyK02m2SNM2N8hQYk5/GaZLgM0eaZcRxTJIkeOdQShHYvLWytSaPbvg8dcp5j0dAgzWGMAoJggATWJQxHdPJKXVC6h0mCHMDyqhMuVzuPNX9KqnOaS+FxjhOqOiQAVPhO//1ZfS5Z8/2cArIRca3vvcvx+xdx4Kjj2+16dki7HGzV8MTqYArq8N86NVfYt27TsOuXFGIjdmkU/i99Xkn8vLn/IDn1rYdU21sD0QqjjV7FqHqrdkeyhSHHNF44L3894oMOr4CiEHrgFK5ShRFeJfhJUVpDzqv61Bqr0DxqLyGwwboIMIEAcpYRGm81ogxYCxKgZKMkoGqBdeYYNfGtWy6+1YGt6wja46hJJtqqJq32S38CI42guAElO04VroUKwkqbTKxexsbbr+Z3Vs34pOYrJ0g3pN6T+rBRiVAU59skLRjtCh0JzrispQ0a5MkMe24TdLORUaWpGRpSpZluE5bWsjvLhlj0CbvZIYC5z2iBBtYjMnbMntxeOfyf5XgxOMlrysRbdDWoHS3m1n3XNprPLjX37zgcCHO86GhVbO2///67/9HdnHh3DybuAsfy79+9x9nexgFxxrOUduRsCMbmNVhRCrg0so4H3/eF1j9lhOwJ59UiI1ZwvT3s+vKFTzieffw8v7fUlbHtsgASHG0h8tIksz2UKY4YoZ9dEz6pu7wCiAGhSWKKpRKJZx3xEmLzLVAYkRS6EQf8vvMgjIaY0N092EsGEumNM5YxFoyEZxLsThK2hGRoJM6w9vWc+9dNzO0eT1ZcwKZli5VCI2jjygN2uI9ZEmMkhTt2zSHd7Bt9W1sXnMnE4N7cmd3FHEmtJ3ggwBMQJxkpElKoCwlYwl17nGBOLzPcJKSZglZluKzDO9zceGdI0tSXJrlna1QuZs3IJ1kPKUEtOB9SuoT0iwmSdskaUzqEpzPcN6ReYfzudCwYYS2AWjdSevb93wqQhqHGz85yU9f9phZ23+gDJ//4keZeHHR9nY2qF/9O3z0S58sIhkFh4w4RzjYYH17cR7FnkUiFfD0cpMPX/7P3Pv7y4ouY7OAspbWE0/j3Gvu4M+Xf4PFpnzMtbE9EKl4wmED8dypWzsCR3VfkaFmLu8U2YZhhFJCq12n1Zoky5qIj/E+QSSj06cUlELp/A60sQEmCPNiXBvibIg3AV7n6VD4lABHT6jojRQmbTCyYyP33n0zOzetI+kceGPyTgJFutTRRiPa4ujYTuBojexiy923snn1bcRjQwTk7twOQyPxtDw4a5lotRkaHiVpJWgnBALGe7R3IBmeDE9XWHRS4bwgzuMyR5ZNi2w4h3jfLRjBGEVYCrCBJvNpLjKymDhpEydt0izFS4aIm0r90koThFFe0zEV0NhHaBSWGsclK4Maf/MXn2LotUU3qqPJyKuexJ9+6IucE5ZneygFxyIi6JFJ/nd4xVHx0rg/AmX4veoQL3rej9j5eysxA7MbaXm4YZYtYevvZ3xw6Xc4yZaP2Q5T+9IUIRpRc8ZDA46kj0Y3XaorNro3d5VCoYiiiCA0xHGdRnOCJG2SZS0yH+N8inRrPARQnY4/YUgYlYhKZcJKBVOuYqIKNixjbIBCMN4RKU8oCVUjBL7N0I6NrL/nTrZv20q9Xi8ExiyRN5dSoC3GGJLJMbatvYsNd97M6M7NmKxFpBVZ5ohTIVUWXamSacNEs0m7FUMm6MyjUofOXN6+zecpd/l1omOi183c69TiiHR+dg7nHb7TikxrhbYaGxi01SijQOXpWEkak2a58FUatFbQacmLNthuhK0IXDzseEpJ8xd/+AX2vOHJsz2Uhw3+OcNFd6mCh4Qfn2DdXcuY9HMjrSRSAW+b/1vOu+Z2Bp9zZiE2jhKmt5etzzuRTzzxBhaZynEjMgDGvCUalTnjoQFHUmjIzNu5e381gCEIypSiMi7NSJIGaZYLDe86KVSdmgqtwChFYAOCoEQYVYhKNcJKD2G1RlCpEFQqhKUSSmu8eJzLUCJEVlEONJaMoV1bufu23zC8cxs+bqLFo5WguylU0zO89tFGB+0ddJ9PPhzoOEfIzMLnbnXCvodGELx4tHhcu8HQts1sXbuGycFduMYkaatBlsS045i2cwTVCqVajVYc027HhEFAYC1GGwwKnfvGY7QisIbQGgJrCIK88NsYgzEa3REJWnXHIOT+j3k3qcw74jRGvMNq0AhIBj4/DzVgtcFai1FdUz+NthZl9NS5rYXclZ7px6HgeOV3KzF/9Y7PMfrKIrJxpNnxrifz6UdcP9vDKDjGkVaLBTdrNmfBbA9lij5d5iNLv8flb/0J2195FmbB/Nke0nGN7ulh5KqzufRlN/HU0vhxkS41nV1ZD9HE3PHQALCHsvK+kYCD1zh0U6Y6DWk7rskOMBiQCkZ5KmE/LTtK3JokDoaQKMZKFa1KU5lTkKHJOnefwzwf3oZomcS7BB8ZlIRok6eySJLh2ikuyfAihMpQUilJnDK28S5uG92D+Z0nc9KqszFBCa9M/uhoLt+5I6613vsWOuQT0HxSraam0tOOz5EMEM0iB44A5e9fi9DVq151joqAE0E6IsQanRdXpzGBEkwSs33tXaz535sYXL+OeGQY7VO8y5h0DcrzBqhEEdXeKi5tIe0mQTfU3WlLK0ahjcaaPK1OqY5hnpZ8udaYjsAwRhNEFoxBjIbAYsIAFQboUoQKw1ykuhTnUhKfkYnPpYy2iFFYW8YZS6YM2lpsqURt3gAmDMCozhHxKNkrtHwnfTBvcPBQj3fBXOSZlZRl7/tb3jD0Vkrf/PVsD+e4pXGi5wnR3JkcFhybiHMM3F3n+/VzeFS4es7cyR4wFd6z4FYe9fqt/EnPy1j5ydW4kdE50570eEFXKgxe/Qie8Lpb+MOFP6Omq7M9pMPO1nQ+Qd0jR9kv5r44MjNj6WxaFHnr2iyfdHafEoNSJcrlfsrlKjhH3JogSybBtTFkWKUItMJqRWAsgTUobREf4JzBie50AnIk3tF2jmbmiT15kbjJzdZsEBIaS0V5enVGMrqTtbf+mqHtm3BZmyxpI75TE2I0yhgwCt+NaCg1dcd6ymBuGt00HXWYPtPpXb0O9JhTdLu+dsVX50CJykWAsTY/lh3VGBgIXIvhreu5985b2bFhHY3hYVyckMUpRhmq1R7aSULPQB+iPK2JcSRuI1mCuBQRhxOHdNsFiCCZRxIPic9/dh7vMlyWCwfvM1AeHSpsJSKsldGVEhJYRFuwARgDWqFNHvkIdP6wKpePWmlCGxBGJYwNEG1QgQGr8oZqKpcW+I5fBzp3PldF76nDjb9jDU952+uIJZ3toQBwTlgm6Tk+bzIUHH2e9vrX4NZvnO1hHJ+IYHeP8Z9bHz1nrh9dIhVwVXWUT7zis2x885mYRYXPxuFEWUv2+FUsfflG3rP4+8zXx1+tlxPPtmQetpV1LCbmBkeu69S+E+/O90XoiHSlMWFEVKoionBeEG3ABDg0DkUmClEGZQwmCDqPEGVCtLZobUHnLUa1NiitEYE0TXEuw2cZeIdWEFpDtRwSWsXQru1svOcu6qPD5DfbPeARl3UGp6eygbrTRHWA6eL+MY2HId3g1T7pZgCIoLzkNRQIZAkjWzez9vbb2LR+DaPDQzRbTRKX4RQ4rXCimN8/n3JYpj5eJ27HCHTM90zHZC832AtsXuvRXaaVwqIJRGE67W9N57X5p2dyY8gwRNv83HFKIUqjlMmdwI3B2gCjbcdNPG99m7ksN3lSYIwlCPPzEaXyCIRMHY5px6b4I3FEEKH2r7/kcX/31tkeyRQ3/d/PEF/2+OIzPwLoahWpzp184yONac+dCcLxiEzUGbpnAWM+O+rGffdHoAxPKyV8+vc/w5r/cwp2+bLimnI40AazfCkbr4p46/LvsdBEx13KVJfhtIpK59Z5fcSOtNqv5Y7kk1A/MzKgtUbZEG1CwqhMGJXQ2uIFMpebr2U+n/zbICQql6hWq5QrVUrlMuVKhVK1QqlapVKtUi6X8glo5yQyKMpBSLUUUrKaSmQJLWzdtIENq++iMTmG1mA1iPjcBK5r0Db9sbfQoPNP5w2og8mQhwGdaI8o8J1H97PNa2VSlDisVniXMDE8xJpbb2HrmtXUh4bxaUzqPZlSiLV4ZYhKFRYvPIHmaIPWeCP3vOg0AwisJbQBQRDkqVKdQm/nHS7L8JnHiiLwilAUodJ5NKzr+G0U3iicVog10GmbKxi8yqMb0kl3EgHfOe/EQ5pmtOOEdpIiSlMqVwnDCC/gnM+Ly/elCHs/rPjRP3yO1lWPx58/e+13j0d2XvtoNl7++dkeRsFxgsQxfWsVa9K+WW9zeyACZXhKKeUfrvp71r7pROxJywux8VDQBrtkMduftZznXfxLHhfVidTxm4a5J+5BJ3OnPgOOaNep6ey9z53/X3W6AIEyFmNDMp/XOChlQRmUMqA0zgvOdcSGUtggpFSuUK5UiUoVwrCMDSKMsYjRuWNzGGGDAKM1BgiNphwGVEoBtVJANTT4pMm2e9exee1qmmMj4DKs2lvCrKSbAnOAiu+p7/zeVCF5GF4IpqeWTUUzOnlkSglKebQWFBn18RF2bNrArvXraezeTVqvk8UxThwqsHhjKddqLFt+Eo3JBsO7hgi8xojOIyOSfyYi3Za1GVmakqYpSZKSpRkuzfKWbmmKZBni8poJpRUmDNBhgFgL1qLDiKBSJiiVUDbM6zfQiCi8l47IUFiTRzmUzgWI8+BFYYMgb7MMeXE5MFNY+4er/HxY85NP/z1fvP7jTL6w8Nk4HNhlS5k4rz3bwyg4jpAkoXdTynfGHzXn0qe6dMXG+579r9z7ihOLyMaDpeP8veM5J3Pmi1bzxvk/o6ai2R7VEcMjDLZqqCSbUzc6j2x726kUqu4EXVAqn4wKoEyACSsoE5CkjjTN9k7yVKc1brfI12dkWYb3WZ4PrxSqc/fZo8gEnIdMBNEKbQxaacQLLklxaYLVnshCFCjKoaY9Ocr6u29j3V23Mjk8iPYZgQKLoMSj6U5wD5wkJZ19y7THw4dOAbTKp9SejshAQDwaT6BB42k3Jti5ZRMb77mb+uBuXH0S12ySxQmgEG0o1WrMW7gY0OzZOQipI8CAk7yoyQvSMd9zWYbLHC51ZGnHnM85xDt8kiJJgk9SfCfSICp3ke+KDAkshCEqjNBRCRNGWBt0UqVUvj8nKN+pv1F5QXkUBYRRhGhDknkyLyhtUUrv7bSlZh6hwkrjyLHolpi37XzcbA9jP5bbGn/74U+y8S+fRP0FT5zt4RzTNM5dxr3P+MJsD6PgOEKco7S9zrc3nc3IHEyf6hIow/Nru3jTi77ButefiH70Wajo+J0kH3aUwixayPbnnsxTXvFb/mL5f7HkODHlOxgez67xHlR7bgnoQz7iXWft6Z1xpi+bejAzfUo6rUXzfP58Uq60xQQllAk7kYvccE0QRBzgydPkPc7tdWuO4yatdot2kpI5wUtn0q8UXmtEKZQ1mMCijcZ5T5LGxO0GWdrG4gjI0K7NxOBO1txxCxvuuYPG2Ajapyjv0OLyVqXioZNOpdW090t3YqkQ6bwftf+xOOjxuY/HQ/lM7mv/+/78UJkSWkqD0p3PrXPMXJq3sY2bDO3Yxqa197Bj0waaIyMkjQZZ3O7UToANQxYuWoINQ3bs2EkSJ4TGopzriLzOuL3HOUeWZWRpQpomZElKFqcd5+/84dNs73mkFWI13hi8Njhr8NbijUGMRXcaBmiT12UoAckEn2VIluHSGMnSvM2y0dggr+3wSpMbdyiUNqjj+OI1V7E/+C1f/9VjZ3sYB+R3Soa1L/80O694+NQWFBQcE4igh8dI7+ll3RxNn+oSqYDX9G3iE1d/nt0fcAy/5LGYxYtAz41uWXMWpbAnLGbr75/GM665ifed8MPjypTvYLQlozlUQTXnVhT4Ac+ODjRBPdAE1vtOvnqeR7N3XQRRkncK2kdsBEEZY0wuLpTDGMFaRRAqjBVQGV5SvG+TZk1a7UniuIV4QekAG5QwUYSJInQUQhhAYFBhgIlCdGRQWuG9w7m8Gj8wUAk1ZSs0x4ZYc8fNrLn9ZsYHdyNZGyUZ+AylBK33igjVcYCe6gTVERvTfUP2msQdvkl9l4fSiWr6+oeynQOu2/UekbxY2vtOOzXvp6JBPk0Y27OLLevXsnPzRiZHhmjWJ6mPj3eiUx5jLfPmLaBULjM4OMTY6GguLrzvNIjNc+xEciHqsjyy5VKH70Q7vHMdx2+fRz3IPTKMtejATp0LKgogCBEb5p2mOulP3ehX/iGDT1OkYwbo0xTvUsQluCzBO4cyhqhcJYzKUyK32153fw7dTeOY6Dg2RzjzMxNcu+Wpsz2Mg/KZp/4Tw9cWPhsFD4xTvvo6yr+5d7aHcdzj6w361sJP6meSytzKZ9+XQBmeXo75n8d8gWv/8L9Y+7fLSC8+F9PfN/fTqZRCWTvjcaRFki6VUOeezT1/vII3X/s1/mTRL1hgqse9yABoekcwapH23BIah+SjcSh0p93T4h7dcvApXw1RGqVDgqiMMYosa5NlLQJr8uiB8vmEnwzxCZlzZJmQJvk9CGMClAbp3GF2SiFa4aTbTBfAowkxyuPaGVma4X2KVpbIWigFiKSMD+/m7lt+jRZh1SMeRXVgAaI1iEYZje9EXIwJ0J0vSp7S1Zlgqr0uGtPF19TxOEwXhEMRLt11u4XTkBffd0XQQ6WbvibiEBGszoWXchlKweTYKJvXrWHL+rVMDu2hPTmJb7dox23CShmXORbPW8C8gfkM7t7Dru078ElCX7UCgPd5Yhqy93qq6PiZsPd3pVTelcoYrFHYwBKUQmy5hKmUUZUKqhwhUYQPQ1QY5ilTUZRf+JRC+XRKWJDG4BxKDGiddzNLEpwosizD2JBSuYoJAjKlpyI7BlXkSR1l/O2r2fWik7juv0/mbQObZns4+/HMSsr8P/kobx9+E+WvFT4bBfdN/2qFGx6Z7WEc90g7pmdrwk/2nMab5/2aCuFsD+k+MUqzwFT5g76tXH7+x/mHRzyRf/7W0zjtyyP4tRuRdG44nec3IDUqsOhyCTXQT7a4j6zSKb5WEA41UVt24ScnEddtvnN49m3mz2P0macTvXIXXzn9Szw6hEgdf21sD8aY1wTjConnyPnQ4cgIje55M2PS5fMFU21uFag8daUUlbHGIFkLl9Rz5akCkAyRNiItvGvj0qSTlw/alDE2yGs5lO6k1gT53e3A4LwCLyhRiNcoAixlMmmRJQnep+DzOoCS9qTG45oTrLn9t/ikzapzH0dt4WLEO9I0zVNsrMU5x1RXIshdolFTaUCwv6iYzbvRXUHRFRfdlq2HZ9uAyn1OVCe1TLk8mpNmbfZs2czmtWsZ3LaV1vgoSatJ5lK8NbTTjPkLBli8YDHNiTq7t++kOVkntIY0beMkFxnW5tGoPGik0HkMCYfkAoCO0NAaaw3GGoJyQFApYaolTLXjmVEu4ToCI+jWZQQRyuZCyTvBZynSKST3SUyWKkxg8kINqxDRZM6BKhFG5TwqQu4U3okTdQ4MHWMVoVAeR55s0xZ2Jv2zPYyDcl4U8h8f/ztesvsNqJtum+3hFBQ87BHnCEdarNszj/EzhAXHyM1uozQn2RrvWXArz3nRzbzlsS8i/cfHMu/HW/DDI/g4PvJFwFN3/TQqzylGGYOKIlStih+o0Tqxh+FzApqPavH4lZtZFE2ilWDw3D62jO0/OotlP2oRrN2OHxtHkuTBj1spdBShVixn0wsW8ezn/Yw3zP8Fi83xnyq1L7tdjWhMIJ1bNRpHLKIBTM2z9kmgmnLczu00LEGpRKUS4dM24hIUKRrBuZg4niD1dZxr552FvEITUAoqhFEZpQ3gSQKL0pBpwStBtIBRqCxDAoNKDNrkefXWxrgsJctyEREqT09kaMWOsV3buafdIskyznjM4xk4YRlKCd47rA3w3oPynbqMjvNzN+umU0+gtZ4RRTjo4TnEL9ahrt9NuclTvtQDFhsPVBh1U8S0UjiXYTUYnXcMmxweYfO6dQzt2E5rfIzm6Ahpu5m3swUqYYmTVqwkSx0b1q6n1agTBobQaOKkDSojtLmAMU5PpdrlXa7ySbzvvC9tDBqF1QYThahSiC5H6EqELkeocoQqRUgYImEAYV4UrozG6G6XqQxJEySN0VmKzxJy5WRzMZIqUifELUdgq5gw6pwDdKRPFw2deJqSGdmDBUeQWx8DP7/X85TS3KyVWWCq/M+//yOXXfZi/G33zPZw7he7fNl9r+Ac2c5dR3YQ2tAeeHhNFAqOEuLR4w1kdy+DrszJ1h9TRcKRCjg3gm+ccwPffu9S/vS3v8e876xg/i/3INt3IXH80KIF3ciEniYqjEaVIlSphNQqSLWEq0UkvQHt+YbJEzXNFRmLTxrhkqW/5JKeuzgtmKBfW/S0LP10sWP9KYZ/uOppfPfn57Lkp0LvncOwexDfaHXG3clJOdj4O+PT1Qpq6WKGn7CQ+rMnuO7Rn+PJpUlquvbg3vcxjBPPhuQEwglBsrlVG3hEhcb+6VN78Z3/WWMwNiAIDK12QhJPEtkArwxx3KLVGid1DTLXxLkMo0OiqIbRCo1GKwPaECjB+RCPR/u8kByjIDV4o/Ai+DhP19LWAh7xDmUUoQlop0LSiumrBLi0zfq776SF4RGPDxmYNx8leR2CtQEiGifMMF4UEbIsQ2vydqjTJvmzRVdcOOewHXO7w7ZtuiZ6Oq+NcB5B4VxCfWSYe++5i833rmd8aJj2+ATtiQkSl9IWhbEBC5cvJypX2bhmHcN7hqmWQoLQYjU4OkLR5n4cCJjpCVPdybvkOVVKKay12CAgCANsOSSoROhSlNdlhBZvbe7+rXSeZieQOo8Xj89i0nYL127ikxh8ilWC0QqjBOUdWdombifEbUPUbwnDUv5+RXKhue/HvJ/ILiiAb37rei67+lWon98620PZD/2oM8l6S4jVfPeG++70tDGt85qXvolgtIW7a81hH4s85VzqJ5b45Uc+c9i3XVAAIM0WpUHNlmwe50UjHIuStk+XeUFtmIvP/yTfeMyp/MWvruCEby+kd+0kdtcwfnwCSZJ88g73PXEHlA3yesZaFeb14UshvmxxJUvSb2ku1DSWKuLlCb3zGyzr28NptRFOK+/h7NJ2VthR5huhpgIiZTHqwBP+c0PPR5b8iDc++0b+8+LH8KU7nkTPzxcxb3VMONJCNdqoVpzXGmSdtvXO5dGTMERFITK/n6HHz2P0mS3+z2P+k2fVNjCgSwSqdCQO9THB6tYSSmMur5edQxx2oZFPrvOfu94Ke90zptPtTqVQKshdml2KZB4fNtHG4rMWWdoiTlqkWQuRjMh6TBiCa5OmLazKPTSUURhrEbEgUe6pEQZIluJahlRAsgytPC4BsrxtrVG5D4IW6K1WaaeOejulVZ9gw+q7ETRnP+KRLFi8OK/ZMAFohc8gcx7nBBGVT4N9gjYq94Ez3YjCzHeuVPe7Lvsejb1ud+yNTu5/XZC9y7oqrvPv3m3n63kPrVaLLMsol8uEYTjj+W5fMKbtS+n7cTvfd+zi8veuFeJSBnfuZO2dt7H6tpsZ2raNyaEhssYEPklJvSPWhpOXLGfhCUvYvHUbW7dspaQ1AQbdMUq01uSNA7xDSd7EWOgEGOhmMqlcCJg8ZcoGBhsabCnERlGnCUCAhAE+sEigEasRrcA7xKW5iCHDJy1cq4lrtiFOIMlAstwt3Gu09/gUVCoosZiwhgkref2OdEXGPkXfhcIoOABGab78lU/y3Le/g+q//Wq2hwOAPvdshh/dx4v+8Lu8Y94DK0ReGdT43r9+iSvXXoa78PCMI73kPOrL8lz5n37oY8e1qdaB+MzYMnq2ze3C5OMGEaTZorJLuLWxgisrg8dsmo1RmkWmyst7t3PxRR/lc49+Mv+5/tFw1yn0rfP0bIkJRpqoiQbSbEKa5TdAfSfyXi6hemq4eTXaiyvUl1kmT4JsZZu+3iYDlUkWluucUhninMp2Tg32sNi0qGpFgCJQmkCZ/MYvpQcUGTJKU1Mlzgw8fzj/Dl55/m/4xeOX8bXBx3LP0GLGhudhRizhmCaYhHBSsC3BRYq4XxEPQLKyzZse+12e33s7S0yZQFWP9KGe08SS8avBk6nsaSNzrGXzAxYa3XSabiel6Sk505+HvGwCyVOYAKQziZTuxFt85+6BAq/RuowOe1FhBYmbpMk4oTaQpXiXEadCmmpCawmVYLMGoi1eabSvYHU5X9+rfCIo4JVBGQcmIMOAFrzOULFCtQSvwIhGUqHVivGpUK1VEZVQb6cEOOLRQbbedQslUgL9aPoXLcaYKr7j7wHgM0fczus9lM6wVkPH+E0psNagtZpyRJ+6Ge/zyXlXOIjkbXp193h2PURmpPo7lIIsS/N2qtPStbwIgbU470iSpNMFCiYn6zTrDWo9PfT19qI70RatdZ5Cpcj9SFTePUppvbfeZMa8ea+XyN734RGf4dOUdqPJ2OgQ6+6+mztu/i2D27bQHh+lOT6Z519mgteWRYuWsuLE0xgfHWPDhk2k7ZioUu44iStUBlZplLY4cXgUTnUcUwS0eLR4bCfNKrC5wAgijY0MJrJ5+lQUIVGICy3OGsToPMKFR/kMqxTaxai0hYqbSD1GtRJ8nOIyh1cZHkEZg86ATLBtg5YatrwYFfQBFpOf0FNiI9eK0yrX53DrxILZYZGp8tG//jgvfdRbmX+Hp/bV2RMc6jHnoP52lF+vuuHo7jeK2PTHM1sTX/Oc7/NH89d1fnt4iQyAv/nWszj1G7+c7WE8bJAkobYz41fDJ1NfcNOcLwi/PwJlWBnUeO+i3/KOBTdx7+NCbqyfzf/sPov1Q/1kQ/1EQwYdg0lAd9L4W4uEZHHGvBPGedIJt3NJ/12cHe5moc5FhEZjVCeDpJOncrBIxaFilMagWW4Dnlcd5feq/0O6wtEWR1OEMW8ZdFW2pvPZkQwwz9Y5MRzmBDPBYpOw0EREh2ksxzrjPmHrpgWcvXMH2Rwy64OHENE4mMiYel51izBU54a7mpZeklfPdr0HlI4ISn2osEZrYgwV1/M8e20JrCUIKzgMigRcgmtN4jLBi0FUijIZ1oQwdfe7Y+an87EZgcB6KHl8O8FbjRONeIuIwxkFVjA6oLe3SqYMI6OjiE9oj+xh0+o7KJUCtIHehUvQkUJ3JpmiFQ5oxwkmVPjO7XfxnR5bRjHVAkumTzvzSa/QrSTOM/1VpyOXF/KUpE6Uw3uHSIaQkcRx3nVLm473iEOAcqlMu91mdGyUNEnBQ6PeZHKyTl9fH955yuW8lbDWqpPipQnDANMRRB5Is05Xr06tidrnbr0S8OLwLsUlDRr1CXbv2MmWjRtZd/fdbNywjmRykrTVJGm00SJkiWfxCYt41NmPodVssmHNvYyPTlC2mnaSEBiFF03gFd7rqboXDHnNTX7SoQGDJxBDZDRBaNChwQSgAoVYA2GAKkVQipDA4nS3MxXgco8U6x06TXHNCWg1UW0HLZcLDTKIwBiLMRbtFFnL4RtgqlWi6kKUrSDSEWuSNzro1h4dqXBG0eL2+OG8KGT1qz/Nx0dX8BV+d9bExtB5vfxm1fUP+vWvWfZj3nH9Cw/5dcY61pz/6Qe934KCh4xzlHbWWbN9AbtOM8zXx1adxsGIVEBkAga05zHzVvPGgTtoimPMw6Ar0/ARTYlo+Nz87/RwFyeYmD5tqKgQjcLMQnSgKzoiFdCVDicBTlIo7cKzE6AjdixGHdvC8HCzJu2lsinAj47N9lD248jUaExP6eksOPAUqZuzoymHvTRsL+OJwmcxkdVUaiXKYYhEChMHuFadOG6TZSkSNEHC/M596rBBCRuW0crkk3271zgQY7CUMAJOW7IMVNvjE4U4Q7UaoNopcZoQlcrUqlXGxifIXJvMeybGRtmwZg2tOGHFGTEnLD8ZG+VfBWMVYa1EYAVlDdZqgiDI3aI7ruJ50XL+9RDvOyIrrxvZ24g3n7TmtR4p3gnO5RNYrQ1pmhDHTZKkmXtHeE8QBGRZRrPZxFpLWqsxPj7Orl27iOMYrTTtVkK73SLLUkqlMPcRIY+0RFFEGIYY04msKI33uUN7ZyW07qSFdcz4cqMJoR23aTYnaE2OMT42wpaNm1i/Zi2b7t3A0OAgKstI2zFpO0U5R0+tyulnnk1gQ+5YexsjQ8P5sfC5E3fmsryQ3CjIBK1BacF0hE4mgkUTmLz4WxnAKExoO1GMAAKNCxQuNASRRUchNjSIyWMN2nlU6jCZgGT4OCadrONbTVziidsZmRNMOSAqRZSqZcIgIG050iQmTTTRvArVWi9Km7z97lSErxuFOozfo4JD4v97x+v43ic/eUyl3Lx5YDOVD3yd/37zI2dl/xf0//Ahvf6qapOrLvriYRpNQcHRQ5zDDE8QbOlndbKYVcEQ5tA9jOcs+cQ9j3TUgEUGzgjASQzE09YLmMsRxK74OzYT244OTjzfn3wk/esdEsf3/4KjzJHtOvUAUWgCW6VaXkCzPJ94MiFJhUhAh4oosKhAE0tGnLTIMgNZhnJ1JMnwQUwQVlBVMFEJyDtDOfF4PGgBPCoDrxUYiwosJgS8z++YxylJmqLiFuVKlXnz5zEZt8gShwaGdu1mdHScuBmjneKEE0/G2BARhQlDbBDhRU1FAAQP4nGZ5Hfiu52oOgpMFDjJgNzEUKFRSpMkCfV6o5NqlW8vsJY0TRka2kO9Pk6plBc7GWNI05R6vU4Yhnk0Y3SUwcFBAMIgotlo0mw2iaKIyclJJicn8d4zMDCAMWZKrKRpmte4aAU+yztyxT53xO6kB3mXdVKoFPV6neGhXYyPDjExNsrO7dvYs2snY6NjpJnDeGjFGXGcElnLyaetYtHiZdz861+zY+u2TvpcfkyMNXtTwbopY6pTdNIxgFQieJ0X/murUYHOBUSgCKsRYSXChwGqEkE5RAKDdP5mWKXxTtDiIHaoJMWngm+2yOp1XNwiTTztTCAMKVcrlHvLlGolrLHErTqtdorSVXr7+qnWqmitO62OC+YK5a/9mvQT7pgSGgDX9u3i2r4j3MGpoKBgJiJIvU7fBvjJ+Jk8o3wjkTm2rh0PhuMhalMwk7rEfHfbWSy8c2ROzkvmhNAAhZKQWnkhfv6JjEpCnI6i4pgosASliCAM0c7j2jFxM8G1W6hWHW/buCBCSgnaCyZN8cbgtcKJJ8XhlUeJQ2dp7vdgNSYIkUDh04S0nYBS2MDQbrfwStPb18tC79i2YydJHIOkxCPjbMyEwGsqQcjA4sV4pcmSBNEGpQK8B+eyTi0LOOc6nac6xddKobXC+VwIKZ13VtJolDY06nV27x5EKU0QRhhtCMOQNE3YuXMHk5Pj1Go1jOmmTXmSJCEIAlqtFmNjY9TrdWq1GihoNBokSTI1MZ6YmEBEqNVqZFlGq9XKPwGl6OmtYdGkWUJ9fJw4jgmsQYmQJm2yNEErRRiVaNQn2bNzOyNDexgfG2V4cJD6xARpnOTtYoW8la0oTj5pJaeeeQ4bt25j/YZ7kXabKAzyOy5d80MRvOQ1KaLyNsh5ipZgusfPaJTVqFCjowAValRgsJWQqKeMDwy6vwbVKhJYMvFkqYd0Smui2im0ElySkU3WSeoTZGmbxENqAko9FaKeKuWeMkFkEQ/t1NHOhP6eHvoH5hNFpSNixljw0HnhU17Af9/0jdkeRkFBwTGAb7Xp29Dmx9tOZdfCG+k9TtKnCh5ebMtgdPU8Fm6/+8j7qDwI5obQEAUSYG0v1Z4TiNuTjE+2mWzVkdBQCcM8xadSw7c9rpkhjRa0m4jSEKSQgXOaLEwgCiEM8FbhyHKhQV4cbZQGbRHtcHhSlxFnCWknpSlNEurNJkFPD739fSxIM3Zt34lPEiRxDG3bRqgUlVLIqf4sehYugMCQZQaRAPGQJOlU1X+SpGQujxggkqdVAUma4pVgrEG8oI3BaMP4+AS7d+0AFKVSmVKpRBSVaDQajI2M0Gw3SZOEIAxpNBqEQUClWiVLUyaShInxcVyWUSmXES+0GnWMMVTKEeIyWo062miyNMZnKc24RbvdRmuN0YLR0G61aNXrxHGLtnQjM444bqMVVKoVGpN1xkdHGNqzm8E9uxkbGaPZbJKkKWnm8tQwNL3zF3DaWWcz3or5zS23E7cTQvTUe/BeyFKPVWA0OC3gNFoLuhv/UeTdpYzupE1pbGiJqhFRpYSyBqwmLEdIKUQig9aazOdO35Jl4MB4kFaCr7fxrZh4fJJWcwznU3wYYfrKlKpVStUKQSlC8DQbTRr1GOcN5Z55lHv60caSeZ9HY4w5bE7rBQ8dPzI220MoKCg4RpA0I9w2QnzPUm47exmnBHuOq/SpgocHv2ytZOFvwdUbsz2UA3JYhMZhmWSJBgkxtoegNACtEeJGHdVoElhLyYaEYYSr1HDllHhyEu/q4DKsNwQ6A9/Ki72DIHeELhmsEZzqaBkREI14wTlHkiakaUrqcuM+EUUYBHiE8bFRjHcMzBugMT7J2OAIoVHEzZg927chClLJWHn2KmrzBxAT0mzWUV7TnubOGScJSZKQJilZluVpTwriOAENQRjgfS5AtLZMToxTnxjHOSEutciqVdJSwtjoGC5LwXviOMY5R6NeR9dqRGFIkiTEzSZJHBOEIeVSmTRJpjpfIcLQ0CA7dmyjUq4w0N9HpVxGa02jXieJY9K4hdWdVsRKocXRaNRpNxtkaUa7nZvp1Go1RkdH2b1zB6MjwwwPDjExUSeJk6nOVUpZTCQsP+lkqr393HrLreweGqacpnn7Wi9440nxhCULkne90l6jnHQtMjq1D0x5piidGwfpwBKVywSlEFF5PUugNZn3eOcIlMpzOp3gEwdxhmQemjGu3iKtt4gnJsnaLcSCjsqUy2WqvVXCcu4Cn7TaTE7UaTZjvC6jyzVMqYyQO61P90kpohoFBQUFxxjikbEJ5t29hB88/WwuqWx7WKRPFRw/pOL48dgZDNw2gvNzL20KDoPQmN596sGjEKdQYtC2ii33o+u9hFGTpDVCk3HKyhJEinIQ4Ks1wmqNtD5BErfxaUyznuK1RUURplxCJSm6EmEjgw4MYhRZJ60pSxzKC2FUIhBLaEOSIKHVapM5wVpNJAHjE5OUgojTVp7MulbM5Ng43qdMTrRpbIyZjJvsHNnNwJJF9A4swOoaQacuwgY2bwSnFYODQxhjmJycpFat4fF45wlKIUEY0mq2KZfKOO+YGJ/EuwyfOVqNlCyJCYKQdjtGkUcb6LTDdc7l6UVpxsTYOLt37waE0087ncAYhkZH8C5Fq4BGfYI9u3dRn5wgCgO2bd3CyPAQJ520gjRps2vXTnZud/T1VBDxU1GEVrPJ5MQEPnMoLbg0JQote3btYHhokNGxMerNmNHxCeI4wWWOSqWG0pbli5dw8imnsXb9Bu66ZzUqzYhESLOMUOu8na+2OAeJT7Fe5TUvjtwXIzBopbFaTTmOG2sJwhATBLngMLn4EA9JK0OVHK7Vwktem6EzjzTbpPUWWSvBNWPSepOk0SRttdHWE1ZKBNUy5Z4qYbmMNRYyT1xvMDk8QRpDWCqjq33oSg8A1tqp879gDpGmvGzThXz55B/N9kgKCgrmOiJIq0Xf+iY/vvc0di/+PgNF+lTBMUTdx/x2x4ms2LFttodyUOZG6hTTDOpUgI36KFUXkKZ1gqxJUp9kpLmTvt6EcmUepSjAVMqoSikvZG6lJM2YzIGNUkqOPIThPJIYxBokyAuJvfOQegyKKIjIMo0jQxvVEUwehWC1IlSK4d17KJ2wlNNOPZXNmzazc+dO0szRrk+Q7tFMZDE9Q3tYsGgJvT0LcE5I4gRjDb29vcybNx+8Y2R0mMw5jIZms4kxhlJWJrEWpRXeGSYnJmk2mojPW9s658jSlNTEpFlG5jxpkk65fQdBMFV3UZ+cZHDPHnp6egiCgLGxMXbt3EUct+mp1nBpSqvZxKVZ7nGSOSbGxtmut1KtVGlM1vEuJY3z0JtIXgguImQdX440aVMpl5mcnGRsbDTfb6NNknqMjWhPNFkwfz5JkqGNZenyE5moT7J2/XomGnV6w5Asg0DlBfmiNU48WSYoLWgFXgsahWiP6I6PiA7Q2qA7YkMweK8Rr1CiMVgsBiuKtNnO/VpQKFH4OCWrN8karVxkNFukzTZZ0qnXiQxBuUS5p0apVsFYA86TNts0RyZI6wniQkq1eVTnL0IFEUVrqbmLb7cZufZE+MFsj6SgoOBYQLIMu20Ye+cKbn3sck4LdhXpUwXHDINecHf24etrZnsoB2WOCA0BI4jP8/ptqYdKbSFJawyfNkjjCZqtUVQ7g35PUOrBlkNsfw2rIVUtlFfo2IMH187QKs07N8Uq980IFJnKjfS0z1NxMjxREGCqFUbabbw4nM9I0wTxgnV5W9rB3bvp6enllDNORaxh844d+GaTyVaT5rAn8UKzkTAw0MQGIWEQkqQJrWYdazTlcsTgYDuvW3AprWadUqlMahRxW6hUqyTtNiNDQ2SZwxiL90Ka7i0qT9MMbS2g8J1Ur1JUQmvNxMQEY6OjtFot5s2bRxzHjI+PU69P4rIUl+Uio1lvkKUpLs1o+xZxHNNutejv76fZqDMxPkYQ5p2o8oOXu3TnvnOeJG7T39fH6OgoIyMjjI5N0k48rTjDYVh0wjKWLlnC7t27WbZ0GZVKmTvuuJPRsRFEHJl3pOKxaCye3FN8ry25EjBeoZVCOUAJTnsyPFrnD5M4UBlhGOadoxLB4PEOsixBktzx2zuPOEGStBPNaJO2YuJWiyzNMFoTlkKiaoWwp0rYUyXqCI2k0aQ9Osbk7hGyiQSJImr986nOW5ALpNn7ohQUFBQUHEbEOfz4BAvuyvj28CO5tLKlSJ8qOGbYmvWy8DaHzMFuU13miNCgk4ifN3pVJqJUGaBaXUhzchiXgSQZcTrGeOKoDmTokiWuRuTWchqtA2ik4BRKG8QJLk6RFAgMZBqMmTKFwXsyl4HOqFarLFq8iC1btqIyIYpCfCsm8B7JhNh5djZ24oxm8YoTGc1SWkPDJJkjyzwTY5MoMdTtBMYYqtUaSiviVoPhwV2ceOKJlKMgLxL3KS6NyYzG+4w4SbDGkDnHyPAQxlgUupMa5XHek8QpSZIQVaoEYYkkS0mSlGq5QpqkTIyPMzkxiThPpVSmFJVo6HpuCegccRzjvafVanZ8NxqAotVq4Zyj2WxQLpdpNJtI01MulwisRbybqpHIspTAGIyxjI2NMTY+wej4JEmm0TagXK3S29vDyNg4YVTipJNPZv3atWzZsjkv/DYG7xwOIfUO4yAwCmyI0aAlj2QYFBaF8aAcuExIvUcrwRiPzwQChc/ApYKPOy6IxkOStzL2SZu0HaOy3DfDxQlJq53XymQZSilsNSKqVin11bA9VVQpRFmLyzIao6M0dg/TGhwjaQt2/jzKPX2Ycg2v9dTpWjA3kS07WPWF17PmVYUhXEFBwf0ggrRjqvdO8MuNKxlcqor0qYJjhq3pfGr3TuLncBr3HBEaApLmhnHYPE/fVuipLSAzVZJUoVOHuIRmkuIUqHk9uFCjTBmlLEGQQZhC26G9Qjy4LENU7iat0FgPSgng8Jkny1KamSNut6n19DJ//nyGR4ZptlpYpVEKMpfg0hRRinu3bGbZypUsP2Ulo+2Yxug45aiEd57IRhilaDQa1Ccn6e/vJ4xCRkdGmDdvgGqlTBK3EZdP3pN2CwckSUat2kOr1aLRqGOMJW7HU2Z9IhDHMVnmKTtPqSJYawmDvGBZvCeJ89SmcrlMT08PJyxejELYvm0LaaLyjleQd2LKMur1OgCTk5Md345JVqxYQVQqMTKa92GuVioohDRN8S6l3W6zYN48mu2YoaERmq027SShnRmqQRllQwaHRknabR77mMcwOTHJ2rVr833EMaG1XXcRMgVZx4TPi0dEdcwNFZpOxCm3Akcpg/eKJMmQjtGh0oZyOReBdNKu8gJyT5rEJK1JkkZ+rHXmcWnupu7EI8ZgyxGlcplyb5Wgp4qqlpDAEGcJcavN+OAw8Z5hWqN14tRQWmAplWt4YxGlMVLIjLmMbzRYclMGr5rtkRQUFBwLiHOYwTHCe+ax5gmLOCUYLdKnCuY8Tjw7kgH06OSU9fNcZI4IDXA+RVuLwpI6CLSlXOkjq80j1hGNdoKWFCGj4YdxKsXM66UclrE1i40UlD1pPSFrpmRxRhY7cJ5I561TRQTv3VT9g8vySf/k+ATjYxMsWryI/v4+kiQm8ylGaUJjCMTRdhlehE3btrBo2YmcfMopqM3bIBParTZZ5gjCkB5j2LVrF1maUi6XMdaye9duFi5YQBwnqE7qU73RzH0jgDhuMzExwcjIKCJCq9VGRNA6yD03nEPrAGk2USagUqlQLpepVCpTXhreexYsWMDAwECnQDmfDCdJHg0plUr09PTgnKPVauG9nxIajUaDMAzp6emh0WjSbOaF5tZ0fEWyjHa7ycDAPMYmxhkZGyNNPSIaYwKCsEQcp+zevYczzziDxYsX8/Of/pjBPYM45zBaI+JQOi/2VlajjAGlSZ0jdgJK8ErjXV6nAbnwyJSgvcdiMN6idUAUhIQmxKJRmcN5T+YcWZqQxE3SVoO0Hec1Op26FicCgSYoRZR7qpT7apR6e6AaQhSgraXdipkYGqUxOkE20SCuN0lcgFGWIIgQr1HFH59jgtJ3b+Gcj7+Bu978qdkeSkHB/fL4m6/m9PfeMacnC8c14vH1BgNrHD8cP4sLSj/GalNENQrmPBtbC5A52ta2y9wQGgqUMflFVgSjFEoAMZRrA9hSH5kPCOIE41J0I8U4UKnG9kJUqaArAe0Q2oGlHTlcI8OYiKoIZeeRNMMZD87lBdFZhhaPCERKkfiM3du3MbBgPgvmDbA7GWSy0STzoLVCpR7jPY3xCXZlW1mx8lRWnngiu3cPkqUpzbiNncyN8krlCvV6nXqzTbVWZXh0jN6+foKozNDQMIlLqU828EBPTx9p6hgeHmF0bJw0TYnTDGMMYRChOoZ2USlApSl4h1ZQjkIq5VLu6K1AiSe0BsSze+cOxsbH8D73vojjEK01YRh1ohq52IjjhHa7TZalaK2JogicJ07ajDtHFEWkSQoImQMvimazzcjYBFmakWYZUblEKTTs3jVIX0+NR5xzNhvv3cC2rVtzR2+l0UZ3BJHkqU0iCAqvIUXQSqG1piWCd0KEymWSE3RoqVWq9PfV6K1ERIEmNIqs3SROAGvyIvLM4bIESRIkiSHLP+ckTcnE4wODsQFBtQQ9ZeitQF8Zqpa80Mfjx9u4PQ0YbeObad6CuFqm3FPBZx7jdN5+Fylyp+Y4kmUs//AvOGXJa7n3+Z+d7eEUFByUWFLGJirMa8ztycJxTSd9qmdjgx9uOYM3LfwRNS15i/SCgjlKhuOe0cX0tHbN9lDuk7khNAC6HYZEMGiUgDjBRBWqA4toDM0ja8WodkLoBedaSGbRThHaAFUKSMIQH0RkgeCtx5oEG2fYVpskjTtGeg6f5YUzSlRe9Kwh0irPzx8fpVKr0dvbQ5wK7YkGcZyigbTVIkDRHBllO5tYcuJJnLBoAWma4ESxe3CIerNFFEWUK7XclTvNmJis02i2CcKI0YkJ0jTNje3SjFK5RqPZZnyiTpLkIqPZamFtiPMKpTU2CAkAYw2lUkQYWKw1BB1hEQQWpfLISLNRp60142Njee0CinYnFcsYgwh5p6409/VIkmTKsK+/r59KpUy9PkEcx6SlNE+d8h5rLc45RkcnGJ+YxLk8ilCp9tCYGMOlMeecdQZp0mbN6nuI222M1mhAvGCMQolHyHJzQGsxoUWTd9hqpgneGJRWaAy9PTUG+vuo9vbk78+nJK0JWhN1yNpEBsqBoRwGuXs5+Wep0gxJUjLnSLLcK0UCk0fLSiGqUoJqhC8HuMhgrEIyR9pskg63cMMtkrGYZrNNy2csWDBA1NdD5gXVOS8LkXFsYObPQw0ksz2MgoL75O07zueUl9w628N42CPOYQfHSVYvZ/UjF7LcjBGoQmoUzF1ScWzftIBVyZbZHsp9MneEhkz9L/efUArRGi9CT/8A8fyFDI4MkUhef5HGDpoJRG1MuYE1ClXWRCpEhSEu89DOyNoZbZeQuIQ4y2sZlPcYNLoTSclcRuYyrDHUJyZptlrMW3AC8+cHtNopKYpWq40NAlzmsVYxNjpG6oUTV5zMokUnsHP3bqwNGBoaJooiarUaUalEu91mfHyC8YkJBgYGqDcaTExMoLUhSRKq1Rouy1vUNlttvIBzgjZCkqYYaylX8nqMcrlCb28v1Wp1hiN1uVwmDEOyLKPRuStWr9fJsizvIAVTYqKbZtV9iOR1GCMjI1QrVU44YRHNZpNWq0W1WiXpGA4ODAzgvbBp02YajSbOOaJSCQWMjAyzcOFCli1bxt133cWuXbugY2injYFO2ppVQjUsYVXeWcp5wWuV+5aEFfqrNRb099FXLhEFYf4+Jut5PUvSQtImIY6SBTQQKMgyMmsxxuQiIE7I2nGeSuUFpwQT5AZ/YSmiVClTKpWxUZiPL/VkzZjWWJvGcIvJiTrjE5M00gbhQJX5K5ZDtYyPLGiF756fR/XLUfBg2PHSM9nw9CJ1qmDuMuQafPv2R3AGv5ntoRSIRybqDKyG74+fw++UfkQktkifKpizNMXRu8Yifu4WgsMcExq5A7SAJp80asVEs0ktNFQG+snCgLYXIqVROsjdxFsJjE5i0wxVyTClGpXQ4LSQao9TKV7FOJXhyYuPFWBULmvEOaTjJt3qtLVNs5ShPUPUBhYyf+FCkt2D2CDDeIiswQCW3HBudGycJctPRBnDho2bUUqRZRmjo6OUy+Wp3xuNBosXL6bVajE6OorWeiq6kLkm9XqdNE0IwohqtYrSmjRNCYKQ/v5+giCgVCoRhvkEudVqkSRJbtqnFNVqFa117hAex0xOTpKmKUopgiDIIxRpiuu0QHPOdepAdO4O3mgyODjIvHn9eO9pNBp5Hcv/z96fB8mW5fd92Ods995cquqtvU4vsy8EsYVEiiRIAVDIJBQSaVK2Q6LDlExQf5i2HLJpegnJDoeDVli2I6SggmRIpGiJUthyyEQwFKZoBAWSIEEAwjYDQAAGmBk0BtPTPd39ltoy896z+o/fubfyve6e6ca8mXr1+n4nal51VVbmyZtZ753v+X2X6um4fv06AK+//jq73U6IT7egH3qMNbzwwgscHx/zyiuv0Pc9jbV7pXa5/inPt1t0WG1wWnO0XnPr6IAbh4cctB1WFXanZ3z19dfZnp9TYsJSMCQalXEOlDIoCiVKO3tOoFWSqYZPRJ+IKYkUz0rxoGtb2q6lbURGFgZphXclkzcD2+Mdm9Oe7bBjkwOhtTz34Zc5fP55zo1BLxckA1rPJOMqwH74JfwfOr3sZcyY8XXxk/1tPvHDM8l4LFDL+w5/c8ePffkT/Cs3/zFHTZpN4TMeW7yVNNd/I4gy5zHG40M0qBu4cvEfRSn6GDA2Yw8OaW/c5OxsQ8nQtkuZRoRAOdniBk8zFMxKozoNRUvpW6vIRQMiM8qpoHIhqppUVE/1U86UKOfVWiv63UBf7nF08yluP6MZXv8aSQW2PhJCIhuFc5bNdsudO3d46cMf5s69Y4ZhwBjDdrvl/v37U4HeOGkwxrDZbCilSBdEzvgg8bPL5ZLlak1RmmHw5FxYr9ccHByglKJtxWMxDAObzUamPqVMn4+36/ues7MzSim0bUuqvRvGmCqfKg98aK1RSnF+fs7JyQnr9br2cJxTSsF7T9M0bOo0BmCxWKC15uTklBdfeJEbN27w8z//89y/f18mKdZO95+jkBtr5fFB1vri88/z1I3rpH5gd3bK3Tff5Pz+fbIX34nJBVeQyUuOKJ1wyZBRJCuJU1kptI5oUwv9QiYFyAUwGm0tpmmxrsE6h9KGFDJD2BJjwPiM7iOb856Tsw2nfU9vC+unbvHMJz9JWiwZosEtlmQKWhXmIo3HH5vPPMWv/v6/etnLmDHjXXGee/7Nv/pneY6fvOylzKgoMeLeOMV/4Wk+95kX+Zh7RYJI5qnGjMcMqWS+EG6zfOVEwm4eYzxWRGOcasg0A7JWKGfZ+shBt+DmSx9mCIWw6WnbJcRA2JzQn53jTwLxtKc58JgDT7IOrMa0GrRDpYgKBWKilEQp1A4OaiO4RiuLHwZCTiTr6Ldbzvxr3Lh9mxdffpnf+sqr7OI5ymg25xuGeEqzWHLv+IyUCi+//DLee+7cuQPI6f3x8TGLxQLnHCcnJxwcHOC9r6f9ipwzfT/Qti2r9RpjGwbvSSnTdQtu3rjBer1GKUXnGqy1k7RpJBrn5+cYYyYfxW63Y7vdAhJpO04yVqsVzjmcc7RtO3k0lFJYawleJFRPPXVbejU2G0IQo/hqteLNN9+UFCljaJpmIlW3n7rNW2+9xVe+8hVKviAwQhBEomWNqdOZAz7+kZe5fesWKmXu3nmLN197jX5zRvYBXQpL51AacpbXqeQCMVN0Qdx5ElhcciKWJGV/uqB1oQQp69NGY53Ftg1N12GbFrQheCFdp/2W3XaHDYVOOXyKbHOgrBxPPfc8t19+EXd0nbubgcX127TdEqNNZTBcVNnPeCyx+oWv8OH/35/hlT/y1y57KTNmvCO2JfHc/3UmGY8TSi6osw0HX4afPPkYP7j8Iks7m8JnPH7IFP7eyafhzbuXvZRviMeGaIznBeMAqBSZaLhuwb1TT+Ma1ref5VaA3emGFks4O8VvzujPd6TNKTt1jF2ds7odUOsVetWhV45iFcVqTGMhZ7LW6FSqHyICioKmKIVxsoE+OTtnSyEby9YHbj/zHC++9DLpt1+lv3/CYrXCxML5dksums9//tf5OPChD30I7z3379+fphcpJZbLJXfv3uXw8BAAY6xMKIymlEzTNHRdR6ob2cViweHhIddv3GC5XGKMQVfp0W63m4iG3JdMKU5OTlBKsd1u8d5TSpmIxW63I8bIYrFgvV4Dcl/DMFSi4YgxcnJywvPPP0fbtkI+QpjW9tprr00ko+s6druep556iq7t+NVf/VWGYaCx7oJg1BdSKcVqvealDz3P7/7UJ1El8/prr/H6V7/KsD1HxYQpmcYoTG3ejkU6w3vvsSHjdMZpA8pA0ej6jokxk2IilwRKoWJBKWgWjsZYbNPhugXtYoEyjt1u4M7xMW/cvcvJ6SkL1/H07Vusrh1y/dYRR88/xcuf+STNwTW+eveEs/OB2x+6TqMbTISiiujuZjzWiK9/jaPPfQT+yGWvZMaMGVcGJVO2Ow6+kvjpr77Eb94+4rbZzKbwGY8dtsXzo1/6NB85/43LXso3xDdFNErdRD5qlFLEP6EU7WLJWT/QtppkDOvbz3J4A/zJOWfeM4RMvxtwIeP7ntPjDT4Urr/wAroT2RBaYZzDLArFWmLv8dteJhcpkTKkXBhqGlRS4JYrXCn4XDjf9fSvvsrTzz3H8y++QFRGWrGTZ7lcU9D0Q88XvvAFPvOZz/DMM89wdnZG3/fT1KFtW+7cucMLL7wwTTW6rqNtOxaLSEq1eA8hIU3b0nUdWmustXKdcxZPx94HiLQIIITAdrul7/tJijVOFlQtExzJxn7/xvjRtR0pyvSjbdvp5w8ODsg5s91up69ba0HBzVu32Gw3E7EaU6rGUZ41lps3bvCpT32Kj7z8Em+9/hqv/vaXuffmW6hSaK1G6QxZkQronIlaY5TGGo1pNEoFcg4krSjaULQmFk1JiZgKKcnrV7KkiTmnscqhnMV1LbZpKErjfeT45Iyvvf6WRAknyKvCTlue+9BzvPSJl7j27G30asnZLjIMhcauuba6SaNaSSlT6tKy7stjPh593PDsX/scH/6Of41X/vlZQjXj8cP/+A/9SeDLl72MGfsoheI9i69t8V885Kc+/nE+6X6OVqWZbMx4bJBK5k5K2M+tyT5c9nK+IX5HRGPcPH8roNSDEnhrGtbrIzb9OXqxRLsFTdugisWfn2HbjpLFU5E2G4akMN05q+0Od7Aie43uNF23QKtMIlBiomhFohAopFJIBZJW0HU0zuGsJeeECgl/vuHeyTHZWG7cfoannnmGIUEsG0LKKG3ZVbP1b/3Wb/H8889z7dq12ugtZGA0YeecpYH8rqRTNU0zfYAihkDTNiwWC9quwznxOqSUZN2VFHjvp+K9EALWWnLO0+Ri9GoA0iBeCccwDJycnGCtnbwZWst0IISAVrDZbFgsFtia5rRcLh9IuFqv18QYWa/WNM7x1ptvAdC2LX3eQZL3SNd1PPXUU3z6U5/i2tE1Pv/5z/PKF36D5ANGKzrrKIBSGmUU1ObwrKS7pCglpYYy3iJp8ECfi7R8V5IRo/RvUKCkiHYObR2mcShriCWRQ+B82/PmG/e4f+eM7S5ibEtaO8pixeLmdda3bqBby+n5Gec72G4868NbHKyuoYree9/PE42rgLzdYk4sr8ZznjaLeaMw47HAm2mDL4X06uuXvZQZ74ASI+b1e9z8pTV/81Pfze/5XV/ioDtlTTt7NWY8FhhK5EfOvovn/8EGcrrs5XxDPNa/NQrZJN+4cYvtLtKHRCiGYhboZoluWqzrMM5RCigMXdNCVpzcO2XYeCwNNjtUVnJaQSFTKFqBMWRjSEaj2ga7XmNWS7JzRK0p2mCahoOjIw6vXaP3nle+/GW2u51IhhYLci5stxuMlU3M8fEx9+/f5+bNm5N5W0gEUxrU7du3uXbtGgcHa7q2xTknPo7GoZSiaSV5arlc4pwjpYT3nu1uOyVNjY3eZ2dn0/2++eabnJycYIzh8PAQrTVnZ2fTdGUkKNvtlmEYpP3bWpqmmciIUoqTkxPatp3M46vVaiIv6/VaJF4pcf36dWJK3Ll7Z/J9AGilWCwWfPSjH+V7vud7sNbx8z//8/ziL/4Sm/MtpYDWhlyKSMW0RjuHMlbIX8ryAQSrSa0jtY7oDIOGbQwMKRFywaeCjxkfCyFBUdI6rhuDdhYMxJLpB8/941Pu3jlhczqQBwOpIeeWISt2IbIdes7OTzi5f8LJ3RPCkLl54xkW3QEYSxHV1owrhI/++Z/ih1/8Pv6Z//a/x1Ae/5OfGU8+/uSf+tf54Re/jxLmjpfHESUl8vEJ1379nN3nbvBf3v9e3kiZyOO/oZvxwcAbyfNXfu77sV987bKX8p7w2Gybarcc0zyjGsONsayXByhl8D4TA4SkiFkRUiEpUNaCtSjnME0LaMKQyR5McuhgKZ4prjXlQkaB0ShrUI2DtoG2oTQOr2EgkzUkCsoalgcHHBwd0bQNb7z5FiEmrl2/gXMN1jQoFEqJufvuXTHnHB0dTSbt0dew3W45ODjg+vXrrNcHWGen24wb+7btaCsBKUUIyna75fzsjM1mM0XVjlONvu/ZbDacn59zenrK6ekpMUq7+EhIQgjThGWUUZ2enk4xtzmLgRolHRw5S8Gfc46maaYejsViAYBzjsOjQ7abDdut+EXGaN1useCll17ik5/8JEM/8Nlf+AV+65VXat+3IsZECLFOeRRoTcqZmBOpyq6SgqQhWU1sDKmxRKvxCnY5M5RMLBCzImZpLUcpmq7BtgZlCkUlIolYMufbLcfHZ2w2AyVZdGkhNZRo8LvI5vic07v3OH7zLuf3jjm7f8qqW3Pr9nPopiMbjUfSxspsBL9yWPzhV/j+X/qXSI95DOCMJxv/3v2XscfDZS9jxtdDKZRhwHz1Drd/MfF3Pv8ZfrZ/kW0O898fMy4doSR+fPcRbv9YQz4+uezlvCc8Nmbwd4NWdVN7eI3QB1COlDREGEIg5EwxBowhlEIePFoF1octJSr8ecB1FqWlHyN4TwhePk+JojUoTSiFmDPZaGidmJhjwRlFTIWh71Ha0XVLzrc7jk9OOLp2g6eeeopXv/o6frdBKU0phb7vefPNN7l+/bq0g1c/xpjk5JxjuVzSNA1Gm8kjoZSiaRpc7Z/IKRGi5/z8nL7v6TdbbDV+hyCt3ftSqa7rMMZMEbTXrl0DmKYZo9zNOUff94QQWC6XxBjJOaGVIsYASKTtfhzumDC1WCw4OzuTBCvrODk9nb6/2+1wzvHyyy/zu77jOzg5OeHzv/Z53njzTXQlIhbAaFzR4ncoBe8D5IQmS6yt0WhjUNaQjCGrQslQoianJNKqXHClUEomZaAo6eZoNa4BdCHkSA7SGH5ytuHk7AzvM0Yt0LmFYEl9wZ/1bO+fs7njyCpw3mdUc5Nnn32R9bWbZG0JWtHnTKcLNlNJ04yrhMMf+hKf/s//VX7jD/2Ny17KjA8o/rN/94e4+dmfuuxlzPgGKCmRT045+Px91j93i//3i/8k3/vSV1jrOYFqxuXiPA/8pS9+P7d/4R4pXo0p/WNDNMoDnxUUta+gKLSy3Lx+m3t3j3HNAq0dCYgxkXNBW4duGrLakAGtLTFmzo7PAcu6LMEECglShlKTmpQhFEkuCkCxGpzIl0wBZQpGG2wWD0dMhTAE+sGz7QMxwfUbN7l+8zr37t/BVvnQdrvl7t27HBwccPv2bY6Pj7HWsl6v2W63EymwVW41GrtVlVkpDTGKqbofPKenpwzDgO97nJGXbCQa292OYZD27ps3bnDr1i1OTk85O9+gtEErTT94zjfyuEopjNZQCrkUStkChRgSpWRi8DRtO/k+xvWNMbht23J6espyuSTEwPn5GVordtsdxhief/Y5vuM7voPz83N+5Vd+hePjY5qmIaWEsxpdCq2zlUwVYkooMhowtTxQGUkASyASN6UkiljL+0EVzZAKOct7JJeCQZrklVZgClkh7eC+kIbA7nyH7wOqaKx2UCxgICnC1rM73bI56cBkMo7bTz/FMx96GdsuiEYRFGRjiBTsTDKuLD76p78IX7zsVcz4IOK/+4U/zK3Pnc01PFcB1RSu3rjD7V9c88uffJFffvZZXrJvzV6vGZeGVDK/Hlq2//gWvPZrEs96BfC+icaYMvXo06Y0kjWlgFxlVAqKAVpWq5sotcQoR4mJlCIqeZwp5MYSrMF1S5xegF4Sth7yFqM0qgSWS4M1hegTOSa0sbSLDqM1OWV8SCQFWEdGkVPBWEUpipwjbbfG5sIQzlHaMOx64vE9eu956eWXOTs74fj4mK4T43SMkfPzc1588UWcc1hrOTg44Pj4WArtnKvxsj3DsCOEWJOmWppGmrz7YWDXD9y/d4wPHklWVaA0MUZCJSJn5xuRg90/IRRF23Yo23L/bMuiXWDdis3uGO8HSsmoUsvztMYPoZboQSkiXcqpsN3s6LoOiiL4QN/39XYSH3twIKQpeGlTB/jQh57nO37XdzAMnl/79V9ns+sxriHFSFEa7Rp0TmAMSUHJGZUTRimUMSSK/N5kJUlhtS8jl72mb+ewTuN9oKSC0xZtHDoVklH0KmOdTGJSVtDD0HuGkwHrpS/FakBnsopknYlJ0wfNLixx7ZLm4Bov/+7fy/rWsyhn0UrhSsFo0GW2gl9l5H7gd/97f5Zf/jf+8mUvZcYHDL/6Ux/hwz83TzOuCkpK5PMN7Zfe5OZnX+DH/onP8P2L/5olzWUvbcYHFJHEf37/9/HUZwP57Oyyl/Oe8b6IxjuRi0eXPiX6/bcVoRWLwmCNY71aiL4/bUjek/stJQZKSeQCyjiMcqSYaYyjNQaVPGcnW87uD+iSsW1LaSzZFgoGsz5gcbCgxGouLkq8DCFidAOlMHgx7WljadsF3SJirANtODk54c6dt/jYxz7Gl7/8ZTm5d44QZKSVc57M1NZanJOeibFcDxWIKcikwej69AsxBc5OTznfbNlsN+x2O4wyNepWE2NitxsYQmQ3eLQxnO96dv4O6/UhxhrCENhuI23T4NoVg0/0/YBSGhsyxmiMBuckgarUgrwQIsPgJalLm6nwb7lcsNmcY4ymbR0nJwPGKHbR89RTt/n0pz+Naxy//uu/wa4fUMZI87rS2MahtCamQA5SsmeNprHS6F2K+GaUVhRtSUpRciF7j2us9JYAhoJCs77W0hZF2fX4sw1pN5BJeA1BG8igQ4YAwzaQNxmHo3GWYhRZFwqRqBQxGrZeEe0RbnmLg+de4ui5j6E6iS7WCtpSGL2AF36iby++FVHSHzjkxAs/8jr8G5e9kBkfJPzAr/wxPv4fvEa87IXMeO8ohRIi+d59bvzKTX7iKx/h7lOKmzrP6VMzLgUn2fNf/sp38qkv3pmSTK8CHhPp1LttoFSV+0gEqtYilylASpkQCzEXYhGpTMqZkCOLpuPw8Bpu2RFV4N7ZKbvtGa11tEqLl2GxInct2VpygUW3YOUaQlGcn2+43x9zenbKarGaUpZiyuRcZGKgA0prbt26Td/3OOf4xCc+wcnJCScnYtAJIUwdGlprUkporR/owQhVlmSNIyeJp/UhsBt6Tk5P2Gx2ks6UEkMYaFyD1qMc6pxh8CjAew/aYG3h7OwMZTQqK4KPaK24du0I17TstltCGCjGEGPBGlM3sOLToFzE547rTTnT1l6Pe/fucv369Slyt2kaFsvEhz/8Mjdu3ODzn/88p6cnNI0lBI+vhMsYKxKonOm6Fq00IQyEGDFOY5QixUgIiaB9jRjWGKNYth3Xrh3RNg0GRaM1frsl7QZCTAwhAiLJwmR8yATvwWdKyMQ+klG0XYdtWzywi0nkWNaAscSiMc0Stzrg+Zc/jOtWD5De/Xfo1RhWzpgx43HBa/eOePmVX7rsZcx4v8iJvOuxX3od9TMf4xe+4wU+4r5Wp+0zZnz7MJTAj5x9ghs/3lJee+PKyKbgsSEa7479icnoMShARk6+M4ZYy95iTtgSWS47rh2tiSWz22wJuy0lJmLRnN+9zzLD9cWarl0QtGEXRSbVNh1L13KwPOD6wXW251t22x1nZ2eykVdaTv+txTUNg/esVktSSnzta1/jwx/+MNeuXSOEMKU+KaUm6RQwEY4xocoHT9/3dK26KN7re07PTtlutvgQKaWgtUYrPSVnxSglfzIVUfJnAWcbBj+AUlg1Gscz9+/fZ32wwjlL3+/QqqCKeGFSMtJbkTOlJELIeB+mqQwonKueihhpmqamX/U0jeX27Re5cfMGb731JsfHxzjnOD8XEzzI2nPJhCgJV5vNlsY5FosWXaTbwyrNsmtZLY9Yr5Ysl0sWjWPRNZSS2W433HvrDr7vKSlhCuKV8IEcPaYUnNLEWEixR0XIMaMilASu7XDLJbprKT4S4havCspamsUSt+gwTYOxDTdu3EIb8wChEFFfnbrNuNJQuXA/bblulpe9lBkfAISSSHHW9V9Z5ES+d8yzP7nj//VDv4d/7qN/k9a4y17VjA8QUsl8MUT+nZ/+IT79E2+RdrvLXtL7wpUgGvsN5CPxyNqQtMNnxZAyEUhISlOKnuB7tv2O4/tvMYQtIWfO/I6oNQOaXVEchIQ7WNOnQtr1mM0O2yxo2hZnHYcHB3StpEX1fc/5ZsvZ+YZcYLlc0naLKfZ1JBtHR0esVqupTG+EMWaSVZ2dnU0+juAlptbZBm002lqS96Qk8bImZ7bb3VSwJ9dDuirGoj2ZtiRU4SLBSmtSTuSUUQp8GDg7zXSNY7VaEv0gbpicyTmilJGyxMLU0zEMQy3LK1hr8d5Psbvey/NeLpc8/fRTKAVvvvUGY2LVdrellIJzFqUkWSvFQGMt1mhKLRc8WC740PPPc3hwSOssRitp/A6Bk9Mz7r65pd9txdfSSEywsQ6VsySDGQPOkmJkFxOpeFTy6ASqKFTWaG1oXEOxjqA0uxzZ5kQ0CgM01tIuVyjrWK7XNO0Cqj9kIha1SfLqnCHMeDfE3/wt/sSf+Z/z9/8ff+2ylzLjA4Af/u0f4KP/w89e9jJmfBMoMdB84TV+7Rc+zFde1qz13BQ+49uH8zLwF9/8QZ79UUv58qtXapoBV4BojBgJhlIKYy1Nu8Qu1hTXErOWZu8MfRg4Ob2PVpqYI8H3aF1YLDq0Nai2w3QtPiZOTs84dC1usSCnTL8bKLtI0/TiwZDaarQ2In8yjrZbcL7dkXLGOQeo6l9YstsJITg6OpqK9kZ/wxhJOzZ4n52dVYIQH7jN2Nbdti0lQz7foLVs+FNOaKUxRhOTqqQjkyqhKaXUqFshIBmRN2mjqtxqh9WwWHRSUgik6OXaqiIekVSJSxQDuFIKbWQqMwyR9XpN27YoJaV7XbdgsVhwcnLCbrcj5chme06pPRxay1usZNBGy2tX432PDtYcrFcsmoYUItvths35GbvNRno8AFsyOUaUhlIMKSYiGVsL/xSgnUUbib4NqcBQMGiM1ig0SluyNuxSxueBU+/ZlQLGgmtQXUd3cEizXPHM8x/C1te17BGNUinGZfkzZjxaNCee/+jkGX746GuXvZQZTzDupy0/8Rsf4+P8wmUvZcY3g1LIxyc889Pwj/7Ix/nI4RdmojHj2wJJmrL83Z/+Tj79k68Sh6vXw/OeicajM32/P+xPMlQ9xXeuZXlwjfW12xzfeYNiHUlpYs6EvidsA8Enlqsl1lkwBtMuKdYw5IKzDYuuJRoxVTttaLWDnEmpUFKhKJkKhBCJsRe5k7a4puX6jU6kRTHV9u1zUkq0bctms+Ho6Ii2badujHE6MMbaAmy323qfIoka5VVKCYFYdB0K8WIsFgsp6Os9yl4UA4YgEbhUgiIJTQVnpKOilIyxmlLktsYoUooEP7BcLjBKEbwm54g2GmsMCZF1xShTDa01qDJ5SkYT++jZODq6RkqR4+P7tVhwQ4oBravMrcjkRmvD4cEBt27c4GC9Zr1aQcmcn51w984dtmfn5BQgZxQFrVSNsi1oFEppcirEEkErtJKSQUWhMUaM50qRooasAVOnNJqsLEMBPwzscmKTAl4j8q31iu7wGuubt7h++2luPf8hlGlqwPJDUil1tU4RZnwd/PQv8Zf+4h/nh//3f+WyVzLjCcaPbp/n4//KTDKeBGQfOPrlu/yHv/F9/JHv+TVaNU81ZnzrMZTIf3H/9/LsP4L05ltXbpoBj1Ez+NeD2pMJGWNomoZ2ucYtD9DtgmwcEU0oCp8Sm2Hg7vEx909P5YRbW7ANbrnGdkuKkijcplsKOQkRlKaxDa2TScZoOjdGT16LnBPeDwTvsdayWCymkryxdXt/Iy7N3qXG2A7T5+Okw3svZKEaxtumRaHkvpdL2radWsVHCRkw/bwU7eXah1GmCcckN0OhtUIiaaWfJOXI4Ht2VY7UtI7FcoGr/SFay/PNWXwg0tcROTs7myYvY5nf4eEB1mq22w1QyDnS9zuZPlAY/IBScHh4wPPPP8cnPvUpnv/Qh2iahjt37vDKb73CV179Cvfv32PX74R4GX0hE1OIZEnukJQKMWVSLqScKSjp3NCaCPicCVmRtCMqi8fIn8qwDYXj7Y7jbS/N4iiitbjVmsOnnub28x/ihY9+jOXBEWhbScYon5I/rt6v94yvh1uf2/InX/mBy17GjCcU57nn//Sf/suXvYwZjwo5wetvUv7hdX5s+wmGcjXK0mZcbbyRPD/yK9/NtZ/7GqUmoF41XBnpFOx1eGiNbTu69RGL9TVst6IYiURNWlPIlJQpO09fCl1uWDawODzAacOQJco2G0VRhqxMTV+SlnBq/OpovM65iF9CiUE45cz27AxjLV235OjoiFw9B23bTmlNXdfR9z3eizxpt9tNhGTcsCutiVHibV3jxOTcOEpBpFy1ddt7P/kvSimkSjJG7E+cSil7h+8XkyCl5PNc77Oxhq6ThvIQPEM/QKH+d5gmMjlnNpsNWsNisajXJGOtoe93eO9pmgatIeeEMY6cA7dv3eTmzdtcv36dpmkY+oHffvUrnJ2e0G+2lJInU7qpUi6RJknS2L4nIqvasFIK5EwBnNYohFyqKtXCNpRiiClLHUsuUBIpZs59oFeZYhq0MdjlktWNGzzz0ku88NGPcf2pp9GmFvnB6ABnn2JMX5px5aF+6hf5mZ/6p+DDf/+ylzLjCcRxjrzwF37yspcx4xEib3Y881Mb/uoPfh//7O/+DRZqjrqd8a1DKImf7F/i+o935NevVtLUPq4U0biAwrqG9eE1Dm/cYnl4xOZeR9KGgCKlglUKox1KWc6HzO5sy+GiZ3V4hMJwvtsy7HZo11Bcg2laXGOkWVp5YoqkkMkFnHM0TUNMhX4YKDXyNfQ9IITimWee4d69eyil2O12OOe4du3a1KHR9z2b6j0opUzSJ6311K+xWCxAaXrvpQwvRkL1SuScJb0pS8RuzmW6FnLwP0p9BA9uiMeJBiglbefOynPVWtG2DU3jMNrgB1/zmS9M+EqNvo3RJN7T95IsVcgsFgs2mw2lFFarFTnD008/w0c/+lGMsZwcn/Laa69x5623hOA4h6vkJkUvjeDGkFKkpIQ1Bl0nSNLfJ2WOpRb6lRgp1mKUIoPIq5TCGkuyipQjKUdyylNcbyywS4nktLS9tx2rgyOObt3mmRde5NZzz2HalpSlmO/i6hVAi8lEzW7wGTNmzPigosSA/eJr9P/g4/z4xz7C/2D9Kks1F/jN+NbgJPf85Vf+aZ76x3dIV9CbMeJqEg0FSlmabsXBtescXrvB6WrNuWtI2kJjyTjO+oAKieu3buJWh+xixhVQTYOKiVwGMhByIqQMKVOymK5jSlMcq5m6JsaJAlhj6GPi9PQU7z3r9Zpnn30W7z337t2bomHFMC5TBu/9nhxJPtquZbVasVwuaJqGXEDHQMqJtBdhq7VGG5EQee8nc/K48xU/hNCOcaIhG/Ms/RiA1lCKroV7DV3t9ygUnDMYvaJruxpLCynFaugeiwQ1p6ene8+rsFguWK9XuEakV9euHfH8889zcHDEa6+9zv17xzVxKxPrhOis9o4crlcs2yNyivi+J4RMKoWcxbsykoyxzyIDucj11ykTqjfFaYNRWh6jKBKahCaTxVAPhJLJaLRtsK7FNR2L9ZqnnnuOZ158keXBNTGHY0WyNREKVSmOfD6fXc2YMWPGBxTVFP7sT2749//p7+cHv+uv87yy81RjxiNHKIn/ZrjJ9v/7DIdf/tyVnWbAVSUaFcY1rA+vc/Opp9kef43+3j3CxuNLwHtIRaOx7JKiazqWh4fSOF0ypm1Ydi22cXSrJQXFeTVopxBwzuGcZRiGycitjUw2hhCrlCnRNG7yYoyTiVEWtdlsHkieGqcYo5QKwLmGw4NDnHPiuaixRs7Kxp06VShFJhEXXgzxXJSajDXebkQuIhnS7N22ntKnHMnF0S061us1xhpyluK8xjVTLG0pIs2KIaKNQqlC3wfatqXve/m+KpydnXJ+ds4zzzzDrVu3SCnz+uuvc3Z2hnVjytYpfd9PiVOr5ZJl10mPRr8TUlFERhVjBGOFNCkoWhrjVSmoXChkQp04FW1QtgGViSFSlCUpTVKajCYrxLeiNNoadNNgm4Zu0XF07TrPv/Qyt595Du0achbzd8nI9dRj4hQPkJ0958aMGTNmvCPu5Sv9z+uMd0GJAful1xn+8cf46U8+zx9b3ZkL/GY8cgwl8O986Yd49u++eeV6Mx7G1f2bsIgxfLU64OatpxlOn2dz5z7DuSf4M/wuoIzDdUuCcviiWDUtPkVySAQy1JNwdJ1YaEVJhZgS2tiaBHURHTv6Hay1aGNQOVdTeEfbih+j6zoWi44YgyQwpYyvZCV4Kefr+x6tFIuuY71acHCwRqGIMVJQIikai/lSBCCnTETkQCEmMUOXWmI4XZOLKYeqreqMt1FSFqi1bJJLypSccc6yWLTy2Flu75yj6xYopapXoxBjQimw1hBjZLPZSoJVEO/Icrni6aefJuXMV7/6VXKWGN1h8JwcnxJT4tatG2hVo4KVYrfbsttISpWSJyNkLEaZshhHHqVhMo6p8iVNjiIOS1kK/7KWvgzlHCUWSagiXRjltfhvnHV0iyU3bz3NRz7yMV740Iu0i4UQM6XrVEimPyNUvbRFMXlHZsyYMePr4X/9se8D4mUvY8ajRp1q3P6s52+89vv5wY/+f7DjXmLGjEeEr8TM6d9+ltWXf+FKTzPgfRCNhwvzLhV1CQqFazuW6xusDm/SHl7DrE/QQ0KlHbutp99mnj46pFms8CWBUeJ9SAmtC0Pfo42h61q6xjHkLB0Taky4aqd+i5RE2oNSOGtrClXPbqdxjcEYRSGgdKZpDDkrYkj4YSD0O/yupz/bsut3KAqrZcd6tWTROhpn0Eo29HEY6Lcb+u2GEiO6FHxKxJirpCtT6q63jJejiH+glCqTUrq+ZjUmVhUpBFTUfgmIPpAGj25bGm3BSMKT1tC2jsE3bLc7gg/TdMM1TSUgBWugax23b93g+vVrbLZb7t65S9suUGhOT88YBs9qdciRdahS2Gw2nFW5mUZhlEJTJK4WoUgomRxEClYDuk5sKKAM6ExRmYIhFTVNLLqmRSkLRBKFpCFl8XFkMtZYlHO0ixVP3XqKj7z0EZ669TROW3neY6Tu9DYbBVNlXNmccDtjxoxviH/rzd9NyfNfFk8qSoh0r5/zq19+lrdeVhzpwhx0O+NRIZXMj28/ztM/c072Vz/d7H0RjceCZFTUfTVaO5rugHZ1E7e6jlndQ2122JzpnCUFSBT64EkBXOMogLUWay0FiH1PUqBdAzljjcFZh9aGUlTtkBDfRkwJHwNFKZRWKC1SpBg9i2VLypLW1LSWkh2bs3NiGChRkrBiCOSYaFrHatFxeLBk0Tm0UoQYiD4Q+p7N6Rm77RZygVQIgyekjI95SmPKRRKwxLwN8o0MRaGVmL0LRXzMiOTHKOnt0ChyTAy7nl1NpdLOohuD0gXXGLTpyCnLR9YYYytpMTS2ZdEtuX7tOteOjhj6gc3ZlsZ1WNsw9B6rHb4kdpse709kMuIHMcArU1m6Aq1rLG8CLYWMIJMlZTSMxYNKYbQhFzH8C4GQSQ3GYrVGZfm5kBJJFYrVpAyJLIWN1kqQwPqQ2zdvs14dUJQRGlEm2ga8gzyqvMvXZ1xZXP9Vxd88P+RfXJ9e9lJmPCH4o1/4I8Q/4SHfu+ylzPhWoWT0vTPcb1/nN+MNPuLOYKYaMx4RIon/9Ld/L9d+6w1iTt/4Bx5zXE3plKicoChKUbhuwfroOsuDQ5rlkm69BmVYLDVGOdbrI7rVCq8iffB03UIIRylQxOeQUsa6gnV2kho9ECc7dl/EiA9e/ARGT70TY5LU+LNjhC21EdwHL5G0KaIVNFa8HYtuQde2bLa9NGsnKfPbbndEH0khEkM1kMdMiLnGv14Qv/HzfY9GKRk1/sW3F6BUChddGSmx2+5Q1ZOhggavMdZgrZuM6MPgq0FcEWPGGknU6hYtZ2dnwHiNcu3c2LA533J+vqHvh8mjopXC2jppqb4Sub4KjTwvXb8nL00mJZGIlZxRxkx9FkUrIUAly/QmZ2IpJO+JKZAoZFU9HijQhqI1GUVGSApGo7SpErRv+Jab8QTixl//Kf6P/8I/z7/4e/+fl72UGU8Idv/mM+i7n7vsZcz4VqIUyvk561fhs9uX+b7us7TKXfaqZjwhOMueOz/3NIfHn73spTwSXE2iQd1sUtAKtNEY53CdJAmlGIipMOy8TB2coelalDJs+y0xJRZ2ibVGok9jmuJbjTEYq1DasFdTIY9ZCilFUor4ECmKahp3teAuiYk6F/wwsN3upEdj8ATvp76Mtm1ZLpc0roFSGAbPZrNlt+vJCXbbrXg6QsB7aeSWDgkhPqrG3MYYJ4LxcI+GQE1pWdXRXDfwcvuUCz5ElBrq9ECB0VhncU42+DkXtFa1z8MzDF6ec2PRphC8I4QBa201uyd2u56zM5FN5TxG5Kqp/0MmE5ImNXby5Vwk5nY0YNfnkHOiVMKnlEI7h2katFLEEMnVz1GAVAqxZCkGR1cSmSlGo61GGU0k00fP2XbDZrclxYgyV/bXYMaMGY8RPvx3/gyf/sJvc/XPIGd8I5R+YPlm5pdOn2e4/vOXvZwZTxDeSJobv1qeCNkUXFGiMSYUgciXUs74nFDG4LoFtu3Rbovf9OzClqQNg0osD5Ysl2tANrbOtSgFu12P99KADWovzrZMk4pSSk1yghCjnKTXFKjdbodScHR0iNFS/FcK+ODrdGLLZruZGsWXyyUHB2uazhJToj89Z7PZ0vcDQ+8522zFND4M7HZ9bQ/PqOqfKDCtayztm8oMH/LSqNqqLVMHxP+QMylrtBX/wvh8lKmb8RQJIaKVfiDeN6UISLlezokQPG1jKkmL1ctiWXQdJRec82KG935K6RpTsMZpkkDt/T/T+sVh8iCJkuJEPRGXPDahI7HERZgn5ExOiZShKLldjJ7sDXa34/7ZCSdnZ4TgadruUb9FZ8yY8QHE7X/oSG+8ednLmPFtQEmZ7p7nleObbF4oJD2X9814NPhSuMnqdS9S+CcAV5JowHRALzKYXMgotG2xTYtyDW65ZCHuYox1DDFStjtuLle0bSuynJoapY1IhZSuJ/4otNJAemCTq5WaZFIjxjK+vu/rJl/Tti3WNiilCTFUw/iOFCLL5VJkSlqSlLwPbDdbtrteJgGnG7a7Hh8Tvk4QvB9IgLJumgKMRAO+vlFfFVX382NUqyIX6odsznMGnTUqKZGDKYXWtbtjL1I351yTpgaGQaEoNE6M9Frr6VpIwlasCV0S0ytSsoixZmonL2M/yCilGiNka/P3eL1HUuGcEz9GYUrlSnXSkRSQE+MkI5aMT5FUCVTOpVbvZQKZPgaG4ElPyC/yjBkzZsz49qGkhD0ZuHd/xbbM/owZjwapZH5p9yLu7rYeqF99XFmiobQYfEsWp7NxLc1iyWJ9QIiJIUaUtTjXALpKmzxnZ2csFguca6s8qXoplEIpafzOIQAKrQ1a573OC4fSmrZp2e627LzE0I4dGvfu3a9ThwvvBggRyPXUXzwP0kHRhIZcMtvtliFEdtuBzeacXR/EU1AlTjElYi7ooik1aWrs5fjGBn01/TlZncco3wI+JgoZq6WNm8hU0icfF9KykQuMMibXWJSCYRhknTEyDJ7tZscwyDRDazNdB610bTTPtVSwXHhcMuxPkDRgrMUYg7XyNh3/DFEM99oYnBLzuLV28tuUAiZpTH3W2kkJX1HQLDtc2wjhMVrMPlfEgPE4hTHMmDFjxgcaJaPOd5R7h9zNCzJptoPP+KaRKfzM/ZfRZzuelGPQ90w0HsdNjkwdMso0XLt1G5UiJUZSTPgQ8M1QuynAastCL1gul6A1p5sNKUWccyIFqg3a2sj2NOWEc2Zq9k41cSqlVO9DofpeyuWQTbAxjuP7J/S7gcViSU5CQOT0PYpJOUdyifiQOd9t8F4K/HyQkr8QhPTEkPA+VI+DEB6lROo0nuaPJ/37RvDRDwEIq1CglGFytRSIKZNLwE6eiEJMHqulZ0JM4Hl6XhL1K43iIUhzdymFnNJEMkYJ2XbbE3yQTosqvbrwkoAz4i8pOeMqkWiaBqUkvrZkIWT7udEjoSql0LYtxjlCShjrcFqjKilKKUpULQpTCjY3laRliipo52ialqZrWR8ecHDtiKZpv/Vv1BkzZsyY8cRBpYzKkIsoIGbM+GaRyXzpzk1e7u9e9lIeGd73RGM/2QgukYCMhgOQk3GlsabBNh3GtrTtggIMVSKjCjhtaFyDNhKnOnopQowTYWitpWlarDE1RlbIQimFNEqIKBhjp6+PxuwYxtQpg9aenMT83TQN1lliDIwb/hADwUe8D/SDr4RDvBFjupQPkZSqN0Ma92Bv0/31oSYzt0wiNJQs5mhkGbkU1CSpgpAzKiUaJ9G++5daKYXWCmN0nVJotNHVu5HqNGMgxiBToVzqREimI2OxoCLLfxsjhnCESBhdg6jGFY3ECWgbkWb5IF6PiTwaja7TF1WbCLW2WGPJFIZhIBXpz7BtI6lWRtMtFqwPDrCNm7oyZsyYMWPGjPeDYjTFFLR6Us6eZ1w2+hLZ3llSwtcueymPDFdWOgVMp96lQBw8m82OzfmOvveEmIkpTySiazrWqwMWi1UlA7YWKok0qetaGufq6fpFaVuu0qgxMSmEINMMRGIUYxTvQsx7y9qRUqRxjq5bslgsaBpHv9uQs7RpS+RtYvCRfucZvCeESIwZH8dyvmrgRmJYx1hbVXsvRgnTu1ycqc18LO8riDRMITXXSVzldU+vIVcyZZR0Tijqc5fHMVbjihAs66oxvRRJ1vJeNvaVGDXOyX2yt+b6sf85QMpJ6IWu64aaRqXk65XIhSgJDMpo2qahqeRBzOBUs7m8Ls6KZKvJSXo6tMKHgNWG5WLB4eEhi8VyknXNmDFjxowZ7wtKgQHzxIhcZlw2hpJxdy08IYlTcIWJhlZMKVBGWWLybGp/Q4qZFCVuNpdC07YcrA9YLdZY66QYr/oORo9A1y1o2xatlZisi8St5npiP3U/AM5ZjLOYJNKfvu8JOpGidEn0/YD3nq5taKp/oGmauqmVjXuMkVDlUSEMeC9rirFIGV0e/QowTkG04WI6sPfxrtON6cvVoLDnYVDT9Rs3/WXqr0gpo2J6YIIBoLWhacSgbaoEKqSIH4aaKjUmY+nqzxBCNJYjGmPI0b9tvaUWD5YinopRCqYqSRlTq5Q1dIsOYy1t2+LaRqRZOZNyQueMRq5P4xrW6zVKaXyOnG3OheBUc/ko3xrTrWbMmDFjxoz3BWcpTcapGkQyY8Y3iU0utMeKkp4cKd6VJBrjxlBTppK3nIrEtKaCRsuJfaxegK6l7Vq0MRIn2w8M3l8kGaGIKZH7Hmut9ERYU0/+y+QjyIghXArf5BRdNt2GlAoYqidDZFK7Xc+gZHPfNI2YyWvvh9aalEfCczGZkSnL+CzHgFclpXNKy2cP+TG+noxKSWPddOo/3ncp0qot3eGKokQKZYpMIcSjobBWSAUUchH/ipnauiPBy5RnjME1xqGmn99bxx4xmjCuu8bUovY2/cI66qciX2sWHd2iI5ciazWGohW6PjdrHSoUrNY0zrJerrCNow8BbQyLGOpr2xB9oN/tiCHS2NmnMWPGjBkz3geUJi8cdhXoZqIx4xGhLxrT84BP9arjShINAApoagu395ydnjH0Q914jxtbGHsxnHNopcVDEGtSlDG4Gm8LdTOeJQnJOjt1MYwn4Y1rMNbS+4FSDdlSqufxQ6AUPZmnJZ1Jvq/Ik8chJTE6a63qiXquJ/capcZcqAuyobV4PjAX3RGj9KjUj7fjgqCAtGpDoVwMZapPQyYmSheKUmg01li0qo+hqVMJRc418lddNJHnlGt3hqmeFTGAiy9E/pQSPyEi4+RkSrRiP6Y3M0aQlyLrGRvZtdFYPRJARxnJmhFvxpikpZUmxAGKPHutFU3jaBYt3aKl917IopXuj912i/cDzWL1yN+eM2bMmDHjyYXSirRsOFhvK9GYm8FnfHNIJTMUgw6FtzVGX2G8b6LxeKRPVXmNFl9Bv9txenbC2W6Djx60EAPnGpYKOteiMqQiTdJagbMWawympi6pnDHO0jiL1RqVCzFEUvVg+BDJRUlkbqNQKVFqP4TRGmsUg/f0fU9OaWq0TjESg5+M4N77muJkcE7hfSHqjE5cEI7pGmeUVhir0NaK5McnVE6oGg9rZERSuycKpaiJbBWV5fuM1KVgEBUVpYiDoih0LmgKxhaMKRgtpmmjtUjUcqKUjLUGrS0yzUgopbHWYK2YzY3W5AwlR3KRn5E4W1UnHlquLbVED6FEYzfGOMNBZWlCT5msMs44rNWg5RdxJI6Ns6ja3+GjGOp3/Y7GNdjUEHOk5MRy0XF4sGbb94RcWKyWHB5eo2mWKGWndK4H3mG/g/f5u/tl3h8ej9+xGTNmzJjxrjCGsLbcXm3oVEHPItwZjwB9sWh/2at4tHjPROMbSXQuAzknUgjshg1DHEg5EnIgRo+PktikUeSQ2J1vq3cgkZOYhskQvZS+aaVwyaFLIaeIBlL1ckQUg49kpeX7JTMMnuA9fvCkSl5iHgjDQAySYKWAHBP9difN21phtJATrTWNM8RGk5IihpG9jtMIZMKhClpTN/MQPaRKElKRiQNKX8xAlAY0JSMCL0OVOl30X9RBT/2LsaCKwiiN0wpnRRplK7EZrzPVbzG9D7SCksmjLKvG3e5H7wpkQpNzRmHQxsk0QjENbsbJ07jjvyggFGt4VmIAL0qRSpLXLQV0BGMNhYQqGWsV3bLDGAdGUXQhk9AG1usl3WoB2uLajsVyhTbjc5z/gZgxY8aMGe8dSilSpzlqd0jQfpl7NGZ809iUBju8l2TRq4MrKp1SkzRpu9tydn5GP/TS7K0Uu75n6HuC78k5YbXCGoPVF70OMY7N1XYyLOecp14IRaGkDFqjbUPKhd3Q0w8Dp2enteshk1IghZ6SM6fbsymlyqCrVCoTUiIGT4oJYxtKzgy9B1WwjaPJSvo1cjX/JKnu1gUw44l/jfC1GkoDJZBIlFwmmZh6YMNc6oRjTK6CUmSGMKZQMaZOaYUzFucsrrXVBC6xsaVIUaCYp6uXApkmGaUh5il5S2RQhVTElC1Ruhfm7lQjghsj04hSMiEIUaNe81EWpnT1r4P4b0KqvESaxrfbLduteGya1uGcpTENrtF1DYUQIoP2hBgoBdbrA1zbMQQJChh8eJuXZMaMGTNmzPiG0JpsoTNPTjrQjMtFpnCWF9he9oBPCq4o0WA6iU4pirl7GNjttgQ/1O/LxjunGiFbk6SUUoQQCCGgtZaNatNcTDvGU3+l0IBrWrTN9CFy5949zrcb+mHAaE3TOGIcOD2+x+b8HLSSbopC9SNI/4VE0SpSLmhlyKUQkzRkK62x1uGc9Fy4YjBRYm7zaDlXMrkoJU9JUONHrBvl/UjeC4wpU6PZfM8Ovu/30FpauCvpGtOi9m+rtZb1xNFTcZEWFSrR2J96yeb+wV8URWaoBnNrjPg9agdGGaVf1YBfciUbRVK4Ykz1OhisNbXxHZwzdG1H0ziK0mxPNww+QklQMjEGtNEsVwcs1mshUAnabsHBwSFN0zyS9+OMGTNmzPgAQSmyU7T6yUkHmnH5OE5LTF+gPDmHoFeWaOyX1skmvBBCoB/EqF1KIVUzdhh6YgikOsXYl/eM8bajaRkkIaptGxrrON9s6UNk0w8cn55zcHTIzVu3OTk55vjkmPPzU07u32O73dC0C7nvEMlZ4nFb51h0Hc45rG1x2pJzQikjxmWlMEZhnaoKHo3yGqUjKUchPyUTU5ned4UM1eeRKUJuqvJIVEf7hOLdr+Foyh7jZ611GMNENB4mKGMxoa+dHyllYkhT8/e+tGo/GeviNYMQxbcRQsRY8XUYpVHSRVjTsbKUMKKnVC+tNVqZ+no51usVTeNo24auk1hiKTpUxHRGvxvozYBWSpK9sng7usWSg2sLbtx+mmeffZZ20T2Kt+OMGTNmzPggQWuyVbQ6XvZKZjwhyGRe9Tewu7SXQHr1cSWJhkh0En4Y6PuBEMIk3Ykh4vtd9VfEujEOpBgmD8Ek5akTjJFk5JxrPG0ihsBpSty/f8rZdst2CDSLjk9+5jO4puHO3Tt87Y032Zyf1gZwzWazY+gHttstIQQa2wjJsIblYsnh4QFqYbHG0WiLtpqQIjnJybyUkSs55Q/QD1Lcl1Oq5EKatnNNkdJaoYuu8bDV0zFeI0Ypkn5bHO54DUeSJSTDYKyRro6pM6R2fqRECJ5h8PS7XW3nHk9xVE2ZUrU0L0/TDa0lyQrFNFnJUaYsPgSM0SJ5clZawuvPosTkbpCJh9yHpShLwZALDF4iazttQRm5bkazPjwkoaRXoyZSpSqJ8zGhjWF9cMDNWzfpFgtJKJtTCWfMmDFjxvuAUoqimVvBZzwy9CXyk3c/gjvuq9T9ycCVJBrA5KfYbM45OzubNvepnrqXKu8ZN9OKQqmn9Psn9WMZnKRBqUlKMyhFDIHjkxOOz845Pd+wPDjEGEcpIoPK9b7kpD6RsyKExG434IeBsgDrnKQhbQc2my3r9VpaqbsFSjtULhSVcc6IhEhpXMqYQVNyIqeIIlOKwVgHVeIFZYrRVUWhVJmmF2Mj+D7eqeBvnOjIJEJLt0au5msKqaZm9X3PdrulH4TUUQq6ThooEo87EpiUMqlkrLQLTm3mF3IoRQZSjJSQ0YNE0LaNm3pLtNbyWpHJIZGL9IjYgpQKyrPHuqb6PhBiYgw6J5q25fDwCKOl9CamJA3xKRHqdENrizaW2Qg+Y8aMGTN+JxCi8eScPM+4PKSSOcmJX/utZ/nMvTvE2Qx++bhIRJIT92FMe6qTjVRP4aUHQzb8ppq/U0oTsRi9CKPvQE7rY22kjuyGgZOzM842W7IybLZbXOPQpk4XCiht2PUbKIaYCzEXUpaoWdSFB2G76+l7z673XD86YnmwBCVxuVopcskYrXCuQSsIgyZFTTZOpi1NQ0hRujdqWJIutXKvAKpMPpSRbIzPa3yu4/cu+it4YMoRa3V4TgkfAn4Y2Gy39H0/dWEordHGUKoJXSsjiVgxEXMipgha4VS9jZbY3hIKRQtpyEXa2xXSUJ5zwVolBKUmf4VYMNqS6vW0KRNzxgdNLtC0LSlNsxtJwFJKXmtjScEzxC0oTUyFYfBsdz1dP+BDIMuTf2TvyXdLiXhUsbczZsyYMeMxgZaJhuHJOXmecbn4SlzSvdJSTs8ueymPFFeSaKhaGqe0nk7LQwjsdjt88FBP5il1otE00hmB+BrGlKSRUKh6Gi73fRGtmksh5kzfD+z6AdsMHJ+eslwuAF03sElSk5QiRdlkl1LQxuKaBmsduVbJpwwhRs7OzgghsPZr1gdrDg7XGKMIPqB0LbVTMhAwRmOVljZsa1BWJg/DYBi8h5RkI18UukDmwsiu9qJnH97sPrwpFk8LqCKG7BgSQz+w63v6fiClapI3ZorUVVBJRC3wKyJ9SilhbX1r1eQorRSiQKxFfEUSFqTrXD7PGUJJkCXxq+SCUQmto5jfrcVUM7wPQchKLix3PU3jMM7hmgUxFkoW3ay1Dq0NBeiHgfPNlm4tMqoyvd5vJwjvlxw8SVF0M2bMmDHj60ApsJa4UFx3W5r5MGnGN4lI4kv+WZZvFEo/XPZyHimuJNG4kLuI+3mU8ZQip9bDdlMlRwVbfQDOmLrZpZqZLyLpHpYViU9Ay06/KGLOhBA53+544403efa550T37z1KG5TOGGMZ/DB5QIw1uMZVeVE1bBclvQ85c77ZsPU9sWSW6xVd1zB6IlQpaF2wRpGMRmtp3E5TQZ70P4QYZZqhqnRKC9moT2q6Uu+0ad6fYoy+Cvl6qcb6KNOX7Y4Q4iSvUowfY/N6eeB+xuc/fm0kOaX6SHL9M0lJhkTYatGApSIEI5dYmR5ECkrVtK2JGELvA4P37AbParVitVyyWC5oY2E7DKiSaRuHNrZ6OjybzQ7tNhx6T4pZpiHlQnI244OHV/7t38cv/JP/LjCHAsyYMeO9Q3Udww34cPsWrdJzYd+MbwqpFF71N3HnBdKTlWR2JYnGxUYW6XaoZu6+79lszhk2O3KOOKspzuKMxnYdrqZLpZQe6M6IMU7JU+N/a21IGSEy9UR8u9vxlVdfZX14hHOuJkY5nDWceY/SoIxCW43VBqULhSR9GjmDzmilIWtSCPT9wPHxMeuDNctlS7toiN5TcsY5jXOGlDJGmbrJVyhbE5hMLw3j+qKsbzTEj1V8Y8Tuvgn8na7lNN3Rakrw8iEw+IHey4RImeq3qHG0Qjwkene8bjnnSiQKo0uksFfoVzIpi8RJpGVFuk2UIoFMMnKaJFraaHQxY30hOWu0KhQFw+Drc1XyHkiFEBOuC6Cga1q0NTIZqu8VgLZtWa/XdF1XDeyqzlRmfNCg2pZ4lFnrmWTMmDHjfUBpysGS4anEC+4ubq7qm/FNIpP5cn+D5jxLh9sThCtJNGCMWg34IA3dMcYpOUpp2XyOXo1SfQcPRuJqmqZ5IO52vF+oUqKYL2JbtSGFyOuvf4314SEvvvgC3WLJ+dkpqkiXhLUGpcRfoZQQDhQoAyqpah5Pddcr05jNtuf4+D43bhyybjuiku9NfRlayILRYhbHWmIco3lBG+nlUMSpnE8IgELVcj54+1Rjf4ozki9VTdc5Z3zwDN4/0Cui9EMfe7KjInf6NlJTSpkUrKM8KpcLUlRfjYkIyH0YkbNpgy4GSr3PalJnDMVCEUJku93hfcBtHa5t6NarOr0qGI2UNbYK2zhW6wMODo5ou07M4+8inZrx5OPNP/29/OYf/yuXvYwZM2ZcMShjiNeWuFs7buodRlkpsJ0x43eIUDJf2VzHbtIT1aEBV5hoxBjZ7fopbnWMfKVIolEMAbKBokkpT/GqFylL7+xTKAWZAmhDQTosCtItoZTi9OyUL//2b6OUYrfr2e52mFrUp5WiaRu01WJ0VopCniJUtdXkGqmLBqMcg/dstzv6oWfRWVISQ/vYfq6VwmiNdU6mKNbgfaBtG/reEUavgZZywExBKWkRV+gHNv37iVMPPucyEY1cIFVzfQhjP8Z4WvNgTO54DfdJy77Bfrz91MNRCrmoOv0oIzvZIxHCyoTu1O9pU5/LXrKWKtPrISRRJlIhRpZK46I0f2ulMI1FG1PXKqlY3gd2/Y4QAm3rHtVbcsYVgrl9m/vf9WSNp2fMmPHtgXKWcOi4fXSPpUpo5uLXGd8cAoVz39KGJ4tkwBUiGvuRrKUU6cgIntAP9JsN27NThu0Gv9sx1B4NrEPhxOSsDU3bQIGYEtpoUo6E6KukR4zF1N6HVIp4BVTBGFVlSIoYEvfv3CP5SOMMwWeUs2jj0AZc26CiphRfpUYWkLK9ggKthK0mMXCrYuh3ns3ZluWirRMYKWtJJJRVNfYWnDWYxmEUDL0YoxUilDJa5Fo5F5E3VR/FeM2+3nWdphb19oOP+BBr67jC1EQnVT0Wsu7xPnWVXIGx4NCkFFHayvOtvEZETtIOrnJGlYRSGqNAI+V8SishZYxES2EMMtXRQjpUnWqMnR0lj3cs1ynnQuwD27Ijdw22TnxSzsQU8cHjh4EUE/qBOOBvL2bz+OVi970v8cof/Q8vexkzZsy4glDW4g8Nz65OcbM14z0jlTxPft4FqRRC1rRPHs94/InGfoxtKQVjjHQ77HYM2x3DbsvufEN/fkbyPSoFVIqoIh0Q4rWQDX/bLck5kkpiWZbEHPExUKrUqCBpSgVFCDtiDmhbaDuDsxo/ZFQu+F3PeVG0bYuxhkDGOMvB0QptNP2uJ6aCcw1duyCnTIwbUgoUxPuRI+SoKNGwDQNnp1uuXT+QhuxSiCnKdMJZitLElGkVNEahi8EooGTJ8C7SMZGVJmtkfFKqQktdXMd3m2ZcfF2RYsGHSIhZ/AtKk1GQpQQQJc3dhYtWdUWhqCLTB6OnOFqZPIyRupI3bkjkEtFFCJzRMmrQ0+ucxPuiNdpolMloA9ZadCV8Y9+HyuP9qouJT9GUrCi1Sd0Yi3ONJIA1jcjRjDS2KyBHSe163Hx8cyTujBkzZjyGUAoax3CkeW5xMidOvUekKgeaycY7IwEp6wtD6ROEx55o7GOU+MQkreC73Zah74l+oJSM1ZpoFLpOJKhSG6UlHjbGhNZgncEl2ZhqLSfwMUZSGv0Z+691wVrLYtERYib3nhjBD56SC7ZxWGvQRRFjwZQxzUhmDRRdE44gFdmwpwA5SYFdzmMxXiKGSNNJfKyxBtCkJNMJ21i6tsVqRSoiC7JGzM4pF6mrL6McSbwQ73YN9+NuJ0+FUsSYGHxgGKT5W/weF9ej1L4LibrVaH3RSyLXS+OcnsiFcxZjbDWXe8IgLefUpKf9/f04WbmQWWXpxUAJYTEKY2TqUh4oKFR77eYWpxucbTDWTATHWEvbdTT19dZGggBM9YLM+GDBPv8cn/w//+JlL2PGjBlXFKptCQcSbTtvmb8x0kOeg5lsvB0ZiEnzJPY/PvZEY5T1jJvjyV+RMzGIATymSE6JkqWRerlaEGJCa4t1DcbqWgqXsVajkmyqQwiE4BmGAe89KRWMAYVEyupiAEmd6tqOmBRg2e4GISY505RCzhoV4I03PItFK8qolAhDYktPThk/SJyuKpoUEjlTjdoKrUTeMwwDxrYYa3FOYXTBDwnZwDvatkWR6XspG5TNtIYSL1KfqC3c9c36sDH7nf4cISWH4R0jah8u9xs/L0WidseN/mKxEJN1bWGPtVk89+KN2G9sHwnJO01bGAv49nwcMj1R5Mxkei/lwZhe01iMNpSS8T6x2WwwjUEZjXXN9PxApmNKv9Njz3iSURYtf/G5n73sZcyYMeMqQmmwhmzBqdnnNePRIWYtaTlPGB57ovFwUtT4USjEGIRoRPkYhoEUfT3tt7i2q4VtWiQ5VGOzgpQiqRqzx3hX2QNXIoNsZkOdNAA442gb8OHi50IM5KKBQglQUg1MzaWSAJle5BArsRCCRIGsCjknmtZijMH7hHWRlVtgjCWrTEoKhaVpGpqmIadKWKCmSqkHiMCI/Qbwh6/l/tf3iUROuYZhqTrpSRdG8T0ycPHzpU4W5HvjhMgYQwgB7z273Y7dbldfm4jTZiIN1to94/iDSVjiGeFi+jHJtMSEHmOafmb8nkQUS3kjSSRXY2fKKLsbCxu3my273Y6lXkh074wZM2bMmPFeoBTloUTb+ZR+xu8UqWRSQRQsT1i0LVwBogF78h6YolhTkkQopQrGalzj8Ebjh8gQI8Y4jLXgRLqTazpRSpaUMjEKWRg3qVqr6etQiCnQ+wHfB0JIxMB0+8ZJwkQIgZTFvC1xspqhryfmBZx1WG2rpwAKkraUQqzPJ6O1YbFY0DYdfT9QShLvhxHplbMOaxoWiw7rLKGkSQqWS67ao4ejay++tl+YN/73w5/LdEaSmnK5mFyM0bf797E/0Qghi/G7fm+ciAA1tSpMkcNAvc5mamg3xjxAiPZfZ4m+vTCZTNMs1ERySqHGAJuJgA5+oKSMbQ0L2+IaR9s0LFdLlssli8WC1WrNar3COTsVG86YMWPGjBnvCVpTKqfISAeCnrs03jNmQvZ2ZCrRqP1wTxIee6IxymvGzepYzuf9QAieXJIkLlmLdQZjTTUU59qaLV4AIRQWaw0h6mmDaq1MC4wZGIZEzoGcIESPj0GmHEUMOiXLHMFaV83jhewr4SmKmDLFMMmDVE5EMrpGxgL1fi5O19u2YblYorXhfHPOMPQsV0usbeSxnKNrF1WSpIn1pL880OZdN+h7yVzwILnY92SMX9sv2ktJiEaqpXsPY/JO7E1Oxocc79PXPpMYZQIkvpd08Tpqjamv5zjNeKepy0V0bk2rmiRzYk5XOde2dCEb42MqpShJIm9b1bBaLWmaBuvc5M9QSrFYdBwcHNC07WNnAh/xbnKu2VMyY8aMGZcHpRVllk7NeMRIKFI0kMNlL+WR47EnGg9vli9SjC66p3PJlJKwVtN1DVaYBU1j5dRaX5TWKSVFfYvFEu89fd9PJ+I5Z7yPxChlgH3w+JiYqi1qXKvWGqsshQZUIaUok4qYxShd94gpy2QjyxMACkbp6hewONfSLbrayTGglaVxRjbLMeNcS+Na2rbDNQ26yF9qMSVCjOQkE5JxKhOreaFUudG7lfQBk2xsJAUpy5Qo7W38x+u9TwZGOdXF63Fx//tkcH+Ksi9vctY9OLV4iGSMtxdvjBjejRFpmXNOpkOpTK9lKRdTrpwzJaqaNCaN7G3bYq2p/hxbr/WOzWbLen2Itu//FOqdNvuzz2PGjBkzPiCwhtwUWh1mM/h7gFH6bYbw94Ov97NPynSkL4YUNCrmJ65C+EoQjX2PBkhkqRS2iQTHGoNzFpVbrFFEa8mAbSzGaGllqLd1jcOhiTGw220ngiH3azCmiPzKB2LMhJCJcSz808RUQI8G8QVN0xBTIKWI94mcZNpQSkEjHRcjIdJK0Tgnj6MNStf1FUly6rqOxaLFmAalzLS5btsGaw3Jx4uErCp3yjmJcd0YTM6U9HaJ1MPYl0VN1zk/SDD2pUwPezv2Jylfb4M93sd+KpQx5h3X9yDJqGuspNIYMcM750gpE4h78qkLj4rIvLT0jVQviNYaax3ONazXaw4PD9FaXv+U0u+IaMy4wtCGL/6ZZy57FTNmzLiqUJriDNnNE433g98J2Rhv//DWW+9JEcbbPArC8Sjv6/0iFE3xBhVnj8alY/JqlCKRtkaK+HJu0CXiSyJrOXVXiERHGYcdTch70atN0+Dqxv/CfAylSNysH4vrYt28I2bjnBXWGpzTGG0xVpOywRlJShJDhkwXapcclIzRmq5rMcZQMsQkHRC6Sr/k5L7BaEdOcnI/nuYrJe3jKaZJmlWybLC1Mpg6MSgUcu2ZeNhTsY+H42TFa1Lb7/YmH+M1f9jXId9/ZzKzTwxHciFG7oupx9dLwJpISCn1dS4PkIn92+Sa8DVONMjyumtzMfmy1rJcLjg8POT27VusD66xXh9g7ZV7+8/4JqG7lt/4U3/lspcxY8aMqwqthGi0hZUeMJJTedmreuKQSp4IRiaTSsFM+xJd///thAPeP1H4ZqYtjwKZQl8symvZGD5huBI7rXHDOEpyUoporVksFpQUIEdUifQpkFMgRS1xt2RKLbVTem+TrGUq0rYt6/W6bmAV3meGIdaY1iWFgZQHOf2OmVziNNHIOQlRMAqlx4mJptEWa8wUwVtKqgRGonVb50BJt4bSCqVETiSeBYM10jIOGWMsXdfRda08bz9A9ZvYyXOgRyZzIWXa6734etcUHpQ7vS1gdm+6MEqo4OH0qrf/UjycBDVOonLOxId+oR+Wxu1PU0aykVLCe18fr5b1vcOkpZSCNZZCqSSsMPQDZ2enLJYLvPcYY1mtViwWXU0vmzFjxowZM94blFLEhSOvEge6n8pmZ3xjvFcCcDHJGEv+Chnp1tJoUOM+4sH7G4nHZROH3wn64lBejTr9JwqPPdF4uAdiNC1rrWi7hhxbUmiIwREHS3YORaH3gYIQghwDuk4xpHuiPLAZXiwWXLumiEF8FjK10DhXMCGhVSLtleCpGo8bYwJdy+S0lPN1TmGcmM5LNZBrRZ2AWJyVyNuUCoOXKUnbtsjvn0JrK/eFomlaurbFGItSBWvNRJAWXVdlWxmKIZLEoyFX6gE/xjtd01Ey9uBGnSmF6WGSMU199pKoShGC9k4Ybz8SlJyzTGLSQwb2h9Y1Sq0u4nOFUIz9F0pptBrXolEqP/DzzokPAyUej1xTtXa7LScnJ5yfn3P9+i1ACAt6NljPmDFjxoz3CGOIK4tbew70DvO4JopccYxHnyPJSNOx4AXhSKS9KQfsEw99xV6Xvji0V6iYRBHzBOGxJxoPQ6mL7oiUkkwuRoO2s6RkySlW46/BOAdTOZyucinR5Q9DXyckCa1E1tR1HbudJ8SBvu9rS3ZkbKA2KCJRYlZRIrNKiZw1ZFAlQ0k0TiRD2ojMarloaVsnaVEpo/Xo3HBCGGIi51hjWg2oQtO42vsgHpCpBdu5SfZlQ8TZVnwkQCmhvkfHX8qLiNjx+sFFmtfeld37mYvb7hOCfSIgk5AxHeqd5VP78qzxQ7/DbR/uz5imIVqLP6NOfKD+/u0t+8KbIfcbY8RosE6M4o1zXL92jes3buCcm5KxxmtZ1BijO2PGjBkzZnx9KGMIa83BesdKD2g0GvXEmJIfJ4wkI5QLopFrf1hC1BS5lva+nXh849fjncjIZb2OfW7QgXmicRnYl9SMp/DSpwA5ZjnRB4yzLJYLnFEMRmEGT8rSswBgtMIY8WyIFAlC8FOhm/fnaF1oWkPbGXpvcLHBRpkUjJ6HXORzVPUAIGWAJWW0Ah8CJRdScTjrcEVjtCJliLmQvHRLyM8L6ZHm8kgKkshtrME5w2K5pGlbQhiIsaC0wjqFNTIlcUazaKQxPIQkBvEUZT1kJJGrgDK14G/PCF6ypHHlWtKHkJtCeduv3j5R2CcdEm1btVpctJHDGOf7sIdDkZUUDRYZOqBr67fSlWCMfxqwVk8m8qZpKAVSypCp8qi3T2RiCaAKMSn6YWAInqIMi8WKxWKJNk5ew5IoJCpdevRv3Ieu3+N4XzNmzJgx433CWfxac2u5ZaXCTDC+Rcj1f/IvdSHUf/uy4oEDy1z//dY17jMXNZEO4KGJh2D01IxTk8dh+mHUk0cwRjz2ROOiP+EiEjXGSPCRfrfj7OyMFD1GSzN14yzWWSin7LY7KIXFYoFrLSl5tttzYhym3oXlckmMsUbd7mhag2sVxhWUVWinUFlR4qj7R8xgiPG7ZE0utm7Sg/xqKA1Kkyn4mACNMoFUzeEYN6VOWWcwRiRT1kE/bHG9pm0PaZsGay0h+Gpkh+VqSb/bkZNn2ToO2g6UYpMHgtVErYm5dohoIBWUymhVG9W1Bi3PSaksREkVigbpW3/QQL6fDvWwf0K+PvpnHkyjkujZMYKYi5+nkoRSZPpjTPXMqEoywBhwVtO1UrbnbIMzDUopApGYIymKzK2kXP/SUKRSfS9GYaz4QxbdCq0MISYWywNu3r7F6vAA21hSSVAUyrxz8tQsqZoxY8aMGROUAmvxh4rbi3OWOgLNZa/qiYRMispEGEYkOeGc/nsiC6VgUGTKRDpM3aeN9zehbuofJxP/DXNOuJYpyw4xFT85pvDHnmg8fIKbUsIHz3a7YXO+wQ8DxlQjtjNoXVBkBmfRKFKMhGGoG28jt2vkL4axQ2JMRxqjZFfLJT5kfOrxafQ+iBG8qEIKo9hG5gRjyzdFigCVNoCWYUHJGJ3JqcjVVrIGMX/b+rnBuoYYPbvdlmHosfY6xmhSijUedgkk/JAxRrNcdjhtSTETQ0aXgpoidamRvgqMFOWpcZ1qb+tf+0ZKGhvG372/bj/WFnhArvRwItQ4fdrHJI3S1eSd5S+DadLC2PKtaa2lbRratq1EQ+KMZaqUxXdTP4T4iMRKa41xGrMfpasUKI3RDl3/WyRt8jrMA4IZM2bMmPFeoZoGfwBPt6d0qjxWm9UnEQbFWGGXAEMlG3sYvz5aRseJR97b0YzkA4Bi3nHScVnTKY3imu5RR5687lDGUPJMNL5teCCBiFrOFsWXYaylaVqc07SNlnjZ6Ikpym5ayyQixEhRiqajtnG3k88gxkhTN7WjTMc5S+MczgWcNYRq7EZlVMrEyLRblzQrACU6TW3Q2sjEI0nEbTbjRlxO7vWYNOWaaT3WaYah4L2p8i5JRUox1dN5XTs6arqSa3C6IfrEJu3IdaowGbqnDXj9ZSo10akKhVRNr9K6vC2h6v14Lva/924/v08y1GhOUQWlinCdet2skQlPUz0o4rMRslYDqGSyY80kzaq+7/oeUTWVKk+v7TAM1ZchkrVSyiS9k3Ur5sHFjBkzHgXu/ODA7R99mvi1Ny57KTO+RSitIx4UnmrOcPVrs3zqWwOjZCIhZKOawx+6TQZSgQAYygO0z+wpKiSGuEIBxaAfo3/7D1TkxvUN/uiA1llK8Je9pEeGx55owDtvXMdo2sYZ0fObAknkSSVnjDEyuci1STsEgvcMw8BisXjAdOzqxrZpGoZhqBMEg7MGZzWN1VAkslYBzuZqbZCN7TjdUNlIEtI4zcgXG2CJnBVJkTYGaxs5rW+kjC+mQM6Zpmk4ODioa5RNs8FUqZd4RFIusjG3DqMTm82OGBMhpurJqDOCB4zcIi8aI10VBa2ZiMbDJXzvVPj3QMFfeVBiNf7su31tksAxxgGLoUtVsnCRynUxjbDGiB9Fj2tHygm1nlrRL9Yk6zX6ohAwpcQwDAx9jw8XROOB4sB38KTMmDFjxu8Ev/nP/nU+2f0pwp2X+fj/7GfGU6gZTxjK/I/GtxwaRaZKqJTIosbfp5FsjCRj3AXUIMkJ04QDxpNKNEI6xonG6M+4TLJolOaa1vzep7/MT7/8vTz1iyvY7Z6Yvz8ee6LxsF9Aa41rHItFRw6rWpoHEEm+ULKl7ToxGYu3muI9RUGMgc3mnLZtWC6XOGcJQUhF17Ws10tyTqQscikfs5iPS0arQIhSsFdyIdXpQcpjeeDFpnqcEChAK13/VpI0KWMsbbOg6zpsTabyPrDdnZNSnNZmrZWNdLlIVVK6UNBoa6WUDiPSqZRlIx2DGNWr07ogLGjfwM3YucF+zO3bidz+Nd//2sOTiwfu+6Gf3b8/+WD6sLrKzAClikjIjKZxlsaK18Y5i9EXfR8PmNL1w90eMMbhosT037YtTdOwWCw4WK9ZLBbT1y56On4n78oZVxV3/4vnL3sJM55w/Pof/BsAfN9H/wSvv3XEx/5Hn73kFc14lFApY3rFvbiiL2OZ3Jw69SgxtoiPnRm5KBwSgiOhmuVBsoGqr0GpMqr6D/voz9gjHGPB4pgWNj7eZWOpHT90/Rf5r77zu7n9s7dQp6eUYbjsZT0SXBmiMZb1jZMKa109Fdeoqr0rNXK1aRpKSPgaj9o0DUVBUaVG1vYsl0vatplSmkaJzii7ybmQkqqTiTyG2cpkwmpJkEqS7EQqZEaSMU4EpAlcaTPFp2qtpRtj0bFcLMlkvPdsNuecb85QSqJwH54q5JxxzhHiQKZgjCEliDGx2/UM3hOi9IukIoZr1IMt3uOmXr5VSQEPRsuOw5B3kz7tf/3rTT4ebhXf+w5SoKjrdEKjFZOEamw3b1pL2zY0jUNNcq2L+9PvMO8UK8bFmsaSv6Hv6YeBlDMxBJlueE/btjJleZxmpzO+5fjR7/xPgOVlL2PGBwA/8Z0/wkne8X/73O952/c++0PPE1//2iWsasY3jZwxPdzzK/py+RvUJxlCBMQUrtV4MDhtVKZJRqivgyROFRJCOqhSqgw0SmFQOKUf8Gc8DiQDwGL4jLvDJ77jVU4+/QLXXl2RvH8iphrvmWi804by24F3kujEGNluNwTvUdVArCiopiXnSNyNp/tCPErOxJLAKJrWkUsiZY91LcvVQlJeS8RYhTZgrKJtHMtFSwyRkiIyGhECoXCoECXrqCRKSSKPUraSHllvSiJ3cs6xXC45OFhXP0hD0zbEFDk7O+Ps7JzzzTnSBi4n9W3bAoV+iJOPRCmNcy3WDJz3W/ptT7/p2fWeXApaGyE/SouXo8qSSpWTlToBmFKftEbV2aKU5OXJYL1v9oYLorcfN7w/5diffDx8u1GiprV4MdQoVypV4mYd1mjaxmGMkm6UlFA4KT5EY7Ii+ESMsb6uWSJ8Van3beS1FjpISomzszP6YUBbw/WbN7h+4waD9/R9z2KxoGmaqV9lmhrtGdlHwgKjn0Vf2u/BjBkzrh6O9IK/8NQvv+3rP/OTv8D/4RN/4InSYX9gkAsqw5ANGUUqBaukjfpx2bQ+CRinGvK5kr6Mqe5LyMa+KTyhMMihr35IqjCG5Gj14DTjcXq9jNLcNpZ/6bmf5S/8Ey9w9GtPo843lCeAbLwvonGZ2D9BHxuirbX4MBC8p5SAzhE/eDabDf1my7AbiCFWMzgYJ+V33vf0fTNNSIw1U1dD13XTcw0+0jWW0DlidMTgiVHe6TFmiioYAzkrrNIUZcQjAZQsiU6LRcut69e5ceMaXduilKZtG5SG0Af6vp8+SkmsVss6dRlQCrwfRC7mHNrIRne769lstvjeE0IkxEBMhVykq2M0hqP2YmmpHgulq7KqTj5q4KzIpy5e431Z0uiDeCfS906v04iHb19KpmQhBsaMZXwWZwx2TN+yFlNTpIxRoAo5CcEIIU6RuVqPkw0hALYmSkkbfKnlhUIMY0oSCZzzJJ0afRopZeKUXiVrHdPIhMAICZFSxvyOPpQZM2bMeD/4Pa3jr3zx7/FnP/OHyZvNZS9nxnuF0pSDJbtnMp9avcGBThj12AtDrjTGqYar/RlZZfTUEQYytbiwiBs1SqSEoIxyKac0TpkHJFOPG1rl+P2LV/jef+oLfOkLn+CZe7dJb7515cnGlfoNGU/aU0qEIMbuwffk6EEFTEnS8l2N0tllkQkpTa6n3zlHYgzEGMg54pyU47WtI0aZiJQi7d0qKxpnaVtH1za0zrDZygRBlSIleVlhtQJjiVkTxshco2kax+HhAYfXDmjbBmvHaFUIfmCzOafv+7qJTXVzbQghsNv1OGfIWdKZQgy0tqX3nvPtlj54cs74GAhRnnesm+Esai4U5WJEWActuUqXUBry2H9RHkhxGo3b4/V+JynUw1Kq/dfonSD3K10ZTSOkrjFCLJy1WCOvg9GaUjLWaNSelEvWl+vEwdQEL41SUuCoja7+ExmcjoRGUskcxojJ3NbHVEpNBEqmORcTmLE9PKUkBK+SjZlgzJgx41Hhw27N/+Rzn+UvffwTl72UGe8RSivi9SX2uS0f677Gsp6Qw+MjwXmScOHVkH/bURKOs084NJlGSeTtSCygejGqXEqj6/ceL1/Gw9AonjaaP/3MT/Dn/jvPcHzvea79rCa/dZe86+GKRt5eKaIB+zIdhbEWVyyRRIzS8p2qzMhpTesahr62fydPHCvr92RB46n1/rQkhECKAVVajFZYo3HGYLTCNQ636VHA4AM+RGJKMs1IYGqMrLOG1WrJwcGKprGTJKtpJL1q2PX0/U4eKyWMsaxWC9brNdZa5NRe1820bOp9iAxeZFLOOXz0eD8SDUmjynv+5otIWBhTmUo1mCsDKe97UrL4Surj7U80xuv+9Tba72QGnyZGdXOvNSwaK+TOGJy1tI2jaRzOOazWkrSVJD84p4jW5kLOZCXeN0YhZjBKmuT5jalaKhf0WOBYpxcg/pzTszM2m82UPCaJW2kqcBwJSEqJvu+n+GGRsj3oe5kxY8aMbwY3zTnlD3w36h9/7rKXMuO9QGn62w0ffepVXrT36JR57CQ4TxreRjZACvdKdV8oLXuimmQJF4Zv+fnHn2CMMEqzpOG7mrv8Lz/zY/zbf/SHiIvnufG5JeYrb5DPN5QYrtx048oRDWAyTSeliCHS9ztSHCgxUEpC70WW5iKbxpQSiYTSihBEsjSebFtrKXXzvlgsyClByqhcKCmRkiUlR4wdQE2bSiLfUYo+SKyaUxpjHMYaGmdZLNv60dDVGFtrDX7w9MMOHwZylhP55WLBwcEBy+Vy2uTnLFIjtJCj6D0xCimxJrGNO4bBEytZGdOvshq1jGoiZaUuPOVUN8nSrL0fWTti34cwTjcejrbdxxgVu/+zxlwQhFEqZY1IwIxm6rEYX0+NECKjNc64iQymGOukJk3XPURPThdRt+Pjan1BbvYnFBJhLH6McVIxPreqxKKUQghh+vqIGGNNALt4/jPJmDFjxqPAH+g0f/I/+q/4j//cH6P92z972cuZ8Q2gnGXzlOH7rr3KbbPDqfax3rg+KZiucRn/HdY1gUpJOZ/av+0YW3vxulwFkjHCKcMN0/KDyy9y73v+If+B+YP4gxs89fMN5pWvkY9PrpyU6koRjXHjqrWm7weOj4/Zbs7wfosi4Yzo83LJ5Bjxex0KqII2Y4JVqmlPG1KKNE07afa7roNS0KgawVq1/7mInEpJgUwuWQrmrMf0A7FkXC3qc9ZhrciujFFyYt9YtBKD+DDs6IcdJRfpjnCWtmtYr1dVppPqpleM21YZauAVSol5uR8CZ2cb+n4gRonjTSkjAihNpky/gPulh6WMcbwSi1vKhWE7p9GvIWla8ljqoQnHhdldyYsipwijMTznB2xY+5MO6c0QQ5bRGlNfSz3qLCspsEaITUyR4APej4TMTPel1OjT0NN6dCVQ2lwoMEvJQmCsYblccHR4yGKxAMQwLteDaYIxTjHGpniRXT1IXGbMmDHjUeFfPXyTN/4v/4C/7X6Axd/6mctezoyvA2Utu6cVn1q8xoFWD2xmZ3zr8TDh0JgHG78rHvZgXAWCsQ+L4bax/ODq17jz6QN+hO8muzVPtc/TfNGS7x+T++HKSKneN9F4Jw3+t3rzte8HGE/IAVJMU+O21oWYMrlkjIYQAj56YpbkJ2U0yoKq/Q1aASWTU6Rki9Hiw0DtSaWMEVKRpUE65YwPkbZ1lNxhlGySrYFYJFINLVMLBVLMZxTOavFbpCz+kOoj6ToFRUrsVqsF7ULkOTmP1eOqerUNpRgpu8uG4BPbTc92O+BjImZIRZEREjRunlFK/OBFxrtFSfpUylnifmsql64lelpJRc7DXRVjT07JNX0KUFWTNRIHpRVjmNzDkwqhAmOvSMYaQ+NM3ciP5YhCuKwRiVWJhRxH/4hMdrRW9bVXRJWmmN6RcCglWRO5jIHCBaWFZPhhYLPZiLyuelnGtCoFIkXzHqVUJSAPJm6FEKb2+H3p1NeL9p0xY8aM94L/zc0v8Fe/75/ho3/rslcy4+uicfTPJF5u7rCssqkZ3348QBzK21UZb7vNFYNRmhbHS7bnjx79Asvf5fmby+/iqwfXuX3wIVa/scC8eadKqeJlL/cb4j0TjYfNvw8XuX07MBb2jZOH1fpgMhnnPFCyJ8VAClE26zrjGoPCksmE6CGBIpOtIWtFTpqcIil6YqhFb43DaGn3DiERUyGmgnUymUCVmusMSmWsEZJTlME20u9RMihj6NoGZw3WWHzyxCiawm6xAFc9EzmxXDhsU0/sa4qSc46UCkpZSjFSFDiA32XCUEhZkYuuWdJCcshZpgpFxopkTRnN36pQyFMbttHSawFFpgtKU7IWsqJKJWgy2Sg1yUkBar/gT8K1ak+HoujqE8l5SobSFHQBo2TWIo9tsVZImLUKY7VMnLTEBPooTd6ShqWn0LpaiCKGdmr5nxVSWECKFFOaTO/GarquoVu05JQ432zo+57VajX5R0aMcbcj0SilMAwDIQTGNvqu68QDVE3il53GNmPGjBkzvg1QCtW22Js7buodTtkrvZl9UvCkvgZOGQ50w8fdjtXhZ3n6Eyf8rcPv5jee/hDXn3uKG79+iPv8V0lv3X3sJxtXTjoFowHYgNLih2ga8SrU5CSR70hhnm1s3TxGcomkJIlSfT8QQsT7oaYMiZymlDHNSLNYrshZkZIYkIdhYLlc4r2vcbiO5bKTYrjBE1LB1dbpnAGtadoGVzX+3gdSyTRNS+tackjkGKFk2q6VPo+cadp2SqCS/gyDVobtZkvoPb4XE3gMiRhGE3ipPR+j4bueuuuCqnIpxSibEvJgTJ01lJrmVEsHsyokGT8ATN0aWiuscehaYlhKoahxmnAhrzJAqhG0qhbyifYrI0PN8b70RBJkLSItCyEwDCIJS7GQU5V8VZP3Psm11lazN5Opner1GM30xhiuXTvi9lO3uXHjBovFYkqSyiWQUp5M+ftRtuP1b9tWpFwx1tjhC1/PLKmaMWPGo8CP/vf/7/zL/+2f5/p//FOXvZQZ74acSdF849vNmPEIYDGsleNDNvAHl1/k2vNb/u7yd/GPbn6U7TMrntcfovn5nnR29lh7Nq4E0Xh4emK0IefMyekpu+0pWoMfevywo7EKVQolS0KRqpG3Siuapp02kfvJU1pHjo+POT09rcV6B3TtkpzkNovFAuccXddxenrK+fk52+0WkFPwxWKB94HeB0xtLM9ZWiuNEe9HTGL6dtaJJKnUdGdnUQoWXUfKsZqPDbZKitq2wxhHvxs4PT3l+PgeJycn7DabB03gyPMtuW7EyzjV0PW6qSl9Sp6zmqRDE5FAJgW6FKQQ7yHDttYiF9MyKWHsPFfjfcv9iqrKPJRAVeoGXU9pUG3bTh4IuJAoXWz60/S7s18SOEYAj+8N6VVRk7F+jOiV6VRTiYxltVrJa9t10+PG+hqPZGlMHRuLAcfv5ZwZhotOk4eTp94t7nfGjBkz3gs+6tb4QzW1Hs94zFDkEDOfO/oyk40Z33oYpXEYlsBzJtJ1X+HGrXM+sXqDH3/m43ypfYmP3Hse/YUvk3e7x/bvjStFNODiFLvtJAFq1w80VjbBjWsAKe1LKVJiqmRDpDnGXcTYTqV8IbDb7ei6jsViQYyRu3fvojhhvT6k62TScX4unRdKqSkZKoQwpRWVUliuD2pvxxgdizRVTyZ2Rd97tv2OEjML19I2Hdoo2rbBB9m6XxASXTfSmTt37/LG177GnTff5P79YwYvXo9c9rwcUyNmTZqSEQaZJOFuWlVNac2V1lKKl5VMOgwKVWRTrZFc6rFBfDRyl5xRytRUqfGhH/IpIGRwXH/e81eMRuvRfD8arcfN/RQvnOS1Gwv5Hn7dnHMT6RjldK0xUs7n/QXp0JoYA2dnp2y322laInG7IgnzXiKQR1IBTBOLYRiAC2/QPinabxOfScaMGTO+WXzuf/uX+YFf/zM0P/pzl72UGe+EGDFnhr5Y4PGWq8x4MqBRtMpKTK+KLNV9nrenfNfit/nPfuD38ct3PsPzfUB/+VXyMDyWZOOxJxrjSfW++VYbw8HBIddv3GS7Ocf7DYpETomSk1TVF4VSovvXNT2JMp54azFCK4VzslvOuXB+fi5JUtWkPPhBjNO5djK0LbkUUs5CTJZLAIKX8kBlLDlJ+pMaT+OVbHZDTIQY2G63nJ6eYo1h4caG6kqEsgYs1hm0uWjH7oeBzfk5m805m/NzttuNeBGq4bvs0Yv9ZCg1dmqMiVXTJKVOCOr/tJYphi6VOWiFynK9cqnmb62n+yslQ/V0KC2Oj9H8rveSwaZOivr62RoHvF8GOJK0fQP2lIJFqVnZQjDinulpnEiMRMM5h3UOHeMFQVKjXXwvWas+pvdevlN7OsY29n1SM8qotNZ0XUfXdRIQkPNETEbiMXdrzJgx41Hg7nc0PPcPWko95JjxGCFE2nuKt9Ihqdx7IFZ1xoxvBS6StmCpNE4nljpx29xj+cw/4H/3h2/w5unTPO0D5dXXKcFf7oLfAVfSRWOM4fDoiA996EPcfvpplLH03rPrBwbvpV/BWLS29XP5MKbBmgZnG6yVPxWGnArWOFbLNYvFCmcbSpFCvvPNlj4EbNuyWq9ZrVfiw6in5957MtB0HV3jpNFaihnQChprWXYdisL52Slvvfk1Tk7uU2oPx36ZnmyGFTEG7t27y3azoZRM3+8wRtG1LbZu5qs2jJxGgpUpSVrNS8lQxqbvaav9gPxIHvZBv8NIPsYJSSkS6RvriX9MScqJ6hrGJCmrNY2zdE3DarlkvV6z6Dq6tqVtGlrnaKzFNWaaZOhpWpMe6LUYP4AH/BIX10ckUTGKzOzB6N7CYrHk5s2b3Lp1S2RSC4m0PTo6YrlcYowh1ddtt9ux226JMU4BA8aY6Xvj18fpyThx8d7T9/1ENmZcHXz/z//wZS9hxoyvi1/6c38Z/cJzl72MGe+APAzc/NXI3zv5NEN5/NN+Zjw5MErjlKFVlqVqONINn3Ib/rWXf4L7399z+j3PoK8dSSjQY4b3PdEYN3XfztPbhx9LKfFbrA+OWB8c4JqWYbAYaykpk0qeNsgpxCqrkvjU8WQ8xlQTl6jafIl6bRo9afpd0+Eah1L6osHbOhbLBdvtjl3fs9vJRlWV6rOIiX4YiCnTVlO3AnJKhEFSsVw1sGutiSlCyqQS0RqMUaRcuHf/LuebLdY1kqClyl66k0TKFmSjnsnTybzKtQdjjLfV1a9gDKY2aJaaClWyREYpHvRA5CKxtOLfTsQop/rGKYyr10dplMpoI23p1hhpaq/dE1PhXtLkVI3ZVmPNaLa/eE3Hzfo+8bggGGoiSSMJebjXYryvXDszxnQouR24pqFp2knuNv6MtRYfohjr67RkNHyPREJM/+LDGT0l1lq6rntgyjZPM64GnvuTX4YvXvYqZsz4+vi1P3+LT/5Pv3Ilois/SCghsvrSKf/1b32S/9VTf5/Dkp/Y1KMZjyeM0hK4UxRHuuGfXvwmX/7O/4b/5N4f4qNvPo/97Ja83T5WEqr3RTT2y9dGfDtOdN9pE1eApm05vHaNGzdvYg344Zzgt+QYJslO76WuPSU36f9HTf646Rw3kmMZHjWm1SD+hKZtaBctXewkqWoY6JZLbOMo9wqnZ6eEwbM7P0drzeA9ISSGtmUYPK5xlJxYr1bcunmDlAtdK3Gr26GnlMTqYMVytcY5i4+JxaLj7t375AxHR9enEr3GGdqmQQWZMFgrm+lq0aAoZKqiNErbyZRt9AXhyTGijanFhEyFe2PvzVSqp7R4OVQlZKKbqh4M8ZzYxtB1QqhQSqJqzRg/WzBGUYqpRMSgSBNh2PddjFKlh70PSumpL2PE2NK9/zMg3Rvee3yddDzzzDNY11R500XR4DgpaZoGawybsKXv+8nwPQzDtKaxd2PfMD62yKeUiDHWZLCZaMyYMePR4JV/4a/yQ/+L3z8TjccNJaPeukf6tY/y2vcueP7xOzye8QGBURoKPG0a/vjRL/Dbv/cGP/PV7+SFrz2F+vJXHysJ1WPv0Xg3lFJo2pbnnnue9XLB2dk9hv6Mod+wOz+T2NpdT7/bEXykpEhOYdoYDoPE2o7+jxgjm82GGCOucbi2I5VCLJk2yc8Ya+mc4+DwEGM0u77n7p0j7ty9S7/ZsD0+QSmN63u22101Hnuss6zWa64dHaCA882GkhPe94QQaBrLctlxcLAW4qYCR4cHHB+f8cYbb7DbeYyxKKTL4cb1a/gQODvf0A8DKIngTUXata01IhszDqXEU1Ao5BjJSaYdI1mQgjxp1JYY2TL5LZyCgiMqMbhbrSdJVSm5OjxEpjXG6oacKDnWSN4x3hYgS7qtKm8zUe8TB2BvQw+UC0Kyf5vx85TSNOEoWf7bD8Nk8H/hhRe59dTTHB4eTY81GsGVUpgajTsaxUcSMt5WUsBE7jUMw+QNkfjdOMmx5ojbGTNmPErc/jHLG7/vslcx4wGUQjnfcP3XCz/fv8z3tL+JuZoK9BlPAKTYz/IxG/nXn/4x/q1/7oDXTl/m2b8TSV99/bE5qLiSRGPcBGqtWC7XaF1ARayGrnUs2v9/e/8dblmWnnWCv2W2Oeb68JHeVJZXqVQqZBAt1LSEoBmcZgbTWCGMgKdphqHttIHu4ekemmkaBiN6GjMY0WIQjRPCSAzIlRwlVC69z7DXHbfNcvPH2mvfc6OypExVVt2IjP3Wc/PeuOecfdbe+0TU967ve9+3wFmDtxZnLNbYaAVrmv7165kJafY+fQ+d4Hu5XCE6p6mkG5BSMplMeovUyXQKQtBOJuhz53DWcTybcXR0xGKxYlXVURwuBErFPI/5fIa1liIvKfKC0XjEeDJG62jbqrRCZxmT6Zj5fMErr7yEkhmmqnFVQzmKNq1ZlnN0fERrLEL4LkgvVvY+eLw1CJGK9M6qVQhE5/p0opcQnZtUOAnqi/NUqLXiP1MKLTX4gHUGi0PZgPcGJSW2c4qSSnai+nj8fjRLxtyTpLNYz9+Ak/Gtkw5HwLvTDk/rZGRddB5HvqJL1GgywTnH4eEh040NHnjoIS5cuIDWGVJGsialjAJ+qXrysFqtqKqqH5NLQvXNzU2yLGO5XDKfz9na2kIpxWQyYTKZ9J+jRDgGDBgw4IvFn37gn/Ab+LqzXsaAOxCahs0Xa77/1gf4DzafoRDZWS9pwH0MJSRjkfO+3PB/f+R7+S9+46/hNR7l8j/02Deu3xVhfvck0YCYTyGlxAfDcrnixo0bHN6+iXcN3rVYY3FtzGSwxhCc67yZTgrafldbxbyK6TTqC5TWBAE2hF4HkUau1sXAWZYxGo3Y3NyEyRhpHE1Tr7kVRcJgrUNJyWq14ujokMODfYy1TMZTtra24vNtJD55nqE8uHFgc2OD2fGCxSKKllfHc5rlimyx5KK8yMbmJgCHx8eorkNgrKdumhgO6EGIk4JeK4nOdK8zUDq6WpGywgW9wPtOJMtdrRTBeWzTYl2DDgElIXTZFknYnWUZI0ZknZhaSolUkqwoejF4Ihjp+HBCAq21UdAuIXkWpM5HvP8nwvLkbgXQtobN7YzJZEIIgeVyxcHBIRcvXWE8mTAeT/oOiPMe07QYY3uy4ZxjPp8jhCDLsr7TJaVkOp0ipWQ2mwGc6nDkeRrRGjBgwIAvHjtqzO94+mX+ygefvKvGIO53BOfQN4752ecf4OARx9bQ0BhwF6AQGU9l8N8//Hf5H377t/BJ+SEu/+0Kd3B45nqNe5JoCCEI0AubVSdEFjomaAuRYY2lamoWszmmNWgp0JKYNt11LdbFxClELs9zdEc28lGJzrNew5GKYediSrj3vn+dDBnWV+R5zng8JgBlOWJcVVR1Q9VEclLXNSEEtNIoKSEErDHUTc1oXFKWBTIENvIM6zzGeLa395jPF+y/cYPjg0OODo/6nfVyVKAXCoRAKkUIDcHb2NEJMf8CBFLFjkpZFhR5gdYKHzwhOLyPLlnOWlxro4WtEichgKkDpDwoFfUeWYZSHqkdRZF1zl4C09nGjsYl02nc8c/zPL5GSkTnAgYnnan1e7Getn3nXw3RjXCl8a1EoBLBkUp25CISg62tLUZlTG4/2N9nPJ4w3eTESjcEqqpiNpszm82Yz+dxJC/Pe0vjyWTSB//leR4dtUYjnHOnnKcGkjFgwIB3Gr9h45Cf+DHLp77qrFcyoEcIcDRj/OxlXv53NnlI20EQPuCuQCEynsgkf/zK9/E//M6an77xUTb+yafwy+WZruttE427y84zjk+Vo5LNzU2aekm9BOM9OtMUZY6zBWWZgfOYpoljQXiEPLFpDQRCcBjT4J1BNBKhFKpede5TGVmWx26D1mRZzmQy6QTPXUHsLDJTaBkoxyVSa/LWoPMc5BxjLVIIRmUJ29topSjzgqIoKDKNQuCdp20tSmuU0pRF1G3ovEUIsFUFzrJcLLAmdlckIga5dAnkLQ10gXs6U2RZHkeGlCTLNaOyIC9ypIhjXMa43ubWe0frmqgo96LLzgjgPd47rBBoIdBZRj4qAIVUjtG4QCmNtQaTxTbyeDxmNB5RliVaa05CBE/C7eJIVOgseU8+V2msDbosC++irkRGVUjwMd8jPSdZ3QovCUTiEUfcppTlqHexSt2pOLalWC6WOOMi8ZKKXMfOi3M2uootlpisjQ5TgTgWd3zMzvYOFy9dZDwa9V0Qa+1p++BhhGrAgAHvAK4WR3zmgx/Hf+pzZ72UAR1CVTN9LfCJ1eN8bfmZQacx4K5BJhQX1Yj/6PwP8mt+yxOMrz+J+qnP4ev6zNb0lonG3ZR+HCPpPAGHCKCzjO3tbeazQ+ZHh3jn0EoyHY/IRGC1XFC1Dc42eB9tbYMnjuakMR4hkcJ3WRI+htc5hwdcCxKJlxoZzZTIdI5ScSzKOANInBA0zrEyLc46goxrK8sSay3nz51ja2OT1WqFNaazkA1xBAiBN46gPMiA9TY6SOUZ0lmyImNjc8Ly6IiyLAhesFqs0DrviEGIFrhAJgRoicwVxShjNB5TFkXXSehE1fiopRAaDOAgK3OkljR1JDEieJQUMW88hI5SeYSErMjIixF5HlPNldaxK9IFFaaxJqQiXjQRXa6k+jxnKSl1N57W0jRtr42AgDEtxhq0VkzGU4SQtK0lBDC2QSnd6z4CIJRmVI4xrcO0lnPnNihGI5qmZTFfUhQTBIqiUDgX2L99G9sahBToFOjXtHgTM0naqsaZqPcpu67W4cEBbduwtbXN7u5utA12ntbFwD+dxREzIUQMHRwwYMCAXyD+8O4L/I0/8THO/aqzXsmAhNAapq+3/OCt9/Dt25+kUINOY8Ddg0woHtAj/syH/xa/7T/43Ty1ehzxmefOLAT0nhydOkHsRgghyYsR08km9cYSZ2pMW2G8j+ngXXK0JKZ4t8ZEskGIFq1aI1UcM5Ld7L8Qqkv1Vl0xqztdiAJkDP/TGcbWrKqWtl7hXU3bVBwdHLFYLtBSU+YFhGg5W+QaZwxKgNQago8ibMDarpMiZCQ3gLM2np8U6CzayBajgizPWC1rFsslRe66rkDoRqa63BApyMcl5WRMWY763I7opBTdlYQUqM7+VrpuRybPUUrjnO11LKnDkOc5ZVGS5zlZnqG0IMsleVGcOn4aJTpxilrPzjixSE6OX4nESqn65O043kTXRYoBgt47pKTrkMTXxPNV0ZZYgO5+TqNuh4eHTK1lY3OLLMspigLnYmfCGMdkPOWo3mf/9gHz+RylFUVedGGFUeCdKY2Wcc8qdGtr6oamqKk6v+qke4mfnWgnHBGS7daAuwChbXnsn/9OXvhl/+tZL2XAgLeMX//wz/D9v+rfofwHP37WSxlA1GkUNxZ89qXL3HhMsiOHPI0BdxcyofhY3vJf/dK/x393/Ot54q8/Ck+/cCZ6r3uWaMRcagXE8ZksK9nc2MYaQ7WcsXCeJjQgNCor0UHiPaAC3jiMd+AcLgiyANJp8lyTS43UOVmWo3SOFCqmi2uFyjKElLTG0R7NaI3leD5jNpvR1ivGRcycqKoly8UcEaDJcpSMQYFNU3F8eMh8MSfXGVplnU2vQHejOVVVoZxFKEXoCtZMaYL2FKOSza0tlquGxjhq02B8tKWVMnYbkJJiPCIvMvLRiKwo4rko2V+5PM9IhXrSX0Csh1VX7DvnPm8ESOsomk/C5xjYF3qd0XqYXu/e1Y0tJdJSlqNTYvyE5ESV53lPbLx3QPzuXBqVEl3WCRjjug6KQMqo2SG4XrCfksKn0ykAx7MZWVEyHo+p65rlsiJXiq2tLeq65vj4mNVsxbE/xjlHlmWn0sSjI9iJmF4I0b9PnkcSc6fOZC2+Y8BdgGAt7/1jh/DLznolAwa8dfxn557G/LeKH7RfT/F9P3HWyxkQPOLgmNHze3zy6x/gUX2NscjPelUDBpzCWOb86slLvPYrfpC/UX0Tj363xb/wypedbNyTRCPqgbsgtyBABJSSjMZTytUqCsBtwFpBQCNVgdQClQVypZG6wNhOQCwkRZEzGo+ZTqaMyhKVaaSQBGJuBMlCVcUuR17E9G6UZUNIytGE4FpKacFbxuWIQmdUqyVt2/Yhd97GzkdTrRBFgVeegCAvS8qyxCNiqnjw6KJA5zmZ1J3Nq8NpzXhjynZrqZqW+XxF3TZ4T7SOVYK8yBmPSsbjEpXnCNVZwJISrLsLiIjhfQECAuHoMjZSaJ7tHblSwra1prsDgSzTCBHwxiIEGJNTluWp8Lp18bwxpnvjk2OuE42U1F10rlQiTloRggMSIYqaDiFSZ8ZFdy0b8y5aY6LTV6fBkFKR5xlFUbCzs8t0uoFzjtu3b8eORmsJ3qHX3McWi8UpEpRIjzEGYy2raoULgXPnzlEURRf0GM0EUnL4emK4DwER3jx0csCAAQPeKv6r85/he5/8Ri5+31mvZAAh4BdLtp/z/KPbH+Zbxq8wZiAaA+4+bMqSb9/+SY5/9Yh/3H4tD3+Pw7/06pc1Y+OeJBoRnTAY2RXyAqULimLMaLyB94GyGAOxCHW2gS6VWsg4JpVGejIdi3nrY6BdcrMSSFAyipBTariQZHmB1JpNFS+f8x7hWmjntNUSJQR4T5Fn1HUFPo74BJcznpSE4MizHJkVCJmxsbnBdGODxhhsiFP9Skq0VAQkTutofysdusyZbEwZb25QG0dtlrTWoqRCZjnFqGSyvcl0PEJlJ+5OJynaSbzsCHiEiBIKIQLOGVrr8N51qekyjkllundZAijLstu9j3ka3ru+G5HsZouiWCMNMX1d9+NnJ3a1bdueiLk7spEsY6MFLn3hH0lE/H1ZlOgsj/cI0ed0GOMIIjqRjUYl1rpevL+xuYmQqj+HEGq8hbZpGI1GPPDAA1RVxfXr18my7MQGuLPoDSGwrFaEzukqjYml8wD63yfyIeXnu2cNGDBgwC8Ef+EP/Rn+80/9bvQP/NRZL+W+R6gbNl5c8uMvPcIbV9UwPjXgroQSkgtqzB8+968x36b4F+bjPPQ9FvvqG1+2jI17l2j0Iynd7rEXCDRZVjKdbpNlBQSPxNO0NdY0IGxfZHsfd6qtMSxXc+qmxdgWQexwZDqmaisFSujOnjWKm10IEOINlEojBQincHZJluW901GeZ0zGY4K11HWNVhIlJc3GBlJpdF6is5JyPALiqJRQCuf9SZpFCCgEeZYRQiRBxSgwmkwY1S2NsVgfkEpTjEqmmxud7W1OTPtOY0ge7wUhSLRWKGUxhq5YjuNnobO7dc52Gg0J6K674HHOEkLAmNhxELLTlnSFfRobWk/YljIKybNOFK911nc0IOot2ralqqp+ndbaTuchcS4W78YYrHXdJQkQBFkWx8LisUdMphvs7e2xe26v7zaU5Qid5wgBRVGgsxxrLaPRmLY1LOdzJPQk6qmnnuLy5cvcvHmzTwVPo1jWWpCiDwRcLBZRt1KWSClPntOdVxolizr403Rj6HCcLUxwZGKwJB5wb+FrSsXf/qv/M7/1l/023NPPnfVy7msE59DXDsmeeYjPfOwy78tuM/yLMuBuRCIb//H5f0n2mxz/rP1arvzNFe72/pfl/e9dogFRZwtEvQEIodA6R0iN9zEzQwhwTmCsI2AjYRACYyxtGx2Omqbpd9WNMRwfH+O9R0nNeDxhPBnH3XqdIZUmKwqwDiEsqhu5iUW5RCDJ8zir79wI76JAO18tyTLNqCxx1saRJaEJQiO1InhBlmcIp2jatsu2oLOejcLwlKytM911FUryvKapDUWeM51uMN2YkveheCCyrB/9SV0D4FRXIZGBEAKuuz7r2RZSSoqiAOjtYbMs6w2lUlr6xsYGWus+XyS9l7W2t7Ktqqo/ZsotSUnrp52oUuo3cXQspbgbS9saFssVZrXC+yVNk7I7JozHY7Z3dxiPx+ztneOhhx5ie28XayzHR0fovOjC9yYIBKZpuHn9OrPZDO894/GYixcv8vjjj3N4eMj169f7927ahsl0Gq17RyPquub27dsYY/pzSKNUiaQg4ljb+jgVDETjLOGee5Ff/lt+N//LX/7TPJpNz3o5Awa8LZxTE5DDvx9njuAJxzO2n/H8i6P3862Tf86WGJ31qgYMeFMksvF/Pf9D8NvhR9/4OBv/uMKvVl/y975niYZY+29EDHDLixHlKM7TxzGZONMfZABf42xM+F4ul33gWhL0phC4JOqVxBGrRETyPO2IO7L0HCnxUYDBclnR1hWmbTphtYyCchnHlXwISCVpm5q6bmlMg3F1pztQyG6Eq9/VxwESYwzVqqIxLZ5A09jOpjf0moQoRs4RQnauUgYpBVk3+qO17s4xCapFL2gWQjAej3HWYTvitapWWGP7wj/t3CfhuNaqs5Wl11aMRqP+fZIDU3KtSrv9Sum+Q7Guh0jjSUnnsE5+hEjvGYmfFJrzgV73EY+1QkjRdxeSUPvg8BChFQHBjVu3cc5HQX/bMp1usLmxgequxf7+PgcH0X3q3Llz7O3tcfnyZW7dutV3L7TW1HXNeDzm3LlzKKWw1rJYLGjbticl6XxH4zF5kZ8iGgPJOHvoH/gpftN/8kf4k//dn+Pry2HcYcC9haOv2GPjc8+deeLvfY0Q8FXN5vNLfuS1R7h9aUgJH3B3QwnJnhzxH5//If6Pv+ch7PX3oD7xmS+5OPyeJRpvhiBAKhXtVtsiJm1Yg3Eeaz3BW3w32lKWJUpFy1jn4ox909Rdp6OJs/c27qA779FZxmS6wWQypShHaK0IIWZyeNdpMITCB4mxoRs9AiXj5lNjHHVraJuWalWxWtW0LoranXNYF9A6uhyljosxLuZOdFarq9UKhCD4+K+ZkNFBKkzG5FnR2cs6rAGEx3VjTWVZRLIVkp0sSCkAiZQi2vd2rlSh0xuM6oKmORkFOhl9Svazvk8aL8vyVAcDTsTdyfI2EZr4uhPrW2ttLxav65rFYsF4PI6p3qNRT7qM6UTfPorDk6uV1rGTs7tzjryMzk8q04xGY7a3t9nc3CQrCwKCtm24dfuAqqqieLwxlEXBuIykcWdnhytXrvR6lFu3bjGdTrl06RLWWparZUeWVN/NOHfuXJ8U7r2naRqapukJV9R66BNDgYFw3DXY/Fs/xm/7qu/kud/0F856KQMGvC38yJ/6C3zrP/oG/Hx+1ku5rxGcQ79xgHnmIT73Fed4SC+HkcwBdzWUkOzIEf/Le/4G3/L7/iBPzh+HTz/7JRWH3+NEI3z+z5JY2XeJ30Iq8tGIPANvHW0TUyqCl1gTaJuGpm3wzmNNS9u0NE2DdxYBZEozLkvK0YTRuCTPNIrQOUiBcxapFDJAOZrGfI28xLQt1rXgHd5HslO1LU1rsC4QOkG60jkhBNrGoFTc0TfWQljFcSkt0EqR6YxRUeLweCso84JxOcbbAD4KjzOlyVKWA54YjRGw3fhWCMSUcx2DB533tK1DiLbrAsQ0wuADRVH040zeR1JRFAVaZ8TE7phB8nn5EZ1WYx0nwmjZ29SuF9ypSE/kIf08Ho/Z2NigKEqyLMeaaHMrhOy0EwHTGmbHc+r6FkIKxpMx5y6cZ2Njg7IsmW5ssLm9hXWeohghVdZ3KKyreOP12zR1RVmWnD9/nvPn42t3dnYQXTeraRrG4zHjyZi6aQhrI2FpFCydYxr/SlqV1hhUq8ig16UMyeEDBgz4YvHCf/JBHvnPf/Ssl3F/wzv84RG7n3qQ7//3PsQvLv/VMD414K6HEpJH9Ji/+XXfxf/59/5+nvqupxCfevZL1tm4d4mG8ERWEUgkQxCLuLzIKccjPJ6qqqjrmtCuwK5om6ofa/HOIkVAS4ELIDJNkWXIrQ0ypWJIm4iOU0EInPfU1TIKl0PsnhTliPFkwqgcMxlvUI4LitEEa1qMabAmhvgVzuFFIC/bGBrYtDHDI8u7MR8DQZDnBcoY2tEIQSr+Y2r1qCxpjKExBi0VZZ7T6hYjbGyh+4CWmiIvUBKQBYhYyMduTXSI8kH2nQ0fPM46pIwuXt6djCnFYDw6MXg4pfOIj6le26K17rtE6/qP1LEAThXkycVpvaORjpUK+NVyxe3bB0wn067DMSbPVSe8Nn1Oxrlz55FScTw7ZrlacnBwQNM0LJdLWmOwznHuwkWyrKAcT7hw4QIHB4fcvr3P60Lyxmuv9gL01WpFVVVIKdnZ2WF7e7vvYuR5DkJg10Tr8/kcY0yvzZBreoy6rntyEeCUC9eAuwMP/2PD/+WXfpT/8fJPn/VSBgx4W/jUb/+zvGfv9/Ge3zuE+J0lQtOw87NH/KPPfpDfde5f84FscJ8acPdDCclX5oG/+i3fxW/LfxdP/fn3ID75uS9JZ+PeJRoBYlgfnVQjpWMHvI+OT4ERNljqBowzYFoUkClFcA4XAmWesTEZU+Qx3doTsMbETkdV0zY1rbHdVyzyjTH9zvp4MoXgUVKxMd1B6gwhAqFL+A4CMsALUHmG8zYeu2lwLo7PBCDPu+6BC5016wglNd56jIndFa1UdF5ycawrOB/NXX3A2pZKRO2EVoqszGKyuSLmhJRlnx0CdF2Kk3A+KWNmSNs0fdG/7gKVdBSpkE5/TvavEDUTSWsBJ8LndcIRszFCF77HKX1GOpb3nrquqeuapjEsl0sOD48IAabTKTs7e1y4cIHNjU2uXbvB008/w2g0YmNzk0cfe5Sd3R2yLKOua1arFbPZMUezGSCxztO0LVmWcfnyZR564Cr16sNcu3aN69evc/v27f66zGYzDg4O2Nvbo6oqylHJ7t4eddPQGsPFixcBqKoKoHM0sxRdUno6F9u5dQ24+6B/4Kf4p6+8HwaiMeAeQyYUf/2b/wJ/jI+e9VLuawTnkK/eYOuH38s//Iqv4LHdn2EqyrNe1oABPy8yofjawvGXv/F/5Xe0v4v3/T8fxj37wjuu/bp3iQYpuA9SV0OIbkxHZt3j8X9KZuT5KO7umwZ8Q1YIptMpo1FBnsU06qqqWMzmzOcz6qqOu+vGHTBBvwAAV0VJREFU9u8WvO9IhUCrjLwomEzGbEwnTMbj2DEIIFWXgj0aI8QIY2rkUlNVEpyl1Dm6GOFMFKY765Ba4l2g9RbrAaFQmQQcOEBonDVYGzDWsliuWC4rmrrFh1jI26UBQteFmVKOC8oipoJ770EItIrXK2kEUnJ3IhC2KNayICTOR4E4CMoyjk7Fcad4XfI8j6Soc966k2gkQpO6SMZE4rBYLAkhMB6Pu0yL0HczUgbGxsYGe7vx/vgQmM8WLJYr9vf3uX7tGnlW8N73vo+Pf/zjvPDCi9y6eZMbN2+wd36P9zz1FI89+hhFWbJcrjg4PuJzn3uaa9euU5Qlk8mEne1dzp/bQyvFhQsXeOKJJ3j++ed5+eWXadu2J2HHx8dIKRmNRhwcHvLgQw9x6dIlZrMZRVFw9epV2rZlsVj0Y19aa0ajEbLToyRiBZzSrAw4ezz0h5f8V3/vA/w35z991ksZMOBt4WOFo/r+Rxl9y4tnvZT7F11434VPzPjLv+Rr+dVf90neO3Q1BtwjyITi60vDn/im7+GPv/Ibefi7DnH7B+/oe7xlopFmz9dx1oXSHauJvwtxrVG7AFpoynyEDRDIILNMpp6AxZmGqqk4ns9wpsW0sfAP3qO0iha0xmG9ixalUqDznOl0yng0YjQexyLSeUxbY4XHdR2JclRSjAqEVCgKspHHAMGZqL0QLSoIShReO7z1tMGhlERICFLEoD8haYOlslDXLdWqYb6oWSwrVqsVbRu1F6G7IKu6JYglrfNMTImxJWVZRMG3zJE6CsDj/QStw1rRG2A06ov+VBCvO3LleY6U8iRkr7v2UqpTjlGpi5EcvYqiZGMjo+26CXmeU1UVTVNT11Wn/4ii9LZtqKpVRxMleRYdr8pyzMXz52M2SQDnAsvFnLapefDqFR595BFmqwXz5Yo3rt1gsayYTqPeYnd7j4999GM8+9xz3LhxncVsTlvViI6kHR0dUZYlV65c4WMf+xhKKQ4ODjg4OOgF8bYjo9euXcN5z4ULF9Bas1qtkFKyubmJ60T76e+L1hrrXa/lmEwmGGN6cjXg7GFffJmf+IY9/slPF/zycXPWyxkw4C2jEBn/4oN/h49+72/hyq/9zFkv575FsAb1xi1GP/UEP/HRh3lUv8ZYDEnhA+4NZELxrZM3+Ju//AXmP/0YxQ8s3lG9xr3b0RBf6A8nOQxaZxR5QAqF15pQFJi2pqmXNE1D3Sxo2wqCQ8qA0poiuSPVDR6HLgtUOBlnGo/HfchcssgFGI0MwevOwUnRmobCFBSdbkHrnPFYYp3FWIuzLbJ04BymNdRNg6PFBQfCYq3DtA7rPNY6bGtZLqpYnNdNl3bucM4QvDgpWgPUocZbT12tWCxyxuMRo9E4kp+iABQEEa3Y1/zYoysVKHUi3l4fZ0qibSll747lu47Iul1uEniXZUme5ywWi87Klt5RajKZsFgsOrLUUtd1P6KV7l/wgbZtOT46RusMgaRpWqbTCaPRmK2tbS5evMTGdAM6O9v3PPkUuiw5OjpiPp/TNC0vv/wKGxsbPProo3zg/e/n8cce4/bt29y8eRNjDPP5nNUqdkqOjo64ceMG58+f5+LFi1y4cIG2beMI1nzOqlphDg6w3XmfP3+era2tPsAvZYqILj1cSNETr/XU8HVB/ICzh5vNaMPgFjPg3kMmFJuj+qyXcX8jBMJ8we5nDH//5lfw709eZMxANAbcO9iSI/7YQ/87v/5b/0Oeev4q7oVX3rHk8HuXaHwBJCFyKnYhzs47azFNE7+MIUB0UAqxWI+6igDdGNF4NKIcTaK1bZcTkexLZ7NZf9y6jiLr5WKJykZopZFKobRm4qbIGElNXhR9B8Rahw8OrMW0DfWqiuNSjcOHqAGpqop6FTM22tZQ10ts24LziOCRBEQI4DzenWRj+OAwviE4izGR2FjrMMZhjMWOXKcfiN0DwWmi4X3M7lgXLSfCkQrm1N3QSoEQuF5/EfpRLN/Z5Mbsi3G387/k8PCw74yMx+N+h7+ua6oqEqkUpGiNxduA8wHfmF47sVrVzGZLXn31dZ7+3DNsbW1z4eIlHnjwQV56+WUefeIJHnzwwW5Ea8HNmzd5/fXXuXXrFlevXqUoCiaTCQ8//DBHR0e9SDvd5/l8zrVr19jY2ODJJ5/kypUrMTNDa5x3NN169/f3qaqK3d1ddnd32djYYDab8fLLL5PnOTs7OzFLYzIGoGma/poM9rZ3H/7mza/hVz7yz4eRhwH3HC6O5zQPP4h9+dWzXsp9i9C2jF845N987hFee1CzI4fxqQH3Ft6XS779m36Qv/O5b+LS9xy/YyNU7zqikcZ8gL54zLIMnMMKEQXSUqFkhlRdGJzx3c58TOzOspwsL9B5TMO21vbC4qZp+tn9tEOtlEJJhRAeIRxKSrQSgKNuatpuDGkkxp07U44UMT9D6RrnJbKxCNkCUXAdE8wDUniU8GjhyaQgqFjgaynRSmKFxOOJzYn1RG3Rk662NV3hHwlMnhd9JkaW5V3XIo4pSQVKnRCNtPsO9ILtRCpCiHqQ5FCVfp/E5IkwpeMIEQmGMYbZbM7R0RFaZ33KeVmO2NkJGBPdnGbHx1RVi0JQr2owlrzTkAQPUmkcsKwrbu/fZr5cMZpOuLW/z87uLpubm+zs7PDoo4+yt7fHSy+9xAsvvNDnXiSNyMbGBtPplMPDQ5bLZR+AGELgtddeo6oq9vb2GI1HXLx4kaquWa5WLBaL/rosFoveIvfy5cscHBzwxhtvIKVka2e7TxNv25aNjQ02Njb6+zPg7sDh1x/wzf/81/Av3v/3z3opAwa8LfzdJ/4ZX/Pnvw3x17+G3R98CXvt+lkv6b5DcA72D9n+mQv8+Dc8ynuyl4bxqQH3FAqR8bt2fpp/8mvfT/PMo2T/+p0ZoXpXEY1EMNZn31ORK1Usqp2zWCdi+JszeOdj1obSXRgdZDpDSkXTpYZHlynXW7Mm7UFyGxqPx+R5hgSU1sjOFrZtapq6JStKXNdVGI/HjMYZuihRGSAzjBMUraM1joBIQhMUYEyDxGNyTVsLrAElREyzloo8031XQgoZuylSIaUCJWPYn/dd4njsjkhZk+erLoRvxHg8ita0WnZjU7ofnbrTjjXtxKcRKetczAPpSF0asUoaj7470dnHKhm7PVmW91qQ4+MZ3nsyrRmNx4zHYy5cuMj58xepq4bZbM7xbMZyEcesghD4bkROK02el+RliVSK+XzO4eyYGzdvMp1OmU6nXLhwgStXrvCRj3ykd5JaLBZcv36dl156idFoxIULF/qRrpQY33Tdr+Pj45gkvrHB5tYmeZ6T5Xnf3Tk4OKBt2z45/fz581y4cIHVasV8Pqeu656YAr1YPInmB9w90N/8Ok/9rd/K09/w1856KQMGvC382Ef+DnwEHvun3857/4jB3d4/6yXdXwiBsFiy9+ma73njq/gVTz5DIfTQ1RhwT2FPjvif3/Pd/Npv+4O8/8XL2Jde+aJdqN5VRGMdd7r6CCGRKkMpjZAyOjWZmOyd55qyLAjB01Q1ddN040am1x7EkZ2YsZAKZ+dcH2xXFBlagBeBum6p64YQJEUxIjhNtXI0jcE70LokzwVSZehMkxWeYmyx1qOEQiaJtfBUC4dt4qhUnmmCA9eaE7KhJCJ04YShI1WAkpIgJQgIIiA78hEdkEJMSg8WIRqU0lHMLTUxLfzEyjYRCKDvAqQuR+h0BolYrD8njTlB7Ag1TYM1FmNsJxzPKUcj8jwnzwqss1SriuNrNxBCsLW1yfbOLts72+ydu0BV1RwfHzOfz1kuVxwdHVNXdSR2nePVxsYGVVOzf3TIwcEBs9kMKSWvv/46169f54knnmA8jonhk8mELMvY3Nzk5s2bPP/882xvb3Pp0iV2dnYYj8e9biM5Zi2XC1bVKo7dda/d2NgghMBsNuu7N9Zadnd3yTvjAOtdL4oHaDsCO+AuhHc8/h0v8ej/4zt48Vf9pbNezYABbxsvfPP/m2+98htgIBpfdvjWULy8z9OfvMrTj2xxUUVL/QED7hUoIXlfLvkvfunf589+6tdx+W8e4ZcVwZpfMOF4y0Qj7WAnMXD6c3rsbkBaR/q+vlahFCqAUrqzaC2QEoRwSBFi96Kuu+C8k7GrJFROCdEpWyJ1M6bTaXRb0gprVqyqiuWywtpAXozw3rGYz/FBEIKgqVqkkOisIJcZQWqyYkxpHd46lJAIAVKCxOFtS1NrslxiWoVTDq1lzAkJoIzEStdpIzyCmNitpEBoTdBxNyXpLE6E8inJWyK7BPHoHiVPfa2PTq3/2XuPDwHZXeck5k6PpzyJ9cC+alVR17FTEDUaTX/Mzc1Ndnd32draYn9/n1u3bnNwcERRlmxt7XLlylUeffRR5vNlRwItBweHHB4cYIyNeRuriryIo1h1XffuWDdu3ODg4IDbt29z6dIl5vM5Ozs7PPTQQ5Rlyblz57DWcnBwwKuvvsr+/j4XL15kd3eXRx99lIODA46Pj6lWFa3t0r617kfqNjY2ePDBB3udya1bt1gul0wmk6j/yHSvQymKoh+Zaprm1HUeLG/vDrjZjMe/28GvOuuVDBjwC8P5v/gGt37ZBL9cnvVS7i8ET9g/ZO+TV/gH3/iVfPTCv2JHjc96VQMGvC0UIuPbNl7k+37jMxx+7gnKz76OOzgktO0viGy8rY7GvWLHKaXsBctpVz4EcCKgspxSOPJC4l2O9y2mrWhXhqY1KKn6lOfj42Nmx8f9GFDazZdSsru7y3Q6pSxLmqbh5q2b1KsZs9kcgWRzaxuC5+jokLZ1CKmRQmOtY7oxoTUNuhgTREz/LooSETxKShAOgsWbBjMeY22LD4G2mWNaS5ZpvC8QUqK0pBEtwQR8iCneUkl0phGZIqhoZxsJ1slX7FiIjmxETUKea7Js/fETYf16lyJ1MbxzmDXhdyJiicjM53OEEJRlDC+abkzRukUIwWKx6BPFl8slN27cYG9vj3PnzrG3t8fGxkYUwTeGF154kRdeeJEHH3yQJ554grIco3XGqBxz+dJlmqbl2rVr1E3DbDlHKslqtWI0GuG9J89z2rblxRdfZH8/7vI988wz3Lp1i/e85z0oFRPOr169yiOPPMIrr7zCK6+8wq1bt9ja2uLSpUtsbW1x48YN3Moju9Gn1LFZLpc459jb2+PBBx/k+PiYW7du0bYtW1tbTLONvoMS+lG2SM7uvCfrxO7NMBCRLw+yH3+a933Xd/LZ3/3nznopAwa8bfy1h/8Vf+oTj/H9H9w866XcXwgBX9XsfG7BP3r6g/zOvR9iKh2ZGPoaA+4tTEXBH3/w7/Mrf+sf5PI/foTtT2S46zcJxkLwb4twvOtGp5LzUSIZKffBtIYmtEhZ4DOBcwpjAtViQbWqmE6nnDt3Du88i87u1He6jHSstDOf5zmbm5uUZUlVVdy+fZvDg9toARLJeDxhPBrTGst8dkzTWkKQZFkOElbLObOjQ4LIybISKWOityxLBAGBBWdxpu1tUKXKMAZQCrlSCN0gG4nQCo9AKInKPIToppXnOTLXoCVSSJTW5Jkmywq0jjqJSDQkWivyvCDPFVrHP6eid51crudpALTGsFpGq+Bk51rXdcwR6fQKzrk+xG97axs76Vy3PFhrqKqGoigxxrC/f0jTGPb29jrdi2Q03mBrZ5dXXn6Fn/3UZ/js557hwQcf5P3v/wAPPPgQR8fHVFXF1zzyKIeHh/zUz/wUN27coGka5vM5o9GI4+NjjDFsbm7GDIyOKHzqU59iPp/z/ve/n9FoxDPPPINzjq/4iq/gwx/+MM8//zw3b96kbVsuXrzI448/zu2Dfa5dv47znsViEYXpIVBVVU8itre32draYjabsVytsEdH/WjZaDRiY2Oj/wylaxNzQsqevPxcn+8BX3r45ZLJa8O1HnDv4vfvPM3389VnvYz7DsEa9Bv7FD/zCD/ykcd5bPP5gWgMuOeghOSJrOB/+vq/xX+68WsJ4io7P+Si9su5aH7wFvGuIxpw2nmqJxtCIVAYE12Ygg846yjyEUWe09QVR8fH0VLV+X4Hf5wSv/3p36VRm8PDQ2azWR/+tr29TaYLDvYPmC+WGONASpz3hOBxpma+OMYLQetge+c8GxuT6ELlG6QQlMUkhvUFj1AKtMZLjXOSvChZ5SuyuqJa1cg6aiycjza30Y1JkeUZOtcgAUHXtcjIsrz7niGl6LQbsnOfikRj3bEqnXcSbietQRLH13XNfD7vheCr1QqlFHVd9+5OVVV13ZCox3jggYc4ONhnPp/3Y2hCxPeu64br12+wsbHB9s4OjalYLJecv3CBvb3zLJZLXn3tNV544SUeffQxvvrjH2dv7xwHBwdsbGzw637dt/HpT/8sr776Ki+//DLGGM6fP99b0QohervdEALXrl3j1q1bPProozz11FPcuHGD7//+72dnZ4cPf/jDPPbYYxweHvLcc8/xwgsv8J73PsUjjzzCSy+/zO3bt7HW9iTh+PiYo6Mjzp8/z7lz57hy5QrlaMTh4SFN25BlWT9qlz5DibyuJ6qnUao3+1wPGDBgwIC7GCHgj47Z+7Tlu1/7an7Fe59mJAar2wH3HjKh+KbRAX/iw9/LH1r8Bsr9y5Q/awmLJbTmLZONdyXReLOdeCklOs/wwSCsAiWQWuONpWlaVlVM2nbG4JzHGkNwts+OACiKok+wTvP4qfCWUlFmIySKum5YLSvausUDtutMKCWomwrZjc0qWbA52SITG1hrMG0LAnSuyRkxDh6pFUEpghBIociLPNrMrjRKa1SuKKyHIAg+Cq8D0aJXyIALDiGjk1QsiEdkWUaWaaSS0dK2G62S8oRgpOu2LvZOHQtjTMzV6ITyIYQo9u5E30k8vlwumU6nhBA4OjpCCs10ukWeO86du8B0GoXYzoXelSqEaMN7eHhEVTdsbm+TlyXXbtygaVqyLOfy1QfY3z/kc88+y6tvXOOJJ57k4YceRhctr732KltbW70G4+mnn+47HEqpfu1ZluHXMlJef/11FosFH/7wh7l69So3b97klVdeYTab8cADD/C1X/u1vPTyy7z44ovs7u3x6KOPcv78eW7dutWPgKVzNsZwcHDArVu3uHjpIptbWxRFQV3XHBwcMJlM2NraOqWXKcuyd/oaCMWAAQPeCciveB/+Zz571su47xCahsnzhzzzs5f45KMXuDg+RjEQjQH3Hqay5BvK2/yej/5r/vLLv4yHqitkr+0TDo/x1VsLCn3XEY20E7ze1Ui/V0qidNzVDxiCtzTNiqqKYm/vor1s3OHP4lhSt6PfZyt4z62bN6Or0XyGc548y5hsbpIrzWqxYlVXtKalaRuqqsJ6140ixXTo5VKz4wJaj1nMj5AydAV8SzkqGU/GFOUoEok6R+gMnecUeUFZxvC/cjViPKmp6hprHCAIPoranYsFNMJhvUWImPUwGpWMRhOybM0Ct3PTlVIihehscKOYO6aPW4yNIYJta1h2o1JSSopuLC3Lsnie3Q596nYkcrK1tcV0OuX2rQOWy4qtrZ2YKzKKuRSz2Yzj42MWi0UkBFoTbMzSuLm/z+7eOa5cucpqVXPz5g1eeuklvI95G1VV8cLzL3D92nWuXr3KlauX+q7MeDzm4x//ONeuXeOll17ijTfe6DssxhjKsuzXnLo0n/jEJ7h8+TKXL19mY2OD1WrFM888w+7uLnvnzrG7t8tiueyD/i5evEjTNEAkGcvlsiej8/mcqq7Z3dtlZ2eHLMswxvShhZPJhDzP+7Wmz+2b4c2smwd8aTG54fhrs3P81s3bZ72UAQPeNgqR8d/+vb/Kf/box896KfcdgnNw/TYXfmKPv/LVX8/XPPr3uKAGO/MB9yY2Zclv3vo3fO6bL/HD2Qe58FNX2Px0ibz+1v6/8W0RjTs7BXc71l2o0rJll+OAUTgHIUi0KtA6djKUFl0gnsAbS1VXfbq1FILFfM5iNqOtK4K14D1egCGwXDUsFkvquoribWtomjbqL5TEdzv+QghyXaBkgTGOW7fL6BglBFvbW+gsY7qxQZaXSJ0jdUFRNDS6oChyitGIpqlpm5amaWmbOArmg6dpWmxrkEohtcAHS/C+02hkZHnROU3Jfvc8+O7ihADe4rzFmoamOcnAMMbQNDVN58BlrEFJzWhUxLA/EYXomda0Xe5I8J6264JsbW1x/vwFDg+POTg8pOmC68bjMZtbW5FUac3+/j7Hs1kMIJQSbz2vv36N4+M5Dz/8CI8++hiz2YwbN25SVw1t0yCIpKaqap5/4VkuXbrIhQvnKcuSyWTC+fPnmUymXLp0iTfeeIODg4O+G5U6GqlzU1UVr7zyCoeHhzzwwAPs7e1hreX27dvMF3MudG5UpvudtZbxeHxKo3LcGQhsbMROVXreuXPn2JhOaU0kbFVVRS2LPRGXp65Gwp2duQFfPpT/4Mf5C5NvY/Vf/gN+7/brZ72cAQPeNi6qltu/+2s5910/etZLub8QAn4+Z/tn9vmZn3ycn76yy787Wg1ajQH3JJSQXFQj/uil7+f/88uP+VuXvhozPsfeT7y1179tovHWycbbdcd5Z4uoz59xj4V4CB7vBSFIAgohcrKss3ZVCtNWGNdgWo9wAS0V0+mETGfMZsesFgsknlGRk8tYXLZNS1Ut+x35ZPMqAuRaoLVEBo+pKox1CCk53t9nuWpQ+T6T6QZ5UaBV1E2U5Qidl0wmU4oiA1EixQpCiMLxPKe0Y1xrek2JtZFQOOdo6yYSKyWwzuBCTC8XRPF3b6kqk1Wtw1mHNS3ONBgTrX6buqY1LSF1ONoGERwSS7Atra/Bx3GmItfgHa13KEGfsaF0hm1aquWScrTBuQsXODw6ZrVaUjUNGxsbbG1tkZclU0BlGSrLODw6wnTzf87HnIpnn32WixcvcvHixS5pu+TatetY2wKB1tQIIXjuued46aWX2d3d4fLlK1y4EInGI488xs7OLoeHh1y7dp1r196gqiq899GiuBNlJ73JzZs3qaqKnZ0dzp8/TyCOgC2WSza3ttjd3WWxWNC2LXmec+7cOXZ3d9nf32e5XDKbzciyjMlkgmkNB7f3MU0M/suUZlVVtE0biYZSaKmYTKfkRX7Kohk4RT4G56kvHza++8f4a+FXsfHHvoffvDHkEgy4t/CAnvJd/+mf5ndM/xCX/9SPnPVy7isE5wivXefiJ/b4a7/o6/jYQ/+Qc2py1ssaMOAXhEwonsgKvmP3R7jw8Rl/mn+XfLH7ll77tkenEtFI8/s/z7Pf4lG/XDu1IaZFCIGUGqUy8qxEBmjbCmss1hpaU2PblpEu2d7cxnvPG6+/wfHRId5Htb0WAp1nSBGwbYO3Bq3Be4mUMUAuBLA27uzH0aMWYzoRddWgyorp9g5KQdtU5HmBFBLrPIHY9cjyAi01PiuQcowUDqRA5zmh8Dhr8dYRrMOHgAgh2s62Fhc8NrjeGSmuycckcSHizwFEELSNoV4tcW3daS1i56Jtmj6jw3uHIN5VLQVBKpyzQGA0GqOV7NKvT6yFE7ExrcX6BePpNtt7u7QujkbNlwtuH+xz/vx58qLAEbh89QrnL13k9u3b7N8+xLro2FRVVT8C9fjjj/PYY48xHo954YUXmC9mXacm6i8WiyOWyyXXr99gd3eX9773vezt7bG9vcP29g47O7tMJhNee+2VfnxKKXVK9O+95/bt231mSl7kVHUNQrDs7HPPnTvHhQsXepcr7z3nzp1je3ub+Xzeh/1ZYyjynNVqhTEmCtKVig5Y3XvNZjN88Gyp7d59KpH6ZIm77uI14MuDjb/9Y3z/H/oAv3njX531UgYMeNv4qiLnz/6BP8cf4DsHsvHlRAiEqmL7U4f86Gcf5+UrGTtyEIUPuHeRCcUDesSv2/gUt79yg//t2i9+S69712k0viBE3BVW0uNT4rXKCNLihEBpTVGU6AxkA20QMbHaWm7dvMWtmzfx3lEUOZnO8M70+RpCCrI8R+cKrU1XFIbOUUjEIjulY9uon1AZFFqjCJimQuoMvGe/amibmlFRUGQZRTFC63hsVFyndnHHXSQLWqmQuSCspXWnXAtNtLp1NuZdNE1Da2KWheueb51jtViwWMwJJnYHrLWY1tA2kSClAlcqiXceiONSdNoGaw15XjCdTGnqpk9Vj25WeRee5zk8OqToLF5nsxmL5ZKwWLBcrbh48SJXr17l1VdfJYTA1asPcOXyg7z44kvcvHmzz0Rp25bnn3+eg4MDnnrqKUajEZ/+9KdZrVbkue5Tt9P53rx5k9ls1gfwPfXUU1y+fJnJZMLOzjaf/exnmM1mlGXJcrns9CwjyrJkOp32GpS6qVlVFUjJeDzuSURyktre3kZ341+r1SoK5qVksVhQ1zUhhF4Xkka6km1yIh/rNsrJiCB1NdL5QLTJHfDlw63fc4V/+nczvnlsznopAwa8bfySEv7yH/yf+N2L/3AYo/oyIjgHN26z+ek9fuRrn+R92bOMRX7Wyxow4BeMTCguqoL/0/ZP8KMff/Qtveb+IRpdYRyL1ej047TGGoVUmlE5RiloGo9tDaNSkUvF8dExR8dHZHnOqCwI3iHw1KbpC3AtFWpUYp3tRMoG8NG9ysYuSbLIzTLNdLrBdGOTrBzRGIP1jtwHlrbCu0CmBAe3rrOYHaGznNFowmhUUowzilFBnud9Ia91RrAO2WkMTBtj4pXWyG6nXhAfa5rmRHDdBfIlArRYLFjOZ7i1It0YgzGRsDjnyLKcLIuhg9Z2Y00EAoH6eMF4HNBZTjEaUzUtdVXDqiHLIrEx1tE4j84Lzu3tcW7vPMdHM4yxGLNkuXwJ01qeePIJnnnmWZ5/7nkuXLjERz/6UW7cuMEzzzxD27asVqveRveZZ57h8ccf56u/+qv55Cc/ycHBIVpH+95kv5vOdTab8elPf5qXXnqJ9773vbznPe/hypXLXL16hZ/92WiJ27YtSimqqqKqqv7cleq0PQHm8znXr1+PFrzb2ywWi97B6tFHH+XJJ59kNpvxyiuv9ESkbduYq7FcopTqOxvnz5/vncuUiuJ8HwKj0agXiq+nsQ86jbOB/7ef48BNgcOzXsqAAb8gfFWRU+8NY5dfVoSAny/Y/UzL9938AN+28WnGciAaA+5tFCLjMe34LQ/82Ft6/n1ENE4Qx3oUSmaxq6Et4MBIpNCMxxOCc1SLJW3bkukM1e2mW+9omhrXOUlprQne452l7Wxs0yiOtQbnLCHQpT9njMcTNjc3KcqSxXJBNV+g8xxT1azqmrIcs5xJmnqFkAoCSJUhlODC5UtcvnqZ0WiEMYY8yxiVI1yApo42Y8ntKYXSee9ZLZfM5nOOuuC4VLBmWYazlqquWS4WrJYrTF0ROxoujomF0I99ZZntnZPatgUZuyLWeaRSLFdVp0mYkmUFq1XTjR1F7URAInXG4dEt6qrm6tWrXLhwkWvXruG9Z7lY8vzzL7C9vcMH3v8BfvInf5LPfOazvPzyK3zkIx/hG7/xG3n22Wc5ODjg6OioL9xnsxlPPPEEX/3VX81zz73AK6+80hOMjY2NfuTo+PiYPM85ODjgxo0bLBYLPvKRGM73xBNP8MM//MM8++yzLJfLnnDM53PqumaxWDDdmDLd2GB7a4utrS2apom2vV1Wi/eeg4MDXnzxRc6fP8+FCxdQSrFYLPpRqDyP9sS2c9UKIXThhDnLZfQ9FqnjpnXfnUqkVghBURRn8xfnPsdf+cDjPPLMJ/iachB0Drg38ck/8Gf4xue+k+n3fOKsl3LfIBjL6Pl9Pvv0A7zw8JhzakgKH3DvYyRyvm704lt67n1ENALgSXqQtFMslUJajRCKIi8pc03A0VRL5kfH+BDI8yy6OnkX3ZtCQaYzhIjHcsbStDXa6P64MR1bkeclwSddiETruEs9Oz7m4GCfqlp1xWcBApqlZTE7oChHlOUI62Ih77zHuBZjorWsMYbRaMRkMqEoChbzOVqpvgCeHc8ILlCtVhwfHzObzdjf30cIQTka4brsB+9975TUVBUihE5LYpFSkGUZbdv2O/Gj0ah/jXEOLyB2i0R0gJKa1niE0qgsRzSuS8UOKAXegxCS2WyBta+yt7dLlhXM53O2t3epqoof//Gf5CMf+Qjvec97USrj8PCQH/uxH+P8+fO8//3v54Mf/CA3b97k2Wef7UeSnn32Wd7znvfw0Y9+FOcc+/v7NE3D8fFxryVK4YvJbeuHf/iH+OxnP8NXfuVH+IZv+Aa++Zu/Ge89zz//POPxmCzLGI/H1HXN0dERh4eHtMagutGq3d1dfJcQnohNCuJ7/vnnee6557h06VKvJamqqu8ohRDY3NzsxeipS2WsoTFtTwTTPTJrTlUAu7tvTYQ14J1DsJb/+j2/iH/yyk+e9VIGDPgFIRMq2gMO+PIheNg/YvvfXuaHvv4pviL/2YFoDLjnoYTkinprn+P7iGh0iMKC/mclNbLIURqCVxhTsVhUVKsKKaPVbbR9DQgR8zTINc5G0XMIASskPrg+a6MnMVLhfcCakxl7Y2y3C39EtVp0Tk8F5W6O1hkHh0csVysmkw3MqOqF4R6YHe5jTENTNTSmZVSOyIucPC+4fesWeZ5z+fJlnLMc7B9gW4ttDXUVQ/YOjg6xxrC5sUlRFr0lrjGG1XxBtaoQItDUbTf+FUMKEdA2Fu9bnI0OVqZ1VG1DEJDlGW3b2QMrwcHBERsbm2S6oCjiObetAWFBGMaTaT/+tFqtkFJSlmXv0pTnOZ/+9Kd58skn2dvbYz6fY4zh9ddf57XXXmNnZ4ePfOQjfP3Xfz23bt3i1q1b1HXN888/z82bt/nwhz/MrVu3eOmll5jNZv1YkjEGpRShI1N5XrBcLvnhH/5hXn75Zb7xG7+Rb/qmb+LSpUt87nOf6zs30+mU6XSKj4yR5WoVMzKqqhe9l2XJeDwmhMD+/n6v75jP53zqU59id3eXPM97RzKtNcvlks3NTcqyJM/zXr+RCOFkMmF7e7t3nEpEJXU+BgwYMODt4vaHBJvft4Gfz896KfcHQsCvVux9puYfvP4hfuPWvxmSwge8K1CIt2ZKc18RjZTNEDwIPFJIUApk1o0cBbxbYY3HuYBSmtFoRFM30d3JR1F3cAZB6PMofAzk6EdoTtKdRex6BLkWgmf6pG1rLME5spEkkwJjGrw3EBxtu8KYGkQ8ZtNaVvNjmrqmWlUYa5krhZCSPM84ODxESMlyMSMvCqrlisV8STC+H7nBeepVhTO2L2BT0nciR6a1OBfwnm7sS5DnOVprVqua5bIiz/P+ijrvwXiEUMjeLhcO9g8ZjcbkecloFDBmEcXnAhaLxSntQex4nKSMQxw1u3XrFlevXu27NHH8LBboP/qjP8rOzg6XL1/m4sWLSCk756cFr732Gnt7e7z//e/n1VdfZX9/n7Zt+/dLhXscL4uC+tdee43v/d7v5UMf+hDve9/7+Kqv+iquXbvGzZs3WS6X/evK0YiiLAnQj5Wl78aYfqyprmvquu4JQ7K5LYqi18Ykp6k8z8k7RyofAkpHDcd8Pu87K6m7sr293Yf7DRgwYMDbxdPf/ud5Mv99PP5f/vRZL+W+QTCW4qXbvPSzV/ncEztcHtUMPY0B9zreamfuPiIaUbQsAKUkEMlFcArvZCfYtngvYlCeCASjMZ1zUFPVGBPwndVq2slO8/8B+iIzFc/JfSqEk1Z1sgf2zkdyIqIOo65jlyJ4j5QCY1qcd11XxFBVLd4HtC6pO+eoJGyXMmpH6qbB1DXj6QRnLG1t8DZ2XVJxLaXsx282Nzex1nJ0dNQRJIWUccTM+4AQGhBdmKBC66wTj8dujguBIGPORUwmF3T0CucDh0fH3fhPTlGUNG1LYx2poxTCSRc/rlF0lrjxPReLJfP5nNFoFEMO85yqijoQ5xwHBwcsFgsmkwnT6ZTRaMR0utkX55PJhAsXLnDz5k1eeumlvjOyngaexqqccxwdHfFv/+2/5datWzz44IM8/vjjPPLII1y7do3Dw0NW1Yr5Yo7vrmMIgel0Gl29nOtHnKLbVta7Sa1Wq1OkYjQa9d2vtm05Pj7Ge09ZlggpKYqCpml49dVXcc7xwAMP9K+rqqp3pRowYMCAXwie/S1/nkd3v+Osl3H/IHjCwRG7n77Kj3/L43xd+clhfGrAfYP7hGiEky8hkCIWs0pIgvRYAUKoLj1coZQGpzGBXjidikjnDJJA8GBMl49RNxjb4ryNhKFputfFYtq5gDW22/Xuci264hwBQio84JwnADrTGGvBg5TgvKVpK7yDTMWE7qqu+0wQnWXoPKNeVdi2pW0alJBkusA7v+aapHqSs1oukUKQFwVt5xC1sbFFUZSApG3jTj1B4lwsyLXSXTaIjbkaAjwizqAGepIhCAQhsM7TtDVKGcqiZGNzizBfdOTMA757URpn68iKiMTDOcPx8TFXrlxhPB737k5wQtiinsRwdHRECIE8L9jbO8fGxgbT6ZSrV6/yxBNPcP78eWazWe9adfv2bfb39zEmumzleY5SiqZpeP3116mqCiEEH/rQh3jiiSe4ffs2h4eHvHHtGrPFvNPbnGhyyrIkhEDTNP1jye0qCboTqZFSnhJ3LxYLZrNZH/gnpWQ0GrFYLHj99dfRWvdWuOtdnwFffgTn+PCf/E7+7R/5c2e9lAEDvii8+Cv/EvBHz3oZ9wdCILQt09daPjW/gtkZukkD7h/cJ0TjNEQnYEZKgotjUjGEMJGCGHhn2pa2NZguLyEVyM7bmJ7dxLEjZ+JYVd3W3Y656zUaIYA1jqqqu+Kys78VAiEVgmgJm+UFjbFIPKorUl2eozPV7ZIHZAgI5wmtw7cWH6JInDKA96gQwHlmh0dopdnY2I6J311oYKY1WipawFnHcrHsR3sW8wWz4xmTySaZjm5Wxtiuu2Bx3qOUREmNl4HgA0HEixlL/4CQkhAE3kPTtDgPQmmCEDTG4AKA7O+BEOnnFALZnU/3O4Rg0Tl/bW5ucnR01AfprXeT4KTDVNeRKBRFtAF+5ZVX2N7eZmNjg83NTXZ3d9nY2MA5R1VVrFYBa03fMbHWEkJgsVjwmc98hsViwYc+9CG2t7cpyoLRZMzrb7zBvOukJBF3SoRXSvUdjtlsRl3XjMfjfmQqdTzS+hNJqeua5TKmy083N8iyDO+jHubVV1+lrms2Nzdxzp1KCR/wZUYIPPi/vQx/5KwXMmDAgHsJwVryw5rnD89RP+jPejkDBnzZcH8Rja6JEEKIlrQerPOYNpID76KzlLMO520/h5/2j+OuvqK1LW3b9PoGZx3OGhpTdzvuJyNACXfuxEspUTqLKdtZEQt271EqoyxLfHD9iA6yIi8KSlEgrMQgKJTGhUDrW4QP4AJlUWCspVlVtEISgkQQA+CS2DjpFCCOC81nczY3N9FKceP6bWZ2xng8QesMuvwNEF2HpjsHRNRkiBB9vELs3qjQ5YaLaNFqmhYpA1pl2OAxpkZ03aT0RXeN43U5EepHR7Bo1btYLHpNScqTUEr1X6njFM+zoK5jLkgaTVosFr17UyIC3vsu2C/0x01heCk0b7FY8Pzzz9M0De9///sZjUaEEHjs8ccB+mC+mES+4PDwEK01Ozs7QMzb2N/fx3vfk5zt7e2uM+bY3d2lLMt+hG0+n3Pt+nXK4yOm0ynb29sdGYrhf1mWURQF0+n0S/CXY8BbhX39Db7hD/we/vWf/YtnvZQBAwbcIwg+oI5X7N/eZRXAhUEQPuD+wNsgGmtuTWHtj2u//uIgQHypRkIEBEH6X+hGolw3VuQD/TiKkAqpM3TIEd5gVYsQEqkkGk0IghAyjImFn5SSlhZnTVecB4SQXW6CwLtAyEQ/mhND/Ay+G2fSSndp13HkajKdUuQlLsTxJAQoqSmLEQVFp9sQ0XJXQMDjvUMLzagoMWaOklGRUi0XKBW1AgSPMSOcczhnybK8H+mpm4ZROWJjY5Pj2YL5fE5RFicdB6lA+D50UEgJIuoxrLPYTqMSZLzWobueWkeNh/ex66B0/LjFHXkR3Ti8w4c02gZCgkAipOgICCyXS3Z2dijLsi/m7wyvS10C56LGBWTfnUjEIqGuY3fJd3qYLNPdWiNShgXQu0A9++yzPPLIIzjvuHHzJg8//DAf/MAHeOWVV3jxxRfRSpFlGUeH0dlr0iWKb21u4qzFGsOtmzepViu2trbI8pz5bBbDFZXi3LlznNvbYzafc/3GDaqq4oEHHuDcuXPcvn2b1WpFVVWMRqMhR+OsEQLlzeasVzFgwIB7CcHD8YLixcu8/kumPKTdIAgfcF/gLRMNEUSsJFNRGLrxlvT9i0CUaAN8ccf5uSAQEBRSiDi9EzzOWhAeqQVSa2SekckAIiBlQAqoW4PMHGWmIThM2+CtifP5RYk1Bm89VmUQZFcEhq7QznrxtTUtQgaEDCgt0E71u/Or5Yq6rvE2IIKM19QJtNAgIJc5lAItM47qQ4w8cZIqJyWmNQQRaEwTLXm1pG0MPoCzBoGkDZ7lXJPnMZtBSHpdxXK5ioJuKVBZJAd120Yti4xdDdu5KgFkWdanZBMEwYVIYILtR56C98ius4NMHYxOQB5OxOAQovB+TawPvheKhxBYrVY0TcP29nafi2Gt7btGaQQpz/PumLI7RiAE17l5pc5F1uknTlyv6rruHcPKsuyPm2xnlVIcHx/z3HPP8fDDj7A53eS5p5/l9Vff4MqVy3zkwx/h+PiY69evU2ZlDEg8PKZtW6RS7O3uUa4Rtzxpaqoa2xqcMbi2ZXdnl+nGlK2tLV595RV+4hM/zuOPP87m5iZKSlaLJUVe4Iz9kv09GTBgwIABXwKEQJjPOf8zln9w9JV89MKPDoLwAfcF7pvRqRC3/7txotCJsWMxK6VAdn/fnfdYH7DWY4xHypzRWCGFJ3iDluC70SnfOReFAEppVHeQmAA+7q1YQwjoTCNkLKOzLO7ICxO1Em3b9laoAggudCF/kcQpFJkMKK3xIrZcgwSlFZnO4thV8AQ8UkXHIwI46zGtRWUSIcC0FXmekWcZtnNJEkLgQ4gBfTojy3LqpomjT9biWtddv06DAVjvo1WwVmSIqNfoMjkg0kUh17UYHWnghCClDkR83olN7GmIfixqtVqxsbHRkYnQHyNlZJzoPBKRCf31g+g0FsejaoyRvVVucp9KmoiqqiiKok/yBmiaBuccdV1jreOp976P3d09nn76aa698QYXL13i6pUrfOiDHyKEwOHhIa+//jrXrl1jsZhHt6u2Jc9ziqIg6wL/xmVMeG+bloP9A0xr2LGG7c1Nssce4/j4mBdeeIHt7W3OnTuHFFGHYieTd/hvx4C3Cz1v+H8dPcjv3371rJcyYMCAewTBWqbPHPH3PvcVfMfeD/H4kKcx4D7AfUM0EsLamE76c7QmXdMGyDj6JLKMIpMgPN61mMYhpERpFYtRIcAHmqbtRrFsP0ef5vlT1yKN4oQQGI1GOOsIgT5/wRjT51Ok16W1AP0ue1EUfVHdW7N6F8nJWpZHlmWY1uJdRZblKKW7HA+LVDFI0BiD85FAGGNRPjpY5d01Sc5JKfdDdJkh3nuENWiRx+vR6SRSGN26/uL0xefU4/Fe+DsIwp33Ko65zedzdnd3GY/HrFarngik67RuU5vu4/r3Ex3IyXulRO50fslyNiHpOBKRWS6X1HVLVdU8+eSTPPnkk7zwwgs89+yzvPH662xvb3Pp0iXOnz/P+973Ph5//HGWywWLxTw6Vr3xBjdu3GBzc5OrV6+yt7fHZDLpR9KqqmL52muMxmP2zp1jb2+vd9W6fv16/1mazWZ8+CNf8Qv7CzDgHYH/mc/yV//7f5/f/yf+/FkvZcCAAfcIgnNwc5/RT53jRz76KA9MX2Ms8p//hQMG3MO474gG0GsI1ovRJCz2XgGBTEnIFN61WNvgo2USUkb726LIUQhM2/ZkJYhY6Pfaje6xVCAmwiE6fUMSVwN9UZ+K4HUxeRI6G+v6fAhjDHVd91a664nTSimUVCiRYVuPzmJ6eNO0cZxHKnyIzlDWOqTWKKVpW4vOij7HIRGddOz1YD/nHM43SKliEN9aZ2Ed61qKAD1BWC/434xkpOckYXbSVWxubtI0TX//EhG6042pzyvx/tQ1TV/r4X3rXRK6NQoh+syKyWRCWZZorbH2JG/j8ccf5+GHH+bWrVtRyH3tGi+++GL/mosXL7K1tRl1KB0hMsYwn8+5ffs2Ukq2trb6kEdrLcfzGQeHhxzPZuzu7lIURa8vSeNidV1/8X8JBnzR2P3UjP/Ds7+cv//kPznrpQwYMOBeQAiExZJzP9vyN17/RXzTky9wVeihqzHgXY37h2jcIVqXUnQz81nvcBSTv9suCSIF7zlcJ4DO8wxJwLuWtq6om7ovRuNoFLRtS1VVaK1pmoaqqk5C/bpi11rbi4CVOinEE9EAekJire13tQMCuea0lELhUgGaimUpJVJItO6SypVG64zgBVVd0RrTdTU81npkcAQvQEicb/oCPAmmsyzrbWWBNaIRO0HrFGGdiLwZIrk63W1IP99JNu507ZrP50w7kXXKpUivS9c3vkf4vGOvk7Z0fsluNnU20jVP411aa8qyJMuyfrRtPJ6S5wXHx8c8/fTTPPzww+zs7PQdDyll70B1fHxMlun+g5d0H+k5RVHgnGM8Hkcik2W9ULzq7G7Xz++NN95ASsnVq1ffyid+wJcY4ac+zTP/v6+FJ896JQMGDLhX4FtD+cI+z3zyKp95eI+LowWKgWgMePfiviEaMTojFaapiJVIGQt+H9zJjvxacZcsUQXQmIa6rvq8g9VySdtEV6qyzGlNnOVPSdB1XZ/afU4752kcJ89zrDnRLKxb32ZZ1he9xhiqqkIqjetsWNPr0yhVIgLpe/ABgkDrPBIIG3fUszzH1A3eg1IZSqVQQY/SkazUdd0Hw6VrkLoF6/a48RqeHk1KP/fXfd3GFrosjTe5P1/AUCAV/Om6bm5uUhRF7yi1/rz17gXQj8CtB+cBp563PkZVlmXv6JTSw6WUlGW5do4n75XcoKbTaU9S8jxna2uLtm07MhQ1OevXMX1Za5nNZjRN0yd/Tzdj0KDtcjiapmFjI+ZqGGN4/vnnOTg44Fu+9Ze/pc/9gC8tHv/Lb/BLftGv5V996HvPeikDBgy4FxA87B+x98lL/H9/8cf46JV/ygWVnfWqBgz4kuG+IRqQgvrWAvs40QD09ra9UFl0BEMDlqZpmc/nzI+OWC5ntHVzQkJEtENtTdNrMZbLZZ/LkEiDlJL5fN7voFvjPy9vI9nCrluypsLWhViYGmOYTqfs7e31pAToXaFOksw9xnpA9sdVUqFlzODIshwpFa2xsTPRWT0l29tUpKeiu+9kJEF3Z+G7jvWuyud1KADZEZj1cbL16/5m5CH9nELxUodlvUt055hU+lonGr32pjuP1LERa+ecCMdoNOqv6dHREUCXZRGdrZJD1WKxYLlcopSiLEu2trb6hPHU1Wnb5pQ+JB0/yzKstT1xzfOcum3Y29vj3LlzeO85PDzkxo0bvYBcSsn+/v7b++AP+JLBvvgyb9z+yrNexoABA+4VhIBfrdh+dskPPvce3rjwA+xINzhQDXjX4r4iGpAsU090GqlQxXHS6UhFK+CDp1qtWMwPWcyPaeoa5xxZphE+EFzUXUgpyXTWF7ypyMzznPF43AuLm6bpiIGA5YmtakoeT2tad2YqyzKmTxvbO1Ql0XIacUq/X08wb2uLNdGtqixHUSNgfRS+C4FSEqk0gUQKBG7tvddHiNI5redREAJBfP4YVEIiAOmaAEh1ct3f7HVvNkIVr3ccl1oul91bn+5GfKEuSiIUqZuURN93XvfeBasbV0tdnXQOJyNslqKIHY6Ut5HI3jrBSC5a0WEshv9Za3sCmbQXd17buqq5vb+Pv32bzc1NyrJkuVxydHTEarXq9SID7h488ds/zW/4l9/Edz/6A2e9lAEDBtwDCMaibxyjn7/C5z52ifflN2FI1RjwLsV9RzTuxLqrE3QuVN7jfMBbR7WqWK2WtMYQa/HOPtYHnEguU2UkJTiUVrRt2xfp6za3aed7NBqxWlUAfeG5TjBScZyK39ThMO5k9z12LMxJt6PTaiTRdNO0eAsiaHQeKIoRQkShu3Me6x1KaqTS3fsohBQxZbxDKuJTJyAV5HCHe9Ta9VzfuV/vUnjv8SHg1rou69/vHLu6szOSiv00ZrQ+1rVONtJ6112+koYFTgTV6yQiPS+RztTNqKp4j8bjMdPplLojmanzYYzpyUNyG0sp44mY1HXMD0nOYsvlktlsxvHxMdPptB+L6olK22B9DECsqqq/7ql7s267O+DuQDAt1g8z1gMGDHiLCJ4wm7PxEvzY4nG+dfIGhRjGpwa8O3HfE42+SPWnR6cEUbjsg0eq2FXIFJhMYU3DYjaLNrf5CCWjG9FkMun1E2lnPLkXRWvUem1kZo7WmiLX/WhSCCcp1m3b9sVwHNnJUM3JznwIoXdfSmM7p87JeRyC4GWvF4np6woEUVsiHVp7YoMjjoG5zgkrrWfd3SkduycRUoKQPdF4M+eo0xebftJqnVh8IVvbda1Fen4anVoXgK93TO7M1EhIz73ThSqtJRGE5AyVZRllWZ4iFEIIsizvEuDptSPGmN6lqyiK/n7FTlMKUdT9NXTO0TRN/7rU9ZpOp2gXc1HGk8mpz1CWxWyWzc3NflRuwN2Dn37+YW4/suScGjJOBgwY8PMgBMJyxfR1w0/ceojj847pkKkx4F2KgWj0Y1InO+haa0Tw4DLKoiDLBMFbbKNoJNR4Mp2hcokIsfgdjcZYZ/qRKaUUVVXRNA2LxaInIGmMKoSYp6FVRtM0fQcjOUmlYjdZn6Yd77RrntYOsRBPIXNpnKfIC9rGY00aExNUVYPOMryLblMhpO+BEARKK4Q6ndGxbhmb1pEeD303Q5y+liGc6mT03QklEFL1Yvs3s7a9k2Ssd1TWA/bu1IGsj1ytj52tdzrWCVM6drpX60RmsVj0YvuyLFFKxcwR52LeiDK9CL+3K+6IX+pwTCYTptMpIXiMaXtB//p9TiQm6V6stWRFzngywXvPZDIhhBCT5a3l4ODgVN7KgLsHT/72n+J//+zjfPvW9bNeyoABA+4BBGspbla8fGObg6cyrg7N6gHvUtz3RGMdqaAlBCQBGSxSjLBOYk2FMyez/+WoxLWWuqnRSjMalRzNosNUKlxTIay1ZjQa9aLk2WyGFILRaITo9BFlWfYOVWnH21p7an2BcBLG19myWmsJPkSSsFbASqmQwtGKgO/0F8GD61K8o+uRWxNlBzwe4U+cr9L40boYfJ14+BA6vcfp3IpUwH+efmJt3CqRgPVxrP4834RspJ39FDr4Zk5dqcuR7sGpsMGOZKyTj3VdRjrf5Aq2XvxvbGwwmUw64fYKY8ypwMD1LklKHD95zPWfrWRnm7JPyrIkz/N+bdZaGtNiXbRUzrKMjY0NnLWsVivquma1WjEej7/IT/qALwX+5Hf/Or7tO/5HtuTorJcyYMCAuxzBB9R8hby1wXW3yQdYDSqNAe9K3GdEI9zxfS0JPCiclEip8TIgpAOpkFojvI0ZFlKR5TltqzFNy2K1IFM6FoPO0baWWGMLXKenSJapcTe8pVqtODw8YDrdQGcKbwNZpiiKPO582xYho2g9ahJqfPB4F/DOoVS05U3WuVLEsamiLNFaIRBdoSuQhcbbllVdI6WiLEf4AHUD2q/lXAgJIirkE/lY7xbYrouQ5Rm5jGGEviMR9g7dSCrQYW3kqdOdeO/RUiKEPFXg39nVSOQhPZ70DkmvkMjU+vPT9/WRrESOUoDiugUu8HnEoyea0K+3qupTOo/Y1cnZ3NxASsVsNmOxWADh87oa8Tg2ksIQzQWsMRjTQksMOhSwMZmysbnJeDTCeUfbWfe+9tprlEXBxsYGIgSauqZumiGw7y7FQ//Nj3D7dzq2humHAQMG/HwIHrGsKPYlL7XnMOWLg/PUgHcl7hKi0YW+dbXmnYLg9QJy7SVv+z1Ojn0yYnMypw/eB5x0WBxBKESWE4THWYkXEpFptCoIS0HrDEor8jzDOkPbWLwJgAQCSmhG5RgBeO9oTYtpa46ODrGmRSuQMiC1IASBkAEhA5LoBmWtpG0amsZinaVtDa2NGg1CLL7rqsF7gXOSPBsThOisdgXWOoQEnUmou+BBp9B5RhYUQWRQFlF/4GLwnnWe4DuXJecIAgQCHzwIMM4ilERLiSdgvcc7d6qzEFI3QwqCSGRD4kV02jDG9uNG60Tjzs7Guv4i6RvW8zzSyFEiEHd2NtbJw3oHZd2eN75HvO/eW0KA8XjC5uZWL9z23lLXLSAoirI7hsW5UZeZsUGWKeq6wVrThTQuWS4X5HlGluUgJaa1tE2LdSbqgQSYVUXrHK1xBKmQKgM8pmlQSmPqhsPb++xnGaPxiLZpaU1LtVy93Q//gC8Tvv07/yP+5V/6S2e9jAEDBtwDCHXD6Fbgc9VlzOZzZ72cAQO+JLhLiMYJ7hyb+bnw5hFvP+fRT17bZWmcjPqkwlejVRSBu2DxIe7IS6XxweJcG9O5tYIuddtZ248yKZWR57rb9XdY29K2UWwevCcEhxBxPMe0bReoF9ejteqLZOcsPji00sggAI9pa6QEJfOugFYQoG0sbWuBjCyXyETOJF23JKOuG4xpUVqilcAHGc8/SJAB7zuttji5DwKBkAIZJEHEx633ELoU7kQUfOg1Lmn0TKiuUwEEogYmdWbuFGPH+3HSlUiPrZOFdT3Kna8BTmk3ElIHYl0cfspdrCMa8XMQaFuD1m2XeyLROovk0zmapqVtDVLG/BVjok4jJYefO7eHUicdjrquqeqaqm7IyxKlNeMuN6Oua5omZq4YY5m7BdY5lqsVwTtMXTOdTinLkvFoRF3XHB0exfRyddf9lR2whuL7fhoXBlHngAEDfh6EQGgaJjccnz26xPz80A0d8O7EULVw2mJVKYXzCukV2K7glgKtM4xr+l31LMuQARQSY1OORcNkovuRHNcF4Z0UujG8T+voSFTVNWVxQnbWd92NaftAwDS/H4lAsrvNMK3HO4u1hrqu8N4hZIFSoh9Z0lqSFzlNG3fbVabRWd6NEYVO0JzhrCcoAeokGV1KiZACH0IkGiF0AnKLFBIpACmx4WRUqrugILtxqeA7MXq8jsGeZEbcmdj9ZuLw9d+nn9e7H3fa06ZuRdLJpOetB/+d7np4hDgJ9UsJ5HBCXpRS/fgUHXVKeonRaMRkMsE5x2g04sKFCzzwwAPM53Nef+N19vcPok1tZ1GcxP1pRCvd8+RCFbzHNvHYW1tbbG1t9W5mEJ2uUnr5gLsTi9CwJQadxoABA35uBGMpb9W8eGuXg8c1l4dNigHvQgxEg5Ngud65KJzkhsffS0TaGe80GFJqUIFgHda6PpVbykgcmrbBmKbPqEi762VRRtcnF0XNRppedLxu1ZoK4zRmpJRiPBoxGo9RssCaQKMdRjqEAGNNHMvBkWWKEDxKapAnXQZjDHXdUArRjwxFN6jYlVBKIqSK3Qfv+sdEZ0vrvO+6Eg5kQIqOKKwV8QBSiNjDWBOLSyljhySTn3eOb2Z1u07+kuYj/S4RlTtTxZMG406h+J3HTtczisVjN2s9V+NOW911oXkkMiePGWOYz+cnaemdyF8pxeXLl9nY2GT/8IhFZ2/ctu2prkxKjV8X3Gd5Tts0zGYzsixje3ubsix7C9230u0bcEbwjt/0sV/DP/rp7z/rlQwYMOAuR3AOdbDEXT/PG3aL92WDIHzAuw/3PdFIRd96zoL3Huc9ohOAe+8IITozhXCSIC6EOHFegt61qKpWLJYLvHeUZYnWUbeh+4RuSVVVCCFPBcAl+1alVC94Tu+jtWYymVKUYwiSJmvJ8qxb94m9qhAQQrTCzbQk+NOFadu2cVRLps6LQirVPS9qHpwQSCGQOj4m+8JbYF1X6DuHk13R3pGTNE4lgNATgY6oiW4MK1NrTlf+1L24s6Nx52hU+nMq+O8MEFx3ygJOHX89ayNd0zzPUUp3pMv3blLJKrht296x6uTYofs8nOhA1onPuujceY/Smt3dXZTWzGYzqqo65VKVUs9Tx0QAitDbGadRq7Ise2vk1N0YMGDAgAH3MJIg/LbkdbODHy0YEsIHvNtw3xONO0PcoCtQA507ksa5KJh2zq9ZtEaNhBAeJWPGg/eeuqmoqhXL5RIIWGtip6DrbJTlCBA0TYtzHudMP6+f53kvcs7z/NROvpQSJTRKKqyNBXaRZ0gRhd9N07Iuck96Ex88YS0t2/por5rlXaGtdXSd6ggUkRsQva0EKukjhEBxYukaOiG4lxLVESznXKfPUP11Wr/OwZ90QdI613UVdwr+14v2ddF36g7d2a1Y70rdmanxZqTGWovWWT8yleyE122CE9lIHQ8pU7r6CdGRUvZuU2mEKnUpAiCU/jyxe7LebZrm9H0WghB875TlnKOu6zXtzkn3bMDdiVDX/Lrn/j3+7hP/7KyXMmDAgLscwVpUAytf4EL4hYhPBwy4q3HXEI00qnTnuMvP9fx36m/kegGYxmo8HokiAN5FETPInlQ4IwkiWbXGcDdrLVW16jsU4Fmtll34W9G5Jwna1iKEIoRYNLZt2xe+iVSkkZo0OhQ1F5Kulo/EJo8C8qpqaNvQh9ppnXejQRqC7bQamrIUVE1N2xqUPhFCh856NQrYPUoKlBQIAhLwUhC6MSslJUpJQvDg4+6+CvpUQR+c67M1QCRPMQB8iJ2iN7vuSa9wZxDfnQLwdetb+LkNBO4cofp84iE68kCvxVitVqfITeqgxPc7EZQnspHWY61lPp+zWq1OgvwA6wPG2l6HkdaQ3u8UwRUCKU46OKm75ZxjsVj0KeUD7l64o2OWf/TD8HfPeiUDBgy462EtqoaVH4JYB7w7cZcQjVRwfuGE6P6ZfdEoEO8Az0hF43pytHMOLFjraFNxSOwIeJGBz2nrGiUlQmd47boMCkMSCwsRuk5D04mAC7wPSBm7IVmW98LqVKRWVdWLklMRelJ8K4TUOOc7UXmOEArnYmhgfM90HhKt8lMFrdIaKRXWO0y38940TXTX8gGCQAqJIKB1FMR77xEEFILW275wliLqMHr7W++RKnYZnPfxOsgT16lEOqSWdLrxz9MarBfsyco2FdSpg5E+D3dqO9YJy/q42fpx11PA122T15+TZRkATdP09219XCsK2CVSfj5JSM9LmR/Q6S+UwhiL7d4jvS4lhK+TqNQVkloh1joY6ZxSl2XQaAwYMGDAuwAhgHPoOjB3JR7/879mwIB7DHcJ0TjBmwmC4fPHarr+xzv+/qnAbZqWqq5oW4NAoFSGlOCEw7WyE4hrpPZ4nWOt64gBKAVSxvyMOPcfA/SapkEgkUKRZzkQdQHR5tRQ1zWj0eiUKHl9tCi6VTU4ZyjLEqUUTZOck+h1GiBgLBDkfXGrtcK7WExn1uJ8wHQp1IGAkrqz0g1IAVpCLPM7AibABRdzMkJAigBSIjjdVQA6u1vfEw0hU//pdBdifcwpkYH0eHJlSl2e9Od10vBmuJN0rBMYOOkUpGR0cH2HqF//mlYnyzKKoug7T97bfgwtuT/d+T6p6+CcQ0iJ63yDkxPWFxKzK6UIQuCshTWimToqIQSKomAymbzNT/WAAQMGDLgbEZxHtmDCoM0Y8O7EXUM01sdrvtxY3922XSaG8w4hJHleooRHSU+wAe9UJAp5iQstzrVRDN6RjCzT/aiLlHGW3hjLcrGkNS1axRA3KTV5XvZjU1FEXp1yOUojPidFbNRSOBc6ciEBj5SCvMg6kXnLcrEieIGYCrIsjlMFD1Y4suApAzRtizEOZxt8gCKXZOokR0NKEcPCu25KlmlIo12A1BqEIjgRMzjW9RJ3XN/+sa7r8nm/v2OHft3Wd10/s/7z5xPPz7+Xd45MpWOcpH/b3nVqveORjmGt7cXh0ZZYs1pF96g4ilb2CeDr3YlIAJtOoxH646fxqzQal8ao7hwTE6i+u9E0Tf/83d1dpIxGAgMGDBgw4F0A75E20Pi7phwbMOAdxV3yyf58Ue/PV1C+Y+8cTge5pWJWSU1ZagSOECzB1rTO42w3ry/iTrVds0cVBmSQ6Ewh25QPIVitVsyO5wghKYqCEALj8YS8UGid9QX1uk1qdKvSWGv7cajgQUqFVrrb5W5p2wYhAmWZU+SKEFYs5hVVVXdi7xIpY5aGlA4fVe5Re+LbPksiXmtQorNyDSA6NyYpJUKJU/2jeGaCIARerLlFpWspu8J+TdwWOhF1uu7r39c1C35tzGh9jGrdQvYLYf05b9YRu/P1Kbm8H1uSshflt23bdxOSM1TMwRA9CUhBjVLGe7sudO9OOpKXOz7XwKnxq153IgR5NyKVyE9ynqrrms3NTXZ3d9/ux3zAlxuf+Fk+9n/7ffzkH//zZ72SAQMG3M0IAWnB+qGjMeDdibuDaIT4n1PjN1/mOfRU2CUrWaFCnJf0sai0ProSWedoG4OzLW3Tgg/oTGM5yZ2Iu9ZJyKtjCrg1EGLxaYzr8ioyhOBUzkbaRU/i8KThSNa5KbAP4XDOxOMSx6qkyGhbT10ZnEt2twGlFUVRIoTqiIbEOk+W+WjP2xXLyV3KeR9zNAiojjAE5/DeQWftGlLBHlR0oOruV7TK9fF97ryXoRuruoNkvJlmYt1hav3+0BXjX4hs3NnBSF9KnbRr1kevYvfoxIUqYV2EncT9SRyexqzWyc+67iJ1xay18bpIF9297nhNIi+nxsgAJ06I1/q9r6qqNx0YcJcjBLJq0NIMGDDg54H3KBM7Gu4MJzsGDPhS4e4gGh1616I7CtAv8Ox37H3fbKdZhID1AS9Ev3svZNxhF1LStoa2bciURhLJSF4UBO86C1JL6QPWetrWMioFq1XV2dAKmrpG4MhyjZTxHeLMv0BKseZGBaPRKArJxUmehZBR3J1WFxXXoJQkyzQh2ChCdpYsz9BZQaY0Tmts72gk0UrirIjrtg6pA87Z6A6Vwv66sD6RRN2is8INJ7ki62QhCtg7QhLWtBoirfXNx6XSvV53YfIhEHxciwyyk9qfununPhNSSjrBSjxGd19tGlsSoksrj1a7Yq2oT+/tnENr3Tt/3ZmRIaXqiUHq0MDp4MB14hR86DtT6flSyn506lRgJPS6nUiyTkIIky4nJZcPGDBgwIB7G8F5soXj9dUWTRjE4APefbg7iIaI/xHQuyzdWYiujze90+NUaVxnfXyHtIPuXS8GVzrD2wwpMwLR3tYLAE8QAq1LAJrWI5VFa9CZI8sKQhCopo0z9wicknivscYhlaIoRjSNIQTZibrr7s8BpTK8A60loQuBC8EjUORZiRQWQZfuLQVFmUHwGBewbcB4g84bxiMR80C8RYqAkqCVwHVp5tYZhMowIeADZCq6Jrmu4Peh64ggEFICEtu6GGTICdFQ8iQZHH9iWxyL8xMicee42ptlXUCIjSAhQMk4gtQdr+M6KUGxe484tkXqFMQjdONg8XmJcERrX/rP3TrRWScBp/UdmjzP+sdS7kkiEGncq3fQAnzoUtXvCBh8M9cq0Z2OtQ4hfNfVgLY1LBbLtSyWAQMGDBjwboBeGG4spsx9YE96lJA//4sGDLhHcHcQjY5kJBnxOpG4cxTmS63ZOCl+HQSPD76rZmUcEwoxqE9neT9eFLxD6M4WV4ALEiE0UoPWhnIUC8M8z/FpFEpFYXdVN5RFwXS6QZ1FVyrnHNY4tIquVd4FbHBIeULAnI3ZHpkuUFJjbSp2A5kSuExifMA4j7cGIRY47wBP8A6tBHiBl3EtrhN+Gw9BSIKkI1Iy3hchCXSkIkQL3L47wWn9gRSyJ4zdE75gA+p0F+SkGA+JAaR/cKWM+RyAkF1noyMOvcJcRIKTAgcDcVotrI1gueBxLrpMZVohO4K2jnUBfrIbBrpQP0MInvF43IvBk4YikY5TuhMRSY2CfhQrjU/BSQdlndRITghZCK67eJa6boA5eT4kgw8YMGDAuwLBo1aGo+MJt9yIh3QYssEHvKtwlxCNL4y3Nkb1xeHUmEsqmOMj0AmiYwHpQaYRqmgH632cw48dAXfiLqQUGoHWGVq73jlITSbxvYSIIW51Q6YzsizrcxtSIZrOOY3RrI/qJFejlCB9In7uugsyjlL5EHUBq8qDCJRFhtYq7ugHcNahpUIogemOr7RGhpNdfNF1AGQ3KuV997ykR+m6BUlDsW4tlVZ0MuF0ItReJxXryd8n9zz+J72/cw4f4j/Cd1rDrou5e5Kx1jHouyqcWBhH21/Z2+/eGcCXOhtZlq1lWNCLwEejEaPRqM9e8d739yXdN6Xj+FN6j/XP2HoH50RMH8nR+ucxaTKS9mPAgAEDBryLYD1+kXHTbWDCEZkYqMaAdw/ueqKxjlMuQp0m4UuFNK0D4JzHddaucee5C5VTihBOZu+jNiPuagtOk6TkSqTHYwihL0hTsXky/y97IXL6c/q5aUxf0FZV1f+cdsqB3qmqH0/quwWxYHWZIpNxNx8fsMYRMoEU8Rw9p4v3k3OW/RrjmgVSdgTBB+iChoKPY2T9xVsr9gFEOK3DuHN06M4MkTT+dCcZXB9DuvN4b2YkcKe1LEQtRHCeIiv6x9a1Jnd+pWRw76NAPIXzpc5GTIDPqaqKpmlojUGFEIX/7mRE7E7x+2mELthRniJf6dxOEsoHDBgwYMA9D6VAgqwkt+wmTbhNEfQwPjXgXYN7gmisF2drv+WdYBqpaF3fIZdSIroCOlqyWoy1UZTcuQURCkQ3hmTFHW5DzoFfs8KVkjwvyLMcJQR1XXdjVqIfzfHe965FcDLrv+4+ZIzt7V7TCM66gF5rHXfRlYrjQCEV/ALwnYOSQSlBrmNXRqmo73A4lA94TkbU1sd61tcULV0dznmUjAntvbaGTtitVX+X1keqQid2OzVq1b32zqI6JYqvazruvF93FuN3HrvXjaxdt/Q65xzeOiQn5COd57oDVro3SXuRuk3GmP5r3SEqy7JI6tqWtmlAxmT2dMz0+uQmdUqbIkQka2vnnK57Ih8D0bg3sPMPP8NjX/N7eOHb/uJZL2XAgAF3I4RAdAm/qha81u6yDM8xZRifGvDuwT1BNBJ6spFm89+hY97pOtVrBoLrAvLibj8EMi1iWF3I8N5gWhlHlLynruvekjZ4jzNx5EUphexIke8eTyQhuR01TUNd130w3HpX4WS3X5Fl6pSlaiqEkytSOh4CpJIoBcZG9yfn0viNIJRFdJXSCinjddCZBiStNX1RD/E1icSkMS6X7G55ExvaEFD9P5Mn3QUfPMHxeYVyIkvrhEGIGBgIyfHq5Fqt27um190p2r6zq5EK9DQ2JWXUyITQdTbWnp/yMNJnInWeYhp4jnOW1WrVdzLaNor814MG03qdNZGgvkkH5s7P3cn1ODm3dKz1TtdoNIjB7wW42Yzy1lAuDBgw4AtASFCKoCWqErxS7XK8pdiVbhifGvCugQhvNmcyYMCAAQMGDBgwYMCAAV8EhhmMAQMGDBgwYMCAAQMGvOMYiMaAAQMGDBgwYMCAAQPecQxEY8CAAQMGDBgwYMCAAe84BqIxYMCAAQMGDBgwYMCAdxwD0RgwYMCAAQMGDBgwYMA7joFoDBgwYMCAAQMGDBgw4B3HQDQGDBgwYMCAAQMGDBjwjmMgGgMGDBgwYMCAAQMGDHjHMRCNAQMGDBgwYMCAAQMGvOP4/wMMRZGLEkohGQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "cell_type": "code", + "execution_count": 16, + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-18T04:44:07.845216Z", + "iopub.status.busy": "2024-08-18T04:44:07.844557Z", + "iopub.status.idle": "2024-08-18T04:44:20.795688Z", + "shell.execute_reply": "2024-08-18T04:44:20.794670Z", + "shell.execute_reply.started": "2024-08-18T04:44:07.845180Z" + }, + "id": "8CUYlGTp00Fb", + "outputId": "7be153eb-bb86-4d6f-ca3a-d685613be5a4", + "trusted": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAEOCAYAAAAOmGH2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebRk2VXfiX/2OefeiHjv5cvMysyqyhpUKpWk0sAgIwxtQKMl1BqgMQaZwatBoDbYFgK1MN0/vNoMZhmD6bawGW3asNyWFr3UA3SzZGMGYRC21dgaGKRCqlKpVKohK6tyeu9FxL33nLN/f+xzI+JlZUlZUKAq+Xy1Uu+9GG+cGxG1v2d/v98tqqpUVFRUVFRUVFRUVFQ8gXCf6QOoqKioqKioqKioqPjsQyUaFRUVFRUVFRUVFRVPOCrRqKioqKioqKioqKh4wlGJRkVFRUVFRUVFRUXFE45KNCoqKioqKioqKioqnnBUolFRUVFRUVFRUVFR8YSjEo2KioqKioqKioqKiicclWhUVFRUVFRUVFRUVDzhqESjoqKioqKioqKiouIJRyUaFRUVFRV/KogI3//93/+ZPozHxNOf/nRe97rXfaYPo6Livxg8/elP55u/+ZtXf//Wb/0WIsJv/dZvPWHP8WT/3qkwVKLxJMMv/MIvICL8p//0nz7Th1JRUfEE4u677+ZNb3oTz372s9na2mJra4vnPe95/O2//bf5/d///c/04f2Z4/777+f7v//7+cAHPvBn8vgf+tCH+P7v/34+/vGP/5k8fkXFUwljLTH+m06nPPvZz+ZNb3oTZ86c+Uwf3lXjXe96VyUTT3GEz/QBVFRUVHy241d+5Vf4a3/trxFC4Bu/8Rv5/M//fJxz3HHHHfxf/9f/xU//9E9z9913c8stt3ymD/XPDPfffz8/8AM/wNOf/nRe8IIXPOGP/6EPfYgf+IEf4KUvfSlPf/rTn/DHr6h4KuIHf/AHufXWW1kul7znPe/hp3/6p3nXu97FH/7hH7K1tfXndhwvfvGLWSwWtG37uO73rne9i5/8yZ+8ItlYLBaEUMvYJzvqGaqoqKj4M8Rdd93F133d13HLLbfwG7/xG5w+ffrQ9T/yIz/CT/3UT+Hcp24wHxwcsL29/Wd5qE8qzOfzP9dCqKLisxGvfvWr+cIv/EIA3vjGN3LixAn+l//lf+GXf/mX+fqv//pH3f7P6nvGOcd0On1CH/OJfryKPxtU6dSTHN/8zd/Mzs4On/jEJ3jd617Hzs4ON954Iz/5kz8JwB/8wR/w8pe/nO3tbW655Rbe8Y53HLr/uXPn+O7v/m4+93M/l52dHXZ3d3n1q1/NBz/4wUc91z333MNXfuVXsr29zbXXXstb3vIWfvVXf/WKusr3vve9/Nf/9X/N0aNH2dra4iUveQm/+7u/+2e2DhUVT1X86I/+KAcHB/z8z//8o0gGQAiBN7/5zdx8882ry8bP/V133cVrXvMajhw5wjd+4zcCVgi89a1v5eabb2YymXD77bfzYz/2Y6jq6v4f//jHERF+4Rd+4VHPd7mu+fu///sREe68806++Zu/mWPHjnH06FHe8IY3MJ/PD9236zre8pa3cOrUKY4cOcJXfuVX8slPfvLTrsFv/dZv8Rf/4l8E4A1veMNKzjEe30tf+lI+53M+h//8n/8zL37xi9na2uJ7v/d7r3i8IzY14L/wC7/A137t1wLwspe9bPX4l39vvec97+GLvuiLmE6nPOMZz+Bf/st/+WmPvaLiswkvf/nLAZNyfqrvmZwzb3vb23j+85/PdDrluuuu49u+7ds4f/78ocdTVX7oh36Im266ia2tLV72spfxR3/0R4963sfyaLz3ve/lNa95DcePH2d7e5vP+7zP48d//McB+x4ca51NGdiIK303vP/97+fVr341u7u77Ozs8Jf/8l/mP/7H/3joNqOs7Hd/93f57//7/55Tp06xvb3NX/krf4WzZ88+/kWt+JSoHY2nAFJKvPrVr+bFL34xP/qjP8rb3/523vSmN7G9vc3f/bt/l2/8xm/kq7/6q/mZn/kZ/tv/9r/lL/2lv8Stt94KwMc+9jF+6Zd+ia/92q/l1ltv5cyZM/zsz/4sL3nJS/jQhz7EDTfcAFjx8vKXv5wHHniA7/zO7+T666/nHe94B+9+97sfdTy/+Zu/yatf/Wpe+MIX8n3f93045/j5n/95Xv7yl/M7v/M7fNEXfdGf6/pUVDyZ8Su/8is885nP5Iu/+Isf1/1ijLzqVa/iy77sy/ixH/sxtra2UFW+8iu/kne/+91867d+Ky94wQv41V/9Vf7O3/k73Hffffzjf/yP/8TH+frXv55bb72VH/7hH+Z973sfP/dzP8e1117Lj/zIj6xu88Y3vpF/9a/+Fd/wDd/Al3zJl/Cbv/mbvPa1r/20j/3c5z6XH/zBH+Tv/b2/x9/4G3+DF73oRQB8yZd8yeo2jzzyCK9+9av5uq/7Ov76X//rXHfddVd97C9+8Yt585vfzD/5J/+E7/3e7+W5z33u6nlH3HnnnXzN13wN3/qt38o3fdM38S/+xb/gm7/5m3nhC1/I85///Kt+roqKpzLuuusuAE6cOAFc+XsG4Nu+7dv4hV/4Bd7whjfw5je/mbvvvpuf+Imf4P3vfz+/+7u/S9M0APy9v/f3+KEf+iFe85rX8JrXvIb3ve99fPmXfzl933/aY/m1X/s1Xve613H69OlV3fHhD3+YX/mVX+E7v/M7+bZv+zbuv/9+fu3Xfo3/7X/73z7t4/3RH/0RL3rRi9jd3eV7vud7aJqGn/3Zn+WlL30p/+7f/btHfQd/x3d8B8ePH+f7vu/7+PjHP87b3vY23vSmN/G//+//++Na04pPA614UuHnf/7nFdDf+73fU1XVb/qmb1JA/8E/+Aer25w/f15ns5mKiP7iL/7i6vI77rhDAf2+7/u+1WXL5VJTSoee4+6779bJZKI/+IM/uLrsf/6f/2cF9Jd+6ZdWly0WC33Oc56jgL773e9WVdWcsz7rWc/SV73qVZpzXt12Pp/rrbfeqq985SufkHWoqPhswMWLFxXQr/qqr3rUdefPn9ezZ8+u/s3n89V14+f+f/wf/8dD9/mlX/olBfSHfuiHDl3+NV/zNSoieuedd6qqfcYB/fmf//lHPe/l3xHf933fp4B+y7d8y6Hb/ZW/8lf0xIkTq78/8IEPKKB/62/9rUO3+4Zv+IZHPeaV8Hu/93uPeUwveclLFNCf+Zmf+bTHO+KWW27Rb/qmb1r9/c53vvPQd9XltwX0t3/7t1eXPfTQQzqZTPStb33rpzzuioqnIsZa4td//df17Nmzeu+99+ov/uIv6okTJ3Q2m+knP/nJx/ye+Z3f+R0F9O1vf/uhy//Nv/k3hy5/6KGHtG1bfe1rX3uoHvje7/1eBQ59Pt/97ncf+nzGGPXWW2/VW265Rc+fP3/oeTYf62//7b+tj1WqXv7d8FVf9VXatq3eddddq8vuv/9+PXLkiL74xS9+1Nq84hWvOPRcb3nLW9R7rxcuXLji81X8yVClU08RvPGNb1z9fuzYMW6//Xa2t7d5/etfv7r89ttv59ixY3zsYx9bXTaZTFba75QSjzzyCDs7O9x+++28733vW93u3/ybf8ONN97IV37lV64um06n/Hf/3X936Dg+8IEP8NGPfpRv+IZv4JFHHuHhhx/m4Ycf5uDggL/8l/8yv/3bv03O+Ql//RUVT0VcunQJgJ2dnUdd99KXvpRTp06t/o0SgU38zb/5Nw/9/a53vQvvPW9+85sPXf7Wt74VVeVf/+t//Sc+1m//9m8/9PeLXvQiHnnkkdVreNe73gXwqOf+ru/6rj/xc25iMpnwhje84Ql5rCvhec973qqTAnDq1Cluv/32Q9+XFRWfbXjFK17BqVOnuPnmm/m6r/s6dnZ2+L//7/+bG2+8cXWby79n3vnOd3L06FFe+cpXrv4b//DDD/PCF76QnZ2dldLh13/91+n7nu/4ju84JGm6mu+E97///dx9991813d9F8eOHTt03eZjXS1SSvzbf/tv+aqv+iqe8YxnrC4/ffo03/AN38B73vOe1XfZiL/xN/7Goed60YteREqJe+6553E/f8Vjo0qnngKYTqecOnXq0GVHjx7lpptuetQH8ujRo4c0lDlnfvzHf5yf+qmf4u677yaltLpubJ2C+TNuu+22Rz3eM5/5zEN/f/SjHwXgm77pmx7zeC9evMjx48ev8tVVVHz24siRIwDs7+8/6rqf/dmfZW9vjzNnzvDX//pff9T1IQRuuummQ5fdc8893HDDDavHHTFKhP40/4F82tOedujv8TN8/vx5dnd3ueeee3DOcdtttx263e233/4nfs5N3HjjjY87kebx4PLXB/YaL9ecV1R8NuEnf/Inefazn00Igeuuu47bb7/9UPDElb5nPvrRj3Lx4kWuvfbaKz7mQw89BKy/b571rGcduv7UqVOftgYYJVyf8zmf8/he0GPg7NmzzOfzK34fPfe5zyXnzL333ntIJvmpvvMqnjhUovEUgPf+cV2uG6bQf/AP/gH/0//0P/Et3/It/P2///e55pprcM7xXd/1XX+izsN4n3/0j/7RY0ZUXmn3tqLiv0QcPXqU06dP84d/+IePum7UCz/W3IfNbuTjxWPtCG5uNFyOq/k++bPEbDZ7XLf/VK/lSvhMv76Kis8EvuiLvmiVOnUlXOl7JufMtddey9vf/vYr3ufyjc+nKup3wp8PKtH4LMf/8X/8H7zsZS/jf/1f/9dDl1+4cIGTJ0+u/r7lllv40Ic+hKoeKlLuvPPOQ/cbdzN3d3d5xSte8Wd45BUVnx147Wtfy8/93M/x//1//9+fOijhlltu4dd//dfZ29s71NW44447VtfDemfuwoULh+7/p+l43HLLLeScueuuuw7tGv7xH//xVd3/TyKHAHstl7+Ovu954IEHnpDHr6ioOIzbbruNX//1X+dLv/RLP+UGwPh989GPfvSQXOns2bOftisw1hJ/+Id/+Clriav9XJ86dYqtra0rfh/dcccdOOcOJftV/PmhejQ+y+G9fxQ7f+c738l999136LJXvepV3Hffffw//8//s7psuVzyz//5Pz90uxe+8IXcdttt/NiP/dgV5SA1Gq6i4jC+53u+h62tLb7lW77lihN5H8/u2Wte8xpSSvzET/zEocv/8T/+x4gIr371qwHbCDh58iS//du/feh2P/VTP/UneAWG8bH/yT/5J4cuf9vb3nZV9x+z+S8nDZ8Ot91226Nexz/7Z//sUR2NP+njV1RUHMbrX/96Ukr8/b//9x91XYxx9Rl7xSteQdM0/NN/+k8PfY9dzXfCF3zBF3Drrbfytre97VGf2c3HutrPtfeeL//yL+eXf/mXD3WJz5w5wzve8Q6+7Mu+jN3d3U97XBVPPGpH47Mcr3vd6/jBH/xB3vCGN/AlX/Il/MEf/AFvf/vbD+0+gEXZ/cRP/ARf//Vfz3d+53dy+vRp3v72t68G4oy7Cs45fu7nfo5Xv/rVPP/5z+cNb3gDN954I/fddx/vfve72d3d5f/9f//fP/fXWVHxZMWznvUs3vGOd/D1X//13H777avJ4KrK3XffzTve8Q6cc4/SSV8JX/EVX8HLXvYy/u7f/bt8/OMf5/M///P5t//23/LLv/zLfNd3fdch/8Qb3/hG/uE//Ie88Y1v5Au/8Av57d/+bT7ykY/8iV/HC17wAr7+67+en/qpn+LixYt8yZd8Cb/xG7/xqK7nY+G2227j2LFj/MzP/AxHjhxhe3ubL/7iL15FcT8W3vjGN/Lt3/7t/NW/+ld55StfyQc/+EF+9Vd/9VBHdjw+7z0/8iM/wsWLF5lMJrz85S9/TJ15RUXFlfGSl7yEb/u2b+OHf/iH+cAHPsCXf/mX0zQNH/3oR3nnO9/Jj//4j/M1X/M1nDp1iu/+7u/mh3/4h3nd617Ha17zGt7//vfzr//1v37U5/NyOOf46Z/+ab7iK76CF7zgBbzhDW/g9OnT3HHHHfzRH/0Rv/qrvwrY5iZYCMWrXvUqvPd83dd93RUf84d+6If4tV/7Nb7sy76Mv/W3/hYhBH72Z3+Wruv40R/90Sd2kSquHp+htKuKx8CV4m23t7cfdbuXvOQl+vznP/9Rl99yyy362te+dvX3crnUt771rXr69GmdzWb6pV/6pfof/sN/0Je85CX6kpe85NB9P/axj+lrX/tanc1meurUKX3rW9+q/+f/+X8qoP/xP/7HQ7d9//vfr1/91V+tJ06c0Mlkorfccou+/vWv19/4jd94AlahouKzD3feeaf+zb/5N/WZz3ymTqdTnc1m+pznPEe//du/XT/wgQ8cuu1jfe5VVff29vQtb3mL3nDDDdo0jT7rWc/Sf/SP/tGhmEZVi5z+1m/9Vj169KgeOXJEX//61+tDDz30mPG2Z8+ePXT/8bvo7rvvXl22WCz0zW9+s544cUK3t7f1K77iK/Tee++9qnhbVdVf/uVf1uc973kaQjgUdftY32eqqikl/R/+h/9BT548qVtbW/qqV71K77zzzkfF26qq/vN//s/1Gc94hnrvD0VpXv69OOJK34MVFZ8NuLyWuBI+1feMquo/+2f/TF/4whfqbDbTI0eO6Od+7ufq93zP9+j999+/uk1KSX/gB35gVWO89KUv1T/8wz981Ofz8njbEe95z3v0la98pR45ckS3t7f18z7v8/Sf/tN/uro+xqjf8R3foadOnVIRORR1e6Xvnfe97336qle9Snd2dnRra0tf9rKX6b//9//+qtbmsY6x4k8HUa2ul4rHxtve9jbe8pa38MlPfvJQHF5FRUVFRUVFRUXFp0IlGhUrLBaLQ8av5XLJX/gLf4GU0p9KclFRUVFRUVFRUfFfHqpHo2KFr/7qr+ZpT3saL3jBC7h48SL/6l/9K+64447HjLirqKioqKioqKioeCxUolGxwqte9Sp+7ud+jre//e2klHje857HL/7iL/LX/tpf+0wfWkVFRUVFRUVFxVMMVTpVUVFRUVFRUVFRUfGEo87RqKioqKioqKioqKh4wlGJRkVFRUVFRUVFRUXFE45KNCoqKioqKioqKioqnnBctRn89NFdooBrGk4dP8pzbr6R63d3aF1D45XGDThRxE9wYcoEpXEOHGSnuGCTpb1mgmsQJmgGiKh0JBfoOuXi+T0EwUvG+8wgLaoNE8RYkWS6GPmND/4+H7z3AVQdIp7JpAWJLBdLnGvJOZNzXo2yFxFUIKVkx+G9vbDxeuTRL1oERVeP4ZzxMlEIIZBzXj2eopRJMqsp2uPv40/n3Oq6nDMiwvb2NpMmkGJEyHZdUtD1NO6UEjFGkmbSxmOtHrfpcOLZ8cd4wfOeyTOfcYKQO7puIANt0yAeJpOW4D2ahXMP73PPAw9x0A1MZzO2pi17+ws+9NG7OXthD5qWHBNBlOlsgg8B5x3b0ynT6QQBNGU0O5Ikbju9zXe/8av50hd+DiA0TURVUPUIHgg4BMeAZuHCfEmShu1jJ/FhgldHzgkRcC6DKCKeFL2thRMg4xtPSglRO3WbFiNbaw8IiJByJqsiAqIDgiLiUHVoLpPOWaCxY4gBmCDBkRiIOTEMEejwTnEESA0pCYgnZyWlRAgBBDQBWVj2S5wXxEOfOlQHNHZlHSYInpQy/bBANSJS3juayTmSkzDElpgTMS0Z0oIh9iSFrA0xKjFFXv+m/9/VfnSfVHil+9rP9CFUVFQU/Fp+52f6EB436ndIRcWTB1fzHfI4Uqek/A9yVnIuBbvzeJdx4oCMKuScGAAn4J3DO0cQV4pCJeds93GerFbAqygiGefBqUPEIQ6ceATBoTgExOHF4Ru/Pi5xgBX0OWcgl59WfK4Kf9YkYPN1XQm68f+HiEO5z/j4q4IfIzKbhe9ILFJKh4+j3CbnTN/3eCeFAOghcpJzXpEXVQWx9T/8GpTgHWiLiEcF+n6J0tMEx6SdMplOjKykgf39PVQdiKdpAnQDwzDQCWTNOOdwTuyVr4rgcd2EmBIpZ5rgcXgUIZOttkdAjXCJtAhKUiuiYUDFgdNCAhPqPGhG80A32Bo1oQGElBQRxXkHhVBkzUgSNOtqbVdrw0g0jMAhgnPGRlTAFcKxOq2ikEHUgQScCyiCklEyTqBpjEwKCbI9NiKIEyMtmkFSIQt2fn2Q8jkox+8cWR2avL2nSxOx0RZdvffs/ZqdI4naOz1nxDnEN7igpKzk1OAdhOypqKioqKioqHiy46qJxqrAVSHHxNBHUHDOCIDtWq8LafWQnZVVAUcoRMA26xXIVrBl6w6gCScJHxxkjxMBAS/gvSDJij/x4BTaSYM4QZOuinLnrQgcSQCsiUYuBenYlfj00FKQrgmCPa5YYVkeayQaOZdiWwQtBMHWa6Roa0oz7sSrKn3f03hHmExWzyNeSJpWx5zHAle4AtGAlD0uOTIw9B1dJ7gmM5tsMwkelxM5DeRhiSfhmwlIIISAd57gQzkeOxdOhCyFwKmSYkJ8ohGHZohDQoAgbv0axboOdmwOzR7FSJ8V3IJIIqdIVkAyqokUeyMKmkDGotyhWCckR+tu2HuwrKQKhXcdOsdg70dQVBTnxtOoZf3tfWedNCOGOTuEthACJeuA0tvzFwJCtnsKrrzOjBNFyRT+hTgQFbyM74WMKyTa0aDirduiDu9BnHVFQFF1OJdJKYMm1CtIBic49bgciCkTs71OJzUorqKioqKiouLJj8fX0Sidg5gSfT+QS4fCOg62Y6siqLOic9zhF1VcFnK221pBqrYb7EDE4yQRPHgHKYFiz4VEnCRUo0mZym7yZDbBOccwGEHJWQiNI4RAHA4f+eW73uNl61d29Sj79avidpRgjRIqBBJYdyLrmnRYe2D1fA4hS+lqDAPBe5pgxCUlXZGM1XG7UkhfdvyqMPRKwJG9ElOPalNIBMR+ieYiRUqJifc0kwlxlGaJ4INHtMiWvCsLYvIsp7Y7b+TC03glRiMaLlinSVlLy5zzgMmTTJYm4BRx2VZPk3U2yAxDx3Ixx4cWyDjv8UkRWrxz4MXOOyNRcahuStAu61CJIJLRcsxKYWZaCndRUOuqkNU6NuLt/agKuSfliGoiW+8OVBD1RlQceKeIW58bkUJqpVARUXD2qVCVcuwBIaDqydneQ27j3Fo3zhUSCc4N1l0StQ6I86B2rrI8vvdrRUVFRUVFRcVnCo+DaJjsI4NpzPuhyEqKT0CsGMtiO9hGSqzgzlpkRipkB877sqONFaYKrkiiHMKgVuDhHAHQnExio1a8qYOmaUyupcn2qXMuhMWK2E+FTcmNe8yyzYrET/UY48/NLomI7bpnyWjOpPJIm89idbysSEOMka7r8G5C0zTEGNf+EmuffMrXo9ncHVakGvlpwgQnnmFYgipNG8DbORqGnmEw4qNZSTHiVge4PlLnBK8ecUYcUsqkpEDCu3WfRhA7f94X2ZXgkEIWi+8kF7LhHaImuVouFiyXGR9axEMILW2TCUEI3uGSAkPpHDicCzinRkIkP+r8KOC9ScBSIRJjJ0hHadeqDWL+IcG6DOhgsisUV7pzSSlSJ7FumjNyPC6Rc7I+NQ40RZTyni7dnxQTTjzOefOGaCp+jFQOpayhUF5jQhnwpRNWWAu4jARHJH/a90NFRUVFRUVFxZMBV080ZJStGNEYhkgqciYvDicBYdzpTUh2tiOrirpMxpVOhnkAsibzaniTHjnxeFGcRDQn1JnsBqtrWQlfyma0bwLOeURikS9ZMXu5IfvwS5AVyRj/tke+AtkYd8SvuBZrY/j4WN77or4XPEIuu97JJetqFGnS+ABW/Nr2dI7JJFSlo2GFci4EzmRMo/fh8tejpaOUUwQSztv6aPaIb2lbIaYBnKP1LaqZRZcYhnV7JRc/wMbRQTFOi5jHJqkcOn4d5UuuUFDnjEBSujk+lTNWnqTcR7wg2aN0zA+WnD/3MDErzbRlMpnRNDO2t3eYTbfxweNcxDnB+YbgW+toiKdp5ZB0at3hCevukYgZhUbPy+YJHN/PrpDOIpXz2dxAzpwZkEcze0Y0lscY12IkUtZls96VK387nAipPO4o3pIVcRzX3CGjJwlwOSESTe6XMxk7Jry9f5ym8jwVFRUVFRUVFU9uPA6PhlhhjBU8KcUiySn+gaJfdy6hAl6VRjaKvHFbf1QQSV7p9AVvBnDF0n0kgcvgFCcNqOKdBzFJEeJomhZfCnMrypIZjC/zZ8BIPDhsrF7f6MqNiw2OsUlMxj18VcV7v/JnTCYTpJi5VQQp5MI7R8551aUY06akyHq0HEPOia7v7XmcXxX+uvH8mz83/SbirNOQc1rJnJbLTCPCpG0hZ4Yh432gnTZkSYShK7vvjtA0eFGGIv/aJGnrIn4MAsiE4EGVGCNt05iXYCWbspLbduytgHajWZ8iPRNPE6Z417JYDFy4uEdEcc7jvWN7e4udnSO0bcB7CE2gbWdMJzsIntA0tK2sujfWSSnr1fWIs7/NTF0kV4wdELdR7IMSTcKnA1kTZEjRkQVUtPg5TLKWVIvxffTsYORJsJaJaQYZG3KIt1etY/qZIq6QRy3yQSheGD+KtYpUayQpRoISuXwuBMlVPFVRUVFRUVHx5MdVEw0reNc/U1JiyqQYySGUnW3Tk4tXWg20LpjhVhNRbR/WE5CUEZ8RZ/GjochKBME7k99kl1EXca7BDVZM5uLrcM7TNC3BB6BbxcxqdsU3se42HCruvTtEMjbTqGAkEOXVyrivfzjediQJY6EfYyTGyM7ODqTMMAwrImAdG7/ycQzDsDouyjrmsfviHHEYEKCdTA/Juy6Pyd3EKAcKwVK6NGfMRC3MDzpiXO/2d0NEneB8oG1acsrklMwT4T3OPToda5QcCY6YInF/gB3w0wkxRrxzpagWI0fe4QXExRVX0yykZGvrGoe4wO6RLWa3Hee6a2/h4KBjMfR0fUfXL0hpQDWxXB7Q9Qv6fmC5jGj2oJ7ZbIvdozOm05bJZMJkYpIz7+16HxojTyEY2XCC86NZ3+EkY50Hh0pEiDgS5EweHKl3JKdkFyE1+NIYgcgohhMpHTQdpYPlbIiQ4th1s/cyaTDpmCje2TGoF2IcpYel26UmOFM8okbNNJnPp5wInJficamoqKioqKioeHLjqomGaycMQ8SpAJ693nEpT7k2HCP5gewPEKxoJc8YcOASLgzkJEYCXAJn6TuapjhxRf7kySTUCzKZEJcDLjtaEVIWUlAGIin1lviTPTMSEw+9SwgTptLic0PbCMthbgTBGbkQsV1hhwMptEK1pP4UCIhz5DgWj9bUcM6NVWZJwrJ4Ve8DOZtJ2TlHHHpEy+1KGtWKADnBtw3qhLhcFpJi+vuxZBQBdZk+Kpl+lWZ1eC5H2f0uvYFx3qLkBqfmpwgyZTbZZtZmNC6J2TGZTmkmDQrszeekIeKloQ2Kpkjf95CDeT2ylt1287uY/C1brKp4shNSjHRLoQ2eISdaPFPvCRohLsEHVHeQnLHtfeuIqIcoc5xMaBw0CY5uZ44enZD9hBiOs98NtLGBvUjqInMSQ47kIbHY20dKUpM/PoXgCM4TXAPe4xpPEMesnUCy4IAsDpyj6ZSYB0KAxjmyb1guldhnzl+6QNQlW7tTVCBmJfYdTXC0Ycs8GzrgpMcStRrrbJUuihOhL9K4afBMHGQyXdpjyAkvHtcEHJ6kQk6ZmBxLlgTX4sUh2qNEMoMRFdTISvCkvkQd+4S6gZz6P8FHvaKioqKioqLizxdXTTR88KScIFt0aEqRISXL/GeUyAB4cA2iYwIQgBl5fRBE89pCLBknYqlRZMT7QgxKqlMppM0vboZj5203uXGOUPT1VsyG4lkQUlHGjHMp8obMaCQXrtwfGedVFA28swGArkhcxjkYI8bULOcc3kvxhiSW3ZLWt3abDc+AGd/H23uapjn0eId9vSUCOJleZ+yEXGkmyKF7ydrSnosBeZCBxjva1nb7c7a0KO8DDocnMJ3OmM0SKoEYE6pC0zQ0IRCleB3GHXx7IjvmbLIpJyDR1sFImcf5AC6Q0rhaRvRwdu6SeDuvOhrpMTdEsrSobTeh3+v5wHvez5kzDxMbD05oVNB+IPa9DYHUiFPwah0s13hcG/DbW0wmU67ZPWaDBYORkBZPL4mm8ewET24btk+dIIvw0EMPs784z2SroZ1NaNopQqbxniZkGt/iXUa1KwlSdh6C5RhY12yUl8VExDpvg9jvMStOLKxgFa2r4GghNyjBiEWKZDUZFSSTe2lGiYikQktdIfsVFRUVFRUVFU9uXDXRyDmtdnEFS/bpu44YM+ocqt406TJOZna2M55hJBriBJcHvIwD/hTvxonfpg4JXvB+wzArqzLXSEn5q/GBJvhDBvScHSkr0amljZYi3o/JQ5fF3JqO3yJdU0qlQ1EM0N66ElwmX9pMmxpJgiqoZtSNt2EVT+u9Q0cvRYnDtQjbtNFRKTGwq7W21x1CwHtPjNFev3MbSUVrQqNlQFzMMMRIjInsFLxH8fSDeURiikwnLU07QZNDZIFmV7w3jhCEJgR73XkcvDcavUfPSDlWMT9BykJKkNUjLhTjtENciTIePQ5eUC9obkoh7bBhf4KkhGrCOwsVuPejd/N7v/Of6UPL7qlrme8d0O/tIynSDz3LOEBqaaRhsXeJduI5ce01hGng4oVPIlHZCg2NdzaR3psJfdEoPsNJH7jx2bfwBa95ERnl4GCfi3sXWT40xzcNs61ddra2aBuHY07btjSNI+cOFzze28yTpmkYZ7SAEJwnI3gBJBMlk9QWyokiLpVBl4WUaCA5jBgLZPH2XkqKqpRwg0jSwdY9O1DB5SqdqqioqKioqHjy46qJRj/0Vug7h2QjHt1yyTB0aGisYGU0waai7882nExKYlTKtpsuYWXIFR2JSUIk473gPaShVKhqGn+lpDeVfkjwnmnb4p2QcibnSEwwaCJqmfNQdO6Mhl0oMaJjnKj9884hqgxl2rkTIw5FY7WKMV2nVo1zM7Qc7+gNkdVzOKFMeS5mYGxC9piytS44N1saWrT/rOJtRYQQwjru9hDKtOviQ15PEHeExpPxLJYltcmV4yznISXICYbBuklNCECJsM2JlI3SZcnFG+CNdBQDvP2T4r8YTdEBxd4H4nIxR1NIYzGaqwN1dk5zMfcX84/giPs9H/nAH/PQQ5d4xn/1X3Hqxpvp9ubk+YLY96hXFsPAfGGTyR8+cz85Lbnuec9l59gOH/vj+8hdInUL+n5RfECRg/P7nFvM6S9c4lo8p268gdA0DMM+7SSwk7fIORJCi1dHoEH7RJc6Yj8gThlSb2erdNKapjGfkFi3rXHBeg5lcKF4AULxwBj50jygZS0aDWQJZPHFE5JsfkY/ksiMarT3IlI6dPmw5K+ioqKioqKi4kmKq0+dEovjdAJa0qL6uCwD4sJG3KfJWuyhdbVRb7vuGZEGJ1NKBbqeuuxTGRrnrUjHyIroKE8qpm6s4A3OM2sbvEghN0oikXJckQvdaDnkPA7Z00NEw+J5Tc+/2rPXXIbtpbKjvyYqYwLTmPDknF91HpyzYlDETO3mL86lu8EqqUrE5FekzUQrDpGhnM1YPsqtxuSqlX9kZQ43PwCUlKRVkpVHRRhSpnWBpg0EHwgCfRfp+zEFyXbQRcZuSCQnI3SquZA2XSVUrUzyqoVspdUAO3Gyok4iQ+lceFtTe7GItkghI5ls7yWyDV70josXL3HXH98F0hCOHuVCTlxz/fVcs3OE+cEerg24tmHv0gJNiel9Dffffw/X3HqKU6dPEU6eIOCZBceF82dBEgfLA4Z95cMfvpMHL8yhabjxGbfSHNmiu/AwoXFsuy22Zi3b20fwruHUNacQYEgDKQ90w0BMA8t+YNktGYaeOPT0XUeK0cisQkyRrIp3gSYEvGtQDSUhbfwcKd5DQyaLL0QDsjcCEmJr3iWElFY9pNJlitgQw4qKioqKioqKJzeummhMJi1GDEqMqkDKAzl3iEwQCWV33aYlO6e4oKhExkhR5xRxvujQWVXWIqXI11Q0/RkYpVom60FLL0MEh5mAJ02zGqQman6LIIKokDWXmX/jFGnbyR+nRtsuv8c7Ac0IZnge5ynYaxyN2GOE7iihCocK/rWnREE2E6ocQ1Q0JcYw1TGZyIrOsSzX0hEw8uWckLMQY2QYBkIIhZyYPwJGmmZFaEoRL66QAyVlSDkTmobQ2qyHnHqcD0wmlqI0xB7ViHNKGxq8dwzdsOrOaMpr/wsKKdmEd2dzNSxmOCOaioHcPAUpRzu41EExqY9ro5LsPNvJLoG3llzWJWU222JIl1ie32NGyz133cWBwm23PZP58aPsH+wjZHZ2drhwsI+S2UsXOdADLsV93KLBtZ6ju0fZnrZoG8kuwaJl+9ojfPwjd+P7jmuuP8GpZ9yEiuOhBx7kE/d8gt0jE06cOMrWBCat58SxLdpmgrqE+syQskXXqqySxvquo+t7uq5jOV+wmC/ZXy45WCzo+p6h79GoLIdIVhtk6b11qJpG8L5D8ah4k9cF8y+5PEUk4CSgCRBvXTdJIJHVNPKKioqKioqKiicxHocZ3LbKU5lqrCKkOBDTEmUGgHNN0SuVWQMSwSVUB5u1EBT8wBAjsI6hdeLstmrKfe9MgGPFuPkBRI1AjClVwcNs0uIF4igtUaX1njbBYjTlNkL24zb/2hNh3ZUy3TnbLr33zjwnWYsP5bA/w7oq6+OyYzls0N70X1hRLjascMMgPprJrauxTrmCkj5VTOljF6Pv+3V860bc7jgIcP14Y6fBUo0kmHxtiD1Db4X/pNnCe09ohJQ7YupovEmtQrbuDLJhQHeuEKj1axx9OnZuMlkyWSJoJOW+nFvzzAh2fOLGrkaCbO0b5zMxD3TDAg07tLvHmE4ucTQ7thN85MN/zLm+p7vvfmKAvcUBcX7AkckWF1HCZIJk67j8p/Q+ek1kFW5/9u0slz3T7Rlua0KzNaW9eD/7Z+5nlpfccNt1zG7Y5aCbc+dH7+Ijd9zB8z/nNk6e3CLnfdBIjnuIz/iQwSt4ED/BE9DkcW5Gztv2mciJ0kRjmTOLYaBfDORlZFh27M332D84YD5f0C07YkzmNVkckCLEaOc55Q6AJuwCfvX+akJjZDNkRCLOX/Xnu6KioqKioqLiM4arJhpd1xFKCtJYdA9DTz8sibEnipCDFKFMIsWMZ8C7ZJGwRJImhEiSkjwVGntw52gUi8BVk/OIs0LdvA1GTMa0npyV4AOz6YQgQpczOdmMiK3JFsfdjPP7l9gflgwoMWdErduxOdE7xkjwTSE8nlQ6Himv51bYTrQciptNKW8QDL+alSGacc5SqsZOBMVjsSYqmXHWxxUnktsKr8zgKSW6rivkwOaNjI8z+jZ8a6ex6zsu7e1xfubR2DKZBlzrmTYlrcslDvYv0HWRLNtMpg0+CF03x3slZzvPAE3ToiiSBluDvF6DlIoHByVlS5TKGjc6WSYTIstquDtkUh7wqTEZnXNIAyn2LPsF7fS4zdleLtnqIjt+ykIbbjl5DcdvuA7dbvno3Xdx5qGzTPd6mmiBApKtm7V/91loTMJ27x2fRELDMiXmmmHWEoaB6fnznHbC8571dHZPn+TcA2eY+QnXXX89J08cx0kyUZdAjAek4NGUkGBzMUjWrZMs5AQ52/tyJF3qPE3wuLZheyb4CJIzkWvo+4EYR19Mph8GeteR+ky3GOgWC/rlAcuu4+JeZLlcsOzmLBZzVCMpJ5ZxSdYB56tHo6KioqKiouLJj6smGrNmm6EfbBc9OzLCkIR5H0i0ONdg08PB+ymOgOhA0MG0+6lFUoPPysSbl4DsTJqSEwONFdGjYVo8g4aSTmVTkcdoWxMbdUymiXbiWXSKw6JVp73jhq0Z2S85GDrbOc9W7Q6iuKJWEkxP3w1Y5GxW+mEgpYQTIXibaK2U9CnniUMke8ij/6MkYkk2WVNKAzGOHQclpYG2bRExw7of43LjSBLAdERlzsTKUjKaz+0U5ZxZLge2nMOJJxfPClo8M1HIWPLTJx46x5nzl2ibwGTa0E4ai+HNmabxTCct03bCrPXkDEOekCSz7G3Q3Wy2Q+CSFbdFNmWEaYwHzivCZalcnm7ISJjhminmp7cZH0JGfLTzFRUfpsikxCyJkLMnDzPSkPBHd1BaLp3ZY7vdIfeZa3ZnXPcFt3Jhf86Zj32S01vHufEvnaJbXGR3dpSLZy8xk5bl3gEqyvmDC0y9Z7o9I3nPzU97GqmPPHTfgzz4yDlO+4brTp/g+C03I1mIe+eY+T1OX9swmSgER/Y2FTy7ORoUmEHX4hGcS2SiJWdZ9hki3siWRJssjjNypdmkdy7j1DFpJkwCxbUPOQsLc4GgOqDZ/Dc5wbCEbljSd3OWfc9i0TNfRBaLSNft08fFn+pDX1FRUVFRUVHx54GrH9jHWCBp8VEIWYVlZzIdcFYc4xHXWBRnzsVQraAOcS1kMw8DiFi0alIlq+nfweZHiHPk5EpKkXkfzIetKwLQhpbgPULCiUdUOOiXnNGLXIgdnStD+9JoZ2ZtalYlp0yvg3UoMAYTQiA4z3Ta0oaSpKUwJJNUeecY0jiJPK/M305seN1YgDeNLe2mIV1LLFfwnkgyzT2sbrfukoxTwcdrZWMORums5JHQFK2VCCKOPma6ocO5AXcwL54ZWXVSJpMJbRMICCF4vPM0wSaFN6FlsezKHA+bkDJOBh/XblMCVuws5tGwE2rESwXFmadhlKup2HvCF9N6CZvKSRCZMD1yBB8Ce+f3GJJdOZu1nL75JAd3f4K982dphx1ue/7zGXSL40eOs33NEdJ+z9OPPh3XCvc++AlC8nQosQ3MbjzBmbs/Sa8Dx2dbnPSB2c4UJg1xiCzmc5DENJgEzDppZnjPKz+NN9JsZ8XM2GOYFkLWMu1dsvmEVHDZkrlMNpjX51FBisxPnMMl6/6JZCTYekl2TCQzm0LesfknwwD9ADFBSktiJRoVFRUVFRUVTwFcNdEYym7/JnJW+iGXeFNnvoQiK9GccVoSl5IZf50D1BKb8GKzBcSmhmvxUEgZbGcSJC3RnjYXQ8lkdXgRvGuZhC2Cm6KazFegkYVkHmTJvov0Yl4Pe5FmSBYsilRL5Ow4gDCEYOZy53AI07alLcPiclbyslvFu8ZshbBSfByY16NpmlURvikzGv/OmRURcVlXg982B/KNsqkxpcomiFtx33U9IazN7Zv3GX/fvM4Sr1J5vDK8MGeWS0CzmeHFEbwzwuFbll1PzAkf/KoTk8HM+Bvm/UNEqMT95mznT8TmPQjF/1IOKScQUokrNkN5jNbxcE1LjpkL585xMJ/bTIquQzRz/Ng2R45M6N1AmArT7SNM2pZ20XB+sc+RG4+ziHNuPvkMHvzg3Tx4/4Pc8nnPJwk89OBDxEcuclQDSiKL4rxDk3Lx0j44j/Pl/Vk8O3bcAc1TVBrwNiEdyXhJqCRb26TFi2NrVTKGcWQLBRj9TBSykcesAEHVYqLXcbcO1KRyDEtwiojigEkItN66fUggpvZqP7YVFRUVFRUVFZ8xXDXRGHX5m4VsSpk+JqJiyTmaQG36sRX/651rL7qKls3icGRk3O3VIkESADXZkjmSTcsPrKb6gRW92dO6GY2fIMwBIZMgCF0QYhJEPaIWX2sD5oxYSEmwGv0T7WRihWvToEmJg0nEhiEj3uHcekK3jNX1SsOlxZQN3gdEHCnFMuvAugyqoy/DY9PS19PI7aGu5NVYBcWu1iXnxDDIKiJ39JtcCUYGZHQQlELZfh8TuXLOJDJD4Y+ODtJlx7OK0V2TDDsF63UwsmivxjtX6JxnPdRwJFQRzRmLvLXn74ehGPATpMjy4IAuDnQyMFzsOXP3Jzly7UmOXXuSc8s55y5c4ghbDJc6Ll7Yp0uJc/t7zIc5Nz39RuK8Y3lpj0lo2L9wkRkOp4FjYca0VY5ff5Ijx4+ynC+57/4zqASCt8GKzpfIZVwhGg1ZzMjuZL0eSDITvEaTxIWJzRzJNsnb4UujKUNOqMTymVAYA6PUuhekoRDggGaBqLgV+bD3VVZPzq50P5Qc+8c87xUVFRUVFRUVTxY8jsng60jNcUc7pcRi6OniUGQ1bmXgHrdv18WmTe9W58ttbVaDqCC5JDCJksedZRlTUNepSqbVMYO2E0eQwCQ0iK7jXsvB0ih4oyv4Vd0sQMLLGG3raJqGtm2ZTKbMJhM0Z7rlkhgHhtiRo+J8s3r9MaWSVuWKdEhJORFjxHmbj0CZQTFG3KYSFWuyp7L7r+suxuFOxEg+xmJ+vYZSpqnnnA9NGB/9HKM8av1vTURWxwwklSJ1Wv2fpWxlk6W54Fc0Zxx3sonVVHU1CZCWoYwCOOfL+faruN4xpWrszIwvNcVI3/XEDCkOtDR4Fdy0JaaIJLj3Q/dyvBPm4jnIwuKBC5x/8Dy66GiaKb0KH/vIJ4gkGjdFtma0x47QOaXXzPaxowznFuy028y24fpn3sLRU8f55EOPcNddn+Dm07s2Eb0NhGDrb9LAgIonkwsxFVaTVpJ1FpyI+TAIhSxEICPOpHhZrYODDoVQr7tAog5HYBydLqh5YnLGO+tEZbI5eFQt5hYB59BYJ4NXVFRUVFRUPPlx1UQD1kXxaAiOKdLHnm7orSCTcSBembEglKINnB+Tp0zp7rGC0+EQ8aXjYIWWME6yNtNseXYrptWKeNGBJmQmrStdgmJEBybq8Kom+ynpSKolVtZ72tAwnUyYtBOC9/jgCaFh0jQmIXKefujpomPRLYkxrortnBKsZnPoinBFiWWf3uZuWJLVKJ1aJ06NnQq/Md9jk2isycVYkGdGw7gIxT/BimjYfVhNiz7cfTBj+UiSVhOmLSaJsd9RmJ89hzOjdkrJYmnFlavW3Zf13BCHOA/B1nWzw6KjTK14HgCcCLYaNkEjpmSD7/AsF0uImcXBnC5HhpyYSMvi/JLJMnPtrc9guliSY+ITv/9HtM5x6tYbmXcDzjdcuHSeu//gLna2WyazGXff8RHyomc2TzTLjnPzi7iYeMbuBD9rOPPAgzz4wFluuuEaQvA0jbfJ7mo+Ded9SerKFtnsPOICKUdSErxvCL5d+Y+yDkbenFrHA0HFQZHqCRb5vPK8qEkGXSGPqmrBCE5XscfijLiRygyX7HDaEKj5thUVFRUVFRVPfjxuonE5MpE+dSQGMkLK1pUwomFmWljLfVK2ItSK3Ww7u+JLLZ3JZefdleLWdvNzKZLXngRHom0Ss5lp7HOyyeUqoMGjQyLlVDwDvnRJhOlkyrSdsD3bKkMIMfNvTKQh0kwDW7MZbdvQpABeWC57Urap3rG3OREU8/hozM7Z0oVy1tV8EOtkUHwWvnQdtHR+wLm0klJtrvH6tY7EIx8ieLDuMFkEbukWbRjKL3/MnDMpFRIiWozNRcKVFS/OZop4v3oeIxkmO9O8Eq6tnsOJt66JM2P55qwRNIHzthYrspMZHyWlRBwGUs600xmz7S24MLCcz1l0S3rNFh/btmwfO8Ls5BEu3TcnoPR7C575+c9h6/g2D378Xp79tNs5fnybj93xYW665Sau3d5lGib8/n/4PcL+QDso+3lg+/qjzJ52HXnW8Il77mHv4gEiwY7dCTjFi81pEQEXonUnBCx1y5eFGN/f3qbKayZnQfGIS2VdQcsQRRgOkT9BQByJYPdVk0plJ0hjSV6oW3k7sooZ0J2dMyeP62NbUVFRUVFRUfEZwVVXLJf7M8AIw5AGun5BSgPqfSmibN6AJVEV87NzxdZgl4mPqNpQN6eKdx7Eoymv4mNjjOCC6dJzLtO8bcfdkWmcMp260vlQEEevCXFmNk9J8E5Immh9y+72DltbW7Qu0DRNkQtlnAjLvqfvOlCYTScmuXKOtmlJMUNMZui2xWCMXBLWfoUYIyHYLIfRBN62LTaB28hJSmaKH+LhxKlxndYyqcu8EGX9QwirQX5g0bzryevrn+sOylrqtHkOtcisUBuY2IxEsHSCRmTN684HGySjmOa1dLHGnXlL4yomflkXxaMpfe03UWKyQXftZEKztcVwYY+h68hiHZuYEqFVOp0zlY7tmXWUjuwErrl+l7vP3s+55SPsx4sc391me7chnNgh7geuO3Ga/rfew2K5ZBYm7By/hmtvvYnjN11LJPOJj9/L/qUDYtQi98qgNt/EYX4IpSveDEfOvryvITSQU09eDZA06qvqUFHQEuk7RgInpTCPDaGaBSiMHaes0d7XPiC5sXXTZMEDzuEdpNyRUyJr7WhUVFRUVFRUPPlx9UTDKVlyKaAUnO3UJ4VFn+mSI7uGSMJJLgk/3uY+oKRsyUaSMyIJSYL49e6x5J7GKyrJCt1gAwCDCyVxqsSliun9x5+zScAFR4rB9O0Skajld2iDzZ3YmjbYsLVIEwJBlKxGiGLOpocPjj71yCD44GiaFpynHyIWNGVTqI04+FXR7BrBtw6nYnMtcsRJIVhi8q2xAyLYbj7Z4mM3yZsW57xTh9MysyInE2N5b92GVdqVDX5zDppmLFzXhALGxKpNOdZKxQQl4tc6E24lexrN8yln0jBs2DNGD8YGqQGcD3j1hKw0RJxEkjQ0jTdZEQOQcCFhGi2PqNJIxqclqj0ya0mTCcPyAn4pTN2EZuJ5eO8RluLZO9hn+cAZuphwONobrqVDcL7h6JFd+kv7LBCO3HAa8TOOXXecu++5l/PLPXamDdtHpmw7z9Zsi9nsKBcffIStnHnObTfTtg3iAq2LTJ3DizO5lDiELfNYSCrSuWTvQfVkepBkmWbagroyrHIgayzT5lugwTEllRhcxDxGqJLpUEbCZycmk4rvpxDuXAiMQk4BSAjVDF5RUVFRUVHx5MfVE42iFrLfdXWZZqEbEkNSsozJOKy8EeJMRaNJjSwUWZAWaQljYay6ip81E7IrswwMJuGxgktljFwVJm0oA/4cohmP4sbIUeeYTlo02/yJmAZyblY705Yy5IndAFjsaUwR7RUXSxfGrw3u1hGwXXs7nLJjrcmkSxnwY4ENkItkKSNlR9teQFlH1t2M8TUqJvEqFxQvB3ZsjGvq7DZaJlazNnpvkorVudPNvw87u61DQSFdxadhdyrJWIdvO3ZJjEQprpznHAfQiHeABLwPJYUsruRCRucEpzY40WHyrKad4nyLDsqun7Hc2mHZHeA1MQxLzt9zL+k+R7Nlw/3iouPO/fN0mtAhcvbsOS60Dds3nOKCniUhfOyPPgwSILQslgOqe9wwmyHO45ZLPuc5z4aph6lD3ILgIZQ1NcmYxc2u/PJudMVL6VwUj47o6sMho8aMhODNbyQgLth5EZPBWTdJkdLdyurNKF5WO7vi2Uiyeo/kJIiO3asrfkQrKioqKioqKp5UuGqiscEzWNesJoEZ+kgcYinSbIc86TptysyuGYp8pvyfFXOI6dFVy84/iJhngCxkBttlFkvwyaVQyyWutW0a2mDa+dGArKq44ssIIYC60rVQ1At4RyITkxGWPkX6OKwiSnPfF0lUZjKd4bzt4nvvccm6MmPCE4hJpkq0rb0Cm2auqqiIva6s5fKxraAredPlsrQ8moNRQmNESkTIw1BidMuE8DK0L6ZEE/wh0jL+/igJFhtem5IUtVm5GiG4LGbqMozxvPYyM5oHYok/Rszgr8mXd0rYeMMkVBZlcrZYge0aJpMtGgLd/pK46BBV5vM5jW+Yhgn50j7TWcs1swnL+T4uK3vzfbrU0QBbBGs6PLTg/EOPQJjg9y9wTWjRAbphYHZql+uf/0ya3R3mj1zgmutOELYmLPoD+rTEeYf3DcoEcU3pBqVDyVzje3m8RFl3Isbr7S1v7wuleFVQI4aF0FGSxHy57Xq2ho4fjZWHSZ0jkxB1iIbCUz/1+amoqKioqKioeDLgcRCNtVJ/LOY1Kyllhn6gH4nGxm1Gs3QpdUHTqmg334YvMwesQM8lJcoheB8ITmySsmTW0a7jvn5AXGDWtrQhILosUaOj5n09r6JtAn23ZFAlZaWPkRhjScsS8pCIcSCEhhgTOSeaYFKslCLiW5xzhBBwKRK0KfG0RoC8b2ialsYHcjbpl3MjkcqlE7NuY+RyHCPJ2CQH2D1Wv1t+kZWtZXsbV9Zv7DrEISKYWZ2yjuPck1FKdahrsmEal3LZeK42j0PKc2ySlBHrgX22y++cRRTnnEk54p2ZwN1ookas6Hb9aqJ6jJDwSDNB1NEtOy51cy71C5Zk8A1ZHcOy49hkiltGmiHReqETRWMHArNpw5HJhEXsyHHOsZPXc/SabS70mXOXliQVTt52E7e88HNwbcO5sw9x9tLDHAvXsDVp8BoQEt41IBMyVtBb9Ow4C2X1yhnjCMqYczRbp8Jad2qkAGekWKN1sUYD/oqkgs/rbp4r66yi6Bh5u5K6lbXLYLNpMhUVFRUVFRUVT3ZcNdFwhTggJu0Zd+lzUmK0Qn1UBWkZVkf53czCFlskTnHOJCOrCFd1qz1aM+GaiTsEh6ZUxFSpkJtociujI0yblkkhJCpi1yVLoVJNxCGafApIqiy6jthH4jAQNa9uD+NgP0Gcp2nbQjQycbksjQhZvTbvbOmcc0wnU7Zm2zhxdN2Cvo/kvJkaNaYx2frkmIlxnRJ1SPY0phOVoj3GgRiti2FTzWVFODZN6OMu+eUdjE2CMWJ1u9JxkZIwtXl7O+eQL7vf5v3NhyI4FwihKXIpJcWIb82cj/NWsGuJ6MU6LyllYja5Hc2E7Bt2T1/HtbffyrwVcn+UZYosciJ2S/ZTYHFhydQHnMKZheORZaAB4n5m2HJkGpxbcOHcI8zYxolnMSSSBHZvOc3W9SfoDi6xf/E8y9TRTBquuWaXvW7J0PWoOrxrSmpawntLltI8GvRZrbOjKUZuM3uLRETSeuUKiVNNbHwaimawpG9tnsfy4bGJ9eu44jEuWlwm09nz14ZGRUVFRUVFxVMAj0s6BazUI66U/5qVFBN9N1icq99MTRo174pghCFrBM2ICllDkY4I4oVx/LLkjJOMCZxKN6Xsnlux7fASyOpofaD1Nmk8F1+HmZZNkpXLVG4nDo+Qh2K3zVoKfEfUVHatzQdifCXgXOZgMacfBibTyarQTkmZTJpVBKwq9MNAExqyQkzKMHRkm7JmBXjW1bTwnHVFRA4P69sgBoVUpFSkZ05oQ1N21sWGxmUrTt1G9G0IVuyP3Y3N7sXm35tpVmwQCOtAycovspLLbRCi8W8rgF3pQJknxjmHDw5x0e4tZqBei42MzGVsKrk0Ddo2xBDYveVmnvnFf4Fud0I3ZPa7yMUhoinTH+xzsH8Bt7OFirI4O2cul5h6z3T3GFvtjL5f4DUwX85JaUkCprtbTI8e58QzbiC0gf5Cz2TScP3uSXaPHymmeIf3LU4aW3mXcb6kl626MZSuxLgmZaihjtPiMyJlwJ6UYY5SPEorkoWRYSmE0RWNlApS5IPksv5aZq7oGJ88oNIVAlNTpyoqKioqKiqe/Lj6jsamEVgs1tR8BJZQ1HU9wxCRScPmRGot8bE2/C2j2pM04fBF3gQeARfAa4lMTThn/3LylH5KKb7LxG+xQs97R+s93glDKcqC2MA1GaNDsxGbgNC4wFY7sanaKH1K5NSRUmLoh5XUaBgGgmMlcxmL7KZtSCmy2oTWzHy+YD5frIr7lKLF/WLTwWO02RsrkqCjvAzGHfI1wSjrjREU8cFkNsE6B6q22500l/Sici+1OODNrsOIy8nMp7vcOUHz4fuvo3d1477jOXF4V7oc3tG41s71xoBCG2KnqHpETF4VdUB9i3i3ksbFIMjOFJcdTZfYXvTsTLfou6PccecBH3noLBcW+wxR6TVx08mTnH72zVzrGuJyzkJn7AbIewu6vQVHj+/ynC/4CzzjC28n9APnH7mAOOX48aN473jgobN0ywvsHgnQeixyuSOrR2kRCYiG0tFSRFORBwo5O0sPK3M1IBepmIUH5DJLRnPxZmgut7W1Uy82f0MFi30us8CTx2a3jx2QtCI3qJnUKyoqKioqKiqe7HhcFcujDMUi5FL4DtEMwSLmZ8jFGEwpNoXytySQWDa5BSlxuLlo2Z03Pbv3inMZ0ZFoWLfBY/MGbJc4450jeCGIoLlEqJYdZbCif+WFiAnXBrYmU6azGSrKQdcRVRnmCzQn2uBXHYqEeQmapl0V5K50PIZhWHkgRjIzzmNYDdlzJp2RYgLf9DSs1/OwDkacoxWH957gPSEUb4rmImMyWRkaibEMMhQzCA/DQEqJEMIqIWpzjsn4nJsejFXC1einuby7MXo55PAgwHWELqtOxqEZIDpDSOZRIGEtqVEClxlSzxB7om8QjQQNxEXPYn6ACw7JnlY9jSpHt1rYmfHhu5Qz58/xwN452iYwELm+Pcbs+IQmZk5fdy3nuJYuJ/TSHu7kALsTnva5z+aap92AGxJ0NmMleCO/yyHR9xnB2z8vJTkrknM05dc4Hb14NtZDGov1341zN8YO1ybZK5+RZGsgo8dCTMqXdD1zZBWIkErUsAAyniNBaVA8WudoVFRUVFRUVDwF8DgG9hX5x6rgLH4DIsuc2e97+phBPVlSmSMgNjhPBIcjZIe4HTPEpliK9gB4vDa4LOBKHKrLSONIyx6TpQScK1ISlKQ9SqYBpu3UCrYSKaqOYio3mVNKRkgGHRhyZB578uAJTWMyFhRHpm0a84Wokgpx8t6bHCnb4DpNRj40j1r6ktE0xp1upD2NBargCyGxCd5j/K01iC7vKAhN2xJKrK73jpySPa9j1QXCCb5x5D6tzcl2CGhSXLC5JSmn4olIK6Kw9jXnYthey6JSMeQrazI5TnWH9URyO1IpFDKar0GtWM8kHLm8Z9pSSMeVjyHhiCqkPODjgBwcIEf2SWkBHqaTbabSMmlnLBb7gHB+ueAcA91ECHMQ7QgKIXqWPXSThvbUUXYvzLnUwUE7QycTmlnATRtc8EiMNI1HcVjd3xOI9C6hPkKwwYo5RzxbwDZZW7wTVAeUHnERSQpMEGlW79U0Dpp0Jm9LKQPBVkjSqmMDDudCGWDY2ZBxbBp4yiYbxOXyXrJz64MiSdA8IWexAYAVFRUVFRUVFU9yXDXRSCWeVcSVjkKZEUCi18xBHOiGTEpK9uOcBEGCK+IZKbvGE7IqOS4Qr2bGFodXu1ZVyPgSMTolywFopIi2VtGeuewCexGmswlZbGCeQVY+g1G64pzHeQvI3e8OmPcdITSW3JQGnChN8KvOy2gsd96hOZuUKgSL2tVx3oeuDNzi5FBzQsQiaCnHbYMJ0+GuhrCx+23HXQ7fnleVvnROsprpPpVYXe89PjhSFsiHn1uzIiq4sJ7/Yc8xirXGNdR1f6WQilV07ebtN7oYmx0PJ0Y0slrsMGJ+BtUERCCguaQzuTIpnoGYLPkr58zEeVxS+sUFusVFsofpbIb4CY2b0KWecxcv8p/vuIOPnT1DdrA1nXJkp6FfRiQLj+zNGbJjVwdcN+fC/gH3H+yjwI3b10Ib7P2SE0MeWCx72q5n5hJBEt5llEhiwJUp614CIm0xsZdzTUYkWiqUNKtOg62oM9kTrqSKFfon5uZYT2YvyWCpBxlMVognZ0FySbjyA+RsBFNGqaKWeS0ANXWqoqKioqKi4smPxy2dWu/W22UOIQr0KTHEREwJlzJuFc1JKXbNHIusd/QpUZ4ikUyPuBJzqw6RCR5F6EyWous4WEqBK1lxAtPJxHbdD8WwSomkbUw65G3mRs6Zoe/JuSP4dkUkVjv6Ka1eq1xWeAO0bcuyG9CYxqdB3FpmtC4oN/0M67XbTC9SlY3bjlIZGOLAWExuplPFbAlGo1xrlEXBmPTF6vKUksmA/OH5GuM5sxkPGNEq91udsI1zfTlWiVNFLpV13eUqJ5v16LkilUKtcCaRsU5R33XEITPbmiBhBklZ7u+zP99HwjZJMvPFHotuzsOPPMyH//jDPHTxYbZ3t9mdTLju+us4f+4CHQMPz89zbjEwPbHFVk7cdeEh7jpzhiCOa266lnDkCM5NyDnSdwOL5YJ20eAaj9NM61yZaVEIpvdkp8Cwlo2pBxqbUq9DeW3Rumhqc1vUgU1BKdPEpZDJXFKmyprkrIcjkEdpFQ5xnuRKNPMovcrOSIYMiFOqF7yioqKioqLiqYCrN4M72YhszeRshbZ405DHlBhSNMlS2Sk3vbn5CATBeyMoLtjvrsyZSNpbYo94y6bSFk+DL7IjK7o3Debm41Ds56RtbTp4tAIwJZsjEbxYF6KYxV1jHYI0ZJxCU3T6fcp2G+8PDdATkZXnoW3NpxFTsuOWDOPtoPhNHh0Fm7N5TUZSMZINq/Gtn7CSKRVCNsRESnFlLo/JTN6mmNqIps0bx+DH6F3T/Jt3RpDinbBjObwTXh5mRabG52B1bKy8HpebxldEZGzObHo4ViSrDPUrz2HHaglkOUVyEoZOYYBWAqJwcX+P6DsGHDpkXEwslgcsFgcMQ4/mGbOtbbbbGXGrw4XMvN9j0S0In/wkYRj4xNmHeGS5z/GtXWbXHGNy9DiumaLSIwS88+QcSTEimvBqnTERIZX3bczjoD1W3SKbH2MyJ1BUUnltY1SBdT3MkxKLL6WQ4lHWNnp41PwcuaSKrcloMmItFj1swywdWU2itSZwFRUVFRUVFRVPbjwOj8aYILQRcQqrBJ4+J5axJ6kSFFJO5JTLYGhFx533MicD8WaMLeZgilzFCrGMiOJ9SbsqZnAZTQhFiGUxuTBpgxGhlPHFnGyD4zLBGVnQDA4ze4eyU9yEhiyQslvt0E+n0/J6lb7vERGapqFpGlJK9P2AOCmzRNbrIxtE43BhPw62e9SCFg8Eq9ekq8dam7GdczRNc9jEPRq8vV95L0SELCXct1S1KaXVbS/vUBhJezR5yBudo8ciF5udHgX8ikCtJ5priTOWcp5ztmLaBhWuB9t184G4PydvbdG0E5TMQ+fPcmH/gJCEiQoHly6ZZwVofGB7OsP3kRNbU/xEaCaQBuWB+x5E+wVLiRw9ss11x49z8sQJmskWiFt1FqbTGU3TEHzGDTbfxJXOg5JJzkiao0EklLOazKNhromyIqXwV18UVJY8JVgSlWJ+mtIvKetqn5zRKD5OA3feZtNkjWiOpFweF7Ax4Q5VX85RlU5VVFRUVFRUPPnxOKRT4xTr9e472LCypEI3RPaXS5s5EcIo+S9WhHFK9lr2lJLVT95Zyk92DSpN2c01OZX3keAdQ7JZFeOOvPe++BusQG9CsHhVzJuwmlAdIxIcMUYaD+0kFCmRzafIOeNweB+IMdL3vU3/3khoGmVKy+WyEI3OikNnBveRfq3cIRvF+aF5FZdj1QlZdznG58yF9OjYTShdic0kqMNSr/GyQv3KJPJUOh6XH4N1m8wgb8PnWHUzdJSncbhLsUk+NklI1lHKs+H7EFB6oEXUDNPeJ5RMjoEU5+SUSYOyGObEvkeGSOq60inL9Ms55x++QBgSaOCaI0e4GHu0G9hqpsyC58SJbXaOT0gCW9OGixcGZrvbuJlHnWN3ssUMIXdGgHMa8F7Y3t7Gtx6viSw9zkHwwXoSUqRQKSA5lESpjJBAI4IvtxmlYsIYbbsiyYCI+S40byZKmcdC8IhATublERmlcAnGWOBCzOyYFFRQDdi9a0ejoqKioqKi4smPqx/YJ1K8FaVoyiXtSIUsEHPmoOvo+sjONJQZEKCuFK1YopHLzkYBqJmtPa7o2S0NyIy2RmQsghTycNiMbAWxWjHmYNI0tCHgxYzINql5TMqSlbm6baxQy1nJKFo8DyklhmGg67pVZ0NEiNHkS7EYlzcTt0azOaP+Xh5NLMbkqSuuJ5vyKVbrCqySorz3ZQ5HRMAIlayPLyUrSnWcsF6e0/syP0Q3uyRrArSSQsm6T3T51O9NPKZfw64E1t2ctZwqgrYozroXPiESEVo0BVSFvhu4tL+0OSNxYFgu6RYL5vuX0G4JfUfuIpPJNse3trk0RPo40KhDgnLk5Ixrb9jl/MUL9I/s0/eZEzu7HDtxlHbWcmR2hGtOHC1pxwNZO+bzfS7t7eOXDY0qcTknTBOusZQuJFj3JSs5R8YY5bGTYbI16zDYBHAzkkMsRKMQCRrIoDlaolXpWtka25plXa+bJZLZpHWvRppd8bgkBpwKKQcj0ld8R1VUVFRUVFRUPLnwOKRTVzYGOzyIkh0MpSDnkIFa8L7MwShdCU0e74KlMkkycqCQimRqlCH5EEjZJECHIlZTJuVU0nw8oRGaNhRSUEza62AnUIjDQO9SSf1xNgchRoY8sOwGK8qLiXrTozEW2aP8aJS7jJ0aIwsZfwWH7pqcbXY5Ntb0sp3p0e8xvv5xzX2RSMUyfXw1oVtNQpZzJkteERAww7jTtf9js0uz8lSsZFZrEnfodhvHdaXf169xjPJdr5f4iEa1mGOhTNmO5DiD7HA44jAwn89JOhQ5kJByYjk/IHcds+KJ6fb36ZcDw2LJpG3ZalpkBnGS0VkiHvQs4pyBgDTWTeljJMkEP/PIVgOpI+vA3sEej5x9BD+Z0qhAPmC3LXKkmGi8DYT0KDl3jDIpi2FWhLFD4Yu0KQLZyLImcnYIHjcO+tMOzcNKDjeumargZO0JWr031AZYCpj8SgdUY5HEraVtFRUVFRUVFRVPdlw90SgzH0bZlCuToEeDssuOross40DWCSmZ3INcSrXAmkQIeGemYFOye5xkRKMV7Gr+C1cMt1EzqO04O7HBfA4QdeQsNM6x3Xggod5DotT2dnxDTOCUvsvWJSkdmGWMdDHTp9HsLCsyYRIsT8pmDPaqyOhh0LXUaEU4TIw/PjHCGB+roGlcxfV6bhgyRnIxXmRysrGgz4g4XAjknOljjw8e70yK5oND8uGOzyoVqngjVjo2NbuyPXZeHcjajH7ljsaK2HCYgDgBp64UxmUXXhxZPJIK8ZK+yIEsAlaTne+ogSEKogHvJyhC00DDgu1hjy1J0CTyVLj/4QMe2V9yfrHPtdNrOLqzw9Ykk3rl4l7koIfpkW1yjggDbdjh4v4e4gKRbHHEfUZ7ZYiZoTfpmHUUIqImk7KOxoC6jPMNqCMT7bwmCyuQkjKlOSFlXkhSxREwMd34eYnAgGjEzDz2WVj1kFQojn2MwCTQztKrKAKp7OyDV5bcUeSDlWhUVFRUVFRUPAXwOIiGbnQVEqO1O0vG5YBEx7IfWAw9iYRzgnOebBu9ZKeIzzQ4vGScDPYIKogPBFcSgErBn/KAk0RoFHVKzHYMk+BQzThVBEcehFY8260n6YC6ic3TUCVlxWUlk/DizfSNzQEZsrJMiT5nkLCR5mNFeTbVCiqQxBVCBTkbOdJkdaL5HAKrQXgbO9fkMulZLeXqUDdjlVjlNi+0Y8gJ5z0izuRRmvC+wU8aui4xaAT1qCjeOTPCl/uOpuvgAy5YcZvViJUirOb6aVpNNBeRVbQwcMg8vkk8DpGMQmREBUfAi0fEIltVJwgOYYDQ2U589pA9zmcGhS45+j7i1ONda+e2EbZ8zzVhSWgDQ5tw2w2XuoZuvqBvlLBlpDTsD3RJuXhxyd4wp3WOrSC0Tpj4hiCeyWTCZDrFx4xbJnKXyElwLjAq9EIQpo2nDQHXeAYS5w4OaOfCqePXFJlUZylpGdCmSKPmkAdLIMsNuEDShEhG1eKaMxmcvVdU1UgKZWq9jjEKdi5EonUvgHH6d86+JKyViOJk/w69ZyoqKioqKioqnqS4ejO4rKU+Kz0+WiJVbVc2qdKnaGlPXsxEKw6LdrV/UTOaMo1zVoyqQ9SKeIsF7SyFRzJOHG3b4F1aFWsxWTQqKMFZMe6dFZUC693jYhZPZaZHzKxMtBZTazKvMRJ27GiMKqeRFDgnZXZCtpQrEaahJaVM1/em3Pcll2jDxwFrs/phycz6GNYdFFa3t4vHSFnwfu0r8dgcjxyTdTacXx2rKx0c58ZJ30IbGkSFqIqkzBBjMfOvOyqbx7r5+5UM4Zu3N5JUOjZO8OVcjMlVOFdcBiat0zJYJfvIoAOJgeVyTlwqpIjkhEMRyUynjq2dhm5IxCHTLhx6Hrw2NC4wv7gHcUmeKOdkySL3HD+yzXW7x5i1WyyXHd4pW1sNs9bh1d6jSkJcpJ0kUhpAlNBEfOuh7Zlrz5lzkf/0/o8z3xt43rOfx86xCVszuO3W0+w0oDHj3BRhi5QHspaBemTQZFO/k0PLPBYBciHV4rzN0EhmGHc+kdS8NE4CyISYFIfH0q5M5qaSS4fEI/5wjHJFRUVFRUXFZyHkCv+tf6yAoScxrt4MPu54F4mQliK5TMyArKSY6LpITNCEjBSiYQPhrPhNmInbZyvQBTGyQQAXwaWyw+txztOGBuc6YsygZqDNWJcgl9FziGNrtmV/ZV2RhdGYbFO1wQcz3aLKkCIxZ3LZH7586vUKKSHJNPbtdMJ0OuHIZIshJi5evMSQzFsgrgxV0/VMCpMw+RVB2Xzs1cC88tzjjO5xl9tkar6Y023idh/7lfwsq5JixEtjg/ncOqLXOSNfwXty0mIYF5shkrLN3LisW3HoXF+hg/Fok3s5UsWO0wc712JrbNlR5X4ZGAfTuYHsI1kSy24f7RySBpwqw3LJ/NJFUu6YzBqYZg729rmQlxzkJV4CuY/kpkf7xDBkUsAmy8cJOvc8uH+B3VMzto81NKFIklIp0l0gNIF21tIv5wz9gqgDgwbOLxfced/DvOe9d/Pu37qDSxcX3HDd+9nabrn5xmP81a94KX/xC55F67Bum2vQECAnkiayRpCEcx7No5jMG6GVMqMkW8BAVsE5yMMC5z3qhKig0hBjxmdnviYBEZu6rsTiI6oko6KioqKi4rMe4hC3/m/+amP/KUY2rl46VToEotgcMmzn2sI/bb84psyyj0SFVIrQII6cIYni1SHepEvr3ogUqVNjz6OW9CMaUJngneLGmNai+xEv5GyEQ0qk6PZsZrvqeV0Ue+/wwZNTtGGCRUkvhXy4Ei2qxj0OFd/eO5rgCDQ4neCDY7I1Y7q1xZa09H3P8mDJMCzIJMQ5XPCH5Eij1MxSsDaM0lLmcJTOQl5djg1pE1cSp7wNH4xKCA1tExgG66JM2gayEryjnbaHzPK6mt+RURNMIWJ/pzTgpLkiwRhxeZQurOVUh+9nx4o4VCyOdxxep5LNB5FzYU4OVEgkIomkka2tKZPZFK/JfCYKmqzLlWPCt+C3GvbSBS4tDhDZRqIya1scjkU/Zz8nOlG4MOd8v89cl9zkT7B77fUcObpL0wRIGaInpwaYEPwWtELf9wwp8skHD7j7g/fx7/7THfzeBz7O2XM9TWh54NzdiCjHP9LgnHLy5A7PvOU0Oe3j8gQvLbhEzj2ZJeITWZPNwHDe1l3NED8SBBFLR0s6IN6VqOGSYiVSSHaDqitRvzbAL+VU7BxVNlVRUVFRUfFZD83m1bwcm7KUpwCunmis/pWqvMilZDPZKSmLbqAbMtM2IOrQUOYQ5ETG48WhTspYM4qB1qE5oGKdjZwSNqAslHQqs3WLjCPSFBWTatm48sR0MqX1gcUQN4prTwiehLIcegbJTAg04hDxyMq8LeRsnoVxGrc4oQ2enbZlu53gvCMFgeAhqg0jLNIW6/as5UWb6U+Mca9wiGiMfYuxl3FonYvZY5w9EmMiJZhMxQzYzjGbTIwoUeRdmF9EVckbz21kYyRRNv9jvHqTNFypY3G5hOryRKpVfO8oAyvHjxPEZSOI5fWN3SXNiThEVJWbb34aJ4+cYrqzjTrFuYY0ePYfiWifmB5tCdtHaSeRmBYQe2bXNGxtTdmTOZeGxIEq0TmWXY/0kWYSeOjSnPaBhzl26qQN43OmqOt7peuUGD0+bONcx2IZ+eDvf5R3v/cj3PXAAft9IGpEU8SFQPAte13kd977IZ75rFu49tprODrzxO6AnDpbj5zMVO4yMUZsGCVlgKSFG6iO8reyVlnIamuXo/lwnHOE4CCW9LNC0jKYp8M5i5OuA/sqKioqKio+u6GbYUKX4SlENh5XvK2ORX4eJyBTOg26KoiW/UA3JFKa2JyM0ZgtAwkbvoZ628VVk5g4IGkkozh1NgMNyGTcmPmpCk5J5NL1EESzPWlKtE1D4z3kweJ5xHwVmscJ3Lb7nhHUredHjFX3KHmCsnufMzEO4D2t2BDAGAcW/YKuE5KJ820Xv0jCZMP3IMVnsZ4Ofvjf5SlPOh5L6XCkZFG/TjxNYz6XbrmgbT3TyYTJpF3F12qOFCNJIVjlvBTWklULeVunhV2OK/kwHgub3Q4taytlWOBokXFqsyVEsq17VgtQGhRKItmxEye49sSNyKQhe8AHlnPH+TOJ4aIwu6TstUsuPJQQnbI9azh9/SlOnDzGxbM9aQg0eBRlqZFBoFWBLnPvmQucPLtHn8XeM2RiXhLzQD/0NGrhAPMO7r73HHff9wjzOEXVQVJi7vHl2BHh/of3+Z333sFf/Pzn8YXPuwkJSo4Ub0VAdELKEU2DvS+ySciGfoEr8zKceOtgZcWpEtW6Xq54gNIwELxHnMnNnDfirTmsPgMZG/xXUVFRUVFR8V8wniJk46qJRkZXrymrZf87gazWqcADCv1gcyniliDqyd4iOt2oMU9WcPpQjK1aiuu8JHvFSWsUQBSRgZHYaNmaVs1EtQFqku3+mvNqoreWIX6CDbSLMa4SsCJKKtKWJhgxUUr8LevJ4/bTugUeIRST83J+wPnFnDa27OweYXtnm3mMdKVrIHrYSK1qxy4c7hjAuM9/2Lex9kZkm/it1jFwLhCCJ2czx08nLcF7NGWTsnm/0vHZnJLEauYHkGKkH4Yi6XKP+d68vMPxWLNTNv5YxbVa96UQJs1oXAKpdI0CTjNZHdorJAHxtNMtmp0daBvUK+Jb+t7R7TWEhafbV87EBQ+dWzJx2+zuTJjNJkymLTLxTPOM5aU9NGcr6kUYUiJ1inrYW2RiKh0A15N0H9ySxJLcC0PqSTjmUek0MjBHkxAo4QV5IGfPQCAjfOgj9/PB37+b5998PU3j2b90wHKR2L+4pO8TFy9dYrmYI06YTluO7O5w5oH76Od7bG1t87Sbn8aJEydxpbuRB+Ghsw+CJE5dew2TRlAdGAZlf39JSuV2aUBcttS2tll13SoqKioqKioqnsy4ejM4rHQ9gtg8Cmy4WRNacIHGe8Q5LhwcgIPWOY7tbLM99cQkEAXvwXt7HM2p6PpdaUJkYAAJOMveIXpL4Ena4dREUUqwIjyPsqSEeCW0DRnwoivj+toLogSFgNCGwKRtcd7RDUMZ0pdLc8PkRjlnMoHsHCH48votwhd1TKZTZm3LxfmcbrksMzTMpG5POaYyXZlUPGptR2P1xuUxDebXIKN42sYzaye03na4c3l1rhSeq8nURXI1SpbM55FQxOJYy3Nu0ojLuzv2p9u4pR66h8m1bK2ct85TmfNO0t6OrXRWKD6FFKEbICdAM8kp0Qnnz56j65f4SwlHg4tAchwMiYs5kN2U41tTTk4bphLoXUYF2jDB5TlT8exsNyz7xEF/gM9KnCsMAaFFxYF2qC5pgjAt/ha0oe8XSLJ1i7FD1NO4CTk7hhxpymtEHA+d2+c/vPfD3LhzlFaER86c5ZFzlzhz9gLzbuDS/j4x9uSsnDx1DTffdCP33PMxHnrwXnaPHOHzPv/zuf3ZzyGEQIyJ/UXHRz/yx4hTnvOcZ3LN8aOkNHDhkYvce+8D7B8sSNmev2kDs2nLsaPbHNnd4jmf6sNaUVFRUVFR8dmLp0AnY8Tj8miMZKNxnrYJCNC2E6YT60I03uO98PClC5zde5iJwM2nruP0yZP0QyJMGrYnQiCjPpPUkp+c8wRmqPZElsUg3tKqI/oG107Ii2WRjjiUphiHkxX2wboWs+2pSXmKVMmVORWCw2ebl7C1tUXbtqSU6LqOFG2ys0XJWhGec2KIQhbHbBrJwJYEWj8B1xCzJUJNQmNj2rINbdPie96UQyn5kFzq0HwKXS+urNa4RNyWDpGIDS0ccmTWGMmQIixzbmX+IBepDqNEp5j0kTFm1ZWEL2xwnDscrbs+XsoaUJKPvCU3jROxsxnMnfM2UJFEcIoXjyOUIYuRTItItiSuDOCISVhkYYiJmDoW/T4PPXg/v/lrv8vDD1/glmuuo9luaaZCni/ZI/MIjjxtOdIKJ8KEa3aOMteMOOXY1g47Nx1hMlWuu2aH8w+d46P3LmkmU7plZEemtK6x2SdDpPUTju9ew5FZZLlY0AWYn3+INmYCE1rM1C7eIWWYIMmilkGIw8C/f/8f8+C955hGpbu0z3y5ZC/1RKzjJghd13P8+AWuvX+f8xcucP78HJEFf/zg+7jhDx4ohDDT9YlHHn6Y4B0f/MjDHNnZRlRYXNjn4x//OPN+iTpHVkXEMXMtR44Ejh6f8t/8nav/kFdUVFRUVFRUfCZw9dKpbLvW3nuaYKlI3jmapsGHANm8GikpWSNRIwOZc5f2EBwxRvwksN14jm3POLa7jUxMUpOcEnxJMFIrXmEgM/oKSq6Vjs4QKVW5pfVoFsQLbVMISCEZAClFgp+wtbXFzmzCbHuLOAwslguGGGnblmnT0PU98/mclNKKEOQYiUMi5Uz2Zsb1PqBFkiUUg7SYr8IjhyJjL59FsYk1saCkDemhLsOhCd/OkYs8TJxfS7OKid3MxuX5yvNkVfO6iOBDIGSIsSRiOYcrcrDD0BVJXj0eJSXL2ZoXy41JtpwdnxnMc0lMMnKiUcpwDymPkYvdQYkpWndjMXDp7P38/u9/kDs+ejenjp3gubc+i7i7w8H8HPsizIeBTpSZeDrNXFouuLS/xyQkbrnpBBIC7bTn+mu3eWhnzkMXJzTTI+zcuMV11+0S3BKvEDUyaSecOnWK+cEBZ848wCMPP0A3P8B5j3eexmUGBPEeskAy385oghcRzpx/mL1L59gNE0JSxHuG4IxkJCXGgSEPDBfP88j+JVJMuEJgP/HgA3ziwfvp+87kT2qpYg649/4H7L1e4hGGFPFNY8lUYp6Pc92CfGGJu3+42o9tRUVFRUVFRcVnDFcvnSo73uOMhrFw7oeBrBlRm1I9ymmSKEnh3EFHN1wkxQEXPNtNw2J7IMbMiaNbyNTjvRWfSEJE8R4cCc0DIpngI0o2GcnaPm6+hASo4HHMJi3erQ7YyE9WJpMJOztbtE2g65Z0Xc9ktsWRow1ZYTlEXIwl6taG2llWVqaLPV0cmLiAD4HpZEIfO2JKMCYxKSXfWIoJnSK/ssvGdKbRN1EO8MoLvar9LQJXyvwJu73bIAD2PDFZmpSy9piMSDmvhgiGEKB0V5A1IdqM9NUi/RLxq3WUYiB3q0jidQKVsJ5SnXMixkiKAfUe8jg73looIgllIKbePDkJ9vfnXH/yBv6b/+Z1XPfe3+c9/+G9vO+euznKBJl6zsfIvkYGhUvzfY5OGz5x5kH6vORZzzzN1pFtsgTOX7zI/v5FGhpaN2XaNFx/3UluuOEEE6+41CGFaDkJ9P3A/ffdx/7eOY5sTWnbhiYEYkqkOK7n5VG+xbfiHUNwzJ1J8cRBJJOHjMtCHCIpZTyJ1Pf2eSmGdWt5KQRPFk/sBe8ai4YebLCkD848SCGQcyKlaGQjC8kivXBaPRoVFRUVFRUVT35cNdGIMYIqXiB7ZzuvrsxQwHbQc4zkHMkxoc5MzHOXyEREoMllJt98wIcFk9YzbbdQ8US1eRkhOIJzlqjkQIgEs2QwJspa2RbJgjk51PaBZ21LcEJ247a7dSHMKO4ZYiQr+GCkIWVlsexY9gM527C1cRK3c0UYlDJdjkTNhOCZthNcGgt0SwYaGyxGAsbuhWMcrveo2RPlp5my112PQ2lUWFITOa9uE8fhgCJGZMrzKYrdNJfOiKVArWZ64A7F08Jo7j98bI6xizJ2jcpMEVeIUs5kKN2i0uHAYbKqZGQj2aA6xzg7woGoFc25J+WBPkbEBWLKbG3v8Jf+0m0c27meez7xAO//+J2ca3fYdjMeHhbsLZaW4NU6LnQLFss5x3a26KLnoYsdTdOwtxfo9g84OtvhxPZxto9uk4dM7DIkh8utzS3RBfuX9lgsFtxww2ma5nq6xQFtezcT70niWOaBlGUlVxo7Suuz58hZGLKtuZBJSUk543wgOmGImeBsiGFG6HNmNdOkDO9DwYUZMSU0G5nzJRa5H2VsZf01abmdnVdHJRoVFRUVFRUVT35cNdFwzqEpk2JmkAHNZYCbczYkL+tqjoPt23tEPBnHgOKKN8CLskzKQZe4dNDTeI8Tx/a2TQr3IkgCVYe6Bi+RNgST4xQvg5BQtQF8ogFRjyaYNi3BObpiyB7lU33fl8Lc5mSklFguu9IF0NJ5GHfmR/t4aYqgNljPmcsheI+bTkoxjpmrV3Ije6zVdaVwHLsQxn0uk1BdIVZ2nAaec0mfKk8wDIl+yIRgJCIVYpEKASlxW2RVSOU8lKL28hQp81msC+jxelfmbKw6KcKqh5Qp52d1zEY0xSnOFZP/KG1zyYiGruVTKUdyyqvuT7dccrC/z/Unb+Kao8e48brr+MDH7+LCwR4HuWMvJ/qhZ+oD4gJnzl/g2GTKie1dHnlwD8m7HDvqaPIB02af67cD/sg2k53jPLzs8TLBuR0jopo52J9z3yfvo+sWpBTxAYahs7UQaJzDo8RN00w5H/beyGZ41zF9DTQZgUiaiSVZLQlQ3gcrg34hrppySeJSUAshcM5kZqqQhkgs95Oy3pq1SOzWvqOKioqKioqKiic7Hp90SqzYyskK73GHW8R2w7334AX1iidY4esgasaljAsQvSc6iMC8S7T7Pa1raaaRgNp09WzD+mganHS0flIMzg6RjCOTJKLa2K67OoiRadvSeMdySGaYdhbF23Udw2BRua7IvlaFd4loNZ+ErMiAYMVeUpPr22Bn2932jV/PRtjQ74uMO82bXo11sbkqwhkDA8rAww2yYY817qJveC+Afogslh0huJWhmDK40DmHL89vHY7S/sHkY5syrlGAdnmcrZm/jRA5KWMPFaR4NdzG7a1r4lDxOEl4Lzi/0eXSAVWPYF4EM5ILKZqEyKRWA91yybDsme9dwGni+PYWoi3awXCwRxJhGgLkzKWDfXbaCZ5AN8+kPjGRjhNHlmxzgVPb+/hwLee7nuFACS7gpEWzTZVPMbNcdnRdBwxk7ZkvDuj7DnI2ouEcA1b8x+HRg/HGIK2IrUvOmfK2JadCGF0gKaQSmyzibXaIUNZGC5FI1hhykIr8MOVUjPtGzp1YulrwoXhc1u+hioqKioqKioonM66aaNhchzIQzglNCDjvyc72uh2CeBvBLA5CKdBzMRgrmbElkTQzpEQ/JJZO6ZawXC4JDUzbgCOQtEXVko2Cs2nLZnTOOBeNBKyOznZ9J02w+RJ9b92IrGX32Qq4GBPeZ9pJC9jheOdxITAO2EvjDIqyo51yYkiRmBPizQRf6sMNqZOti3ObBuuRZKwHAV7JKH4l5JzXnZXN+yQYUrJjWcmyRmP4uNa6ko0BqxkT9lgrA8t49SHJlpPR2pJLEtYYkVvM32Obp7w8wYzKudzAle6H0ZIetUwuKP9UPTnbmsbUI84I0HK+4MEHPsnB3gWu293lxM4pOFD6j9/FoB3TpmVQ6xaAkPvE4JUL+5fYmuxx9MQBx3cSu21HSvcyc7tM/BZNA+IyKpmUMsOQ7Jx7Z8Z4zcSU6PseyVq6a+Zt8bJ5LjYIh3Ol4yFkyUU+NbrkR6/O+r621uv4ZB88qonNlokRwVjWLxNKmIETIRR/TOOF4Owc5vzY752KioqKioqKiicLrpporAzJThDncd4TnLcuB94kNUrZ+i9pRZqt2wBWoArEHNGoLB1MvWcImWXMhPmCtg2kJuDHoXIZ1HmcaywlqXQAkiqW/2r6/9EvMQkN0ybAwo5V87rgFnGosw5MTKaTb9uWrdmMEJpCOhxD3xNTKtKp4j9JSk7QOLtNKtIkNBf/gqxkNpeTCVXrLjiR1RqM1z3WvvRIeLzz+JEciMm0jCzkVddjvFpRkyWN5Kfo/MsQbuv8jE+wtlgwZutaF6cQihKFC2sZl43muIw0lVuNrhKKVCqPZhpMxmUFdIOjwbtA4xv6IUHKxL5nsZhz9vxFuj5ycnKEkzkwVeWTMXOOaBwzBVyYkNWxXHS00wmzSUPTZiY+kBeecxc7xJ/hmtPbLJsJbZPJcSBnJQ0Dse/M/0NDTo42TBFpSYOCOrxvCM4jMaJOYIPEyUg8tUirCqlLqvhxDbIRWqAEIwDZOhWukIzgHFnHblkuFn87X947Ap62xOQ6oPGhJFEp3oEXR64NjYqKioqKioqnAB7HwD5H0mwFrNgOdePCIV8BAN6K3pgjWTONeLx4smaGrLiYcW2DOE8UpScx1w7fJXbTLkkDgx9wopAcKQv4xshH7lHv6aLHuwbJglKSqsQx88LOdIK7NGccl6fi6FOm9QHnwurVTNopW9MpW9MZktVibSczzufzdgvnbVCfU3xuafCWrCVKcg6NPZ7ExEHrA8kpOoxRsO5QJ8Ocv1a4jmlGZcrFyqgN6w7JpnfCO1fSp9YERsQfMimLQCwFtStFak6ZQTO5kDZLpxXr8EhRM3EZwSjpXaF4TLz3hBAIk4YswnK5JA4WrWrmasGLowkNrZ8iGvDiiYPi/AQRX5LCFOcbRFubgqJT2tSiaUBj4mD/PI+cuUC/r5yebLHzyB43JNjfangkOOa5w+uULT/Fq+DIPNtN2Z1OOXbccW2rxHMX6LspuzftsL09ZTs2eGexsKnLxOUBkwZ2ZlMuXtpja3qUySRwZjggDgFNDvUNUxFahEECzlvUsVvNV8nY4EctyVkJSUYiQ/ArUueDyZ1UE4HM1MNkMiFMp+ACfZ9YDANKJIjDi+CxblzjPT5bapkTiyGW0lZKqiV5qqKioqKioqLiyY+rH9i3GrAw+jQy2a2nabNRMOdSZCv2c5QlWRFtu7pOrOglZfIQ0caTk5CySUXKprEZYr3YJO/OImhdSb1ibBCUHV7vHE2RQT1qloVz5BgBaKYWaQow9L2RGFgV78MQi9HdyEqMAzEmJm1rpCllpBixnXMryVDWdULUmhRgqVfesWnINqmSWxvoN43a423G25Xj0vG6InfKo5RNLL52dV1Ze9Eyl6HIcMxcbJI23LjOJrVyTmzonpiHZUUyQsAFD94RvGc+nzMMA6uBg8V/sh5MOMqx3Mq8r2Ry7oEE2pDSYD4Q1+JoSfOB9sIjHNUFk90j7OxlZjnx3N2TxIMjPDJ0TI44LuyfQxb7nG5nPH3W8bH77+ScXoOcGHja0SW3XQt9cxLcKabbN3Pshucyue564t4DxCFz//kznLnvYUKYcv2RUyRNDCmRcrJjTEPxThjximWmyuVEcHVZVnC2xqJCIzazRCSjZJxraBthZzYhtA3igg0rzD0xDrTeE7wniEO0WLzHNCs1wq7jpPlRw1ZRUVFRUVFR8RTB1UunYCXHycny/XOZBP6om7FWoI+7+itJj9VmSLZCWEpyT4qO5TLRb+kqOldwlmblvREDzaw8ziUSScUeR1HEBdppW9J+7DbjT0oxb49lk8z7vieJY+IDoWms6AuBbuiMNORspEbcqrhMyWRNkoy0OOeIKRGzmYMvL0ZFKAPtrHOg5XLbrd5McFoTDC1ypjx6JMp1q58jERkLz8vmZ9guvDezdjb/jMeIQnDejPxe1wRLjKD5ku7lnFutk/eePg300czdrsTm6gaJGaGasKF9Ac2N/e4AElkjziea0IIsyZLAWQqTJ/Kc09fQXzrLx+67i63zQswNJ44c4RW7p3hkmOMmSutmHEmeo9vHSI1ytltwzyOOPzjInD824fw8QtMy2RLc0QnXtVNSI8jOFtN8nFOnT9M02zgNHJltsXfpAkPf0y0PcKLmj/AeUrRBiOX9YyR55GRroqjFCI6YF0YQyJk+R1rv2dneZmc6QXyJUV7OiTGREJrgmZRuX3B+TdqyluCB4m1aWznsNlU2VVFRUVFRUfEUweNKnTKfga5iXNHLb2M/FUref+lwlG6G3S+Z4To5xqlwToQUM4vlQN9bnG2JYyLnCE5om4BgpnSTAZnxXJ3t+mppb7RNU4rCtU9Ai1l5nGaeUqLvOiuUQ7AdfrFUH+8LOWDt/dhEzpnFfIEbenJKhFD8IxpXvoZN+ZS1gDZ8EOM6eh61Uz7+ngtxMo9FtiSuK3RpVl0QGekIq27EpG1pQoMvtM+XY/LO4YLHeaucV90L51GRlX9l7Gh478lkhjhAmSXSBCNXTgVWEjBd7cCPpnGLdS0maRI2HTyhrie5ZTnkhu4g08fI1mybnXyJ1nm8Nhz0kbaZQ5PRpByRhhMNxP4RLuwHptOW64+0zHPP2f0tHnyoZ0liNn2I49d7Tn3eGU4tjxNoCLLF1G8RdE63v+CT9z/A/t55Lp1/mL5fojmipcNkkcW5EFaL7h3f31p8SBZ+YN4V5xwuW1cjksxb4RxTb6lo+/MFy2VH3/cA+KYhOEeL2DT5jU5FGpPIyidpfPuNpLUSjYqKioqKioqnCq6+o1EK3axKHs2wGOEYC7CcLx9Od3gHeCQbKSeielIxSmdVUoZhiHR9z3QSaLxDLDQUEZhOWksLSrEU/0Wyk1PpAFjR27YNzgkpFUN6ue1YVKecrZMRE433aPCIs6F0WceZFePrW/+meYyohfn8AB8jMSVC2+KDR1JaGba9t67AeoDeOrXJNqt11eEYmcw4cyPnXHbH16ZuSldk3Scay1BWBu0NnzkpW5pS27RMJlNCCDQ+lCVSJJj8bBgG25XHZEJlxewxUlr9zJrQnEgx4goJMb/C5vsDxona4zTwcf3XTSUla092S6LMS5zuhIsX9/jwPZ/8/7P359G2ZdlZH/iba62992lv++7ro+8yIiMzIzsJZapFSIAEApeEoKpUBZRLZWMsYECVKTwYw6YGwwPbxTAwDBRNWQJbpiRjIzMkrJSEhFCbUiaSso2MjP71zW1Pu/dea836Y+197rkvIpURmREZLzLPF+PGe/fcc/bZ3blvfmvO7/vY2xthywwxOdZ1Gece34NekZNVkenejCObs5/3uWn77JmCIuZU1RET9ezuz7k9mXJ+x9LfMWQmw/mAqUo4muIPZ9y+fIPpaIzGCmMCmxtD7r3nHIezG9S1IppyMkRYcnc6PudtWruILDo6tg2YjM35MylfZl7OidPI3NcLzYW1hsxaMrFkTbuiTZ5J93HrANaQ1uX7xrAiGiussMIKK6ywwtsGr4toKG32BItuRjtDvpwT0ZTWDQE5STSiCIGUrVHHQB1jSt3GJCvZuqQONqWIY7BNdyHPc3LnqKo6bZtjO9dFJhyKy2wTmHc8TqSqeO8btx9tRr4SEfC1B+cwRqhC1RCfeGxrqrZxvGpsX0lFOSF1ZvJmLCqRA3tyhj8deaOjaJK3F1oOEHsyP6M9T4vRr3ZbxsAScTn5gqXR/ZbIeb8gG5Wv6XY6FHmBEUF9hABYSd0hJDkbNcvlRo5zQRadKEkaDmdNGpXTNMaWciLk+CjlWFegNASwTbHWlKid0sIhEBpnJmFyNGP/aM7ewZR8rviiQ3SWWESqgbIxdHQ159kIz4Yhl7MtRnaTmPUpph5iQSn7HFa3sLZkrddlrejScwUmBLQcI35Ov1cgAnWMDNc3MEbJ1/s8+mjJi9dGHB5M0diM7WkiS8cEuulAqU1jeCgqsrD3VQxRFd8QZw0eX8Um0M/grMPZZFdrASc0IYjHXakllc6xxuf40h7PJK6wwgorrLDCCiu8DfA67G1bq9aALgmYhXg8M0X7V21lEa8ojAMR33xVGqgJi0A8JVDWc2pviLlgrEOwxBgwptGDaESjgLWIKEIabYmS2I9rxODLWgkaUXpcsni1xlL7iqqu8JkjNoVzKwbW9gAW3ZJj/UUKpWtdiBrSEyO2EVLTfL/ItGhWrMU0I1Xh5KjU8Sk+Jk6LboWGxblfZHzcgbYIXh6pCiHgvaesa+ZVSeayhYYAI5isCR9s9Bl5luGMw3IyhBBSl6ZbFBRZRl3XiSCoUsaSQMrySF80BDCiWkGT+aAqECU5O/mcqDkxOmzew2iXchzIa6HrcmZZyTzMCJlBNbA/VUosrl/w0tltLrttLs8LusZRq2W37GC7XaJukG2d5rH8Kvevd+nFGdaPiXGNSCTais6aZf3MBmONHNTKtJxyaj1jOOwjJmlMBMicg6pNaWnHwczS9zSC+3TfJScv01jfRkg5lbjmfnSSkVuXcjAIGJLlrTaaJxrCoktWzXDS6IDFPfm7fUhXWGGFFVZYYYUV7h68PtcpbQnE8ciTdXYheE7jP02R2hTFdxbSMUZCNIRoiWgK9TOpyPIaKX0brJayB9IbhuScZKRZTU6PLxK8l1aFnW06ApBGXNo3l1RAhhAS6TCpUAwx4mMgRCUs0rNb8XdbtHtiTK5OuXVYY4ia8ji0GSWyS8V5m/y8PHojzbliQVRkcRwL0taMdmmrdYkpEA6JGFpBeEteWBAg4WQAX+qCCDSuWfOqYl6WaEy9pmRTnOxrheTWVWQ5mXU448iyjDwvKIqcoihS6ndTZ6fRrpRUXZvGPaqZ8Er3REDUEWJz7RBQAwohCt6D94aoGVY6GO2gldDFIN0utmPwe1Oi5BRkmHHO7alhdyJM7t/k9H3r5Ac1j56r2Z9c5fndPnXWoa6Fc9k93DczbGpkcwB5NkPxqM0xGWimaLfPjckun3n682iY8aH33oeoXwixxZikVwmhuY+WclKakaYk02jaes11jhKJzT1jjcGJkGWGwjgyyZNGBoVIcpiSRo9Bc/IaTVOMsRndard/fP/+biGPK6ywwgorrLDCCncbXkeORpNsjMEoxAARAWMaYXHKVXDWgYKzhhh8I+Y+zoVwIeJMjcEhJlusdsdOTUnAhh7lPCN2M8QanIsEidgQ6WbK2BlUsmTtqgEV8KooHmOFXg6dwnFQGmx0mKCNYNdS5JayTKLk2GSCGJdD3sUbSyDldoiYRkviyaMhBI8XyBUyD04MoxiZKQyMIzMZXQzeJCveRDLSiriqEkVwNmlStCnyVWPScqhZjCg1L4DYkjQWo0YqBrFJs9IWne2X4biTsiAaevx9a48rrh2XsogYoo+NFiMwm9WN/a0sHKf6/T7r6+sMej2cpPNgxGGt4Fyk0xHm85KOJBeluU7p+YIuA4IaolpicE2wYAApqe0RwYwxriaEGWUpGOPZOrdONR5xEUc0loODGV3NKTJP3VOumEc4mnX5YLbHRLvQnfD+B25y9uUBp7YLxlrhZY9qtMYLv9PjnnPb9AfrGDPAxEPqec3+KPKLv3WbX/7oDZgFHj8nbGVTSubE6CkjFGLIQqRjDBWAkUZDFDGke0msSUROIlp7CB7BkNkUNulU6TlHZm3SxMT6uLsmAmIbPYyndSATTV0QSKL8RCpOzkmlsbtkarDCCiussMIKK6xwt+M1E400aZ5WyGNT8MQY8T4ADmtdKl6b8LukjI3IUrCcLgTESdWaRlBSorX3BkMqyqMGQqybVX8DKgsnJGm6FYZEcFRiCkdDETWNW5JNol0jSGhE6xqb0aMI2Kb7QiJGQFXVeO8bfUcSAlvLQvcwr2uctcnu1pqFMD51IATvPeT5YtW5FXdDKvbbka52/GlZNP9KN6njx41JpMAYg4pf/KztDh0ndB9vY3n7r+ZsZUyroTk5JmWb1fwYI2VZUtc14/GYtUGfjbUh3V6XLM8Qn4iYyzIwllBOiaq4LEfEUtYVwZTpOolFxaAa8WFCYE6IM5CAWEcQJeiY+y9sstk7S0cC871dbr18lfn0iNPb60zWt/idmx1msSZbE+xhyWjvAHNKyUxJYXN8vUawFUcMefZQeHBe8JQbkEdADRO/zu989nmu3/w8F++ds92HQZmS7Svv8U33SCG5STXOUzEEVOQV1zOmmxch5aRYY3FZnu5s1aVRq2OccBdbSMDb7+R4yi69y50vXug5Vp2NFVZYYYUVVljh7YDXNTrVjvS0GoYkmJbGeSouNBPakAxUUyBdq5kwBtrZdm2dqiIhRAgpw0FVCMFT+YrKW0QsYtKqeLKSFYI2wmMRksQ6LgrtzFgKl2E4HulZjGzdMc6VVtoTSSirOXVdL9yW2teoxqQrCYFIIlFV7QkhMJ5MQGE6mxGJuGXnqDssaFui1L7vcvr34vwuNCCNNWxDMKx1GNN2RJrnR12I1CWpsE8c2/Kfy3qV9L7mlaNWS52P9jV1XVPXNVU1Zzw+YnNzk43NzaY7YgllhQbFIbigxLknOCGLmhLETQBrMeJABQ0QKtBo8FWFFkK32yPr5DinrJ3qkEvJ2vo6p85mVLMacst+p8dZulzahUsvO65fH7PxoGBdlxj7HB12uX4Lts7nfPqlGc9Md3jU95lJhwFQkfHJl27wyeevI9kRG4MR2+sV8eYmPggqlkByKgs2Yk1yh5JwHIxoM3eCHLbnVgDrXBqpsy51JTSRX1Rf8ZoT14aWcEjrZbB4rCWCi3tRj3U+GldEY4UVVlhhhRVWuPvx2olG89W6HEVVgip5Qw5iaPIGJCxm2psS+6Qw2whx6fUhKj6mxGjrUgEcNFL6QOEdmU3WsyJClqWuCVGTeepiu6ZZSQYnlk6WnXACjZKKvpYApK5LTCLyqKAeH+qFfiORglTguyxLxZ0RvCqz+YyqrokIk8mU2XRGDBFr8xPkYXnV2Vr7qmLt5Y7CSXcuy0JALscr6S2xSN/cQSY4Jk+vtg+6dPxpvOuVjlfAHefALl43mc0IUSnr5GLV7faQLCOUFdYqmFQMBwHwmJjsXomeGCKogwqktjBTcjJydXRcl1NnztC1JZ1zm0Q/o5yNqAtLmVWIRmqpONU9JDsa8MmPOsYy5J7zFUelcnvi6AfHyFvmtyqO5huYzYvEwZC6FgiB8azmVz/5HC/ePGB9LVBOJ5TiMdUmZeWZ15EQE11NOo2mR9Q6fsVEmu80PVBlca84Y7HN+dcQl57XOB3ACdKxsLRVFi5tx8TjmMwfo813MeiSo9oKK6ywwgorrLDC3YrXTTRaJ5zYjCPRjDa1lkNKozdYaFmbRO5mtTwETUQjNgW/SUV/W9wak15Te6iCoxMFo8fBcm0hl0KZ0+pzyhA3oIozlm6WYVleOVZEI6ptlkdsBN6GVlvdBq+ptnkZDdlwyc4Ua/CiTMo5ISpibMrk8IHMZRR5jjap2XeO2bQFOxwTgTYxvX3O8t/boLjFYI22zkfNcbZPb/5Mdrn6CuKwPF7V/j29b3LxWiY3i/eJuti39jgUIQaYlxX+4IBxlrGxHugN+hSFpeuFnAhliYoyL0syH1CtCPiUdq2W+dRTH41hMsYZCJVn4jwxzJkXUPZ6ZNkALdfw05qyqIizEl+OuLBe88hWyb97MWMilsNZzq1Rwe3pOjMt0G7SoORmna5RTDliuiuEbJ3JdM7VG1PGpcPOCop6k1Lm9KMDIrPSUzcZGG0uTEuMrTGE2BgfLD4Lxx2HRGiTSNxJGtlTY4nqj8/tnfZRJyCv+jNt3K3SS9ufm6XXrLDCCiussMIKK9zdeO32tstoSESImtxSbTsOBDG2FrHNSj0sBKzGGIIPjbah+VLwUQk+orHVbih1iPhwPMZDI54+TppOhEUa1yNINqNWhCLLsEIaNUKbMavjEaI2obxdlTZicM4trfp7WlqlgI+RKnpCFZjVVXpfSQW/sZKct4w50VW4kzwshNt3/Gz5OScF3a0YvNVsaCpqWwekE5dDFrXnCR1BQxiW378lLaqG5Y5Ieg4LgcjySFXrdBVCwNeBuvKoCpkx3LMx5HResK3K7OUrhMxQlR4oEYkp6C9GUENVB6q5ouUE6wyVj9yaXyJ6oN/BZkpWFAQyxPQJtiDmA5Aep90RH3zSEDrwm8/vc+3KiIwNDmc9+t0hRdfRyQbo4S5b5XXy22PKW2fwmzmxDGhdMBo5RmPDdmdIVw3b/YzMWUof8SHio1LHQOEynLNI7ZGWbDUp9AuD5JaMNOfPqOCMabIxTNOlWLKM+oIfpCWisfT02I4gNtf3WIPz6p2oFVZYYYUVVviaRFvMrXBX4nUE9i3rVGWJALRyjLYwjiBJPyAmZQu0glmgCTdrrFAX1q4QvIGYAUogUIeayldE0mhWq0lYFOliEDkWTzfyZiyQu+NRpdRhUQJpLMhatzig5aJ8uQhPj5kmYTxS11XaFw1NYGAOTd6EGIuxjYvQHXqIFsuajd+tk9Gc2juIyLFwu5mz4RU8RVgUone6Ty2LvY/1I19YULz8uuNOR0usjhPS69qjtWczy3jo9AY7zjK6fAXVmjLUZAU4lwOGGEK6BiEiPqdHQGKF0XRMVV0TR2PC7UjMCjwFUfqMp8q0FtR5iiyws73Oe3JlPqt4/nbN07dmTOWAYR82tjLWBodkkwNOa83W0U3yeU5UTyfLOTXY5rfGlxnXFj+YcXatw30XzyPmkKPJlHnpiQohBqLaRGq9QEwEN8QU0Ch2UfI3NrdtJ6jRJQkgS4nod9wLJ0hde74X1zn9P0rTWWq7YO2NoTQEedXRWGGFFVZYYYVUNDWTHjF80aev8JXH60oGh3b1XFLRuRimEmII0HQPkl1n252IpKLcEoJnEUjXkhSaMSwsYJNlrYaUEh5mhNBFrVsUcaluTq4+YgyEZmyo2UeR5KpkRag0AikYDY13HE5ThDcdg7quiW0xKWkUJoZArUrt08+iJqJiZNkJy5CGt2g6Bcedg1bv4L0/Ubwv7GbvKBiPv9cThWg6f40IWO/8Wbomi3SRpa7NCcvcpYK3zfdoZQfSKpGbrZh2DK4dt9KkW7CZJQZpHKYcZah5/vol1vtneSgf4DZ65LmhKD1aVeRZD1GHDx6lYh5Kwjx1iWJMLlVGJVnpdpVe7ihDxayusB1L7WuO5p5DjqhLyPZnlAbOdz3ubM7tsXK7vkE9njCJAzbzjIcvrLExvcX9/cB2v0O32yHrDHjysXv5rc8/z3R3xMzvsXP2fh568CE++Znf5NqNW0znM1RyoiihrpHMLroViQqYxfVd2Au3ZEMhhkigJppGsE1qtbWjU8dRkcci8jvpZHPlWc6paT97prm/Tlghr7DCCiussMLXKkSSS2SeoyGgVVx1Nu5CvGaiYWJbuKZit03HNqLkViBlRFPYAlVDjIaghmo+pz/sIdZS1hPEKAaD1bTNoIFZrLAc0bM9CivkRrECvp4yHed0N4bUUhEJZDZQmEgVDDEmUXNUCE0yc00gz6FwGaNZhdgMqSucKDYHY2LTgTELMa8Q0ohP8M3Rpuo7Bog+PWbFkTUWvo3qPZ0Xk8hNIir+pFNQ9FRVnVbyl0aRWlhrFyNlwAkycjxqlUaxYowEbe1sk9eWMUuBhXpHh6TZB9MImrUlG6qoJgethsOgJNtcQxLA2yWLX2MMTo6LXCNplMxXJVneYe4tP//8NdYfPs/p4Q7ZXBmYIWsPGgbdDUIZqX3FZDrj+c++wK3dEeVMsKxhMLis5NTOkEdOP8bahXOUcUZ1dIMHHrkXRdm9OeLK1Rt87vPPce3yNabTSFDHqY5je7PgflfgNLC1abnn4dPcnxeEkaGqNzkKQ4bTGfla5Fs/uM10/z5+5hc+x9Zmj29/4nHMfMbVqyOu3TrE6wy1irMW8Z7CCDmWqIEoS25cMSISmmuSfqcFBWwzQkga00vCfU3dHDXNeB93uEvF1KVoVmRiQzBET5KNlN/RamtOkpYVVlhhhRVW+JqEmPTVhA+rGNBVV+Nuw2snGkvuSO34j0ZlXtYYm+FcKo5L7zEmIxplMplQ1YH1fJ26rkEV6xyxjoTGbtYGA1mju/ARfBpZskYat55U9DuxeEmryz6m2X8MrQYdI01hLJBlDucMy1EGipKcaxVVwUhcCL9jDCdGmmBpet7YZk6/LbYDyR7WNJa7bZJ2jvfVK84R8KokQ1Xx3i86KMvC7OXOR/vnsr2ws40mJKZiVEUXS+LHXY6l45CWFLX5H4DGhmikklfaVfclAbkxNnWngBB8GlUTQWJIBbcGHtzZ4vr4Fh/5mX/L9Wcv89hgDTk45L4n7+Hrfs/7WN8c0JMu0ymMDwTqjMnoCGcM1hZ0s4z17W3IImWck/ULtvIdXNFl/+CAvNvjgYce5sFHH+HgYMzLL1/npZeucv3qNW7cuMlYLbNxhTHCs9de5qHtswzyAjEGv7nNuumzXvTp96c8fqFm8C0PMOx7dO8zvHTpKoe7tzg8mlLVAZtFxDqMs6gxWFWsGFJPrkmKb0wMWuYgJLJpzMlrLEvdjkVnZHlUL90E7TRc8/c0MmWdoXVH05islY3K4l5frdissMIKK6ywAmlywKZiUEyF6kqvcbfhdYnBX01nELKI14igGJvSwVWU8WzMrK4YDjYQk9x8nLgUcNdsI/29KbCCEmuFTDBqsJKC4+q6pvY1mRWcNWRZhrU+JXgDLK3sC4loFM6RZxZjJOlAGoLS5n2gBjXNyn5UNIbkTLUoyJd0Cghijj23FkFsmlarozGE5vjaDA4A7/1SwX5yBfoLuUPBSY1FKx5vCU2kybaIEawi7WSNPWkh3Oo5XoVyYEWIxjajX8ckI3kuNYQvqcKbHJI0JicqCMfEx4dAwPPg2U3e2dngpz/xKX7nmVuce8cp3nnfPdxz5gLD3gDnCqoqZ//2IbMjqEoQbzF5Rl1bhnmXrN/haHaAmxgKehT9LvMaZlUkczlFXtDtFhjr6Hf7PPrwI9y4scfHPvcMlw7GXLt6kyvXrnGjfIbPPXeJbt7DGsu9127y3ME+73riIe7p1/SzCefXLaE8ZHp0k7qaM6trprOyKfIDnppKBSG5h1ljqb1fWN62BIDYzpylZO9XHYVr/peIBs01ae6tJMY4HrUjJic2jcRX+UXZfrcgJiussMIKK6zwtYq2VrIWsjzpM8QAq47G3YbXFdh3558qaZU9SsrEsMaiQZnOpszLOd3+gOHaIM34I6mLEUPSaCBE4iJhXCNoUIgg0WDUEgJUeOrak+cZVgy5cwthMnAczNfspwC5tWQuhae14vO26otBFwV2qxlJBEWaDkZbCKavZeG0iOCcQfW4u6MaCLU2FqiJLLThgIk8JD3Jogv0Kp2LZV3F8XZPlpPOOcQavPfUVU30AVGS/W5M4vrlbaYRK8EusjekbW8kDUYa8mEhUlmco2PtxjEBaovhJlDQWiRG5j7gBl2+7omz3Jof8bO/dYVnD8Z8x7d/kIfv3yQvMkQ7zCeO27cm+MozP6roD/vYvMvRTFjbOIXJHHV5RJCayXxMPhxwNJ0zLSMbnQxbZGCF3qDHYOCoysCt3TE3dw+4dTSmVKiNYTwvqeuK3JUIhpujI55+/ll+57fO84e/5V3cu7PDTtZnPukS1jYw/ZLR0x9lVvoFOQshUEXBIhiXN8F9xx2u9txEbQnaiQ/JwgaalqQtXBROOlAdi8A5YSSgDYFd3BfGLO5L1bjokqywwgorrLDC1zKkSWUWmzSUqRhcjU/dbXjdRAM4UchGbQXKTfq2j9RVyaDX5dSpbUIQ6rLGZoKvQhOUZxqy0Yw0abLJjRiiCiGS2l8YotIE+jkMkmxoG6taQyINjVQWaYpmZwwdl2Fa0Xmq1Egj8cdFvTZi8dbNKnUyjlOztS0QlUXORls8ps7GksOUCFayRVZF+7U8TrPctXhldoZ5VcIRQsB7n0a0GjetqImYSdRjwtcc5zLRMGIbQTIn9jU9tdGSLAT92uRdLJ0fkg1wemqb6H4sLB9XgWtlyamLG/wB9wQvH1V88sYlfv35yzz04BqGEq0qdm97Dg/28bGmrGrWigFVCNR1oNfvEMIMlzuyPCMidLtd5rUnz4tFN6eZUcK4gsO9Pa7e3uP5q9e4ejQmy3oEcahEQpgy9YEQ4SgEdqsSV8+4+e772do8Rd/m0B3g+n18NeP2ODCvI2INRtK5iJI6WU6b89ncBsZI0udIPBaJSyPgTndW+iw0pFaajpjGZYGaLsThrY1xy0Fa6+KkyzhJRpJjWBvqt8IKK6ywwgpfZWjrIjGpU6ERDeF3X11TTSG57XPuMP5Z4a3Hl5ajAQuiQYhITPdHaFbZ1wdDzu5s0+v2uXnrAGLEuQJjLD4uMpEXRZNqytMIKgQMvvkTa5PVra8JwWGbToUYg0o4nmvXJHJGE/FwRujkWbNyH4GIiG3aam2g4PF4kGlHWaSZgxdZWPaKaV2ioC3x2pl8aAlDU7Q3nYs7bW7Tc48td5ddp5bF43cSjWVUVYXY9BprLak+XRq3WtJonNzu8cp6Im/N+VrwHFkc150VbBsaqKoNzSCdZxFUhDIEnrt5m1vTEe948BTf/a1P8k9+5rf4yK9/nK979w5PPblOnB5ydLBH8HOiBvKeQ5xhPp1RdAo21nKsnTAcDMmzHHEZzlpchI31NSQmPzIRQxUN06nnxau3+PSLL/LijRtcPRjTzfupEHdCrOqUh6FC9J6eGDqdHrUP7O7vMXOWPPOY3HHtYJfreweEaMha21qBaI+zM4wYTGM0AIKxKSk8ibbTXGjroHbcxTimb8fX5bgrsvh5Q1Cl6Vxou42GFMalblPU1q1taaMrrLDCCius8NUAk0aqpdtFOgU67CM+oLf3iLM56usv/FqNpCTo1TLc3YjXTTTuXImX5uI6lzQSzmXsbO1wz6ltqnnFxDpELMZYxFjSHEpTvDar8CrgAa8Q1OCV5PSTZURfUtc1oU6jU866JrgvQmiKc42L8RQjkBlLURSpwA8srQIfkwOR1gbXYPRYNZ700Y0ew6RVaWNYKsyT45M0I1XLtrJek5Wt935BGpKrlMXa4wC9E+NNvwvReIV4vE4OWJnLUqlpG3Jlj4lGK9oHILZBb0vhe9paq7bbTuSrJSEniFNLeAyIJmq43MFSgRu3d3nm5etcWDvH+x/e4dL1h/lffu7j/NInPscjj38dHRVmo5K6jIznE/q9gjqWlPWUe8+fYm2YAvM6rgMB8iInhkg1nzFcG4AHDR5MQR2E3/itT/Mz//qXefHmdXanUw6mU0aHJZm12E5GRwDnMFlOFUsqhHmw3Lo1glrpFsLmdoeu7fLy1Rvc3h+hkpEI6DFFaDUVpr1GzS8wI0IENETU6qILodqM3bV3UdtNW7qWJ4hGc62NyKLd20hjFkQjvT7QZs20G1j9Kl1hhRVWWOGrBiKYfg/uu8D03iGjexzje8BNhPO/ukn+zDXi/gHqfWPzf0fXQl/lsRXuGrxu16lltAJaQiCzHawVNEBuLD2TUWTCfDAkV9idHjEry1T8izT5DHGxsus1UqsSBLwqwRhcliEEUsJ0Yy26NK513NHQdiIlpXxbKDLXdDSOn9scSdNlSMdkJWkcltW27T4Za0mVXWxWq5MjVrutthC31qbX+bAYmWrPWUs0WhH5F8pAaEfP2jGq9rFlHUfQ2IjTU9HqXLPaHkPSh5zoUqTC14pdvOexRWsqoLVRyqg2rloiGNsKnhvdBwZRWTQ+lrUEVpRqNGE6M8zFcmGY8x3vfoSf/9VP8W8//hk+9L6HOeU77F03jPYjVeXZOjNEMNjccP78NtZ4jvb2KCeebr/H+Xt6dAd95vMJTpSik+GDcjia8PL1I/7Xn/wIP/tvfxVfWKrMMa8jpgoY10GsMldN6eVZpPJQq/LclZv0P244vbnO5maPx564yLpxPPfyPnuH8yUdTnOQ1qYFkhhTIKOYRGYBacb5YozYtmvFcScsnVcIGgkh3Vi2NRVYzOQdXyVpxqhoR/ZU0Oibe4UlDc8X+YCusMIKK6ywwtsMkuXI4w/y7A9s8kd/36/zewbPcdYdsGXmjDTjJ77//fyzj/4e7vnpexl86hbc3iNOZmmkytrjVeBVN+OuxWvvaMRjESs0K78KNVCpUNbgFJwIo/EhB52Mna1tdvKMl2/tUs2maKWIU1xh8dYQINmK4ihyQ9BA6SOFdWgVyWzAuiG+mjGbBgzJ1rUQQxk9QSLRWYI1UCkmCMZHxNSIU3ARGwwSMrJoqSRirWHQGyBwnJthWRSFi6IcaU5OKkCddYBQVSXGmeQOtOS+ZYwl1hH1SmayNHIlTZifSpOorSdaI4l8tGvggsU279gyH8X7JGpKwYBLCeRAHRQhHI9Qcdy1SKJipaZKgmZjki2tauMvlQGCxoBFyG2Gl8is9mTOkDmIZcAgxCApJUUgM24R4hejUAfL7u6E8WjOUcfQ21nnwXu2+bXPX+fn/s1l3nP6LFOt8PaInX6PzixjfzqlMxzS2d5ifz7lxlFNkU/p18I9Dw4Y3Zpy7fI+s42ISI21lhgziiDcs7PNEw/dR+0Kgs25fGOPg3ENeY+JV7rZHOcsdV1ifCDvZJRxzoEvuX+rS27nVEf71N0+1/ZuUcoclxVkYsGne0JlnrpEzpGrUhhBjVKGmiCSLHBJdslRkthfxRKbjBVjDBICVnTRDdGGgDRcIl1lDen+EKV1ynDGomSJixjBSaRWn8wGSNcvvgrpX2GFuwWm3ydOJm/1bqywwgp3M0SwGxvsfddj3PtnPs8v3PuPOWd7WDGkSYseAO89/Vv84B/8Vf7R13+IH/uFD3Hfv9qi8zsvE4+OUliftcfbbMXgrIL77iZ86RoN2lGaVHArSXwsosyrilsH+5jcEcQxnoyp6xpnG63DYuRIFo2EECLBB2of8M4QQrNdX1FVFb3M4jKD4nA2hZslkypFQ0CikKshalpxNtZirQHxScTM8aqwLq1E61IHY3nESGhIQTPiFXxYdChad6m287DcgTgelzInOh53OkktbFIXuo+m48FJF6L25+2q9qIrsfwhWmgvdKERSa9JxxRVMaonNB1i6tQZsoI1prFsVTLbiugj2GMr3+PBn1YwHwkRJj7y8vXbjMZnOL1ZsN6Dd923w8c+dwM/Dhy5inISqGuDMY5pOaf0Nfec2qQoLN4H7r/3PGsbO/QHA4bbm8yrms5wQBDIrGM0nnB0NKMYbPIHv/M7ef8HP8it8SF7ozHPPPcSn/jsc+wdzgiFo8gseZ4xmishGDbXB+QW5uUoBT52csra8+LLV7h09UYK2wseKwZLGs1TY4gkh7SANHkljXmASddW4sliX1SRmMb4REEaAbgRczxCtSCBALoUuLi8nXTdFvdlTKQXY9LYlsamU7fCCncX3D0X0UGXv/m//RP+0nf/aWRW4p9/8a3erRVWWOEuhN3a5PKffAd/+T/4Mb5vcJ1CBq/6vEwsD2QD/urOx/jw9zzDf7z+AzwyPY/7TJVIxR3xAWJkZTp1l+E1E43llfI7ETWFijkrGJfW2A/KKfXebVQNR9NxUyibReEOHI8/QUMcmuIumkWInnNK1Ip5pVS1RQqDcRbEppGemIpfo4l8+BCIJhX7zjnQ+qQzE00nwxyz4AWpaJyrhMYm1qRORPSREDwWe6LIW4w0haQ7WU74bv9ctq9Nh7w0sy/a1p8NCWpD2WRBNlpno+RGFE+QpXZb6W1feX2sswjNuNfSZzGNS9WoFTCWIIppCUpIzmFq074Ebb2pzWJ0arF9kzJTbh/OeelWTc2U/lrOVIWHz21ybm1AmM8JVUDF0F0boBLpZMKpnXUyU9HpwMbmDpL1sUUH6TjWtjZweYHOS7JMGAzndAZTbNal0xmyNuizfZQxmvfYGeQMc+HStVvUAWbVGK9gR1BWnsIpziQdy639m2iV4+M6z13aZf9oRlZ0sSgSUi5JG6YnDdlK42zt9V4ScDfajAVBTUNmDclQTEyjaLJ04oWT5lNmqZvVYvE5WTzeWO2KECVpkURXRGOFuwvm3e/gkR9+lr917mNAj3/1sz/GT007/O3/0x9Hfu133urdW2GFFe4imE6HW3/kMf5ff+af8od7R1jJvuhreibn2zpH/NUP/SR/5xP/Oy5eGkJdJ8epJV1s8ktZWdzeTfiSOxotVFJSdx1qsihkZGCg1MhsPElFuk+z/mggimKiRY2mefR27r+RPqQOiS7yNZCIdRBCTVmVdIpOM0ojqNpjcfOS7gMrOJuRWUcT69ys5ifiEEJIhWFLLiQF2R3P6rcdgfRyjCzC8do6cZlEkN4iidRfxTUqhPCqGpeTBezx96ax9n3l+7ySwCQdxzGJWdaAGEmjZkt7nR7HpHOPEFSIISJBcSjWKKWPaBCiARVtHV0X77F4LyJEz/W9ER/5tWewmWLyjNF0wre/6yEurBXsXz6grGcYJ2Q9YVJGirUOw7UcdEqvCxvDAq85MctwxkJQ5rcOqUcTBlsDeutDusPNtP8BbN1lwBqzImMjK8hUOX/6FOOy4vKNG9w8OGJSecRlIIZ5OaMoDKPJiM3BDrcOx7x09Sa9tQ0GRQet58wOR4R5xSK7QkxDiDUlpBuzIKSL6yutyHu538OCTZi204QuyESb14Gk8398L5zsrklzYxgRxFgUTWNbKzH4CnchPvcX+/xv5z524rHv7s354f/qCqNveot2aoUVVrj7YCyzb38X/95f+PmGZLz2UeCeyfm9vWf56++s0Z/tIYdjKCu0qlDvVzqNuxSvm2jcWUQn8TPJCaBx7QkKtQg+RAyaNA2+SbKWk8VqEien1fRAIhc+hvQVAiYa8iJHak9V11gfEJMRsQRNoybJHlSJ0haCYCXDmYYlmyWtN2lMy5ljC1K7VMDFRiyd1A/peIw03Q3aAvvYFeiEe1SIryABAHd2NY7PY6Ngpy1IobUXksUoWkOiWrZ+R0fFLIjEUqbHHderDd2jGR8TLEYsThUbApkY1npd1gcZeaaMZp7doynTUENz3AuXLdWlbUZEIgfTit965mo6Vy7y8INnefz+C+itKTFMqcKM7nCIjyVTX3Lh1DbdrkHjhE4xwDmDo4C8Q5xU7N66wcu//QxxUtI/PWTt3A4bp0+RdzsQFYsnKwO5dMgGXfxZQ9bpc+X2bZ69dJnDwzGTaUXeGzbOZRE0sLV5ijPn7uGzn3uW24dj1OSLnoJBiE2Br61Ke+l+FyNIPCYDy9V+u4oSVbEiaRxrcb8tKO6iO6WtScHSfaHNNW5Nn41p7uu2O7bY2onm1ApfpXBnz/DZv/LAicce/9vX78pRpOr3f4A/9p6PffEnrrDCCl/bEME88QjFX7zGX9r+1GvqZNyJMzbnnY9eplo/TTaaQghoVS9cp3RFNu46vO7RKXjlynlyRNKFSNhIGmkyYsicw4pQxQrVuCiYjkd90nhKiAEfoPaCd4IPFh88OTnDtTViaSknU0ajObNSCDE5I1lVrICRSC0eUGK0GCyZuLTK3IwWLboSelzUi5wc8Vvsn7aiXRoCRWNbG1Ma+SK873h8pp2/X9ZntJkZy+ctjVv5RlDfdnNMs42YhmWWWX4zXhU5SfReETy41DVZ7sy0+o12VCsK4CNOA8OO5ez2BhfPneH0dpe8o9zcK/nE5y5xaXcfr01ony5pWtovQKRxflKh4+DerQHf8q6HKMi4uX8D7yuwIMYwm84J6tncHJC7SIyBTqeLyzsY6TKdR66/8CKXnr/M+OoRBYbReMStG7c4c+95Ns9uY5xhMh6z99J1hsMN6HUZj6bcuHaDp599lmuXrzCeVISQHLc6nT6dvEMep/SKAbdvH/Hsc5e4cfM2leSEGHEGXIBM0jBTDDGRVtXkMBViK5w5luk351c1dX0iiopBjQGNzeMc/9mQWRqbYFVJ2RztVNvSZ0glYsRgVUkWAIt5uUSsv9iHdYW3Na79xOPsDCY8/8T/58Tj3/PUH0C/b4dw69ZbtGevRPym9/Lh//Kj/PXTn3zVn/+5Cz/Hf/yX/iPO/c1f/Qrv2QorrHC3wQ6HfPbPrvGLj/zjL6jJ+GIoxPEHT3+K/2nrD5BdFTSEJtQvtsXeCncZvuSOxmI1v1nxDiFQe0/mLNY4nKa8ARMNxgp5nqU8jKZobbcRVQkxYkIgGBp9hl0UstblbGyewtQDRvaIg0nFZDKnrD1RA4XC2rBP1smpj/aZ1zUiHQRDZi0GCM3qsMZWh8FifEUaB6DFuIuklemU8ZHGZ6L3SfsRAiKCM8cE44SdrS0AFoJsYwxZli2eB4l4HL8mtn2MtGIuKf25rWaFJVIEKc/ijo6GiBBCKmyXXbBU2wwIQ7JO1cbdCJAA0TPMDI+fO8WTj97LuXPbFL1I1Jphr8/N2yN2RxPmotQ+tKZId4yGSSJ7mWHQ7dNRz7nNNU51Hbdu7FKHGnUB52BejZEairUueQZ1NaffL+j2h0jeYzZVnnn6OT73zPOM9icUpkfHZuTTKf7WlDCdIb6it7MGDro762TdPrMQCHiMUfpFxulhj57LuH00pxwdsH90iBWhbw3PlS+xd7TPS5evMKtrYqbUtUedwxpH66SW3MHajAxdiP8XHaf2HEjT0dPUxahNQyra/xYdiqaDoRCb9PWoShXiIvhRNSZnKY0EURwpyT63lq7LsZKIkyF95lb46sP1n3ic77z3aT5y9p+96s//5SM/zX/2c+/kox/oo3X1Fd67k7DbWzz+Mwc81vsI/7f1q1/wed/cgen7Zl/BPVthhRXuShjLlf/Lk/y33/HfccH2vuTNWDF8sPs8P3La0cuzJeEjK7Jxl+JL0micWJnXiHEm2a8aSwRCDFhyHBZf11Qh4jKHWAPxWKCjSeGMmuVxlFRIWWuwzqXCLELR6dI93aU7BzpTKnODg/1bWGs5e+Y0G9vrcCVy7cYuodY0GmQc1liihDR61LxvK+jVZrlZYzzxuIgQQ6AKoXEbUrz3WGvp5Dm5s9ima1FVVRPSF3BZmuV3zp0QhscYF69vXalapy5tSFf7mhAivgqLTI2WtIikLo7KMcFor0WbXH6nGDxqE2a4GNFKq/BRa3o94bELZ/i6R+/j/rPr2GKO1xlljAzyHlvDHoW1zOtqYZu7nAURY4QYsHiMdJiGyGgW+MSzN7AO/ujXv4eH3/MIVV0y9p4YHTo3xCxDNAXynTq1g8u71F751Cc/xa/88m8S1dIbbnN1/4DJwSFPDAZsOOHWS1fARjb1NIMzm3RPryPWkYfAmc4O+SBnuNblgTNbXL1+i2cv3eD2wYSD8ZgQIzLcorAd7jl/L0eTGWY+ZeYDIg6LxZpUxKtGrHOIScdomiT55Eq1ZFEsx2NpASiDJ0TBOXdsZQyNZsg250wXJDO9Luk/aMh2uieUYCQZHSsEl+OMxTh33BJedYa/6vDy//QufvMD/4iB6fyuz/trO5/mZz6b8bNHT/KJ971FN4Kx/KXf+EW+vbsSW66wwgqvDfaxB3n8jz3Nd3YnKb/sy8B5WzI5L5zq5o1zyyqs727GayYaiQOkpOxlBinREQNEbYriWCM2w0iy97Q2KQ68r/HeN1sKSLS4xl0pGsFKhhqYSU03BDLbxUrE1hEpI7ZTkHUNW8OM7lqPM2f6TEZbaB0Y9odMy5L7zt+PaofnX7rCPMzRWCJaE30Ak6GNwDqgOCLWmbQ3eqy/wBiiCLWmpPK0GB3JckNRODKrGDwlELxALSA5sWeYapeOn5CFmkCHaC0+eqIzGJeDj8S6JnNgTCCoECKIGHxKgUuELUu6FVRJdWijIYnHREikXR2PENtgP7PQySgQRcitkPkmQC5LxK0TA49tDfi6h8/y4E6XfiFUeZ+p71DFik7HsL5REK0S6thoCMA3uSOCIFYwKNRKORc0VDhbkRc9PvX0VfZr+L5v/Dq+7uJp7s9hHmZk3S5+VlPWNZXWzKrAs1f3+dwLV7l17YjO2Yu8cPkKkxtXqINweLSL8RPede4CXVnj1jM3qSYBP1d690F/rU+BYMo54WhMfThmul9h9macisqgk1Fnm4QghELI7JRBZ4Mn7jnP5b0DdkcjxlUNGLROoYfGNqJvpek2GGqaEElNtrcxBhZJ4iZSk8wPiCBVOCZ7iwZS0xFZfG5apzVBQtvVagMXU0erlqTrCKJE23ZYkr7oC4U+rvD2xfnNwy9KMlp8Z6/mO3u/xf6lKd/4Gz/IPX/8c0kI+SZDigKxlr/+6X/D+4v8TX+/FVZY4UvAq/37oG/t6pQ4xzP//jY/e/GHyb7EkallDI1ldsETezmL/kW7CLgiHXcdXjvRWFotPxY5p+JW0SUBzsKcdWnsRxs9xJKOQdPrVZtRpRjwHqwJFN0+BijLGvElZVXR9ZasKOgVOYNuwZlsg7Jao57VKTn60jXG0zmzWUXtk/5BFm5MJ+faT4wjpQNJugp0MTYVYwQfQRRnDZ0sJ8scQqSuKyof0Bo6wdLvFsysMvc1Z4aOnUGPvL9GMIb55JD98ZxRVVKrpEJWBYtJ3RYNTdeiHeNq0qWX9r3d57YjaBajW8c6kLZbkh5vroCAxMSWXOaI0VOgPHh6i/c/fI4Hzp1ia71LcIaZOFQiWgecEZyzaY6s/ey2+yCyOJliLcY4NBo01mz0DR9+/xNceeEqn375Bj/xb36FvXfcx7e993F21ntkmSPLCkxVs3t9l89+/DO8dGvC85euY6zDdDvcODxiUnuKTodIxYE4qkGPbsjZv7nL+KWrRAsb4tGNATqtKPdHzPcOKXf3yXdLdmqlm2VMrSFkHaTTpy6EiojNOwwU+lXNNAaCKSnrkAIbYxpha6JeUseCNOCWhNrtgR87nSFC0Hhs2cwyoUi3vrzqL/mmq4YufU87YXXswsaSqYBpBUUrorECbNoen/6GH+Xhv/Ef8tD//dff1PeyOztc+Mkp/+ieXwFWJGOFFe5KGIvpFCcfazvsTY2mIZyYLPmK7NZjD/HAe6/wQPblkwyAjjjWzo+o1/oUqwDbux6vmWjcadHaiouNPRYki6SEbDj5PKXVQzQWso1DFSZZq2qEYBUblb7JOL95imFRMK9rbJE6HdPpHO8rClPQHzhcx5FlkVDkxCgMj8a8+PQL7O0eEHwgWnMcnEd8RWl2bFHaFtNNYd/Y32qMWBRnHUVRYJwj1AHvA1VdEVHWsw5nN9ZYXx9yfXTAYTnjyfvP8ciF0ww3tjDOMB8d8tJLe3z26lUuTyZU1qHaQX1bsIfFCE4b7JcE6scC8vZrOVQw7forXaZaJEF+Gg3zCNZYbKg4N+jwvocu8uT9pzm9vUanlzFFiB6cFUQVExRnbdqHpkvSvt8yIhDEEFAk1HTIuPf8DntXbzKbKp988TrTckpne51vfuIxtm2Oscnly888+5d32bt2yOz2EdpRSufYq2rG3lNUMwZ5xq6v+Z2rlzll+2TOMFDh1kvX8WVJ3N6gnkyojybIvEanc04ZYWPY40gtdbeA9Q3mJuNIA5O6ZuYD06Mx++MRh+Mp89pTVRXqUwq6M47ctaNOcSmjfckcQF85vtYaHLx2HOdlNGe33XRy+CJlvyTTA0VtczkXuo8VVvjK4Zm/dZF/dc8Pv9W7scIKK3whiCCZQ/r9tKrfkosQjlcsY4Sq1Rt+ZdKzJcu59N3b/OhD/wR4bV3bLwaH5cMXXuCj97+Xs5/sEydTmjCCFe5CvK6OxqtBFrPqyUknrQfLift3UZ81z4va2ne2c+tJe2AENjt9zm3uEIKnjBMkc4xnM7y3BO8YmRG55GRFn8xZMgMRw+bmBrN5xcHRmEhEJWlGUkjgib1oyE5E1SxC1ELD8OPSrLw4g8szXJHhA8wqj689GbAx6HHv5ib3bmzS7XaZTg/QjuPBi6d57J6z9IdDisIhfsi9mxusrVl6V65x6WDOdC5EMkT9CUeq43PNwtb2RF6GpHO7TDRSvgMLTcdywrhtTFWDFSpfs5kJ77znNO+8Z5vz2z06gwzvLDEaHJZO3oVulzArsXZv0XG6UxSwCD6MipdIFIsjuTONpp69macmo4zKc7tj/u2nnqVwXZ669z62chAf0VlF4SOn8g5uXbAbObdrz7Ur15lVFUYjJs/YHY+5fH2X+7fP8u4L93J6a4Pp9escXt3HzTUFAk5nFCJk4sj6wnCjw6BwyPqQWVbw0s19RgdTxrVnXHuu7u5y9fYuk3mdrn2IiGpyd7KCs64JOWxJ3nF34fi+P0nylnnrHZ+cpZ+dtMx9pdiifa5pP1jHxgTppynj4863WOFrGqeeuM2tP/MNnPuXL+GvfGFh9pcK+cCTvO++l9/w7a6wwgpvIMQgzsHGEEkWnmhdQzCpqx51MVYkwaSgO41v7tilCPL4g3S++TbvzN64TqgVw4fXPs9H3vEUpz+6idk/IFb18RNW41N3Fb4kMfhydkQa31lyPdIkcFYUayy0q8KaOgUxxGY+XTFLRCM2gykbvQGDbp/90RE+wryquXbtGrHybAwGnNvZIdSAE/obHYwFX3s6vQ4uLwhtQF9shLbNINeJmm6pS6C0YvAlkTMg1qCZIWaGWpQ61vhYY4xyZrjOhdObXFwfsp3niHV0cktlCwZra7g8x2UZ/UGPri0YDDoUA+HU9oCPf+4Kn700YtwkRzvrWKSL0xShuhTc1hSnxhh0iWi0InBIY2jtdWltd03zFWPK/XCx4t7tNd778DkubHdZ2yiwvYJpFEwt9G2Xtc1TaKw42t1vCtylhRB9NbLR/uIyODFotDz9wnVuzcFbQdQymwc++dmXmR+VvPTwLg9vbdC1loPbe4yqCu3m9IqMYq3P7v4BR+NZetw7nEZGk4p5rdj8kM3RPu969AG2+z2uvfAS46MZ0aegHg/0ugV+K2N4/2m2T21RYth96To3bt3g8o19xhHG3nP11m2OZnPApjaFMcmUoF0AQlP6dnOeIzGdC2DhkcxJIvj6Oxp3Eo7jbWir1cA0JDj15AyNO9nrepcVvtrx60/9c3gKHvmmP4VevZeH/58fe0OLhxe/Z8jTD/4Pb9j2VlhhhTceYgTpdqjPrGFnNWZcInMDVb34h1xVkSKNVhkR1Hvi4Qj1x895I2G3t3j+e7f4n5/8m1jpvqHbfmd+la1H95g8sMHgcg8J40ScVjkadx1ed47GK1Zym+GS1qY2qmKbIq19XXsDp7yMRlwcFbWpAxKj4jWCMfS6XaLCtKqoVSjnNc8+/zKTwymnNraYTD2lV+oonI3bDNZzfB0IgMsLbJYRfEmMqQOQivHluXZZ2Ism8Xd7bNAmPTvnUCNp/6whhhoJJcNc2OgNeHR7h1NbPdYc5DFQG4vtdihcgcm7zIPg1KF5H9uFwXrJw8OCM5vrDGyO08s8ff2Q/XlFwCzIQWjscxe2tnqyqE3n+5XXJf1g6ReJyMJlK2hEqLiw2eV9j17koXNDTp3qsn5qC1N0yYKBsUekw9bGBnUomRyMmE7nVFV9THziK4lGKoUjmXpOD3qcH3S4/uIlDqYepyV4xaphVHl+e3KZp6/cYL07pJdZnHqctXS6g+S4tXeTK3sH3JpNmfnItJ4xmc0wajl97jyz6Hnm0gt845PvYGs4ZLi1ycHuXnJuyg0+1nR6juED51h7+F62t05x6+YBt28/zcGtA6ajOaMYuD4esXc0IYrBYlGNTaCeNML6iPEBGgF2XNjOJhIiZkl/9Dp+Mb8ySHH5ai4PaAGN7qkd69OWkGuyLF79Gl3h1fD5b/0RAN75wP+Ri9/76Tdkm+Fb38f3fc8vvyHbWuGNxYs/9m7yPBHK8PEN7vnrq6ySr2mIQbKMajMnywwugokx6TRj+rdNAJxDOzmxU4AVjLXo4VHqCLyB2g27tsbl//Nj/IU/9r/yjqz44i94nSgksNMfs7u2zTDL0kjMygjvrsTrJhrtSvrCejWGVMNHJXhPCAG3bO16R0GmUVPx3oiUjy1cAyKGWiM3D/e5vreHF0Ov02Uw2Kaucg6mnt64xO4fEdVBdJxjHdszTKdjDo4OmM9LnFGiRIyxWOsWGRVpB3QhbG6L5VaU23YCVARjHWIMLgRcDAyLnPPbG5zd3GLdOro5OK3AGPbnY64fHjDc3MLaRLK8CjUO0+2xvuaQesawd0DuhMGww/B3nuPXnrvF7Um5EHPT7JddCMFPCvBj4451p0ZDQ1jScBy/rmwK441CeO8jF3j/wxc5te44fXqDztoGkYyMHCWAdQzXhpRlBijj0ZhyXhJj6gmdHO3SZlQrqXG6Dt5zzw7vObfNS5ev0pE5lw5nHM0D4rrUWOrgGRO5Vc/RusRojbMG40Y4a7F+xqyq8a5AM8e8DBCUjlPm5Yz5dELuDLdvX6c3OWI+mVEHT1Y48iInz/ucv/cCvc1T5CGHSUQmSlZa8nlGjidUFYeHE+ZljbE5+BSaFyQFDiZSaogKvrknfYzpOS1Z1S9ENL54n+GVyfDLr12avZJjYwC4QyMissj1WGGFV8Mnfs9/z7d95Hvp/v4XvqztmPc8zh/6u/+aH9p86Q3asxXeKIx/+kE+9a4fJmtsQn/7qZK//z3fyu/8nfew/j+8ucYAK9ylaDQX0TVmMrbp1hsBH1GfROCtiUkc5NRrOXnuMIdD3HROvL1LnM+/7F0xvR4v/tCT/Od/8kf53v4+9k3ItrgVe1w+XGdtcix213Y87CugPVnhteN1aTTa8R5o06/TjF8qoJpMgUarodKGmcVFEd86FrWJ2JDafVEVX3u8CJPZjNqX7B0d4fIOVi2nTp2jyDd57oUXuXJzj5gZtLRIaSi6hp3uBlVZ4X2Fyx2hqoimcWMyFoPjRDG3NDevzWp9K/Rtn2FFyNTSQTiz1uf+U1ucXu+SxYDD4Gyyla0VJnXJXjmhP8/JiOSZwTmDWIfJOuT5kKzTo86UbWY8lZ2iQ+DGDI5eukVd102GRksYjnUbbY4GQFjSmix3ltouyPJIW1QlimAsnDuzyTvuPcvpNcfaWhrpUnFMxiW1Ki7vUqyt0RsOMCZ1mcp5SV3VqHEnxoXa/YJ2DFKwEtjJAk9uOZ7YOMu75jt8bt/z7K0jnrt1xN6kIiPD+xphjtWIERAPwQdKicky1+TEytPNugTABCHayHg+5fzpHZ48e4b1Xg+HJjIblfl8jg+gOHb3bjKdTsiygls2Y1ZGsrGyYQbc1hpf+ZTy3VxoiyGQLJulqeajRnyEGBQIhBjxSkr8NibZHDQkoxXwvxbcKR5fJhLNM9onkhxu21EpUJrrqckFzX8FrExX+Mrhuf/6G/jVx/7fQP8N2Z4Vw88++eN81899L+73fWnaCnf2DH/5X/wzvvmN0W6u8AZi8tMP8vPv+jEyyRaPPVUU/IOLv8Yn/vov8Odv/xD5T//mW7iHK7wV0KhJdwFos+BJu2gZI3ifRiqbf4dCxzE5k3HwYIbvDfFdOP3b5+l99HnC3sGX1t0QwW5s8Oxffgf/7I//LZ7K3ZtCMoJGPjO/h9H1ITsHHrxvCMaKZNyNeO0dDcAtWaiimsZNJK2AR1JBFkndBGdsI1QWfACvEWMt0oTgWaOo+uMRnJgC8MroGU2VSh3DvCCEOeORp5zDcFiQd6Bwlk4353C6z/OXS8riPFd2d6k0UGtEbSJBzgq9ImPvyIM6kn9pRLUJyxODkroJsSFKC3es4HGm4p7tPg9tb3DP+gY9E/DVFMk7zA3UwRGio4yGaDLGUwu1Z7Mb0XxOXkwpOl2MsbhigMvBGejl+zzplO+qxvjpTZ6+YZmFAiuBLE4JvkokQWwShmtaaRdqvKYPv5VsYSRsUCwR0YBahxfBmgznlVM9w9c9ss3DFw3D9UBv8zRlzKiOPNNpoKZi0BmwuT5g0FHmuwfMRiW7hyXe2NTdEYBje2JjQMQQg1AHCBLJHXSzSMc68jxjI5vzxNYpntvu8rGXrvP5gxFzIoWCNUmkHmlW7jUiBIhCroKJNWQBRDGSs91d48NPPME3PPoA9w4KsmrKrXMT5FDwhzPCuKac11y7ckChu/S6BWvDdaoQkWqfQXdMp5ziwwwfFVWXMk2sRzTiMAvL4EQgPCFZChxP3UlspPUWwRI0AGkEUAAniRiE4KljSJqjpvOXRPXNgJYqBiHLLARtGhhNejuJ4BbiFmN8SDNLq4EyNlqoVUfjqwZX/x8f4hP/+79Fz7wxJKNFIRk/8/hP8NS/+AHOf+/n0kqmc4vwSHPvBX7k5//7L/h6A5yyb+w+rfDlQ5zjqe0rFEskYxnvzjv8xD/+O/zxP/x/RX/rjRmfW+FthGbCRKUhG6YxFmndp+oaXCr7fNcyuSDMnpzxDQ++wO/b+gyf/t4L/PPf+CAXflZY/3fXCZeuvGa9l2Q58s6HefYvZ3zkQ//1G2Zl+6qHifKbRw/QueZwo1k6NliRjLsUr6ujsWxvCzRF+dLqu6akcJWToyWtJqMdU6JZnY0aF9vVCL1Ol06vSzUuKTo91taGTCYHXLlxjVgbTu0MuXBhK630Sk2Umt3DPcJV5cbBhNm8pqzqNCqlAcTgrDQCoZCE603RnDQlIQnWsWk1OyadCEA3z7h3o8vDZ4ec63foSMSYgCtATRJYV0G5eTTm+u1D5vNI1RHm85JOkWO6ObkzEAJiIMsKMidIBt5CLoEPPHGRWQ3TX3+Jz12fESURsqhNajRgFk5eoIbE2CVZdmnTmamikmNAA7UP1EYoomE7c7zv/rM89cA5trtKYcCKw5mcqhE/ixF6vS69bhfqKdX0iL39Q/aPJmBME9DYdCAacfnCRQnBGEuWCy6zKU3d1xAcG1ZZM5bO1jomGmx2i6dv7zKaJ8MAqwCRaEGdpJWYIAgWHwLiAhihjpHDyZjnX36Rvs6ZnN7k3OYAxLPZz7B5DtuWOijzGNCqwiio66BVjetluOAYhC7sQh0izjoIkUBNJCYxvZhF1yE0ug2QRRbLUgssnbd015Abg7MGi2AUgrHpGqKNS5UgYhtheWOdjCY9UpMkb5sRQismLUKFeCK7JKgSNOCjvmIUcYW3N6KDnnlzcimsGD759f8jD/43/yGP/Plf58Ffc/y9C8tjNSsi8XbD5R9/jJ++8KO/63PWTZef/qkf5bue+BbCweFXaM9WeMuhsbGyTf+mhq5DRbAiGB8SYWhrOFVsGbElDAZzvnnzGb6l+zy/t/c83/0dv8MvfsM7+OfPP8X2P3wvvV/5HGE0+l2LeCkK4vvfwY3/pOIj7/27byrJAKg18MsvPcjmcxG7N0areiUCv4vxulyn7hSDt8F3aSipEXw3qn81kRhZtO7aELn0zfEoVjt6EmOg2+ngrGU2nWJsTmYtnX4fnKGa1ayvDzh/dhOta8QbhIJS54xHE+aTOcG3rlfHjkipGDYETXspjYQZko1tDJFgltOc05EMOx0ePrXFvRsFPYEYaqKJeJOcGqwa1Eeu7x9wZXeP4A21K7m5f0Ct97HRHZLZLtU0UGUl3SJDXBKaZ70e1H3O7mzz9e/tcRQzRr/0SS7fmhBtnlbCo0eMbdiFLD5Eae8b5yFNygEfwNpUrNSazrsV5aGza3zDoxc53+vRDSUd6WCjkBmhyIU6WDQr6PY6qAam0wnBR/aOxoymU9o06tYeePnaJ4cxEGOx1uJcjorB++RWhc8IVaQTLA8M1zHG0bOGT+wmfYWEtDrnEXzQRJ6cg2jQmIp/AwQj7M3HfOyZZ3jp0ovcf3qLB86f5f5+wZlBl26egVFM4XAdQ1zvQhBidNiQ0+8WxOEa64dHcPUmXgMiGSLtKNqrQ9oAvZOfgIYcJ614ZoSuzei4pj3c5MNEaZLYVRMvFCEAVagXdrUBRZzFGkuGwcREXNIx03RASCQjJpIRlkjeCm9/2O0tZhfffPWiOzMlfNv7uFj8ypv+Xiu8uRB57b8Aph9+lOKnViNUXzPQNDolUQmFIWYCaw7Xd3RUkRASEbEGCRE3rujczhl5y7YdMzRCTzK2iinvyT/Gn978Df7af/YH+Pj/+G7Of+QmevkaWpYp8E+TWYm4DNPtEN5xH8/+B5b/5T0/wr2u96Yf6lhr7KcGrD0/gYMjtPbtLPcKdyFeM9FY7mYsCs6YVlsBaGw4QwhNMZacc0xjH2pIrbvWhSo2wXjOJXvXGEISBYswmYzpdvoYFBWhOxiQm8DpnS2GvRyrllClVeEsWGYhIBgkgDWWKpSYpnthbCqEvVeM2EU+hTZZHyGENJpk2nTwVFdnApsdx3ouZNGj1jAH5jFZ9OYxw6hh6j1HZUVWrKPquXTjNkezyLnOGp1iwGQ6ZTqe0OnYJp9BybOMbrdHHFRcRPmW993L7cNdPvLrn2dUg4hrznmy5yUqpt0/ScWpWLPQZRgLDoN6ixrB2cDFYc7XveMcj5ztk/k51jqKzgAMzOdjrOkxGHSwnQHWCNPZhFBVuKzgYDJnUpWpqI2NVuCOojuNvCloIEYBHDbrJGF5sJQz8JVHQ83QZTy2OeDUIGN7a8Qzl69weXfEXANCBxOUYD1ikxA/RoOJDcmxSlA4nJXM5nP2xjOev3nAfWs9HjxzirMbPYYZDDoGZyJlt4MxGVl0WNsF10MHA6rJnLLpuAk+uXA0I1yvhvbRZA51UggPaZwsE0OO0BGLMwZtWJnKMQlXk+7hWiMh1Cls3RnUQB1TSKCISe4gIaXZR5vMMzQqPkZ84+amDeFbdTS+OlA/fi9/8ht/6U1/n2e++Z/CN7/pb7PCXYaP/MO/x/dc+OBbvRsrfCURAhKh7gmhMPgO2NJi6x5ZVafRKZtiB+ykorMf2K8tG3ZCT7I0tgsMjGET+NsXf46f/LOf5j/9wL/H5q/ssP5CTefSIdzaQ4qCcG6LwwcHXP32wN//8D/lnW+SJuNOXPWOrc8EsmsHxOnsmPzc7WjIGfCmWQrfjfiy7G0XzrXLzkghniiERJLY1pCsOZdXxJddeGLwFFlGr1PQyQvyLAdVxqMR3nsGgz69bocidynwzQZM5hC6hNJTZJHcOAqnTMox1qaxHjGSVssJjVsWLMTgTeFpJWV+tPsdY2Q6nzGtSrIsp4vB4gh1DT4i4tKcvTV0u12KvGgKeeHq7UOu7Y14p83Z6A8QNcyrKRoDzmRYl2FiwBQF/X6HuppwfsPwez/4CAeTmt/87DWOJk0bsDnBBnCZI7cdRCLOGsQI1hqsNUkv4yF6hzeebqa8975Nnnr4FJ2soppU+E5OzBx5P2dWVhiTMRiuk/UGzH1FVdd0csfMZuyOJpSN9W9qS1lap6VWnC6NdkM14gOUVVjosWqgtBbJFauBThZxHcuZzpCLZ3pcXBN+/fmrPHtryqwULA6R0IzeabJMVgGvSAxYATEOYx0THxnvTbg+nvP8tOT+zSEPbQ25b73HwADzIzJnKaNQBsuht9yYeZ65vsvN/SMCio0BI9IksYPonSnfCUaSbqjN0wCIjWo8WSc3KplGNCcNCTDSPN64e7RCD9u6mjWEKsRIFG2aVmnEL0bwpPsymSuE5py0n8HX+old4W6H+eXf5sf/f9/Kf/ZDn3mrd2WFFVb4KoCGgJsG6r6hHgiz02nhy9YFa/WQLCSbW81cqi3qiLGRoZmTiX0FSRiYDt87uM03fuvf4Re//j7+xc338vFn76P/9A6+B/VDM95737P8p+d+mW/rjk8YFLyZeLo6y+ClCXo0evt0M4zF5BlmcyMtth8cvuGWwncrXvfoVBtoBzQWtQ2ERaci1WZN8WaOyYQxZkE27swVIEY6RU6R5wwHfVBLOZthiORWCHVFWZZk2VoSKHsoig5BhcobOkWg381QKxzMDYuVZUMiOia5OYnoYv+00WVEEzGxdfVJdruHsznXJlPe2dmh5xSdQxEC/aygkmwhAD69scaFacnBJFAUHXYPdnn+0nWmkym9sztkW+scHAackaYrkcTE4nKyTo9Od0J3NuXBnT5/6BvfjXrlNz9zhdILnSJbFLPOGjIpAEWMIqIURUaWOSSW5NGRuS6BimE+4an7N7mw0WF0dEgdIrUItRU2Njv0bJ8wM1gHxkTU12QCvazgpcNbXLl5C49gnUG8NONo8RW6m6TjDoQA00nJ0WiGyBx1OSZ34IROntHtGLIM8twzCBXDB0+x3ulw6sU9nr4x5dbRlBgqvDGoyRFnkZDmTV1rxRdTZwC1qFhGXhjfnrF7NOPa3hFXtte5sL7G/UPL6Y2CvMiZTysu797mE5dv8vz1Aw68xzgHHowoKibpX/SVdrVt5y3x0qXHG/5gGstkJWXAxIYY2kZrsbDCbVzEnEBhLUEiNccp4z4GvNiUedK4sVU+LEasWq1IqxcRPUmGVnh7456fG/F93/X7+OcP/dxbvSsrfAlw99/L5//Gxhu2vYv/XU72Mx97Q7blsDzz//0Aj/77b8z2VngbIASK62NCscbkjKE8HcjWS/Zcj7rXY7iRY8smWwMoNx3nNm+xYSoMrx6ol4nlohvwJwa3+CP9n+TqvYHf/NC99E3JI9ktdmxk3eRf0KDgzcBn5+cxh1Oo3wYOjCJInmMGfTi9zfihTew80P18Drd2ifPySycbS+ZMdzNe1+iU3lGQpVCxJjMDQWPriKPHrjmaVr0Xidt3EIx2WwZJ4ycx0MkyfEiP7WxsoiHjaH+KNY6qVmbjChFho9un8krhDZ3cU+RCieBjRDRipUm0TjNGKSV78fZp9dlaR+ayhfC2Xekuo/LS/ozdWWB7LSfGEoNQZAUaHZXxGImcHfQoz2zz2SvX0AjzIFy6fpODw9uInmZ9bQtrN/BaM5vP0FwQo1jjiC7Hdfo4M4LpAY+cWuO7v/4xprPIyzfH9Htd8twRfE1dlRAdGpQQPTHUZB1HJoqPAUwGYiEIg07BzrCD80qYCaKOouiQO4j1lMHmKXStTzUK+GqGjem4pA689OIlLt+4RTSCE7DGoEF4NZ1Vsjf2xGCZlzVl5cnzVIBnVLgcev2Mbt9ibcCKR2ph01oe3xrSxXFqMOLz1yNXd+cc1J5pALU5xjZFvmkcmUxjNKBpvKhDErpNQ+CFwxE3JhPW8tuc7zoePLPNztYGk3nNMzeOeP7WlEMvxKxAJWJjRGIam1q2Zm7vT2ttQ6IaUi3HadxGBGsE5ywIBFEqExvbW3CSnLpEaAKSBEu67zJnKVSTvblzOJvha48q1A3hRWmcsdrketJYn0hjAfzqo14rvD2hv/lJPv70B+Ght3pPVni92P6VTS50L/FTZ//lG7bNv/vue/jo4QPs/rEh/vKVL2tbVgyf/P3/LR/48R/kvu//5Bu0hyvczdAQkN0D8rUOkNE9NeUDF17m6bUz3Dqzzuh6RjYSsjG4qVKtC+/buM7wNWh/rBgG0uFRAw+4mwAYiq/IqNSd+PTROWQ6J4Zwd3czjMWuDYgPXeTwwQFH91vGD3iyw5yz/XMMP2Hg5u2T2pffDe00kbWp9jaNo1ibiH6X2vu+ZqLhGku0E90I1Vb/CqTVXY13uuIcj9ssh88twuaav2d5RuZS3kXmHDEmzUa/02F73bHe2cKajJu3D5jPZpw+tQ3iyDPL+lqHoJFu12H7PTamJYf7e0ymM6azeUrJNgYNbbcljb+oKp2iYG0wZDqfodXx/qk4bh9VXL51yGk7xE5raiJzE9BgqTTifU1XDad6OcSKo+mIyiu3Dw45ONxlPtunsz5guLnOdHyI1xJrHM4pxKZLYAuyvAfVTVw45LFzAx66cIqDSeqCFE7wKLGqcdkAySxlOaWKNKM4EMTgJcd7S4yGTm+dLCuYHMyojiJZYbEBCo1koUTrOQyGFKZDuVdhYyBToZxVXLt2jcl0loTafoahaPyvOHHNtB3pshYjyX43ywqKjgVnGWrE5IJzkcyBsRGjinFDQoR+t+L8hqWXdbhn7RzPH53lszdu89zNXcb1vMlAMXgBr+HYLAOPESH3HrVJZF2rMq4D0/mEaxPL0+OSjZeuI0HYn0UOfEG0htrPUPXkNsOKodKm67U8DmbM4r1bDcwyRNJ5T48HahLZME0HxGvAacRp6t45MaApZM8g5MaR545er4/LC0bjEXVZUYdAHT0NnUjH2hDkRf5M63b1GrM7Vnh74In//Arf//i38+MP/uu3eldW+AK4/uc/xH/yH/3Y4ntL5E8Mf/sNf58/u3GJP7txiZ/4hQH/4F1PftnhaQPT4U8//uv8/Mph7GsDqsTRGHc0B/qc2zjiWzae4dH+Ta6e3uDyQxtcOtjgYHeAu5mhLvJ4/yo988qxqd8NbVDkW4Ggkc/v7nChvHlsayvJ4OduKrLFOezOKQ6+6X6ufVfNfReu84HhHg/1bvH0+Cy/2nsH591Z1j5hkdv7xOn0lWNg7UK+tWAEsTbZlBcF0uukse7ZHMoSnZdpFEvvvlGs10w0Bg7IHNYYMpc0Cj4EalGISoyBEJJdZ8caMg2ItuMkjRsVEWsM1jjqWOE1YkOgsBldo/SKDCuCM5FgPFmvIKjQH+QwyDkaTaiPSjoF5B2lDhNUc0SgyIXtjS3EdonR8LHRAbsHM6oyNHkfATJIQl5Bas+wk/O++84w6Gb80gsj1DpMXSMGoolM65rnrxxwoVOwxoxgLfNQoL6i8j7FckjGZDph6mE+qQlE9o5qnrt8xNc/VbFR7+FyoT90ybJWTLIligLUGOewRQekz3xS0esJj212uN41XBvVlM38l0qPrb5Bg+cwRCRaenmXIs/JiXSt0s8Cwzzn/o0OhUnduK7NMFpSjQ+pRh0wPUIZsZ1DsBkWg5MaiTNMFHJrcCaDWjEmS6M7kgTQuhAkLxkDxIAxnpgrITNYICNiXY7LIHMk+9YkKccaQaxSIKyLoVNkbK8XnN20PLTV4bntAZ++cotroxlHtadySlBJWRch5a1YhEBDGkPaHwVCTMRjf1IxihFRJapFTURiiQ1Vkk1YTZbDmkbQbGGRJp3duSTaF2PS6FJjyxxiSCsGxiCSwhURu9BxBFKHRwBR0+g1BCOK0YjYNKanAr1eh7WtNY5GUypfU3vfhDUaYgjkTf5Ga0wgmtzSkhOXIvEuXsFZ4XXDX7nK9ckDb/VurADQ6voAe+Y0/+DXfhyAofk11s2rj5a8Gfij/TH/MM/hDUhp/otbT/M//9SfYPO7P/8G7NkKdzvUe6SsADjTHfFIcZ2H8ptUPUu9abm0s83TF8/x6YNzzOqM93depCOva4r+LYUVw0Nbtym7XQgRyhJq39TXbSDvW0g4GsG3PX2K/W+6l6PvH/FfvPNfcU+2S19qMolc7w8ovt7zC/JOojvN2nM97O4IHY2hqlOnonHilDyDPEN7HUI/xw9yfN9SDQ3GQ+9aSXZ7jNk/gqPRlzeK9SbhNd9dW/0CEcFZmzoPjWOTlzTeEWNEG4G3MQarTRCAMURANRA0YGIKKotRUSN4BeM9khkKl5E7gwk19XzK/tEIEaXXz0GEybTEqqW31sE5pY41GgSIZJmwubaOxpzJYEYEJmVFrFJxbyUSNeBj0khsFx3efc9pPnT/Gab1jI9eisxr24TgBaIoXgLX98fsjjfY2M4TWfIGH2sUxUrG3As39qeMSiVEQ5DI0dTz9HM3OTyacf70gPlohOt1yXoZIVTUdY1Fk/lDZrCFI+t0qaaeUM55cMOxe66PsSW4HCPCaFaxVhiiWoKPdIoug+6A3FnWOob1TsZGYVnPlFP9HFHBFIa1wmJEyXJlOplxfbekcBMGgz6aG1yhqI7pdwLrp8+zc/4U/V4HM5kAqYOQhMrtyr4sxs9afYOVSHCGOZZuTM5hpSgms0gBalM6vBFDpAkcNFDkFjGRIkLHGnb6a1xcH3BufcizuyNe2N3nymTKaFalXygqYB2qQoiJ4LajT+0wn42NlqhxaIKI1RJrQWzekAmHc45uQ4KtXe5ayMKZzMemT6eKxtCMV9lGo99YKUvSUrTWt0YhkEbNXKOt0Ca8LxKJmrRB3gdm8wkiSrdbUIlQzits47xml0YVm71KuSoiTQdpha8mdH//C/yXn3yEv7y9KgbfSgx/cfMOvcybmwfwu+FHP/3T/Il7PvRlbycTy7Ao34A9WuFtgRCQNHvOVj5lx0zJJZJJWmt9IrvN+7ovcnVtk0kseDCb476APuNuxZ869yv8N0/8H+hcn2AOxuh4gjauWhpiGkN6K4rtJcH35KkLXPtOz199/F/zjd1L9Jt/t40IW+aQP37qo9QfNPxS9g5G96zRuzmke9vjZoGQG3zPUveEak0oN4VyOxLWPaYIGBswNlKNcnrPddl4rmDwYgd31cH+wRcfxbpTIw1vKjl77URjMFw4RRkRNEa8Ko5mvMQmO05dZFU0aJIphTQ6E6MhEKlUqIISDFRGCGoJAXJjseqZjEfsHk5RUTY2OjgrmJjT7Q1Z7xdkJiOEDKLFGOgWGblxTEY15XSGr+vk6hMiSEoid1HRAF2X89iZbb7+3h3uGzguzyxrnYyjad04DDVmS1iOpiW3jsY8euE8zleEGHG5Y+4DMQjTqmZ/PGNep1XyGmEWAi9cucaV6wc8/vBFos/xtcHhcM7j4zytwXtAPUikP3QYzYj1jM2hcP+5AXVWgM2IIXD5xgyDQ1yHTsdiXIbLDKjHGIexOdY5bKZEDPNaKfKaohspCkenkxNCZHR0wJSS4JUaxesMlUPOnSnYuvcivc0eLg8YUxHTDqJqF6GBC6cxWo0OqLHMPRzMA2qVjhjy3FMHJQQhE8U240WmDV5BsGIpRKk1EG0EDWwUhifObnF+Y50HNoe8sHvEy7cPuDUasV96SiCY1K6x7YhRq/Npxp2WDQdM0x3InCwsgp1zSYfR6C0MqWMRQiDGNOoXNSQyg+K9p659o7ugyRdJo2++JQMC2nR+0ggUqFgigleBRuCNwHw0I9QBI4GttSGdTpejgyNuz2c463CSCC/J0yCdZwWzkButdBpfjfiJy+/mL2x95isqqlwhwV28QHX/Dhd7n3qrd2WBTAzxG5868dj5tdtf0rYu9A/YffB+/PMvfvk7tsJdDY0KPqACG9mUoYn0xZCJIRNLUGXD1Nxjr1MD6+at0Vl8OXiquMnVb84YvLzB4MqQ7o0ZZjyH2mNqjx6NCfv7b8ybSTOyVBRInjfdhubfYO/TuFMzwiWDPuxsMX5ok0vfYfjBD/wCv7f3LDu2wCxNgmQm8K58nx/Y+TXWPlDyiQfPsz/tcmvUQb0h61WsD+bs9Mdc6B3yQPc29xW32bZjAsI85kxizgvlaX76wuNc39lhc23AZuHI8wzdP0RnsxSE3Oo34Fjj2eg7kmGTSU5kLUF7E3Qer310Ksub8Y5UTEUjWAshxuSGI4ISCaEV0NKMfmgSemc50TrUGnLjoBT25xNq4zFFD0xBVdbY2KFrBeqKg6M5dTBU8zndTNjobpB3LIO8h6NA1aEN0XDG0OkXjA6n3Lx5i+lk2ljDJhcpUSW3ji7CAztrvP+h8zywAT1mDAvLTr/g8u0JkRzVtCKt4hjXFZf3jtib7nCmlzGINZU6yhDwgJdUSEbjmoLTEK3h5uGYZ1+8wTd+4EkG6x3UQKxqTB7IMiH4kqqsmU8n1NWMrIjYNUs1E8pKcN2coqt4H6lrT9CIE4eQkZmAcS45NdVzajVQ1/TtkJAZyjowrQJRAh4B16VjHc5YOrnBmoj3R4wmNePpjLwbOHt2iyg503LOvJ4DEYcQlgMQG4gcO5DFGAkYZlXk5tGciQlklaXfETqVpzuN9ApD7gyWQO5YEA6HwahLk1kaIdSYOjDwhkFRsH16nXsH67w8WOPZ27s8u3fIjXnJNCpqDWZBaFMWhbVm4WzWEoyFFTOxcYtKH/aFvbJKstUNYaElAvAhpHtbjtPQTStMb34pa+Mq1RKN5LBmqEPAkaxwVQwSJX0uYsRgiKEk1p6tnQHbmxvkRYHEyOjgIHXfYnPOtdXEAKQsFW2yalb46sPaH3yOT72gvL94q/fkqwd2Z4fb3/XwF33e6A+N+eyHf+TN36HXgYHp8LM//iNvyLb+6X3/lgf+yg/y6A+++IZsb4W7HN5jPHRMTUeEQhyZ2FSLSepy9Uihso63n+bvlMn54Ld9lk/ePMfL14Z0rg3JxkOMB/HQvxEY/vSniM1kxpcCcQ7T6yGntijv2+LgoYL5KUENbY4y2QiKA6VzEDCVMt1xjO8RZg9WfP97f4PvW/93nLE5jpMaGIOwZYWnigM2Tv0ytzaHBDXU6rASGZoZG2ZGTzx9E+mJJKKIJRKpNVKj7HZe5rHONX5y/T386tZDzHa6rL1YMLi8mcapxjN0XkJdJdG4tWkcy6U/cRZ1NrljjiYwmxPLMpGnN7Aj9NrF4CEiTUaGNqvArhGmLLIxQiAkk06CQAiJJSGKM8lKVKyl6DnywqGijIMnxIB1hlh7fDWjcEK/4+hVGdO5oHVAQyAyw8VIbnJELYRmmwq+rshsTlXO2NvdYzqdpv12LgWfAV6Us0PHBx/a4NFzOZ2YXAt6znB2rYttSIQgiKbejDfC1aMRz167zeYDZ+nZyGweqYMnYLB5Rp5nSFSUgJh0I06qwKefeZnr16/z2GaOrz3jowlqIq6j+DBjfjQhlBUSAxhP0BllmDMKypEXRlVkNi2ZzCrmFAzyDr7yjZtRwFnFilDNA0Yt3W5GlimRmtpDVSvzOcQ6YElZI1kW6fWUuq4I+zPKaUme97Bujf39mmdfuMFo6iG6lC+xGJVKbmItyUgUMtmvihhiFKbzQMwUl0E9h6yOuFlN4aBwLonXzSyJpNXQzXI6Nkvs2UoKXJS0jO/rKQZLTzJO93tEY9CsSzEesz+vmPkaH5K2wTT6CmPMEh9q3aRCQyraLsQrLXppCNOxNXOybg5N+jmAtS5lljTkJYaUym6sabRIjQObgETQNi8DJSJJtyFpAMooODGsDwZ0soyyLBEiRTdHg0LZGiawoFJIO8GWjmmFr078sX/55/j89/29t90K45cK++hDPP8Dp9+07Zfna174rr//pm3/7YRvfdfTXP7GpzC//Ntv9a6s8GZCIzqf09mL3KyGRBrjGGTxe8VC0j4Kb8vfNT2T89cu/CQH53KuP7nGpWqbPT+gVksZHZ85Osf17rvY+snPEg6PXtsKvSRdhOn3kPNnOHpym913Wub3V7zrocv8wJl/xyP5dTIJ2KYwuB7W+Hx5lk+PL7BfdbnYO+CR7g3uz2/xrvw2Z2zxCpIB6ZxbDJvGMMgCMTs48XODaa5ZsVhQXd5GaATj6yZw1l7hieIav7l5P7/42KP81vWL3Lg0pH95h+4NpXfLU+yVmLlPYcHOEJ0hFpbQMfiOQSJ0r89xu2Ps0Zj4Bms9XjPRyFAMmhyQNK30qqQbtRmTT6nUJm0yIgQTFwVZKugUMQFxlm6nQ55n3BiPuD2doJIR65L5tMZZZWtzgM8yosJ619I1NVLB+ppis4qynFPXOZ1Oj8waMqtkzkAI1FWJr2pUBdo08Ahbgw5f/+gZ3nf/kPViRl0rqkIugfNrPbqZZVbGlOCtSoiBaGC/DDxzdY9Hz2zTyT3eN9kcAi4Eehn0TMBHZR49QaBUy+Ube9y4eYMH77fEWpnvl0ynNbafk/UsdVljAljj0AjT+ZzRdM60TBqEfrcgM5a6ChiUXjejxDP1ASOGfr+DxXEUppza7HNqs4uLMyQa8jwjhpxYw+iggvKI4UDoDzLWN9YhFODH5G5Cd7PAZpHPPvsiH/34s8zmgpMC9SF9Pl1MczuaCnFtZcomFerWQGYFS0p+N67RLhihRvABZppaunVIbTnxSmEDuUuzlEYCmTF0sgIQDqczZpVnXCoH05qDKnBUR7BCXuRoJpSlNmNMyUksakCDLshRGyooRhb8406b5eP/H+eqaEMyUVl8b60lBk3uV+a42HcuS8Sjsd5FIDbBkNoEQ6pRrLPYKImsh5TXYozl8PCIW7u7VD4wqyoI0MEtujHHTl+J6KX8jrffCtQKrw2P/Plfx39fwPL2+8f/C+HPP/Xz/O0f/b2v+rP7zuzy9BMrIvCVwA/f+0u885vexcVffqv3ZIU3FarovKR7y/PsaIdwOv3r92rF7tsZ97seEeXdTIjdEQChIRTlKc9/8Rc/zE/d9w3c/+PXiS9fgRCOLWAlhR5jLaYokK0NqotbHD7cZf9x6D52wB+679f4oxsf535XMWhS023jsNki6JTv7D5H3Pg8tYbFeJQVwdH7ouc4E/slOXgdE0aDM5bHjXKPfZ5v7T3LpdNrPP3YOT4+up9P7p7jpSubdK4MyA9JBkZNMRQ64Lvgu4pE6F/t07/WoXd9SHY5h9t7xNn8DSEbr72jYdJqrGoan4qiRAHV9Li02QGkFW4VIVMBl8StJvmIohJQUVQiJrOMUUbBs9615CYwm8/IbKDbtWxKhjWes1sZwyJjduRxRcWk2mda1kgckOe2WSmOzKdTDg4Oju1zVYghrVRvdQzfeO8ZvvHhe9h0E0zwYHKiRHJVzgy7bK512budcg0MikZPEM8M4ephyY3DCTs7GdZmGA1IDDiJnN3sUdkdbu4ecnN0RCkQjaPW5maej6gnNTpW4ixd6cFgjbzTZT6eM52UjI6mHOzPKGcRCZZ+bogRojNIWVCWFb2eoVtkjKoRCHSKPuqV3ER6uZKZktzWOBGKPGU62GigDoRqxnwGnW4G6ujkXbbWBWMU04ejyT6/8+nnePnKLkW3R6459XRGrOf4ppvRhvYt0HQ6MgPDIqPnwEqFxIhYk7oCRMRmBO+Ylp5AQQiBqqxAK1RrvK9xojgRoo7xITKqS8oYmHvPeF5RBqjVUEeY+2QtHGMSO4kxqCzrFxYikuZ+bFK+4RVZMFHTKBecHKtadphbaJOMQRsXKtO8l2vscFGTuieqqS0pQtBIiI2zlUlkKGgkhhpCZP9gxGQ6Y/fgAA8EUqcjN3ZhoSsLTctSl2Ol0fiqxjf/lT/HR//GV0/x/UObL/FD3/bDb/VurLDC1wzUe4rdOZcONpjfPY6vbyhSV2DxXfqj+aexR85fO/1RPvynPs9fff8fgd94P9kR5CMln0TmG4bpGaE8FYk7FRfP7PPk1tM8NXiZ39N9nvucMpACKxmNXekX2Qf7lmnr2n1YMx0GRjln5zyZP8N39D/HlZ0Bn7z/Hj52dD+fP9hhUubMygxfO/KiZtCpWOvMiSpcurnF6GqH/tUeW8OM7rMOe3M32e76Ly8Y8TUTjaarlPIfgNjYi6auQduzOJ5XT4fepFo382UihmhimjBRwUVYyzKK0zs8cvEcncKwt7sLWoIFsQbnIhI8mTqiM0yrGX5WUPqaHCGEHiEYVA3j0Yi93dtYMbjGvUfUYAw8ceE03/7gec50HNUsUGskSo2GCoOw1huysTZA9g4JIYmXHYF5CATJOKo8t4+muAun6WU9xtMRGiosyvYgx3YzrI8cjo4I7ViRteTdHoKlGh1Rj5Xc5OS5pVsYgneMSs/hwZTppKQqhRi7oJFObvERAoFeXuCMJ3eRzrDDtb2AGkueWcpaOXNqg41hTuEC/Y6BoKjOEUq6RYbLLfVMqMua/f0xRXeX9cG0KbJLYszZvz3l2eeuMvc1WZGC5DqdCFlgGgIxHBfq6X5oegGi9DsZOxtDdjoZIYyoTKSuhFojk9pTRaWKymTuKSWgGpmVZdJBaKSs66SvwDCbzvAq1NY057EmBJ/6aZo6UJBcoKwItsl3WRaEp5DIxpFqKYciLOVltGNUISQyYEwihbLobqTs7mWdR8rXANushEDbC0ljhElqEpHMogK19xhiY9gVktVzJliXYRAm0zlVHci7PaIP1HVNxBC8R2xa046L/QVI+9t2ZVb46sT2v/wM/I23ei9WWGGFtys0BNzemMmVM+w9lXP+rd6htwA9k/OHe0d84AP/gM+8e5OpFkxiwTxmbLsxZ+0h66Zkw0SGxlFI1oyXdd7qXf+S0BKOTCyFOtaNcs5WvCN7mg93n+XKqXVu+TUuV1vcrIZkEhi4kp6pqNXydP8sz26e4sb2BtHlbMspetZibu4SDg6+LIH4ayYaabW2WdHWtgAzi0RkoVn5VVIwm8TG2cccF0woFsU1g/AzIt1+zj1nTrMxHLA3OuD6dIb3czrWMCw6qBMOjgRiTl0JsyDkuSFKTog1vbrEK6jpMNo7xE8nOJc0ISodNFQ8PIBveXTAvWeUej7GVzD3MNe6sbGFIodHT23xwqURe3VNtIolkklKdo4x8tL+ETfkAdYyxUwCRPAYTBSGAXqDHJM71EMWA9V0ylEV0E4HaxVfltA1DNcttuspxxWVzvFhAniG62v44Dg4nJEBaz3wGWTSZ1ZFjK85v3OOa9dvMpqVOGrUeh66Z4uzp9aZHY1Y62U4B/NxhfqKGGtcnuOMMp0EylnN0d4emeRY6RJ8TTmLXL454+pehRpDx1m8eKJYhA6mDpRVpPY+netGBC0IuUQ2Oh36RY5mhjJmHJVzbpc186pmOvdUAXy0VD4SjCEETxV8o1/QlEnS2CWXszk2y8A5ggakscVtOwxiwFmHLZKWw1rbEIbUaXPYRYcCkkZHRKhChXMWVUsIjV4jRqKDGJRjqty4qlmDMcliSyS9j8scgqZci4WrVSIlUTWFWmrSZ7SjZWqSdqclPC3pQaGuPTYzbPX7IMLhaEI5nRPq5BKRbGwFjamDYkUXn7UVvnoRDg75ju//U2+YEHiFFVb4GoMqenjE8PPn+fj8fh7OnvuadLOzYrjoBpyzJVDe8TML9N6S/XqzsUw6MrUMssBFt8sou82t4grX/TpzzYhqqNQyjQX3dnO8GqIKt6dbuGmGCRt0YkTGE7SuvuT9ec1EI2hMwl9SgBiN9rXx9QRAYpqJN224mEKTane84owgEUqN7JczaqN0c8t4Mubq7V2Oao8Ri5MM0ZyyjuweRqbzGsGiLqOYKpIZbKyZzSvKWDPzkcPbe4S6wkcPmrQBW13Lhx7d5F0XC6KbUsZIGYRpqUy9RzNHZg1rdeSRzXU+tzlgdGOfikSmrKRMECPK5f0jPrc3412nUmicMznTkJy2bBnT6rpzhDrSUeXw8IDffvo53vvEO+j3++TdSOxbXNcQtKTyFT6WKCVFYSm6vf8/e/8ebF2e3vVhn+f5/X5rrb3P7b32dbp7uuemGUlIIGQQAoMiHANJCic2KXAIVcZgO46cimM7TlzluFKVShWpuLATGyVOMJQDgQKHUiDICIS5WNYVSYyQNJr7TE9f3/u57L3XWr/Lkz+edU7PxFZ4exi5p7v3VzXVo55z9lnn7HXe9/es5/v9frjYZZpU+qDELjBq5dbhCSlEXn7lDQ6HA04Ojyi1kIJb0W4dC089ecznHp4SWuTJp24ynV/w6M1HbLYX9JI5GBJKZLvNtHnHuKms1h1CYbfZcv9sZls7YGSIkaaBLIWejiHCTmfGaWJWD2CXVlGBPkSiCvfOH/HIjF3JPBq3PKAxz5Wcm7c2NT/KiyZKKdjSANVw+9JV+DoGQhKaZaLg9Q7mh/kQ9KpeOcTIUoCGqFfl1lb9FyvGq6f+MXobWEMJ0bcQ8+T2uGI+tBC+1k4FgSiyUMO9ttiHCmeH2GWVnQgxqZceXObGr4Yc512I+u/OV+ctwD+20jAqMTT6voc6sDXIMpGzh/5VfDPYPDXir6z7UeO9Lif77rXXN1Z1ZUjq/pEODXu9O2SbLde+UPjhO9/O7zr4DIfS3vW5jK9X79fvG7hqG0sSWEvlQGeu6V3OW2JjHedtIFTjie4MT5kY4wciZ/mEFjuuh5us7z2knn79bJK3YZ16i47hgD7zL6pKEF0YBnr5wZgY1fywFBe8vQdzI1WEs+3E/e0OU3j48BQrhTLt6DGGFDiIfoAtzZjnmTztGIYD+jQsVhrfloxjYTOPnG5GTu88Yjs1NlkoJFLd8YmnbvCPfeKDHKxgN0+YRiT6IW+uPg2pCGU0rqXER565ycun59zdFUyD8zRMMA1cjJkvvfwaLw5PEJsfgFttlNYwVZLF5W0yWkg8Gkf+zs/8At/5sWP+sQ+9yOENoQ0QaNRtpmwn8m5HMCPFxDxN5LnQ98bJaqDMje3ZBcfXVoQYefkrr3J6fkE/HDBMmRg6xrpF1RA1tpsLttG4fvslylHH+d0zbGfQeUi/WwdUK5YLeWx0yTdQ282WaQKVDrFpIVArIUZUA9UEdYoHuVUnWVtDVEldZBThKw8eUmumCFzMmSqKavCq4OVnKKLM8wgIGgKXrVDWKjQhqg8JKkZtEJOzVVpzOF5QXcLQ4qyJyziGgAShVa+2jTFQymX9rgfaU4zgddFoCM58sbKErC8Hibdqa+Vy0BADAqUUaimkmBYY4GK3Wr5Pb6JyW1NKCREo1S47nmnmY/rlFkQkEFOgtcw0TpTsJQN9P5Bi5OJiQ57zVXJLBPLS9iX7ncZee+31dehX/sgP8r2/+C9x+Bd+8p2+lL1+jWWlsP7KBZ/83HN85bk1Twd7FxbZ7vWN0OWGw61hgjKzlpnzVvw8akoNQuiMQTMAv6KNh+tj6pB4/su30Wmi7XZfl4XqsQeNy+epl9TltpyhWKo9HSOgb/EzxLECQRb7lEFAaBLZ1sa9aeY0Z1KMnJ5tWSWH7iXpWHeJpAvk77LBpxoxBlKKmPiBsWlgNxY2Y2YzTZw92lIKZBmQWHh6MH7TSzf4wLWeVkZMOgiKRkNjQ2sjC0y5ksbM0WHipSeP+OXXVzwcLzBRr+ltRtRIa5VX3rzPvVsH3OgHcmmUUpgN1IRQ/Sl2a4USlBw7PvWVe/zVv/XLPHXyFC8+sabUBw7mm4zx3EM2B0NPnRsPHjwg9muef/4m165d580v3uPNr+zokjAcrgjRuHf3Hq2p16WaMHQd64OOYRWR0Mh1Yjjq4FA4OErotOLk+pr1QUKohFDYXRitKPMuY8DFZuTszJxJIgExcRieBmLw2zMYJBEay3bLjCaCBMVUOMszDcNSZAqC5EbQjhjkyv6k6oHpy6rWdtmktBzqwcPPIQRSSqQUmKaZYkaIzpW5ZGX0IRHU8wxmXjNbpV1tH8za0gzljU8aw5W9KiXPoLjlygPWl/W4l5uNy8HaANHgA6kqMXhd8uWGwz++ef7IPFUS4mK7ErcMWpWv+d1szWnkXeqo7qqilMo8NbqkDKsV05xpS/C8NhZ2xlsk9L322muvvfb61WS1oq/e5frf+zB/6Tt/I5944se4Ht6bVqG9Hk9BPMN6pB3JCoEKjFSUbtl2rHUiHVX6UPjSauTL/S02v3yNwwenWC5f1zb0sQcN3K7u/UO2DB7isDMaGG2ZlBRU0WBXn1NrQxBUAttq3N/ueLAbGXEy81wKfRdYdT0rEQ5SAoxsmbA8wQ1dXDz2foAsZgQCBbw7uULVjtkK2SqHXeBbn77Gt33gmFR2jFUYs1FmJ1Y3GoZ6hW01cm5QZm4dRl56+gavPJo4z96eVKvnMVQiZ7uZ+xeZk/6YVnZLbZGSzdAGQ4qgmWyNoInTqfJf/P2v8JHnPsf17/soyEQ/9bQZcs6kFOmDW8emi3OSRp585gbXnnqS0zfPSArDUeTo+orrN9a8+uY90DWUSifC0dHA9RuH3H7yOh949kks79AhMByuef7jz9DOdvQrDzfN2x0hBtp8wTjCblcxEcYZ7p9u2E6Z2qCUhgYlqdKpIhquamwv3/PWGqU5UNBqpYohMVJr8EVXE2pdKN0LUE9VGbrkw8rCrQgipC4BgVoapfrPJKUEeNWwZx/cWqUipBjoQiCKUhaSty5Vtrm1hXjpQ8lb/AsoS1lB+6qBw61Vb201LrkcKUY0BErO/j7FxLD8HEspxOjh+JJnwCDgw8VXVeumFGlL0Pyt8qjLEL0iEhANy8CCk8ZbIzY3VYl+VTBdQEJY8h977bXXXl+f3vjvTXzs7zxBffPOO30pe/1ayoz26JQnfvKMv/Rdv4Hf+9/6Ob5H69dVp7rXe0eXw8YgS7ENhcaOA5kZJJOkkKTQa+ZG2tBp5fWPPM/65Rvodrech9+eheqxjWty+UgZoSHLVsMohh/2a2WuldwaxRqlwpwrYy6M1ZgQNq3xcNxxf7tlLBVUqPihf26NXS5MuTLOhbF4W1FIia7r6LpusZy4t7/Wsnj9BUMYS6VKIDe3Jr1wY+A7X7jBzZVetRbVbLTiTArP+TasGFahqrGrE2KF55+4zpMnK8QKYn6INfyglxt8+d45F1Ol5IrNBaohGp0D0UVCaBiNOVemEnjtwcyP/eyn+KXPv8LDsy0X25GL8y2lFtBGbhlRYz30ToNPATk+YDg+4PbTN7nxwg1uPHfCxz/+HIdrQW1kFY2TQXny+oqjo57jW8c8//yTHB0PaBfpbz/FzY99mMMXnmI+6DkzYYoD/foaEgYakV0WzrfGWAMPtyPn00gulSk7DM+sIZhXGlOXDZMPHBogqeNkQjMCXmFsU0WzETQtJHu7aiwzKqpCWG7wqEqMDtsLEggqpBBJITr8sXgYPMhim8I/L4jnJGrJV1uRS4hgrYXWCqpC1yW6zgeNEMNyuHf7UgiBYRjo+/5rNhkxRlarFX3fL3Y/RRBS9OvCLutu9YqOLsv1dX1HjIGc56v6XVUhpY4u9XTdQNf1pNS5Ja1Wt2TVioj6cGWwnSbmnJlrIV+WMKiiMaIxImH/F8V7XfLaXV76G3/4nb6Mvd6D+vz3/yle/sHb6MHBO30pe/0ay0pGv/Qat38s8WfvfQ8XbfqHf9Je73kFUSLO8Fhr4EgrR5q5EbbcDBc8FU/5SP8m33HwMr/l1hc4/1jm/MPHyI1raJe+Kov6eHr8jAbuK1cFlSXK2gwLiw/GFjhZ89B4uDyQqXuoxuoH2Ifzjs2yeolLXahGyAZ5LhRgzNlJzlE5iUqI3jB0SW1mAbBVKxiJJsZ23DHtdpRcOegbn3jykI89dUhQcf5CMbT5gbAJdBFSgFr8wFi6wjYIIRsnQ8ezN1a89uCUeZqJ4j/YsLQQvXa+5f7FyFNDIrRKyw0JQkqwGiIp+JP+YAGRSFG4fzbxhS/fJYVDjlbXaFNGzQhBWHUdxweHrK7dIA4HdNeu01ZrDm5d55lSufbMNbpV5ePf+hx33rjP669fULNx8yjx5K2B9SqQIly/voZ2RBzWbEbh5Vcu+NJnXuXevYeM5xueOjzk2559htCvaOOWsRiPzie2WZkEdjVTcPhcNCFYRauhGtwWJd4T1axRagUTNHo2x9TbkaIGh2QHXcB+zWmJfG0lq4qg0W1wXjHrBG9VpZmRc15uK1sO4l/FuhCYy0LmVrkC8jWBoIqoXm0mLmtsLw/0Zvj9ZEJe7FOXVPDLgeNyszFPy30aI6pKKT7cfvVvhW9Fwte0QX0NbE+VWpdsxWUQ3HuCPee0gAJVhRDUNz1U8Etcfi5LcH4JuH8Ny2Sv96Tqvfs8+0Mfhn/inb6Svd6L+sXf/Gf5Z/7a73ynL2OvX2uZ0S423PjFc/7zz32MrzzxtzjW928ofK+3dLnZSBhHYiQaiUJQY5DCsY3cCBcc6MwzL9zn9MWnOPjKCeH0HOYM9vhbjcceNEr14LdoQINXfFrzRilRwcxJ4W6lMtQCYkoTYaqVqWZ2Zea8Zgp+o6cYGXoldQGT6NfeGrk0hEYC0jgRh+QH2iUDIgIxKjTfhsQugXpQ2axxfQh8+NbAzUGY58o4A+ZP3UPwBp+ksOoSwQJzzrRVpnURaYmI8eztQz5/d8323jllmXBkORxetMbZbuSFa7cJVSk75x9YMI6OVvQPA2XK3hikEQ2KxIHzTeXsorLZZWSa6VQYQsfx0RHD0RHHaSAeXyc8cR09OGB98zqpFfRAoBduPnnEB5+/RaBjc7blZK3cOIqs+4hQODgaiOkW1eCnf/yT/OiP/gJffPkuXZ/opfDkcIfj2PPEQUfoErtcuH86sg0RUmRshda83qwLy+ZqyQT4oMGVnQdzIN1sjZA8mOPkbCUINL08ePtQaniGJ6ZErf6UXtTvGW+CDZgG3z4tVqigCmK++TEjxEhK0VueZLn3omcrWm0LLE/dKoUPcYZR8kxeBokQIiDU0hYbHlebjBCCW8JK8Xa0JacRFkZGKT6YXIbGVYSu74kxMM/zUnUrxJgIITCOo7db1SXKtATOZbGTeW5lqb9dPq+Z/2xCSiDq7VPLkGKLBXGv94eO/uan+PD/81/ic//s/+WdvpS93oP6Tz/0o+/0Jez134CsVsLZjnrvFm+UIz6WtoTHN7Ps9R5WEKVfxgCVSrAGrZKkka36Q/qw4cn1OfdOnqQcdlfssrejx/4Mt8fYW17z5cBfr+jFgi6R8SBLwNeEXBvbeWZnmdkycwNQYlASxqEGhuAbD1kOsxUH+imBzZzpkodro0bEOtryJN2zAQWJkeGw5+KecRThY9c7nr++JtTKxa6Q62LzSZEQhFxmVr0SusiYlE0JzL1D2KwKsTWePjrgI0+ecH625cEIJglpGZox5srrpxd85OknOTk4pNlDKjOPUuQoHnB9fcB4eoqJIRKwAuebwuv3Jp556pg797f0beb2oSJxxSYf8cZrhdZfYJvAelaefKbRH0cih0hT2sXItNlxcrzm/GhC28zqUEmH/gdJ3lTiKqEr4Zc+/Sp/4f/943zus4+4cf0JttPIrWeOmLeP+OKr9zh68UkudhOv3D/nztmMrBJCcKJ3NRRFzDzIj1Ks0oTlcAxdn5iLZ2to/vENr/k13FYkgAa/B2rFFxshMHQ90zSR68LAWAaNIBEBShFqKwtDwrNAMUQfPMRtWlYrKgENHs6GZSMgSq7ZN2XBN2ZzzpRSSCkxDCvfkJRGVudceMGsEUNgGHparYAQQ2Ac39oe2FLnK6pUBNQ/R0Ww0pY2D1tyIbq0XbUl/yFXTA63o3nrli3DVmtLpkQhBvGwf0y0pa3Nhw2g7jcZ7yfVszNWb+wPBHvttdc/mmTOpFPljXJCtc0exrTXlS6HjYB4OFwroxkBjxkcyMz1bkddGXVQJAZ/SPw2uMGPPWisUCL+mDqpczJEIZsuYXBbNg1+aGrVh4rdXBlrIZPJlpdmo4QGI9TKCugRxjwuTZ668AicjG2qFPdLEawncECThoRME6GpUaWS+oQKPHEQ+I6nD7k2dEzjCJNbZUKAro+0ljEqw5A4iInNoLQKlmEqDnWJkjgKiY/eOubuvQ2bN0dGT+MS1LMor52d8eUHj/jEM9e5eaBY2zF1R9QdPH14wEW/YTP7z6VmeOP+KZ9/deBDL94m2IZrazgcAtNY+PKXH/D5z77OHDY8ypGDg8Bv/PVP8xt/00e4dvMIpsL56w+5uH/OatVzuI7UEugOA7k37t19xDwec+0D1zjLW37sxz/Fz/7iPZ5++kU+/pGX+PIrv8gHXzpmVXrOX2/MDR48OuXL9x5xvo2srFDnSlysPB60DnSxQ4Exj2gfGVKP1EaXuqUZwAClNqNUoPgUrMFzFXBZb7vwI8wbrDBQDcTgmyg1QZetQp8C4wStVkr1UHSMPmiIgVSIpsSYlhs4LI1MvhGorfigIQHMmKsTxPsUSep2qS4GUlB2rZJr86E3KiksNHtVYoyUkq8GjZzdilXw4SHGSB+jV9DW6gOIVUIIlFKXwHhC1YGOIfh1uv3JPONBRpahG4TWMipGWlqwTBRZAInWWPIytieD77XXXnvt9fjKhf6R8MXpCfLhV97pq9nrm0yXNioE+sXyrhhKY5LCtbSlrhtlpRDjJUTvsfX49bbq/IEQFCxQm1BLheJZjCagKWAqzLWwy5kxV6ayxIhVaNXoVOhiIqo/BZYQkNTTxkxj8eDj7IW2ZCr860ZCSFfXUNWQpiDqH2PekHTz+Jjr169RSiFPDVqHEgjq81rJI4iQukDXJ2QI1DnDptJy8dpeTTQRDtdrPvTc0zzMd3jlwRnVGiZGEBjLxGdf+wonfePbn73BgQyIzdzdjYyDcP8gsi0TU6mkENhNE+fbLZvdTKzGUb+itsAbr53zM598mYtx4rzAz3/mPq1OvPLq8zTp+G3f9+30qfFw+wCrjVvXbtJm8VaoXrBaeXB/wmzDcXuCr7x8zhe+9Co3n3qao6ee4R988RXyZoe1FU88ueLe6Y714cBwmIhDZDwrlHHHWDIEQVBSl4gpefgYoAg0YdWvkWbUVqF5NkNEnCOyvHe1taVpbPHvXVLkEWqrjGWiLpW2KsuQIXrJfLxqfGrqAe66HPTbZb4idcSuQ5bMxOXnfDUMr9ZK3w/UXACh6zvMbLEyGV3nmQuVQOoCfQhfw4ixWrEYrqjiYQlf1+oeqCDCqusRYG6NFNOy4QtXg0RK3dXnXFqpLn8mKaUlExKurt9zJG259215Pbn6OTV52/mrvfbaa6+99nLHSYaHZU1+O4+i93pfSVESAQSURsAYpXI9bZF1pawSpOjsirehx89omBFk4QtoIIjRiXjoW4yy/GeqlV0pbCwzWiM3w5p5INgaXQocdj0qXivbRMgxQNd5AHmB5JVcKLWSWsNqo4RGhzddYaAWMAk0/MCophykxOHQk3Oh5pEy4xC3EDEL/u+b0a06hlWHBj/gHanQaUe0wmaCooLhday3rx3w4Q/cwLTwxqMzprkSUaoqr56fs37tTW6u13z49jVuxQ1tzmwPG7euHXBaG/O2eB1vLWzmwmYyZMrs1gP5eODu3QvGXHnhW57izfMV9SuNfkjU9bP86I99mqdfeoZv/ZaniYdP0+oj+oPE0bVD5nnGpJLrRJAD1kdrqgW+9Pn75Np47sVneDAFfu7Tn+cDJ4U6rWhT5fq1gRu3j9nmGxy9Vnj1wSN2tTJbJaTklavBB8aKoSEQU09t/lQ9aSLPlZLbW1WrS4BagxPTNTjjw8xzDCH49sHEaCrIYjmSBmINKc0p2UEJoaNbDuIeOi+exQjRuSwalteMlFJordF1nW8AzLDJLV1dqFdtToh6c1NriAbPciyZj65LaFCmaVqGkEQt1T92ASlKcCilBCeQR97KhXQp0fc91Twzcjn8pJSY59kLE+xrNxG6hNUvhzAzz72EIAuccMkEfXWmQ8HBHG0/cbyPdPhq4/91ccw/fXj2Tl/KXnvt9W6T+N+3dIk6QJJ6xcLaB8L3+mr5VqN5/fFVRqIxSONWPKc/mMkHHdanBWgsjw3ve1sbjWwV89zqUivq3IiKh7i3ZeI8z+xaYWeNGZhrpU4zKkafvCq0D4E+Rsa5MNfKrsxUM28vEmHpMXWfv7v+aUALSzjZbJlb/BApppTdyGFUjobEbppIYmCRORulbMkVuk5ZHXSs1hGN/j0IxhCNdegYJPBo13i4MzbjyDhnIspzN9d03VMc3ul4894Zu62xozGK8IWzEf38a9w9HXn2iYT0R6xvXOepeMw23md+4x67aaZW43Q7cufRhpGZVEZO1gOlHHLz1hPcfnbN5u7AR37dr2MqE688eIDu3uSTn/wcH/zwS6xufIzt+A+Y2wyhkZIwjZUyO+Ph6NaK8zLx+p1zjo8P+MLDl/nkZy/YzWdcO15xY31AzMIHPvg015845NW7gdoqcytM1RhzQaMH+E2MUitznlHxg38unm2ooaES6FJPrplmBVFFzTB1C1SKCbV21eB0OQTU5jyIEJWAoiZEBKKgeN1xWoa/uVY/6IdwdeAOSwg750xUv9lba1cgvpwzpVSCKuM0e9g6RuZafLhYch61GSJG7DpiiuSSPYCeom++og8M1sy/pkFcIILGMhS1hoaAxHgVIBd161WMcbFeuX3qsgr3q6t1zYw8Z4KqzxWqXm18OWQsg64sw8klvI9loNvr/aHjP/eT/Ou/7ffzT/9T/9E7fSl77bXXu1ASFFv1lGXQ2GuvX03/dcNGksqNeMHJX0YHzQAA3mlJREFUwY7t4RHWJ3ibFfuPPWhU9fYhW0AdTZb6zQBzbexaZlcrY2vsavN/ToVpN2FzJUUhxI7anMfQpwGrid08sdlO3oyAYtUPax4QliVw69YaCwGWutLaClhAglLmzO78EdfUOB4c9ufUcq9YFa2ETlkfdhwc9kjwOlWH01WaZSd7S+RwNVBaZZwz1T+ANfDMQcf66Vvc6AfeeDBzZ7tj0yqjwWfvn/H6wzNu3e1ZrQ+Jw4qxNrbb4hW3KE0SZ9vMG/dPGa6taQInNw4Iq2vsXjvloA/cvfMlxuk2uznw+U9/iedvKndeu8fdV+/wwkvfQj0/puStH3VbZh63tFLph8TqOPH6nS0vv3YP6RvX+saRnHFyU/joC2t6M0I+5pmnnuHR2Rl3715wcb5zsnlrlNoQPNfgpiiw6tskHHLtGRozuhgIKcBk5GJEMYqZbwKWCTdc1rF+laVJVVCN/vpXGQ9B1RkaYWmMsoUObtY8l/FV1igRISS/bb/a0nRV+SowDAN1zm5NCr4FiNGZGLa0YzlzIzOXgohX+Hq+olxZpK7sWGa+NVEFCSSMaZqckA7kkmlLeN6W/IlnU3x7EZdhxOGAtjRXBUQaZp4JubJM4VYp0bd+bpf0cbuE/el+0Hg/6fkfhj/22z7Cv3nzs+/0pey1117vFl0CrFSxFEAdblwf8yn0Xu9fKeI5Wwt00rimW26tN3z+COqBP6B1ONrjDa6PPWhkqzQTkuhiX/HS0k2d2M6ZTS6MZsxmzKWRc2Hajkzj0kykgWJQaRQrHtCNHVOdyXOmDxCvKlHdkK4SSCH6U2gEU/XinWqYlaVW16h1Bpu5tupZRcOWQLmZkbpId9RzcqPn6OAAozLnye00DWoRxAJTnZnzjEmhp+OJgzXT0HE+TpxudlAmjlUIxwND33F9HDidCtupMG53zPPEV053tIc7QoiYCLU2cjUKgsaObIF7jy545mjg8PiYW08fcMOOeO1+IDWhl3Ne/cI9zjYDdZ44ObqOVHhw5yEf/BY4un4duYjsdg9plsEK6yGxPhwIqeNiO/LmnR19mnniA0d8z8dukoLx8WdXrCVwkK6xOZt49bXXuPfmjjY7G6TVilVbhqJGp8ED1QZJlGzNPyYlh9ipOAk+CEagVCNYowWYcqGWQkrxrYPyArWLGgjmB2nMx0FTAVW6qEttmm9TnFnig0/fdaDKbprItSx2onY1aFzWzvrWQAkxIeZFsG7/ciigaiDPPhRc2pesNWL0bcWl9anWuhDNWVqouNqeYB4KjxqgwVyLD/4SvKLXv7GrgUNFrj7/kumRc/bvIfj3J0tGo7alkUr1awa0S11uM5cxeq/3iYb/z0/zI+M/zgv/4T1+/9HDd/py9tprr3eDzEO9Xm+7ZbhzjU+fP8n5TeGJd/ra9vqmVRClWkNRkEYy4VhHnj94yC/feJ75WiL2PaKbx26eevyNBr5h0MXKUltjyjOPyuge/1KZTBgrlNqoc0FKI5hQEYoZDbAg5ObU6T4m+pwoNdMPkSEu2wzED4whMEgkRkBBY0IJPrg0QI3SCoJxcrTi1tFAkkZt4hadEDg+OeTgpjEcGFG9PUhUUJagrwbUKlOpjPMItdIJHKbEQYr0InSaSHGmnwsHa1i1iSfyijlHLsbKo92ObZk5PS9sNjvPpbDA1xTnb5ih2nG2G9nsNiDHpB6u3T7m6a/cZnf2Mh954Yhf/OLMvNvy1DMrXnrhBuP5ji9++nU+/hsqRwfXaM0YH54i0ug74WDVMQwdOSun50KuB8RsXCPx4Q+fcP3aAbcPA0M7pI4DX/jcy7zx+n3OHyhDXLPqM+dlIoi3gQVpdCHSaSCIMHQdUjMmzcsGpKFBoHr7kogslbbieQaZfSOwDBpvPcH3J/sRQ/BwczWjtAYKUSJBlZwzNZfFLiXQjKBhCR95EN05ExEVvQLtxRidZSHKNM8kUR/02lLNa0bUQLNMa42UOkKIvs0IPlTY8lq1Vli2acDXZCt8GwMxJS9CwK6GSh+ALutoPR/iAflyZZmSZZhprWHm/7u3rC2bDbPl/pev2tJcQjH96+3njPef0o/+LH/69/8evuUv/cd8Z9+/05ez1157vRtkhuWCnZ5x8uXbfOrVp7j73IoXo/H2zC97vZ90aaECRUU40pkP9A8Jtya2t1YcHKyR0zOsfoM3GtFYntQH5tbYzpmLPHNhXvdaS/MsRV4sMSaLdak5hKwJ1gzTwK54K9XxMJBSh4wztUJcRTp1t4uqH8KigARB4rAMOQ0rl8wNB7l1NXMwdFxbDwvcA7QXjo56bt4e6A4rVUbGunHCdwoE82T9XCt5NsQCAffOqxV0btTgLVnX14mjg0PGJbR8UYU2C60lxtnY5I7RhDcejZxebBjnTK7Kbm7MudGseJZEOtZaGXeVhxeF07ORpz/Y8aEPPctP/+QvcuN2x+/8jR/kS0+dc7COnKwPeOUzr1O3X+K7f+sDjl9YQZ1JoZF0eepelLJrjPcnLt684JmTa3zk+ef4yEcPuP2EcnKc0NqYN8L9uzMXZ1u2WyFXY9U3jgbjYlLGAE38CXxSQWnE4G1JkUaT5JmZZTNRlnYlW4jYqg5rjMHbyPxucM+VipBSJIZIbM4Ib21eGBNOBh8xHwqKZy5STGhIVCuU1mjV26z6rnfivDiMzzBCVB9+pCEC0zzRFjBfqc6qUBWSKi1E5trQ1kgpEZJnVfI8I8iyifHmqRTdotSqt2pdMjsAinnTmqh6oF3Eq3pVabn5VidGmvigcjlkXNqejMuGOFuyQn6N/rX8/xC5auNa9itwZaDa6/0m+/lfYmPpnb6Mvfba690ka9huZPXqBnn5hK98101+Y38H9qPGXo+hgDBI4QPdfZ68ccbpE2vqyQF6r3NC+GPosQeNVPwp62TGeSmczZmxGiVEHzJmY4gdrc5uKTGlmDAv24tkAa0+BFzMO85CZDX0aAoww/l2Yt13HPTQmT+RNg0QjFwGuu6AZiBhpMlME6dxC8JqHrlpjVVwe1Uf4OgkcfN2YnU4A42qUCQjEum0JyEE2TFvt8zZ8wfr0GHNbTuVBsGIWujjTN8NmAVEIjkc0cw3J3M2WotsdoUbsTAeraitoxRhnoXSQLUS08A0CVM2ZivcuZ/54pdOuXH7TW7dOuCpp57ktddf5RNPHPHh68dsZ+H1NyuWE+d3T7n/+c/z4u3nmU7v0jGidce8M8a6otRz4k4Yv/w6H7pm/JO//YM89/Hb5Dwxnd/l0aNTHu3OKRI5Olhzdi5s2gXrtuFGLVzsIpuxMgdDFEIEy5kmyq4W5kuKtjS6vvenJK0twepM0GW+q5khCVkchMdSY+tP853WXQlYq9TifIsUfLtxnifqWEmSEAM1Q9VoUbEUKfPs92GImPghvFmjSXXQX54pdXZ+RlQKFRPPaGjDG81aY5UCoQasFhbXlmcsciam6JatGHzr1spSg3vZ9FSZcnF+y5K5aEsrmi4U80ZFlzIDMOrC4jBRULd5VWvEEAnhrYpeX1IIjbp4aB18aMs2QwQwQaiksB813o/6wE8e8pv3y4y99trr7ciMNk6E1+9x6+eP+eHf/u38zvV/Rh/2Dy32+tV1udVQlLXAs+kh33rjdf7GB55gfHrNwZ1DZJoe67Uee9BoXWLKM5s5s6mV7RIiJkAsMLRAqkIzITejFX9aHYLX1QKkGBBrYIVpGsllIkZl6BLn25FxzOQQEPEn5KnraEwg/qQ8RHHadBVoSmsKVek0cbxeMwyBkCrHJ5Fr1ztWawUKqokhBawVWol0kmhTYx4r1tSzBrUhMaAxEkSYSkZjIPUdITRQA2vEFOh7I+eGSeJEV1xsMhdnpzy9WtFWHaXO5FKBSNet6YJvAIopLSTeuHePcfeIL31RCFp48cUP8OJLH6IfItO48Sfq0vjwh27wzO2nePWLrzLdvcPulcTpgwf0tbB5NDFegLULNqcbLl69w+n9iaODNb0UdvfvcPfeOduLDdt5ZLvLtAK5GlErJ10kHVwn9pU3L86QcSTGQABUDItyZQmaa/aWpr4npsjFZsOY85WNzsyfwOsl8yRGSluyH60xLwUCnrtJ/hxFhW7olhyEH+hzKTR1i1OxRpszofevMfQ9MwuXQgOxS85KmQE8wN53HU0DTWCXZ6Z5Ior6Zk2MuS7cjehMlWaNeRop1gjRiwZydVuTW7qEJAuyW4Qpz4zzTIgdMfqvTq0O6UMEa422DGFmjWY+ZKWUSCmRS0aAGONV8xTGsnHRqwpc8xkN1Jbmtcs2qmUTsp8z3pd65Tdf8JNfgO8d3ukr2Wuvvd5VapV2/wHX/jZ88plv4z/9o5/nDx1/kbV27/SV7fVNriDCIMoz4ZzvO/kVfvFjT/Pwi0+xeu0autk81ms89qBxOk9sp4ndnMmwhL4rzIWuRQ7NORitBc7L7DC/5odPrIFBl3qGIVGlYuaZiFXoPAiMLof3lXMcEMQU0UaMRkg+EIiwVNwGyizI7FWl6z6yGozuEK7dNg4OQNQW3oP7/Fexx0Jg3la2FyO73fwWlkBtqSxVRCGFQOgSqRc0VDylYoTYoCtEFUppzPOOabsj0eiXtG4LgiUPNysVGydCF6gCNVW6G4ldUWppfOkrdzk7v+CF52/x1BO3uX37o/T9itBBOjri4Z3C3/6rO+689iavHSt5PKNrjbMHMzm7S+3B/Q2vPtxyZ2PcssK9O28yZXh4WhnnxMVY2I4ZWmU+z9hcudElhqMDdmWiyjktCBIu61Tf4mI4nV3AGnPObGQkt0JdDuNf3SwVNSLBoXXzOHtl63IAl8UGlOsMMXnwe/nYCleB7dhFUkhY9RareTsxTyOrYUDMp+yUEqVUpmki50wISkreGjXO08K7MFQaQ9eh5jaruXr1bdd3BBFKqdRppAEpRTAoza1WsUtuyYqRVq5+5YiWUFlasMDtUa05M2Mhhl9W4op4La43TDmYMHrQhdb898NaW8CHbo9SBMTZM9J8gArqGxrPmnA15Oy111577bXX48hKod69z7N/5YA/9pH/Dt/5u36Q7+qrV5nutdevIkXpJXIzZD7Rv85/++lf4U9//CbHLx9x/PD4sV7jsU8sD8ctuTWqQGkwl8o4ZbR4g85BjIQmTNa8FerywGoeso0hMvQ9fVBa3xM8vYG1RgqBdT9QS2Mu0Kce1HkNEi/ZBH4Ya0v3jpBQg0ClV+NoHTk6CnTHkZiMXCAEJcQOISAUOlF2c2FzOjJty7J1UVIMmCmtzUjw7UkXe1LXIVpg6Z52xEElErEKjx6MbC4quRid9EizKzK7WKBlKHNmHZSkQtZK0czJYce1/gA9WkEy+iiUDNuzzBvTfbpuxdG1yCGVMsJ0sePRvR0vJ6UPmWjG5mz2Bi5tPBiF10+V+9tMkXPevH/BcHTih+WmzLOw2Rg1F/JFYWjGMAh5zDx4eM75xY5Go9PIuh8ICmWeIEZag7AMirlkdq0RYiR1iWmer6poRcXNUs2uIHWXOZvL/+6ZmNm3R00prbAeBlLXMY9bUgykhcbdlsawZB6QrqUgBn3fY83Ic8EqxJjoUliC2NDFSBg6YiukrqOPCXJjNxfmkkkxElpDYiSmSIfD9kII1Ob3XAgL4O+rKhUc/ueBdxYQoZldDRqyfO8p+bCVS1nYH4FaKnmanOURAoJgyBVbw5vTKkEDMUS3bS1fN4RAiok5V6ChJhz0q8f9td3rPaY/+J//C3zmd/9f94eDvfba6+2rVdpXXuNDf/E6//bH/in+k4/8OW6EnkjYA/z2+q/o0j4VRFgTeCpUfuvhp/mpj36QL3/pg6xfu/5Yr/PYd9auNYooTQO5NaYpk+dMbeYAN40k8ZtVLuOqxhXpOKXE0PULr0KJqaOZ0KqRJLLqOkrJnJ5fcLEdGceJadqh2FU1KSg0wVrw6tNmRJs5XhvHh0rfK0Jg2im7CyOPAaUnhgRVmDczu7MdeZoRjKhKDEqXIqnzp+L9EOjWgX6tpA78wbtTm2OMHpCuK8ZTOLs7kzdCsoE2N0yV0PWEuKK0wDwLlQ7tBiqKiRKjA/DWfeTZJ0944sYB6y5wuDpEpOfivHL/7jl33njA6Wt3uHjzPtOmsLlovPLqGQ8fFS4uGqVGag1Mo3FaIm9uAxc5Mle4d3/D6YVbf2L0Q34eG5uzQpkCKj2zwev3Tnn1zUfkbPRBCS0TmtGLg/SiCFF0yVIEhr73JqbaljYoXZqbPOhfa2WeC2bQdR26ZBncDnQJ7/NQc2teqdtKo+aGlEofopPmc6ZdErZD9OYroOTsftNaEYShHzg8OGS9OvC8RHVYYNSAslTQGqh87XViiyVJlRQCffTa3oiSNKAmSFsGs2mmlUor1Zki5q1ZKt5O1WojxcjxwSGrlLBSqTkvAXFoSx7FaeNGK8XhfgDmm7ag6gO5+XB+2WHt2wwfvkJQBxhq4GR18Db+qNjrvaSP/pG/xyf+7A+805ex1157vUtl80z3C1/izl9+jv/k9NfzSpmYzLODe+31XydFSRI4lMRL8ZTvu/1pth+a2T7zeA89H3ujMV3aX2qjZCeEK24zMhHq4h+vZpj44U4x1BqqkdVq5Qd1k6Xg1Cg1U8SQTumTkLpArpWpFPog1FKAQNBICAnUgWfquxCESt9lbl5LXDsOEJTdXKF5LqNYo2qB1CjzxLiZKFMj2PIK2lAVRAwR34CkVSBE/N9Z8TpXDViLQKIVGM8rFw9m6laIyZuUSss0SSABjWAlo0Hpuo4s2dkTpkiFLgm9NI6SkVYDD2pm3o3ksWAE1geJ46NEwDh7cEHJxm6cefXOjlwOuHEQ6KPzP+YpczFXzsfKEISTroexYbNweLODHmo55uJhZvfogkDCRHkwTbz6cMPptjEMa1Z9Q6yyjgMpCAmhxYgVzx2kEFh1PZob0zQytYKKgsry9B9qaeRSPGy/ZCisVkx94xBCoJdAq0qrnsWw4oPDKiT61FGWdilVxVt0K0ETMUQqxTkeUWmtoBp8qFBBFlhgij2tGa0YVqGagwj7lPzeEaULkahvbRZU1dueRNGgXq+LIBKco9EgLlXIAGZLLqU2TH2/1sUIGpjb5BTvGDxoPhdabcuwrN6sVSvYV0MIl/tx2Wx43e1iv+LyZ+HVuuvYcdTtTfrvZ33o3/oZvvXhv8wv/St/4p2+lL322uvdJjPa6RnP/M0H/N+e/35e/x0n/OGbP8aHY6En7jcbe32N3gqFB1SMa6p8x/Ayz37gARdPPfVYr/HYg0axhhX/Tytu4RCJmFQyjU3JhCaMtXhrjggqEHD423q1QkUIRFQj1Z35/pQ3QxyE1bpjs915u9FqxTqZNyBJIEhCgjcSFSluYYrGum9cvxY4WAlzDctAVIiaUGuUaaTOM/M8M180HwQMasuYZmoLRAmkLiFRSYMiwQgqiIM/PLjbIvMkbC9GNg/OKVNhSD0oCBNDZ5SstJwJsbHqvNo1puqrJ3V7VhShU4g2U84fMsQTTlY9p5uZ3TzSr9d0657jG2tsnNhcXFBbpmnmdFMx3YIFbhwkhthTZtiNFwQaN1crXrx5wNOHA32taJno+hW3b5xw/qiyeTjS5sz52Di1zOkMxDVHwxEhjUQxkqxodSakjizKtuzQZk7WboY0t1iBbx5qczObb5zq11C61ac3DzUvWY1OlyalgB+2myI0DrqeFBPbMvpmo+to5uDH1prfO8E3FDEGVBvWjJILoXktrKCoBeYyY8UHAjEIGmjV6DTQpQ4w/16AYEKSQFkweAFnYRi+HWktUBY4ZNJIMWP0BPrXWMNoRp8SsGKqhSr+PSNCiMGvYaGu20I6DyE4swOuLFSt+ibqqwPflwNJRDjoBlZhH+B7P8tK4YUfugv/yjt9JXvttde7UVYK8sWv8OIPrfjh+bspvzPwP739t3gpCeHxjS57vU/0FsRPWGviuXjKb7j1FX7kmScf6/Mfv3VqsblYWcjHl3kJg7FVHjGiDc5rZjb3rHtgVoldR+oHED+UiUKQ6GHpnCkVYq0MoowilGKgkTREmjXQ3ntIEUQDhAbFCAgHUehDo7ZCI9Klyw1IQAywSpknypQxgsPzmvvdxbzNJ/SJfughFDQaGqGLCalQSyHEjjop42bm/OGOaZNRTaQu0MiE6AfxuUZKHQmhEXvx6xTPsFgzAp6BiKGBFsr5hm2rHFy7ztG6p2lGkqLJMMvUPIFNnBwKIh1znTnbzaz7nsNe6aJQEPJcOOyVF5465Ns+eotb64EH23Mevbbl5KawOjzkeNXTxcDD83Me5caZ9oytI8ToFjJ/hk/Old1uR+wThcq03ZExqI2GYtUzGiaCNWdgmFwehlmC0P60X/AAeDOuntQ3KcSYWPUrz8g0EBIxKGru5bsMd5cKUdJixRPEfPsgGpBQqbUgzZwrI74n200TU8mYeYg6hkAKHdvxgqa+uWq1kZvnTuICJmzgw7F5b3RtgkQhRj/Um/nGoeRCLpUQhBTd9qQItXjWqOud6t7yDM3oYiKmSC6FsmxKVDzTckn+LguJ3HMbQDUkXBbe2gIe8e9v6BL9/i+C97X+1c99itvhp4H9wLnXXnt9fWrbLekXv8QL+kH+s9Wv57nvf8AfOvl5ngj7vMZe/1Vd3hPNjGva+Nj6Df7KrW8wsK+WhjSvnTURihqlNmITtlYZtdGCkbXSmkH1Q1P1tDASIi1Ems5kcwuMSEBiIotw3DKDKTWuuZgzZxeNqIFKz/Wb16nWsDp6bahWLAbCNnDcEuyUTReISYiqSFz7QRiILaJzJNSKpUyrM2KQNCLSI2mgPzwkdJXWRvfF17iQvSsgkI3Nox2PXt8y7QQJJxiVnHfEThCNzKWSWyZ2EIZACwUCiAZacVBbSAFdRUwDUQ2xDXW3JafI+sZ1WB+yrUqIPXWC6XzLtUG4+eGbbDZnNLngc69syfmIWgamsuW0FXblhJS2PPtixzMfXTPUxms/P/HgUaXDWKcCeaYQOCPw5ty4e17QUhmikfpA160YqzCGwLkph3FwOxhGlxIaIxXwf1MxE2rwobDMBWRGBFZD79+rKA1hlzPFO1wJqsv7WFknBanUPNOFjuKzDCF1NCk0m1Bxe1UXE2OuFKA0Yx5nJsk0qfQhoA1EI7VmdrU466MZUXwLEXx1QW2F7bxbaN0eMF/1vW/q8KHAaqO14tY88cqCKoaoUlojm5D6gSCFoM1fn0jOjVyhtkKtjVZhSJFuGKitUZsRg1ENai6+VVtqfVszqvnXsBCptRCsEYOgapRs5NKwCLFTouzR4O8XSYzIasWjv/AEf+Pb/ywAhzqwHzL22muvfySZ0c7P6T7zOk/+5Af5My98N9/zHZ/lRsj7rcZev6ouM6TZAmHzePfJYw8aukDCLitGQzOKwBwahYbgdqMkwQngYoRmSDWUirQZaYG5ZqAxxEgLzjIoZuxapQ+XVpTKOE1kWXFwcEhKaTkctqtwcTMhaCMmIfWR0HtlqnvqzYnMpVKrQatOcCaielk7mjx7EQUJlRCMfui9cSk3aI2kTqE+P9tw584jzs8qQdfUusNoy8YmuC1rzv4EPXZ0XaSyMBlqo+s8OO2P7AMxJWIKoB0aoSVvYxrWhzzxxFPcuHlEu3hAfviQZ559kvXRDe6dnfNsfY2X77wCNISJvKvszneUuZLWys0Xn+fgw88y33udh/URr98/JxxBDY3zbUbiin4I6O4RIRS60NEnzzjM88iUK00SQxcwClOeqGL+9L5LtGaU4puJEIJnCbRiQa7sTZIiMS3NTEAiEBo+fLZGGjrEYM6ZVmYPPQclSvL3FVBNhOTbE6lQmy3vudFqoZRGWi2woeJDDAJVjL7vGbqe7XbLlDMWfNMQY6SURq2FUvx6avVmqbhsPi4tStpFzGBuDRUfYi7rfnv1HEUplW7oWK/XtKzMeUetmRACIXTU6lW2ZZ7ZzTPgTVql1CX07byYGCOiyjxnr9Z1iAxNGtWMMWemuZJrYeiih9X3HI33vCR16Idf4PN/8Baf/ud+cPm3+2zOXnvt9Y2T1Up7+Ihr/+Ahpy/e5G+99Am+Pf29Pcxvr3+otrUnXnyDBw1RxVpFETqWoK4IkhyQpgJJ1cnKCwOgmjHWDBh53DGWjAWvrLVc2M0eFlYRJGSOY0foEn1JVIyWEt1qtXjXK6riYXNrNIPYCavDnm6VMAUL3iqksBwoC1Iqwcxbh1QJ6tmBkJahRoGY0QWOJiLEKKhFrAbOT3fcfeMRjx5cQO3puwBWMZYmIzwH0KfEsE4MQ3LLVI0088O41YnUKV2XODjsGYaOkAJhdYDRmPLMPI/Y7gKtBbqBuSlnZxesho6DD77A7Zde5AUO+YmfeY3NeEYuA6EoSXu0nSHdIdc/+h10H3uaMgRufvQ+/Unm+OiYg6OeC5vpd4JtNohecHQM0YxOjBAKuRUGdXb3XBuZRmkZopJbQ6bZMxL4e1FLdZ5JDM6znjO5VGyCtAS1ve1J6JZshQHFpqUCtyJWSV0HAlMttFJBIWikNqWUSgKkFVD8ZyvBhwqrtGKLo04Ya2W2xjooIaq3Pi2Qu9wqU5nctodv5brUUWujWkVTwgzGkv3eUEVjR9Totbws1i+DGJ1yXssIiG92rC55jUDXJcCYpkqtmSnPgLM/guFhdxYLlzVKLbC0tJWcaUBIkYbRxAsTdjlTrNKngZSCT/t7vaclH3+JH/5rf/6dvoy99trrvSwzB+O+docnfu6Iv/pbv5U/dO2nOda2t0/t9f9XF7WnO3u8j338jQZQcEaCSLtqJwitQRDEH/3ij7KN4IhpeguUWolUKOZbCXPYm9VGXQYNHRqdRQ4X7/v5tOH+2Snr/hALiRgCMYblsChQC0ELq1VHTOIDgxomS51o8yfHQSEkJcYEmtAAQT1kLgFMKpIqIgurgUSKHS3D7mzHo3tnbM8ySQdC9CqvFD0v0pot9aYdq9VAt67eNFScXq0hAIHYr1gNiX6IHB32rA86YlKIgTxP2LijjJlpl3lQYaqZeRzZVUWiMB+sWD/7Eh/IN7j93Ke498VXQBPD0KHjFg2BFz76bdx+8Tuw1YDe2vH0r2sMc2SgUPLIuT1k+9pDdnWmP+xZdx0dQieCqFF9l0DNjYtp5nwuxKL0ocdMPDy9UK5r9XxEEyGX6q1TGM3qYgcSiAJmRBYafDP6rmek0Kje92QOrsvNEIne1BQUA+ZcyDljqigQQ8SWpjLPWVSiqm9agG3NmDRqyWQzoNEPPTEGHzgrdCli5of61TBQa2MqM7Hv/JCf/XucSyYgxLhCRZcWLFnYML69iyFAg3HylqnSKopSilf4hhh8W2KBUhcAokCMSjV1KKBE39KY+VYnBeZcYIH3+UBl5OYMjyFGOlUcHrnXe1WSOr7w+x6vn3yvvfba6x9JrdK2W1ZffMiXvnyTu5/oef6dvqa9vqm1acYvnz3NweuPV4n8+IOG+LDRaNTmh63OFJkMi9DUyGRaEELndaIagz8ZLwU1WQjNb7EV6sJXCClREKZqrGOj6yLMwtn5lovVFvp+sSW53UQvtysye3hYFNGIidFahpwxFmBcCCiCRiGog/80GCEKqtCkIbESJFJFiRppxbg4PePswcy0yQRJpL7HTCllXupwvekIhL5fMQwdpucApAQp9FiNtBYIXSRFRaxQcmaeMjk3WjFaLlBmejMixsoqwxA5vPkcdvs20hf02m2su8nRc8/x6773e/h749/hfLND0sTFbuT45g2++7f9dq4/+RGazqRrmesvJvTBXXR7nzoJE5n7F/d59cFDxlrogtJrYIjON+lWPSEqxMoqrNiVzcKy8PCyh7SFrhu82tXGJdhcscU2pxLpu+R2IHB7mYlvKgySOk8EWCAwgaTLFiooMUVEA9M005b3r9rSBhX8PbfmVcFBnZMRFvp4CoHcKl1M0BpBldTFZQgo9H23DB22MD0AbAHtVQdHxkAMgd12puTsW63Fp6SLvcoraBspuJ2vVGeC1Ob3Qs4T4GFvEFKMlDpTyuxVusEzP80awWvNvAbYfFhXFaxUCPjw1rzKOarSBd8kfjVIcK/3nvRgxaf/+R/8h3/gXnvttdc3QrUimx3dg8B5G4D8Tl/RXt+kmqzw2XydT376eT722c1jfc5jDxqdBix4qLW0SjHFGg5Yq34gQhoS1LkGlzWmtgShJZA0EJqRaqOaU8abu2/AlJwrJWT6EEkhsNsVNucX9CK0EKg5E6IPHNoqXTKiZaQFxAIlF2zx/SdVmvrTeppBaMSukiKI+lNnVYfomWY/oIZEzY3tbsPZ6RnTpqEtEtWtNUZFgtPMvbbUB5dhEGIszFRaq0QVaBNWC9YCtShaFFFvSJpnr+e1EpDaEO9ipVnFmOjXkYNnnvG2rb4Q1tch3CKsjvm27/0d7DYzX/zJn+bOwzeZVPnEd38rn/ju7yAOBxgJkzUhHWDhAdZ1nJ9uuPtoi8WOgxtH2HaLjc35HNPEvCvEXUai1852qxWlVNSMoUukmLDKwpxwcGGXEhW3/+RimEKIifV6RQyBWvNyXzgBnqVSOAqEGKC6paqPkVIyVSpJAygUaQQVLHbkXKntsnzW271SjDScxF1bQTXSx0htjS4oeaFsg3mg3YwhpqsNl2qi1UYtBWuNlhthYWEEEWYRxAy1gpXFUheCv69BUFMkBAzFLNOomLiNq5RKTHplD7vkZ1wOIqK+9au1LMOOb3VqNcIC5rPZsxqV5sOeGSEonSpqe9vUXnvttdde3zhZM2y7o38gPKoHNB4S3umL2uubQv+/IMetZf72+cc5/uVEeO3Vx3qNxx40+qA0nDfQrDLnTGpGC9DEsCBIl9AuQBDmUqll4QkgSICIkDA6BTRScVuI0aAJpVVGGmHoCRKQWrg4Ped4GIi90szDubk1Qm2sVkIfQEqh2EyVgtJIMRH6jryQlhNC7AUdqh/kzBBRH4pEYeEatCZsL2Y25ztq9lA5zW0/5h2jhAh19ifsfR/RACIzRqG1SskjRPV/Fiegp17ohkC/igxD8oNzq55VATQEhqHzIPBhQmJ1KF13BCtF+usIJzRdceO5j/Fdv6PQNmd88u/eY33zhG/9no9z9NSA6OwwQwnQJRjWzLuR19/Y8vkv3ufBqZEODrh13BGmAnOlTZlpnJjKBaUGxgxhO7ObdgSBg74jxI55CSTXkj2PkxJSCtlAm9Pbu9Sx7nongovD26d5pqZAbcYuj6xDIIrTu/u4hJu1MJtvvcQCURoaHIBXDUq+ZE3gfBMx5lqpuRKb0AVvKOs1YKV67idFSvVNg0TfopSSEVHnY9SKAFHVLU5BfTitlSElAs6+sNZotaEKSXxAliCUArkUB/YFJ6hjhogRozdH1Vp9SxHUB3FduBrhstEMwFB1G55hBFkAhCqMJUN1yGDSQHIKx9cwNvZ67+njf/P8nb6Evfba6/0ka9g8s7pn3C1HwMN3+or2eof11QOG09Lc0fRmVX7klW/h+qcz7ezx/q567EEjSCBFYTZjpjHRgOJbg+CE7LTqkBD8kNWaN/sImBglz2TJrIOQVDw7sdSgokJtXvs50ehTok+Jg16YxolcKocHcaFBOzG8lrIMLf7kutaChOo8BrxlCPww2cVI6gXrCqpGM7c9GW0BzSXq3Niejzx8eE6eMyodIrMzNywQYnJrljlNvOsC/RCpdWKeJ6oFxuXpd5cEDf70/eCwozvOhK7R96Bq2NywqEiM1ArDwcC12zdpXUcmQmuYFcLBmpoSjQNC6/ztikfceuElXvqOb+Uzv/QpDq9d5/YLNwlhg9gFtIqSMWuUybh4VDg7VzbbwBuv32UbJq7fcODfahVJgzCsA3MWiqx4eN642GyZs9H3CRHIObMbsw8NtRG75EH4haXRDHS5Eee5IDR6nwoWMJ0/xZ/HmVahmaBdR1wO1UEDSSLivqArWntrDuVTCcQUkObcjZw9IN2q0REwE1IQh8rUsmzVlJL9esNiuYOliSwUzBopucXrcvMgBpYr62HlA0htmAlZ/L0UXYYL/B7PuaJJSV0AC5S5YipojJRaaM0cOAjUxc4lQAw++Bh1sU0BAqUWoghD7KnasCpgLBs6IQZ8o7GfNN7T+t8/9VPAvvVlr19b/a7f+z/mr//UO30Ve31TyAybM8dfHPnbDz/GHzj+HCeyeqevaq9vAjWMbJVMZdsqP3Lx69j+7C2e/PybtHF6rNd47EFjKhCHFTEbO5vZdMJWhGOJDMPg4VfxVp1aDdHofvTWmGthzl7feR6MvoustWPQSB+dk6BN2FZjrpnRhFVQhmRsZuV0qjzR94TiK74sCaKhLVNmGI8Vi4XESJAOs0ieMzEJXS8go2fUm0HIaEweMm6KtoFWDzl9cMbDe6dMY0Eseg5BBR2AKiiGVaXlymolHB0HTGZ2Y2HKBeZA6m8gAiXv0LSlWwfiuqeXRGiR3gamXSZPhfVRTzxIhOGQLp2A9ORz2G2M3auvYjlwsjpEwwtUDlDxp9mRimng1rMf5KlPfJjSDJkLbB9gccJmz3yU7YbN/QvuvPqI87OJ20/cZG7CFz7/RV759CPun6z52ItPMKwg50K1jmnecnwg9P0RZzuFoGzzhnmamGcQiWg0pmmktcZ2mrmYluErC0chUecdUYVrXY80wZpbmar5Yb4Lx4Qg1FbY5cwQIkUNYs+MsdmOsEDwRP1rrjolauPiYkuQjlYCXYQShNkCMwq1oNboNCAoecqoKL0qXUjECEFgmma3qdXi2Y4U3QIoTuluxfMXXddzsblgzs6w38wzGoPb6HJF1Oh7caBkFeZm7FohqBDmeSF8K6ZCsUa2hli7svWpGROdlyLQqIrnMbQxtsacjfMMpQpBClGFLgDqcfS99tprr69HF23kf/D7/kXkZz75Tl/KXt9EslrpXnnAT336Je59oHIo++ap97suh4wLy9ytyq/Mz/AnP/09PPGzBe4+wMrjZXkenwyOsxO6rqefPWydYmTd9/RdR7XGbpoWu4j6U1tjqaZtSy2tMU4zc56Zp8w6RYbU0XeVoRuIqxXWAhYUDepPssU4Pz1jfOIaJ6vePfCqtAy0ACUSWvDsRksoRkgdSEPV4Wu1FUputG2FpIQVDN2aPvbMW2NzsWFzesa8m7AKIgrNsyfOGwy00pjnjIhxcHDorVoh0CM089JftLDb7RjWxvHJivVBIkVvIBJVtuOMhsD1WzcJUSAq8wSnZ6cAbHeZ7bZxeNLRtjvKw/uk/iahOwLbeE1W3lJO32B3epfVqkNU2V0UtvdHRGF7saVMW5gvuPfKy3zmM7/IG/d3dIe3ePrpG8zThu7BwJgbd19/xHTQsT44pBI9LK+NXW1IE8+MzBmbZ6TpYmUycjXG2fkOZuo2tIVsrYsVaTOO9F1PjJGkkWbVbWotU6rRJQ9MWxOiJqaSESChNPMn+bIwwWtxVOBqWDMMa6axst1dIGbEsORsDKgVJBBTXEB4XjaQUiJG54HEpcFsmmZKcfsV4nakWupC6/bvYxhWSAjs5gk1nH+CUquRNPm9jXM1ai5QGxrUYYHqtrjWjE6TlxEEd702cXZMnmfEnLESRWkaCCFSZ6EUB/85q0VIwXMxQb0qeK+99trr7eozecMf/YF/leEnfvqdvpS9vtlkDXv4iJOff5af+d7n+MDhnT24732uRmNrmTdq4L/YfoS/+Mp3Ef7LEw5+5Q3adguPmRl9fDK4OktAzejEm35W/UCIkdrwTEZ1vgUGUj00PRe3UYlcDg/eOjVmY55nomRiDAz9xLDqkcUGNRAYNLEeAuebLefnW04ODwmaqKVhc6UWwwrYbGgfkBZplgnRW5BEl8OvBN9SNKjZW7Bq2JFp5AnGTWXeTqgtZHFzXkfF7V3WGpjRdd6qlBLkMpGnjJmHo2MKjHnL+sAHhcPjRNf5wTLjT8n7fkAlYGIYgpQIM4znG8ZxhwTl5vF1jq4dkkpjeuN1pA2EowLhCOsHyrRle3GfXHY88eRthMA4wv17I80mNmcPKZtT6uaMs/tvcL495f6jU/LDc2I8JobIU7duMmVbwurG/YcZC8btm9cYYmWaJzaWocIQe5IoORfG0hhzZiyVsRgF9WpW8ZA4S1OUsyp0adtKdCKoNVSVqc5M00zOSjajxspqGEgSnL3RKblVajNE/X0spfiQh1DKlmnKtJJpeKbD2ShKiJ3zJ1pFQ/AsxHIfUhphIY2reuWwdZCXQZRqqBqx9zap3bhjzhkJgbTUyooK85SppRC6uAyjl41TRkAdcVErQZyrUc3bxXxw8+1eWVqqIoKJ3yNeoauIKVNxBkxrnh2JogwpkUJ0u+F+0HhP69964zfx7z79c+/0Zez1HtPfHeFf+9/969z4Kz/xTl/KXt+MMqPtRm7/wo4/8aXfwW/5+P+Dp4OSZB8Lf7+qmjGa8aV8g79x9xO8+nNP8/zfn+DufSyXx36dx99otMY8z1izxf4R6CQyVx8mSq2YnzAptVJmP8RW8xiJLH59uSzJrZXmfUTUBuN2R98qKSg9wko6hmHFKkXGsOPBw4esD9YMqxW5VDDnMYTgdiJpzscQjaQU8Gyu50RAEOlImhDJjPPO2QRayKNRxgoZIsvT4uZ1ohJ7MCHPMyEIQz8w9AkJMzT33assTUGWiWnm6HjN4VHHMPiWxUyoEtwOFL3BqpnD3+oI2/Md43bjeY6DgZPjjvWqQ82YHz1kno02PIThmHZ4DbMArXF8fJ1Vd4RVIfaeHxl3F9S8oc4b8m7JmoQVXVc5eziyubjLydF1rl8/4VAqOQ+cnu04uzgl9JG59NSpoho5POiYpomWvcEp9kq1iZY9Y1GQhXFheOTAB4KUEtV8M5CsUXImaaBfDsnSRUI0am604gNczoUuBdQgmACeu7Fm1DJjrRA0UGvz0HhQknbkUpd6WUgh0AVlbDO5ZDoVwpKVyKUSUboUiLEDQJO3Qe3y5ENTyUtWI5JzJrdKwwi2DE+q5JwpOfsgbf5LeMmB6VNHphIu+SDWiBKurltwKGHOBU9tGL2mtzgaqhhCnivTNJGLAwfFhBiUvut9eAHi/g/+97Q+9f1H8Mvv9FXs9V7SX98m/pf//h/lyf/4x9/pS9nrm1iWC+lXXuX+D32I/8ON7+d/9eTf5Omw3luo3ocKoiQCgwiDuEUqzBDGgtUGb6Nm//EHDTNyLQQTQkgeym7NQyK1uptD3K6SS3V2gjPgQBQ1t6QI4gNH8CfgwhIWbw2qYWIIxi5nDvsVXVIOhoGL3Y7X7z3g2vVr9F3nwL2u0Q9KSsUp1hqIqWcpkqLWSxtMJEhCtFv8+D6JaUtYLtRcsMbCVPDQbkiRqIGcCzEEUgz0XUTVoXEgpDAgostsUji5fsDxcc+wjsuTfaFhiDq4r9QKTYmq1FLZnU+UeeZgNXB4tCL1gRgKWEaqEXJlHie27QFtOKR/6gVWR7dI62MO1tex3GhzgVAYpzPytEVkg8oWlQksUsuKWjw4vbk4JdrIydGatGqMc2NuE7GDYeWcikdnG3bFWB0csT5YYXNkt9tSWgERVH2A0gYgPtwtwe1S/OdaW8GSkWKAVukDaOoQlkNzf0CZC0uRFzm7bapVH0AlREKAWt3+FoISUs80VxAhpkCssNtNtOxbtMvUgoqQlw2DmV+XiLeExRDpYnSAX2PhgdgSWPf32hYr1GVDVLW2WL6aDxS9E8XN7GptGILnQmr1DUxQpeZMlUZUJ0N6kYB/TcRf26wtm4yAqMP6druJcZ5oBMAhgWpCF6LnVvZZ8L322utt6o996Xfz5P95P2Ts9Q9Rq7QHj3jqb97hb137Lg7+hxP/2q3/kpu62g8b70MpQhLlQCdUGjoLOhW3qb8NvS0yuOJVnaqBZsauZmcUL1CzZsZc8lvVnXJ5FjOsVt9qaCSaP+m/rIx1+00AU6oJRWCsjV2tpCgMfeJiyjw4PWdGuHH9hGAzu1S8mjZUGpUmAQkBkbe8Jao+JIBSS6ZY8cFHIm1W8mzUxpXPX8SfhMcYmYthtdGlxNBHdGkGyi0joSeljlYbEqFfJW7cWNOvhBj9fSjZH303aVgtqPmT6DnP5HmiNegHZVgnVgedfw9kWpuhVso0k3NjNzasO6c7PCYdHjt3JAYaDTWj5C1WzgnsCDqRGZnmkWkypimw2VRKhr7rURqbizNCC+xmY8wjfR+5frRyKrYpc53J2wv61LFOPZo6ytiotrQltXbFcxCRJddQr0CMwFv2IFGKeFOZV4s1UtcT42K5QlD197/URqviGRlA1OiWAaEuWw4JXnMsy5ZBFMS86clj0kLXRc/VtIKI0XUdIQaaNcZpIpdM0ATilcqIEVMkliVHstw+uXig/LJ+NgUfIOdcmPLs0L3gWYxcfQNCCPio7PVwpWRK9e1Xbg1D0bBAK6WBBDRGajO2u5mLzY5MQRX/naiN0EXiAiZU8Mrlvd6zapsdH/uT/5M9tG+vb4j+6nZg/hNPE3n5nb6Uvd4FspKxl1/lhb8c+aHD7+H5//59/uDxZ/YtVO9TBYQkfqbXAjoWWq2Pnc+AtzFoJPVAMwLZGnXZZATVBTXRnFtgHgZXkQVa5vYYHzqMtIQ4mvkBzwTnD9hlABtKgF2tnM0TgzZSCKSUON+O7B48ZK4ZbZmnWmKXEysTQuyJ3RpNHYo/pfYn2gBKrjNjGanm9iorkOfGOBvZwDQs2QKQGCiten2pCl0KBBVaK0AjaEK1Q2RAgrFaJw5PVoRQrw7QtUEtRrWZpjNDd0CSxPZ0ZNps6YeO9WFPlZFiW3azZxK6KDTLlJqXYaGxu5iRkMnnD2g3r1F3QpZIyTOUTBtnyrQlWGVIkVki59uJO/fOePRoJOeZlJSDW4dEKpvdlmnsaBoo1VkZnSTGbEjXo0EYp5HdxY6ddtSmbHPxQL8EglS64IOlXILxyls3XQiBJuYVxzEwt8pFnjy8bRA0Y1YJYoRghOSh8FbdjmS14kfpRheFmJQ8Nkqp+HhaCNELCJrg91sMSINWGl3fEUJgnispJbquQxSmeWKeM2bQdw7Vq/h2QoMSQiBopORCMy8wiFGJMdIWrkqp5WoLouKbrzln5jyBBor5UCnq1zVOmV1pl78CaIzIYrVr4veXqTBOmYtxZMwOABQxUuwQjC56PkNhobHvVxrvZVmeeekvPoR//p2+kr3e7fpM3vDH/8gfZv239z22ez2mzLBSkDsPuPbpG/zEow/xew8/tW+heh+qYTxqhZ/bfYi//6XnePoLDXl0/mu30ehCpIqQa2auxYeNVgk1MM/ZLSpBlxBuRBbStYrQFrtIWCpaHbPtvnXBQWWC214MqM2YqZxPE9cjdEHpuo6UCw83F+zmLZ0GxpPbFPP2nxB7RNdLte4M6JUlRkRpVqnm1bZqgXlXmSeYcyaLgwCjKhKEXCvznFEiw+oAFWPOM1ARgRR7SnPwX+oSfd9Ta2G7mdAQSElBkoeRc6aLkT4lducju82WVdez6nsqBbSCNqZ5JMbAOq0wwVkkNOYys9tswAqrzQPqdJ0ilWnJugQpaAswZ4xG1A5hYNzC/ftnbHYz64PE8ckhqyGSdxvKXePRI2FqhdV6xeH6ECnGuNliqfONTouU0vznY5ExN3ItPmxJYz10IEoxt4EVKTQr3hClgRiDW61ixKxRF9CcZWOaCjEYJoVSM0Ej01Qp1X/OFaWJEIMgvVz94SYinonofLBoKs7JEJbaV67yDjFEWvBBIwRFZRk+wbcXXWIcZ8/OiDeNpZSI2lGL51L6qKQQiTE5Bbw2pnH0gHjqqK36gFMKIEgI5FaZp5lVlzzX0SpjragqXUz+sxUvGMhtBjxLlGv27YoqpcxXDI+UAn3qSBquQJNOPd9rr732+tU1WeZ//k/8IcJn9sUCe30dKoW0abxycY3zpjwZbE8Lfx+pWuOiTfz4+Cz/0ed+Kyc/NXD8Kw9oj06xX6tBo0q7go+l6FTozTwzzZMf3mJ0Hob6k2LwJ7pD3zs8rZQrK1W1hogDqcpySNOkGG69UVGKKDszLpqyqnColTFWTrUyF0Gjkk1AI+uYiWv326v1vtYhI6HRdz05G/PWSKxQU/KcyVNjNkGioMWHn/XhofMhtltEjfXawW/jCLkFhpWisTpPo02s143VYSHER6QOND2JaqExIWkkpcA6rlEOefTgjFaFkxsnWCtkmSitePZDO8Zp4vj4OomBdpGJk1CzMD/cMZ/OxKSMDzeM9y9Y3T6m7yJFMjEF2rqSpy15bNQR5rPK7rxxcVZBKk/crDx1e0sMiTMJ1OM1j87O2Y2ZeLImDMrZowvGeaLvIz2RYD2TBC7GLU2NIEqpDaszokbL1fMalhzmuD4gz2V5ol+ZbKJf9yTtWcWIlYl5HtmpMO5GVlFZr1YQerbTTJ3dJic6k1TAEmIdrQ3ssjmHIwrTLtNpz+g9xAydh+hry9RaOJBDrHgj2snRCqxQy0wSYxaH5VXwWtkYaAVW/ZpaK+M0MtUdMSa6LkL0IoBxt1vsYVDMSOo2r1Iru+2WWr2eues6Si50fUBEyMUQAtG8LljMNy7bMvs2qDvkQJVYM1Fh7owzNaIOGELNMyrKURcYVKk1MAI1vL1f8r3ehWp+UOxlD+7b6+vTeZupn/n8O30Ze70LZc0fBqdN443TIx60geY9nO/0pe3135AmK3y2JP79L3w/+cdu8vTPbZDX7tKm6W3ZpuDtAPumyQ9HEtDA8mRVyWrE4E1PIVzmLvwiVJf/X/AAscpCAW9ehdscfKaXHIbWrg50LEHe3TQxh8hBiHQhMsRIqZXWKuM0MeaMBqVPkTFXStkRUkbEn25fbLbkuQHiT5jnTMmGoITgvAbVRAiBUop/n62RYsBaJbeJWoVSZ2oTUlCMwmHf068SKYLGhlmmth1DTISU3GOviSA9m4uRWgoCi/WmItroekOjA/P69QEhrZmLsMun5HnHOBY28wZiQdOM7DZs7tyBNNDfuo4Go5UCNbPbXrA9HTl/OPLmKw8Yt4+4dqKk1HPzunJ8vEZ0YDdX4rZyfGxs8ylWCqrK+uiQuTqMr1aYcmWqxkhDzKuCUxfQ2rm9TB3OuJt2qCZiShAcjmdiUNz8VGulihDVszZBjaRKp8vWqxhd6hlWK0oZsbGwGlaIdoy77G1Qsgyn6nyLWhf4X9cRgpK6iM3NgXtW3RLVOkoVWi1YMUSXFqkYCRohKmqNhjFOO1rzFrSQAv3Qgfr2rtbKOI6+NQveINWmiVw8HB9D9EyJGTZXt9ipkkshV7ebXTI9SvZ7wPAqW7WGWmMdA0cnxxwerNjWxjRlprkwjROHXeKgG0iixBiIAmm/vX7Pq/3ir/BP/tF/mT/5g3+cD6XDb9jr/uw081199w17vb2+efWHvv33AKfv9GXs9W6T+N/3NCOMlfG85249Jtu9/YOP94myVV6pmR9883dx/tef4umf2pK++AbtYvO2txnwNgYNYBkyFEzcc66BFJMfgEL08aI5gCzEpfb1MqcB0CBoQNVDwF5KJVeHL0SXNp9lom6VLY1t7ViT6DVwkDqmOvsQkid280hjjVnFTEAbsTOwQBmF3dZtXV3nf7nmDHky5qksLUGJlAJmMM8jpWRCCMQUgEYpMxo7hhSAzJQn1iu3wDTKAojrMVGkK8QhOu8gRFp2gN7F+c4Pxwq5eIBYg7oFKAUkKEMcaLstdSq0+YwyjUwXmbLd0omxskocd2zu3IV1T3etJ8SIWaHkLXXesjm74PzBht35A7o484Fn1nSdcf16R9cnLnaRi6lw78EZ281Il4QUjXmeCBbph54ymeczcmEzF3a10EUhEa5ami7rZ5sBIVAxrHmoH/PmMDMhl8Zksx+ok5KS0mxHlEgXAlYaDaEaYEYMHUN/QNf11CqoNqo1avH3Spe8xWXtktXCXPw9Wu5QJDZUPccxZyhT9tdeBWIXaXnhWEyNuWSsuR0LhBgDXReIUZhyvho6Y3zr10TUrgZiEUFDBAp1ymQrhJQwjKm4xdA/7rJvzS2CiKACKzUOgnKcIuuu57oNzGbUOpMLlGqsUsfx0BPEg/BJ94PG+0X9D/8Mf+Df+Tf44/+b/5DvHb4xb/q//Xv+R/zpv/6neSIcfENeb69vTv17Dz/oFZR77fV2JILEhAw9cvM6Zy/03H7yHjfCBbqH970vtG0zvzAH/tef/2fZ/NlneO5Hv0x78JAyTl5p+za3GfA2Bo0QIiBeYetTATFEJ4BfaqkADaoEEaJ6MxLNYW0iAs2fTIcQsEt6M05Qrjjc7xKQ1wx21rjIM0ddT6eRdUxsQ2NLZpcz27mSF2q3iaLRMMmUuTmDovqAJFwGjoVxbMxzIUU//GLCPI8+kPSJGLzGVjBi8k2MCZj6BmJYCyINFlp03/U0FBkyGhoxDUgLnJ9fcH66o9SCBM+iNKuE0BO7AdTDxUrnA9k4IVNmnhubrbE9g7JLdJ0Qo2ITbKctdnbO4bRl1a/BCmjjcD2wiTvWq552siZox41rK7oOhoOO7a7y5sOJOw+23H90gbXKwXrF8bUDmolXxTZ/0g5QaUytUqPQArRWHISnSzi6NQxnp5RSsdoo7bK6FQ9510aV5i1RQej6SGoBLY0kFVPxQSNn5mKkriNKpMxu06N5jsfMeSxB3KLn90i5GjhqqaSY0BDAZiT4oFFzW7gvkWq6ZHDMD/3mJQNEpVRvUzMzjEqpkPNMrc2Bg6n7qt+tybkfIXp18XJ9/hvhW7nLitzSKlEDEfWKXlVPJC0smuOo3BgGTlKk10CrC8YlVKyLmCViTJ4RKpOH1KN8Pb/ne71Ldf1P/wQ/cPgDrP+7b/B//5Y/w8e79df1Ov/mm9/Jj735EtfOt/zuv//P8bPf9Re+wVe61zeTfuQP/Gba+a+805ex17tIEiPSdch6BddP2L1wnUffAt93+xWOZeKtEvm93qvatpm/Ox7xv/j7v48bf/6AW3/nc5T7D77uAeNSjz1oXH6NtkDwDCFo8MNz80N3WJp7RHzQCHgzj6giold2JsGtV6K8NWzochtb8Sfky8dlg808set7TvoV65BYhczUlDFXtnOhtuB8ij7QqMxjZp4qJQdi6AEoeTkM5+ZtUqL0vTcsTTtvZur6jhijH2xboYtKDIFmlWIzwxBZH6wY1v5UX6Wj63pCchuMxbz8sJRxWzh/uKGWRkgKkpEl+K0RYlKkbKkIVdfc2xi7c2PaNl47qzw8N6ZzQWti3QkHB0oXCjk0Tq5tOdrsGNY9QYXYD1y/1jGfN3qdODmIKBMH64jSmErh4mLi/r0LHjzcMWVjnaCPjUBlyuYsFHH6dewSoTWQvAwOBtLounQVsG/NiGbM5t+zLe+ZH9YNM4g0LF5hIzyUrYlWi8PnomKilFqYW6aVq2f+WCvoYpm63IgJ/kKtVZTmrUyitNoIIRE0UikE9Y1YoyLqYL65Vlr2TYuoP5sx983RpUjQwHa7pbYMlqnViCGRUoe3apWlKjnRqiHq3BERp8mTEmK61Pq+9e+DOkPGG828Cc3UCw5Oup7jvmOlQodgdWF/6OV3678zlerZl1axKvs/799neuI/+HH4D+DPf/K7+d/e/qWv6zV+5E/9Fp78P/04Bbj9z/TwxW/sNe61117vXkmM6Mkx3LxOuX3E5tmB05eU1ccf8usPX+ZIM0H6d/oy9/o1VLbKL8yBH/jpP8AH/kxi/ROfoT569I80YFzqbQwa5luH5rWlhi5Pvz2TEUIgpYhqcM7CwgC3SzgZtgDbgvv/FniZwtIGJFhwT/9bbAYfTHal+laj7+liZBUi57Uy5sz5tlJKJIWOJoFcGmUK1CLE0BHjQCmF3XZHngs5t6tWIhCmaSaXmdQF+j7RWqPWQlie3KMgNGJQDg47hlVH6gtBO2Lw5iWoaIQWOqwFdpvC7mykTA77U4RmjhvRFEh95z+nWRhn4Subic++seH+uXF2MfHq6ZbTi0ydjIAQQ6XvhdtJOTqMPNcPHD+75ej4mPUQPW8SjdV6oM6F9eoANa+/3Y2Vhw833L17wcMHO8atsyHWq8DxUQdaHVioHW0ZEjQEUvRMTCueO/DDePR7oHqDUwwJWWB7QRTErVDNvD1KLdDHtFQhGzkLkbgMlLosyIzUC21uiFSESNd11Og/2mSy0OabA/SqZzFi8tphlUhVW7ZV5oMrS5Vs8BxOEKE0Ya7tCuCn4jyQ1szvGypzLp7DaA2WDUhr7erebwsfJqgzOQQhxkhKiXnOTHNmWjgyASGFbilHcBBhqw40DCEwdImj2NNJAKs+9Nglp6WSNNIpDkOkocGIEogq+zje+1Q//O/94/ylW7+dluCXfuBPPNbn/Btv/Hr+2p/7Hj7wdx+xN9K8P/TiX/mjfPzVfQh8r8eUBt9kHB5QT9bko0TpBWmw2fb8yu5pPtK/wYmeETXsK27fozptI//HV38vT/7QwPonPv0NGzLgbW40/JDZKMthzQcMD7um5JkMwNulWqVWt0mJ+mFPdAmEXzEuFsuJ+RhiS3D20sd+eSAtVriYR7a54zgNrFNPV4y5FE4vZna7hhUl08hZoB2QgpBSApScG9Yiea6YQYr+PHu3m6g103XKejX4k++5ulc/efakURjWPcMqEjoFWQLFEtAgIA20kRJkGRi3he3pBpuMLvYIjVaWdqtlW5BSYjsKdx8MfPrVC37iC2/y2QeFTYlMuTA1JTecki1GaTOqxolFnjhMnMfIE89dcOP6TJCATTOtgQSlSiYEQSVyfrrl7OHE+VlmewHzrmEFVl3P8XHH8aEH6I1KtcZcK2JugRKDVeoINGIQQjBYjvCtVczUw9DLZqo2KKV50L9dogcLuWRv/VJjjobqMVEStVUK2XMLoZE6vx+cvp2otYAaaoliIKUtVimj156klXjFvlCmXSbnTOiVWhpRfAiwVjBmkECpfv/GJHTRR57NWNjOs997osQ00ObZrX3N2O1Gz9QszWnW2pK38DpmXb7Obp4Zq+c0xCBppA8JVSEzO/yxVa/R7RJDSvTif2ibVcryezZV49wqq9DQ7jKPUcEaagk1+brCWHu9+3XjT/2E/xcN/LZP/YuP9TnrV7c889M/vh8y3id68S//C3z83/kS9f6Dd/pS9no3SLyWnRCgGXoxMsyF7kHk6JXEo4cr/vL97+JTn3iK/9kLP8r3DWesZV8m8V5TtcYn52M++RMf4aM/9Qrl9OwbNmTA2xg0cs6wkC9UnQ7uA4a34ajqMjxUBGdStNpgsZmwDBFX/7yE+pldPfHFDHWDvxOal684V2Mzz1zsdhzHnnWX6HJjzhMXu8z5xcTmIlK6Qvn/svfnwbZl+V0f+Pn91lp773POvfdNOVfWmKVSFQihCoZGYEwbCAZh2qHG3YihaQy43cYNbRyObjcdHR3qiFa33RjbBAYDchNtAlAADTikRgghjBFIaEAq1SCpqlI1ZVVW5st8wx3OOXvvtdbv13+sfW++EraUpXqvMqt0vhk333t32Hvfc/a5d33X7zt4Ry9rNFgraRtnSjZUO2IQqo2IVHIulGIEDcQlcWqeZ0SEYRiuvp9h1XNybYVGA4W+76jM7cpCS2KKMYBW9lvl9HTHdFZYd2u6qOCF4oLGjhCa0byY88LtC77vQxM//IkLPnFnxNZHCJngpUltzIhqEIxaZ4oZt+s1xp2yenXLy6+ccffJs9aqHZSu79AUkQjWREPs98b9e5n9zrg4z2zPR9SU9TDQdxHxgix9Ji7t+1EilidqqXRLH0b1wjyNaIishg0xdoz7FtE6pA6LjWhgoLVStS1rrnw5Koi2Hg2ThOEY7T7QZIQuITTjfskZs0y1qbVpl0LOTogJjYlg0MZhLWKtzBn3QK21yQhNW6N3F+i6SJlnqlVyTYxLKlQIkb7v2706tWlVCy8IiwfFWQ0r5mlmv29G/pTSElnbiESMkeLGODYikmvBY6ALimQjqdLHCALmupDwy46P0PwhxUnrDl+mHi4sHTQBs0DR9nUubT4YLC5BCYdl4y9qWGX9dw4FbAf8yzh6PlJfvv1GX8YBXwkQaZOMGJEuNU/kxR5xR92JwON3Tti8dMKLn34bf+q3/la+5j1/jeckHqYaX2WYvPAdr/56nv6BSn3pdmvOfoh43URjNlqDtxghBmIAFWsdCrpEngkUb3uzRpMdNW7SGsCLL/V8pS7NygJ2uUgVUojNt0GbhLhXQp5RDZgccWE9W1Ouh8oN3fE5G3lhXvP5nfDMxZZ4HWwleLlgKjCVRliqVMZ5j0rkeHPCuN+z3Z0SNHBydEKIyjyPhFBJfSB2zVCuaaDf9ExlJIkx9AH3Qj9vKA4WHU8JC8puP3Lx8jkxQ9dFglRmr8w208fKKgysUmQbEj/0WeE7f3jLT79wzqt372Ja6cSpJTMkRYpQxdHUjL/RE5hSY0LrxLSD01fvcfd2j423Wa1ucnTtOqtVbDKhcd86Eatx9/7E3buVs23gbCqsrjs3H1OGtGIsayaDEM7pphE1wwOsgqIxgiT6ow5HuHcqmM8cb9pkiBrYT4W5VhyhuGNRMYWcK1GUnDN7WpeK20CKKzrNuM2ERGvtjgl3ZVo6I0J0LnZ7qjeZntlMSh1RnS60e2maZ1gCA2KIdEnpUMZxpOTMUerwWqk76NOG1Ce8mzmvp817UZW822O1sMG4sWn375gztUiLKFbHQ2HoaeRChVphtkyIgT4IqShBE8WcXDLmhqoQutSKKjFElRATZCO4somJk9RxAgwpNCO8FfZ5au30qkSDopW7tsenRbJVnF5CKyY8eDQO+BLg08Rv/y3fwnf/g+94oy/lgIeId/7//m2+9r/4UQ5ZEQe8HkhM6MkJcqlEMcPnDHnGc4Fake2Wo7vnrF+4xmfSW/hvn/56/t3rH+FIhjf24g94qHi5zvyjj72H937gJco8//xf8EXi9UunaJr5y/6MNsVohm/gtQhblihPkS/8WhzwxRguWK3kUttOrhlCIGhomnSHEAQzpyhEUYpHinlbDAZh6BJd6tnPzvkuk2ui10glUEvGve0cqyirfmCVemo2rLb99M16hdI+fmnQDRJaGZ0Xuq7n5NqGYRUpVpscKUAtM1HWIE3mI+7M+8z56Tm1jKTQNbO0Q/BAl1b0nREj5FB56W7hn/7IC/zUp3fcH4UCDMMKRCjmzBUiHRJi641YuhqsQFSjEyGXkc++dI+nn1jRd2uiXvDqS9v2+DaNG9uzLXfuTNw/H7n9ypZchJOjFTeeEB6/tWLTXePzr1a225mQIoMmcinMVnBtkrBaM/ux0g0Dm82GeW5yrmmc2I8TUzZ2eWqyN1HGOVNpyVOlNEP1LJlxnOkV3FfEIKCBEC/N4QFc6foB0UIuFfMCrojaQj4CVKPm1o8ydAk8YvWyd8WJAfoukmgN3+M4U2shZ6UUQ8ik1C0JXgmQFm8ctTWT50LJhYq2FvBiV4b0FAMxRvo+EKJi1kr7VGieEaugoEsAoPvS2xICIlBqKxfUoGhQxJ1aC3tzqErx5g+pNJP8STdQ3Nlf+j1CQCVQreAaGgk84IAvAXqxe6Mv4YCHiFPbE04Dnh/+IuGAr0KIIEGRoC0GuRS8FMi5/dtbYqOUgowTcnHBW/5Jx1/+Fd/IN/3KD/PeZIepxlcJqhsv1CPSJwf87v2HKpm6xOtesVymBgVVYmiL+Lj0ZLzWr9DwGrG4bMiwlvaz/NO8tSrbUmIXtJGMEKSRGdPFEO7NNC2CeiMzu2liTAmNPX1y5tk43c5MtmIjEXGBpYwvRsENWhKqU33PNM+4QOoTNTvjtCN2ga5TioF7oesHjo5XrNaBmECs9R6E0LpDxCrqEGKkzjMXF1vKOILmxTzeEohUIhIDBCfHiseez90bef4zZ5xtjdm1xbtahKlF8eagBDW61MoM3QWnLVSjQtclptzx8lnhbAqk9Q1Wq8Dd2/d4+aV7eI24B+7ePedsO3Pn/p79vCeGwMnxmpvHgT5UlEwMgolhCk6Lea2Ah4CrM+eCe0Et0KWOWgP7/dga4q2FALSntD33l4lTIQTy3BKrzI05z9QaluQlBQJ48zugS2pZG2WRc4s4roukTiK4N39L00ZB1w3t73BlDnec1AVEE7bIqy6lfa2aRelS6+DwJTVNuzY1m8yaUVwVd10SuIQgyzRmMfML0KWE5Yw4EIQxF/Y1gypJAmbNcG5LwZ8Ds1dMQMKSzoVj7uwqqLaG8pR6ojvqwhC69pzUlrrWS0+MgYt5z5SnFml8wAEHHLDgmz78+3juP/znb/RlHPAVBndvE4w547k0/9/yuxVf1h8L4YjPv0j6p+/me977S3n79Z88TDW+SmA4Pz09w/Enaa3fjwCvm2jEEAgxEKQt+kSWmFqVK1P3a1iIhzgii+FbGvGoVqmXKTzurWdg0ceH0Dwg7raQF66IRltjGnN1diUwhEQKHWWcub8rXFTlpGiTr0jT4acUcQvkeWaatuRyjhuktMarUyxjVgmyEAhaj8bxtTXrTY/GigQI2r5PiULS0Lwk1ky5u+2W/fmuRf3GxQTvBtr8Eq6Ga2D0yO17xsdeGrm3V6bZMTUkJNwDWmeCVWrVps33QnRQUcacMQ+k2AoGLfScz/DKhbOzFU+vO47XM584/Tyv3t6Rc+T0fGJbZuaa6frA9eOOWzd6bpwEUjTMoesTum19EZXmHXEE0QBqi/SHFu9bc2sC30/gSooRF0NNW9rTQjbNDZaFP6I4tOfbKqW2VKkQlFqhzBlFqUUwUeZcmMbm/ajuuBsaWrxsCAGrbRJgVhFp9yQ4ORfcrfWliBKj0nWt+yIs/RiGLgloTrmMaLbXpnG+pIyV6kxTm5zEKOiSQpXnGXPoU9dK+hxMBA++tH+D1BarK7QuGRWl4otnBsKS1KbSfE4SW4qXqhI84LW2aYe19K7L8kqWdLakymxLG/wBBxxwwAEH/EIgzSeLeSMYueDlMp7/gfVc02C3Ddu793nqB875S7/u1/Gv/+oP8ZwcphpfDche+Rfnb+fap6YmmXsEeN13SYqBFJSggkqT57T0Ib5gmgFLFK5XLglH+/jlZMMWEiLLJEMXE26LN+WBfBR3WiLCUgKnCgVnWypzNVKIqCjnc+X+ZOQCWo2g2grcaMlBeZ4Ypz3FSiNLSTAKTiWkVuJmnumHyMmNI9ZHPTGBxoprWXovWtu3aMCDULxysduy3+3AjOACNFJkGEiBMONhj3nm7hZ+8EO3+fHnb3M6F8bZWpmgRsSMwUY2PqGlUIvjRVh3G24c3aALAyH09F3CapvIzK68cPuMj37mLvd2I5vrR1y/scFtYtxfkG0GrXSDc/1mx1PPbLh5s2O9imyONsR+YMqZ3bSnmiHSFvMxpKtUJVkarM0K0zRSi+GmrdgvNBnRZcGfPWAeyjljy5zjknwUM/bTSK2tw0RFMDPKXMhzZp4zpbSksqVgnKvbhiXhaZGSlZIpZca9tmJFaaTErFBKIQRlGPqlibxglhEq7qVFzLq1tCux1hGi0u6LGJq5Xgxt+ctYKdQ8U+YZK5WowhACSbWJrFRa+thVn4yTYqDrukY+l3hcMIIIXQwkFaJIS2rTJr9bAp5BnD2ZvU3MFKo6FWv3Lk4nQh8OP9wP+NLgp+d8/Q//njf6Mg444IAvNx6QtVOaF8OXMJ6fSzbjJRM+8SL99x/zXee/jOkwWf+qQKZyZ9oQz6bXplkPGV9EM3ggqDRD+EIgai1XJWQPejLsanHVSspYCtygxYv6klwVVIlLepV5xq0V4bVo28tkqzYlUKltd92EbTVSqaxjB13HRS7c2U280xLrABoFXBj3lYvzc7a7C0SdfrVeehLagq5bCv7MjVXfc3JjzbBOS3dBRWXxAEhrRG9jxGZe316MbE8voC4JRLVNI0LUdq3BIFSgMo3O7bvwwY/d5Sc/d8rpaFhpxCWXTLDCW661SNSXJyd2lZubyNO31myGNS/KzGTCtSee5DOfe5Fx3GJhxUuvnvFjH/4Mg97hG3/ZO3jbu58gl3NeeeWco1khJLpOOTpK3Lq5IUVpExdJnI/GndMt291EHBIxQhcjVmEuRkDpQmglg24tVcmVGDvKMkEI2nbuRdrNGWPzW9QlvWsRVDWGKE0WZdUWyZwTY0S8EZNCWMjkpWxOr9rIRXQhGUqQ1nVitVBKKw+MMSxEo2ImzHOmkdr2+Iu26QRu1FIbEU0d7sJstUmlzHCbSQpp3aHL/VuXIsMuRiREuhDapMmNak6kvRktvtkXT03QZvTOzdhCINDFwBAjsRaiO70IWWjERwQXB4XshWyFXEsjK9LS2hKgMR48Ggd8yaj37vHEf/FO+Ktv9JUccMABbwS8Vpim5s14PQtMd/xiyxM/uuW/+rX/Cr/913yY96RDAtVXOgaJPHf0Kj9y4+0kWTTbDxmve8WiC5GQRbv+oC/jkmi0MrRGIsz8C4izeVv4VXNAryYZQV+rH3O/LOuLzdOBLKVubWJg0hZ0xZyxzGxipOsi+7LjlYtz5tIRvJl85xm255Wz83PQifVmRUrHmBWg0A8dKrDbXRCicv3mMeujjqlMgBNEqLWQuq4tnitLDCmMF5nd6UzJkELABSoFrwHtOoIoRqHWSi7GuKvsx8L5LLxyauxtJmnFKxR3NivjV37NM6zV+fFPn7I+CrzleuIkjXShsDmeqaln/ba3cHp6H+o91EfOL+DiIuPlJR67ecwvf+4Z3hvfzs2XXmVfAzF2rPqARqPrA9WV/dY43zn3d3uyd/QDhGCI1RZnZIFOFCKI12Xx3LwRs9EkYUnJNmFel3ji9mZmzU+jlzXvjWyoapsGSSOq4ziiavRdWnb9R+ZSmiSJ5vyIIVEA8xYJLAq1eJNdWV1iYwuKkFIA8RaDK6nJtMpMTErXta9NItRSUK2ICn1ciiIzlNLK9ERgPQx0MVKKYSaUqiRPdF2Tm6UY0GqIQa9KDbFNbFxBQ+NVolitzNPUiIZ663URIZgTzEgi6DSSzJshT6CKE1JAcaJpK+2LgXVMJFfEHFdBwoFoHPClo/vgp3jX3/p3+MS/+Rfe6Es54IADvhx4cFFWa/vdfTnNeB2wOZM++TLH/+id/J1f8n7++M2fOHg1vsIRCbxneIl//HTHDZVHMtT4IlKnDFkM3c2jIXiVK6HTpQn2ckdalYU0tI/XWqjV2pQixKtiPqsVMyMmQ0PbEXdrjeBmzQOgoTWQ19ISqYrDlGdqDMS0Zs6F0/2WcdpQB6VKYJ7aREMIdH3rQNjv24iw7wJpiFSbiV3g2vVrbI425LpvkboxNnKjkRBSS0ASRQjsx8z2bEbp6FNownypSGrGYqfSVtmBPFfOzibKPmKuTCUz1Z5xntC0aylWNdIfCe96+pi1GZ/47H1KTezGwO7Vc1Zdz6SBi23h5U98hppn3vHs49w/O+eFF8/YjoVxv+cdz7zKO596C888+QybzQmVHpVKkB3b8ZT9nBFd42PkfNxx92Jmnx0zxeqIzxllIHVHxNVAmjNuzdweukTqlPtlJE/GsBoo+5lpP1FNMW9+m2nOmDRZ1aVB29wpobTWcXdKLuAZKGCVoVsRY8LmEfPSiI07SZXgkTlP1FqZSiXnzPHREV3XgRdqbZOLmDo0NN/QOFZCSKxWA6lrpYqqEL1QpCBdR5f6VjxZMqFZvQlipBBavLBXSi2tyyJnkMuW+HbP5pzxWoka6UWpoozWPBuyBCTUUppHRBSjxf1KNWzKiBurVc86aSOvUZm9ss+VGJweQbtWipRCZB07eo303YrYdxAP3eAHfOmod+5y84MK/+YbfSUHHHDAlw3LBKIpSL7I3Ws37N59nvjn9/j2X/fr+Obf8OO855BA9RWNIMo7ulfYPS3cCKHJ6R4yvohm8GaiVRHqkgLk7gSthLjIp5RFL+8obXe31tp2+3EIQlQlLrKppkoSYgg41nbUvd38QQVpghQWuXxLflqkJqNX7pWRm5qIVTm7l7lzT7m53rAdz5l2FVVlvVGSrKm5IHKOxg5VYa57Qlc4uZYYNk5Jp2TfoVGRtCIERULF6kjUNcET23t7dhc7ZkZEAphiHtr3EJt+fs4zpA73wPZM2J+3no3gPddWPS53oUtUCzAGikzsLPLSGHjbJvLsY3BeRsxhG5R7s3BvV3j1dMcZd3jXLeUduuJj9zPbV7ecyj0ikU984iU++o6neOobv5brm5657Kk5Ukti3W+Q3cQ4OXk6Y3t/Yj4vgCFJce+X50Rw2+EKmUyhtDCo2ghCoBDVKXXPbp6YrDYzc1RUnUSkOlSrqBRyBQhcdoqPxTibC6s+0oUOV5izkyRxLbXPma2SF69C9UJwx3KGqAxDIElmUKUfeqYilFoZEuDKhBCT42Q2w4ooSp0mbC6YB8rkhADFmpwKMwJGL5UQYegjOWfmYmjsG+mZloSpUkhRWXUBXUWsKGMp7bnVQJkLxSqay1VbeglGDdJ6QoqhDnHd89h6YEVB10q/6omrREiKqZFioo8DXd9DCISU8CCk1NMNm5b0dmnaO+CAh4Dqh4XCAQf8osHP3rL+YuJM3fFSCLfvcfxjN/lHv+preevJxw9Tja9wvDWesX22on1PfQTJU6+baFz6LlzaNEM0LvKYJVWKlsx09bkLaTBrO9uydAgo2jKaHYLEK2+HW3jteF/g71je1f7XtPhuFDe2c2EjhXUI7KbCK/dnHj/uyTZRS2S96puMqziYEwcISShW6FRYrwa6lRBik3XF1EzQSvOIuBuqESrst3vOTs8pc0XWRimOlfbLOUSnmFOWic1chN125OIiI9JR3ZinwrqLHK0j8yTYJFfRsCH17Kuyn523v+Vp0vXrvHh/5Mc+/El2xSANwMyzR5X3vfUJqs68dHHOzo2qhlvk3p2Jj3/sRd757OO84203iVGpNeNa22OumZxHpukCtz2rQfCkbKeWJhViRxdbq/Zcm5TJFqI3T22SEUJgFQJjLe259IRla7nb+KVnH0WWCUbz11itWHViJ/QDrDcdSbwx52UBv+47ijn7bOxrQWVGZcalmcdjDKQUW1GfNTnWqu8Z93vyOLXOEYQUWr/JqguIOVlBYiSmDV0alm6NeUmdMsSdKEIfA6s+IXNlri2CtusCQzpBilHnTHAjiBNUyE4breFL90tdInkdxVpGuWqbxuSKlUrQxPpkzXPvfAs3u8Dw2A36VU8aIiEFTByRis0FVJhqZTvPbMeR2SbYtoxdOZjwDnhIuPXtP8j73v3v8bE/8Off6Es54IADvtz4BXQmuDm+23Pzo5n/+vlfy6//+o/zvlRJcpi0f6XipkL/9A7ZrOHs7KEf/3UTjVraiE21tRP7stjzK3bcPBVu1uJOren+zFvLd9DWuyGuDyTx8IC3ox3hC2/7hYT4pQfg8q0Zsqfq7LQSY2JvgdvnE0+e9gyh0sWOtFxodSNEJfatmVwFhvVA1wdEagseckckNSO6BZAE3joZ9ruRi9Md0zSTQodUFn2jAS3e1dwIIQKJ7a5y//5Izs56MzDPM/vdyLpP3DzesLWJeZqZa8W0kmJPzcIr56c8fmvD0eaYVBNn1bl3ccGNY3jrU0e850ZmWBs/8dJdPjPtmPuEhEAMa+oUePFzp/zMx17m2vqYW48fEXTGdN8mTxFCqvQr58atjrAWTreF/OqIV2+9KFFBjby/LKqLuDiZ9lzH0IrupBRSiORq5CufRktcCqKg0iRrIuR5KQKqhT4ObDo4WQeUis0OEboAAQiL3EqDI7HSBbAuoFFxnJozXtvUTMZMSolahXGaUGkpWCG0JCiKXcn5ECXiDH0PnthapZSMmdHFyJAi6oYCUZxVF5EQWHWBLiTmcaLSCvkqRhZnrrndiwJeHKlL3LNDxVBvRLvmwjxVKkKUGe+Mx568xrMnG2RzAtLibw1nLjNWZxi3VHfKnJn3O8o049XxmpY+lUP37wEHHHDAAV8kHkYZmxs+z6w+fZ/bP/g4f/Hp38CfeOL7eFtcHcjGVyjWknjbzXvYrevw+Zce+vFfP9GohqiCNa9GpS2yr/o0FlJQab0Jbsv7FmnUpVwKVwyuTOOql8Zy+R98DbR4VKeaU70ZcmEpmHPY50rqO9DAndG5d+HcjMrqJCAGmCMxIEmoVDTAahhYrVdLotIyjVkIk3hESCBdIxn7kYvTkWk/NxO8CnkqmLeUIQ1hMSYb5pHtReb+/T3jvpBSx5SNi11ht8usQuDG0Yq7o0GGeZ4xKrXCbjR2d/dscyXsZ26Pxp093N9VUtjz1JPXOVkFPvHKKR958Yz7ZZkguF4Z6ve7zGdfuMP1axs0PMu16yuilka0gpKScHyyol91rPYFfdUYd8o+KEGa3ySKE6Tt5kcCxZqhPRDapKK2nogUEikYHiGoQc6IBkKIzKWAgbkiFZIonQqbLrFKgaFFiZGlyTZsSVcSnCEFEoJqwCQsAQCQ8xIHTMv/zsUQNSCgmmiF6MImJVQcqcsEjha9O017uti30kkBFyekSN8PLdHKWtyxhyYFCyr0AWKopM4hRNydfVnuvhgIBtGFqJEuLjs9amCtC6OWQp0LboIFIUtll7fM+Rx1ZT6fmlQrz1fFhmKFfsqtj8QgTRNJm0dIcyGJ0wX5l14nBxzwC8XxJ+Dv73p+2/rRlDUdcMABX13wUpBX7vLUD53w92+9n9VvnPljj30/bwnrgwzzKxBJAs9u7vOZG4+34KeH3A7+RXg0aCVl7V/45e6z0mJJpVGNWp3qjWSoLpKX2HwZyqVhNlxJpi6TqlikSu7ys87bphi1XpKNJskRCago2WBfDQmBuxPcPq8Mg3K8UbwaEhWNgUrBxDher9gcrQhBWhxt0NYLIkYtTfpkRKwqu13h/GJiHg08IkHJxSlZCCm2sj2BYkapSt7OnN5rkqkUe5L0nG8z9y9mxn2h055rq8jJZiDoiinPzHXPlI07ZxPsnRfO7jG9BC+dTbx01ozNc+053xkfmwsfeXXP7TMBSyQHCUrUSlQjBuHe/fs8/zOZYSMM67cv5O6yLT1ytDlq5uTuAi8dYoHtTphmZz/tqAZ9H5Gi5Bb7tJjG2nOLtZ19sUpECF1HXiZN6jRPweLTEFGG2LGOgZO+Z5MiwRLTznCr5Lmy38+oz/SpBQT0fUcfEzEoKFQtmBsVgRQoFWpt3p95bJOYPnWtNFKgjwnFqIv8SZxl2lKxkgkSiNoet67r6LsOK4WQwtK/IhRaRO2gSghGWEUwYRoLNjWiTUpIqZTiKEoXErnOZBwNitUmKVNrREsUuhjwOnN2/zYXYcRzppRCLc1PlGqbroUMYk03L3Mmpg5RIVNRq0Q5EI0DHh4e+4s/yP8p/mH0P/hL/Jb1wf9zwAEH/Bzwtv6z8wuGn/ocb5e38Hft13D0Wyf+Nzd+mCcOZOMrEtkVKfbQSQZ8EUTjkhxcyZhokhkNbTrRtonbTi6AqBJiIMXYiv4AlhQiFp/Hpe/jyqfhy7EuW5HbkZZcoEYyajUQQSWQQkLMyFYZPXJ3X3g5ZG7GyPXqrAwS2tqko3F0vOHk5gmCU+eKu2De2psFYV5iS4sKeaqc3t2x3Y3EGBAC01xaH0da4ypUh6kUplyZs7O7P1GyoGlN6ldUd853O/YTuCkdzlFS1n3CpWOQAUknyDzzuTtnMBfO5kroV7xyf8f9sz2btbAfAp98+YL95NyzCERShQ4hdUofja4zUlCmceSVV0c+//IR168fs+oSXeeYBcR7ggghFNZDRq8PrDvl3tnM2XZP2Abm3J6L+TwzT5lcW9qTI20sauDFsFzwahRvbeLdIqWyYk2KRptQxRhZd4lVimipXNw3TApC6+LY75uESaj0feI6x3RRSWHpUBEIIkhUHGU3zex8BgvNzL34IGwp6stTI79m1qYKtTTfiCoqRhc6Vt2GeZ5AnCQtOS2psFp1rCQxVWMIPZsugszN15OdLiQ0BHZTRcaZyhL1jGO1UuZMcSN1CVGhSxFxYS5GFeekS5ykhO1HpjOn94kE9AjBAyUXqkHV1ORn4jiVWmbQFoFrtF6PAw54mHjiz/0Af3L+Izzxf/7P+Ya+f6Mv54ADDngzwx2fZ+rde/QfrLy9vpX/T/+vcu037/j9Jx/hhq4OZOMrDGfzirCdHqjMfnj4ogr7EKHW1nXh1rwPTTPfCtYuC/l0kRSphib5aNZqoDVNV7jq4fDLGFvRRjRUEW3Fck02RSMY5leN4rI0iqdFBmM4sxnns3FHM2fXOrbVOaKV7Jk5m5MNNx+/xTAEtuen5JLxEvAirZxNYM5N8oML8965uNgxjXMrd0OotUW3mtE8AMHI7uwz7PfOtFdWw0CIkVKd/W7iYlcx6QmhkIBNUpK2XXZXp08dLoE7FyOh7whP3gCPxG1hNU4krezKzH429jkRQyXKjJmSCay8MMR+Kdtz8gzzLLx8+y5d+gy3jk+4cfMYDco8K9NY0ViIUUkSWUdnTJWyrhQX2AWqgUpGg9LHQDZlt8tNYtaePPrUIUGZd3skBNarFjM85ry0uXeUbG0B3yWCG3kcqbX5QNCKi+PapFAanW4d6daBNChdaoQlkBhiRxDBrJLUWK2VMjeTvwjMVlpELUKpbWrRxHXQSWgpUNJSzqIIfZeICtM4ou6kEFgNyvFmIHthXwpDiKyCErtINwSm2ZmT0genq5laJ8ZiiERyruQpY7lSxfAiRA0M3cAqGLlkVJVb657HuoG1R8p+RuJM1EDQiKCItWjcEpfXk0NZ0rGkepN7YVdt7Acc8DBx69t/kD92548zHyk/9B8fzOEHHHDAz4GFbNi9e3Q/UXiXvJM/E34r6TdWfu/xRznR4UA2vkJgGOe5p9/Pj+T4r59oxHhFDETkiiyY1SufxYNdGhr0agJi1pJ6AgIhLBIpv/q6UkrzbdAmHSqKLbyq1NrkJbXNHUJoPoCogSTS4le1eTcqynau3B9nHi8Rl36JuF3z5JNPElYBs5Hqte1olw6iMtkE0jT2JRfylMmjUcYZaotcdY2E0JNLxUXwmrHoZBHOx8LZ+cyNeI0YOtxbslEuBnQYEbwSxFl1iRTKMtEpbHd7UuoxjZTi1AKxjBCNJx4bOD7acG80Jk9EUXrb4zqzCyucjpSco82GYTgiaCJFJUU4vTdh8+eYHx/pup7N0RFWlP12TwiwPgrYZHiuDJ2QjlfEPnJfjRBhv2+758hiEM87KM20H0MghohabDvwl7o6IGhAAUSxklGBPqXWV+FGGhKpS1RmDCMOi2Rq3XG87jladawUOjU8GzIr0RpRzfMe85k0xNbBQivHk6B0oW/SvSitibwaXQpEFskei4IMa63kIVBUm+k9BPoYCK2Amxsnx2z6FaFkulUh9cJuV9nWRq6vhY7cDezGLVZqm+KJEGMkW2bOGRIMKZJU2HSB4/WGm6uem71w3CUCezIR80itkSQJlwjaHievhlVDK681jddMVGFz2HE+4BFh/Xd+iE2M8B+/0VdywAEHvOmxxN3a+Tndhz7N21bv4k9tfgvv+PWv8K8NZ6yle6Ov8IDXgdELt8+PeOvZq4/k+K+baES97LJYZhMSFtN3izattSx9EoEQ2nQD8WVCEWi+bMO84NiVAZyFPMgSYXvZHu5w5cdo57s0j7epiNLkW6rSkqyKk3Hu2MyLY+DpfcCnzOamcP2ZNcPJzK7M5LEiHkmxw6UyemEqSpQeG539OLEvO+ZcqXWRClnBpdDFAlT6GFEiVoR5mpi3I707YTUjKZInZz83u3xMQp8Fl0D1wvWUeMuJsJ333J2UUkNb+rphNuJnW8pyzlGVPGd2c0YM2ktWsdqTPHJ9HXnq+gnXVhuCOBoL3SoChlehzoXt2Rmnd89QD0hwhn6kMDNWJ/aB0Ec2IlQyyTvCmLk379h0RsmF3Qg5VwiFaS4E6clmlHmHhsBqWFO8MNeMqKPenu85j9A3b846KpvodCkgIbHeCMRArkaxmdRlbh5FhhjJI/TDBqmVUifGPDPOlVqN3TgyloyJEA1W/RqRSMkFDUbXCb105DqDOBodwdvUggQaWs+G7ZjLnjiAeqRWZbaB6JF+09FvhGojkzm7veNbZ9wWdtsJn4QyGrMZpkINBp3goWCaiXNCa2UThSFWOiJH0nEzBG52kXVXMavE2NF5aK+bUClL20zFiR6wWii5Lq+3shBvR7vIfDCDH/AI4aXw23/77+G7/t5fPexIHnDAAT8vvFbs9JzNB1/kmc2zfOsTv5O3/tK/8lUVe1v/Ryqzvxp+Rr5aK9sXjvHTTzyS479+j8ZlT8KiaV/a+Vo852XHhjshhC+QRJloSxZafBct3em1HXC49GVcSqkahTCcYvXK83GZUKVL0Z+7UaydD79MuILRjbtj5myMzAWGTjg5CVTdUutMnp3gfdPR0+Q4uQTK3pm3lXEyJqfp6ksjVGZOyRNzgJQEiR3qQs7Obj9hxVivExKMuYyMs1NKK4ULwYi14MnwYnRq3NpEnsiJ/f3MxdhatZsADKRkMAUCuQr7Ynhu0a/VC+6CaOJk6HjiZODapmeVBPHcfBpdIAZn1fes+4hY5eLstJm3e0PDTLaKlJ5r166xWq1wN3KZCeZM8Zy6Tu3pDQEjs8sZxCgYjjFbpVilU20xxlSs5hZ7124Oui4hXunE6YOw6ZX1OqGho1sZkmDKzlQKm3XHUa94gdPTkd1ZI5zFJuZs4IFizjQV5tI6WIZYCdq357AaUVoqWrBKKTMsJZLVKuCIO0qkFsh1ZraJPnbMdcay4jGSBFZ9xEMh18pYnHlfyXtj3memfSZKpOTMbAWjItKKJHPNlFrp0jEhGqtU6LvAOvSciLJOQtJMCNbkVR5IElvxpRpTzeRl7FKqNS8S1lrql/tdgrX0tHTo0Tjg0cJ+4qf4bb/3D/O9f/0vv9GXcsABB7zZ4Y6XjL16h+s/rLx8/Vn+kxu/jW99y3d9xcTePkgkfjZ5qG4UKtlfa1JXtEm6L3vfeG0D0PiX3/dmJiQ/nR/jxkcUmx9NGMjrJxritGSoFgcbhJaus9i8a21PwGWKlJldFZb5ZYKO8MDDLotr4wtN7q9FktoDkilfCIZcya0e/PxLqCrVnIt54s5OOcuBos1UXGshuVOl4j4jIaIh0ItSp8rZ2bbtnJeA1UAtlWqFEAJWYZ4Kpq1NQUKL7Z3nSq5GSIHYdahExv3MNFaKGQHFqVjIuNSFaMEqRp44DuznguSJsUD2NvXwRfajS9yv19ay7gZIJSgMg3LzOHHjKLBOBfXCqnOO18rRkZGisO6dPgpeHZt37C8ysi9oaDK1NBxTuyN06NDYEZPShRGbMykruo3sSmU/Z4YZpqLMKpScKTnDYlQuZphn3HPrSRFtnSKLDyUK9BGGqGyGwPq4gzCBKilGYobNKiAq7ObC+Vg5397HKJgVzCJBE+5CrY65oCJ4bB0WlIx78w1htJLCJYq5lgq23Jdk1J2ajbnOoIKPMM9LQWTnHAdtpnO19v2VQp5Hcq6U6tRSMJ+wWsDblK8zJZrTWSSFgXW/IjCRQiWFQFKIsZCGgGtGxAnq7X4ANDTi7gZetTXOc0mu23SwdYEYIi2M4E388+qAryKEbea/Pn2Kbxg+w6/oDxKIAw444OeAOzZN8PIrPPGPEx+4+Uv4tm8u/AdPfS/vSd2blmxckodLuf5lqfQlMbgkGS/XifsWCTiKE6SyFmcQIYk2a8ADaKLthiAC/uYkG9WNH92+i1sf3v/LrfEPCa/fo3EpmeJyGdQW2wpU4WqCcfknLCZxrInjZWn6dpZFqiAu+GICbx+zVoIGlGqUWhfPhzwwzZDl2LSYUbjyjZi16rNtLryyE27vAmdT81xoV1knJbi0iYOVZhd2UMtQp3ZsD+0bsvb9+tIJgjUzrnttPREilNqiemMfIASsCNOUm4/DpZVYi+GhNrYsiriT6syJwtNHEEy5vzNOJ2N0oZqCVSpLapIbAsSoxK5j6JRr655b68C1VWWTCisJXN/03LjWs14bMVSCVoIXMEVtQkrGcqH6TEWpk3NOIKaezbWefr3BImAJ2VX2ZSKGGZWRLjirpNQusSsVFae2HDC6rsMJBLNGlCxQCs3DIk6nwiopm15Yd3Djeo8JiCbGKSLb5vnYjcad05Gzybm3HfElcli8kVoRRRxEAxIU12XiVTIxgJBapGzOuIC3QUa7J0Vwb4v0Uo1cQWJgX4w5OylFelGki3gEVwiqWC24FVJq0r4yG3kacZsIIdFboLixUaPre/q0ZugSKTYjvWWnTBMSBY3DEtFsy73UekRUZXktBNQDSES1UootH2v/Kd5IhjRf1AEHPGr4j36Yv/G+p/jzf+Sbecf/+uNX71dx/sa7vu8NvLIDDjjgTYmFbMinPsvb/9rMT77wdXzz/+xd/Ge/8m/wm1fn9JLe6Cv8l5C9Yi3PEXMniZIkYO4owt5nPlHg/3v6P+HH77+VIWQ2cWYTZt463OXZ7i5Pxfvc0h29VAYxkkC3rI+T6LJB+oUE5s2CQuUz+5vEVy8Wv+3Dx+v3aCySKW8qJ1iM26aCeyvlsyWN6pJsyNKZ0SRRzczt8sAEQvSq6K85NFr/QnWnGEsU7mWqlVyRjPbpjfb4z35gRMgOd8fCZ88yL53NPLPtuJaUrkuE4LgUbLbmw5grdZwJQIrCPBfMGgN1bzv44oG+64ixImqUargYoomYEiEo0zxTds40zYjo4lMRRCKE2BatC7kKpTHhJ9bKKvacDMpLZxN3djP70trCKxXEiQE6lE3qOVorJ+vEzXXiOBlHsbJOwlFccfPaMcdHgRgmRGawgi7t7NRLUlXJeaJUR2KbQJx3AYmwOk64zhgzaCFGo++EvhO66ASBPireC05HrhkNwrBKhJDIRcnZcVOiw2xCZGna7iPXjnpWa6XvAyGtqNZ6Sups5BC5fX/mhZfOmLOznyohtQ4WqFdkS2k/ADS0+NdsBbOZvutIKUKtWAVXwUyXqRgUaRM3lybhE43UDHOpGEJcR8IQkdR8P+KthJJSCKJ03cBolZisSfsUxJxaZlYiSK9EDRx3ymYjbI57Yohszwt372a2BlOmRdjOgokzU7AwEyUgGpd0toB7+2Hky2sMmrc9iKI6EEI6EI0Dvqy49e0/yPm3P/AOEZ77K/8WIvCeZ17m733t33vDru2AAw54k8EdzzPls5/j+t+9y/WPvJ3//R/4g3zb7/zrfPPm7ptqslHdmLxQcbI7FQhuJKlXE4oP5TV/5nO/mQ/9k6/h+JNQO6EOUAcYHzN4fOKpx0957tqrvGdzm3f2r/CWeI+bYcexFAaprDVgGJdFD28mVHdemY6Q8dEVtr5uoqHLgr8FDPkl10C9xc26CLa8VWs73pftxuJQfUk19ebrEELbiZaFUFw2gC/eC3MQbSwwLNMMeC0Wdzn9AxOOZWoiLdj0vCif3xqfvZt5+2nl6KQjxUBUpzOnVGF7MTGdz2iGQAQpi/QGNPQIAasjKcIwJFQ7zAq1zC0RSEFd8WJM+4lp1yZPaQjtel1wQjPOi1C8YMVIovRdotOJLjqbrm/N2ckZizKFwFRnHCdqZNDIrc0xx6vIUS9c72EVcotuDcJRt+FoNRC1gkHQhGpsj6nakvJVKaUy7TMoDH0EMtuLu5hk1pvA5mjF5mgDGpizcXy0waxHmJnGC4pkYhCGPtJJXJw0jogStT1+LkoIwjT6ZU8gfZ84OTkiDc40VfoQOTsfeeWVczQODN0Rr5yf8fl7W7qUWkcKgSBKpXlT2uJfgJZSFboVKISkrcU8CHN2IGKizBXm6uS8TKWqIdqIb+iUaW4dIf26Z1gnVuuEBsOsgFUke+sEsUCehP2utXWvNgNigmSQOjJE4XqKdOLcXDk3bw1cu6E4Mxdnxkuh8PztHRfbmVXq233llVqnluBFbNOvanitiCrFWgN6CAERX96UEHpi6Jjt0UTQHXDA64I77/79P97++nXv5b3/y3+X3/DbPsBfePYH3+AL+8WJf7BLlL/2JPBojJwHHPALgju228GHPsZ7vv1d/EfpW3jid/wlfv1Q3lS7+uduZIfZlckDFaEiZA+c24pv+5lv4v73PM07/7tTwu17EAPeJegS5fqK8fGO7RNP8sNveYrvf9vEO559lW987JN8/foF3pFe5fGwb+QFb+XQb7KphmHc3a85GS8e2TlefzO4GRouDeDN7CIoJpfWbr0iBrpEdBotMqqlRi2SK7Nlo9aupDGNPBjmdTlWW1iJNrONPjDNuJRJBdGm1V9Ih3srTdNF9jJ75M5e+Oy9wkv3MjdudISjpnmPMSKWqfuK7x2x0CJyrSDBiUExb/J+BboEMTUNPTUSLIMtE5254F6wuRBkBUmJQRYDr+AmiIOJU0MhpErUgZgC5kLNlRgreiQ8vtkQugCrjqkWcs4tptWFG+sj+j4RNdMz0YkQQoQYWXdK19dlktEiaM0AW8Z12qZLJTcTcoiBNPRt+jMW8nRO4BXe8dzbuPXYk/TDlmkWuuD0IXK86hiPAUZ8X7Bc0C6hKpSptrhYja24zgQh0A8b3Ca6Tui6nhAjqHH/vJDmibv3zrnYVx5/8oQqic/fu+B0KtyIHesQiO5ocUwTbZbhBBG60DHEARAMY+gjsXvN/1MJzFXY5cpYjDkbJVeiKCkqVCFg5FoJfeT42opr13uOjiMpVpTWWVGmCa+VPAb2+4nz7Z40wOZoTa8doTpHXcfQdYQuIjayWXXcuL5ifawUC6QUMYVXM1zcuaAQFwKbwR3RNaKBUjK1lvY+lFLKIhVsEx1RWUoHvflW/NDefMCbA/bhn+btH4ZPfs838H/9c2d86+Mf+bKd+4PzyB/+1j/xUI/5zX/iH/EnH/voQz3mo8Y/276H6//NgeQd8CaFVezjn+Td37HmW9/3O/nb7/3r3AjrN/qqgLaOHV0YPTB6YGc9d+oRL+SbPL97kg/fe5qz73qaZ7/vVfzTn6NO0xL5v8jmu8TxZsPRtSOmp4+5956OT2+fQsXptbDWibVm1l4wMXgzTjRwtlPHSXl0ITNfBNEooOlKwqSwFOstH18IgGor0VNYCv0Wg80VUagLOVgmE+7UWqlSm+F86dFwpJX+8ZqB/GqS8QDx+AI51VIIGBCqBc4meOV05uU7IzdPDD1ecf3kGNWIlxmt2jSDvqQmYayGjiKJ3Vao80xISuqaxr9kp2QAJ6kSQqSU2noTqpPSgDHitKjfoAGkWYJCcMLgDBLwKuRaSaaYK15qkyglZb3uSKsV2YxxHKljpnfhpFN8UKoZMs+oFmIcSOs1sQPRHVZnRA00NCO5N/+LWQGcakLXrYl9orotJAPyVJF55Pz6xOpowD20dKapUual7Rtj1fVUC0ylTXW060mpQ7D2eHig0FrQZ3HKOFGsTbMMYRjW9JPiMtOvhKePTzi5dp2f+fxnefneGZM5eSGiUQPRA6UEjNiIRggk6UkyMNuEUwlDwHFKbibwuSi7amxrZTSnFMgzpIUEoUZUIXSJ6zeucevxDSfXEpujSNSZSDP/T3PBqzOPld055AqajFIMcSNYYS1w/aijXyWmWpEozGoM3YourbGYGGrm5No5aedgGQ0zEma6CCEOLfLZ5jYx1PYWQyTExuBrzY14R0FDBsmIHojGAW8uyD/7AD/ye7+O7/jbL/Itx/ce2Xne/21/lMc+sANA58rNH364C+wf+0Nvha8wonHAAW92eCnEn/wUn/mBX8rH35341W+i9XbAr94AXinH/NO77+bHPvk2Vj818LZ/cg//9OfadOZSqi9LmNE8I+OEjCN9qRyvbrF/PHL/7QM768gescVLfGkOfzNNM74A9mj8GfDFEA3pWsKUy2tEwdob8JrXwhupEF1apEP7GrM2rcBbfZoDtdpCLrhq8G5dGoKGNsloT84Sl1uX0DAHtJmS4ZLkKKLNSG62tCq78tJ55dMvGzc3kdXaWaVETC3BZ9U1Xd5+LIAQSiSIEjrY7ycISkhrSjZqyXgx3ByTZZpToRZfzOwKPhN4LWHLyRAU6RJSheTCkDqqdfjOGCyRXNDYJiCrdUdKStA9BSNKgU4ZYiRQKF4pNeMoGnpiF+l7cMlgi7yoAtVR2jXU4pQKsxlOYNP3xD4y1YmShd0+Y2Zsp3t86oU9vn6ao801rIzEWAlpxjPQB2ouVCoaFA2ty8SLo0HaFKeP1FwY55n7855xmhi0Y2cFusyNk54wrJm8Z8gDMaw43Rc++plXuH8+0sfQ4o8VJAVMjFKdshBS7QIaHLdMsEqKQnLFTdhnYyzG1rfsqzPXDteOEiolGVOunE8zfafc6jc8/tgJTzx2xNG1xGYTSJ2iHvBszLOwn3vu743TcWTSdr8FDWxnKHOljnuO+sAc9xzVihioVCRkjrQjdEd0VujTxBA7Nv0an0BnRxJoFzFa27pr840IoSVN0TwpNRvZHLGMO/Sr0B77+ib9QXXAL2rUj3yUV8oJ8OiIxvWPz+g//cAjO77Ko/tle8ABv5hRzy545vsn/uE3fx3v737yTeHVUIQkUDGyKyrGq+WYD734DMc/NvDkj+yQT36Ouh9/djxq+6MU3Bxlh8RIf+eI7iwy5fQawXjQl/yzkqneLJBH/HPv9cfbhn4hBHaVGyz41QPeYmovL7ZNPDSE5SOtcwLAtUWUmtkitbFmrGCR+wAhaJtqWCv9axUZ7TgsTeOXg4wrz4Y2DX9lmay4UwXujZXP3sm85Roc9Zku7bj1REfXRVg7JpliFSzRkSjFmPOEqDGsepzAPM/U2cDaNCZ0LUWglEIpy8QmKOIZVSGFiMYlLk2FHB0JSrTmnbDF8Nu5oLEjpIBLJSVFAuAzitEFJfaR1CXmaU+uTY7WDT2rTU/Xg2hpJEMEldQs9dYeC/HWfO0Sqe6EGAh9k4XNY0uHylkIUSk28cq9U67d71ivNhxthjZV6nbUZOw9sB0rmgIbHQhREQ8UFSCjao3shRYhXLwii9G54mgUUnJ8OqeSUHVqHfnc5+/x2ZfuA4EUI0HbY2DBMTeq+iIzEiS1zolsM8ErMUa8wpQz27kymeAbI3nC9qGZ072iqZKDUUplvU4cXVvz2K1jblxfMayEfmjeHS+Rcc6cn03cP6vcvahclIxGRd1bSd9o7PdGHiuzBWafWe+NwYROCzII191BEyqVFCFIpA8J19p8ShYRF4pNyNU+ilIXUo2Vdo+0VwNWK0Ur5s0zUuY35w+rAw74Ssbzf+X9/My7Dr0hBxzwSGCV1Yc/y197/lfy7938ANdk9UZfEQCJJh9KYgQ3XpquYZ/e8NgHJ+LzL7ZJxs8VwGIVm0F3e+L9Hd3pmtM5kBe/xyXhCPLm/b39piEaql9I6LgKu/05via0VCm3FiHq3hbfshzosozPzVrpngiqcpXY1EiNoQiiQpSwEJQHiAe2lKZdxu+WtujFqAY7K7x0sePF+wPXjyLdKxccrY9ZDR21U6R4k6mUtquca6VkJYYIITBNGZFKiOClnSGExlZtccSrRkJof289hu3PIIovJCpoREWpGfLcYnxThKFPxC6Sq19JrpBmhI5rJcWAKJTiUIwUlX4QNptAiC1NyawRM42tg8FKm/606VHAMVSNvu+I2gzZZVLm2cC79lgaSHVq7gi64vqNa8R+j8YziIXt/oJVFwmeKNaid2PsoIvsx8o4jstd0TwbfRgwjKStXV0loTqgPjPuRsZpRoic3T9DTNisVgxJCEkI4i1cwBypzY/TxYRIwCWQFy+PpEagttPMLlfisOHWYyu6YcOrL0+c3h9BnGxOFwObdeLx69e4dfOY9dHAajWwGoQYHLfKNFfGi8LZvT1n90emaW6TNdoUrpRKLTPjVKEGzDrGUZj3lUGF1ZAZSmCuE+aVbNZK+JYOjBCcTpQQHAnSOkcu730F3KjFsJoRSUBANS3ReIbVluqW50Pq1AEHPGy8WRUNBxzw1QK7f0r4/ud4/v2BX9G/0VfTUIHMpU8j8fGzxzn5GRg++Sr1/in+erwLbvg4IXdPOX7hhLufX/PTTzzJW/p73AoXXNNTslfim2CK87Oxs8rdV054Yv7cIzvH65dOLR4MX3owgCue8WDEbOuiWHahufRlNDlVE1wtH7/0bLQvWprHhRACYSnlq7ZMK4I2KdBiinX3ZnKm+RBaX8flb4myvAmZgOHc3mc+c2/PE9dO2Kydi3sj6daAaUBTbCSoCrtpJmcl6tCugUrQQohtUSvepC2lBkppqUoSWjpQiIpT2mOjl6lczTIfJKIIlo1pVylVCBLoBmG1CYSkaFGmuSAKXRxQAQ2VGMGsEpOTTNGgpOSEUJvv5aoIcXkMVBGtUC8nR4K7krrIsEqo11YO512bzmiTqJkJVhN17lHd0K9WrW/DjLnuUb+L1JkuDoSi7Oe5+WkiiNSlXK81opeaURJ9Eq6tI7eurzk53rDZHLE+6enP9oxzJkjibIp8/PNbxrMtKVgz/4elL8WFaM3r0kmHiJJpEy2NAQ+BbIWxOAXh+PiIJx5bEWNif17Yblt6mGehi8qNGxuefuIGN68PbNaJfhVIEbBCHisXpxP37uw4O5vZ7zOtnjEgrrDELVstlJrpYsIlMmWnjIU5CtIpFlpSVrbKVCpTMaoXQnQGUTr3ZjhfJl85L7I9DdRqS9N6SwmrVVqUryhB27zOzHF78/2wOuCAr2SE9zzH25+880ZfxgEHfFXD5sxTP3jBn/3dv4n/8tnvY61vbBGo4excOLfEfVvxSjnhEy8/xls/mfE79/D5dSY8Ls3ofnrG8Ol7XP/pJ/no8dOoOOFxZ1g/zyA7VJWe+KbyabxYO04+2OHTmyDe1qyi2nbX1WQhG760XzQ8aMx2N9za1KHVYTTfxKXU6cGIWl++9nLRe3kYWU5zaQgXLuNrF6nVUhMh2nJUhVbi526I11b8p8q2Op++t+P6KrIajjgeJmJUwqZDU2QYOmo29rsdbj2r/pjslWAzXWqGd1m+DwfqbFfN57r0iQiKLwVsGhRNy461t3JCy01uU3IBIrGHfiV0K0CNFAQXQTWw6lbLHvoOJ7feBKmEEElJ6Dtti87aiFaL/mqxS07r/6hI85DU5nlIqSMFbTeTCzEY3lVEwTHcWwLV9iJTSqCYtJhVaQWC0+6Meb9nGFrnQxCwMkNwhlXfSECuuE1MuRBrZojOk48f8Z53P8nTT57QJScOkXc/9SzDekOQRDh+kR/8qU/C/dKIpAuilw30QpJA1HDp1CGXRuZchXFpKZ+K41HpN2uur1fkudCL4MXIlii+YhOUk80xJ8crVmulW4GEQq1gY+Xs/sjtl8+4d2fLNDq1tfa1e/ZyQ0MCuY4YIxqVQsbM2eeJuQob6UnD0NK4Sr0ywlcrdAEGhVisTfC0ScW8NkIeQgQrVAwJSq3LtIrQ7jOJy+vFr6KeDzjggIeDT/z+J/jpX/Lnv2zne/+PfAu7sS2y3vHYXb7nfd/1CzrO7brlr37vr+c5/vnDvLwDDng0sEr4mc/zz7/7l/Hf/a9+5A0v8TOM+9Zxv665W494Md/APz8wfO4e9rN9GT8f3LE5E+7e5/rHbzCf9PyUPkOnlbVObFafIEl+U7WEVzc+ML6Nxz7YUjYfFb4IomGLD0CQcDW0aAvwB8hGWwRdkggDmk9AxVvr4CXRWIr9fMm/bZOMlhrVDm6E9o9lx964PJvoYhz3dozLBbZcdn00HcrV+bMId8bKT718xmatXF+vGVZzM+uulb7rKKnSFFuCe8bKjGilC4v8SQLFjHHMlNquL8bWc+DWJEohBiTQ5DbaFsZN2iTMY6ZMBXUndEbXG0OvRG0FhUkV7RMaAikoViuYUIoxTTOlVGJIdCmyGnqcSs4VvMXnYu1FYw7VvHWRWG39JVEXP4NTsjVZlRgxFlCjttISRHTxPBRsFs63O+aLC6wWVuvEal1IMTDPTgzCOGfKbMTQg4dGyKTJzoKPBJlYp5mTI2WzSbgXLsZzNus1Ep2uj8RBmcuI14yGrr0IzSlLI3sK0tb73jpCrOYmdVNlvx8pucmTRJxcMp2cUEpu5X2lMBWYTbHZOO1h1WeGtGazXjNOlbovTOeZV1854/btc/a7gktsiWcuWGnPNeKt1KcsyV7ByTZTzJh8onogrq6xWh2BBfKYKdna9+Ht+9Bc8VKQ0BLVrFQwQ0MiqFJFcdWrKV2LbzaWwGdKKQtJf/NqPQ844ICfG+/6h3+I9/7xn6HePwVg+h2/Cv7SL+xYH88rnvsPDyTjgK8c2P1T3v73zvkT7/3d/I1f8xf5Zd0b1ytR3Xmx3OSlfI3Pzjf5zP4GR59W5M59vPwC0h2tYhdbhk++yuPxceK+44P7d3D+tT356civXX+ct8aZa9q9KciG4Xzv3V/C8IlXWujOI8IXJZ1qSy29IgssaU/ur0XOXk41LuvWBV+kUCCXfRmLzwIui/baNCMuJMW8lZQp0lqYF1lVW3AZsiQqyaVRWByomIEHwT0sk5BlO9qVWQOfG41rr2x59taGGzcU3+8RUdJqTRcjqyEtU4AR1cqQEqIJQ6kOeSq4VWJspCul9rjU2ro3pFNEltQkpV2vQ8m1fW21NpEYoF8bXTCC01ILVIkhLUSttGLACjUrtQhCYhhSi5P12PoqrPlgXJpxGhfMnVJbT4QDMQVialKbPFcsO1Yc94KEgqjhi5qtS5EUhVxncCVXY5xmQlCefuZxYtox7oV6PpM8UsWYamW7HdnvjFoauREJqAWiCn1QqC0a2D0xzjPnr55xrSZOjjtevnvBxS639IfQPDpWjVzaBI1Ia3qUdv9EqXQxEVWYDcRjm65Y4fz0jPsXR+1YK+XptxwzFeHe/Qt25xPbi4mz05Eb1wLjvmd/PrK9v2V3uufe/ZHtriDaomWrQC2G1EoUwQVmr1QP9F2PS9dkZdZkWyEIw3pFn1YwCWVpM2+lkqH5PGpGzAgx4URKHq+8SZddMu3F1iZUIUpL+YoQ4uLToD3nBxxwwFce3vld/zbv+798+opkHHDALzZ4yYSPf4Zb3/k+/pO3/Tb+4tu/myMZ3pBrufDMP7z/S3n+/DFeuHed3atr3vmTE3b/9IubZjwAn2fs8y8zXOx4+oXrXH/+Oq9+7Fn+9Nc/wQ++9138rsf/Bb9qeJEnQ/+Gk42dz/zQx97J++5+/JGe53UTjdd83/6FiyJek0w9SDTgcgrSomAvjd211qvUKtWl5C8EVC6TpAQxX7wg8Fqe7WseEfdmAA/BF9nV5XSkRdtWE4ItjcpUBCgS2SN87mzic/d2vPPp66Q5M0shaUBkIETBfYlNJeLSiEYxZdzPTFPBnEYqtCJalwSsZgaPXcK8Ui23bhArTPPEuGt8p4+R1SrQDYXYlSa7qs3k7i6oCSoBk4Iv0iirEZWBrov0XWwekbw8dQ5YI2RIk+ngLb2r1EbyUpcIqU1IPBtUAWvN5Y3jVRChlubHMJ9xKQzrHqtH5PMt1TNHJxu2e2O72zLmETeh6xJBBqwUcmjli4WMW0Vd6WMkWMftz91ld69QCZyVPXsPbE627LYf41985LOcXVRiiMQYCNLCA+qy00/wZioPinglKfRREWshASGklgjllfPTMz77Ss+Tj12jWwlvfeyYEJR7d4y79waqGash4Oa88vIpL794n/FiB8WYJiGbEvs2sVsKPPG8FFUGobrj3oGvmCenlso4ZnIR1qvE0dGGPvX41HpVJC0MDqVZyoWoAZGI2SL2U33Nk1QuR5ft9dKKK43UKV0vrUOl/vwhDAcccMCbD+/63j/USMbLt9/oSznggDcO7tjFlhs//DI/+nXv5RO/97v5+jfIqvFKVf7B8++lfn7F+iXliZec1fOfo8xfQleVOzaOMGfk7IzV7Tu85RM3uPH8TT7wDe/jw7/qKf6d9/xTvmnzUzwT31iy8WqtnHygbzKxR4jXTTRC0LY4BcwN96WZmwd6NWhxtAJUV0wSQbQZjUullFYaZ4uZO4RI1EDQCFJxayTETV4zjdNSh2zZ+TVpi7LGSS6JxxKdS5sOeHXyMjMJoiQCJoIJXJjy0Vf2PHv/Ju96/Dplfw5U+r4ush/naNORy8Q+V5wOK848FXItoEoVQYityM4FlY4UEwmnWG1xpKWy3c/sx4Kak1JP7BNp3dENpbV4u+OiCBE3XTayC64FMKyCmDLEFX1adtodymKuJwiFJscqpQIBM6fmJjOKXSR1AQlOKZlcSvPNxNCeAyJC1yYh2aiWUclEmVvz+OqEXXfG/dMdu9M9d1/ecnpvv/gHFMsKAkokRV/8BgE8k1JmCCtOT2G7v2AYCkEj2Qp0PXfuF57/5Av89KdvU2bnuE90S/qVmxGlpUHJktpVraJiLToY8LrMC5oxZ/HQOK/c3lJmJUplCMqtW2v6m4XVALtc8Jo5O9/x6u0tL3/+AhUhRsFNiSG045SWnZVdW3ywtmQoqw7aY94TbMRqxYqjDkMSVquOEDqqF6pVgkdKAS9CLEpyR1LFtFCWw4YIhpJnJ2dD1IgygOcWRpCE1Ac0BeZZMTJRH12D5wEH/GLEu/7UR/i6r/t9fPjX/NVHcvz3/8i38N4/9jz17OyRHP+AA76S4KXgL77MM9//GP/v3/qv8J8+9cNf9sV2deNn8i26n9hw9Flj8+JEd3uL3bn3c8fZvl5YxadKzQW52LK+d8bbXnqCO5+/zn/2m38T6f2V37n5GI+F1RvWF/6R+Qke+9Cj9WfAFzPRWOQc/sDfWz6wNJ/C1eTBcFnkS6qwxJQWq80LAFxmJAUXxBaXR2jGabPmq3B3zGg+jcVUzXI+wxcvuj8wHYltOlJrK6qjuTQiSlxiRF1gRvnk3ZEPfOaMzfopnhgCst8xzRPVlEhgMyRmn6gz7C9mxn2LHdUQqMGppqhHcG9m5ZBQVzyPYLUZ0rMw7QQrHUNf6YYO7Tok9Yi2aUT1prm/DPEK6m0iUkuLAq5NdjN0HVGhSiNpRuvTULU23cGoXnFzcoGcCyEG+pRa7K9X3I3ZMiYJwcglt+uuSi1GzU5ISt8rQ3SiG0FXpDhg1Tm9e8753Zn9NhNXHaKRMjp5njAHt8uJiOIGQypQhJc+f8HWK10fWQXBayWte2oM3L2/RQlcXweOYyS4Y4sPQRbJHNIeA6+FGFPzmhjg2kzsUkGcJEKkx0bn7u0dvQph2pNKbH4WK+Sc2Z7vuTifuX83M41CGjqKVcSc0HRs2OzMFSYPxGBt6lMqUrXF0lKJPpFraeRUnCEJXWwTPaM9R9RIrUJAW2EjoLFiCNVa4lRabP/jBMUgqoOHVoZIRVVRDe1x1YRLbdd5wAEHPDTUszPG/cPfVq1u3LE95xcrnjiQjAMOuIKNE+ufuct3ffTr+LYnf4C1fHnHGoXKd959P0/90Ej34hncP8N3e2y7e7gnuiQcd+6iux1P3L7B6s4z/D+2v4Pdr+34nx9/mCdDTyR8WclW9soPb5+jf+mc+oBC6VHg9RMNXou4bRKmVrqn2mQ4V1MNdxSIzXpBa4cwqjhV29QjIKg4LrUtFmkGWOQyQUqWrg37ApHIg+e//PflWwiC6jL5oF4ZxHX5PNybfCgEdqXw/Auf59ZGWT/3GMJIGXdEuuX7CVzbHBGrMI8XlDojBIJ2iErrpcARV4JGHJjmmZiWFu7szLOjpqy6wNAnutThMSIi1LqY4mneAgxC6BqPcsNz68IQlJgESY5pbTvqfhnk64jVVkgXWixwNsg5Y+70SVspu7fOjpJbi7uokXOllCatKp7J80wKka5PDKsNR8fHpK5je97KDIchcv36QM6RyWaybRHtGdYDsQ/kXJsJXSplPyHBWGsgTJW83bIb9+zUuXBnlzOpC6T1gIjy2GpNiD3izjjuMQNZJHXtPmiTsxAX6RiNDDjWvu8l8lgltnslGWilzsbp/QJ1JoTCzifGUrk4mxhHx0tgSEMjMShBmwRNqOAV9UJnSgrGICyFkE7QSmRPzXusBNAecIa+Y+jTkorWpIW5ZGpt8cgIRI0EN5CIEZph3yvV5kbahZbsZt7M4tbj9XJqBkkilQiPePfhgAN+McLudbxatzwWNg/tmH/z4hZ/+WvfznP8+EM75gEHfFXADTm7QF54gskLa768ROMTOfOP//uv52s+/Dx+ft6mLLX+gr0ZPy+sYrsdPk0c/ffnfO2Lb+Mvfvqb+Ce/5Wv4g0//M76hv81j2pEkXDWIP0riYRif2t2C/OgVEq+/GfzS5K2X/RVLstTiq9BlAX6ZOBVFW1KOt3K3glMVxI14mTC1GMVFuJpSXFk8ZJHG/Kzn/DIKVy57OR4gG41QtN17ltI8bU0IQCMaEpox95XzHR/61B1unKz5mscTYh1lNkJsO8rro55IZXeh7C4MGy/ja1vEbwsiaufAnOytIHA/FubR8Cr0ITEMka5XJCVMWYr07KrUbwm0at0Xy6THMnhxUmieAU+VQobcvA+B0CYeVhGr2CXx8yY5S307p8a2KK/FW+EfgaDNppHSQN+lRnRc6JI0ApAG+mFNqc7FxQX7/Z7URa5fP6GWwm6aONsWilVCcvpuIM/Gfj9TtxNmMylGjkKk75R+LayHvi3UrbIzSCkgqcnAcm6tnNNCBlUDXR+IsRHHFiqw3CfeChpxUHW6EOhCIOKkEFARJt3hAiYBtdjM77lF9UKkDx0hKaQWUNBkfIEYnBSNGKx1g3jzzvR9T58Er4UggZgiQuG8BvaTYigaAsO6Z+gjKu0eNDeKFaoVnIIsUrUojrkSrBHXGCtBGwGkNnJcaD0kQkSklV12QQkuFImNcB5wwAEPFV/zv/sh/re//N/gbz33Dx/K8bJX/vOf+U1c4/mHcrwDDviqgju23bG6Ldw148aXUT+0s5m/cOdf5e3f3YzfXvKjIxgPwh0vhXp6hn7o47zj3tO8+Knn+Pe/8V28532f5Xc+9UF+2fACt3TPsVYGEa5p90gigLNXPnV2k2vl0W9cvm6ikXMmhHBFOGyJpzVzVC+nDK9FzF42gtfaZCsVw5d275TiYvptu+qwdGTwmqn8Qd+FyAMhuu6tV0D1C4jG5fWwXM9VAuii3xdYyBCgkaIDn70/8aFP3ebm5ime2JywPbsLOnOxnTgqgdAb61Xgxo2BYe64GJUxNx+KeZOLNZmTUM2Z5sp+bq3RKUb6JKQkbbKwiLnaItEI7VtZEoXArVJry9Syas070Ae0g6qZ6gX12koDl6Qvt+b8nqtRClSLhKR0QyR2At48GbW26UsKiqjR9wHVTSMdJqhWgrQd+FKaub3USrFK6hJ4YXdxxvnZDNakYvOcGfMemzLjLnNxtmceMylFNkPimgi9KauhYyDgYqhVroWeNCSKZ3bzzEWZmWumFsOtEFMjQy2FbIkzdmvxv94W5SoOagyd0ocmmxpCI5RT6Kje7rUudoi3Tote12SDGaHIZTxyWR5D6CJ0vRADpD6y0sQQEpvNmi42M32bWgRqnvi8BE7HibOpQjCGIdFHJSwucvO6ED8n14xakxSqRGpd2tOHga7PbTqj3pLERHCxNsqUZpDvYkS9tBQsb/6gAw444OHjg9//NXzybX+Xd6ajL+k4v/rH/xfcP1vzzt/zEw/pyg444KsPPs/095yX6prnvkx1GtWND86B7/77v4rnPvQx6peLZDyIxTAun/4cN08vuPGhxzh/97P8l+99O/t3ZI4fv+DZa6e8+/gVfvfNH+L93fzQyw1Hr9w533DN7j/U4/4P4YuKt4XFkL0s6kMIy4KtmbZVLwM9neqVXI25zBSreGg7v0GbsVyW3eTq1oiAxjbEuCry85/V0PHaNZi9JqkSkS+Ysoj4IqGyJenqNdJh1XBpDdZIYF+N51885Zmba46/5qlmIJ8n7l8E1meR9ZGgCMdHAxtZI6cT+WxLLbVNHlzbjrwJpbQyOXchJW1TD61UnLBcQIyt2aNxjktS5YjUq26QXFrvQjdEukGoWrFaMHfC8vhcdim4CV6FWqBUR6SQukQ3KKpOnRvx8mrEoGhs8bsSe9wDOY/UMiMCpRamXCnLY6MqdH2PiDHvjO35zNn9HRVFPDBPe063OywkxBK9rjm53tN3QrCJtc90asRoqLTeiQ7FU8CDsZ1nMpkolSpKr07oIjG1a0y6lAqWmSCw6QJBnahLbDGFPjpRCp0ISQoB6GOiumNaSHFsZFABDUxzpSTBQ3usobR0KIeuV/pBiTGwWic2fWLT9ayGdUsQKzCsIus+UMbKea+NnBQ4WnWcrAeGpHSh9fzhTrWKCczm+Gx0Cn1scikJRoztni+5NtKp7fzFKrUUVKDvelIAs9yK/qRFPh9wwAEPH+/8kz/Iv37xf2C6ZTz/e/6rL/rr3/8j38L5x6/zNd/6EW6cnz+CKzzggK8imBMm59xWwKNrpn4Qt+uOf/+n/yDv+G8vvqQY24cBzzP1zl3k7IyTTw9c+xfXqI9fY3z8iFcfv86nn3kHH/ifPsufec938L4uP9TJhkHz+aZHv3H5RaROhavJwdX0YMFrLd+tytvMqVaYrU0z3I2AEqRNFmrxVsy3dHJo0NcmJS066gFz+TIt8aVHYyn7k+VYl+e+8onYssDjNT/H5bGDRlgWmdY+lbPR+eTLW97x1sxmFRnPRu5djIRXhMfrGiESA5gUQhzpukJ2KKVdSzGnFGGaCmqBEAApFG9G3q7rWnpSNLRfJE9VoAoSEhIqqoY0/VQjEAnCSiEaXmvzvFi4MhpjbffbqlAquKc2lUhO7JwQW9O3e8u8FXFSAFQQSYQUF//AtJjvHStQijHPi2lfXiORXZ842qwZ+sJUK6FPaDxh2BiSeqJs8FmQapR8geWZTmaGuBigxTFtC+3S7SnVUJ3pk1JrgKn1qnhcEqDc6FNcelIKQwocrRrJCNKIRghKis2vkoKyJNDSKe0+ixENrRndquIi1KE1uDfZo7b44GxEUVIKxE6JndIPiT7CEAVVY5oK3kGfCkmbNCpoJWghBuG47zhZdXRBCOKkGAjBsOxkg+1cyeNMlwJdKoRQWis4QrXmlzFrJFyj47l5lzRC6jtCaHHOMTrFhak8WuPWAQf8QvCp//s38k1H/y/gS5sGvNF49tt+AID3/8wfZfcW56P/1s/fGP4tn/yNfPSvvZen/8FLPPHxf87rfYXGtzzD8X/0yS/hag844Csf9csU2Z698qdf/fX4dzyO/tSHsfImSHC8NIvPM3KxRW6/yno1sFmvuXXrhJfOn+b/+Xt+O/+3Z7+Td0YlycPRmClwY7PHN0MrfvM3QTN4CIFSCrXWK8Lx2kJ++SRpC/9qlckq2SsmbfoQVUi6tE/7JYFYih8IqIB5Bexn+S5ek1OxTEEuNfuXJ36QbJi3tmWudn19OW5AYmyZVV4IqpQKlchnX73ghdt3eM/jgckzMityfyJ65HgTCKlSmBEZ2WyUWTu2u5m52OIhaTG7QxjQVJHOIAr9pme9WrGiUn1EkreuCw1IiJhUXFtfgllGpCOlhPcQ+mYUd68EegKJSqbSiIDVlspVTTBrxu9ucFInoE4tCh6WyNqWqGRuqCbcjWojSEWDMk8VL40A7XYj85yRLjLnmTyPrDs4uT5wa2fcuzgn46w2PUceEe3IY+D8zo5p3BIYuXYkHEuiT1CyE5rbnS7BmY7UXElS0RARi3gpIAWNgdS1nov258ywiVw7GuhTXKYZbWKw6tqfEpSu71r7eQh0UyGQSUNLIyiV9lhoRMXQ6Ki22Nx5rORdZoitkR1xYp+WxvdCl1oscNFK6iKpB0rFqhGjEKKhY2UIK1YpICzdJSmQisOcycW4v50o24lrJyvmOtOnCjHipRElISypabX5ORQ0OSkWYsgtKMEr5jOVSD3UaBzwJsTX/LpP8dyXKDl6M+GJP/cD6PEx/9o/+SM/7+euPnvOEx/5Ab7YX9V+suFvPff3fmEXeMABXyXI/uWRA3+m7PnO7/xGnvtHn6ZcXHxZzvm6sfg3vFYYp2aUv3uPp+fCh07ey5/7XWf8B4//Y54Oq4dCNgLCE+tzzo9P2iDhYUT6/o/gdT+7Q1D2VZvxGB4o02Pp627FZNVhqpVS21QioISgRG0TDdXFtOyvlewtBRjgXPkduNy99+bzYJlghMsW5eVjl8WBTTbVrutSKnV5/LJcoRIQa8tBrCUyVU28uh/5yRde5bGjpzjqNlQVdhnuns8IHcNQMcmtk2MYSOLk2ZhnQ6X1gKQodArSCTooYRXoN4mu01YeWAOSILjjKogL1SPVWzkdXtFgxA7ohSoVs0p1J6KIhpZ3qxWjUrzS9vYjLNMbVQixLV3NHamGVkdiWFwqpUUOG0guxIWgTdUpRSmzM29n8jjSaWIeJ6ZpSx8CKUE3gOwKVjLTfqbUDiNzdn/P7nTLKgVONokb68T1OiNmZApBhdQl+iESXZnzRO4qOQf2onQk5urEXulSBNo0wixz8+SEa0crwIih3ScxCH3nCEbsIv3QI9rIcJzAqxNTE9+ZKe4BV0dDRAWUjEpgrIG8UoYhYt6M28MQQC5jaxspTtFInRFjouQRs4koSqct1vbkeGglgtWwUJEOOgJhl8nZON1NhFqoKlRaF4aRiZLaJoJLk1shiAeigAcWQ3yTKpZSmGymeMX9yyRmPeCAX+Sw83O67/nRn/fzDjlwBxzwxUOCYkkY5EsoyHudyF75T2//Zp79xyP15VfeUMnUz4nLUCOreMnoJz7D275L+Z70q0n/RuWP3vp+no0Ph2zc6PbcPU7EoPgjfApeP9FYkoGqhjbmEl/Igi0KqKacn92ZzRGDRGgkI7Y3WVKndPFmmHvryBDHrCC0voBigDbTNdC6KaTFnCJyRTJsIRnt3a95RSraolxF8LCU9dWlUE4UtFsaykFFqTrw/CszT9+o/NLHTuilYEnY1Uq3b50WQYXY9STtCWnL0Bnz7NRFBtWlgMqMJkV6JQ6BEB3RmboE7Yoo4oZLa3wWEl4Fw1rvRa+kTigYZS5Ly7mDGMkr4kvHtGQUAxKqHR6crgPxitf2PXmt1JpblPDyNHsohDjhsxBzk60Vq9TsjKMy7Z35YiZvd/T9qpGimgFZJlqZkjO1Ovfu7thud0y1EYchwvXr17ixGhjqzGqeqa1xkCgQxOgROjmiJKV0E2NxzszoRekk0PXQpUiXBqrt0ZB47OYxKSbcCqKtWyJEQULB3Bj61nXhVsFnCC0iOYQmRWvN7VCkIhIQCwSW+7N2dP1AGoxpLogaXZeBirKizu1z+wRBK+qr9lwwE63npO/pNgOP3zpB3VuLeKyElFt3hlZyLmznwkmnaFJSP7RGea8owlyMMmdUEjF2RDqMGbwlt4m2SUsVMIU6G35InTrgTQSJEek6ohwkfV8MwuOP89e/978BVm/0pRxwwBsCWa3YPyE8E0+B4ZGe69W65+//wDfwvo99hpLnR3quh4ZL0/hPfYJ3ne/5vtu/hp/63U/xbe/4O3xtsi/ZsxG1Yp2APlrj5+smGn2K6Jwby0KuomgNlmI+FmlVQRCiKikEQniNbLgvNXrSGgukWQiuujeujOAiS1Fb08qIv+bhuJxmKPpAfwdLP0XFl919M1vOHb6g4+PSXi4iaFDUFSUyzvCxT9+nO5957plrrFYrhIl9HumitmZuAy+FoIH1emAqI64VJmtGXhSJQkixaf710pfSFshWnJIzgpBSwBqlQNRJKdH1kZgCebfHy2XYLXi15juprahPLKCXkjI1JESGvkeDkeeZ4sq8h2IKseUldzESNKFemUqlWqC6sBsrF1tjt29dG9WgmIEKm6Mjct6hKHFJcRr6FVIrq0GYxpFSKjePN9w82XBjs2KF07lSslFrMy/HFDFsSYPKV5I4MRiC0K8CQ1L6Dtabga7v2Y97jo5WHK0Fq7lF+QIIpJSYF49LbGUhy5tRcyHGSAgJ1bh4NCrBG/mMQQkpkPMEnRBSKwGsVkCEEGLzzHgCC63PIwLRwRWrHTobnSduHEXKsMEtcu9sJHWRm31HFJh9RlKmyEiZMmm1YrXqWa/AvSJSFnN3K/cTMVIfCKpLKakgSUENj9ZIpiVUlTwetFMHvDmg6zUf/9ZfzvO/7+f3MRzwGuI7387f/P6/yVoPJOOAX6TQgFw/Yfv2yuP6aL0S1Y3v3L6Hx/+FUF+980jP9SjgeaZ8+rM89bf33Dl9F3/0D/xe/uzX/vUv2SAexLEkEMJSfPdoNjFfN9FYdQndbnHzpWDPr7oqZImNLTlTaiWE1n9wudBXbf6JJhHyJZ2qkRPMKcuC1M1bP4XoFWG4lEyJvLa48gemGe6+tCfrA0SiLdFV9cq4LtrI0aX3Q0RaEZy3aczsHbfPC5+az7i56jhaR2QQiifmElj1AWFm2u3pNgOrVWSumZgqwwrMBKaABUGCtkr5WsHD1cK6kanGHNv5DfGKCnRdIqUO3EmhI6tRKyQNBCJWDBCwAB7aBAcjJkNCJkS9ihWuBfBA7BKipU1ytCVJ5TmTS2V2ZcrGdoT9HNmODlZJqxUuSq5twd51A14Lec70fUcKiak4J0fXOD56bFnIzyQqoUwkVQaVhbCwyOYiU5moNWOyGP1rIJizSdrOE42uU9bryDSfM3QzN64dId7kQqhQK6gE1FtRZIgdVgs1Z1QE1UiMQowR0Fb+J8s9WApzNkwMpVKYoFc0CC7S+lUWD9GlL8qoxK4ndAJUpsnIU2AcEy4JPHN6esH4akvXun8+8+56zK0bgWjayvu8Eg1WIbKKib4TSu1QjQQJhBQJKbUUtySUMjF7M/ZrH6mhItK8OUpPlEjVw0TjgDcWEiPTb/oGPv9rO57/fX/uy3LOv3p+i3T26CUWXw78ye/7Ow89rvKAA76SICmSn7nBM8+9wlofbYnGhU/82Y/+Bt7yE/ex+StkmvGzYZV6+xVufE/hnr+H/+Mf+V386ef+Ju9OfNFko7pRcapLk/KHN81EQ0jqS2N3i9i0VsncDOC1Ui5bFZsiCriMwm0LTjNDzJqJ4rLRGWm7/qrU2ozRl/0Y5oa6NDPsAylSii7ty1+44LokGyJCWP6e54zIsviUy83vtlAVAaw003VKWAxI7wyrQAwFwyko28lYrQeurxLjWMi50KeO9aYjdhOoUotRp8RsBYulPQbGsgsv2DIJUoEYIikEitSWVBQSMYUrY3kfE1adWub22Inj2qYN2WnTDJH/f3tvGmtZdp7nPd+31tp7n3PHmnoeye6mmhQlKpKlmJITDTaixIHiGI4Qy46d5Idj/QgyOQH0I4ABI0AQJEiACLJjwLABDYYFJ4AjJ6HiKLJjjaQpcTAlSmySzR6qu+Y7nWHvNXz5sfa5dZtj0aqqrm7tFyhU3XvP3Xufc9e5td79vQMimeAMaTPqElZc/dmYEEJAnZLNMFEKNTp32UdygT4nFn1msAZ8i7mMSU87b0jFODw+psSAqCeEWnxXp1JGv45kq+lKW11DSQVNhZkKPkbWJ0tcruvEj1HDWMFyobhUDeBZcUXoGmU284goIXjIsDw64cKlqkEc4oCaAkrOhrpAHoQyZgGUDBSlUGofRvB4H2qIgI2mHakN4mhN2DJLiM80oZbgiQnOHM4J3jtQI5aBZD3BBYJXihklF/pk3FxH1lKIobBYZF67uqCPkSu31ljMlCf3EVcY1qDRsdt0bDcBLxm1GpnsXMABXdvifA1aKMVYrhM2pPr+CEKRQim5TpmSjAbyaaIx4e3F6//pd/Pp//z+EIwN/of/6Ue59Ou/fl/POWHChHsAEXR3lyvfPuc/fPKXmcu9Jd1fSsL6d/eR137vwfVm3AnMKIdHnP/1y3zxuaf4hw99G39277d52H3zZONmgd++9gQ71yN2j9vBvwmioTRe8VZIY1hUGUlFsTI2XhtOBCeKUzdu/DfFfuWM/KmMmquROIgiYpW4jG3gRt3Y2bgxOxtTu0H1aoz/ttvE4zT21ozTZo9STglMJS21wM9R8I2Cy7RiXLww56GHG3Z3CgWh74WTxYBf9My3WlwT6OOAxozzDcFlZlsBMEppWUdhnRIpFSSD19rlkUpinEkQfC2GswJOa4FhjUStRm6SQAijEd7qNEMzJWcsFbDNtIga+eql9jWkQh4EskOdQYmoJUwakhXWMbEuRtN1dG0ge7Dek5ziSsRrptv1JAp5iKQh4gDVUDssvDGfB9ax4+h4xcHxCbO2w4vhS2K7ayh9pD9Z4M0TQpVuoZkQwHvIOqZhAajROGgchKbDu5ajoyMa37G/c5GSIpZrJG1KVuVkNY4LpJx2TYQQSCmexiKfTswQcsrkXKVtTRcwVyhO6JzHecVSLexzXmpZoHdAnSapr9dYaxTrEXvghkWyJnYu7HK+UV4/GFivI4s1XL4+0K9vEjTjG4+slZ3Gs90qXmP1DqmhzqFk1EM3C6Q8yv3aGSxtlFeVGvdMLWnM2ShxGBn+hAlvE9Txif/sJzkT7XfP8R+88se4+KnVfTvfvcTl//LDPO1/hXd6DPCE+4Sz+5538ib5DMQH0vOP0f/gEf/a9u+g99in9NnhYbZeF8rJ4p6e537AcsYOj9l7qfALr3+Q59orfE93mUsOfNXS4ORr/27OVljZwMfWT3H80Utc+twr5L6/p2vrzs3gjTJrPUd5gDS2YpeqLzerk446SXB4dWdaxMf+i/E4Y3/47QPb7feRiI7/rhKgWqr21TdVZ+VTtQuipg6dkopcPxecvx2Ve+rPGE8Mta1ZFVcSOy08ut+xvVNo5z0UT07CEuG4jxyshd1th5eGmECTgAQa17C731IksI6ek1XPehkpfaGkhCE0QeoUxUr1AFBwZdMCnml8oHEjEUNxGnChvhapj8RFIpeMhWqMD17xwSMiJAZKrklYJesoASpkG0BrJ0PKmSFlEM/u+fNs7exy69bAtRsrFmWN5MS5izP2Ls3wXaBEY7U6pvHAbAvnIQSjaZXteQc6yo6y1o0/1HbvYaCkTFKj9S0uVM7kVMemb0fGEUN9/X0QcBn1hVwi/TCws7uNuobVIpFzjbtNqZq5tRSMgtNK3upErQBVsue8UFlsQUQpljAKRRT1DlXDxPCqtXPFEibUzb/q2NBdwIFv6se2mdKhrFNmWYzZPLC3OyOnxMW9wO5sh0YbFn3ixq1DtoJy6dw2ZoWtoGy10LiEkKoPxNX3ijihkDGppGOrC4jv6NdrxASspnB5AXEZ08TX+R0yYcI9xxd+5oM4+fh9Pec//ZUP8N5f/Y37es57hT/95/8JT/iJZEy4A5xujpRRV14/ficTDhF0f4/X/tgW/8UH/jeecOHrboz/oMhW+MTiaXZeS/f8zv19gRm2WrHz8oovfOYh/nb3vawf/Sh/pHuFSyq04gk1juYrXtdshUTmZkn87OXv4aGPJ8rNWzVS9x7imyAagbYNuFU15hYTcilkcp1gsPEdVLmMypn+i1FCJWLo6LnYZNEaNVyqjN4K1RpLKuIwahTrBpuJxVnSsPl4Y/6ukw/F5LYXY/MYHWVespEyWaHgq+k3Jfa3Gh7e22LWGj4kNOcaO6qOVTaO1gPttmera1kcJdZ9fT5L37N/rqWdQyCgDTReSMvMehmrNMd7gvPEYcBKQWU0RGeBmMmyIqF1sqEB5x2egKgyaKFPggZPMQ8iNKHFu444wMIGhtRjgA8t6hKlDJhExHtKkkoCMngX2N/bY+/SRZb9DYZrB/R5gfnEhUf22TnXERrHah05PDpkb9vj3AxxYNYjJObzOa6p13ZyEin9gPdNLXOM4+RKC76pBXxt61Cpwa4hBbLWDgrxijaC+IK5Fct1IcuAhMDx4qTK0YoR44BZpmtbkq1BDCcerDaxp1Rq34ircjEjYgVUHcVi9RAFw3yuLY1mKIJlQzGS1MkIThHnqGO6Un0vjMTFDEvGejnQ94X9/ZZzXUv2a559aEYTGk6O17x0+YBbfY+b7RERNEdmjYy9HwkYaiO4ux39bJRRZ2eoV2YolhQrQjFHyVKfj2SapvarTJjwduEj3/uTTHfjJ0y4xzhLMs7+/Q4nHJtpxt4PvMmf2HqJVub39Hy9JX7zxjNsffGYcg+7Iu4nLCXC5Ztc+OQT/H58hv/uW/b540/+Hh/eeYnnm6tc0oEdrYTD43Cit0lG7vnY+jE+99Gnef6zb5JX63u+ju7cDB6U1rm6iS+5tkaXGjEqyqlUSkZjto59FzXCtk5A6gbxtqwFhFpeXVN1ZOyXwGSUXdUm7TOcokqqxn4MGd94G8N3irWATkVQ58ilVJ4ykhoZJVrVx5DrjXgBzNEUz7lmxrmupdGCaoeO5Wm46kE5WmX8QphdaBEXiMNATpl1f8J827HjWpr5NltbcxrXMPie4KDPWolTMbJCttpzAYyt6JnYL6BAmLUkzUgIeJXRJZJqx4S09U64h8Y3CC3LZZVLpVTQVvFOyTnRDxEXBPGBnFwNei+G846tWUfbCqXUQr6hX4ETZq1HSaz7FbcOVxwenTBv51XWVhLLRc/JyYAPcwqeIRlHJ0u0j8y6lhwTLoH3HRKM0AaazmjbasSv+2MHxfDO4YJiHooKQ86cLBc4DZSUWMZKXurPWXBe0JDH9Cmtz8lcXQulxgdTquwu5VTTxqCW4UmDV8GJwzQjpa4rcYzdHFQjuQs4DdU8b75KxsZI4pSNGBOxz6Q+0Xlju1PSTNne2qYJDS/3PWm1ZGt3i3MX93ElQ1wxD0LwOpYzOtS50wQ2px5H7ZYpo8Gf0bOEjXJBE0pOWEmoCnLnb9sJEyY8QPj8z34HP3/hp5gibSf8C+PLCcc7iWyIoHs7vPldW/zlp/4fLmpzT6cZAF9MmZc/9Rjv++Lv3NPz3E9YzpTrN7nw8Tlbb+5w9NI+v/De7+H/eO8H+O4nv8S/uv/7fLB7lcdcz446Ompn22s58o8WL/I/fuKHeOYjPXb5ymh0vbe484nG2Oyt+FoklxNKxiFIqXdiQwjVb6FSy85KYSi57v+0bpg2rokCtT9DIEupTd/GqQzHTFECRpX+VMJSr6UIlDzKWcYJBkDOtZVcdENUqkG8fq2gMJrA5TT2NkohMRDMsTvrmEvGRQW/TZZIKhnnCqERjlaJxdVE00a22znSFtbrE/K6cO16JHk4p+fY3t6nDYXYHjPrHOslrPvMcrlGUHQkRWiN/XUqSIJWC8EGjmKmpIEuCFjV6WsTaGgJzpjN6qSAXE3YKQZCu40PDSae9apnjZKC0BclRYdPHsmVzLWdo9XEdquc39rh8MaqbqSPEovrRxzlJa+8sSSvlTwocT2QojEMDYcHA8vhgITj1skRxyeHXPItgYBfD7gi1W8xc7RzYTaPOIlIhpSEwYycoHMOp4VYCkVaTlaek5Mle7MGG1rECiULrnWEzo9TmjhGzjZI8pj3rPMAKvV4AlglWiF4cgKVGV52aFLCWaaoUHxHb0t8k6ukLQlOAkqDFIfEjItzfNPhXH/qjSklIepxDrqtjIWBZks5t9UxLI24VkJpeOaxS+xvz1lePUbNse0LznmK87hQI3TjeoHrjFA8LnuSgbSeYo6+CFkKxQ1AqVOpUksw1Rq4x8a5CRMeJHzHx/5dnvuJ3+IdtJ366lDHIxcO2ZsibSfcKb7eJvwdKKeSpiG/5zGWHz7hj81fItzj/8uiZf7uwXfz1C8m8vHxPT3XfYUZZbXGvfoGsxsHdF/c4vxndlg8ucXHn/tWfuV9z/GhZ1/lhy5+lu/sXuYxv+KgeH765vfx93/jj/DU/wXNp14ir+6P7+2OiYYTo/WeLnhUI3EoNR7WCcH70w290zqtMDNMwHmPU6l0YSNlGpOfyvgYPfM50FHidBrChNM6nUgpncqj6tSkkhoZz5dLPpVUbWRWZ/s0Np9/a1pVla0YgjkgGJk1XgMINZJXlLbpOFkWrl9fQOp5z1Mztvfn4HqObg4sTgrNzYLLKxg6ZnvbdPML4OYEjXhdYymT44ClSCmF7HfAtziN4A0LmeRB+4BF6NcDZgUXWjQ0NJ3HudHMTk2SEi3Muo6txqPOMcSId8LWdscqJ45XGVPDJNNqgZKJ/QndpUs8++wTOL/Lok8cnqw5OFjwxpXAwjqOj8BbQ04tKXnMYu0G8cbx9VvcOFySrLC3O+d8N6eJCfKAUwhe2d2dsT2HEApliFgCihFTRKQmgKVilWxSWC3Xo4kbYozVrE+VljnvoISRWNqYGpYRLahUH4ro6AWyeo1IPPU9qI45TWKIgg+OUpraZ28yTgkUMandFtTHIQPO1fWSUjo18rdtR2aLo5UQmhZ1LQcnR9w4PGFnd5+Le3vkfoHlNU0QZo1n3njMG17AiyDegWSKq/Kskqt3BAzN1AjfcfJVSq7qraIU2XhSJkx4e/Crq2d4b7h+X851UtYcHsx56J1SsPV18Ps/+Z188dv+5l095m8un7urx5vwAOEsybDy1UnH2enGgw4R3Ll9Xv+Xd/izL/4THnN2zxMUr+QVP/eJ7+ZbPvp58juAiH1TKJmyXELfI0fH+Gs32H91m53P7bP43W0+9/zz/PaLT/Ed732F7zv/eX5v+TD/7y9/iPf83wPtp14h3zq8b+T0jolG42C7C2zPCs1Jz3EB847gxihVVdzY3i1jEpWI4J1DVJGSax8CjDGzNhaW1eK8Yrn6Jzh9SE36cbXEjFwnI87XSy5Sic5pEpVxqr/fEJrN12TsScjprdp2M0PcOH3RRJREdka2NWqJgifnTDbFiccssFguWJysOVm9yosvPMLu7g5ysma5guGVQ9a7cHJtzc7+nPMP79PttnTzBhXIZVXjST1kTUTnsOAwKUQLEDwWHNIDKUNWLBulCEE9wXtCqIlZtS9jAEvMupbQtaRSjeddVyVWfj3gBZo+4nMiqHKwOuLyl15ma9tz7sKTPPPsoxwtV7z86hucnJxw83AP2ZqziktKv6JP2wxDnQg5L1y8uM2Qc81hUuXS+S0eaWfIzQPS2pi3gdmWZ29baJv6Gg/JKFHIUUjFcEb1VZQMQVmsVvTrNV1ocDoW2qliTsZEM0/J1a8gkikW0ZBrSaJFRAveC2KGejeux9qd4rSgGmtM8pg8pni8tpWobdrtx/WQUpVnqTPUpVFaVwms954QEilHLr+5ZDFkHn94i5DgqDcOh0TjO+iXlOUxQRPtSDRmwZHJeCc4M1Qc+NpHkEXIWhBvOAeN1jhfUejjQOwzMRqlbDpYvun3+YQJdw0/+/6n+XOvXr3nkgeA/+qN7+f5v/hb9/w870SclDW/+K27b/dl3H+80+RCf1BsSMSXkQ3RM91iRdl4CR9UiHPYuV2Ony282F0miN5zE/g/OHmRJ/9XRz48umfneTthOUPOmCgyDMi6R1crdo736G7uc3il4zOXn+OTTz+BXGl5eiQZ5dat+yKZ2uCOiUYpRhM8bYgohZwTzrdVa6+Kd/6UHIjUEjTgdFdkpdSUH93UG5wZ95WRYNT82dPkKR1N2zHnOv2wQj51x9deiU2/Rn1/3X6TlVJOpywppVPisUmoOiUhZjgKmcJxjPQYM2ek3I9324UYE3m9BlWads7h8YJXrhyzypmnHrvATruDWQ/rjhSF5fGSnFeYrNnu52ztzghzz267x9D3lJUnzCJNisS8piA06hAfGNaJEtc4yXgPRQExtrummqod1euRMjElzAreQckDaegJXgmto5SEs4LPhUBip1Pmpog0pMWa1z7/KiUGzl18lEcf3uZk1fF6f8zhoicNC169/CbzkGlnl2hnLetVIjTK3n5HAbxvEXXszZTtAoPL+Ba2tjzzbU/QiJXa1J0j5AhDn+lzIahBcqgT8Mpq1dMET9f68ecvZDKWMkMs9H1ExYMUnCu4UECb2rAuAXV10iAYKtVnoSKIqwlVjD/fXCJmkKj9IN4HlFwjZOsI41QW6L2hvq6XnPNoDA/s7irtDXjt1Te5cejZ232a1gKpQJh1bLmADMfM3YDMPUELbTAg1utTj+VU/+0b8K4GFxRFvVWilQtaCurGANGxe8bGskfViWlMeBthhT/+O/82v/yBf3BPT3M1L/jIb3w7z/Ob9/Q871T8iU//OXb5/Nt9GRPuJ85MLqzoKdkQlQeebFgx5GjB9pcu8bGTZ/nB+WvMrNwzsnE1L/nvf/WHefHXXiK/S0zgX4HTn3WpP/9ckJiQmHDLxNaVhCZHf3nG9huZ7rNvkA8O73nK1JfjjonGss+ItgQVGjWC1hK+4H1tAR839ZZL3QhpbfouY/RtSfWJFapc6nTiYJsSwAqjmnuRKo3KG9mK1u6Is9OKTXLURkoF9bi5vLW3I+eMwNgYzVvTqHKuPuli3FquOeyN/a2WYmtysVOzeoprDEdoBdcrq3Xgi2+suXF8jccvbbM/c+xrB6nQMIATFguItiZZy/b+Hs3WNrPdXVKfGBbH6PIas5Kw7BnWhTJkpC84SUiIOIQgteF7tlUjUREj5UgcqvyqCQ1eYcgDWB5N4hBThlggJjyFrvEMOXNhb4cswuK459blK8zbjq0GHj63xXKx5upB4vD4JieLIx556hwXL24RgpGS4FKNlHUuszUXvPPM1JDVGrGIayB0iu8ULJKGRBzq9w7RWPWJAasmcHGIC/RDla3N2gYxI8WIek8kkcoYEkDC+wYf6l3+tu3w3p/2kDSupnWZlFFi5DB1Y3hUHFvUI0VqRK7AmI7map+fAycOiqAKeDvTZm+kZDgNhMZzbtfz9GP7DNk4Xh9x6+p1/HbP4mSNWM9ON2NvJsx9IA71HFtbAXNgorStx2JBTBFXPU3F1UAFVUNKIsXa0o7WuGdxgpQxKIHRnzNhwtsFM+b/3hru4aBhWQa+72f+Cs//xFTQ97Ww/6NXeQcIZu4+RMHepRvHM5BxD/U1YeUtZOP2Nz6gEx8r2HLF7iuZX7v6LG9e+DX2NOPuQR9PtMzfvPXdPPczqUqE3u0wo25+BEsJGSLSR9prhebAYSr4q0eUGzexFO/7+rhjonGwTrRbc5rg2Wo9O7OAtoHgPJt1fna516ddpSk1oaqcEodcs3dqOtRY0Fcom3FI9VCU2oZdvRu3y/c2/gqnb42wPaug2jSEn/VibCJwNwTk9Ou5JioV9dxaRq7ejDy83dGGehe85DI+EwOXEZdwaqCexQC3rq84WCR2GuGZi+e5uBO40M5oyAyDYEFhOZDthFkvzM7PCNvncdu7lCFg6xPiIuGkEKIiMVMoiKuxvz4EZvM5qGKm5NyT4kApCe8dTegwGXCaEa849cShkHohD7X7oW3qa+wMQtvVtvB1pL91wI0mkENHWQ3M/JwcV1y/dsB6uWR7/jCtN0rp8cHRWEt/HFEx5p2gUggFSo5AxjeKNEJWQ1IhJhgixFjlU0MpuCbggkO9o6AsV2tQh2KUFCk5Ubye+imCC3h1+FALAENQ5rOOLEaOkaBCqw4XPFkylIhQ+0IEQcWhKmQSSi33866paU+qJCtAwImvJFbBUcsQVQKFGkul6nAKTS5c3PXYE9vcOMjIesnKBlyGczPh3Bwu7CqNGCc54UPtQ4mWanSulLHHw+PEjSvLUAHF6i9jq+vZNlEICjberIJSyxgnTHgbUQ4Oee7n/jIv/djfuCfHP7HIsxPJ+Jp44e/8OO9ZfeztvowJ9xNfvjk8q6EVRXS8q/0A+zWs79l6dcnvv3SRT7/ncZ72r53Gr94NRMv0Fnk1Ff7ez38/T/+zT75rIm2/IcxuS6mGAT1ZVzVEypASZbGk3ONivq+FOyYaN056LnSACF3j2elC9ReMrd1W6sZd2RiuN0TjjN9CRlN4KaiCqDt9/AbjIJCzSqizk4liNkaXjl6F25qrsYVcxmQgR0oJ2zx+nIxsPt6QDTHqnWIfOF4l3ri64JlzHbrjMK2xtqghrnYtqCaceNRD8bAclP5E+dKtBVdu9Dz/6Dne9/AuYp5s0OBIZNKqZ3UzsbsQdh7zuAu76LnnKDmiR0c0Nw7wqzVCZFgHstUmaG8BaMm5mupLqa3RzkPwDaCUUjf/iGIF4roQByXFWpAnWsip4L0iTkmrNbuNY1UKi5s3OYmem0eJgz5w68aKa28cIb4wCx3OFCeG7zyqjtWyp2sMazLDuq8+Eitkq43bSQppGPAxkzP0vdEPhVSMLELrfTXwi9APhXWf6MZmdXU1gtY5Qb1HDRrX0AY/dnJU4uW8x2SAEvEqhADqjSIZbIWUzTRDUVfJSUlKKZUweO/wTqBkLBdkLHVMeVwfKqh6hAazjGqNZTZLYIWtkAnnjfPzXYYBRCN728rDe9tsh4bzu2tSvyS52jZukoh5QF2Nzi25EBqPs83Ps1RjuxUkZ8CBjMlsGKZVQiejX+Qr7mBNmHCfUdZr3vv3l/Bjb/eV/OHEcz99/Ss8hxPe5fhqk4pxqlHz6zePe0AnPmZ1A/zKFR7/5Wf5bx7917n0ob/Hh7tjtqX7pg+XN4XNGNEyJxb5Quz4xeN/ib/z8Q/z/p97nbRc3u1n8WBjfI3LUVWaMFY/UOxtmWRscMdE4+ayR5dr+jhgGM5XHT1yO/VpLCSoT3acQNRujFEqNW4wJW+oB9XLcfr+uT0aqalTdcrhgyeNmrLa3ixj3/htknLa/m3UTSGckglVrZu28Rhnic2p5Mp7hpi4drDi1vFAG4zQaU2jIo8Fa4ZzBXUeKRFRo6gQk+PmWnnjpascHw3EZeT5R/e4tB+YayGVap4eckSGA8wK7bDEP/4YzaUn8XueFC5jB6/QNpF8WFgtemJKDCnj1j0hNNA4ignileAcXj2xL9Uc7a164WMipUKKtUNE1LCYKkETR0mZPPTMOkfjWw6WPawzrArroxVxMRCSsLu7x4WdfcQcQsarkhS88/i5I6Y1/ckJcQ2570nFCDiGYWwiT0bOUqcZsWaBqfegNSggF+iHAZXaMeGc0LYtnrFtXjPRMk4SLii+qUEA3vsxIjkiLtVNtxPEWZ1klB7DYUXI2aGuq9IpUVJJxFRQTag4SorkVJ9bKYmUBjBDXW1mr8cpqHpUrKZhkegaw6dEN2tgPiPbmmyGSkODIwj0MaIKTRCyq2RWdJT7YaCcknMRUKkji1KMbAWTTVdlfc8ogkiVWE2pUxPe7fgLf+ovAZ95uy/jruL9f+0VfuQDP8z//vxH3u5LeWfjD9Hvv9veC25H2W72L2f0+e8UWEqUmwfs/uarpPYp/or/M/z1b/tZvquNtBLu+DjRMm/kFcfFcaPMeDU+xC9c/3Y++vHnufQx5cWP3yB96bUHU0J2r2GGxQF7gJL67phonBTH6uYxxQpDgegCMSU8EVU3Fs/VxCAzw9etUfVriJCknsqXukmud2yNtCEKorWMb5SSmNTNabaM13BKHDbxuBvSssGmT8O52yM4t2ko38irNh+PRMR5j0qkWMJrBGcsiRzmnnkP2zqjkIgpEXxXN4Y506tRskOGQFmvOBwOOHInROn4wq3CrdVNDvrCh56d85jAVvGkpqOPEJdL4o0F2/FN9haXKYcvIk98D+E9z1NWXyBd+y22r1zGX7vFseuRfIKliLNEanaIxFoiJzNiNExWuKYSPiswxFQnKBYpwSglUsiEEJBSsOUCJ0bvQPOCzkUe3mloUp0GqBS2h4Zmruy2iUV/DBLYDY6chtqX4jzpYIWtMqvra5ZHx+zMZoTQQRoITinaE3sjZQ80CIU2KOJ7sIYhGzH2dI3Q+ULTeBrnmfsApWdIPZ4VoVPCLKJthwszVDpKVEh1g168kH392XtRnMyJCVLyiAVU2towP272cUoeU9HqFCwhEkEVlQQmtGEO3rFOCdMMWihWfSW+MdogLBZ1GhJCJMZU5UxySKu72LohrT0aBlyXQRpaq/0Z2TLmjGwZNaWo4YInNB4zTxwMk0IpIKZoUlw0JKXaJO7Duy+mb8I7E7/5ab7rv/5x/tlf++t3/9j//KW7f8y3GemNN7l28vwf6BjRqrSWr6fdn/CugozR/Jh8dRPv2f8P3gGRhJYi+ep1zv9TwfRJ/urOv8Xfev7v8ri7MwlVtsIX05q/8Jl/n2s3d7AbLbM3lQu/m3jxU1co126QF8v7mqo04evjjonGehhwJZ96L6yKpqidGfVO7G3h022UMcJ2k/akdiaNatPBp5uEqVLN2eMdC3GKnCbt6FuPCaNU6nZfRvVhCCJvjbfdTDtExl6CnE99HDhB1FEKowzHMWsdlJ5bBwcs+8iiNyTUeNvlOrAYBtYrIw6ZkgppqJKbZscxxMSbix5e7+ltmxce3+I9D8/ZcSucDjhVSmxJy5bBJ/KVz9EfvMnWU++nefqDhOf+DPLo67gv/Drzlz9DmwQLMw7Xh+h1w4eBsFfqdAOBkhBx9Xnjx2Z1ULkdMeycq50MpYpxVBRJBSuFxgVicTSN48L5LfyOZ95l2h1lNltzcrwkxy2cM1IxUGO1WnKyOGHoI6tFT4qJ0kYMj0qpyU6pNq/nFAFH2zZ4b2NErZBij/dG1yldp4QgODIpG6XqkejaOU1jxBwpuSc0DSoO5wJmnmy128JGOZmoQKkyqCrpgzolqN4NLxlfGzNqgpPWdnLRWCdAJeFdQH3CxEipJ6U0GswZzfeOnDMqStcFzIzgA4QaKOCAoeQ6ifPVk1Gbyj1d25F9rt0uIpB7UomoBUxachpIucfEV5/OmLS2mWRQKnl23t3p23bChHsHM8Lq7m94PzWs37Ub6XN/8nP82K/+AD/9zC99U7r0w7Lipej4S//tf8LF/+XXgXcfEbtj/GG60TLKvFGtJKNsTL9f4zUwe/DJhlUZT752nQu/6vjSk0/ykcde4M/vvMz8Dgr8ekv81df+TdqfOs97bw244wP0eIXdOiCfLLBJUvjA4Y6JRsqlbmyrzoMa18NINm6v+9tThrdu8k8lTmNs7ZdDpRqA8+Zgp/GzUs2yIzHYGLorsamtCJXsbEjPeJaNqXyEwVvOu7nOYiA4ci40TghO2WoCO3PH8Xog95mTxZp1FFIp9DFzNBwyDDCkmj8bpGG7cyQS0cEyO64OQr4eubo85uYxvPfJHR5/eMbetmIpsl6tsEbpJOGGIw5+9xP0L7/M/pMvMH/iW2ie+z6avRnrVz7N+uYtJBea7piUelYLaHImaEeDR1xHnwslGXGIxCGRSyKNhnEXPKVPNabVORQhxZr2oOqxUmVL5uYcHg54P3DpoS22Z8JinVEnDCmTMGJJHJ0c0a97KI68FoKOJXnEsfdCKKkmOUXSOFFSUixVyiWZktfMOsf2jjKbQckJyRnLDsvVNN41gRAKjh4NlcSk4RjNDlE/RtnWpKhSEqpGyc3YGl/lVEiqE6s8oE7xFBBfM5bF43zGGCiWME2oc6CpmtHJlDLU17WvJYJiLTnFurZEyNlQUbxTcFab2vOAaCE01Q+ScfjQ4FxdZ6UUnHe1JTwb6kEkgSVUjCQ1rQ1y9WfkUUolkPWr9zZNmPB2oDkq/NLK8UOzu3f38Ce+/0ex+MpdO96Dhhvfe4u/+Gs/yM8884+/4WOXZeB/vvUB/sav/AAv/PhHuchkkP9DA1HEOaRtkbbB+oGyXGIx8Q3JxoMOq5Juu3nAud9/lP/z6gf5U9ufY86dNYV/++5rfPr9L7J1WZlf9bSAHJ/c22ue8C+MOyYapkoZecboysDZW0nDhnSI3P78Kb3Y+CXGScPGX1Gs3mHfkAJVxUHtzRhbmkuRUwP3l/dh6FskVPKWScbmWjYxuqdTDG5H3RbLWKmm3CJCGhIlZbq2xULApCHlFQfLwio6TKCTbgxkU8CT1aMWiVkoFFKOLExp8ozh2FifRK4cnPDCQcu3vmeHx3YVfKIvnmSCsyWuHBNuXScdvkG88knsiefg/PvoXniU5tpL9G98iXyywsc15IgbOkqBte/xQE6uTgqLQ0j19SkZRVGq7n8jIbNiWCzglKE3YnEQPEcnS968eszJSYRG6bZaZltzumZGNsWonRJD35OGQl4XvDhmXU3pwlINAciCiMd7R/KJUjIprcBgq9sh5p7Ww7xzzBpwJEquXRuugPeKb8EFQWhofYs2yhAHyhBrwSIConjnat+IZaxkSnZjJGDtoRDJtVOEQkCglMozVOvNIQuIGSIOpwHRgBWlzu4yInUKBBkxHSOVFZFCzgMi1SQvZjg39r7EvqZXNa5KstQj4kipEGOiFMN7xSygKjhpsFgoA6iNJGhcz3WN1mmJWI2PnjDhQUH3Dz/Kf/wd/xG/8+M/9XZfyjsK1z58wPd95E/T+q9/9/XyrT2e+nc+zQt89D5d2YQHBeK0koy9Hcr+NrJYozcFWywpQ+RB7sy4I1ihrNZsf+GYT37uSV5+quGcZoJ844n9i93rLD+4Im535BDQYU57LXz9OOAJbxvufKIBqIHjKzf1wpdv7m9P78Tstr/izPd8efTsJmVKxzEhOZNHyYpxW/p0+xx6+vfZz8OZMr7xb1WtrdAj2Tj7NUzGYyjZCieLnhuHS87veKRxnNvbxfsZerDgJBn0EJdznNQ3uRNP1voCaXas4ooyFLJEUjS8bzjMQryWWS5XrJaO559seOS8sse6RrM2GZWMT4akSH7tCH/jOs1DV3BPvYheeD/dfJ98vKYcXoWj19F1oqSBiDCkhBWBYlWuo031ZZjgRMgx12t1SsmZHDNSU9AYrFCaFnOOo37BOimrfsYrX0o0s8zT79kCa8nJMI1YNrQoRCGuMo1TZkHxGrEcR9IGXkKVDznBnGCW8T7QuIaSerquZd4ojUAZ07Virm3h2nlcKJhLFGtwrqvJVinhaAjaEBmjaDe+G3yV9RVXZVRjPC6btaN6akR3YxxyKQXFA2GMxK2JT8U8OQ+1IXyc4EmonReYx6vDGEgp471DxSNkHMIwJGJM+MYjzpNt7JIpt6d6zlX5V0mCFQ/Z16LAPlbT+EjEcy7kXE31UFOoNlHPEyZMeGdj64e/8A0f89R9uI4JDyDGfZB0LfnSHsfPzGmOt5hp3e/oyeKdTzbGOFZ35Sbbv7fPr/3R53l/+OwdEY3H/QHf+9zn+Q3/LCdli+Yk0L58Z9OQCfcfd040SsGNBWJqjC3Hrur9GTfup/v9jaxpQyKqzERGydVmwgBnJw7lNEnq9PNmp/KsPPoqOPP129+v4/faqVfj9ErOnCefSZ3aTEQYpyyqnmKFo/WKyzcXXDw/52LTMG9a8gCNFra2G2zuWJQ1qR9og8PhiJYYsrGIxnrdI5ZxKjRA65TsIifZGI7g+KVDXruhPPlQw/se3+KpR7bZ3fGYG+i1cKzglp752pj1X6Ic30DOnaO59Aj+kW8nXLhJuTWjXLuGP+oJlimqxGjEmGv3hnN0TYtQyLEnlVQ3ySqnRX9OAkMsrAv4eYA2sDZYF88yCsOx8fkvHFEk8PgTgfk8gBOsN2wQ1keRdNKz3Xga51BTUhFKUQRFzWMl4lxNKHOuIbgOWRlBhFnjaZ3hTTAUc55CXz0JY9qYSaGI1bI7ytit4cilSqIqyajyOqWhWE2bEgAxVKpXw0wpHpKOUjkxRCoZUQ1gHivDSHQ9oLXFFD1NMPOuEmXMAY5caqIXjATWFClSfTu5Pl/Ek/KAWZX0VbWVQ1Xr32MbOXjUBDVfZV+yiWOOpDTG9IqOBvbqKZowYcKECe9yqGJOyK2QkmKzBm1brB+QlB7IFNtvClawxZK9L2R+4Y1v49/Y/gxPy9dOoIqWWVpkbTPON0tCk8gCmql9ERMeSNwx0RDnkHGDZFYbmFU2qU6c/tkQjjLG3ZaRaGzSosyMIuU0/pax1Vutxs/aaIDFrLaN13EIMcaxf0PH6cb4tVHIBdUUXEZpydnJyYaknC3qSylVo7RS5TSqmHjW2XP1KHKwyOzNjCH3pOVA4xoeeuIphuD44vAF1icD2jj6AtInSuo5zrC2hDSCF0PJeK2+k0xmrRCHyMEV47XDxOs3HB88bHnhUWFvK+K2PSkEJNeUo35pdMNVwsFlZjdeoXt8wF+8BI98ALezRK5fgaOraFnAcsD1hVSq58Srp5QB20jTREi5kC0j6hAJWB7jc30gbM2I6jhYrjjpM2KBVy8fcbg4YblIPPXEOba2leACwRr6w4hLRrtteGeYKZYdIlUq5AgYGfWOpoG267Ck9IvMrGkIWsvppDhCaMiW8FqqnEmsxvgKSIiUALlEihsQlBRBpOB9O0YdC+CwPE7KpIxkYsNnHRFqUZ4TshhKRJ2Mw7NCIVdSFCCXnlwyirs9QbDNGquBAiYFs0zKEaXBSfW6pMGgOLzrACMXwY8EOed8Zl1WEqWuoJIpJISMFCPhMHPjWq2PNZF6TjaJWRMmTJgw4V2LUrC+xx2tmV9tcH1GVkOVIryLYCmx/cqSz33qMX7+oe/kR3Y/wWNuYEcbFKVQyGb0lji2wqtpzifWT/PS8SWWV7c494Yxu9Jjq9UfqujjdxLumGh47+odZJSSvnJUV2rxBaKbqOdNWG15y2PUrHZnjNhsEze+jnxmIiGqp9Kr+rkzBWcyGr9vh12Nk4qqrVdV1Hlq63gtElR148RjbPreXHembk59Q7GWVSosh8LRyYpFf8J6lbBuRisd3jd45+rdcAc5J1b9muW65zgVrBPUHCUWilU9vrgW1MisiZIRc/Qm3Lp+wiu3jrj85i7f+cw+D18Qmq2IdZmiA32vpF5o1wWXbuIO/j+Wew/hnv0Q20+8iDv/AsOtz6JXfgfrb9B4wOpUoZjVNKhkOPVkIJWEuNoerqao96QhYz4Q5lsUCWRb0W3XScGtm4k3rh4x9Inl4U2efGKPRx+9gGWlX0d2vdK2oGpYURSH4PEu4PEgSmgafGN0bcMyRpwT5vMWkZ6SjZQN58BIiGRCqJ6HSjQcGhJFIplYH6Me34S6lhw4J2BKsWq0zqUW7ImO66YIYq42gMtYfjcGKTciiORxipLwQXHBiKuBXBKWXV3rhZpVtSnRs3wa21xyHtd7nYhZrutMfI1rlpEwlZzJudQpoBpYIueE+PqLNKU1pawxU3Ly4+SlTj2SRUqpEdBFqFK4CRMmTJjw7sQmKXOIyGJFcyMgqSD98K7z6VnOuKsHPPzRLf7W7F/hl557H9914RU+tPUK+27BcZ5xkOcc5jk30xY3hy1u9HNeOdine9OzdSXjby6w9dvTej3hG+OOiUaby0gbEoXanmwkhpxQ15waqv2ox6/38WsxmfeBVOqdaCe5lo6Vsd/CqAYQi6hTmuBI5hhKJpVCtDROR6SWrJXa0G1WairDmQjbYjXX1YTa4lEMh9TCPOcRc3VzJ7eTiorVxCApSzCjOCN0AXNwtV8jqwFZJ5pU+NzHP8EgQp8dwRxHac2tPnEzw7HMOOcHsjUs+xVDMaLVzOeGhKL01qCAU8GPyU9XV8IvvXTCF29GvuvpLd7/ZMf5R0A7T0kdw7AgDj3DsEU3j7jyBvvr63DjnyMv/En8Ez+C7D8C6R/Trq+yztC7GoWXVplSFAhk5xmCsO0CdmLkVcSxJhtYt43IFuujwtas5aGLLcfHC46Xys2ccSYcnmQeOzhmNZtz9XjghBX7MyH7rk6XstA6pQuhvs5WUCn44mjFIQhDKuzsKU1npAx5KAwJhj4TQkvSgVnrUVqQhPeZtunIKdSF6peoJsSUSEdyhUYGLDejxCjSDwXfGD4oaVAseebeEyzjXCFLTyqOrtmC0pMiWB/wuUBQBnN4mWMusiyjL8QyVvOqWMZj1CuddpU0l9HIrg1Dv6SsBfVGlEMsdXQaEGf0ldrgpEU4QWRNyTNEC0hHnwbMqt+jbRYsFkZJDSotYrGSY60SKtbvrv9oJkyYMGHCl2Hs7WK5Rg89UgxievfdtS+GHZ2w/8kbNIf79HuP8stbj/GP5n+UckZBZQppG4b9gu1HLAnnrhrdtR45XlKmWNsHFmI2UcAJEyZMmDBhwoQJEybcXUyJ/BMmTJgwYcKECRMmTLjrmIjGhAkTJkyYMGHChAkT7jomojFhwoQJEyZMmDBhwoS7joloTJgwYcKECRMmTJgw4a5jIhoTJkyYMGHChAkTJky465iIxoQJEyZMmDBhwoQJE+46JqIxYcKECRMmTJgwYcKEu46JaEyYMGHChAkTJkyYMOGuYyIaEyZMmDBhwoQJEyZMuOv4/wHwRjLCQG6ZGQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAEOCAYAAAAOmGH2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9edgkWVnm/TtLROT2LrX23tVNA80moigqsgtiAyIyiix+I5viggiDOvPpNQLKpeMyIyqyKDMwM8I4w+jADB+KgjCIKwooq0LT3UCvtbxrLhFxznm+P05EZGTWW011d3VXFcTdV/abGRkZcWLJrOc+z3PfjxIRoUOHDh06dOjQoUOHDh3OIPTZHkCHDh06dOjQoUOHDh2+8tARjQ4dOnTo0KFDhw4dOpxxdESjQ4cOHTp06NChQ4cOZxwd0ejQoUOHDh06dOjQocMZR0c0OnTo0KFDhw4dOnTocMbREY0OHTp06NChQ4cOHTqccXREo0OHDh06dOjQoUOHDmccHdHo0KFDhw4dOnTo0KHDGUdHNDp06NChQ4cOHTp06HDG0RGNDh06dOhwl6CU4pWvfOXZHsYpccUVV/CUpzzlbA+jQ4evGlxxxRU897nPbV5/4AMfQCnFBz7wgTO2j3P9d6dDREc0zjG85S1vQSnF3/3d353toXTo0OEM4rrrruPFL34x973vfRkMBgwGAx7wgAfwYz/2Y/zjP/7j2R7e3Y6bbrqJV77ylXzsYx+7W7b/qU99ile+8pVcf/31d8v2O3Q4n1DHEvWj1+tx3/velxe/+MXceuutZ3t4p413v/vdHZk4z2HP9gA6dOjQ4Ssd73rXu/i+7/s+rLU85znP4Wu/9mvRWvOZz3yGP/zDP+T1r3891113HUeOHDnbQ73bcNNNN/GqV72KK664goc85CFnfPuf+tSneNWrXsVjHvMYrrjiijO+/Q4dzkf8/M//PFdeeSWz2YwPfehDvP71r+fd7343n/jEJxgMBvfYOB71qEcxnU5J0/QOfe7d7343v/3bv70n2ZhOp1jbhbHnOror1KFDhw53I6699lqe+cxncuTIEd73vvdx0UUXLbz/y7/8y7zuda9D69tPMI/HY4bD4d051HMKk8nkHg2EOnT4SsQ111zDN3zDNwDwwhe+kAMHDvAf/sN/4J3vfCfPetazTlr/7vqd0VrT6/XO6DbP9PY63D3oSqfOcTz3uc9lNBrxhS98gac85SmMRiMuueQSfvu3fxuAj3/84zzucY9jOBxy5MgR3va2ty18/sSJE/zkT/4kX/M1X8NoNGJ1dZVrrrmGf/iHfzhpXzfccANPfepTGQ6HHD58mJe97GW85z3v2bOu8m/+5m/4ju/4DtbW1hgMBjz60Y/mL/7iL+6289Chw/mKX/mVX2E8HvPmN7/5JJIBYK3lJS95CZdddlmzrP7eX3vttTzpSU9iZWWF5zznOUAMBF7+8pdz2WWXkWUZV199Nb/2a7+GiDSfv/7661FK8Za3vOWk/S3XNb/yla9EKcXnPvc5nvvc57K+vs7a2hrPe97zmEwmC5/N85yXvexlHDp0iJWVFZ761KfypS996cuegw984AN84zd+IwDPe97zmnKOenyPecxjeNCDHsTf//3f86hHPYrBYMDP/MzP7DneGu0a8Le85S187/d+LwCPfexjm+0v/2596EMf4mEPexi9Xo973ete/Jf/8l++7Ng7dPhKwuMe9zgglnLe3u9MCIHXvOY1PPCBD6TX63HBBRfwohe9iI2NjYXtiQivfvWrufTSSxkMBjz2sY/lk5/85En7PZVG42/+5m940pOexL59+xgOhzz4wQ/mN37jN4D4O1jHOu0ysBp7/TZ89KMf5ZprrmF1dZXRaMS3fdu38dd//dcL69RlZX/xF3/Bv/pX/4pDhw4xHA757u/+bo4ePXrHT2qH20WX0TgP4L3nmmuu4VGPehS/8iu/wlvf+lZe/OIXMxwO+dmf/Vme85zn8PSnP503vOEN/Mt/+S/5lm/5Fq688koAPv/5z/OOd7yD7/3e7+XKK6/k1ltv5Y1vfCOPfvSj+dSnPsXFF18MxODlcY97HDfffDM/8RM/wYUXXsjb3vY23v/+9580nj/7sz/jmmuu4aEPfSiveMUr0Frz5je/mcc97nH8+Z//OQ972MPu0fPTocO5jHe9613c+9735pu+6Zvu0OecczzxiU/kEY94BL/2a7/GYDBARHjqU5/K+9//fl7wghfwkIc8hPe85z381E/9FDfeeCO//uu/fqfH+YxnPIMrr7ySX/qlX+IjH/kIb3rTmzh8+DC//Mu/3Kzzwhe+kN/7vd/j2c9+Ng9/+MP5sz/7M5785Cd/2W3f//735+d//uf5uZ/7OX7oh36IRz7ykQA8/OEPb9Y5fvw411xzDc985jP5/u//fi644ILTHvujHvUoXvKSl/Cbv/mb/MzP/Az3v//9m/3W+NznPsf3fM/38IIXvIAf+IEf4D/9p//Ec5/7XB760IfywAc+8LT31aHD+Yxrr70WgAMHDgB7/84AvOhFL+Itb3kLz3ve83jJS17Cddddx2tf+1o++tGP8hd/8RckSQLAz/3cz/HqV7+aJz3pSTzpSU/iIx/5CN/+7d9OURRfdix/+qd/ylOe8hQuuuiiJu749Kc/zbve9S5+4id+ghe96EXcdNNN/Omf/in/9b/+1y+7vU9+8pM88pGPZHV1lZ/+6Z8mSRLe+MY38pjHPIb/+3//70m/wT/+4z/Ovn37eMUrXsH111/Pa17zGl784hfz3//7f79D57TDl4F0OKfw5je/WQD58Ic/LCIiP/ADPyCA/OIv/mKzzsbGhvT7fVFKye///u83yz/zmc8IIK94xSuaZbPZTLz3C/u47rrrJMsy+fmf//lm2b//9/9eAHnHO97RLJtOp3K/+91PAHn/+98vIiIhBLnPfe4jT3ziEyWE0Kw7mUzkyiuvlCc84Qln5Dx06PCVgK2tLQHkaU972knvbWxsyNGjR5vHZDJp3qu/9//m3/ybhc+84x3vEEBe/epXLyz/nu/5HlFKyec+9zkRid9xQN785jeftN/l34hXvOIVAsjzn//8hfW++7u/Ww4cONC8/tjHPiaA/OiP/ujCes9+9rNP2uZe+PCHP3zKMT360Y8WQN7whjd82fHWOHLkiPzAD/xA8/rtb3/7wm/V8rqAfPCDH2yW3XbbbZJlmbz85S+/3XF36HA+oo4l3vve98rRo0fli1/8ovz+7/++HDhwQPr9vnzpS1865e/Mn//5nwsgb33rWxeW//Ef//HC8ttuu03SNJUnP/nJC/HAz/zMzwiw8P18//vfv/D9dM7JlVdeKUeOHJGNjY2F/bS39WM/9mNyqlB1+bfhaU97mqRpKtdee22z7KabbpKVlRV51KMeddK5efzjH7+wr5e97GVijJHNzc0999fhzqErnTpP8MIXvrB5vr6+ztVXX81wOOQZz3hGs/zqq69mfX2dz3/+882yLMua2m/vPcePH2c0GnH11VfzkY98pFnvj//4j7nkkkt46lOf2izr9Xr84A/+4MI4Pvaxj/HZz36WZz/72Rw/fpxjx45x7NgxxuMx3/Zt38YHP/hBQghn/Pg7dDgfsb29DcBoNDrpvcc85jEcOnSoedQlAm38yI/8yMLrd7/73RhjeMlLXrKw/OUvfzkiwh/90R/d6bH+8A//8MLrRz7ykRw/frw5hne/+90AJ+37pS996Z3eZxtZlvG85z3vjGxrLzzgAQ9oMikAhw4d4uqrr174vezQ4SsNj3/84zl06BCXXXYZz3zmMxmNRvyv//W/uOSSS5p1ln9n3v72t7O2tsYTnvCE5t/4Y8eO8dCHPpTRaNRUOrz3ve+lKAp+/Md/fKGk6XR+Ez760Y9y3XXX8dKXvpT19fWF99rbOl147/mTP/kTnva0p3Gve92rWX7RRRfx7Gc/mw996EPNb1mNH/qhH1rY1yMf+Ui899xwww13eP8dTo2udOo8QK/X49ChQwvL1tbWuPTSS0/6Qq6trS3UUIYQ+I3f+A1e97rXcd111+G9b96rU6cQ9RlXXXXVSdu7973vvfD6s5/9LAA/8AM/cMrxbm1tsW/fvtM8ug4dvnKxsrICwO7u7knvvfGNb2RnZ4dbb72V7//+7z/pfWstl1566cKyG264gYsvvrjZbo26ROiu/AN5+eWXL7yuv8MbGxusrq5yww03oLXmqquuWljv6quvvtP7bOOSSy65w440dwTLxwfxGJdrzjt0+ErCb//2b3Pf+94Xay0XXHABV1999YLxxF6/M5/97GfZ2tri8OHDe27ztttuA+a/N/e5z30W3j906NCXjQHqEq4HPehBd+yAToGjR48ymUz2/D26//3vTwiBL37xiwtlkrf3m9fhzKEjGucBjDF3aLm0RKG/+Iu/yL/9t/+W5z//+fzCL/wC+/fvR2vNS1/60juVeag/86u/+quntKjca/a2Q4evRqytrXHRRRfxiU984qT36nrhU/V9aGcj7yhONSPYnmhYxun8ntyd6Pf7d2j92zuWvXC2j69Dh7OBhz3sYY3r1F7Y63cmhMDhw4d561vfuudnlic+z1d0vwn3DDqi8RWO//k//yePfexj+Y//8T8uLN/c3OTgwYPN6yNHjvCpT30KEVkIUj73uc8tfK6ezVxdXeXxj3/83TjyDh2+MvDkJz+ZN73pTfzt3/7tXTZKOHLkCO9973vZ2dlZyGp85jOfad6H+czc5ubmwufvSsbjyJEjhBC49tprF2YN/+mf/um0Pn9nyiEgHsvycRRFwc0333xGtt+hQ4dFXHXVVbz3ve/lW7/1W293AqD+vfnsZz+7UK509OjRL5sVqGOJT3ziE7cbS5zu9/rQoUMMBoM9f48+85nPoLVecPbrcM+h02h8hcMYcxI7f/vb386NN964sOyJT3wiN954I//7f//vZtlsNuN3f/d3F9Z76EMfylVXXcWv/dqv7VkO0lnDdeiwiJ/+6Z9mMBjw/Oc/f8+OvHdk9uxJT3oS3nte+9rXLiz/9V//dZRSXHPNNUCcCDh48CAf/OAHF9Z73etedyeOIKLe9m/+5m8uLH/Na15zWp+vvfmXScOXw1VXXXXScfzO7/zOSRmNO7v9Dh06LOIZz3gG3nt+4Rd+4aT3nHPNd+zxj388SZLwW7/1Wwu/Y6fzm/D1X//1XHnllbzmNa856Tvb3tbpfq+NMXz7t38773znOxeyxLfeeitve9vbeMQjHsHq6uqXHVeHM48uo/EVjqc85Sn8/M//PM973vN4+MMfzsc//nHe+ta3Lsw+QLSye+1rX8uznvUsfuInfoKLLrqIt771rU1DnHpWQWvNm970Jq655hoe+MAH8rznPY9LLrmEG2+8kfe///2srq7yf/7P/7nHj7NDh3MV97nPfXjb297Gs571LK6++uqmM7iIcN111/G2t70NrfVJddJ74Tu/8zt57GMfy8/+7M9y/fXX87Vf+7X8yZ/8Ce985zt56UtfuqCfeOELX8i/+3f/jhe+8IV8wzd8Ax/84Af553/+5zt9HA95yEN41rOexete9zq2trZ4+MMfzvve976Tsp6nwlVXXcX6+jpveMMbWFlZYTgc8k3f9E2NFfep8MIXvpAf/uEf5l/8i3/BE57wBP7hH/6B97znPQsZ2Xp8xhh++Zd/ma2tLbIs43GPe9wp68w7dOiwNx796Efzohe9iF/6pV/iYx/7GN/+7d9OkiR89rOf5e1vfzu/8Ru/wfd8z/dw6NAhfvInf5Jf+qVf4ilPeQpPetKT+OhHP8of/dEfnfT9XIbWmte//vV853d+Jw95yEN43vOex0UXXcRnPvMZPvnJT/Ke97wHiJObEE0onvjEJ2KM4ZnPfOae23z1q1/Nn/7pn/KIRzyCH/3RH8Vayxvf+EbyPOdXfuVXzuxJ6nD6OEtuVx1Ogb3sbYfD4UnrPfrRj5YHPvCBJy0/cuSIPPnJT25ez2YzefnLXy4XXXSR9Pt9+dZv/Vb5q7/6K3n0ox8tj370oxc++/nPf16e/OQnS7/fl0OHDsnLX/5y+YM/+AMB5K//+q8X1v3oRz8qT3/60+XAgQOSZZkcOXJEnvGMZ8j73ve+M3AWOnT4ysPnPvc5+ZEf+RG5973vLb1eT/r9vtzvfveTH/7hH5aPfexjC+ue6nsvIrKzsyMve9nL5OKLL5YkSeQ+97mP/Oqv/uqCTaNItJx+wQteIGtra7KysiLPeMYz5Lbbbjulve3Ro0cXPl//Fl133XXNsul0Ki95yUvkwIEDMhwO5Tu/8zvli1/84mnZ24qIvPOd75QHPOABYq1dsLo91e+ZiIj3Xv71v/7XcvDgQRkMBvLEJz5RPve5z51kbysi8ru/+7tyr3vdS4wxC1aay7+LNfb6HezQ4SsBy7HEXri93xkRkd/5nd+Rhz70odLv92VlZUW+5mu+Rn76p39abrrppmYd77286lWvamKMxzzmMfKJT3zipO/nsr1tjQ996EPyhCc8QVZWVmQ4HMqDH/xg+a3f+q3mfeec/PiP/7gcOnRIlFILVrd7/e585CMfkSc+8YkyGo1kMBjIYx/7WPnLv/zL0zo3pxpjh7sGJdKpXjqcGq95zWt42ctexpe+9KUFO7wOHTp06NChQ4cOHW4PHdHo0GA6nS4Iv2azGV/3dV+H9/4ulVx06NChQ4cOHTp0+OpDp9Ho0ODpT386l19+OQ95yEPY2tri937v9/jMZz5zSou7Dh06dOjQoUOHDh1OhY5odGjwxCc+kTe96U289a1vxXvPAx7wAH7/93+f7/u+7zvbQ+vQoUOHDh06dOhwnqErnerQoUOHDh06dOjQocMZR9dHo0OHDh06dOjQoUOHDmccHdHo0KFDhw4dOnTo0KHDGUdHNDp06NChQ4cOHTp06HDGcdpi8P/ne74PpVTzqLH8uoYWjULVK1E/FUBZjbQ+L4DWBqXmvKfepnMOYwxpmsZ1RRAgKAjVelrrZhz1cxHBe08IARFhNp2xvbXDbDZhOp1SljlBAkmi6ff7DId9VldXGY76JInF6hRNhohCJBAkEEKoxrYoa1EKUGCsIQSJD5G4EI0ohdI6PpQmiBCCQoUUgiJNE0QCaAEVCMGjNGirCOJRCoq8pCgMKsDkxC2cuPkLnLjtJoo8Jx2MWF07wGA4RItjlBn6icYrTUh6zArHeFrQy4ZcdMllZFmfL33pC+zubPHAB17Nva64lOGgT5patElAQRECOk3RRsfz6B3lbEo+maCcI0sSbJrhlEEZi9a6OfcAxhiUUpRlSQiBJEmaZUVRNOfOOXfSNaxlQ4GAqHjui6IghIAxluCF2SwH4rp5XuB93EcInp2dbdI0pSwLBCHJEvqDPkF8vDeNxnlHlmZkdogvISjNcDSkPxpSFAVlWYJEJm5RaFEgAR8cQRyCYIzBGAPQ3GvOOabTKVrr5j1jDNbGr5qINPeR1ro5Vq01IQS8D2hjMcY0y4qiwHvfnFvvPT/8oh+8va/rOYsn6O8920Po0KFDhT8Nbz/bQ7jD6H5DOnQ4d3A6vyH3qOtUO5AMIgskRVdBuIg0JEFESJIEay1KKUKogn2lUNZglCKINMGsc46iKJhOp3jv8d5TliXOedIkZdhfYThcYX3fPrI0JU0TjNUoBVqD1hVBcYITD1IQyYIgFTWKo5U4BqXQKr6WIPggKG3Q2mK0AqWRAF4EURXpQIOKwa41Cb4MlGVJ6QpsorGJYXt7m+lsig+OWT4hiCd4AXrgIXHTGAijKFxJvruLthnGGAa9lCBCnufkQSAVsv6INBvgvWZ3d5fJZMr21jbel/SyHoPBEBFPWXr6SYYyFuVKfPCgIzFyzoHWJEkSz4CADwGVJAskob6eSimMMc31rIPqmvi1193LjyDeI4HSFRSuwDlX3QeBsnQ4F0mD96EK8uv7QFBakyQZ3jtm+RQXXCRCRiMSkFJw3hOcEBKNUSk20dX2fEMSRAQjoFGoIIjE66awkQxW46/vyxACSimSJGnIU31szrmF49NaN+dp8bgjsajJSX0e6++Nc64hKh06dOjQoUOHDucyzoq9rQSJGYBq1taHGCxCaALQOrgCGtLgnKvWg1lZMisKfJgvdy4GlFmWYa1lOBySpinWJhgdHzHgVKgm2SJAIATBe1C6fs/gpcrAKN2QCqk+18zgE4NDkYDSBrSqgnNwLhBEMElSBYmB0pUE7/FekHyLMi8AYZbPAMEYxXgyJi9ylA547zBGoZTFSyCfzDg4ytDGkPX6TPOcwgvjWY62E7LU4oMieI8Yg1QETGkoncO6jN4wo9/vsbuTU5ZxtlyrKgOjDGiDqDhDr0KkWCI02SSUQgJxxr8iGe1sBszJQx2w10QxflwtfK5e1s5m1ASlRjz/BoXCOUee5xUhDTgXiYZCMSsKlFb0+qBNgjE+ZjBcwAggAecdSivEB3KXY0y8xq4s435szESoar9U9wFKobWJp6nFD9pjre/bdlatTbDq+6aNRbIRMyc1cV4+P1rr5jvQoUOHDh06dOhwLuMeJxqCEBCU0s2MbwycYv2RDwHvPD54JARK55AgiFQz2T7ODGtrMUmCNobhIMMmFq0NSWKrWXeF1tUse1UAE4tgFBKEQCzJ0SpmISDU0XQMElUsp6mjynoZgNI6BttKgwhehBBASQAPIh4X5jPvTuIxOV8HnrFKSvsAPqCNoiwLtFYkSQ+jNcF7gnMECfhqmyaxlM6h9QCUJkkzev0BOGGaF0zzExitkEGGVZ4sSfBKU5YlQsD5QJb2SKyh38uYTuN+nHNkVdmUExDnqtKvePz1tSqcEHxAi8Ssh7F7ls5FYiL4OnsBVfmcWnhORSibz1SfD1XGS6TOTiRV4A5lGbNWeZ7jfTzHeZ7jSo+gKINHW0uIVxrvS4zSCAVpYgEh+JIkzSpyWaBUvPZSkSFlTSznQyFaY1Aoqe/QU2dh6kxITa5qQlCv2876nCqro7TC6qQhJjVRaZem1WVYHTp06NChQ4cO5zLu1oglZgOqF6qeFQYkzswGEWazGXmeM80LyjKSC1+VoUgVoNvEMugPyHo9hklCkiRoaxsCoJSOmYhqRxKrqwghlkPVYwmhLn+SuL62MRsRQCmD0gpUNWuvFcrYam0hQBV8gy/L5hjrunrvHPlsWukzQkunoecZDS+RQIlCi6C9Q4eAxSASSJKM0WiEUjCdTihmLgaZpiI8EMmX98yKArxHJyn9LOH4zlG2t7eR4FEH11kbZmjnwXq0MTHRIkJZzNjZ2mQy3iHRhiyL2pe6fqz0kdyhFTZN5hewImxKGZTRkZwpXQX0i64CUp0r7xyhKkWy1sbgvQrm60C7VrLUWYF69j+EgAueIFHDETwUxYyyLJnNooaiLD3T6ZTtrR0mk2m8b4xGGUuWbTHo9bBGY7SB4MnSFK3jOSRovI6ZJZTBe0eorrQq472plSKxCYnWGKWxLQIhEhaIQ02YgCbr0M7gtNdrZzja91EkZQpdbaspFYSGcHREo0OHDh06dOhwvuBui1iaAJJ5rCqxFoWYKIhC4d3xOM5Ox+gemyT0Kl2G0TqWjxhDL8safUCdUQgLk8pV0FoFr/X0eE0uUHF2vD04parMhETiofVctO6CJ3d5zFZIQEJFHkJgOp3G8qe6Nt8LCiExthGNN5RGaUJeVMFlDMAFsAg9a8hSS5ql6CJqCOpzFclLaLQcaZrhVSRXRVlSlA4JAVGGtD/Ao5gWJcdObDLqpYyGPWZlgUGRKINSMUj1rmRra5Pt7S36/V5T928TC1rjvFCUDpvahdl7IZYFJb1+pF4h4AVUEIyO1zaSvfipOtD23mOVilksoqYmAKrKdAQJzX7qLEYspXM45yhdzPQ4F0mFc46y9BRFyXQ6Y2trh82NDba3d8iLglIpqMTUq6MhVmuUQGIUWZqSWIMSsMZglMZYi04SbJIwKktc8CRpSgghaiSAWFtlMLrKYFVEo9ZQLAjYK8LQLpVqC76NMQskpK1dgZNJyfK22yWFHTp06NChQ4cO5zLuvqnR5UxG+62W9sIFj7aGtZU1kiSLBICaCyh8Jbq1xgAqBqYSMCbBahuD0hCawN8Y0xCS9mx8dE6aok0sQdFKExCsNWhlcN4xK3LKosQHR14WjPMp3ldkQkIsjwKyrNea2a7Hq5jm06j5aKVxlDb0BwOSJK2E7QkmSTBKoYLDKLDWMptOscawsrLK1s4OPgSyrNecQAmQ9hL6/T7KKNJeH+9Kcu/RaZ90MGKw5skn2+zOphTe4Z2QKouTHPFCP+thjMWVBa4smKrAzniH8WydtN+LWSIJUGlSggS0KIxSoBVSBecaopjae6S6vrpy1dJVMO6Cj5oGU2dAooOSIhISY6LewpdFc40bI4AQNTm1dsc5qcqlyopolIzHYzY3t9na2mYynjCZTNgej5kFSLIM7wIbJ04w3t5hvLPLaNCnn6b0s4zEGKgyRaPRCoPhgKyXMVpbY+3gftZW10izFKP1nLQ2sf1c7L78t9YStYmDWciCyElZjMYcoSYaOmaeam1GTURq0nIql7cOHTp06NChQ4dzDXeKaCyLdNs16AvrNSvNdQ9zEgEYTZqm9Ho9BF0JolnYVl2bXi7YghpKL4gqG/2ATRKyVlCn2noAEYzVpJmJbkk+zo7PZjMmk3Fldxudq7SJgb9JE0xSi4JDdB5S0bp2e2sT7x3eSyXQNWQ2YX11lSRN6GU9kjTFWAM6lhmJKELwFIVjOh5TzKZMJ2N2draZTCbkec6ll1zKVfe6F9dedx1Hb72Vyy+9jOFwWM2uJwwGgxikB0dmFLPZhMnuGIcm6Y9Y1YbjszG74ynbuxPyImcVzXAwRAHWGpDAbDpmNp2QSkrwPhKExMYSK6+xSajKlRxaaZIswSjIfY7zHqs11iYobXHiootWNVtfB8bKOZRRTalPbdWKUqRpSpqmC6Sivq/qoHtePhcdm2azvLKddYzHY7a3d9nY2GBne7e6XzTeBbZ3J6zuT+n3eqTWUM5KcpuzvbXLtneRcPR6iPcYbdjd2sEkltFoxHBnh1meQxD2HdjPYDiM90KV+YrXGoxZFGjXY28bEtRlTm2i0RZxL4ve64fVZqEMqz4f9Xlsk5IOHTp06NChQ4dzGXeIaNTBUHsWtw6CTnLOqQMwosZatUmGib0l6qBplhfREtbYqp/G3Mq2LD1JokkSg1IxANNa46tSKV2Jb+u6eFXpAUrncGXZWN7mxYRZPqN0JSJgkwRbfS4dJPR0BoD3cca8yKeEiasGH7MkaZKSJpZhljEcjsjSXnWckcxkVe8G5xyzyZhZkTOd5YwnU6aTKePJhLx05PmMoiyjoNsmIEKaJQTAJhnTvCDJ+tg0Q9BkvR4+BPKiIPhQHTmsrO9n/0WX4U3G0575/9DPMt7x9v/Ghz/0Pq674QtccunFHDh0CATKWc5sNiFLUkajAdPJeO7QldgorPaeQF2yU5c0BYp8hisLfOFI06y5F5I0IdVptMFlrimoiV47mK7tXdM0ba5JfS3bJUI14au3l+cFeT5jOp0xHk8Yj8fs7OywtblDkiQcPnwBZVkynebsjCekaUpRllHIHWwl9K/KkYzBmgRrUrzkUZaiFK4s2N7eZHNni+MnjpH1U1bWViiKGb0sAR0TPXkZSDEL5KIsywVi0D6WtvNU2+621qw0hLj1fdLaNNmP9neu/R1ctsrt0KFDhw4dOnQ4F3G3lE6dVNnRKp9SVWDeiGF1bGZXW5VSBbo1gej1eq2ymtAIl1UV3MfZ7hll6QiV1W1RVJoIkcpKVzBWkWQJYqKmQggUzkWbVkCUoKua/SRNGQ4G9DKL0ZHgaKUQqfsmxP2Px2Nm05xZnlPkBePJDmVRUroS76uZeRGMsUSDKY/3AVGKJO0jSqNNtNztDfrY3hBswv0f+GDwnulkzGQyJlEZNo26FefjmAWFTjP6K2uUOmX/oYsYDXrsP3QBg9EaYbaFTVLSNEOCxwB+NmOyu4NS4IqczGqMqZreFQU6KdEmBaXRSqKAHEB8FJ4rwRqN0jaeE2MQJajGjktF3UgrSF52WqrvAR8qp6fKWUrCvCmiD56yKCmKouqLMmMymTCdzpjNcsrSMRqtYCrXK61jZkxrGzUURcmkKJmEQCgjWTTGRCGJ1hijkWAR8YBgdextUpYF413PeHeX2XSCtZosTZEkwWiNVaYqpVokAacqZ2qThDaZaJOO9nlZ/tzycufcgptVhw4dOnTo0KHDuYy7TwxeC8CXlsdKplr3UIlkjQYxQOw/IS76/8RAq2wyIkAlEHY4H/CKplFbXbKiFAQfYi+LSnRrrIn9IMoSrVTMZtik0YHoKrOhaPfGEGaFQ3zMUORFSZE7XOnI85LSeVzpYq+MIJXFVeWYJFSZlZSkElmnSUKaZVib0uv3Ga2ssbK2j+HqGqPhkH6vhzWKLLXc7/4PQkvgw3/7N3zhhhuiixOCsgZdakSi7aoyCdpmIJbCC4UHk/boDYfMyikb27vcctutrK+scGBtDZcYTsymUYfiS4wexICXKKyPze4kWv4S0NUD8VgVz6lRsc9IXD8gum5eGK9PoLamjWVSuiKGMbCOZKJeOUioslIaJ4HgY8lUUZZMp5Mqm5Gzuztmd3cX56ImJk0yer0+eV4wm81QSlcZp4QiL7BVHxXnHM6VUaifJigJZL2UwWgQA3ZXokNAfBkdp8RTFo6d7U22tjbQJpZ5IT2yNEVZA8gCkZrf14tkoy3g3ouE7LV+/IyKbl4twtbuUdLOKHbo0KFDhw4dOpzLuNvtbeu/ddlUkEhCKipRzdDGXhlQ2XpK3UsjNH0efAhN87mAVKpZgyiqhn2BJKk7iAu2EiIbm0TBtwV0WpXqVOtJ7AvhHCBC6XKKPI8ZElfGDEnpKIoylvT4yCdEYnZD66oUx6akvYQksyRZ1Jz0en0GoxWGoxUGgyFZLyPr9cl6fQaDAYPBCjbrYWxCr7JhnY532Nne4MDhCzF4tE3ARP1EbAgYRdVI1XFba4LSOFHkPpD4QEBjkijsPrGxwayYcdHhw2TGYIJDKYkWrxIbJPqqgaA2UfgswSNKQLuYycCjCCSGaEusYscLCT66ftmYkaIWLUOVwapIRu3kVbt8UZXRSWVDrCMJcc7hvKf0MSNVu5Hls5zd3V2m01lVcpRgtGU2m7GzE8nHYDAky1LSJEWFgEZIjEFZC97HYyaWSaVZwnBlSJKkiHO42ZR8MqZwZeNytr21zebGBv1+n7zfxxpNYs1CJmO56d5J934rI9F2ntrr/TZ5iOWEfsECuN5GPHfqy+67Q4cOHTp0OK+gDcpEHanE5mGL7zfmPjquB4grT16vwzmHe4RoNM8VsSNF7ThbaTFcXlCWAWEuhPU+1vqXZeyZAPF+KssyCqKtRanYIyFNMkggSWy1PJY2RbvaWM5TiiN4IS88ZRmFxbHDdMlsFhu+1TPmVUtopOrNEft09DHWYnVCvz8kywasrq4xHAzp94YMV0YMVvr0Bn36gz5Z2iPr9Uh7fbSJp1kbi7UJNrEoNCEonPdITZiwTGaeWeEwKjArS9AabS3Ol9Vkt0JhEAQvitwLXhFJlzagLSZN6fUHFOWM3d0xN/ubcdMJKUKWWAb9PhI8eT5jd7zLepHTVytNeRoIKgTAIeJiZiMq61HiQRm0rkijzBvxNU33dHSmqp2oQn3xiJmeWqivWoG0D7GUrSgKpnke9SyzSPzK0sVmjDa6iRVlwa233sZ0OmU4HEXyqA3WWhJrEecoZAoiJCbqIVwZO7ArrWNX9X4GIcErQfmSIIHUWFwI7OzscOLECdbW1xkMh/SyrHFIU0E3HcPbWgxay+pHrVlZzkK0e2Msf0ZEFr4f7eV7NQns0OF8wOa//BZue+RcW6QKzX1+7G/O4og6dOhwSqiYWY912vfAvztKodMEvb4W/53Lc6Qo62ZocTxao6xFZSn0Kq3oiU3CdNYRjnMc91znr1qn0fSwiDPhQSR2ey6jliJUZVK+lclwzoOqhLaVpiOrxNLtjsm1s1Ge57FbtItdoyeTCbkrCUrjfaAoynk3ctFVqU8sozImjU5DSUIy7LO2vs7+/QcYjlZJkxRrUlZW9pGlfVZX18iyDIUh6aWk/RSdmKYZofOBgIIkwbtYUqWDgZxYtiMKo6IrlTaGMsCscARlsLaakTdmngGqasiUViCKgMIFwRuNaIsyCcpEsqX7fVbUGt6XSFlw/Pgx/HTCsJ9x+NAhIFAUeexN4V1VPgYKoSqmQgUHocC5Mv7g6ATlozjfmAQ/j4ljdijMy6Xq61EH3L52Yapvh5ZOwVcd4PM86l2m0yicL4sSXzqMsfR6CRJgZ2eHzc1Njh8/jlKK0XCl2b9CIVVWhIp0JInFGIXWCcZUOh0NQYXoIGWjIN/oonLa8mxvb2ESw/q+fQyGQwb9Pj5No4C96sHRPr422sdcY9lEYdlpqn0PQ3S2amcw9hKVd+gAMPnub8L8yK0nLb9lc4Ujz/j4WRjRIsIjv47y327wkiP/g+esHG+W51LywH0/yFXP/tjZG1yHDh1OhjaoxKKzjJDnSOkg3M26QKXRB/YzfvAlhFRhcsHkHhWEYDRiFcEq3ECTr2jKFYUuhQMf3096/VHCxiZhMunIxjmKe7TFcOyhEIW37YZlxhh6JgFMk8mIb2vW19Y4ceIEt94a/zEdDPqsrq1jbcJkEl2Imu7i02lTE1879+iKDXvReAxK1SLcWPI0Gq2wtrbO+to+Dhw4wNraPnq9PslgQLY2ihkJrZnNcrY2t9nZmXB8e4YxAZIV9veHaG2ZBWF36tEFMRBPkopIgTgV29WZKDZXWmMSyLRGypJpUZCXjhA0vdGIvHRMJznTPKdwDieCtqbqGK2qErQYlCqt8ULUrMSGFihtK/coy8rKkESDG4/ZDo7x7i47WcJgMEKq7uW18D7U7lEIihLxOeJyfJlXpVspyng0NjbCU/OAt23DutwDorn+rUC7fh2zVmUl+p4ynU4r4fcUCRI7c5sEEdjd3eHEiY3YAV2EJEkBhSs9WrkqGxDIEsva6mrsOaIVPjiSNCXrZaRZQpom0c5XBCMpVmpzgALnCiazKT44hqMBg2Gf4bBPllqoMzuSLBz3Mumo7+llncay8LsmJMuuUqq6ru1mflIJ2uttd/jqhr3yCI/635/iQf3/zJMHs5Pen4SC3/r4A3nDhx7LfX/kb8/CCME84L684D/+Ic8YbZ30XqYS/v5Rr+eb/scPnROEqEOHr3pUzowqy9D71vEX7ccc20aOb9ztWQOdJuT3uZAvPtFgLphibMBaj9UBrQNGC4nxjJKCC9MZa8mMjaLPxx5wLw797eXs/+gK+rovEsbju2V8He4aTp9o1OUc9es99KhtLQax//NJK2ulkKZvNlV3ZYOIadygUNEGNfYNCBA862urrKyuAXFWe2Nrh0keG7d5HztohxA7W0dnqgTRCpNmDFfWWFk7wOr6IQaDFUajISsrq6yurNLvx14J3oVGwGwrbUQuJdvjGPxubWxw7Ngxdnd3IWi0iQ34VtbW6SUpQYHN+pTEgN94QAneScz6GYtWVLauigRBQkmmhJXMYgxMypLcF6R4SDWDXg9rE1yInbiznkEwlXZFgTZYm6KcJlS6EWNTTJLhlUGJJk0yMqMpvdAbDClnM2aFQ6cOo6pgWARXFkjpyEw17lAgfoZ3OQai/kEnhKrPg7GRzHhOtmBtB9DL9q172bWWZdk8iqKMYvvSYbQhSzJEYGd7uzn/3vuY0apcuGb5LBoKKOHgwQMkiWUwGJBlGVmWYtMElMJYHTNiVWmcUUKWZSTDlXhugK3xGOcDs8mM2265jcOHD1McPEg5GFSmVQbFYiZjufypzqzdXkkVLBKxplmhjw0Tdev81G5TbaeqDl+90Csr/Mr7f58Hpv1TrjPQKf/6wGf54e/8R75x619x5b/5q3twhGAO7OdX3/2fb3eMa7rP3z38d/ma//Ri7vv8v7sHR9ehQ4cFKIXu99GHDlBccZBjD+qz+SDH4Isr7P/MhYw+v4O+/kb85smTBmdi32ptlZu/pcfTH/VXfPPoWlb0lKHOqXwe8VUMmShPSkArYRIS3rX6EP7Hwa+nHO3jwlkOn//C3Z996XCHcdpEo5lDVfMeGQ2k5TKl6jn3+IaqW31XtVMh1F5PpnKfqkmykCSGfi8jsaaaORYm0xlWC/21FXr9Pic2NtnY2mJjt6DwuuqNkDEYjti/fz82yxiMVhit72Nt/QDDlXWS3gBtB4jKKjYUA3evwWU9Zs7hVEGSGqbTKSoEJOTcfNP1bBw/SmIUrpwxHe+SpiYeg1hm46OU+QGGA0NeBkzfxrKdUNn2hlr4DFYLCk8IDhA0Jb0wZkU5hiRo71HlBiI7pHkM6HVwKG0IpkcZPEWpsbZPkTu0togTxIMOIF4qsmQoS4XSGUYVJE6hUawMVyhnOeN0gtcJpWjyomQ6m6JFmO5skfqS3Z0NpsWEtQPr9Pp9QKOUwZo+KENQhknp6PegrLIhquoGLjWpqMridBV0J7VwqxL+G22aUisVIDghuIDLPVsntsnznNFgBa3iGI8fPxHF4iEwnk7p9XpVz5VIHmwaScbq2ojhqBeJkDFVF/jY6M4mtsoyhOgWFmKfkGAtLtamMVhZZWVnB1d4cMLuiS1u+dLNHDxwCJP1GK4OwZWx1A0TbYO1RutKM1N1po86EA0h3vPamOprUxEPEwlDWZTV+as6qKPQRiiKuY1tO2NSn8Nas9Thqw9mdZX/8sk/4qAZntb6a7pPueZRSYqUxd08ugizbx//4x/ezUifmmTUGOkew/UpKsuQPL8HRtehQ4cFKIUeDCi/8WpuemQP/XVbPO1ef8ejRp/hi+UB/n73Cv765iPYP3wAB9/xqTNONpQx+CMXoB+2yfP3/wUXGkiUpp5uC1SaxiquNBXpKCVnZf1vuehrN3l99ih2bjnM6KZbYwlVh3MKp000VJ2VqDQUskQ2ZHFlIsloXjTPpL2uxEBMJPZsMEqRJpY0MSgE8R6rJNbWW4vSisI5Sg/rBy5k9eBFrKxEe9iV1TXW19fxAl5rbDYk6Y0w2QBtMrxoyjKWGEHAS4k4x4yAdy4enys5dvwEWisSFdja3GS8vUkvMYifIsUEpROkdDiv2N6wbJ1Yo5cZgk4oc4PJeigDVit86eL50grxsVO2NRK7cUtOJmMSNwEfEPEkxYTVREj9hDJYVCgI3pPqBKcNIcS+F/U1aLohElAhoCSeQwSMtihlsSaWOSU2JUl7mCQDY3EBvI8aiOALplsztrePk2/cStbvsbo2QCRFKY1NMpKkRwjR9NZ5EGWoO77XFrbNTL1S8+xWCIRWyZAxlR6hytJI7fxVifFDCEgAL4FZGZv0TadTkiRhNIrC7yRJqkxYJBFJklT6GgUqbWkcVLNP09gWz+9FrQ1BRxNflWlW1vZRzkqm45xiluNLz+bxDTY3txgd2EfqPTE50rr3lYqOXVVmKN75teWvam7/djan0Wzoecaj/lysflu0s227VwFdH42vYvzsxz5w2iSjxnXf9TtcfexHuNcv/cPd/o+wue9V/Naf/mdGenTan/nEN7+V+77qR+7xrEuHDl/1qEnGw67muhcIP/X17+Thg2u52HgGKiH0dnj66PPMLgj88iWP4W+n38Da//nHM/o7orKM4w8c8X1XvZ8j1pKpGJaaqjTbS9jzc5kSjqiS7xh+muT+nn//Dd/F6of3EabTTqtxjuEOEI0zj736EGgVA1UlEKp0gDG6ckmNDlJKGy694l5cfp+vodcfkiYJNk0w2jAtHFYbyqAZlxBcGVMK2iABQvDRjUqiV60ro/1pmli2t3fYOH4cEY/FMxuPMQi+nOGLCb6ckUuOVprgYLKzwdFbbkRCgN6QdP8FrGcZiMbVjeJ0nM123pEYi9EaH6K4WolHyilFKBBfIr6MeoRiAiYlwaN9icGTaIUlELuNeGLXDx9tcEWj8GgCRgmJFoyGYCqnBh07saNNVcIV+0EE7yF4iumE8c42O7d8CVuMueyKI1HHoA3aJPTSHmma4ZwQAqhKsW9UnLk/ldagRruMylSz+7X2oNZoxM7f46YnSq3bAFhZWWm6aa+trZ0krG7++kjArF0sbWpnAxoBdi1GN1G3ozVkRnPg4EF2t3eY7O7igmd3d5ejx45y8JILSfsZ/TRb2E6tl2gLtNsi7+UO6cuZivY5qr8H7e7iEO2bT9WPo0OH08E/veD1POavf5Ds//vw3bqfa/7X33FVcvoko0OHDmcPejDAff19ufY5mtd+8+/xiN4GA5WiSZtAv8arLvhznvFDF+JuuhrzVx9HnDvFVu/gGNbX2Lw/XLPyj2TKnrTf5dfNckCjuMhovm3wz7zha05QXn4QfcutZ2xsHc4M7lExuLT/t0fQVLvuxBfzWXujowhaqdhjA61YWTvAYO0gTqBQUDgQcRQuYJKUoAwei1cGQWGqwF4FF0XMVY8ITbxhVfD42QTKnNlkl3y6gw05qQkU+Zgy30WJIzghTTOUaMrZlONHb2E8HhOSPgeuEAaDEYlNKlc23ZSahRATf1U1DdpojFQHKAElsYGcLwtK59Bpn0Gi6ZuAcVO0SkhUdISyOJQoNA6NR1UuUVoFjAokGrRRlCpWcXkB5QPeC7H/BxgVU5FKPNPdbY7ecjP55iYXrQ9ZXVuPlsHakCQZNkmqgDr2HlFFGcmV0c1lrK1cl3UYy7Pzvmqi6FxonMWcKymK6A42m80QidvLsox+P2ox8jxHREjTtHFfqolK+/7ROmY2ljuRt5+3tRHRBllXfUGEwXDIvv372d7eIuzGjunHjh5je2ub3rCHK/t463EVMY4i+tCQg+X7udZrLJONZavauZblZIK0TOQ6m9sOdwY3PFlx/79Yu3vqrIGd7/tmvqb3O3fLtjt06HBmoXs93Dfcl899X8IrHvEOHtHbYKSyUwb2I5Xxy/f6A777WT/O/Y9dSfjsdXc9oNeG8vJD7HvgMe5lHUald+jjRmkSDGta8YCDt/KFw/dlWFncdzh3cI/7ZNalU/OgaTmzUQVddZc31IIINoQQG8elGbOg2Z05dnNP7jViemB7eCq71yRFJRnKpogGRYlWJSrk4GdoKdAhZ7a7wdGbvsT2sVtJ8CTiKXa3kXKKEY8vZrh8Bt4RXMlsOsaXOS6fsrN5nGO33MgtN36Bm2/4ArsbG4hzsYM2qtJNAEoTqjr+WB4THYS0AqM1WZqQaI0rcorxDuVkh/V+woFhSuKmZJKTqBKDQyuHUTGDoVSIRCWEimwIRseHiMRSMgFXBfj1VYilaoFQ5myfOM7m0VtQCAcPHWYwHMbO35W+oPK9xVhLmsSmh8F7fHDN9Vt+xGuplh5VZ/fSNYQjkg3fXOc0Ten1MkajEevr66ysrFSi7tjtO4TQ2MHWD2tt87m6rKp2aGrrG+pSq5oUhKoJJMQSr9KVCMJoNGJ1fY00jce6s73DxokTuKJssgv1+NuuUMtZlnp883tbNa5Ry+Shfq++1+elZqY5lq6XRoe7guue9jtw0eG7bfv7f+QGHtPfu8yhQ4cO5xC0gfvdi2ufr3jV4/6Q7xpef7skA2JQf99E8epv+wP++fkH0VddEbdzV4YxHLBx/wHPvuLDjHR257aBoqcM9xvdwnSfgST58h/qcI/iHs1oAK0i+XqWWRaWz4lH9VCxlr0sHSlRTC4INstQaYY4IQCF83iJ/RTQFgkO8YpgYlCfqkCWBMR5ijwnn05i2zvvuPXmm7j15pvAO/avrdMzikwHjDiix5BDi6++hKERtDtf4qVAmxTRgdnOFhtHb0OJMFpZr5r1xaDSVILh2PXZR41I8NGRSqvYubuXIr4kz3NCMWHfMGG6b8htxzdxklfCeoWqPBiUEpSK50jU/HyhAqpepmLZVKiySMaoRv8i3pFPdtk6IZSzCfsOXsL+A4fQNsGLYI0hSVJMbKse9R7WYPI8CrQklmC1yWLbeSleT2mC8Uh06tdzPUMIHpHAYDCg3+8DqiEUNYbDIWUZz02dSfDeL/SgUIrKoncx6G/bz5q2ML0akw5SkZiokbBJwmg4YiM7gfWWvMg5cfw4l04uJgxXTyIHy1mc5RKyU52bOjMDc0tcBDzz7NCyVS7QIowdOtwx6NfvIt/RI8xOtsS9K7j55Q/ntZe/7oxus0OHDncPzKEDfPZZa/ynR7yRb8gm9FXvdklGjYFO+a7hjfS+6638VPps7vfagL/2hjvn9KQU6oKDHP/6wBOGnyZRX948Yi/UWY17Z7cyO6BiQ7+dO7WpDncT7nmisYQmOINGHFwTjTqgh9gRvA616oDVuxLnyhi45wXaKLQ22DTDJBk2sWgbxbraO/xsh1DmTLZ32N7cwCjAOY7edAMnbr0VqxWpLxiNhmTKgy/ABax4PAHxMYDvZ1ksVvIlwbsoAUksiRY2jt5CmeeECwJr+w+SDSwQnYi8L1E6dt/e3t5k1Y4ZGEitJTGK+HXJSHQgL0psZrhgfYhyM45tjylFg8qo+gwStCIoTVAaUZqgVHxUFq5BqVjepBUivhFJaxyqsg2ejXfIdGDfypCLL7iAXj92Mk/6A7LhkF6/j1UWHQzWJJBYbGKQqpmg1qYhBXUgX5cTLVzfWgCtFpcFH6oeKLPG0tj7EJs1el/1HElIrEWbaO1LXf6kVMzktMTUqtaAIJFQhVC5YVX9VJBYMmY0iTWgDcYmpMZAkiJFSUg9/dGQ/mDIJJ8ihWPz+AmOHT3KvrV9BO+RKsuwTBra5VOnKpOq0c7K3J4NcL1OTdY6MXiHO4t33feP+Km//Dr+8evP3DaP/vC38Ds/9lt8c6/r79Khw7kOZS2zr7mM7/32v+Bh2YyB7t2hz490j6cMj7Py5P/Ii1b/Jfd9/RD1D/+MFMXpi7CVwl5+KZ977oW88vFv597JXQ9FPRpdAr6biDvXcFaIRpRpzLMZzax3HVwtW1hVNftI5WQlUdfgixm7WyfY3d1hvL2F1Zper8favn0MV1ZJDCCO2bRktn2UyebNaHFMdsaMd7YZ9HoYwOdjhj2NRlFMt5hRxEZ1boonQQUPwcV+Bqrqmq0M+DgbHp2zFMXOFrtB0UszVHBMdneY5gVr+/ZjtIYQMCbOum9tbjDOcg7v6zHoZ2jx+FIwStPPUpCA84HVfoKsj9jd2caFEiEDdEMwQuWc5HW0ng2VVByqbt2E6BAlMehWlRuY0QqLEFyJlsDhgwc4cOAAzguJMmS9PmmvjzI26kNsJSI3VelPkqCsrS7VvKynLmUqimIheK4DZecKQlgUgud5TlkWjR4DYqaitrQVEWZ5TlmWTXPBepvt/hIiAR+iuL8hNiw2CqxLnpRSJFlGkkYtig5gjOCr+2s4HDIajTixeQIFjLd3uPXmm7nsksvwq74RdLcJ1XKp1DLBaJdZ1ULy5axIrRmpSUWblJVleZLovkOHO4pfvfCj/IdP3Iv3PGj1Lm9r/D3fxB/8v7/KlZ0AvEOH8wJ6MODmR2Q8Z9/fkKk7V66UqYRv6+e893G/wS/e/zv4q//zUC79wITk2pvxG5uxm7iEk4mHUqg0JTz0ftzy/0757w96DQ9MLYm6a+VOXoRPTy9mcFtAptO7tK0OZx53I9GoGqPVfTTq58ytcuM9OC8nUVojEpjOZgQfu1AGHzDWkGXR7cdaG2e0JWApycebnLjlJvLphMQoZklCT3t62uElZ3c647ajx9jdPkrItzAErNaUeU45UWTWkGiH4EmtZd/aGlopdrbGeF9QzPJYjiOx1EgQHKCURoKgJNqmagyZEZQvUL4kNZrNzQ0mhaPX69NXGYlWKO9xsynHbruZlaFw1YHLsMYgriqj0Qrloz2u+ECqA8NUc2h9RLkbmIlCm4SgNaIMpWi8Spg5xSwogkkQbXEeTGLxIWC1gioAT1OL9oIloKwh1ZrVwYBLLrowXhBtSLJe7C5eXZ8kTbEh+lxpY+N1MKZyt47XOU2jiGteIrXHHVFlPKxNyPOimZmXyhm2LMsm6G4H8C54vPP44NFKNzawsewq4EOYa3t0LG8DiZksoxur2eCj4FsjGGtJkpgliQ3yBAKxB4a19AZ9VlZWGAz6FGWBc44Ttx3nxLHjrK6sRktdtdh8rz7Getx7HX/7/ZpM1aTDGIN38ZzUZKpNTNqlXx063BX8q/2f59hHH8xHv2Vwp8uowqO/jvf9xmvJVEcyOnQ4L6ANXHIBlz/yCxyx6rTKpU4FozRXJSPecNn/5dYX/TEfee5h3nLzt/Lxv/569n8cVr6Uk942Ro2niDXIqI9by7jxEX1e8px38v2r1zK6g9mUveAlUOL5x61LGNxWdkLwcxB3E9Gomzyoqoyl7aZT0QxVE5F5qUic5QZXlnhXopSgtUWrOFPsnYskQ4EOJcbnKDdFZjuE6Q7BGFwOYxvQbodZmrGzO2bj2DHyfIxVJYpAlib4ssQVJd7Enh2EAqsNiQHvC8TnEMpYxy8BCb6ZNQ8+OlYhKmokEDSGRPtIbraOc/y2mxnnATsYkWoqjYfClQWUBalS4MsYPNoEIZAkKWhwSkioRN4IvcSwf22VifEcG4dIfKpu6qIsQWJ2Q5kEjG3Od5pmZInBaoUrYzahdrZKUo1Rin6vx+FDhxgNBgiKXn9A1uujrEVpQ5IkZL0eykX72Hj+46NNJ2odwV6lPfMSorCwLDpOuSY7UP8ViaVIoa11qHQXVeuV+XaRJhOgiD0zUDHD1NyNFZH1lQtYCCaKwq0FVQXzEDUtWqOMxiYJw9GI1dVVJpMJk+mUfDqjKPLY96Mad9tVq9ZT1BmJeoz1GOr16ozKcq8METmp70Z9PmuisVye1aHDncUvXvCPfOs7ns7oOz5/hz9rL7yA/++/vRnohJcdOpwXUAqdJmw++AAvvey/0b+DDk+nQqIMl9oRl9oJ11z1x0zuVXDMe77oVvn47DI+Mb6Ykcm5V/8oV6RH+dr0GBeZAUbddZJRYxI81x47wOXHJlV81uFcwlnXaLTRruNXdSJERUvVoigIzlEUBRIEcQVSTLB+RiI509kOYjRoxWRjhsy2UFozywtkOiXBo7SvxNglvoz6Cu8NGsgSS5ZoZrNd8tkM53NEXCQWQSLZECEgUcQtxBl+JSgtEBz4HGsM+XSbm750PSoZcvHqGsEVKBvdpabjbSYbx1GuRJL4hUiSFIyKBU/eRp2CSdBKo/IZPnh6ojhoE6Z+wsaGR3BIRV689wQfIASCq4JSkeiMhUdbg4Qi9hQJvuq5EbuqHzxwgAsvuBBrLCbtMxyOSLM+kiXYLCPrD2K2Qnm8BFwIsUEfVYnb7czgn3x9qUiEI89ziqJgOpsym80qUfzi7IoAsUW8RhtTEQ+pltXN8ObjULUmperMJzJ3MRMUymiMsugQDQak0UJAIPZuQdVZDcNgOGR9fZ3NzU3Gk3F0B0uySFoqa962JmXZ4nY5G7FsrQtzQuGqWZhTEYmuXKrD3YGr1o7xhSd/4x3+3PZql1nr0OG8gtKQJEwu0Fxo7x6L60QZ1lSfNQ1XWMe39j5PWP8cALHXt8Kc4QxoQLjVJ8y+sII+9oWFCcoO5wbOGaKx0Eeg7RhEnN3O85zceWazKcF7ynzKbLxFOd1B+RxVTlGiMNZAnlP6KSEIpfNYpUALZRE7bccu23X/CYtSYG1CkmjyIqcoZ4hE69NQ9VcINcmgmpFGYQiI1o1mxBVjVkZDtBe2dzZQNsfNLmS6s00vWce5kmM33citN36B6datjA4P8N6TJCkKW3X1TinzWRRZI5TeQ1GgVWCQWvaPBmz3U3ZzD86hJZBoDd7h8hyco6d1zIwEhwog3hNcAd5FAbxSIIHRaMhll13GyuoK+MCgPyRNe9g0RaUpSa8fNQxKV2JyjS/KqJnxPgbqS60c99IltAX+tcVt3ZQvn0XC0RZGhyCxpKkWepuA1wrdyg5EMjXXM9SuU9CyUK6yanU2pbGg1fEc+OBj5kPqbVfb1wqNJq1sdnu9HlYbsjSll2Wx6aL3rQzMvBFfO6NRrwM0ncyXyUbtnlWLya2xTXZo2bGqIxsdzjT+y5EPwu9+8GwPo0OHDvcAlNG4AaSxPOFu3ZdRmjgdcfdOSpTi+fvZEUbXa8Ld1COow13DOUM0GuvThdIRqtKWOHs8m0VBsIhiOp1QeGFnaxNfzjAGrAaDAx8Igdizwge0sXEivMxjnb6OugqlY+O+IIGinGGspigKCpfHwNNHvUGoLVw1lZdRuxAs+jgrCcwmO4zW1tAqxRcz8IoyH2O1kGm46Ys3ce2nPsH28dsI+Q4H7H5msxy0RutYxqMRnI8N/EwKunAokyPKE4oZh1aGuP2rfOnoCQopsb4gVSmJOJLgSHFk2iHKYayQ2tgd3Rc53hfo4NESUEpz+NBhDh44gCsdRhtskkYnKZuQ9AZk/T7WJrjCEZynl6SEWYiFcT6gErNQxtTG8qz8XMugqsxGDMxLFwXO1tomGNdakdSC6Oqc1FmDZRer9rZj9ssv6M9qcrFsSTsXZlNZyoJuxOM0GRJjLIm1pMZitYmifjUXdrf309antB2i2n02lrUc7caDNVFpn7l2b412344OX514wX99MR9/4W+RqC6j0KFDh9OH0gqsxfVBq8DdTQDuKeTieN+J+7N2vUPy/GwPp8MeOGeIRixLqpqqmQSMji5JWqNbIlitNEoJu7u7BDVjZ2cHfEGSGFKjEFcQXBFr+SV2nQsS+1XYKlkSKr0FUs08i6f0Dl9lL1xwmCDo4GNWozJLhWgVS+2MVdfMA4qAL6fsbp/AqZQyh+HqiEQrMqPAFdz8xRu4+frrMVJgKRhvb8eu4gLWWBBBG4WYHPEBkyrS/oDSOVwQdrdPsDboI+sDJjs7bJeBTEpmLqCLKRl9epTofIIqZ4RyRuELlIJez7I6OsggzSimE1KjOXLkCoxJKIsZvVEfqcqGjE3o9XqkvR6IUHiPJja7E5EoMtdReC2BRS3FHrPuizPzel7OFKLYP3bztk0zvRAqoXSo+oUg+FrQvdTkrv7bWMGquQPWqXpbLIy1ErzXrmdaqWqRIkilj6i6F/qypKjIrq3E4E2WhMU+GW0SVJZRi+OcW8hs1LbAbRLlfUDUPFOyrP/o7G2/unHkFX9J/oKyIxodOnS4Q5AQJ0+zTTjhRwQmXxFUY0cCH7/tIi75whjp/m08J3HOEI0oMNYYrUmTBDBICDgfZ6ittfPSGufZ3NwkaEteFlgFWZJiVKAoYmYkeI/WBmMqYW4QjK60BRV5CF4QHaoZ6kBRFpVLEdEmtSqfqqprYtCnNHUJECJNl3NVFetMx9s4lRHIUOKZjnc4esstTHopG7fdihQFWnuCz5mOFePJFO8lZld0FHQn6QBQeFdgU0+SOcqiIFEBNd1hoBQHhylqKiQWsv6AJMwIk23WUsMl+1dJg6X0JcFarE1YHQ1YGQ7ppykbx4+Bcxw+dIiidFFsbyxKmUgEqPpOoHGuRALYxCIhamWs0YhWBGrStRjMtwPk5cyDc3Pdgg++sqONlrhJkiyUOUUeIPNzX2G5N8ViadZi6V2NdhagLbRWKmYQpDqOKApXczJU6V1CEMrCMZ1MmE6nDFvlTW1x914OUTUxqElCW0AONJbAdRZEVdmcZSH57TladfjqwZN/5CX83zf+ztkeRocOHc4nBE/YHXPwH3LetfEQHtX786+ICYudYNg9NsRs3Irr/m08J3HOEI06QBTABY8Ej3cO5zyudDRV95XIeWd7A5320SpgqnIbJZEgEDxS17zbJNqglj6WUlE3c1PRBUoCEINC5z11Zb/3Di0yz4xU41O1TW+LZISKvJTBY5RBJwn4kvHuJjd/SVCuJLWG7RO3YZRHBQfBU5QleVHEjEBFYrSxZP0haI2fgqgyNuOTKFifjTcRZVnpW4rgsEkgXc+YnbiJnVtywmyTiw+uMzArzFyOJClJmrJvfZ3V0QiroZ9afJEjBGb5jMRoJrMpw30H4vmXqG2hdJR5gRYhMYayKJhNJiSjYRRQV5204csHv3UAXpZzlynnHN75JtCu9QqRhAS8c4iOlr8NEQjSNHasC9gactJ0BJdGW1N59EYbv9oCl+hehTZUgo34uToLUm9ZRcF87N0Ru6o758hnOYPhEJiXSLV7XyxnIZIkWSip2qshX53xCCFgrEIFRQjVLBRzl65ahN7hqxeDD3z6bA+hQ4cO5yHElfT++Rb+v088iH9zwfsY6DPjPHW24CWwE1LsCYvsjs/2cDqcAneAaLQqx6Xt+tN+//TFRc2MdT0rrKMuwXlwHso89i7QWlG4kqLMQWLjPPEFlFO0ksoBKX5GtBCbtVH1+RN8cLV9FT46xuIlVNamCnGxXEkH0KESgAP4gG93DpSAqh2XpJ4BD1W5l0ZE4SWgvAddoLwnTHcoy5INVSLOU+xuIOWEEodVMZif5QVFnpOsryA+lhPZtIcTheQOjKffD6hQoIotNsfH8V6wvRErA402OatpybSYMC7GKOWgn0SHh0RhsoTBcMjqyoCVUT+WIa2N8GVGPpuQF1OsHWBTg8dT+JI0BAwayoDx0LMWGxyT3S0ILtrHmQwJseO40qoK/onOTTURa1TZc/tZV0byGHxoypwachcCXgQvoSrJCgQXL2ZN5mh0FO3rUJkmKxVtiAmxW7vQCPltZW1Ldb1QoCXEJpHV9mphf52fQke3K20NNrGghO3tLUb711nz65hKsxG8b8YVKiJjjK7GBdYYfEWCtdZVuZZgdMwexd4goWqkGEvLjNFYC8ELPsQMXVvr0eGrF2Fnh2ue9Gz+6N1vO9tD6dChw/kEEcKJDfb/1eV86pH7uMjkd6mXxrmA42FItqGQ6Z3rB9Th7sedyGjsRSjay+q/p57hXvIlIkhAScwW+Hrml9hwzpgoOHbOxUBMBQyeBI+VAlXNrHsEZRRGCQ5BawVKqtIcBQa0tgQfCKVHhaqvQ4iN3ZQIph5Y1QRO6khRRStbxEEwzax5M5+vAK1IdBqbx0ynaCzDQcqgp5luHWM2nRJciYQScChryIuSzc1txpMx+H0YAsE5lEnRNsOk/Tir7wuMsaS9HjZLmezs4Ipdev0RSepYz0pGVhhgKAtPjsV7RZqkJD3LcNjDGsGXsWOm1kJv2KOfWcZW08t6DEYDtNGkqSVNKqLiIdWRZJT5mGK6S3A5oUhRSS86NhHL3eqsglKq9boSMMccQrwzQkB81L5opWLWykdBvqt7lRAt66TScdB4W6nGWlek6nsRFsuLPHNhuBDvgeiIqyPnCSHaERM1GIhU5WI0Wau5dCM271PGIAqKImdza4MDswti4F/pN2LX+mofITIcCQIqng+tNEGFhlTU9rjBB0T8PJMSpCr18/H+rcYvlWFBvA8rEtPhqxpqPOPv84KHZuf3jGSHDh3uWYRZzqEPb/O6Gx/HN131DtZU/2wP6S5hFlJ0QVPC3eHcw53LaOz5ennZHZt1VS0nH601SZqQZRnGGLZ3dphMJlhrSBKLNRqjpHJPUkDtxlNtpy6QWghCNVobQKFbtqMAiOBd3FaSJFgJzHxA8Mwnj+s2eHXQWzdYU1X2pHIQ8nEs0QVLE3XgU4rZBMRjK50JKnbCvu2225ju7uCLaGkrhNjUz6RkaYbPJ+xOZ8x2JyhR9EcrTPMC74XEWoa9BCOOIJAawaSGxPRRxmBTg000SZLEkp+8gBBw3jEcDOiNRvR6GSFIJQI39Aa9WEZWFFGgrmG6u005G+N9Tp7P0DbDhoAXhU30gii61iYsC7HrUidVlce1S4HqhnnzaxUJhYigF8qj5tuLJIF5mVOVJYiZjmo8VOYBWprr3GwrhHitoCEeVfUUUGU8jFRuWAmihGJWMJvNKt2QUJZl0yF8OcuwbE2719+6VGqhuZ8K1bHoap3Yx0WptltVRzS+2uE/+3le/uIf4wO/+7tneygdOnQ4nxA8+vqb+Kc/uz+fvizlm89c37yzgkQ55PyXmnxF45zRaMCcaIhIDPitJcuyJpirm6MtN3abf3au40AvslsJHlpuQCLSuAOVZQnQ2n4UJRdlznI3671cjOrnxSxH24QszTDKkucz8lnRBJRIQBnTkCoJgePHj7K7s01ZFKyMhgRlmJYeocRqyKxhTIjd0vMZxqTsWz+A84Fef4A2Cbu7k9jFO80YDFIgkgaTxH4aWkfbXu89+EqToi3GWLROCKHEuRCtffMZSido7dFZn7wsmYx3wOU4X0YHL+aOTpUr8Z7i7JOWVUF1/aiJ2qkC8ViKxJ4zFW1y01yT5VyZzC1l9yI+dfYEidkTpN535SSmNNYmZFlKmqS4ynEq+EhK9+qR0b4flvdZ98pY1mjstdwYTd0bJDp11cep9rz/O3z1oXfLhJfe/A285qK/O9tD6dChw3mEsLPDxX+e89onfhtfd+RPyVRytod0p2CUJlW+IxrnOM6ZiGXZkrTdebltG9oOspY/0/RFWHovVKVQZVkuNFkDFshL3Rgw9uqodAVLs9V7ux0BVa8HkKYZ3SzPmc1i3aDW9fjVPOjUiu2tLU6cOM5sOkYrIbWGRIO4Al/mWA291GI1zGY5rhCGo3X27z9MkmSUpcf5gE1SRqMRg+GAXj/DJroqv4mFSL1ej/X1dVZXVxkOhqRpGl23gqBiJxDKImdne5Px7hbOF9hEIRKF+EpVjlOJxqZRUyAIzpXNeW33eWi/bs4XrYxEu7eE0k35EES/b601qup3cioS03ZjqkuPTrX/NulYQJ0Oae0j6vJVZbtrSJKUNE2x1lA6x2w2oyiKSDpajlPtY2v3xlg+N/XzWgC/2E28srhtxmuq68icGHXoAMjff5IP/OeHne1hdOjQ4TyDeE/vn27mr//yfmyF4mwP507DS6AQgy7P9kg63B7OGaLRdu+pXXiWnYzqIDEEaeLC9gw51O5VsFy6JbK4j7qPAczJhvee2WxGnufxvT2qv5Zn69tBb5KmhBAoypIggTRN6fV6La1CJU4Oc4vXyXiXW26+ia2NE0zHO7h8glWCVYIvZ/hyhiagCPR7A4xJUSrBmAQJCmMS1tbXOXDwIKurqyRJUiuyEQl4H7MpWZaysrISu1xb22Q0BoMhw+GINMkAyPMpu7tbzKa7eJejtJBmliCe6WyCNgqlFT6U1CVr9XmvCVt9vPXyOsA3xjQ2xcvXLrRJWy19aX2uvmbLVq8LQfoe12YhewILn9FaR5LT6kZf3ytxPV3tvyaIUOQ5u7s7TKfTJlO1SHRPft4+N+0xtIlPva4rI0ktigLnKhe0ipjulSnq8NWNiz5wgsd+8rvO9jA6dOhwPkGEcPwEhz4CH8vXz/Zo7hI+XxxmeHNAys6N8VzFOUM0aGUigMWZ6qrMad4ITRY0HXUQVmcMloNRoCn3ARrLUYh18vUDaJEcmnE0Q7ydAK8uwRIR0jRlMBiQpSm1FmGeaZlvJ4SAKx3Hj97G7s4Wu9ub7G5tUOYTrAoQHOPtLWaTMYRAr9cnSXqEAM4Lxqb0ekOGoxVWV1fpD/rYxGITS5Il8bm19Ho9BoMBvV7UvDjnyIsZ1hiGwyGDwYA0TSqnJE+ZTxmPd9je2qQoZvhQMp1NKVwezzUS7xw9L2erS932Ioj1+amvUU3yQgiVm5JvLGuXA+m99A/t95Z2spC5aBOaOquw/HlV3y/MdUINUQixmaBNIikTiVmd8WTCeDxeKN3ai2DUx1GTpeXsxXJWBiqnrRAJ72w2pSznZOb2zkWHr06Ef/wMN3zqorM9jA4dOpxnCHnO6ucn/N7Rb8FL+PIfOAfh8Hxy9xJWbpghrktrnKs4ZzQaSuvoSCTzBmjtwK0dOO41Yz2f/dbgQYiN/ppAkHnTNmvnh92eKa6DwTiD7OK2vkxWowmspXIxIpZJKRRlWTKtLNfibL5GI1EmQaUBSCyT6RTvSsp8iniP88JgbR2DZ3d3CzfdRSlhMp6iVIpNFUpDkmQE4rGnvRRrLWVwuODwwTXlOb1ejzRNUarWpBR4pRgNBiRp3eNBCMoTyhLRBvElOztbyCAj5FMmkx1EAqX3GIj2wKLQletUOwtVluVJ3bGdc7iyROTkcqL2tWyub3Vug4TG2akdxMfzt1iyJM2yOX+u91Nf5/a+tNZoFKES80uL7LoQQMX7Lssysl6GTSzTsmB3d5fd3d1m29GGeZ5xWSZae5V+te/ZdqbDB0UQ1ZSj9XpRJ9IWyXdko8NXEr7xI8/g3r/2z3Q9fTt0uAchgv3Scf780/clXP7+87JL+Ewcn964gLWbN7tmfecw7jjROO0gJwpXRahKeRp/IGrlQLNJ6pIndVKdf91Jeb571ZoZPllUC/Ogczngq7ftnGsCwnrb7e7N8eGrWv3WEe0RMO4V9HkfKF1JcHG8WZZVjeYcslBSBNokbG1t452jyPPokhQ8Lp9S5jOm411CPiXRMJ1OQZUcGB6MZMYoQhm7p5dlidKK0pVoo7FJRlmWZFmPLOtBRXzKsqDuhG4TS5rGjtTGgE4CflrifbSOLcqc2SzgZxNciMF01svQRhGoytEkNL1M6hKfNmFYyF5UQbl3fl4OREUyW9tYzGaxQEjqa7RMOpWKpCeSg/nnl7t2t93GRGKPDbRCoRfuGV2lOBSKXtaj3+tjK6vl3d3d5h6q79NlktEmWsvjbBPV5TLBpCIV0Sq4JiGqEYffUTe3Dh3OdWyPe+w/dvxsD6NDh686hK1tsi9dzkSK89LmdhI8N922zurW9Wd7KB1uB3eIaNRkIM4cs0g6VOy2vGepUe3og8yDymZ2ud7OYuDeDtzqrst1cBlF1ycH/nUQqar+GXVfB1Xtv92BuZ3FqNdpaz201rG/R9hj5nzpoarjqXtGSBVQK4klRUmS4J0jLz21B68QXbKCD2zv7JDnOcVsRmIMyYrGlwU7O1vMplMoZwQdg/ok0WS9BG1N3EbhG+F5UDET0+v1SHsZs+mMQX+ItbYS15dooxgMMrxzDIYZw2FGnufkhZAoTT8k7IyL6JClFN47irKorGSFXr+P14aysrdVPhKNdlnSniRA60Y87sO8M3gkOabSQejqWkc3KgmycG3a98Wyw1NN3EKrdKouh1suw1vIlhF7pKjWmBVVhkZiVixNM/r9PjZJMMaQ53lznG0NSa0/qe+zNtqktp3paRPcOO5IpDOdVdm1lquWCEioW4d06ACAHSuO+TEHzfBsD6VDhw7nEaQoSDcVW8Gzdu4U0p82TgSDuSnrmvWd4zhtorGgd6jIxknrNM8WHXyaN6ukxnJG41T7ur0SkRikLYrAYyAZGh1Eu7ZdJDr4JEmC1pqyLBtxcntGuq0DWcZeGY1muYSFEi0vDi2q2Zd3LgbBVR+OINXDeSQ1bG/vcHBtyHQCWX+ATjJ2d2Kmw81yCgJplrG2b5U0s/QHA2b5jPEk4HwBOlqiDgYD+sMBoPBOMMY29sDOFQwGfbLMIN4xGvVAO3K3y3Q2QWmNrZyzFIK1Jl6rIBRlSekDIx8QiV3W0eqkCfZ2xql9ftoz9+0MRd0oT6u22JvK9nZ+GdrEYnnbc9IQTgril7MhS4OFqt9K7JlS6YBClUUJnoQq8M+yKKQfj/E+MJvNmmxbTSDqYzfGLJT/LZ+f+u8yAWoycS374HiMrdIymeuHOnQAuPJn/oonfs3z+PuH/o+zPZQOHTqcR5DSkW4J17sRl58zhfSnj6N+yOhLqhOCn+O4U0SjWlCV4EiLPMxZRTugkmYGem+Ccqr9nUr8WpfTLM5y11mNUM1sLzZCU1VviTSNnXTbdfULgW+zTyHIYplN+/lyKY+idbwCzgeMCtS2sN5Fm1ij5tsIyoBNmRU5n7/+Oi4+uI4Cjh69DZP1mEwmMfBVClc6Lrj4MDqxjFYHpFmGsoKoFZz3JGmC8x6bRE1G6VzUokg87957iiJn0EvZt28/wZfs7m5x9LZb2N7ZRCkYDVYZDNchBEpfxk7qIeBKT1k4pkWBKx2SeErl0cpgmAf19fmsM04nuzAtCqOttVWWwC44S0mrEzgsiqD3Ig1z56qoNVku2WrfUwv3FzXhE8QHjK0yKkLs+u0DQSu0Am3mhMJ7z2QyaXqT1GQVIE1TkiRZIBplWTYktr3/ZfezSFhpjmGe4ZuXWYW6Zq1Dhw4dOnS4K5BAfyPwkekVPKp3/dkezR2Cl8CN7gCjGz3iO4XXuYy7rNGou1yjFKKXSUHV0bgpqfryZKNNML6c6PXknhq+qkwSUIv6CcU86Kv/1n06/NJNWpOWulyoHlebjLTHG/dfaw0qp6N6brouEfKB+LZGKUFEgzZY06OYTPmnf/4cV1x0mMsuuxRKRzmZMZuVBFeSpCkroz79fobtWZJM0+9bkmzAYNSjdJ7BsMf29m59iqsg1dDuiK60oj/I0AZ2d7Y5duxmbjt6I87lZFnGBEWaDrE2wZWxW3qoHLOUMs3MukjMy0g1uy7M7VeXy4ZqklELzpMkwYdYNpYkCWmaoo1dyHjMH+1+EnpP0rBwr7TE3MtkcLn0rS4DVMRGgl4UKkir94jMb3WRpt1GzHRILDer+qTUJKl236oNBdr2yW3XtDYRqu/j+jNKgw8O1TTmi/dLPfY2ie/QoUOHDh3uNEQYfnHCH9/6QH58/fMYdX7VT32p2E/vWCz17nDu4k5lNGShvKUq/6gEuE1EVgnB62VfLqOxPEl7e0RDqVpsW3+2njWvg7hKEKzbmZUYqNb19W1xcrv0pb29drC5HLTWQXHzHNBV9gYUWlNlE/Y6h/VnNE48WZKysbHFxz/xSQaDAfsOHGSW53gPeV6wNuqzsrpCb5ARVMlNt3yB4ANp1mcwHLF//0H6g34s5wmCa5WCQSQa1hpGoxFra6uMx5vMijH9geXiiw+RZIosTdnZKkmsZbiyxvakwHsofUAnKUYpAgqlLcpYjE5AGWDvL3hbDF0TEK2jrqQOuvfqjVHbytIiHXv1VWmf+5qEKEBpRQiL7y9e09b1oMrCKYVaKLebX6MaSZqSZSnWWLQOC45TIYTG3retw6gJ7HIfkDYJqfcxJ81CqO6heUdwTjr+Dh06dOjQ4a7CfPE2PnXDpUzvWzBSvbM9nNNGQLi5WMPu5KeIQjqcK7jj9LUqOVnObHA7s8ixTGXer+DL7+L0ZmwXy3LqbENV036Kz9QlLXs1UKv/NjP3nByctve7+Lou2wkN6VDM3axUs97cFcuHaHWrjEUbw8233Mrm5haTyYTZLAcUWa+HTaI17WQ25oYbrmU83mZ7ZxOtBW0gL6ZAYG19jV4vi/usGtGJSCT7ouj3B2RZymw2wfuCwSBlOMri32FKmhr6gwEHDhxkbXWNLOtTW8WmaUa/1yfeMrFbtjFz8fPy+WxrF5b7SNTnIoR5N+82KWzOa+v5SRqhpet+qmu0nPlooyHBVbanbnBYfz60CEGaJPT6fbI0anyKoljISACUZUme540j1V6WzO3xtZ+3y7/m782d2ur9WKMX7Jk7dDif8epj9+PKX+3ChA4dzhbC5ha9GzI+f57JHErxfGG8DzWedeXE5zhOP6MRLaViOVEVnImKNe6IIBqqWqMY1OmakFSBVnxRlaB/+ZvidDQa3rdq21kKRpvhxIA2in7nRKPG8qx6dKpaHGI7YG3vr/1cEFSY25IqpRECoXJOElWX6ASUFgIBUZoksZTTMaM0I8lSgsQshqAI3rO2tsbKoM9oJWNWHAcduPiSC0myjIsvvZyyKLnpplsYzEYcPnwRIpo8L6vj0Rhtq7Eo0jQ2ncuLnMGgz759QyaTTabT3RjgEntzDAZDJrmnyD2uLPFFTjLooxOLcx7lfdNRWxuDUSc7TZ0klqeS9ShVlY9VuhpqO1jTynKEJlsmLY1G+xq0+6ss9NeQuTZjuVRpj5sMJfFe1SicCyg82miUglCZDXgVXbCMMahK6D2bTvEVoVCVKN6HaGvczmC0DQmWBeLtbEvTD6ZyF4vrzfUZIpXrmlKNnXCHDuc7/nl8GPm7T5ztYXTo8FWLUJSMbhA+PL2CB6e3nO3hnDYCgZ2yR+o6fca5jtMmGtobRFUWtnoeiHsJjXC34hLAvCQFpZugsV5HqkTX0hzvKYlFuxfCgnCW9sxvjblmQhph7fzvXuLvmpXUmoB2+VV7fHOnJDVf1t5vRbogoLUFQ9XxmthAsCJiBCGIAq1RQeGcpzSK/nCNJBugTYIi2vAm1rK6usqhw+uUPsOpKfsP7SMbDjl48UF2trZINg3bk00O6QvoD3vkhUNJndGognIloDSFd+zs7rJ/34jBcJU8n6F1SZE7hIS0PyQvHd47RBxaBWYup3QWUZpZPiPrO6x4hNqOtSJWcWdQifFl6b9Y86YqLUssc1K6Jh4tEqJ1ZaGsFqrP2k37lvtUVBezWlGa8quF26O+ZeY1d831VEphjYqktOqhomsSISAYQkWatQjBOfIiRyTgggdRWGMj4dbx2MSHk3q2tLM+9f3Xvu9DiIYG2uho76t1db+pKmsYqvK8Dh06dOjQ4S5CAsPbHP88uxC/etN5o9PQaNbSKZP+/nkpS4dzEneAaNhYO67n0gNB4nOt4iywpgrkAlXFfLQt1ZFwqCpYItRWnvPypKa0qlWbDzEQaztERRJQx5DSCtDCUsC2mI5XSmGtab1XE5vISAIBqOvz4+yx0bZZX4LMb+TWTHS97XhqFN6DMtFtylRWqWVZzEmMqoN/hQrR9tZoQ+5KMCkm7aNtSnAlKnhCWZAkmn6/z6iXcOOxL5D1e6SDBJ14vC44eNEBrr/uS5zYOsHa6CAoQ1kIOzu7OFcyGPQwRphlhums5LbjG/QHPQSLUhmpDWzsbAEZNhuytb1DPpshvmDQs5QzRcDhg2U6m5AFhw6uIZF1TidIaPQ40Y1MNe9Ldd6kvm+ohfEtETjxXsJolETvqZglOrlELkmSRgfR6DFQqJphhiis1hIzDe1MgA9xBErrqKuptDjaaAIB7zxGRxIVCRtom2CSDKUMVmsSrZlNJxRlTl7GHiZ1ZkMZXe1LCCH24qiduICle3mxxCqEQF46rFg8AWV1lT2al+jJ+fHvQIcOHTp0ONchQnZ0xg2T/QTkvOkQbpTicG+Xa1cvrma/u8zGuYo7IAY3MSjXcVZalICe19bHSpq501IVcTbiaLUUcN4Z3H451clC4fbr9kx41AqYqibeV6OaB7GLzkfLVqN77w9ig7ma4ATtkKAIod5+9WhEJALiY8mQUmhjyfoDkl4PAUpX4H1JEEdR5GzvbLOW9BkNV9ndGTPUgcnuGK01/V5KWeRsnDhBqgfk0xlbJ3a5+eZbKYqcAwfWWV0dIpTk5YTNjS1WV4YcOpiTpH3Gu1OC15hkwHRaEKQKuoMjhJIkS1DGUuaOwkHwDgkOtAV0q1HiYi+SmgQs29y2r2c9WV+X1Ql1hZ6a30NhURTefHbpr6rn/lv3STsTZq3FWrvQKE+puRC8vi7RFYymuaJSCmUMNolicBEoyoLZbEZRlPTrcrxqP2VZQuUiFbNii45a7RKq+hyJzJtHah3dwoCFDF67C3mHDh06dOhwJmA2J9wyXqUUT6LOF6oBh9IdPr2WkmnVGU+dwzhtouF11GFIldGQinBoLXNBBHUx0ZkLhG6PXNRY1gLA4qzxsn1tDDhNFPS6WsS9vK2ADz6WzSxkLtRJ+1PN7HU4KSCsA8mTxlyRG6UNIr7RItQNB31wuODwvoyN+cY76NRjTML21i5BC9pukKYZ08mUW2+6hfFGji4Nm8fGHL3lBBsbG/FciENCgdIB52dMZwU333Jb7O8QAok1HNh/gCRbYzqbxbKtsoyNBn3AaE0QIS8KChevtDEG0QZBxYxBtayeuV+2o21fz5PPRf2QmonS1DsJjcPTvHP4YulbTWxqotG8bl2rtnB7vo2qPKoup/PzdeItPb/3dLUfow1ItCwu8jySCjm5IWGoiIe1FqX27mRfj6N93yilouVvy5Wrvoedc+R53hGNDh06dOhwxqDygnHRryo7zg9oNPvsmGLNkp0n5V5frThtouGUREEzdW/rqgRG5pPSColJDaWXnV3vEpYdh05yJ2qVWrXXqQPOOoBbdpmqCcLJJCMGvEGFJt49VTZjcQxzofmiluRUxwVoCKWnDI68mDKdTUhMr0p8eKb5lMlkl/4gZXdnl9I5prMC0YqycAyGfTY3Ntnd2Ma4hPHGFjvHt5nt7DBMLMZapMiZbu+QWE1vmLF//QBr6yscOnQQjSDekxeeaTnBJCOUwGQ6AwFtTOW+VJWQoWODPZsQ0IR4CNERydpT6hHmovsE7+eBdVP2pOY9ORbP95y41dv13jez/wvXW2loicCX76G2pawxkTDEY5pnDOqxaq2jhqYZBbHMqyq3av6rXata91zTM4NYwmWsabQy7WNuHwPMCVX7Hq//nsq9qkOHDh06dPhqxLqZkK8oVo1GyrM9mg6nwmkTjVJVJUAqdqqO+uqq2l4ELapxH1ookzpD2Itg7EU4lp83QWX1PM4Ml4jEEpfoCjUfbdtFqop8F7bZdgpaJjfLY2mP+aTAtzpDQXxVqhMoypyyLPDBEvBxWTFjMt1lza+QBosKBoJmvD1lOp5STAt2tsf0kh6jbIDPC/LxGBM8g34fbRTjWc507EALSXqQtdV9WGPZ3NhFKSF4j0bRH/VJkgRXOIL3ZFmKloTJbIYShbEF2sWypsb+lbnOoD373g6U65n7WLamKIqy9f48q0CLZMzF/mqBONyepW11oheuR5s8tDuYa63xIcSOoqqVNamzEj40pKXeXpLETJhSuupsbjCVW1ZTslVb+WqDFx/Jucy7py8bG6gm67HYX2M5a1YTuXrdDh06dOjQ4YzgPPw3RaNYNxOKNQVJArPZ2R5Sh1PgtIlGUNG5SGmi7iJGVq0qlxgUqrqS6gxnNJZnr/fqS7BMNOoZ8LrvQF1C5Svb0hA7u81NiZrPnypjcereDe2MxnIGZs/AuCo3C8FhK3vV0pWE4HAuisRVbB6OD46iKBgMBmhSUiNMZjuUswJxgis86yv7GGR9ZrtTprsTVACTZWilMCEwK0t2nGNlbY3VfesIMJ1NsUbhvaCtwSYZEAPwJE3pZwlKgQeCaJJxzqQs8d7hnG+aNNbH6JxrzlMkcfMMwnxGfv46llrZqnN5+xoumgLUZHG5b0U7Q1ATk/Z9sHxPnOxaFaI9s5pfvyBVwA8xGyFzoXliLdYY5v5p894wdXmViqwCURoNBGI53PJ9075H2la4IYQFYtxez1pLmqYd0ejQoUOHDmcOqjLGOc/QUyWuHw1YOpy7OG2iIVqi41Rl31nXS2ltIARUaE/9c0aJRo3lAP6UY10ScFtrm9KbGMS1RcktPUAz+FNv9/ZQz9q3HYVu71gEwYeAtXEMeZlT+pLSWyR4elnCYNDHJoa8LJjNcjSGfjYgBM94EphNSnppxnBtBR0U49kmvixJdYLViswanLXkZclsVoBoRqM1bJoyLAu8K8lnU5CADxBKR1GW9Ho9jDUgnjTNcCG6RDkf3w8BjNVVz4l5kFwHx0VRnHS8dSftmB1ISNO0maFvyXzms/siOFeiUQulQ20Ssnxd2qSxXabUXr/JLOhY4teQAKnLAYWmLcxJmaia5HhCtR0RabIyEgLeuThmVTcCXCytqomTqQTj7eOqifEySarPS5fR6NChQ4cOZxJiNIk5/1ybCjGYkqqhW4dzFadvb2ujfa2gCAheYldnXLQZy2yCuLq8KvYeQC8GRMuz+wsztrI3eWiEuq3Aa1mQvVdQVrsMtbUCdYAnIhRFPp8Fb82E18vqhE29j1OVabUJTft1PYZ207j6/SYA1oogAR8UikBRFuyOxyjlGfYz0l5Kr9+n7ksxm+RYk9Hr9en3RjgnlGXBysoa/ayPnzl2k2lVqiOIi6U7+GjZ6kLAJhlZfwVtLdlgRHAlsuKY7O4ynpaYNKCNxVhDIKBV1GSg62sRyZEgaG2qHhpqgWTUx758vfbSKBitWxkyYmPI+vxW91hgD0KxV4ap0dwsrte+X9r3k63G3rCTKIxZyFLUx6KoCEpFQoL3lEWBL0uUxDSuktgc0hMwyqNN5R6l5rqP9jkyxjRZoL3O3V7H26FDhw4dOpxRJJZEl2jOn8xAQJhJgpkSS6A7nLM4baIxnuwCQul9nNV2cWa7LEv2ra5x0eELovuQsbEUJXZBABZ1EnsRjbqUZS/Rd62raNeu14Lg5WBzOaBszwAbY0jTlCRJ8N5HLURVnw9S7aPuyRB1A2jVHMMymaixOCO9KO5drrlvlxg14mWl8MFhqiaIW1ublHnK6pFLSbMs9mSo6/OTlOCgyB1pf8DaaopJDMPBAING92E2LrjuczcwLacY8SRamHnPzniKS1Oy/pC19QPsTqeMJ2MSoxkNVlCiyN0OadajlyWMt7ewWjBWo7TBaoNJkpjBUtFtKoSAQS8EyvW1SZKkcq3ye54L56ryq6XrHVTdtM4D1fVrrbO8nTbR00YTynKBTNSfa/+dE0+NViCNaH1BkEPwi8LymoQaYwjekU9nsVN6RaglSNMrpiEGIriKhCVJ0hznZDJpyBlQaT7sggNV+7y2LXk7dOjQoUOHMwUxhsScfxqHSciwU2m0mR3OTZw20fi7v/kbZkVO6VzVS8MQJAZiV15+hAPr+0iMjRkDQMm8T8GXQzsQPNWs7anE4Lc3y1sHbErFpn9FUWBtHGMdtNV9DkRit8EmOK2aD7Z7f+9VqnO6x9fWjNTnKOoDFMYkaOVJs5ThaIVRPyVNe6RpRq/fj+5EGAaDAVsbu+yOx1y4uspg//7YJA9QHnr9PoPRhKAsQcFwtMq+lQHbsxnb+S3Y/pDV9YMMVtcZF45JXhDKHIInrer/C1dGolV1/K4zPjG4V5g0IU0z0ixDGzvvG9LSY7QFzPV7NYELrRRnCB7nfZU5Uk1GoZ1ZMpUmol623LOjfW2klUFazp60S9qaa1i/pzRNrVRrvHUmo9oh2hisqUq9JBILqW1xg4A5eVyKuE5TqKdUQ3jb2ox6XMaYBZK2l4i8Q4dlnLhpjdseMuawGZ7toXTo0OF8gzk//13xotGO2POqwzmL086T5ZMx5WyCz2f4IodKxOxL12gflFa4EHDeN+UuZwJ7CaxPpddok5ZaE1A/iqJgOp2S57OTnJHazyP5UE1JVY32TPNyKVd87D3+vT4nVZkNEmv4JTYnIUmyWArV75OlPbKsT5r2QGl2x2OKIkcbQ5JlKG0YT3O2d6eoJGN130EuPnIlV9z3fiSDESe2dji+scWJjS3WDx7ioQ/7Fi669HKUsdg0Q2lLUXqm0ymlK0lsQmJjADwYDhkMh2RZD6111GUIWBODZGMsqnJu8t4vZJjqRz1Lv3huNUmSzJ2WajIAzPNHnLStNnlok5r2ta+J76lKtZazZkGkaRCota70FNX1rkv5Wpk1Yy1pFo/fecd0OmE6mVAUBc45CDK3vhVQIR5TrccIIVAURWPP27a3bZeT1e5SxpiFkqt6eW1u0KFDjfu+6MP88m2PPNvD6NChw3kI5QLTMjnP+mgoDthdXP9sj6TDl8PpRyzOMer1QSsm+QznyjgzaxOyLENpTVlWIlhtOFNq8OXyl1OVw+xFNtoz4CLSiMKjpW30BNrLqSiGh5EELASmS65H9b5iYHvq8ddOQu2O2UoZTC2EVgGt44w5ypBmPaxN0dpiTBIzMK6IGY6kh80y8qJkezJla2eXwXCE7g3QvQGH1w7wrd+2xmc/9Wk+/Xd/za3HT9BfGXG/Bz6YBz/sm7CDEeMyR6cZw5VVskTTN4osMbgAUjq0VtHaFk8ZAj5ULlI+oE10AvAhUDsAt0Xc7eC/3ThvkYypBbJBswlpelosZDDk1NmrhftCFj/ffn/Z9am53iE0DmptQsMemayY+6o6wHtPntfdwQu8c4Qkicddm7FVBMraSMqcc012oiYZy8SsLj07qecHNH87dOjQoUOHMwbnyZ2lPI/aaxulWdcTXP/2K1s6nH2cNtFY7fdY278fkyYcO3Gcrd1Y3+/r8pGq0zJax7qjM2iVdqqSkTpQ24t01M/nJVK6CeJi8KbxXhprU1jWW1A9lspzlm7oxdd7k6t6NjpJkgU3JhGF9wF0IEujnZdzHhHwQUBrtLZVp+iEUJYUZUHuHaUImASTZvRX1ggmZbdwmJ5htP8Al9373tzyheuZ7m5z4PBFXHrkSpLegJkLzJxnVpT4qhwniKcoHegEbUyl4ZeqE3VB6VwMfBVYm1TuUyFealQsM0MvEYq9M05tAlAH1q6yG9b65B+MSCDm22mTvOXtiwg++EgeWCQn7ZKrhkwoReVwgBDLn5oAn7pLeyQLUp2rXpaxvrZGr99jbf86WZriipLZbIaxlsRaqAwHpOrPIiKYSmfTbja4l+gb9haDtw0NOnTo0KFDhzMFVTqmxZDyjHY/u/uxome4Ye3i2eFcxWkTjVQrEsAaQ2ospqpTrxuWaa1RVqOVrma5z4zHbTswXS5Vqp/f3t82eWjrMuqgVWRe5DUnLlR6gcU+EW3ckYBveZa/7h2hbUoQITWQprFsSmuLD1CWjhBieZXSlsEgIRQFU5nglSLr90gHI3IniLGM8xLbEwZKI0EY7j/A5VddRTnZ4dCFFzFa30fpwStNQCNKxxK3osT5GVocSTbE9oeYpuysxLmYyag1ColOMdZC1VE9uk7NBdntx3Lp0vwaLHYPF1f13Ah6sTP4HuVy7W2fdG+omG1oj6UmFTXBbGs4qDMsuuoaHubakjoj0ThFAUZrDh46yIHVVURB2u/RHw1wrmQ6nZKkKb0sa8YSG4MLwXlUy9Z2MbO16FbWvlfa9243Y9OhQ4cOHe4WTKZMtg8wrrSG5wsOmYLpJa5r2HeO47SJhi9Ltrc2yYo+WoR+mmJtAsZgq8Cs5hV3Z1B0e+Uz7dfLxKSeFjeV5WiznbqmXmmUqkqjWiU+7W3tVaa1OKaTdRr1unklpLfGYBMbS6eSWIefGNBE69QggneBsvR4J+R5SZI6srRHfzhCG8UkLysxeQzLSx9IjcFmPZRNCJXr06ELL2Ln6K2M1tYJaMrSowcpiaSMRiu4YooY0E5DKFDaVpa1BldMcS5UY4IgCpTB2Og8JdWxtrUp7TIgpVSj3WifJ5F5CZq1sXwqL8omKxadvuI1EKUIKgrE67IoFsqb6rMe1w/N9Y5ksl7mQ8uYQKrGfJVFr9EWJbrJXhitsUbHY9QGaypiqFQk1/0+qVKYJAruy+BxweOcawTcUpsIVLedDx7c3JGr1ms45xZ6aSzfv+37rX3MXVajQ4cOHTqcKchkij6esBWSsz2UO4Q1bdh/ySZ6OCDs7Jzt4XQ4BU7f3nZ3F4wmmc3oDYakJkGraH2qRXBliaCq0po6rK+CxGpGOPZbDqiqT0UDqVc9dcC1XBYVZ7zrFWNQV+9lvtGWgIDYPC3OUNexa/U5pdE6IEHN140bbPaltV5s8lcH12GeEdFVcX6Ty6meiwSKskSkoJdlGG1jB3DvMdrgVEDhMFKytbWP/eurCFEgHrxQFo7CFugsA50S8BSlx2QwHI4wScZgZQVrDLPZFO8947JgdzZFZRklwvHNE9hZwUD2MclnzIoZk+kU7R1GFIRYKmSKEslAGYMojRddZUGI3a5tgiggCFKfhoYICCFUREHXBETqW6Dppo1EjYzRFmsSjC5oLmd1yTS1Y111TUUa4Xjd0Z0qq1a/r5t7TBAV0Cqg8FCVZZmaFPmAVlUDR2KpmIopi9j9u3qIj1qKpBJmW2MIZYHyHmMNCiH4SFZMZV0bxxczGFoUqiopkxDw1dhdVYq2V7au/rus0VBK4byLvWs6dOjQoUOHM4SQ52THNcfDADh/bNR7ynL1/qNs7jsIt9x6tofT4RQ4baKhrOHQwcMUzjEcjZgWZXU7ComNwZoLodJmxMC1Lp/SRIGsDwGpZpe1UrFUJdRrzJ132o92qUutdYh7lditXEBJbJYmMs9GSNUTAwQJ8asTNBgxzRiq+pjqqYrr+YBRGqyOJTUV6RBioC1Vs0JVZTtE6SZoNMncrpRq/K4sqYXoQYTCOcDVITceQYlnfXUUnYisjUQu65P1eqyuroEIk/GUaeHJ+n2wGb3BAKUNs+kU46M+JjGGbDCkKGdsb22ynU/wqWW3zFE7O+zL+rjZDKshUYrUpBTO40RQKsU7R767Sb+XceHhwyQ2pQhxvVA4pIR0MML52GAw0RofHEoC3pXxuia1Hiba0lI5LcVrbkEqgTg66lMEEpNglUbp2EzEV5awhEBSEZQQAqHKOmipHLuYl0XVGg+NAxWvr7FgtcG5mAVJbOxmHoLC+6qUzSZobUHVOhqLUnEcoSI30TQgMqGkl6B1EscBJDpDa0OSzC1r559TGBMwNmkIRJIkTUlZTSDq7E9ZlpHAaI0Lc9F4fFhEQVmWC5bLHTp06NChw12C9/SOC0fdKl6OxxjoPIDFcJ/RbXzoonthP6OaeK7DuYXTJhqJTfGVI0EQIct6KGsovCOpRLBSumpyuZ7Tb92sqs4uhCZwr95gPjVeLdmjNGS5Xt1LiM5HCEF87CchRHFvZU1br6+abYAXj6DRrTIfrTUqSDXaWHKjVcy7tF2M6izHsi1p/V7tfOR9nEWnIh21W5AWQSrRUj27Lr4kSQzbOzu4vMB5wZiEldU1+oMRZeGxRrO+vo90MKQQuPULX2Rja4f9+w8wHI5YGa3E7t0IWsWO1wCiFL3RCkobdsZjSjnKFVesMBoOOTrLUWjinL9GG0O/N2R9n2Xj2DE+8alPceTyy7nokkvZ2ZlwfOMEk8kxvE4YrSSkWbx1yrKMTe9aouv6mEP1fF52FsuW6mtc6xRcWUQSWZEFJWAqrUxwnlA6QvAgsSmfNRrRMQPjJFB6R/AB0dDrm0YHUY/HOdeI8f9/9v482rYtr+sEP78551p773Nu+5p40QfREHQSICKIYKFgl0BhpUXZgSLYpF0OUxNBHWXmyJFZw0TR1KFpR6mZaVclJaXYgIpIkhhSICgEhEQEAUQf78VrbnPO2Xuv2fzqj9+ca6197n3hfS/ivfPuu+sXY8c5Z+999p57rXXe/X3n79s0qtJ4Ez/OvZq1bPu9nDNyh83sdC3btCFUapWrgMCNz3XeG+B6Fq3JXbUXlVo2n+KdDyhcaqnzFd74Bl7Rv/Oil7HUUkvdh6VFcQMMeh8JNDDnqc9Yf5h/+qaeh7/fgd4/05gHqe6dOrU9YzvsQYT+7IzN8SW61ZrMuRA1DDd8sjZd5xSTMUdBS42Rq3SdSpiRugt9HouP1CYay2q2W61GbbL7ZdZQunHi0dZgzascoH17P6FooUTj3DuliqcD4ttnKONiREa2F+BIsSAqrNZrbty4wYc//BE2q54rl465fO2YVb+iFOXmzdtQA/O896w3R2TgY08+xeboiOshcPv0lGdu3OTJJz+GpMT1y5foV2tOT7ecne354Ic+zOXLV8AxCpTjEMklsT0pXN6seOUrH+P69avcunmDk9MTVqs1fRd46Pp11peugF/VptcE1OLvbgPcsjVmZ9OmSbWZ1pJAMzlHyj6TYm3QpTo+FSgxkastrHMecU1jk1HNQKHrPH7V4YPHh+qGdSC+9wf5FNBoc+Y61QDlKE6v5zqEcJBj0a4kM1aTUdjvnUd1unYaMBmzMpw7CCr8uC5q1CmdHIYMHlrvLrXUVO5zPoOH/8qH+JaH33PRS1lqqaXu0wp7Jer9l9H0qf3j3P4UeLTvKLsFaLwU656vKuc9uxoWl4GwWlGcI6bEMERr3Ju+mk8azrijznPb51+bKrmJhqd12ITlQN+hszXWtQvWfDfXoeYaNB/HuUqraZOO0kTMVVfQchZsylF379tOdJmmK6XSg0Sg73t65zm5fcYz/U0+6D/E0WrNY48+ivcdq9WamBK7sxO0ZNZHR4QQGFJmiDtSzvTrNTFnbp9uuXHzFuI8V64es15bsvhl1+H8jtOzLSfbHZvjDd4LefZZNuse54STk9tcvnSJYbXmiY89wTPxabrVmqPNEdcfus52KAwpmzi8ToBipYi185HvmGa0qYcdrxwjOUWCE7rgxuNl+SWWcSJACIJ3AdXWvMuof9Bi1CQR8D4QgkdcqSBkyqaYg452G0tce9eDJPNGg5rW3VyoBB9cFZxXUCG+DrCaqcAMsLo7wxzPg7I5RdAWIpUCOInA5yL7pZaa17u+8Srf/Ya/d9HLWGqppe7X0oIflHifTTQAXu0HhldF5PhocZ56idZzAhq5Nt0lRbb7PRLT5MjEzFL2BVjonVQTGUXmiAm9baxxbg1Nj46ONBabujR6l46RHyJiAvdZYzxqPzAQ4YBSZtSbKkx2ME4zKrFmBBiijW1zeGRc1SUMu8j60ooumK2t4vChJ2c4Pd3ivefo6JgrznMy7BHniSlxdvsEcY715oiYM8/cuMF2u0cVLl+5ypVLR7hieRi+67h0pceFgbPdlt1+j/OCYnSlrl+z6TtWziYcZye3Cd5x6WjDk089w9n2GXy3Y3N8Cd8fsV71dgrUU3ICqDqJO3fh5xQgQaFkchygRPo+ILIeNQ2GAIWCTZlcPSdN7K9MWpwy2+Fvk5DQVaF9SqM2Zp6kfYfFrOG/A6CRUhqBwhwsNWqUOEagIdLyLRqQOQS0owB+bts7qzssbcepyfT+5/8OllpqqaWWWuqTVuJIa+HI7e8bfUaryy5w7ZET5OoVeOrpi17OUnep5wQ0TBxtzd3Z9gwRz+boyHZ5vTcePZVL/klcZNs5PqDhGLKxb0UmPtKs2mRj/n0DRNKAik7NnVDF5CojPYtRYC6TjKRNORpNq2o6JBfEQe86ur4jeD/anlrD6mjTFRUQ8SCCF08pSuc7XvnYq3jzm97MQ9cfIqbM7ZNT2yX3HaujDYNA6Dq22x3lbFdF1MJ+v6MUcM5zfOky6/XaPp8XHB0giDpWG4/rAvthxxB35JzwnWPVrwjB0XlHHwK3btwgxj3rVc+jDz/EE08+xRNPPoHrex5+xatZHx2PJ0JnO+/tfJy3ZrXjVnAopVKoBGXdB/rgKM0WVoslb+MMoLkK/pzUxzM51+ZcOdBFqIJzCtxJgZpfP3Og4YqSq0bofBhg+xyNAtV17c+lzCYVVWOEWDaK83e8zhx636vGYn78GuhoAGippVqd/edfyB/91d910ctYaqml7uMS7zl7heMV4f6ziF1JxxuuPcP2FY/Bzy2C8Jdi3TPQWB+tORt21Vq0NUxKyukO8apo7b0+CXVXi9u6T4zORLLFGn+V2YU2o7wITMFpzppY1yxsqWKouitOqa+HVuvTSmOpr+nFoTWkzoCCNcMaM16Evus4Pr5E6AK77Y69uOq4Ndnjiqup6sDla5c5uX2L69cf4tM/7TM52vRst1v2+0scbY7Y7gbSU89wzTt8CFy5coV+tQJxDNESvp339KsVm82GS5evABiICNYg56LsY6EIhD6g0pNLRMlVzO/pg4ec2Z6dMuy3xDjgRTg+PuLSbseHPvxRbt+6xdHxVXAB54Tg5eA8nacstZtdNwVRxQt4gc6ixSlFUF8dpyrFrIE8rRhyOqUOM6dSVC3hveu6UbeRUsY5HacYDWQ0oNGu1fH6cg4/ozu166U9r32OptewgEcZwY0BUFdB3qTraMekXYbn6X7tfcbrsx6nlDOq5WAt593XlloKoHzpL+SP/un/la88WugCSy211PMv6QK7R5RH/W2gv+jlPKdyCJ955SP84GNvYHPRi1nqrnXv9ra1QS8lm4BWjX40DAOxinV1poVwPB+kUXf7zyHSudWt3WFP1aKVGtWAhjXS/vxLMmvqKkXn/IRDhZp7gE0oaHR5AwXmKmWZGcG7KZ1DxNLRRQiht0bae7wI5EJJiT6EA+cgAy2OUjn9Z6dnXLl8ha/8iq/k7PSEH/nhH+Kh61e5dvUafb+mlMwQI8MQWfXmnNT3HUfHR6TbJwwx0nUd1GlTjAOh66pmwYTIRa3pRoUh7tgPexBlte5Zrzv6zrM7PWN/+xaCErzgCOx3Z+x2WzRF+i5AyeyHHX7fWWYKYZxoAQfGAAenodGo6muHajNrp9OmAeZKNWl9EBktbbUy3YRKk7MTWK8LXz931VD47uCamYOdOxyg6jTi/BRmLgQ/nCLYOWsARmpojK1Z7tCE2PV853GYA4+DY6Utj2QCFO0zTKL0pR7kcpcv8z/8xL/isvs3vLU7/k//wlJLLbXUxynZrIkPZa65gfsNaHhxvO3oA/yLV3wxR96jKV30kpY6V/cMNGLJtrtcLTtLsSyDIkrXd2YF6jw5Z0LXm5OPHO52T/z9u79HKYrItBs+b9paovIo5K4736BoLmjOFURkGEW6dYc9l0qzMcCAqnH/XfsZxBsyNhqWNeXOW6MIM5Z9feygQazTFClVjyFC3Jtlax9MVBxjHI9BzqVOOGBIA4888jBf/mW/gg998EP82I/9O9v5p/CRxx/n0cce5fj4iKOjDfthh26VoonN0TGrPnC0WeG9ifLPtmdcunyZfmWgQ4IjhBU+BMjmjrU72zNs96xDR9evEFfIeWDYDaS4A02Wgu3N9vXk1i2eevppjq9c5RWveJinb57iRemDNyfhqplojXlr6IdhGHfgm17CAu7MDrfrPKp+FF7b+W+BfDo5flUKW+gCfd/TLHEnvYYJzJ2HdejRcqcDVlvHeQqe954C5DI5cDVdB3AwVZiafY9zEGqqO8AwpPH55i42WetKDbWc2+bOpz4hhAPgUWo6epzlr7QkcXu9BWg8yPXN730HX7LesZKe+60hWGqppV6aJZsNss53OHbeL/WL1x/g1hvh0c0GXRLCX3J170AjJ4rYzKKo2cMiQtf1OGfNmxeHOkgpIi4g3vNc+qLz7jwf97nFhNrAJMCujXznA6EJdZ2SxeYrY55FpUj5NnVpjlNtZxsQ7ybtR32OvXGjbo0Ersk+18l5mchBjkPOmf1+PwbD5SGxXq/4vM/7PH7mvT/Df3znT3Ht2hXOTm9xcnrCjRtP89HHP8ob3vB6Azg+4B0M+x19F+hXa9arjq7zDDGRbw1sT09BC0ebY8LxMSklAxL7gRxr058LTgLedTgvlJxJww5XLPF62O0ZdltUlRiHKsiGII5r165w6egIL3YNpJQOaFPtPM6nUjI7hioy0u1wAjiyWuBgqYGO4rwdS9yYCTKnZR0Kre+cErQJBfWcn58ezLUkTtwIIM9PNeZN/TxHQ9XC9eyz28TIuwa03EiVavRCUQ4mK41i1epgfZVO1qhSDSTNqWhLlsaDWf5T38Q198MVZLw86tH+hKde+xrSBz900UtZaqkHs0TQK8eEdbzolTzvepXv0U/Z4h59mLIAjZdc3bsYPFTht/cEb2nKfb/i0qVLXLt2DTBaksMaOZXJyvWFKCeOUF2kvAi52s46cXTe48c8BijOI3VXmgoknExQQZARyR9y6O/yCSplh2ZaZU+0NVXth911yMm3SUYeG86cM+vNire+9dO4efMZ3vXTP40Pnt1+iwuB7X7LzZNbnJzeJmsia2bVdaQUGYaBVd+x6ns2q2DjGHGsuo7dfsc+7rnxzJbd9pTgjS5l9DJYr9Zsjk34HbxQSoQckRJrfB+kOLDf7Wqzr3gP29MTsga640tosUa7iAM5Ty2amux5LkWjVKkIqU4q7BzZREFLMatdVYII4l09x41+ZDv6WhTn3bnzhIUDahnBx4GT0zlnp8P7DBw3oHH+d+c/N6BRVElxGKcSTqZAvzn1zzQ802VyXrMyn26M10mj8VXHqXmKeAMbi07jwSv9os/hN/zN7+YXrV4+IAPgz7zqx/i0P/Pb+JTfuACNpZa6iJLQER864tLRFn+fDsxXEviyt7yLn3njZxJ+7n2LIPwlVvcMND77bW8z4az3OGdpyMF3KMrR5hhws+bSj7Spe605peq8+Ptu5Z0zWpIIpXiKKyOAcCo1ebvSa5x9HScUswlGc40aLW5nk4tnQ0pt8jEfv4yYo9F55m5WIgwxjmLwVGlgjzz8EMN+xwd+5gPEuAcK6/UxORcQZRh2hM7Ax2rf0a8cTgreKY6M5gER02t0XU9wsF4Hzs62nJ1tKWlgHweCD/TdCucdl4/XHB8fkdNATnuG3Sn7/QmaIiUV0hCJw55hvx3pZU4c2/2efdwRirJaH7E5vgy+ppufmzQ82wRBza+2Tromap0BtEJRKK4FHTpagKLgyCVhAX1Nz2FTFqg6jkZfc88ehnc+F6OdQyfT9XGgBZrVXKshTFqPOwHMecDiZtOQ6X4wG927rXPugHU3wfhSD16d/re3+e1XnrjoZbwg9cvf+B5+9ks+F/eD/+Gil7LUUg9cSd+RjwKpOE6LMQzuN4tbL47f9si/4ff9gl/Iq//thnJ2dtFLWmpW9ww0Ll+9as2PthwJZkJd01Y0NyUZW+znVs+FOuUQQptaiFBEcErd0TY9glnXGmJQUcS5aWVak8Ln76+zn4U7wIT93oymM1KCjEZUDh6vb1JfLOU07lI757j+0HX6LvDhD32AZ555ii44ulVHKZmUI94LXefZHK0Yhj273RneFxNue4cXSHGPy57gHFlAS2LVBVZXL3O8WVOKElMegQZFWXUBTyHlgTRsidtTht1tS98eEjkWo6KVTC4F6Tr64CnakzVxdnpCvz5ic+ky3jkDC+foSM9O7akgQszONjdnJ+ftvIhpEZqdreEIVydPDsEjTvCuO7hmKMUASk0E936W3D7LwZg3+u382ftMNKw7nsNdBNtM1Kb5FOM8dcuoeoeTlfO39lrzz3N+mtI+R3uNZaKx1Mup/upr/y1v/arP5Y0/eNErWWqpB6zqvy/djT2nP3uVd37mK3lL9wz3X2wffP4qc/RrH0e+93XwU++66OUsNat7Bhrv/+AHpgYxF0pWhiHived1r30d1689VF2NKi/9EyBOnd/5vePxenPFXIZKAVeYXKTgYHTWnKXs+wkGjZQV1RGgjDik2P/dwZ5SJaZUpxozJlXdTZ+edqhRaPoQgOPjY65du8bp6W222zM2656UBjbrftQAhOC4dv3qGAI3pD3xmVMuHa042hyTVx052evuSqZLEZxnHdY4b+oTcVLF0TZlMtveyO5sR4p7Sh4QTZAiadiThoSoJ3Q9fdeRU8Q7c2AKfY/4yO3Tp7l96ybXHn6YlQ9URfgIoA6O6+w4mKbCckPUKYoDjTZRGLUz/iD53dXzRVFEHN4HmiB7mn7ZzTuQejU7J3esY34u2jqNSucMlLpDe96Pq4OY60Rmk7jzZe99+JrzlO850BgtdZ1NNOZBhG1dc6rVUg9OPfEHfinf+pZvv+hlvKD1e77qn/OPv//L6b/nRy56KUst9cCVv7nl2k9f4u1f+hZ+zdHb6eT+gxor6fiLn/73+J1f+l/xyveuKUtK+Eum7hlovPdnf9Z25LNZvJJhu93RdR1XLl/l+rWHRu2BIlXo+9zrPMj4eGCDOrVw1anIGktGalR7XntuNamiqNnhilruhpvx6ss4rTCqz12VJqOtrv04NYzn/zgnQXIInhgj6/WaRx99FICz7RbnhfV6jbJiiAObfkPfB/o+cHx8REwDvvMoBS2J7VlCVOl6j1YakfOOY4HVag2aGXYD290OH3pC6OpxcQTvycPAsNsCGSFDSTiUYLwzVA1AdV1HF3ylI3lEhb4za9/Tk9uc3L6NDysIMp739lntWEygY2z4a2OeS0E1jSAlFzvKPnh8CKRUsyTE4xWKZkQwu97xumjHWCuQatfKNFlp6zk/mWjAz3nTtqi4A3veucD9/O85J4gLkBMg40RDaIDgLmDzLgCmgYcGfMZJRdX+zJ2x5sf34HWXeiDqxmcmfvXR/SvUvJf6ww/9LK/+88/wv3zdV6E/8o6LXs5SSz0YVf8NlrMd19+z5wc+8hZuP/oDXLq/mFNjva33vPk3v5uz730NvPu9F72cpWrdM9CwUDRhKBGptKkYY50GaG3oMjHHmmNgSRQ2PThswPXguwkVNPrVwXPrhGT6rfrV2U64r7Qps7uFhjRy1UlUyrvtCFcwoqWYa1apNrdzjn0Ni3POj2LzWfeHOCGs1lUo3dZon7TUKYfdapLIrJGMux3XH3qES1eu8KEPfYiz7Za+C+yGiHcQup6cCzElrj90ld1ux36/JyXLz7h6/WFcSeRcSDGRUibnxNHRBlYrhlLY77YW4OccPnhyVHKyRt2vVqS4Y78/sYTuHElpT8mJzjtIhd1uYIjZLGhDIJdCKZlYMqKOzarn1slNdicnXL58tX5YV+2NTVg9BqBjx1rJNoGquRMtKb05fJXaRIcQCD5UMGvNv2+C/Vnjn3NmHECNvXwL8ms/H2otmjXsHDwY0DA90Xzi1Ox458F7BwBFPE2T5J0zPUlNF1cVSzav15gBvDunPk3kfV6PpHUa2B6br6HrulFEvtRSL7f6TZef4TO/49v5Y7/sa0gf+OBFL2eppV7+pQVNCT05pf/wLZ584hpn9/E+Vieeb/+U7+JL/uTv4g2/8zr5mWcueklL8VySwTfHnJ2ecnr71BruXPCq9M5ZojQ26fCdAymoJIQAVP1CERM544BSgXQBqUnjtXM0i8+m+Sjjcy2JGZAaeJeVYR8riChjc4cYWEi1sXQ13C3lAmKp3SEE28FnEnb7ajeqFXxY46mklPFO8F0HquSccKGF4zUgNe5p45yBnlSzHrrOGtndfsely1c5unSZp2/cYrsbcGHFEBM+rPBe2Mc9146v4AbP9WuPkJNw9cp1NCspKqenkVUf6LseCByte0qOkDPD9gwXPEVhszkixj25Rmuvug4RiGe3WK1WdMdrttsz1l2Pcx3brYNS6H2P1z1OHClF8rC3zyaO3nuGpPS+o3ee01u3uHrtYXo8u7jDr3rUwe2zE2KyyU1fj7NqhpwhKbEUXL0KXD3uueVsqKLZ0tURwTUQOmov/LTrbwd9oujV+1I2gBB8GCcJLePFbGwFF2ap5c5T6nO6rhvfI8ZoVskVYDfa0hBjxbMVQLpqZ1uqvbEIBctJ6ToLNaQYvcooX4VSTEPk8FCEOCS60LHq1mTMMrgLvV3nxa6pVd+N1LKUl0CiB6ne+gd+lC9506/nB9/2nRe9lBe83tavjQe51FJLvfClisaEbrfIjVuEjz3KTu8/2tS8rvsj3v6F/08+77/5Q7z1j/2HhUL1Eqh7BhonJycMuz05JXzNDtBSRmqSYHoGZSailiZafRYalYCBjflzLLnblNn1hn01uXXVV4iFBZrmQlAHBTHL1OBwFbR479GiBLWsg8kiVEcg0pyVRnoLGI2ohhQWkbH51eLq1ERQKdO6ZZZCrVpzPJo4HlbrNavNhqKF/TCAc0hRnDcHL3EF7wLDEHn4oYeIMY87/l23Yr1e48SzuXSJTR/Yb0/Z73asOk8XAkHMcjXlQu6CUZGk8vqLIA60RChC1wnBrdGSKTkTnCemhGZwKE6UPjhSsQnBkAaGfaFIoA+OS0dHdH2P04JD6VvoXM4jeBinRPVSMGcoRvF+V89D+9mABUgFHO2zCxwE1s2F0PPpxHlNw93E3+eF6gpInTw0C9kWkAc2xTuwmdVS6V9+zGJpuhyF+r3YderMplbFVfBbKi1vAkpjNgZCUa0WyzrSvUzPUcgZci6s1/a+/j7/h2Cp51gl89GnrnKzbLnqNhe9mhe89m98BP/z77/oZSy11INRdarB2Zb1U8Kp3nNb+JKtq27Dd//6P8PX/Ydv4qG/8yNLWvgF1z1vHd26dYvtbmc0l0lx/YItrNV5UbHdaeF1q35F3/esVtaIr9drQtfhg6frOlYre7zr7fvVaj0GDLamsut6+t7Ss30IhDrxaLakLb+gWZQ+2/dzwW6eNcM5Z4pq3d0ObHc7ttstOWdiiuRSGOLAbre33YVcuHR8zO3bJ/QhmNdSbcK9l5EG1nWB1WpVm+xMzpGSI1oSWhKltD+sguYIJSOqlBQpKeGBEiP77ZY8DMSdWdqWkihVBG50swQVUHTO0fcdm3VPKYnt2QlOYNUFtCTSsMeJEJzlXqRk9C6znp2afl8D63wVrTf62pzqNHeKasf4brShdg7mgXbnf+9u1rL1TWzCoAYCck0hF2+0M3EyBlSOFgdVlO59wPmAc3aTarmrlc5VioGDUmy9RZVc8jQFq4DMB494R9FCKoc6l/b93Hmq3ZZ6sOrNX/vv+cK3/25Oyst/d+57/87fYPd//oKLXsZSSz0YVTcJdRjobinxZbKR9eaw4f/yX38ffPanzUWdS11A3TPQ2O8Hckp1V5YqrbiYk9eEw13f0ff9eFutVoTQjcnLrQkVabdpvW3a0Rq5uQPQ3H0ImO0u6wQmZrfW/KWUGIaBYRhqk51qMnceG+XtdstutyOlRClKyUbT2e8HRITj42NQZbc9pe+CUbFyJg57NGdQxTths16xWa8ITohxzzAMCKZzaLoHLZVSlrPpUSjkGBm2W/a7Hfvdnu3ZGcN+T4qRHCMxDsS4R0sil4GUBqAQgqPrPH3vWa0CMe158snHefqJjzJsT9EcCQKdF1wFTDFG4jCQckal5mc4N+axeO/H/wA0UfXdpl+qOjb7bZrUgMR8CtEyXKbzPtNV1Pc9mHZUfYlInVJp1fmLPXcEB1qQ8ZoKJsCf3aZr63DtOZdKF6wanlLq6xklzHk3Om61a6hda+26avStFvjYrqelHrx6w294Bz8+vLwC+56tvuMv/U8XvYSllnqgSkSIl4VjeXkYT3hxfN21H+Vd/8Ux4ZWPLWDjAuuegYZzzhqjKvIWOfT/fyHrTtvRlnxwCCBUG3d+Ahiqh9OQ1si1W855BAcxxrGRSykR4wQWYrRE7vbYHEScBxzzpnGekH1+N9p7jw+uTjusQb58+TK73Y4+BFZ9X+17jeIU42AJ2CWzPT3l5OSEFCNexGxovaMLTWycoWSbcGRzcTIaTmLY7w24lEzJiZxipSspmiMlD+Qc0ZzqhCSCJtCIk0LfO7xXnnnqCd7z0+/kg+/7WU6eeRqNe4IWPFhgolKPcRV3hwCVJoS4cQqAOPOKmjX/zQ1KEVIupGzNvg9Ve1H1FeI84kP9Wm/Oj69Bs7BtFLXZ48321/uAd6EK+BtgMCWJ2RyLpX+LR2SaMLTr6byr1RzkMAOr+nG+n1O9Ur3W2vV1HuAurlMPbv2Ov/UHiPryB5qXpOPn//svuuhlLLXUg1PeM1xTjtzLh2b0Gn/En/wV38H7ftubCK959QI2Lqieg+tUwAEpldHtx82ao4uqOQA5z+GHqeF3YvQdVa3ThDJOGsYMA5ExrVkrXWj+PnDoftS+zgHXPKOhNZyr1QrvPbkmgvd9P2kKROi6QIzVRcs5Tk62XL16ha4LoIXghb4PiBNS3HMSt+RhR+fBr4zKNCZiq5plrRbQTEnJ9AJZKCkZUEmRVNyoh2iTEkdBpJjKoEQg412dJpRELoImxYkneCHutjzz9E22ZyccX7nMtUce5RWvehWby5cJ3RoXOiJCinkCFnWKI2Kie0Os1WWpNdyzYMVGXSql4GpauIppJUYvMq3he+LMRGAELE00NKNMabMmHh8ABO8bdcshzK+h+fTjvCPa7CUP/hZsLXZNHTpXtTBH+zy+amh0EpIXHXVOdq3m+j6HgYBLPZj1hv/27Xz+0/8lP/4tf+mil/KC1pHr+f6v/9N8yfE38ZY//EMXvZyllnrZl3hPvFJYy8tnI8uL46uPH+d9X/cv+dv6q3j9/5ZIjz8x/eO91ItS9ww0mmjV8tPMZkeQF3V3dd7sW+Onk5XojG7SKCfziQJOjDh/7vXa401wPBcVd8Ea/4NjcK7ZPG+7GsJ0SOfaAZhSqkMIdbfaRMN5pMgEYhoY9js2r7huS06Jzh8RnLA5OgJktLu9tOnpg+Cq6Ls17QqW7J0iOe6REChQdRyZnBIxZ5PRq00+ck54b1Jmh5LjDjRb6njRuk6b8hTf4ch0Qeg9bG/d4MYzT/H4Rz/Kzaef5tVv+BQeevQxuqNjuq4bQwMRTyGStWCqE60DDQuCFMwu1tUmvdpKmcha6ySkTtOUqqmoiet2MqjXhXmgjT9WUDKGMTawMdrvGrjBeXAOzVWToTo+Ju09tE07zjf7Mv49OKkUMTLtiCIe56lUKgssFHE2OSoKEkZb2xACqlKv5+a+ZuCXaqG81INbr/4b74BvuehVvPD1qnCJf/0138avYAEbSy31glffIdcG1i+zf2COXM/vv/4OVl8f+Wv9V/DG/7UjffBDC9h4EeuegUZKieBbqkGjIL24YvB5k19yIUVr0ub0JRFLsm5AA6Z8BnAH989BQLMwjTEaGPDOmt5Z8GADFefD09r9U5OoB7f2mo2e1dbQaF77/ZYueI42R3jnK1UqgWY0RxzKfr8j58zx0TF96IjbE57Z3qbzQvAGatbrDd2qR9S0GEkcOUacWq5IGgZAISfSfg8o69UKCZ6kRq8SDKzlFG2qEwI5ZVQcSYUhQ7dy9J2nC2ZBu9ms6VPi6Vs3+bmfOeP0bMunh57rPhD6Nd5VVymRcTe/TZCo7lINHM6F2+0Y+RBQYL/fj+ezAcL2e5PuYhxi2GvU86Zl0koo7dxYWCAKPgijBrue4xbc13kzF7DrTutQ5Nx0oyhJywHwzrnQ8j2mAMMp9btR+4oqvn7eluHRND/NDWt+3V30FHGppV6sen24xA9+zbfxZTe/mdf/d2+/6OUstdTLs8Qh6zVXr57RvQwn5pfcmt977T189jf8VX7XW7+ez/jjamBjqRel7hlotGYuhGBCY3G4tlusWu1LbUfd+0DRu1+sc056myZ8vKlIe868gS9qwXnedTjv0FBqeF2uUwQ3Exc3gMDBz+drPnU4//P8vedWqfMAtv1+f0Cbmq//fJPYwtxiTLhoTlGu7rDfvHWTkhOrrqPvA6tVR4x7+tDZRKIk026sOjQVKJn9dmt5HV0gJbOSLaWQBigps48DslohqgzDnmG3JadI8J5BDVikGFHN1a3KJh0lZ/Z13YpDfEeYZVn0PpiFbtwj4liFQFR46mNP8NPveAdvePNbeMWrX4OEwBD34zESHDkVqskSIhBCT/ABLUKqkyk7B20M4RCptq+5Uvecs4fVro9U7XVtalDour5axZYpQ0OEXCc4WoGyaT0cWatw3gRIIEaiSqUQRm2PIjg0F1Sb65UfJyfUHAwDDLa81AThVWxe1KYTXrH3wWYWWrSGBwZULXlcqpW0nfvZRG+pB7bK7dv8Z1/xW/juf/Z3L3opL0q9KlziP/zuP8/Z75xEql/7uV+Fnp4tHvlLLfVJKj3e8IpLJ3Ty8syxWUnHL19HfvRX/EU+70/8QT7jW07IN25e9LIeiHpOEw0VZ3F7OVdayuT604ee4pRUd2IRa8DO13lQcVf72rvUoWPU+fsdzs1FtXe6TD3b691NlDutZaJlNQ3IfBox/0xtB7qJgeePNXAx15EYYBJEMt5VG9xcGLY7HBC8Y7Nacbxe1alKrg5SkZIFqRkLJSf6LrBa9QTfhOOlCsAFUQMRqSWZl4xUylEuhVInFyVnUo4UzYho1WnUjl48SEBdM3m1iU/XBfquQ9WyTELNIon7PR/7yEcoqvR9z8OveIxQzQTOdsN4jnydxIxp7TV3pQme5w5RqtUiV7U6ONUwP7WMldJsZbVqHKq2QjFdUS6FUF2unPMED8XZ71FdphqIHc+xc7auUsw5SxVqgF45t75RC1RNCKg0KCWT8jSVcHUNqkqshgNtumKvw3gdNc0G9fPG+PJwA1nqEy853fGj+4FftHowXKhW0rHy3fjzP3vH9/EDO/jWL/2qJUV8qaU+wRIn5KsbXn30OJ28POxt71ZeHNf9ET/2FX+eL/7AN/GGb/uxZbPiRajnIAbvcFgYXduWtZyF2oij1tw7IJf/JHB4vjU2d87VTWdLJRfR+vMENOZlgCEfUKXa/fOpw9jktaxyLWPj26hZ7bPN6T5NRH43oNEC2ObrR4Ted/YaUuj7DhFFNdOvAl3wrPquJkILOSXLWWggoiRySuRhT1gFtJgrlXO++iYpqIEKh+VnoIpoITghi0DJFK02uKpoTqRs0xVjjFlinziHiiKlhiZKQUrL9gh10iB0fm/vKY4hRZ55/HE+cukyXRe4dOUKLqxqA+9x1ep2tEuu7lCK7eoXVUQhVGtanOLUQC4wZlwoJt9GBOdNPC/F1ow4ikIuNvECIQQ3TSxG+lbLwLCGvk1TmsOUXQOmjygpkzm8ZpqjGEwZGKM7Wc4Uneh87bEmFG/2t3buCzllShK6EChZiUOsEw1zPisLr3QpIL/nZ/mv/8Dv5/u//dsveikXVv+nNfyjf/hhfvIXXfRKllrq/q981HG12170Ml6Uuu6P+NO//W/wJ//j13Ppu/49GoeLXtLLup6TGNyJQJ5NAOybcUdfqzOo8w7VT/74bQQZyOgg1Xa3203ErF2dO3SMMg1HvEPQPQcacycqwZpt1cN8g7lV7RxMzXUC521/5wFs0wQFnDe6j+bI0dGmrltYrXo71qWQUyL0HqUgWprem1wszVNLpiRIWijF0/crnPN2bnK2Zl2oYCLjkBqqZ+ChZKFgTW7L3TDTY8GJM0qQ86h4MqC5UDSRs5CSiZX73qxf+67DiaNToVPYxcRHPvA+fBBe/8ZPoTu6BPjRwWlOVepDZwLqCjwa7ahoFXXX41squHUiRjWCOs2iZk1MGoxY9Q6xUpmoALVNCvLo8FSq+NrsfxXwVchvGptMzpUmV8PpzTzAjptIPriOmi4nxkjKJjYPoTsAIXOAIiLElMjJNEKd8wzek1Jiv9+P+SxtovFi2UovtdRLvT7v0vv40a/49az+2Y9c9FKWWur+LXGkjeeS3+PuPfXgvq5fubnNP/zmn+Q9u89h/b0/gVYN6FKf/HpO1Cmct4kGh2nOLTAtqVFUvPcvSGb4IVUlMwwJQThva3uecmMgIY8TjfON2pwO1YLkvHd1V3+yJ21f5zvYDXgA48Tj/ETj/M/TG3ucKjEqq37F9uwWHqlUKeu2c4qor5SpknFiGRUxJ1IacHXyYiqK1sNrBSCFzge8d9UiVuo0quDrTr4CqdRGOZfa4TucCB5DNU48pYbaOalagqKUrDXgzhO6jlW/whNJxfQHQuD27Vt85P0/z2bdcfXRxyiry4Tm7qTT9CCXMv7nTZzD12nBkBJBFec9RZWhZprM3cCa/sJ7b9OLaInrVDCslfqUSyGrOVu1yUDTSzTHp5SSeUKJw3sL2IsxjgBXELw4vM910tC0N4w/52yJ6ClbKCPOE7pM8KHmotj1mIc86lGgTt1SRlM+cFEbhoGzszMzZAiBvn8w6DJLffw6+tkb/Iqf+nX868/6Rxe9lAurr738FB/+U9/HX/2yXwXAW7/9SfK7fuaCV7XUUvdfpSPH1XBmDIEHoFbS8Sdf/S/4bd90lVP5HDb//D8sk40XqO4ZaICJlWlibC3Vtaft5FpzmHKjUr0wNpwjgCiNRnMINBoX/k4bWkcIU1I0TNSnubVte9yJIJQRrLR06fOpzXDoiHU3XchhtkezVzWdxWjB6hy73Y7LRyscpn84Pj5i3XcEL+TYVMRGAcspUUrVd6SEInjvQAta6iRGJ+qTw94jV8oVWiqQsiyNki1jw/QWRl8CkMpPEhG8eDoviDqKWq4FlQLVhc5E6gplt0dzoRPYdJ7Tm8/wvve+h1cV5fJjK3y/GY+5NeaFlPfjse86oxmJKiVGEhBEbAKhh5Q9KsmtnY9Syhi8OBf2m9uXZ7WK4zXivaeo6SLm5xYgUxhiHO8bRfzJpkTOuXFqAUYtFJFx8jAGNwLiw4GbVnvNNrFoQKbRE3enZ+NrdF1HzpnT01NSSvR9z3q9ft5/P0u9fCr/x/fwzD/+pfBZF72Si60/8tB7+SO/5b0AfPUv/rXIb3k16UMfvuBVLbXU/VXqhU5e/mGg83rEH/PX3vz3+fr/6rdw5j+Xo+/58WWy8QLUc8zRoG60m3jXOzfurqaUEC8jpeSTWXcAB6nuV715mTqXD0CCNZL21CkJPAMTsJinM88nGncDKY16BYdTi8a7b+89FwTPa+6sNU401HIgSs50XVediiJOVoTgWa16jo83rFYdwRmoylpdjaIJuH3VqQz7HZIsb8G0zX6cClDKmAkhFdw026aCjunglotSD28TIFcBuavUKqk2rVIqoNFGr/KE0LNem14ix4RHiCVx6WhDOo187PGPEl3gleESD4cV6/WGEDwxZlIa6vmZaxlcFUh7VKnPs+f4qm1pupiWPt5E05ZRkmb6Bxmb+XFa5Zy5OyGTgxUcAJbzlLkYIzllgkxOY81ytwUytvT4pt/IauejaBkpU+3WaFHt+d5706RUQThA3/eICGdnZ2y32xGQLLUUwGv+0Qf4rC/9Wn7qi/7ORS/lJVHf9anfw7f8k8/lRtzwM7ceJfzK91/0kpZa6qVfWnBRifryFYI/W702XOJvv/Xv8n//Y7+Wn3jo83j0H/wU+dati17Wy6ruGWg8/NBD9D5YJoU4uhDou57Lly/z8COP1mbKJhuqeQpIO+jZ7wZApHFfaNJeqgZjutnjUmXOUvUDwTe3HsWo/pbwLHKYpCDadsLvtK51zuG8mPuQqonZpYwUGREBrcR8LTZRUKm75ebA1ILUXBOiz6c57XWpjkhl0hCkkhj2ey5fOub05LbtkFcXKC2mLTjbJlbBju16tSKIoNkyTUJYmW6DgncQfKDkiNYE8mDpDORkIuLg7WfTeZgmoeVLeOcpviV/1zyL0eLVRNVe7TillNgPe4b9npzLON3YrNc4lDgMDMNgr13geLMha+apxz/KrZ3whl2kAy5fvoxXAycijW4npGwC7JQLKVVHrEqZEoEQPMMwsN1uK+iF/X5HSaVmWdj5MBF/A38e51qOh6Vte++MUpUyPoQq/teR+qcz4OjqxCkOEYeguXC227KrzX8IHaCTbkRkpGvhpz8zcXZdUb8eXb4yBjhut2fs93skT0n3wzBUe2U4Pr40UqmWWgogve8DbD/4Sy56GS+p+tbH/gMAUTPf/Z7L/OEf/o28+Wv//cUuaqmlXuLlh8K+dBQs1+lBqleFS/yF134f3/vHf4xvef1v543/87vITz510ct62dQ9A43Pf9vn4p0fcwNQ8J1n1a/xoWOIuWZbOGv0dLQuqmW75M6B6oxm1EBGxSAVRmAuQFOOgGrTLdj9iUxWc4hSUXA6CtPHxPLZ9EUACQHna0p0UTMbwjIKBCVIE70zJmSjVDChFlxXlcoOQVMiVaG1uRthYmItlW7kKid/FhZXMOcmVaIajWm/E6LYjnccIiKO40uXiEPCdR5HgaI4l8Z1laKolCpa96gancp5j3fVHYw8iuNRxQVbT2ZyPipKFUFXfUAuqAbUGWBSMXpUUTHXKx9wnTCcZmKx3I2SE1DAOQpKv1lTxEaxKSdImd51JMmcPf0Uj5f3EHY7XvW613F0+QouKzFbQx6zMuSE94EYCyUrToTdLjLst/R9IKWB3W5LScp+P7Df7jk729oxGb2oGG1pW66FYEYF7UpzIpb/ojoF8lUQ0q5ZMxiw63UYBqNOiSM4B2IATURIMRFTrLSqSR9UilJSGUXozntcsGlKt+5YrVf0XU+Kkbgb2MZtBax+1OoM0QTqRmcTxD9o/wwstdRzr048X318xp96+CY4zxjcs9RSSx2UFsVFZVce3Gn5kev56uMzPvd3/Cm+9FV/mM/4E478sY9d9LJeFnXPQOOR6w/V3d5Qm9NMAXb7gR5n1qJVPO0k1FbPYTY91K+lThtMc2xPcrPH5eDWrGpVpYp1ddYEgjqtonRr4kUZQQIt/bmJgkVGmky73zlbiOZsomoRRAUtNa26ahwmQXmpO+Lm/pTEjZoVVRNXmyC4Tjsq0Jhb4hr+KRUETSJgRHGu6UMc3gVyVqT3RoWSTNxt0SgE70zwXT+wVnFxEaVzdbJC/Szj+1Qrp7qI0WK1nYt2vGlOWwpe6nt7VIRcm+hSlKyZlmDeUsTxDrwQJOBzQB2QpAafCE4KTgvbZ57iQ3FP3G15xateQ7c5ZiiC+kAsMBSlADElfHWz2u/P2O9OcaLEuGO3PUOzMAyRnAppKDhxxBIpcxpYdbjqQo+vzf6cCocaVUxTrg5mpU7iZMzQaO5qlFKvsWmq1i7fkrO9jiqpGNgd8XN1YFMxe+AiZmmsKNvTM7ackVNm2O8t8b5MaeeAuXMVxcIU+aRTE5da6uVcP/i27+SNf/F389bf98MXvZSllnpplha6WwNPx2NMWfjgbma9Plzin/3aP8dveO838dq/dEY5Pb3oJd33dc9A453v/Ely1spfV2KqtqTrNa973eu5eu26ORvV3dvnXo06dW/VGn9kcpVCK6xRHXM+jPFUSCg5yRjMpqWMoKSUgqPUneRqUQs4bVkaE9Bo7w2HoX+qAq7qtaU2q5opZQqOA9s5aGtWLbUZNXcjAz+2y3623TLEgc2qZ8p4MKCjIohrwnyjFmkpdl/OUMEN2t63OSwVtCaoj/a8tREX52pStY6CcGDMo0Db9xz8fk6J6EwU3cIbc7bplpRJy2KJ3pHeQcyR05s3eFyVYYisji8TcajvyDiS2tRlN0RyTDUUMFHyHtXIfr+tNr2OYZ8QHFpqnkkpY0Pe9Ax917NarUYBuukfKvhzDQKXCmQV70z4r5akaPQ82n96FVE30wDZfc45fP3sNhWpU72RQjeB1KQ19DAEhhgZ9ntiiqM9c0pxNB+QeuwBUsoviJvbUku93GvzijPCaxaR+FJLPVv5Z8746PYyuf2D9wDXW7oVv/8b/hF/++e+iivf+9Pkm7emjdqlnnPdM9B4z3veM4aWqSopFRDh6vWHePjhR7h2/brx0zVXnUObTBxWS0GeJhf2/d0cqg5Tug8tZrVy1UcL25YmDbXbZ5xGoJBREowgyMCF1mA7oyO16YMBDSHU7f62o/3xQgjVKUUTbTKgaJ2IQB1gYFOW6TWztsbSkdMe0UhWGGLk9u3b7B+6Sj7KlOxJMRqI6BxOmuajoCWjJZuYW9VC+JIaOMAmHy28MMVEqdkS7VwcHG9n2gHRCj6qVqNQ6WTeUzBtR8llBGExRna73dgcN8DRBNXTubf1dt6RFPbbMz72+EeR7mmSOooPpmfwHbhAVshZ2azXrFaBULUTOWdEq5bEF7RY0F/OxQBOvSaaaH/uKmbXrjlSibPHxaQr4Komo2qRVBXq8XKuaoSqtW8Dn+MxFEGc1IzDljJPpfoZhW0aKBmgDMGPzl+lXr9OhNDZJMzVvyFVhWyhfVmxdPGllqp17T8K//RszVceLQm3z1bv/KV/mzd/6zdw/fvfwCv+P+8k37h50UtaaqmXTqkip1ueOLtcJxoPdnXi+bor7+UH/tC7+Xn/GVz77ncuAvFPoO4ZaLQwsdaAGr1GSHGou8A1F2Fi53wcVDxRoOQcILmbPWxrGKfMgpEcZVOM1tBWUEFrbtvP1EnHbAIxblM/+wrJpVGw7J76wDQlGPt0W0/bKZ/nd1hT6adj0ihdtGlDo/KYqBtVUsqcne3q9EPIWohDJG2NOiXrFV3wVdTtEBI00XvNcVBxltMhgTZgytl0HO0YHq6znRATgbsu4IMfz49IpceVFqhXc0ecBcudnp7iqgtZCIHVanVgDeu9UaBEHSFldkNiyJG4U8iRmGEoWGK565DQ4UNP6NZoTpRUtTeYUH4YBoL3dqp10lI4mSyO5w5jMN0fQrA1BQ/eckvETVMjEcsRyaUQ42D81Rb0FxM5mki7uVs1KpZpQdpEY+bUNroi2FfxnjQMxP3eJkQpjwBQgjmJueaJoAZscjFxfFGMb77UUrUe/Sv/lj8h38Af+OzM//5Vf5bXh0sXvaSXZL33y/4mfBm88fN/N5/2Bxcby6WWmpeenvHEM4+w08zyXxC45Nb8qdf9Y77ud1xle+OtrL7/Hct/M55n3TPQcG2awCwFWzH3oyqwFcC3QDIUuQvPb5poWB0Ci6nxnTfCd7WdbZSfWSvXXnjMT9CpvStMKdOjdqNSp7QU486X6X0EEH12ZD9vzpsOACZg0kDF5ITVPps9T3EmuFZrfNFsvH8fSCmz3W5Hbn7K2dKt44BXoQ/O5BDeGuKWbyKoiblLQR2I60cNB2D2rNVOdx462BLW7YAILnh86KrupoqYnZkAFC0j0BMnhC6Qc2G3243XxfxrmyZ47/EbTxcy251RhVzKICZeByXlRE6FTITBUcKKwe3Znt6yc+JsSpSSWdWuViucC4TQgzi8d6xWPV3n6bpuDJJsz+37fsxQacJs9YILUqcE1tCLUkFGJMU4ghhUSfvI/nSLKiZE30+5GQ0IH0zh6nV5cOnW66T9zjyPw2VH0WziceexjBCpiefgfEfXrZ71ulzqwaxH//K/5VHg1/3kN/Nv/vif48gtoY7PVj/31X+Nr/ijX0pemoallhqrnJ2h7zvi5i9VHln2sgB4lT/if3zLP+A3//rfw2e8//Xkd/3sYirxPOqegUbwjtQaTBolyXbsNWdyqmnMmBWruRU926vdbdxxp0ZjDizOf98oMFAzJmaOUFRBb5uVqIKlaHBXjYat6JxGYwY4zq9JzDpr1DiM4MQZnalU6pY0FyvXuDltmgKIo7hgTax3dHRj0N5+yJycnrLfD+z2e/pgu/Lr9YpNoAbzNboYaE4jBYxSjKqjJsQvap9csdwHVcUHj6qQGzBqtB9Mg6HiTQztbO3BeUpN83Zq9wmmHWgBeylNDfM8EK/lS5jwXFBX6IMj92YekEqhxD2C4GuDXVCSZpxGUoGUmVGNZNRQ5GzaltWmZ72yXI6rV66wXves1iu6vie06YbUBPtg76u5UERRJ0iYu0SVMTm8ZWKMeRopE8OAU8cQE0VNjL7b79FSgxGdG210m0gfLZU6NdnWrlYr1us1+/3erIDre+cSSSXZ+RBPUVcHdJ7Qren6Nav15j/x17rUg1qv+EtvZ//HEkcsQOPj1SPfrTz+RRe9iqWWeumUxsTV98BTZcWbL3oxL5Hy4nhbP/D7vvj7+Ds/9Wt49UefJD/zzEUv676rewYafQ2Vy8V45GoiAWuwamOewTQBPLusu000DhlSz67ReDYqVQMaIkJORgkaOe5uEtCKCK6CjlJBQikFdQ4vNoERwMvh5KS5Wd2ZMH5IORrfwwlZM1IE1VSHA1MKOVVgbZaxjeFlORFteqI5sxsGVl6IKRGThdT13tOvVsiQ0GIJ3qI6aiosu6EYrtMyTnJELRQQjAbUgFkuBqrGnXcn1fbVGz9TLIXbK+Y65YOliuMQKXgXzHGpBvZ1XQ/E2fk1oXO7aW3aBVh1gRzNTliqrkQwAXbnwAVHzrAd9jZ1anbI3oCOjjZZwjAksiauXg9cuXaV4D3Hly+xXnX0fT9ONVp4nneObhYwSc4QHK7zlJxt4uUcvutwapMkxEIOc85mJ+yCTXsqfalUGlkuxUyZRVCtKePJrI6dKFQ3skbNylrq+bVpiKv6k5TzQeK8UbKUopkiHaGvx2OppZZ63vXtr/9XfDW/+KKXsdRSL53SwrX37vlwug6rk4tezUumjlzP1135cb7j13we8cc/Bf/2UzQuWVbPpe6dOlWpOk3Y2gVPCJ6u8/R9QCjm0lR7fDeChNaYT7z+sUF3DWBM0KQ9p30PE7BoqdGN9tKaRufduGPsKr9e5kADUAwI0Zp/VUQsmMa0BvM1t3lLpSTNwMbcfWp+n01NLLxu1IKIkKuQ2NyamiDZ1oN0FIUYE5QBKZmUCuu+Z7vbcfv2bR59+Bq+C6w6T9FI3EVCZ2ClqJKiORyJqkWXNDJZUXLJ9r5q4X++BvDl6l40Tl8EvHhypbz1XW2kTdU/Ok85HEnzdJybkKC6LrWAufV6PU4ycg0PdM4RhwHnBecUJ5ioXUyI770QaqJ5CQ7RzD7ZDr8nQIZYivkXOw+ilGLC6K7r8V1H6AxghC7gvBuPkUi91rxNKtq4y3UBfLXrHS1jm42yhfyp2nVfCogrqCYLNOq6CnzEgBiJXCz3Q5NdIyEENFdbZQqKI9bpkwuelAoqzqhs3pFTQiLkEolxIBdhH825rKgj9OB9MFeQpZZ6ltp9HMrnUksttdRdS5X+g8/ws/tXkI9uWbDsUgC8wh/xbZ/xHXzjV/1ePu39ryL9/PsXF6rnUPd8JV2+fJlrV69aOnXwbI42bGpD6SuVSKqDzsE841k2X+UcEBnpKfXr+YbedoKFeVKz8/XmPK6BECejfsNu1OZURkei8f1Nfj1y5duticvnazp/3/lbqTfrYKuat75XqTve7TlZDZDkMcgPFIfzlpmBc2x3O27cvMluvyflYk2/cxRRcC3XohBTMqZYMaqONrF2cz+i3p8nPUbKyRyr6vkR7xDvEe9wlV7kQrBguJoQ7rwf3Y4moOFx3o2TC2CkT82PTQiBrutsslDPYwieEGyq5Op0IzjBCwRqeGLOkBKiGacFTSbELtmCD0s2Ry0fTLjuu2ChhN6NAXnt+nO+0sGo56lpSWjTL6OOiThSypaaPrvfrjlvEyQMpMUY2Q/VmrYea3HO9B0pWbJ5KcRSiFlJChnLI0kFTrZbzrZ7tjFRROjWRxzV9O/9PjLsB+IQyVnHBHZ1UolwSy119/rGT//VF72EpZZa6n6sZ27yjpPXXPQqXnLlxfGFq8gf+sp/wge/+jX4Rx45T8tZ6uPUPU80zGJ0VRvJxPFmQ6qhffOS1mx/gvXxrGTBzvH8nWZy5vHnNpto0KcJtM+90Uh9KcxATKVU3bGKZ6FzjWIQ7vz0WjMUzC7WjlFRwYYfYqJuPL1XQtcBjhQzt26fcOv2CUdHG47WK4pivycOaqJ1yUqoSeBtU75hLSfWODe7ulLBDmJ0K/EV3Hhr1p04Cg6pGg0nHudDpU75at1lzblUoBF8GIXfDagNw8AwDKPoHKDv+zGQDjFAE0omF0WznSHvzN0qZ6M1GcAAVQNgwTmyiUjQIqSUcZ3Ru3zX0fWdUb2aWUEFm+38Sz1/DYBNKNuNeho7YWW8Xiaan9RpmQfsvffDwLCPdUrmCD7Qr3q0wLCPRI0WaqhV/u+8AaMu4PsVMbdEeSWrsFmtCW7FM08/SUnFzgUG9lAZX2eppZZaaqmlPtmlp2f86EffSHpdxt/7PvQDUSvp+Lor7+Zdv/VH+KEbn88j/ySTn7m5iMPvoe4ZaOx2O6MuVeqRcw6HQp5PMKp95/NYiAgHTkgw0agaXWruSFW5UjXxW2e/Y+tomRrjn8pI0WorrXOEkSo1m3SINby04L3za3V3fkIVcHo3ly2wHfHpd0p1NjJHJ08fPN47+oA152L0q91ux3a7s/wSEYqRbkCM1qSlkAGv9tgE8hQvrgINwYvDO2e5HbOj5Z1DQm3Mq/BbxJv2omoRLBlcbKLSxO3i8N4cnVI9P8BBIN5+v6fv+/GxRndLaTBNSPD4EnA5IyUjKMHb60YtBA+dN2BRqu7HeY8Tj0pHETu7PgSbyAh1wlWBhQg6p7zV+0bwUUGXNOveNuGqmpZxOlRAvD3H9Eftf5bevlpv6OpEx3vParVCC5yenlVKFsSq9Qgi9H3HarNhs9lw6crVStMyV67V0bHpVKQDNdcp5xy4QHNvbvbDSy31bKUx8et/5lfxnW/5lxe9lJdsORy3fssv4crf/aGLXspSS71kSlNi++5r7D4/sZLuopfzkqurbsN/89j38y2/d8WPHb+Nx37kNu7nPky5cROtGtil7qx7BholJQqw2ayJKbHf74hDpFutR3ZSYRJfP1eMN00SDm+jOHv2vTjBlWYpS/1aaTJ1DDHCnVlzOYdA9pNpBbxzUNOcW5K1iFA0P8sO8t2hlIibPVZBlzsnKFcQMVcoX21kO+8IXug8eGczmK7vK82pOkthug6tjaeTutvudZyY3LnGmuhdwaGoUqqtbqOeSdUZlLZ9X49Z6AJd19uOe6YK/02I7JzZx3ahY5D9s06fGp1qTqHa76UClkZvcsBEW3Piqzhf6LwjFguzyyVWCpxDAqBCCB3rzQYRYYiRbtUbeNCCU3eHxueANleBajs/VaqCq4DOXLzshEkbbxQdKVKh6zi+dMl0IasVfdeN4vOYEjduWZJoCB2UqhXxHt/1hH6D71Zsjo6m1PRSWPU9rmSc68nFAhftbYuFF5YCoiw4Y6mPVxoHdt94CX7golfy0q1OPN/xP34bX/noN/PKP//2i17OUku9JEpz5tp/hLOSubr8O3PXesQf8xde+3181x/8Kf70u38VZz/6aTz2I5HjH30/6aOPX/TyXpL1HHI0AJTj42NSSjz55FOcnp5xte9HKYR91ec105iHq50HGi1pugEOS4SeNAMtKVzr1ECMRD8+5uqO/CHQYAQaJgK3JrpNa8Q1KHJnE31eDG6vZ1OA6dVnj0mj4bQsBPsMPqzp+h4vindKcIqUTM6Rru8R8aRkQXAxRmvMg4XZtc/pvLlVKbVJl4k6BTI6cXU+mAOVqd6r05TRcqbAwwKuEIIfdQ+aq41uKVULYrqI4AN91zF03ahracemhfQBY0J4SqlOH6rOg2KTmdZMl0JOGS8GUTsfQAtDzqRc0JzIIqgYXSyJA+9ZrTaIc+yHgT715OwR9RQpMx3QJOKf52i084ZOlD+HidIzdk1VRbnZ4dabWQQHcwJzJuZuOR3N/rhpecDcurIq5EKnDnWepMJ2HzluuRhiE5uy3zPEzO5sj9bckqRqlLHQEXOCsJicL7XUJ1qvDZf4W3/oz/Kbj/4wr/2TC9hYailUuf6uMz5WAq+66LW8hOvI9fzfLj3FV/3C/40f/6yev/yrv4yf+AefyWv/+o584+ZFL+8lV/cMNE5OTuj7nn61pqvi3vP0pAY2nk/NrWXnzWEDHl1nzbX3vrpMWR6EUK1L1bIxrHFUjNxfd/Mr0NBzAMBRRlcqqRqKcXrixGIlzn2gu7lOtVezrfaDT9V+q4a+qVFugsP5jtCtCKFDNeNIdB5KAs1in1eE/WBZGrt95HjT18/mDVhV9ypBqoZBjA6l9tlMx1EquPG2a1+F3ersd7RpExpCqXoNcfV41emDMiWCH9r62tlvQBEYU7K32y2bjWU+WKo8uGDp4gVqevlsclXTuYP3OAQo9GrUKRJoVnbDwDbt2Rfwq55HAPGeUsP2SilGMatrbIA1pWQ2sjMqF5iORRUodaJRP4eXghRIxWyTyVBSgUINL5zofA1ItddugvhSCkkj+2LuY955+tXGzp/zZIWozSlMEBVSLgz7yHY7QHXJiiWbWHyzs/fplpH2Ukt9Mupt/Zq/+bv/PN9Y/iCv+dYFbCy1VPehp/np4THe1i8N88crL45LsuaL1/A5r/8e/vuvu8Hbf+4LOfqH/27RbZyrex6OnZ7u2O8j+92OXMrEv/8kaVPnTezc2Qkmfr+vtqWMOoHOtAQ+IC7gXJgmIbWh9t6bo1JrIOst1K/tuT50+NDjQ4/zof5umNyt6uv6UF8j2M3Vn13TrdQE7ekW6uva63f9ivXmmKPjy/SrtU0OqnOWD924pr7vEYQULU8j52KPd70JvJuAPRcTGoulioeuw4eAVkrUSLuaO3m1ydAswdtcoDpC1yMhUESqjaqrTliWUj0/T6qFnC3LpKvWsi2sr5QyBtEZSCn4YLQ01/kabjdpc7z3NeCuWu5WnY0TJTgIDiiJ3e6UWzee5ubTT3Lz5jPEuCc4R1f1QzqO1qbP6J3BFlFF6oRnBJS0CZhNawxrmcjdO295IdSJS8moyAjERmH5/LrFzoMPHThfher9mLLeKG2KWKK5WnaGifRNs1N0sh4eKXPMDBIWs4ullvqk1ResOv7fv/fP8LHfuyT4LbWU3jrhp7avvehl3Fd1ya35o4+8nQ99qeAffuiil/OSq3vXaBQlxsTZ2RYXOhSbLmw2a/p+ZTut3uOcUPJssqE6swm1mnPl21eRw+yLNh5RlFhDzESxHXDvSQWcC5UO5XDOfKYsskJAy4zOZUQpmftCq44TDAuPU3Ngqu/tnOkrGLn6VQQuDufz+HkU4+6rGvFmFOuKTL8qgis2iehWvTXkLrQ4B0o2caL3gpRMcYEUM0UT+92e/ba6NdWpSS6VqiUWEphyYrXqK/3G4XvPMKjtwONrQy+4xgQqxVZeMq4LdCFYJoTzSGdgSxFiodK1Aq4ozsfaDBvVzIsQHIgowQub9ZqcM2dn2xEwFS10fUfIjqwZ74W0N7taQfEiZGmOWHYcJAhaHJIyHsVrxhclSKZ3ES87KIkrx1fYdA5PYt1tCKLWoHtFvYUYml5DcNVWV9S8nArVbKBmnFRLLZpcXsmWfeEMYCSyZYg4wAd87gm9hSgaqO2qSN/TrddsLl3Cp0xW6NVRsROh6yyVvl6DjbbVggudE3xn1C/vgpkMODeK1lEDQksttdQnrz6r3/Av/vi38Z8//oc5+s7/30UvZ6mlLqw0JX7u7GGyliVL4znUdX/Eb/3l/wc/+I9+CeFfPzlpXpd6LhoNRxwS6I6uXxNTRsTRr1Z0lafvWkhbwZrWZ3mtplloDas1++2xGfhw5hyUSq57wI5i9kOIg9Ct8M4Th2i7vzUIzlfw0JpHa8rdCDQOxcuW5K1FcXWiYHQtQZyOO/Ku0YRE0OJHJKXagIaO1BujJLlRk2G0LXNU6tbrKgAGcrFmPYihjRzRrOSsnOxO8SSON2v2250Bj9r4q9rYDu+IKKqZrvMmJPfWqEp2UKQ6F9kOv9diGR6YwFpV6ZzDdQb0skh1mfLVzUsQ309OVAXEO4ima7EJhSMn01B4H6ql7X6cBCkFcYrrhJJANFPSME4YGiZrdDRpwZAOcsqEkshkgiuse8jqyaXDd/DKR69y/coaXxKkiO8CSrFrRMxWuH1OV6rwe9bUF60GBhgVz86pkkq016muBqYnqZMZG8FY3kjX1URvO26NnudCR1it0FCQomiuV6EIoYZFOqGCHgNbXgSnFrrog+WleE8FxAamLfND8LIAjaWW+mTXI/6YEpZx4VIPeJXC+28/etGruC/r9z/0w/x/f+GX8pof2lDOzi56OS+Zumeg4X0g5VQdp4YaTscoVvZdqNQRnVFEPn61SQPMnIA41EXIjOIzjRawZi5YY2+Um56SszWT5VAI3P5/whcy5iqoKilppUX1o/YEp4iUWQZGBRHiKDmP6xwpLaq4qvOwULeW1yCIsywKH8zJSby3BjiX+rr2834/kPd79sOOtD3DY/e1Yx5TYrPuDEipUnIFak4slyIILtgUoahaSCH2uI5HwlDeSC8ToeRs1C0frPkuBdetCF0/WquaNmGyzAXGhl1LrqndplWYaER1wlAKKtoccsejb5a6Du8dOU8g0PQOVYsTjT7lnOKL0AfP8dEKDZ7gCkEU0UzcbdkcbaA6aDWAWDRP6eDMbgpoISeDGka1kjHQsA3hVHQEveLExPFjcKMdZ4eMCesizVrXoVLvcyDqpmtxdilT1yLTpY0LvoY3igE8sWTw8a9Gl2ZoqaWWWmqpF6By5sNPX6GgLFtaz60edhte+1U/D//k1fCun7no5bxk6p6BRt/3EC2N2ppIo04hQqy0KTyjdmJ4lmZoshlt+osZzYpDkNF2c5vIuNSQOuvWzGpUah5C0ytIVrJmqI5SDXDkXEgxH7zPnF+/Wq1Gbr29R7Fd7llHOInUD4XQbZpBmYOPaZ7SdCQhGGVKq5+VeF9tajO7/Z6zs1NIEYrZ2uaSGGJkiIntbscQI5eON3gByXkUeaO5LsrWk3IiZ7vP/ifT57Ul4ZqTV9W8jNOY4KtgPdTwQE9MdkylCcbrFKU5ctl5qce4Ag2th67Zs6oy5kzMn5NTnh3Ldq7yCAobaEDr+RZhvVqhEtifbbl54xmuPuzpVuvqwxsMyIyf3V7Dc85koGpASq5akEqbUyBVP2zx1SJ31HsImoxK1Zy2TGw/XUsHVEFpk5LZdS2HNsv1Qh9v4pj0Q95AtOKqc9oCMJZa6oWsJz5fuPo9V8i3bl30UpZa6kJKU8K/8xInX7znuj+66OXcV+XF8Rfe9Pf5DV/6R3jF+z5I2e0uekkvibpnoPG617+BlBMpZ1brdW3uM1evXjWHJNemGHVHuVJVztdEW5o3TYduU/a17nvPG/pmWYsFqqWUKOKI0RrykhJSRcptB7uBjRQTu90emJyImuh8/h5TojSzvIJx/jF+hhbqdzBpqQnO9rjiVEbRb+g6QtchLtRMBRO4lzSw3e64fesW27MT1sGz7gOD86CFmDIxZXZDJMVsSd2ax/Tr4DtSikYvy0axybmMjb5RkmR0jiq1yTYqkBB8AISUlZAz3crbBAYMuDlnL6QNNk3nUatVk6tWsyXlChIaAFFLxi6u6iH8mDVRSsHJZIPrfU0kp+o1sulIcCa+Rgt5SHgndN2KfhM4GyK3btxgc3zM0dERadjjV4HQ9aPgm1J1NOdAYTtvo5A713DGGlCi1OyYeq6D96QK6kpO9XMVc/+qIK6hoxZwOE5wKpBTu6DvQNc6DfZM+9KAhjjUGdB4fqbRSy211HOp93zdX+ZN6/+CT/vmH1+ahKUeyNKceezfRX7s6y/zy9dx0Wk8x/qUcMTbvvEn+eA7Px339ncsDlQ8B6Dxlre+FbDQsK7ryKWQSqbrLDQtV7pSwYTjtot892pUpAYoWtq00Z7kjiePQGBGXxIv+NADIL5UjnwxvXSRsXFru+4Hrj2zKnXdwMH0pO1GzzeRGzBxNS17mr7UTlFMeyF14jM6OnUVaPjOOP7mM4ujsI+Rk5Pb3L51i5T29MfHo8uQqyBqP0RydSDyPqBtChA8jkDJvuZQFMM6lZYk6mrStaN1va4CRHN2smmLOCHtB1LK+JwNoKRCIeF9N4qQx49ZMWVTDtjuu9GumpbFOcuhyBm0eJNXl0yegZH5ZOj8tMjAahmbbnLGZcVrpVutzB0rqrI7PSEdHds6irXlrukeXKUlSQVHJVfr4ua4BVqkitGr/bBz5FLIuVC02LQDqXirUFJCc4ZcDPz6ep00gFENAZyaoYAWN4q+qdSqBqSnW51oVKAxAqVGx2O6ppdaaqkXrn72a/4qb77+Dbzlt/77i17KUku9+KXK0buf5C988FfyhW/+R1yS9UWv6L4qL44/+5p/zhf+gd/Dp/7cY6QPffiil3Thdc9QdbVes94csdkcsVptWK3WbDZH9P3a+mapVp7ObFKd+3hd0ZyO1L5hcoGadfetuR93eWvGhSUyr1n1G7p+RdeZC1Doe8LK9AU+hGpVGyoQMXG52dkGAwzVxcpVK1JXtRT+3H1Sv7fPGcbHRHxtBD0iASQgrsO5Dhc6nO/t+RIATykGxLQocRg4Oznl7PSMmFLl+Qu5AjWcY7ePbHd7Ui6EbkW/WjOCM2dc/pa5kXM2mhLUnAqDAgYyagMss5/d9LP3NsWIux270zN2Z2ekOFDKRJESqWGD3o3nwjmpNzfu3nedieqLWrPeQF5OiZTSwdRjDGF0btR2TFkm0xRCdWrJcx6I+x2ihSCwOz3h5jNPmci8ZDQrUrQx7EaoObdMdiLTzU1tv9Rm3zmp16ZNc0rJ5JzIOVa3KHu+k8kud9JyVF2Rr9Ohdi2JG6cZjV01LpKW8jKb7s2mHJO4Y6mllnqh671f/je5+c/ectHLWGqpCyl9/Ene/b1v5mfi8m/O86nr/oi//4Xfzge/5lOQ1eqil3Phdc9AQyu/Q5XqXGQiZkTQgtFbqNkLU2d0l9dpHPbDuhtzHSY3oimjwo1Ntg8BF0xobU3drPEXGScDWaGYMKHuNvsxK2N0Cxqbv0Zt8bMsDV8zOsKYx+HG+1vjXt/fVaDhO7zvCaGnCytC6K3ZpDX8wm634/T0hGEYRh1AozlZ7kbHPkbOtntizHR9z3q9RrybgE8FSlmVIUViTORKt8op28580fG4F1VSLsSYidG0Ibvd3iZSQIqRfQUZ3jn60NUm2c6B6QdqJskY7DdNsVpStnNTLsb8XPpzIKWdSxHIuYxBdy3rpOkmgNE+2bIwFEomOMhx4NbTT3F26yZ5iJBMaK9lppugXrcN4IwNvf0R+CpKd5Xm5AW8a4nxhVISMQ7knGAOSpjoUeNEw7mDc2QBfRZOaM5URpeaTzLqyKMCnTm16i5/LEsttdQLXn/9M//WRS9hqaUupMrpGa/9V6f8hce/nL3Gi17OfVmf0Ts+9WvejXv9ay56KRde9ww0WtpzKnkMGBubturWY5x8NSHyWDMh8qhtsEdsd9mNu7fnpxnzXe1GaxIRutDV12w8HlcbfAMNzKxGtX5ta53vKKs07QKjsFq17i1XQGLAxRr6qbn3I7jA+Qp0AuJNg4Gz7y2gb5qsIIL31qxbJskZwzAgYgLgEMJ4zNrEpCic7fZoW08NIFSlHutCSqXaCpcp/K1+Jl/di4oqMZnGRjHB+Ha3JcbIMAymcSmFnCIpDeSU0CYqL2WkRIVQQYKXGvIX7FyMTkw6JnAbKKSKv6vGQ1qCuJ2HuRC8vV673qjn3FdwY8GJUhXmBTTjVAkoedhz48knibud3edcBSR2yotmmotUCxCU6qoxn2pINRFoSnYnVbNRHbZspY3mJAfXczvmlrUSDPC6iUrVvHybWUD7jUm2MU1T2tSkaXHsqjDq1lJLLfXCl0M5+ONeaqkHpUomvPuD/MD3fzZP5/1Fr+a+rJV0fPNrv5sP/LpX4tYPNv3sOal8CjrSQrybAIJi2g1ELC27NY86gYe58Hq8T8/Z0MoESgTG92nJ0aGmcK83awMFUoGEc3VCYY2+89045Wi0J0tbpoIOSLmQsk1mTP8gNc3ZjdMOJBhoGScV9lVx1b7UgQs4ZwJnNz7HQIEP5mIlNbiOyr8XYHt2ym67BYEQAl1nlK3mklRUKDhwHVmhW61IubDfD6AyTiWGIZJisr5bLHMEZ1Qo5z2h7xHnSDkTYyQlS/J23o+gozktxWEgDQMlmw4hDgNx2I+7+K5mXDQA4b2j7zu6um4A1ICmq5MWE+LHURNStIw0qXZ9tMlG369Y1z/IcZJVQYZdF0Zh0pJJcT9mj3iUzgmnt2+xPbkNOdF7V7UahgnzaLFbXycnpOjhtVybe+/rn4WWMZOlTT1CsLwSNwMxk3sZQKNOeXOtwo3XEE7Q0fq4VNlFnarMQJerWS5a33MK7Juse5daaqkXtj6jP+LXvOPmRS9jqaUupMqNmzz2I4W371590Uu5b+sXdMqn/bp3w6e/6aKXcqF170BDzBWoTRnmN2bc8/b9fB9IRuH3wQsekKXOTzNGPv2sAQshsFqtONocEfq+Nm+1CcWauEbbspRuS2rW2e75/Dbtut/tPrsZPWqabDgX7HsqDYpJ5zDSY2rmwrRrD9aoW1M97HfsdltUC945umAgqtmaarW8UnH4rme1OSZ0Pfth4HR7xj4O5FKIOZFyGbUxzfFKMYcn7206EGM0DYgqqRRiSiPFaRgGYkyUUhiGgRwjmjKaMiVlNCcDHiWPr814qt2oZWl6Bx/COJWo7fHh8RV3QJuan/fWQBvw6urko07OZHIQcw664PEClIyUjNdC0MzprRuc3T4xB7LZa7YphmVf5Pp9Hh3KGjhugEOECmwPKVVOdKRUCXWSVyY733Ztqxz+XTRQ3LhWNlmBA2vbmSPWQZZM/T+1g3TPf7JLLbXUJ1aPdTfxn/pgNwlLPZilKXH5vbf56x/6EqIuzknPp1YS+L2v/te87yuvPdBajXvXaFR9hhajLBWVOiWQkW7UNLLT9ODjNUWTGNjsP+9sOue3Rq3y3puDU+hmmogwUlRUZjvIMvHijV7lRiAx6QSe/TY20e7uz52/RtOFSBUB49wIgtrn9V4oJXF6dpv9bgtaCN7TBZuI+OBxwY8TiaYn6fs1qcB+SOx3AyXbTnw7utIoOQqq9bPWBreo0atyKaMjWE65ukg5hphGIGL5ETWAL0a22zNOTk7Y7U6NSqWlTppa2J5MupkqgvZVnD6JoxsFbSYaPwAcDdC58Vz7lvHhKqXOTfqQvrPpTxe8Xbwl4TBRuAdObtzg9OZNSoqm4yBjAScFpVQKVw3yK2ZVm3NENSMYHSvFAS0F5wTvpE5xDOgE5+p9UtO9TcMxWtti9DBoTlEzGp5rFr4yxySzv4cGqOZ/ljIBd31297SllpqXbPf8kY/+wotexn1fX3v5Kdy3by96GUstdSHlPvoUP/2Tr+NMh4teyn1ZXhyf09/i+IuexL/qsYtezoXVPdvbTo3RfBIxTRAal7WJd4sWi14Qwc3C+ya3ofHl7tjZPnjuPOcA4+7nnFGk6h7cSG3C6dTwOT/y6YsrTI5WrfG15rG02Oumy6g70Qc73ONHt0a16UYODsyYqVGpNmKaAmnuRcXoMtvdKSentyklEbzDO6NTlSxoqtoMjAalOVNMPMKQTBtj9DPTSNjvmX+riMeHavOLEHNhSAmhicEhp2T0N3HElCBX7UpRE/RTgUiBIhWYKIj3hK6n9b8iM/1MBQNNmwFNuG9p1l6YjkHbw2/OT04oRSoNy9cJQwVRymg5a4e3anScIsUmViVFyMUa/2Bg6/Z2x+nJCSlG+tWKXExkbcSt8cKiLppSsp2zOg2zDI88GQNUvUQDWCEEtCg55no8tALtUt+gTi2cgPoK5d14XUz/Y/bd4Z9To0tNuqLZRHABGUvdQ6UPfZh/98c+H/7mv7/opSy11FL3aZUbN7n8Xs8HE1ztL3o192dddWu+5g3/nu/6gi/n0vs+8ED+G37PE42maUgp15vlNpgQ2b7P7TnZchrKTCB8eLvz9VtS87yEQ3qTqoX0DcNAyXmiNbnJrvXA9acKp0dr2xp8NoIK50bvoPn90+P+LrcwOlBNmoxK4ao7+2YBW5tXR939h5QGTk9uMww7/ExM3XWdgaaZn2lzkxIXUHGUAinlOrWwKcW0M16zJULAOQvs2+92nJyest3u6nkrDENiGMxGN6XMMAyoirly5UJJmTjEaj9bxrWoFnI2sbiKaTUaiNK6zV5KqfavFQw1FydXU61hvCZGetfMzni0LhYZQUsDlalkUkljQJ7YaK1SqaqAGggiOFX2Z1v2Z7sKyurwhruD2fm1Nge8qmqTnsE+N2qUrlEM7yaMPXKbaG5S0/UlhsrGiY9N3e68+pHJyWpO52trs9fXZaKx1D3X0bs/xtt++Ddf9DLu+/ptr347T3/DF130MpZa6kWvMkSOP1r4kd0bLnop92114vnPLr+Dj32e4Dabi17OhdQ9TzT2e3MeGOkwTZNRufbmfiuNOzLSZUwILsAEOFojN75e7QbnOQdjJkGdLHjva4haZr/fk0qHuA5wI9iQMnOwwpp7qs5jTG+eT170Tt3GnToNaE0eTbhbd9xh1vSJkBuP30kV944UfQrKbn/GdneGE7Wmte6Qj0nZ7hw33zlQNSF3Suz3Q51qZAoZT6OqFUrrqG1V4858xuFoKd2FggXnUSdPeRTpM4rwBbFjHRPqoonKux7tpjWOOROzUUHOhZxNDO6rZW3RqkfQev5Hy9vpvGqdMKhOyeBoGUFVwQArNX/E6FXBAvl8o1BlBHu97XbL6cltrly/gnQBnQ/e6umU8Tpz4zlXJnpeO34F8PiR0iU4chpGEfdE+2NmfuCmg9KoU1Jhgkqdbh1OMibqVAWrzlky++w6mjQdSy31n670c+8j/PMvgi+46JXc3/UbLt2k/NH/F38u/kau/u0fuujlLLXUi1da6G9l3r19JfnyR5eU8OdZr/OF/Nod7splytnZRS/nRa/nkKMxC00bRbWlctwPb6UKiUuu6crZnIK0ZjXMRxo6+6o6a5ZnO8s6m4qklNnvB3IVQU9C7aZNaHaiMn7fotC0+YrOpisH4KIFq7UpyLiTPL8ZsJnyNWo2B02jYdx9J0oQxVPwZCQPDNtTNA+sOk9wRpHpu46u66pNbH0dqv4Fc4M6Oz1le3rKdrudQEccxvDBISX21aI2l4x4R7dasd5sRr2EE2ehhiGMwYAhhFF7gdi0qDlT2TlMaIpozmhKoLkKlpuuZnJDoqqVc0pjXsaoZxGxDfsx18J0CE2LYUnY1cbW+fE1/Qz0jTqQdr7q+oP31ekqVYAj7PdnnJzcIqZIHSrZGtprzP/XmvgqEm/V6HFF61SOuQNUuxKaQL1ev/PLl3MTjxm1biJxta/nJnl1AjcKwMepW7187/WPdqkHvl75ne/lTd/7jRe9jPu+ftPlZ/h//Hffzu6rFtS21INV4Szzwd21i17GfV1HruM1j96gPPbQRS/lQuqegUbnoHNiu/Debp0X0xl4ofOO4ITO2Vcv4EXxWnCl4LRYZgGtsWNspIqW8QfRiSjSMg1UizWwuaBZGYZIySA6AxeYE1QTEhx6Wtnr+bpT7MQaZDcTcBfxFIBglrYtwG9KTpiAS9GJZtW4/DZ9MAZM7wNr79h4uNIL11aONZE+D1xf91xdrzjuAqvQMiIMuIgPVVQvUI9DTolhu2O/3ZpgOybUSRV4KypCVqOs5aLEXCgKvuvoVr3t/DuPd4HgO/qwovM9XhzBtSY9GhBUJSabGJWUQQvkDCkhJSEpm/1rFTXPTQBs2mOgq+RsQMBVAIEnuA4vAcHhXBhB5bg+ETzOGvdSkGLUKJv8dDix13L1NS0cUCabY6CQQRNOCqent4nDfjz7ItWVq+o7ROu4pZhYPJdESgOlJBCbSk1WvvVqrJ2+d1O2i+lIDHirKKUJul2bEFWQO07E2szo/NU5uzXHKiag3CZdlvh+r3+1Sz3olR9/AvfEQq7+ZNSXbzL7q8uO7lIPUKnizyJPbC/bv21LPa8KeL7w0Z/n7HWXR1bNg1T3/F/N4OpNwKM4iuUXeKF3Bjr6Cj66IPRB6B10oviS8bkQVPGqeGSkNGWUWEx7IOpqg91cdioPX0vNYjA6TRoKFIcWZ4Jb9TiZJgJmP9uoK4pgr9P5YM2vm2xrwaHiyUVJBXCeQnPVqk2fM5tcnMeFrk4bDHwUNe2HOI+ow4vn8mbDlVXPtXXgFZfWvOryhmteueaV1127wisubXj40jFHfU+bm3jfIeLJOAqW5RF8R3AORyHHyDDsuXV6amLuUtjHaA13CIS+Q4InA7uYGHK2zAra5w54PJ3r2HRrXBFKynTeUbKlXoc+4H0gDsmO9xDJuz26H2CIlGGAmAmuI7hgxw5PKnYcQgg4sdwMFEI93l4CvV/hXW+idd+hxo6ydUml2ZkCfAIaioEPxMyjRoBnQMuiOexnV3UuRTOr3nN6eovt2Zm5bhXFxONKisVAhjq02vYasS0To2WGOG/i8tCHOmmya0VVKLngm7bEOZKW8Vb9rKpLlqCaELH/ODeh/ESFavQqBzrdVGV0UlMcrgI68abtaDSzpZZa6sWv/+NP/c/wBZ990ctYaqkXrfzJno/curJY3H4C5cXxyy6/i1uvD0joLno5L3rds0ajuQZJ02BQf0brbmvTP4zihUmj0MhLyuz36tNMFlybxvacuc3tRJuq4wNGKklrPNsusM0pMDvTidMi4+ikoDMbVXvNusMtbWIh05RiTqMf16Mc6Chmmo/Vqueo91zarAgZNt5xZR0gRTrNdKqsHXSrnn2BIg7NxstvIx5zw6rOVc6adS2F05PbPPmk4+q1Yy4frYxO5muTLTLmMpSa3O6yYx3MOldV8bblT8mFVBIpR0Lva2CdkFJkGzNxl4gxEYdI8Hs2myM09MTdUJvrRi1zhNDRd0rfRfZ+mPQ1zlFKGelgWrIZB0QzCXDO0fWdgZBKRWp0NtGaaeEDBWWbMkOK1Xq3aWt0pFNBC/UzrcZub1OJOMAwbCk5Q50ApVTw9bpxVWtjqpXqPCYTRVDr5wihgs4y0xYVHcX6XR/QrIiDMsJPHa972t9H1b80KtQhAeqQTtUmZ2Daonnd4VS11FL/iepvON6fTnh9uHTRS7nvqxPP7Tcec/nf+ToNXWqpl3fJzRNuPfEaTjRyxDIdfb712f0TnL5Wcccb8o0Hyy74nica58PtRu79c3m3mXj2cFd25kg1UxdPDjt1VziXOghpLVzjrNfXclNon44op7n8NNvdSQuiAE5r7t8UJOdE8NU1aVz6KGwvBz+Px0UV0WLhex68lJFq5il4KXiX6YLj0tERl46O2GzW9F1XG2atH0EqnSmTa7bF6dkZTz75FDdv3LQ0ccz1qeRMzmlsfhuoKqUQ40CMkSFHUs5kUVzwoyje+1AzPDxeHDkmtien7M62o1tY02vk+j4pJfbDnhQTqJqmJXh8V5PUndjPwROzWek678bdeB/8CNQmty0DLj6E8XjP6UGl5NHJan4umgNZe6ydF+8cmjNxt2d7tjUNCtgxyJlc8kwAbzS6eTBkSx+fX/NzUDNeNyPYMZDTjAPmxKgxxJAp+Xu8sD/OH8nd3bFkARlLPa963f/wdr7yR3/3RS/jZVNv/5/+CuEVj1z0MpZa6kUpPT1l9dHAz6cFZHwi9agP6Kds4dGHL3opL3rdM9C4mzvTs1mFfvzX4TzGqJkJlrB80EfpRBVpze/ovaOt7arAgglYjFQn8dPPY3bGZEPbRMUTnaVapbrmHDVx8efWq+fTxA08KV4zKy90YtSyzht1jJLwKEGMfna86TnarNis1/SrfmxU5wepHdsYI7vtlrOzM4Y4kFKiuXSdnW25dfMW+91+DNsLIdA5T3DehOTbLfu4J2kG7832tzpGpZgYdnuG7Y7hbMd+t6PkjMyE2mAamvbZG/hR1dpIHwYXNgCR5s9zlkK+Wq1GkGi2r5O1bQtHFDeBiFQO19Jurek/L+gXEYILiEDJid32jJzSSKNrIFc113Twdi3ZYXfiRuvfZq07v6XU9BsOLcVE8zmPkzoZp3HTe7kKZiqpD6eHl//d/j4McB2CkhFUFw5A11JLLfXi18/9rjdf9BKWWupFKd3tufR++JHtm8jN9n6p51wr6fiSN72X4TXXHjidxnNXtn0CB6i2e+OOb7MvtduU2nx+41cqpaWUPNqbFlXLfBYjvqib3kUa4JjdGu1nnMTME73Hd5unaujYVM7pUedD/CZnJVh1jk3v6b3Qe1gHj5eCpoHg1MLrVOm8ZxUCm/Wa1WpN6Dpc3c1vTXjwoWZr2H3eGx3JnKXsj33YD5yenrI9O2O/26O5mKaj3hTI2oL3tDLMLKQvpcR+t2N7esaw3SG50HtzwMo5McShfj4BSk3SrtkWJVWAEMZ1z49PS/mO0TI5xiA/7/BdQNEa6FjGz1vUhNQHOLOy8c7nSrTjDpxzrnJmTlCnC/vdnhTNeco7V12jbGJUalZIy2+RSlkqxXJgUrZ09GGIxGEYP0uzXU45j8BPSxmpUaKj8mICF9L8uWaX2rP9jcwofAeqb5UJZCw4Y6mlLrTe8Xv+om1gLbXUy7w0Ja69d8///vRbSSx0wedbnXh+5fV3cvbK/oHTadx7Mnjj34NNEM5pFe612u+f39ctpTaaB01Ufc/q7pSrwNkyFRq3vpKoqnbEvjoDCs5yF4w+5erkY3rrMaVZ2+tkUEuKroqJ2mhPax13+WcUKupv9B5WHrOzRQkOyImSIsE5uuAQapI1jl4CfYZYtOZOSG3MFScGTKb3aCFyA6qFrrPwuDxgwXs5mSOY85b/UOlBLgTEO7Iqqeld6nHSUtCUcQW6rsf3K1KBW7dP2O92eHFsNuvqRhWrnS74FHEhoJj7U8rJbHWdmLC70nxSTvgQ6Lwf9Q8hBGJKJvwez5eM66VOOBSzNS5F7zzWI81Jx4lIc38ShOAMbMRhPx4vV6lwUnQ896NwSAtIm6YUStWD2BTDROfziZPWbJMxnPDc9S0zgGH6oOpaZrYB5m6mag5rB9e7jNOs87bBdYi12NsutdRSSy31opXmzOrnn+InPvxqbr9hYOUfrCb5k1mf1X+Y01c6rvYdGh8cncY9A40Xo+5ooOod1lS20Lmm5TBwMLHWdQwNHKk586S2UZo7vY/9bhUC23Zx5dEYzFDRSp86FH/PQdacdx+8wzsQzTgpeFE0JzQnOu/ou3q4xZrRlgweQhonA6UU0jBQSmYVnJHDRMgl1zTvWIXWPV0IZB9Iuy05FlbBE8TXQMOMC47VukfFduBdStbYik0C1Hs0OTyOdRfwq55dyjgv5JLIJaEUoxrlRPYeEsjQLGUd+31kv9+TSxmTyVFlqI5YPnhW6/UkUg8ep8Uace/RMqM+1XRzzQVKHkMG5+Lv85ONNtGYaExqNsYipCGaA1bJRp2bn69Kbxo7+HZNNEqeaqX0GdBw1RoZhVzXZkC0rml2lbTv3bmfz6uTzsP0BuXvCP2jTuhKs4F+sMauSy211FJLXVCpok89Q3r/q3j8CxyPLIO8512vDonT1xXk0jGcnl70cl60es5AY57c3dx56h13557Xxn2kQdXua3qu3uXrYRMvwrid28S6ogU0I3hEyki9ag5XWioEaTx8qd86o77gBKcOxNydvKuZFUNLQA90nRB8N04azh+H+c66Bch5ghPIZQxySyWPwmHvZ9MQbzvxwRcTRLfjqVpTuSNOXRUVO3KpYXwiZstbU80bDYiSiMPAXgLDfiDnRFh15GDhb1qgeJ1oPoJpVWj6groL78w9a9j3qJoOwTlP8AYQtAgxRWzcEhiGgSFFnLdAQO9tomJAo04SugC5Nt45jcfNOUdRm4SECsJKztN0qp67UYjNRM9q9zfdxghAYiarEpwQh4Ht2SkpRoL3qJroXlydJFSnribunp/bpgeS2TpalXotuApySrNkVpCCOVtlS1b3XQAsj8SmJXmkWN0BraWFYtb8jDq+UCaAXcoyz1hqqaWWWurFq3J2xpWfEd4TH+Wz+pOLXs59W5ek4/jNN+HaFXj8iYtezotWn3D6UNNZjDVOEGa7wnVS0BykVAviHUh9rAKL9nxlSp9uzVUpZfZzQURRMkhBpFjoXE64kXJjSeSaC1otVX3X0a/X9Os1q/Wa9WbNZrPh6OiI9WrFfnvGzWee4sbTT3H71k0Lx+MQULT3b7vsbd3OVfG0mMOR0Y2SpZjXXXFxgZiVfUyjK1bogmkHDnbpLXW85EodqpSnUgrHx8dcunwZFR31Ms4ZSNjv9gz73QhsBLU8jJTxVZA9xIGYErHSnXAGkNoUwDnHZrNhs1lXpymbWMSURqFyc41arVe4LhD6nuPLl7ly7SqrzRrXBdQJ+xjZp8hu2HO63TKkOAKp0ba1HoPQG6BLOaMidFVU3oUwOnM1UfZ48c6Ov/eeruvou87WKY79bstTH3uSs9NTS6kvEVVLD3fe6Fq5BhW29PlGjYsxUoq9rsD43hNdq4rfuzBOHwxsGDg4Oznl1o2bnNw64faNm9y6eYtbN25xdnJidL7x72Oy06Ve64LQdV1dl/2NNa1Ligkny5bSUktdZHlxfOt7337Ry1hqqRelNGeuv2fgndvXLILwT6A68fzGN/0Yu9ddfaA0Xp906pQc/l+lkDSB9gQkmqPUSNWvE5G20VvUGmzP1Ewekp4KqglVh5aEaEbEpgNO3OTW42sT33k6zFHKNqkLpSTj4JdMTIqqUZiamDzGgT6tkCAHwKKJnSfXoklLknIFRiKkpAwpkyo9KKunoKTi0AxJCrkCqGaTmnMmloFcUm08q2haC7vdjlsnt7l9esJRkBF8eXGkohRMwNwa2ZIdEsy6VmtqumVDONOi5ImelLJRvryz5xnYsZ11145hFXFTG3QPrFYrUsoGPFYrQggHx2pyC2PUU4zuUTPgWLIlWrSJhYpASvY6zhHqVKm9Rt/3B+LzJlQXEbrg2Q2RkiKnt29xenJCf3Rsr1MtdWlaH2WkbQVqarw3QXiuaxfn6H2oEwatOqEGaO37QMuKUXJMnNy6xROPP0GWwH6wz9V3gdW6s+yQVYBw+B+a+XTQuWb5G0wbo4qo2QWXxXVqqaUuvC67eNFLWGqpF6dUWb3/Gd5z9grKw+/kwWmRP7nViecrLv8Ef/8zv5xXvX1FOTu76CW9KPUCajTM5tOSvRvQsPthTqaa/YbIjDI/0USa61Trr8xASXFkRCNCNE2EF7rm3lQa3960EjijBZVcqlg6oSWBFkSVkiMJ8MXclIpLDMNA18VxzXNHpfNTDvCoeIaU0Sx4J2xj5Gwf0WTi7qRCFkdUIWfIGIhoO+PNJhaqiN1NwmcQ1psNOWVu376FP96gpdD5QA6BEiOaIlFNYCQKxQFJiM6RFbqV2emu+p6c7HklDpCk0qsKvg84HF0fiIOvoYE2HRkzJkTJyVO6TAg2SWi2tsD4OVruSKmfsWkiQteNkwIpBc1GbXPeE/oO6gQrxsiQEgJ3ff12zdg1UQP1cjbqUgVoJ6cnnJ2dcCVex4UAlaLV2FnMKHaGaRyds0BCyZlhsHRv7y0DJKdEKjqK29t0qxRLvXfVsldzYdjuyZIR19tUJGVydCbAX/lzQvC2KBAM6HWhx4fOpEaqSFGcBJYNpaWWWmqppV7UevIZ3n3jUeJrM90yVX/e9YaQuf2Lt7zm719egMYnWm1KMf1QdR3CuDOsdXwxUq8aHX5GKWm5C7azP000RDOq2UyiSjKg4RzeVVvVlCzgrxRyyoCSa/6BWZuaYNusaWuauBYQhxObCORkoXnZ2x/V+dC4+X1m0QpDViRDrE5Np7uIFHOaiuoo4tlnh8+gYgGE8ywKe9GmYRC07uirWqN+4+ZNPvzhD9G96lVsvCP0PUMacCJkVUqsUwDEjlcB9YVcTIPiNmsk+Kr/sMA9zZbQPVGxJotckWpxK1p30ptbE+Nz29rPi7elWuyOx6vqHQ40FzVhO9jBJCVn1Drn8MET1KhJDWTMw/vmWo92LvZDpBSjGQmm0xiGlmruqmOUTcAayChacEXIFHOIEpvgWL6HUmquxpQBcmgC0A5HO5d9CKz7FUdHG9T14C3JvWiuFrvOJkfcRdck83DMeh7VgGeeTYeWWuq5lP7QNX74cyNfsFocY5ZaaqnnXuXsjA9/5E2cfNaSEP6J1JHr+DWf/h/5+YffAB99/KKX86LUJ6zR+LjVGtMmap3Tjer/H9CPDnQc9rWF052nKpWcyHE33jQPOCmIZvKwt1vcU5rr0AgSJtAjY6YG43vQfKyquDy37Iga2NZC6KaPWJte50gFhpSJRdln5XRrQOMsZnapMKgj4hkyDBly7RkPAhC1ZYpMDlhtx/z2rVt85CMf5gMf+CBnZ6ej5aqWibZTUkazNmI/pAypjDv85l6ViKXma1S3LnVCbu+lpQIMoyRpUy9XEbkdM5nE2HWi4SpYkTq9GAHFzCmqOYI1rUapnXsDOrkUUjEbY0QIYZqWtKmCiGkY+r6n7/spzM9XwFSUOsSi5Mx2e1Z1HK4K3KOJ1Zu4XtwIckfHKZrY3FcAZCnk7TpqeRrte1cnZk1b5L2n73pWobNkcAQpkxh/Ti08BBv1dRVKNlAUYybGTBrMeWyppZ5rveZb387/8uQvu+hlvKzqEe95/3/7Sy96GUst9aKUxsTmvSueyovr4SdSAc8XX3kP+8cujZu7L/d6wYBGxRbT14/j/j9ZiTZu1MwOdDY50OkXKDlR4p6035KGnVGBSsFRELLRonJGKNVVaqLuyEHjO8vRaE1+3RGf30YtQf3+jumG88Rc2GclIwxZOd1HdjGzj4VdMupUwjMUYShKarvUWiaCvpiVbwslbGLwnBNnZ2ecnpxw8+ZN9vsBsOkNqrXJNvcqV4+htryRXJBSpy7ZQv9ijKSS7abFpiENfJTqqlSBhgDO+TEtvblkNTvarutGOtSYoM5s19+WY5aw3tkUhTadqKF5Iz1uOs5F9UAA3nQgR0dHbDYb1us1fd+PIMR0EJ1NTcQubi2F05MTUoqj4D6XTM6JrAXnZAz7a0nn8wnJwbUyuwabUW1zhmrhfKiiuWW9GAD0zpt4XNyou7FjfBf6YH3tFqoYq0VvAzq5akeWWmqpi62rbsM3/abvvOhlLLXUi1NauP7uwuP50kWv5L6vT+8/wq03PDjBfS/gRONwOqFV4D026Y06NeoumkXt+cnD1PRNDb5NHCjZbjkjJeNF6YJn1QU67/AoogUpGS2ZlJNpM7RUMbmBivaelahSd//td0xAYLSqkddvfK3pfjEgE1Mm5UJGDHQMkZiUIRX2qZBqcFtSJeW6S96SpSlmkesd3skoorfPzkhLEnEM+4HdbkcuxWxl+471es1qtZqa/hpaZ81v3Z333rIrKohRIKvWW57OUx21OOdHOlAI3ZgE3pKuW0p7Oz8NIDR6U3NzGoFDzvRdRwiNBlUqHaiup4GXGWBp10+bYqxWKzabzfRZQ0AaVQwhVHvdBm8dyu7sjGG/rwBk0gGZZezhRGme/t7W3iY3rlLv7PjV67nMP6dNPBpYMFBrn6erkxmHm4Zrd5SMOxwlZ2KqAKOUEbCXYpbDSy31XOu9/+Vb+Te7BaQutdRSz6NUufye2/x8fOSiV3JflxfHY37g5qeC9A8G0HjBNBqtAbVU5UlbYQ0ho52nNI67NsvTSiupIMNwhcyAhoEEQXFaaf/2f/QidE4gBNRH9lJGqpMiqPiR+uOk7tSLWota6VRO6veqUCKaBoz7Yk5AUpyJcUWsMS4FUY8mMW1ATvjiIO5JOVI022fICXGRIlIdtSrFiYKIp8Q9TgtBoAuO4gXn7H1zFYOXrFCEuIucnW7N7nazwfUB4lBfy1hOOYPiTe+A4HwgeJs+lEYNq+5fRaBIjZOr2A28UcqKgO/wXYd4P9LNnCiUTI6RkgoVz5hrVowHTlMCUCcjfdehhaqLYRp7AeI8oe9xXXW4QhBn1KWDrAzatMSuExVFq1NVQUh5mjw5gbwfiNutnasK4nKlSeVSJrRdgUGjM2mxiZJzDueDgagU62uXajhgE6hcLMukSEaqqN2HnoJjSAknzqZFdtFVQFFTX7QePJVK+5rTCE3XhHNInfIsWRpLPa/6oZ/gqXwJeDAEiEsttdQnt9wHPsr3PPUL+NrL/3IRhH8CdSyO9OoBWa8eiOC+TxhoNJ56q5aZITLtSOMs4RpXQUZrrIrixx13c2qyHr42WAVyKmOOhtFHkukzBkdOSucDvk4hiJGUIzEOlLhDywCasCU6fHET/Yexzau70Iqj4LSBDQWNxO1Nyn5GFwJslVSgYs3p2U0TTqdhwAt4p0jJODWqS4x7yn5bj4WJu1HTTTR3przf40ph7RX1YjvXTQicCxShRCEnYbcbGIaIbjrCqkOd4nMkpUiOyYIJu2BZIE7oVj25ZI5DT7/qOFHl9ORW3S1XMkoQRx4ypQgQUBy+X+HCBvFrcNDVUEKHTUsiVSwONqnIhS2n9D7gOtis1xZqlzK+66DYJKTzHbKSkTqmaq5KPnQcHR3hvKfwDPuzM5qOPIRg58E7XOjszmIheC4rzmWGEnFdR9nvrWFPiVTOOLt1A//qV0EWUtVphNCRYiK0wMRqWtDVXJLgDWylZNMm5z3JOUiRMmS8eLwLRmVy4DqhyIAScD6QsrDPhYjiPGjOxDhwDYhF6dSAeKFNRwoqNeyRgnP2t5Opdr/eU1Tp+kWIt9Tzq7/82W/jr6xX/L2f/B6uus1FL2eppZa6j6rcvM2/e/sv4uT1/4Tr/uiil3PfVieOxx67gRwdwVNPX/RyXvD65Ew05PBbHfeE2z1VUEzTasikw6i7tkJh3I6/04tnLNVMKZn9bsewjaz6FQjkbFa1kMklkVOswXm5/h5QTHQstZGURsHCNBqemYuRJDK79q6IykjtavQthwGtBjZSsWyPThr9qYbDOYeq7bYXXMVYMtr+hupqNQxDpVJlUhyqO5ZSSianwrrr6HxHScqwT+QCvusIQWyXvNK8ooi5ZRVQb3DKjH4x4bUPrFZrhmFPintS2hNjoV/1dKEHhCweKg3M9Su6fg1iidteCr5OFwo2UbLjWxrPa9SNlFzIpFG4nXOZJlVY8J8JnhPiPF3vTe+SMi44VusVJaXqAmUUplSKpZOLHVfFmnCpQMR5T+h6imRUHFkEjYk8DPjVCu8cwQfcbMJlBgMFnJJdNsepEEjJBNgWmJdxQN/3DIMyJEVw7cjadU6hUNjnyNl+z1CE7ARStGlIGmr44QZwjeFFm/SJUp2pZNRqFCrFy03UsqWWej5VdjvY7fgtX/Ib+adv/66LXs5SSy11H5WmyOu+N/Ku/+uKX7L8M/S8qxPPp19/gsevvHp043w51ycONJqDzogrmmWnoipIDem7AztIe459LaOWowlu7zzwcz1ASpmYIx2dSTYopBzJOVX9RaVL0cL16psquBHcYFILTCNSGke/8uFzs7t12H1SBereja9vzZ+3CYIqjs4a15JJMZOLEjpBxHI2qBkNHofHmy6jt6Y+NYF4SjbFQRGniGtBg6YbGIaB7XZXBeHVhlV6PIpXYY9jv9tDyiRR2/UvhZyrzsN7VpuNTYdSJOdo4unQQvq8UYVSRopaVkbfWdo62dKrBaQU+9xyqNFo5yiEMIUKegskHPaRrpMKAOtzqubFe2HVrxARtmnAB0/vHHFvr+dqA04y8bodf4OMDpusjKLy+rNTV++zQEAvQvA1Xs9ZHKSIUb5SzlAc4kK1oHXjpdoS4l3w+OSNRsehVmI0PVA7h9vtjlgEOm8C9BTRHEdxe1unzi738TItSoqJRCbh0AqgnPeLxe1SSy211FIvfqly9JMf5u8+/Uv4Ra/6oYU+9QnUa9Y3+PDlN4LUAOWXcX3CQKOBggYvBEbnpAYkjIbUmiiZgYy5e9MMaDTO/t3erz7uvKNb9YQ+oFpw9PTrdW3iymhF24TNNj2R0c5W6qQFVWuYsQA1c5Cy1jW4QNf1dCGYo5OXMQehDWbmORIq3o5Iyey3Z+zOThEtdKsO73ucD+ADzht/34kF4TknxP2efVRImSxCEcGJxzmt+SCOoqUmmBe2uy273Z6cC4oJortuZXqDaqOqgORMKSa8jrHauiqs1kcVsCViTngKeE8uZfysrkht6LVOLcwFyqmiRXBktFdEPCKHDl3ng/SAqt3IqDabWvDe4YuF/qGwXvUgQowDop2dm9nrpnHKU9opqBMSm0qVnGuGSq6DFZs3OGegru0cOOcQ73GVNtc+m6KIS2MuiF1Pdt3Y1KigupumW+3aF2iK7UaFSzkRM9iUrZoXaBnf5/zfUXs9E5gXhjgQFTIedZZ54rw3p7GlllpqqaWWepGr3LrN973/rcRX/psFaDzPyqp8ZHcVdzaY6+jLvD4JE41ne0CYb9M26tTInNI2oWgI5Dzw+PhvGjqP7wKu8+RUCD6wPtqMAGe73ZF1D5qqtkJmmgoDHY0yha+AQ9UmFGJAQ3zPar2mX60IzluAnPejM1CjWXnvEe8pBEApKRKzovto2oL1xkCAD+A8+I4QenPUqm5WmpQszixwGx3INb2ICZRLFTPnUogpkVI2SlaGIrZb730grDr6kskKPuVRRBxTYrsbOE6Fo+OeblXo1gN+t0VTJFUXrYDg8WSB4ky/UQwxjo5VUkxzIEURP4GQMayvPrcdo1LXLM5PQLLaPzkRuhAouVT7XEfng+VOoHQhjLauOec6QNOxOW+AUbOJu1uwnVSrWtEygsOUP1YNVQAAegNJREFUklkJiIHGZkrQskqUyTnLqY4TGa1ZGTk2rVAFVPOrsgKF9vlr7qNNSjBKVMlSwydnWSnt74AJCIEJzEsxWlgDWW4EP0sttdRSSy314pbu9sSfusLJL16C+55vFQofOruK2z0Ym4afkL1to4rcPSNjlvw9v/suY4qpYTxX5zMv5hMPEWtwUQufc4LrOnzfE7oV4jsUT8EDASSAC6h4VALFOYo41HnEBcR14IONscSmE4oD8ahYOoflYFi6d5FAkYC6gLqOIoGojkxHVMc+C/ssZOnw/RF+dYR0G7LrSQQinqjCoI6hCFGNiJNVyFUgbB21pQnaDn6pGhYDHbmYY5U2Ln+xY+29p1t1rNY9/XpF369wIVAUdkNiHxO5KCoe3/W4sCKpsM+ZoSQGtWyNIgWtdCRjGvmaYu7qjj91ksDB+ZmH9bWmu02YRGRM2QatgndqfkV93hDHEDyhTj28uU+VbBknk2PZ1KxrvY+2hkrX8s6DTNawKUVSTjX5PR9MYWbRH6O70yjWn4U2tqyROaAeMzXadTvqc+r9bfI1/sZ0/TPDGq6mpUulhoWuw9fgwBGgLLXUJ1DlY0/xlr/3ey56GUsttdR9VpozD/+U8uH0gpmWvuwrozxxcgnZDxe9lBelPulXioW1teZrokW1wcVIM2mPNP3EDES0xuzZSgGtvrhFlGxqBhA3hdwhqPPgtAIGB5TGtakNsnH7dQZkHJgrlt1hAu5iCFRUUCzkjZoEXdRRVKA4oprIPBXHkCGpo3M9uBWENSCUVMgq5jpV1+G0GIAhoH7ScThnNC+zbW0UHbF075jJubl7eUu5JhkVSKTawZouRPzAPhVigaKF3RA52w+1GV/Rr46I0SYkJihXnCjFWwydioEK5wTxHi+GUC2Trori6wQDJnAB5hQFpoEw1ygZAYeqEuNgjbVYbkgc9qRqB+tmF4F3BnAsvNDO3UhXqgDBOT24tkzUD7lejjaidCOAbenktITvmsjdyrQQBhjaxCbnVIEJIwjWesUj///2/jzatiw76wN/c6219z7n3OY1ES8jI/tG2UhCpCQkJEQjNAAhKAyUBUK4yqZccoFsg8GmqvBwldtyUeXCgEdhjMoGFTCGkYUwphVqCkQnpfpUSkqlUillH5kZmdG85t57ztl7rTXrj7nW3vve96J9L/JFvNhfjBvvNufs/r43vzXn930zwlzsa8U5pCSpumK/W4mQPcs6/mmEo+iEimubFxPA187IQjEW3Avk01Pe8g96+IP3+0gWLFjwioJmDh7b84l4hS9rT/ByV+vVr0oMmjnddhBv3e9D+YLg3hANPT+LPxfRa6n9VO7wNp0RDZ6hq3HhDZNg3DZs+3QmznWO1NexFsu9UF/1IuUASkVYpnbQsUxUwFXKYl+JkRfng5Ek75HQYAvdxaYWB3hEAuJCIT+JzNT1iOpx2bYVgSz19QJiQXYRyM6B97gmgLZ4L3gU52oonQnEc4qW7h2juVe5ABrJSaaVfhFCG+icJ4tHh0SOmSyOfoic7XpCaGmalnZ9xJCVfJaJ5TVJvOWE4K2bk7Vcj0lwncvU0p1vVRVvu+LYlGnXK+toZCMdNg4UcdnshpsQGPZ7dtstbdfRhlA8nYxMhOBLV6IG8rmR5OTSAdESADg9SpNeSBAkBJoQUCm5G9U6uN7vcsxVbyIunOtyVA2Gc1P3Q4vZVv3rdq47cmIE5mLSvDCliqNVbcKoPxlHCe1pNXIrU57MggULFixY8AWHKuHpLR/pXwObk/t9NK9IDKoMu2Crta8CPG8qOu82jMWQTiu59TW26ptmK74UJypb4VWmURSZVXC1uJtWeg3VYaeKf+s+hj6x2/Zst3uzHy2rzN4HQtFAoK7qb230RXX8yLXGw4Q51fp1IhDTqE3KRj9S0hKE50hqY07iG3xTo+StuzHETFLLenA+ID7YKJezES4Rj3jLWvBNw67fc+vmCTFlnG9ouhXdZkO77nBNzY0IDIM5FoXGyM5+P5CSliwHinYgMaREHwf2/d6uSWP7OTg8pFtt2PaJ023Pro/E7HDNCmnWaFhBs0LaFQlPnxzbPrHd9aMewZyvTNgtdczHObquY7PZmLNU3486grnrVByG4qKlZI1Fn5LRYv16dnpCigPBO3Ic2J2dsdttISdLeRfFB0cIRrqk5J34ok9JKdLv96ScEFeE+1I7CNYZaELJvShjW3UkKqWEc34MBgTwwQIOq9FB1cisVitUsXT2ZOnu9ZyddwzDYAYC3lsIYWhGwqWa2e/3ZiDg/fgMuqonKb8SXdfhg0dR9v2eEDzr1WocQ1uw4G7h/+n7+Ir/8t+534exYMGCVxjcyRkfPH3UFgEXvGAMgG6D5b+9ChYO70lHoxZid/xZmcWvc/53fs30+XmB7AXUOXzMLtZcpDwZy5lIqY5cTTuzERkB0jgDf34ua06BZscwfXXxZHHeLFVxgaxCH3MZy5ksSEMIBLdivV4Rilag8S3OZ2I5xqHvGV2IihDbOcG5plyTBC6Rxax2m66j8UKOA9vdnpu3Trhx64TDTYemjCZFpUR7a0J8IDQe8OCV7FviPpFzZDdE1GV8k23syrdsjq6w2zv2u56YYhGhC604I1QhoENGiWhWTBE+OULNi/ba4aqZD3UlfyjFfRXoW/p2QnMmDXYdvLMwwJQTSZNZAAdzfhoduGreipqjVkqJ2A/kZNsOZd+5CvzHNG6s61EKe+ccWkhRTT23cbnidiXTmJT3vjhYZbufTcOQMlEz3lcBfBknc46maUGFGIfx4ZnrjS482uc0GqrmPlW7haN72kyztGDBXUEV3z/4/8gtWLDg3kK3Oz50/RF4/f0+klcekmYGBdk7ynjMA4+Xj5qnjEPNOxrzYuzcyIhY58L7hqZp2O+HUrSa1am9ZCrILMvDbEwtJG8iFtVethpQUV5n72MiPKV1k1XRmMwaFdMsiNgDk2LGIeSY6PseTQNerJhOWQmtkrBgPwDvpYTaebwX+j6TiUiKaOwJroibxZuQPfbElInDQN/37PcDMSZEPD50ZBKkjISiJi+ibHEBdUJ2LcSeYdvTpz1JPTFbQdt1LV23waVEdqcWgJhqEGJkiJncWCFd7VfnIujRcnauP9DzP8dh3YR6XLORuZwScRjQnHGNpX7nlEhpIFKS432DF8GJXTup408Kmot+omhvrJvgkOI+VVsHc22Ec57gjDyM2RRlps7saRPOJTJCKn8haIqjmN07E5pffGalCOabJqBZYOjHZ2i6NkZM6/uYlB7Ta7JpSnK2EbNldGrBggULFtx3xMiTpxsy079jC54/EoK8OqamgJcT0ZjBRuonQbhSi9tJKB5CS7s6oOtWNH7PMEQcARFnK/SjoJYxqXqsbOtWtQTPla+1sA0p8/81OVw0I1hGhh1DLjP5Vtg7X7UR2WxxVZGc0NJZyLEnFacmXDCCIuBJJeTP9plyj5QxoayZrBCcQ3zRFGAFdc136PuB/a5H1VbP0xTvZloRnbKqFQsVVOB0u2e761kfJDQrTWi4dPmYQRv2vZCkQyXQxx3b0x370HPp6JBVEyAaEcJkzaPD0lwIXh2n+r4fx3wssK8pgYpl1T5n08hUQpKznV+09HZNqbgs2UeRiOCKRsIcnIxMxEIQYoxWss8E6dY9sXvsnCOI5YNQBO6UDsIUGsloQRuLsUDN5EjDQC4japW95Eqe1MGoTSkkouqJVEugoInRKykbjRDqMz8jyFmrp5uRS/F+cZ1asGDBggX3FylxdtLZv6NLg/0FI2khGq+CDA14GRGNUZI9G5uaitDbTXQb37BuD+i6NZ6GM92WIt9+XqQhlrE2Sr7rx0QuRjvUQirm7x2tU4tqo2RejyvLNipkhTNZIWUbEcvRshsqiVCFGMluwAXwEixt3JlGoXWwWTVI7gqxUfq9ERfnHeLdOALk8TbSo8rJySlPPnmd/RsG1m2HuDIqVAhTXWE3fYsrnYTA6ekZjz3+BEdHx/T9wPHRMamIpocY8d4RU+Ts5BZnJzc5XHfsH04W2ge40s1wVEvYiWzUBHAwDUPtFHRdx6bx5DIaVcX4ldhZHomJzjVFUsnpcOU+aCn8xbtxhE5H8jj9PKc0tiMnu10bi6oEByCnPP58TDWnPnqFLImUcbz6GrO3zTEa+SmvN6IBqoXclOuRU2IYyggUjJa3xn1n3To7WLsS5S/uepz1dyAnI3ZjlsiCBQsWLFhwP5CVfKthYPm36MUgI6Mb5asBLxuiAXXs5PzFr6FulYBoWfX1EvDSEFyLBggulvl8ilUqY6fASu466lPD++pQPEYEyjiQq2M91XuqCJZLP2MsBKXY2/qyQm3jXA6nGdHSlSAjORGCt+C98jPzXFUgkVJPigNeMsFZ+N6QTFzsBbxrzVHLO3JSVLSI6ZXTszOu37jBMAw4t0FnzlRSV+ZNYIA4j/cB5+Fst+OTn3qM4+Mzhjiw3fVs95F9P7DvI00TGPo927NbxH7Po9euouoIoSUN29FWVtUKexdmIXW1yM6Zvu9HAfswDEhw+NabXoKSDO5M6E7ONkY2xDKuBaD4UKxlY8L7NBJHsl1fRItGIzIM/ejYVIlPdb8KIYxOT9btMPJWO2U5Z3Ou0onSjk9i2c6UnyHFVjhPRgf1cWFyWKjakdmTZl0NKPqLSWcy7orpmEVkHIGbj6aNY14LFixYsGDBFxgaI93nA/tXyYr8S4JX0WDCy4powLQKrRdWfC9+X3BIdjh1BN/gxaMpAxkXTD/hRMr0YBH0YiRE9HxXwwrJIgjWmgtRiE9JnUZM36GayVlw3nIuIBP7xND3rLwJi/vdFk0RciLHAdc2BGfagpwzMe+IsafvTzk7vcUw9KQY2e/NxUizMvQ9bdvgLxVxedOy350y6IBT04qkaDqCrDVPQ4pIu4z5ZIWcEQc+FHcsrwwx8eQTT7LdDSCeXR/53JPX6XeRs22P846UBtKwx5FZd22xt7XgQqU4h2kmDUNJOg/j/aui8FoYD8PAfr8namR1sKZpG3LXmZ4lJ8suoYxdidBHE4UH71GFFAeSxHHsqXZBBHMPs07DwDAM5VpMwm+A4ANd1yElENA1jTlW1Tp/9mzZaNMkXk9Jx2s99ANottRySbNnqBDiui20TP4VMlGfWZk0RNW6duzY6exZZLIGHu3v5oR7wYJ7hEe+/5O887f8IX7p6//a/T6UBQsWvEKgKXHwaeV6htcsEo0Fz4GXkGiUULUqcK2jfAKoBeVNpaCOq76eKZrhdmeeiSCIE9SBCnix1foh9RYsJ2IhfLPmiL1P6uTT+N1qQqW5LEk7mYr20hUQrDtSJvJN+6GZ1O/Z7ntu3rzJzRs3ibstohlywqG0TWC1atltN4SmxflAUmG737Pfb0lxz+nprTHMLqZEygnvPGmIRW9iWRYeh3cByXXm30L8skKMmSFF4hDp+4SXHqjBdo4mBIKz7oFkK8T3cSCfntG2a862T7Pve/oEp2cD3gW8F+sI5YGrV07Z7hMxYcejigeiQhx6XGgnXcGMZNTgwN1ux9nZGbu4J5ye0HYdm/Wa4D2i0IZAcL4+GqScUE14b/vLZUzJhwaf7ZF1wZsOIk8dHhNpW97HOOom4EKg6Tqc8/QpWRfKTWNOOntK6veqHW3NUvEOvLgiNgc0k7XocHJG1FLTNStZMiIZ7yA4YUiFq5bOxzgiOD799SEU09OoWe1WxzRx5q6W0JJs/+ppuS54aRE/+Sn4+Bvv92EsWLDglYSU2Hwu88l4zDubZXzqRaHOXr8K8PyJxpi4JzPGUP+s40h1jEjJJDIZC2s2u9KaemyEooSraSLr5LRjLkky7i6lVITWWMciG9nIJNQlItGC+hoLwgsu0Bexckbphx22Am7J26hpEUTKnAtTHogzBkNWGUeovBM0RTQ5Gz0CYo489fTnuX79Jrvdjn2M5H4ArOjUbEJhEcHddKZZkKm4TIXUeKpg2zHEVDQCgQFFk6BnA3LV03nHaRa8hhL2lkEc+/3AE089xRPXn+Q1j1witA1N2yI5Q444VzImsmVVRLasu45HH3mEK8eX2cXMfhgs9C+0XL9+k21yqCTatoMYacWz146TnbAdhI1vcMkTd1v2SdHukOCEJtiyRijXqwme5B1937NqG8grtv2eOERiVra7fhTshxA4WK9oxIEmXOfp+wH12LOUlBAaEOhjX57BIgR3Rjptwd/ISTGoJWfTNDip/Q/wLhBjxpWw+BjtOUlF1C3Z0bWddTGGSMwZ5zxdaJBWycmR+gGXM56EJ9H4QmCj0IQG1YBLig470j7SuNayR7Y7kkYjfSHY6JYWI4FCeoM4Gh/MElkcIkpWT0qQxaE5sd3uX+Cv+YIFXzjsdRg/dzgaWZY8Fyx4kKBZWT3R84v71/GbVx9f0sFfINyraW6KF9TRkDt8fqfv3eGdChSh7OT/w4zNlc7BudXlaaRl/nntaGhOiIfQeNQJsndIANcEfG+/CN57Gz8phZzOVBsmGK6ZHPW4rAujKuSkOEmI8whFuyEQc2J764SzmzfYnd5iiBGXTW+haXJRMqckO/agloKtuSY9UwTBZRxGSskq1jtxVWuhRpCcWNFpK+auuCOZ5HuIkb43e9+26chtSx4iOUe7pimRh4Gcd5zGHY8/veXTj30GgKZpUVFiVsQ3ZH9mqeW+RZsWlUxoA5vjh1kfXMb7jtifEhSCd0hwxFDsXWf6GhHLCEkp4UumiPceCZ5b2+14zbMqSSPs9mRVjtYrWmfqmpTT6B5WR7UmslbvYbbV/XE0yZkWRhzB+yIoxwTdJeHdOQ81N0O0FPu3h1Fa+rfHZSM6lhlStCHJskhyHEixJ6fieKYg6urDi2pEU0SwTlSuxLqE9ExieIMbVzgqLRI0186dmLZEPXnpaCx4meKD/Rl/8mt+L+nxzwFw8i1fyw//N99xn49qwYIF9xSaaZ464188/Q7+8KWPLQa3LxAryaT1q4ds3JPRqblT1OQm9GxvoBSN89fWEny2TaZOx8WvnXO0TaBpPUOyNem6HXGCaA1kk5FUqGZEbahGi8i7xvWhRhJySqP2oqxzk6MniSMK7GPk5vWn2Z2dkod90XNYzyaiCB7jNiWIThVSna+fcSvRsk+MNBTXonpdatNIyvZFfHEtwoL5yn8xRvZDbyv3PhCahhhrPkYmZ+uOZO+5ddbz8Y99gk9+5kmcCzTtBt9APyQkNLTtij4VLQcOdRHfdIhrLEsCICtOlSaYXa0L3RhIWMX88/TqOj4VQgDnONv3Vuw7B0kZBhOKt8Gj6w7vg3WrUFK2EaIqDJ8/QCZdyEhxh3LeE7wnihtzLJyAxCnbwzmHVhF32c5teqDZ1947cvZFA5LGUTq7t0UMP9rvMv4MmT+32QhoIZ41pX78unTYKoEadRjlOjoRsjOS6XwY9TgLFrwc8Se+9dvh8Z+934exYMGClxKqyM1T3vepN7B/87B0LV8AvDhWArpJ57SkDzLummjoeX4wkYhnfP2kx7jjzy4UfvOfzeFdKcKiWY7WjkEqzkCuEonRRUhs5AhLs67ZDFq6GRagNhV/HutSJBX6XSb2O4aY2PcD/XaLxh4vWlXjFlvjgq1suyKUjiUlO1cylusovq1+j168WvZXbXjtuO1n4Lzggysi7epYBYgwxMh+tyfGhJMW7xvUm36hFsTiAt4HQrBzSzGz3mzwzYZGHX6IiHhCsyKIB2lKYrcJs5+6cYMnnnyK1z3Usc4JDyTV2TFaER9LvkTOGefcLCvCCv0mBNZdR5l3IrlsNrMpW/gdHkEI3jQbOSuQqYnb558Hs+ytzlUhBJq2IQ5+IrClYPd+squduzbVIMf5s1W1Ht77Qk6mh9s5h3hP9p4QPEOcunSuiNTrk10lQmYtnKbAv0JuUp7IzqjSUPv51FGZCFR23q5bfeGCBQsWLFhwn6BnZ+SPvpHrvy5yeI/WvlLRQObyb6JDHsixrJU4/MEA/tVB0O65GHwq8J7nq8dCT56R3M0LwTqmE4eB05MTsp7aSrt3eOfRnExTUVsIMBXEU/w3E+GwQDTNycZVtLoDKY7iOjRYYFs/DOz73voWYtaqtWjUDI7OhOIWyVf2MrUyVAXJOvqfVnOkPI7KQM0TAaXyGHEOV7oG6ULRPQwDZ7sd+74n6brkUTQ0TYc6T8qKa1bQrLjUHPLII49y/SxycxtRafE4xMeidwhkHJqqKNrRD5EnnnqKxz//BKdvuExoEh4LMUQjSMSXollV6fverHm9J6WSO5HzWLhvug6LphCSU3JjDH+z2pSU9EzbBNqmLUnhWuxwz0PK8+LEoc66Jm3T0vswEZ5UOypN0ckIuVjOupLlMR/3qs9kJUg1y8I5h6r9mVGiOLPlLT8f36sjtxnvpRGK8xaAE7mZ7va4gfp16dI4n5HgEfHE0glZcjQWLFiwYMH9hG53HH5S+HTqeMM9qCSTZm7mHaeaOVNhp55rLvIav3ngyEYjjkeu3kTa9n4fyhcEd/V41FJprp6vzkEXJqEuvLHMn18YnZoX0POV8Pr1GAwHnJ6ecuN0R0yZ0LQcXrrEarWmzryPORma0WxjPLX7QFkpBzU72RTLKNV0DkYASkgcJQc7RSSbG5QvNCLlhMZEToJIII8dEp05EmkpzKeVawfnui2gRaBuY1/2WldE6jLqTcYU7sJShmHgxvUb3Lh1k0uHK0Iubl9iq++iiognq9B2a65cfYiDz11nO5wSCYh4FEdUZ8V/qqJph/ctqj1nu57T7ZY+JQaX8BJxYvupJK4eW7WFnesd7NIbGWhCQGIqmRWO7M0lat2t8c4R+x3iPU1oyTGTNJ4bm6sjSubEZMYBDkcIntAECxuMFsiXMoB1gsS5SVkkhaR4I6ZT/of9vB5zLtfSldwNqJSh3sdJizN9TONudQxKyaNt7qhRmo3R1dEpVdOeZCZyKW76HcmqkKxTtmDBggULFtwv6BA5/HTip7dv4de0n7xrMnAz7/gn29fy46dv48O3rvHxG1f48muf5j969Pt4U1g/UONZnTR8w2s/zE8+8h741GMP/JTCfcnRGAkK3NbReKbRqQobVcFyE9LAUArbPGyg7coozRTvnmJPHPbkEpwmdd6/aCRySmhK41E5zH0qz4lGKWg9QuOEmGw0S9WIhuRUyEFEpegitGpCrGhEa5CcFauu7L9QGHNR0jy5d43/t/dLSQjHSRGDa7kOiaeffpqnn7rOtUvHrBvBZYtfEFViiogMpORwPqMq7HY9u32PNB4XTHgumJWuZtDivCXOghFBTc1Sxne02MNaoW8EoyaCW0fFj8X6xVX/SpwEN4qaNZsoH60hd2bLK86jQ0TdhefhovGZPT24+V90Yvd5HKlLcTaS5MbOmHWwin5Dp9dPz+A0elU7JfMMjFxE3iYlmeW8FEJsqeE6ZmhoEcKfYxkXlUrleCjELao5kuVcDAeWjsaCBQsWLLiP0JRYP77jnzz1bv7NSx/D8+KJxqCJ9/eH/Cc/96+Qfv4Sh59UDh9PvO/1D/Htv/8Kf+Ztf4svbjOdNPfwDO4fHMJvOPwlfuitX8fRz3i0aFofVNy/0Skd//fML7kg0h0hwuHBAd36gCFlYsqs2pbGu0moW8Ly+n7HsNsyxKEU/joTWluRJ7kEwLlSIIo5/aBW1Cm2+o1zeISscVzJV1GcA+8gajIBdtGCSGmNiGTUFb2Imq2t/WwqSinOVmjVfJTPmQpPcfUXuepchJgjZ9st/b5HxNE2DeIFSOQo6FCSrJ0rlqpw6+SUW7dO2Rw3NL4lpYw6D7hCqgIpDmQSLggpZ2K0rI921dEScWpuTJojwzCMI1NVLwOM5GN+7xyFeLlgHQdVhn6g7wdc15Iz9DGXv7KMaj0T8Ry7AjMTNNXasXBIzmg2wXy/t5Ry75uR9AxxsMJ+HJEygladqEwjIjhnnY2UUsnqmBLQZw/l2MG4+AxXBykzKTjvuqbMxeAKYkRNnLNMkRTpc7b8DGdk9EFf/VjwysSX/fl/hzf8zE9fGBRcsGDBAwnNhCdOeN8n3sjZmwc6/+JJwJn2fMdnfxubf3jMwz/1NO6JG+itEw4PNlx/8s38a3/g2/gLX/Fd/IbV7oEgG14c72ie5Ol3eY67biEaFTnP//mY5sip8/Oq59dlxzERHb9Xi0Anztxz3Oj5NK4QzzsadZW5/jmGwaWEE/AiSPA4ZwnTQ78r4zUJV4Lb9tstN64/ZZ2KIPhxRdvCAUtJb52EZPPwvvFlQTzjpZyXWoaHcSgbs1KB4AUVh9fiXOXOOxFN10unjspsgmsUEpeiNUvRBoyBcnadbIzGm16hZEfUCf+scOv0DB8amnZVRNWJPmdCaBhSouka2rbl8PCQy1cuc+N0b+Jou9AUrTKWtp1xThD1qCbikLhx8ybbvueoA5dLqFxZna/p3ycnJ5ycnLDf78vjcd4xzBWL1iHVbpJ1ZDKw3e7IKZltrlg8opZOSdVNmDZBSCnjfIOFkZsBwBAjOeUyOlUSwF3Aae0mTMdTCVDO9hxmdJZkDiGE0TlLVYrepIq0HUoaOx/j74dmfHkOqxh+JFmFMIgKrpkIi42ZYeRh9nsypIgPzrp2MRV7AEuAJwSGpaOx4GWIw8cyebe734exYMGCLwRU4cYt5GOv4bNfB1fuYrJp0MzHb17h4LMR98QN8vUb6H6P9D3HH7zMUz97lX/+jnfzVd1PPhBEA+CSE7Zv7ZH1Ck5P7/fhvKR43kRjXKktYx/T+IeMBetsrfaZ348VyfayUujOPHHvtHo9L1jrSNIw9GQ9QXGknMmI2bsGCwd0km1kKlregTgxm1nnrHsh81EXswxVTUgGl8tr5h0Qso0TAZbPVkeBFHU25oSkcZRGi8PU+RMxopHFZrOyWraHK3qDcRyndEIUtVyI0s0QV1bFy8/qtRuGyM1bt9hutxxvOoILCL6YXBlx2A97Tq9f57Ofe5Jbt26Oq/h1Rd8hBAdOjEQYVywWuc4saGNMpCT0KY5Ew2nG+0yMsbwmntPTVL3GmBxerr2Ng2Ehg+LoUyLtlVXTEILHi0e8dVk016I8n+8iqI1dpVy0Mqo45/HOM1A6OYXczJ/OqsExjUYew3Ps3oEvqdy1o6HKKGqv1z+VFPfzRgVuPFc3E4uP2R9Fw5GLQLw29UaKUbaVVcFNZgIqSlYpY1hGzhYseDnhc+kUNyydtgULXk3Qk1MOPwHv37+edzZP3pVOw1UXzjzXsyput6e9AZ/aXmHQB6dfuhLP617/FHJ0CE88eb8P5yXF3Uv556pWOFdc12L4GTUXz/Ttc+La2zUbqkqMA/1+S7/f0e/37Pc79rstu+2W3faM/faM/XZLShEv1smwxOyS3J1SmZOpH2n2Z/nQRBWN29hVHjUGzgnO1c8pHZSMd6l8WAEefCYEpQlK8Gqf+2xfB6EJjsY7Gi/jR3Bqzk5lJd45hyuhd9btkDqpgyoMMfH09Zs8fePmmDCetapOQEXo9zueeuoJPvqxj/LYZx4jaSrdEnAevBe8BycJRzK9iUbQiEPNTricuxdXXJ9s1b5pmrGzMR8rujhilDWTtRTrzoMXXBFxK9DHgW0c6FMmOwcSqJauubgt1Q6XOLs4KSezNC6r/N57fOlI3CmL5fbnSkdS0DThnOje+0lvMgyDuVXV89EZoRTucM6zgEqlpJOr2fkWbYiOZgAzyUb5vak3v2Q6Ith19+LMWGDBgpcRfvN//3/i8Ht+7H4fxoIFC76A0H7g+JORH3z6S4nc3QLYqLusJCPb2IfsB9qbyme2x+weoLHhRjzveejTpKuH40TLg4p76hk2z8h4NkE3nOcYz/XaO75/HKOK5BTR0rmI/Z5+V8jGbktOcRzPGueVsp773CnFGap81LOYFYTUonAm4h3drerSdI7Th9Y/E6JGWoRU3Kfs80pOnFjmhysfnlwSrhXnBO+K2LrxNkIl5YzK8WVVbt64ydPXjWiQLd3ceYezyAoySh97bty8ztM3rqPFnrfEtmMZemrHxQA6QB6g2v6W7ob5WnucCwTf0LUdXdehqiMRmK/oj8Jr6uHqWEzHnMyytYzARVV2fc92iPQpk3RyIqujUxOZKd2CPI09ITb21DThvDC8FvX1PtbtzrZvx+rx3o2/8+ePXcvI0+SiNd0Hxmesft+IaA1gNOIgWBq6ZWs8y7Ntez/3l484oWkCXduOnZIFC+4Fjj4C33fW3e/DWLBgwSsMmhKrx7e873OvZ9AXTzQ8wroZyI2M2RKjrX35M+UH69+9gOfXHH6Mk7cclumNBxf37s7NXXSehTjMCz64vVtx8XX153dcja7WsSUTIxf9RkoDse8Zhj2ak43GVAeoSiayfTjV0efJPgSnYqZUOhMGV95R0qBzVlIZ28laE7gtfI6k9lFJTZo+tHxfkwnWNeeRjNQPx0Q8BEXKynoIHh/crENg+gJE2O523Lp5i/1uKOFwRjQQSygXB+tNx2rd2bUQnTojUjQCknAaQQdEeyQPoEbkhv2e/W5PirmYZRV/LFddwCJ9358TTFctxLxLAKCiJHIhGolkqgf6FDnd7Tg5O2O7781RTNXuQRlJy3neNbGifHK48uU6BTv3OiJXivu6rTqGZR/pnAXv/FGuqMefc56NULlC5GoIoM6kS7POBkVLM3LDKafj3O9OIT3j993kjqUKzlkeSNO0ePdg/6W04AuLh//79/LHf+oP3O/DWLBgwSsRIozhwy8SjTjecvgUZw979PIRslkjbYs7WNO/5WGe/IrM7370/Vx2d+9flDSPwYD3E14cX7v+KI9/jcNtNvf7cF5S3H0yOMC4Yjt1KsYOAkDJBwCmfAF0xk3O52VczGC4MxnRsdh0CFl0JALUIjIm0GyC78RYFFdBdj3SSjBUpYwEmeOT1k4FUrJB7DhStvl/sxzNY3PExmQ8o2UtdXuzw67aeZGi8yjEZ7x+iqojS8asr8o2Svp1zYQo6QzF/Uro+4GTk1NOz844OliNfYOcIylHshM2mwMeeugKq3WLlo4JJCxlOwEJGKaOT9GkkDNDX4lGZ4J1sUmzmDIxJfb7PTHG8T7Ouxn1/lrHK9VhtKLT8KQM+2Fgu9ux2++JcbCOwKYzspXLlZrZztoI27QPEUcIYkROy4gZ9d4YGdRszwKujlVdJK/TIzser+ay7VBMCawbISJFy+HG1+m556o86+W5yeMzbPuxzshsv+U/M/YtZKWu6My26UTId/d3+oIFCxYsWHDXECekznPU9bi7WLduxPOlh4/xL1/3HrZvOGKtinvqBnrpiM/+2jW/4at/nm86+CBrufuCPKM4ZCQb9zMM8A0B3v5Vn4DXPwI3b96343ipcff0sJAM+1RHsfi86DJ3pPlrpnGjF9PRqFs11Jl3tbDvWTZGzql0Jmx/Zk7LWNSPY1IK4zC8NT8YR6fqDP34UQtmO6s8L05pmMm0y5z+M1y28WM+gpWnawpY4Z+ncZxZd2DacBkdSgO3Tm5x89Ytrl46xKOoJpJGsiaG2NO0G46ODum6hpSGYtMbxnsikiH3FHdec0kSZyKtnMkxWgemrM5XUX9d6QfGBPAxC6LepapncA1DyiWXw0hTTpEhZvqU2e974hDpVh3rdUtACZXszYhB3f+oyShkZMgJmREQVGcOT6WTM3YOpi6CEdvp/tRjrx0PVaVpGsiJfAcrOoXxORyfWSaOkFNGnTmI2RhWnIj2heNQLY5slUSpCdVjjIQHvMW6YMGCBQteIRBHWnmOu7tzm3M43tF9lt0bB64/0ZLby6wOO87esIGvu87//jX/kkd9e09IQQ0gGImR5vtGNjbS8vsf/Sn+8pf/Xo4/9BHTBj+AeAFEY96vMJxrPmkdHZlyKs4txd4Bz3dh9s5i8IjGBM6VESYtZgVaCuNaFOvIawRnVrL1GGvhWgyisk6p1vVsR68itS7ExROQknsxNj+qSnvEnXMgtBILKa5CYN0XAS2541pGbbRmcpQOgI75EvYiuxY9Z9sdJ6cn9P1AFwA1i1/vHHmfSEPEO0sDjymRcsaVY/AOE6DrAKpINpLhxeM1o7EnDTty3xOlB3oExWsmpkjf70fXqf1+T9u254Tg9qdDcKS+Jya73jEmhpjxoSGEDpUtfUz0QyIlJYlDtOg9SteJMtrmsPwS702QLwhxrxYkONeFpBK8WK4l6mx8jWp9WxUWdp/mXRKRTM6RnBNNExAC+6yoxjI2Z45l1XltbIuUET2khD+WMMax01IS56tMRuZPRukYTV5ZjCN7iI2ILViwYMGCBfcT0jZsrzX8mqPH7yq52yFcdmesLu/YPtLgkic3G66/3fNNb/4g72pu0t2DbsbLDY14vnz1CZ76UuHyqiOfnd3vQ3pJ8AKIhs281+q71tQVUqoiLbkTdaxJdBqXOrc158q2ZFzBVynjTdXCVYpGgmmurpKBoc/0u12RQGQzkdJq1qOQIpoiue8LcRCiZlwuQl1qMVjsRKW4PKmisaRRV6EGhWQUNlELxDQfmRkviI6XpY6P1YKzdnWyVb+gydycqrOSWCig4hAfEHUMg1nJegfStubE5Cxbwomjyiu8c2y3Z2y3p5ztTllfOSb3iiRF+4gfHKHzdL7jtY++kVt9hNDQdCsOQ0D7gdc+fJXNasW+78nRdBFOM52How46l0j9jj7tkWAr/E6sc6KarIgvAvY6EmSi6IDZA1uAXmg6hjyQUyZF6HcRCQ1du+boALanJ+y2AyenPbSBVdNZUGJOePVmQ5siqDOhvBNSNmestmnZne2LxTGoRrI6YuqJsbfUeKAf9jhvIvSUrLM1jmW5SpDsmfDe0baBlDJxiDYulkGxpO+cMy7beFTjg30tpQejGRcaVKWQHGjbxsb3JuHP1CVT0w1VsptKYCQ4Ukps97uiP1mwYMGCBQvuE0RwR4fcfIvj1x99GPccC8vPBY/SNpGztdIfC25w7B5WvmzzSY5cuK8jTi8lHvE98c07ZLOGVz3RECnFkpGN8Z7XxWBnJOPCm8aF4mnV2L4v886CVA2HVKYwOg3UHIhxvKUWZFkZ4kBMRZSdTJhtdrCKlHwEW3G2/Ve9rqqtGp9bRS6r/1b0pTI3P+vZqKVDG3ko78y2n3HK6sL5X9SgjAnUhYyFYtOqClEhiwPxaP0TUMl4X6+9J4u381CK1gBCEwhiheyQE/vUgytOTX0k7yPEgM+eg80Rjz76BrpdT/aOVdexFiHv9hyu10SE3W7P2dkpt27cZNid4XPE6UDud6ShRfKAOmdjRSkRvInUQzANQw0TrAF3tRFUx5PsOnjMfavI8NWx6jYE10BWhr7n5q0zhrblaLNms/J4YEhKU4ThKUZ88HgTNeBEWLUdcR8J3uFLZoqS6PsdZ7szmpwRdWhSvHe4tsWFBh+mXwXnzuuEdBSOlc6VmD2v8wHnPCoyCtarlsQ5NwYxOm/3TJPpO7y4yShg5oJWm4KuUBg3dggtrZ5i6SsP6F+4CxYsWLDgFQJx5IevcPbOPe9qPoe/y46Dk0wbErfWmeHQ46IQH+55S/vEXXVLbtvPTEtyt+ToXuDIed74yNPw0JUHNk/jrkan7niPzn1Px5X+i5kGt7/v/Pef0x63FHbV8SeXz+duR45MIlocBrVz8lzjXKaa0PHr8yc1Jw+jNGT8/E4jUrZNV0adXBmzqeRnDN/TsYxFEVLORBXGzOjy+rZrOT4+xouj9Z489AQiLkcraMssv4XYZVJxwsrJQvgONoc8dPUqstujTYMTCDHhm84SwsUxxMiN69eJ+y1xp6TYs497drszYlzTlN/TFC3Iz9LZ3ZjKrSMx5HzBnhVyCZxLOhK2pmmQ0LJer9GUEQcnt25ydnrK7nSL5kwTjhEn9GmgCdb1ilHHjoOUiyROi5Yl4P2Acx5B6Pue3e6MfR/xhFH0L8OAbzuapiEUspFSGrUm03NbH1MjjN5r0a8Usf74TGTTAo33GCMIaZqPqg5azwR7ixEU54TpsbI9+UWnseAVguYk8aO7xNeulmd2wYIHCa5t2L7xiPe87RNc8893EP6Z4VG8y2ibiRuHqHB49Yxr7gzHvbffriTjfndKVhL4kiuf5UOv/1LCh/0DqdO4ezH4s+Dciv6kdnjWUv9OAX23vQbGLocToW0C2hg5CMHTNh4vQIpsNRLH/AW4YDl123Zt26VrI/NBKEaeVUlN7bDkczZAd952LvNmVRhfbU+dgJZRKC0dmExGXbWEtV8C7z2habjWXuPhqw/RhQYPnN26wc2nniDuTqhBhjVcblQeKIWUZdomsNqsWAloCORork5tF1CEIWfatqFbdRZWlyJD3+PTQEpFV1DE6FmVmCK+2NmaK1MhfimTxX5h5gnhqBL7gZQx0b5CaFra1ZrD42PrBgQPzix7z7YnuFtwsOrwXUOKAyGASCjick8bfDlWJWsqXQQZLWhFIaXI0A/gwJNw4kGENAxIP9A0zUguxusdwkhAahr4mPgugJg9rhGr0uHRjOe865Z18OqzMY1JzYn7OaJarqX3lnKu6sjqxmdzGIZn/f1YsODlgu57f4Jv+x/+GB/4Y//d/T6UBQsW3Et4T3/J85bDJ1ndg47Drbzixukat/W4BNkrh6s9By7f087DfFv3m2SAdVjeuv4873ttwyXvLVD6AcNLRjTqjLl9ccHe9jned1vOwB3gnCM0AecCvmlxLpSVZrM59UDsd/S7U4Yqzq06E5lIz3RMU15GJQui9VXnOxqpjrqMnYiynTvZuwkjWaibq30L56SMSYE6QVyw4rZd0WwOEN9w6col1gcbQmjouo62aWhDQ+s9w3bPEwJnN5+mVyXFSEpxlivhEG/jWc45PGaJ6wXTNZTjECc4sSI7lw5L2zY0TUPKiX6/o5U8JmVDAnVFh3C72F2E4kIlhHDefQotnZCY2femd2jaFavNmm69ts6LA2kc237Hdrvl5GzLrbMzGn9gY1XRNCs5C84HmtbcKLRmhtSDKPvLKREHSw936u28g40vDSmR+p5dIQXzY23bloODAzbF43rK40hjx8ayOXLRVRQzgfFZtwPQYoE8dTlqJ2vqjE3P16wzV8lKts9x3sTlz9INWbBgwYIFC15yOEdqhCvh7K6sbcEsZz+Xjtg9tWJ13VF93lchshK5p4Tg5UAu5nAIb26f4Oya47J36AO4jvjSdjTGP6eOxnO+Z2bx+UwQhKZpabwlVPvQIs6X/RWdhuiMQOSZg89sJVkmucVEAOTcS4ooY5pfKiP1UHUT08iT5R6cP0/TjLhpjKhsTkTGtA0QmtWKw+Njji5d5tKVhzi4fIks1sUITYfznk23smRoBMmlE9G2OPFosW+14t4IiyY3XkdfRPZOM77oGWJxPmq8Ca2MipnmRaiEYWC33+EbNxbKKUdiEgIBX8ammqYhpUTfD3gfrKOR8+33sowN9fuefT+QJeC8J7St/cWlirSBdXPI5f4hzm6dcvPJp7h5csq6a9h0ll0RS1cpDpEYs8k8FMQLoW3wQyzPk1nv7rY7VusDmrYhaUaT0ayk2TQ+wzAW+GDFfAhhdNGqXY3azXIyhQaOzYrx+cqT61VWsphztz0PU5BfJatjl2M2ZibiTWPiHORCFNsGZeloLFiwYMGC+wsRIbVwKZzhn2MB+bmQyXyqf4jmyUB7A3KAtILOR5qXgY7ipYQXx2vDDXbXFFl1sLs7q+CXI14SojEPVbNvzDoaVfH6LO97bj2HCaA9TQmv8xbEnc2K1CxjbVU9RhvPwYFonmlB5lJwUJkCB8dsjHOylOn1uThQmRXt1PHIVfx+7lBNvDula5TzcoJ6oWlbNgcHXLpyhavXrnH56lWOL1/l8OiYQZV+SOz3vYUEjgWqHV8IDZvNhhCCJZWnXBKkLVwulREtJ0JUK6a9ZoLDgvDUNO4ZiGIkhVIIm87F0YTGtpWSZT8whSimlEwALXJuzMg5Y3C1OzAW0VnJybJNhmEgDhG/7gihwXlvLl5OiqLFcXB0zOWrD9Fv95Z8fnpG1x4hPmAZIUpMmWGIIA5Xxs18CIRQRp9CwA+R/XZL3/f40JpDWVZwUp6b8+GQqYza1eyN3W5H0zTFstcDrmRc2LMsroxqyUWdTjnvwj9nkYznSKeOnbOpayIlDFBm2zF720WjsWDB88EH+zP+13/9T/KL/9Zfut+HsmDBAweNkWarnKTVPdneoB4XscXcAGmlPLq5SScv6Xr4ywIPuS3DcYbu3mtRXg542XU04Hl0NWZcxcZXbFXaVnoV74WMluI4l7GpGQm446FIXYse/5uSQmZvlPJdOS8UV5mZTul01q6QFWuCyCQmDoF23XH56mUevnaN4ytXaFdrXAhs9zvTaDQNPrS0YlkZOVmOgi8aCSnFcS7FcYzDeM2qhiWEQPKZ/T6y3+1YH0a8M31y8I6huDcJNqajZXwoJSM4Q7RrmnMiJltJb5qAJ5NyZN/v8WXMyns/3jfvw7lk8Ck0z1hfSvZ5Fxp82yDOdBnBWVJ4TJFmteLS1YfYne74/OOPcevklMODFetVa12Z0n0ZhoRIIjRuJAzee9qmYa1CVOG0BAFqNrG3tZhc0diUuzs7VlUdiZI9RyZ8974pmR9NCUq08xrTvEVn5FNRMfKnuKLv0Kn7ND7es98UrWOHOjXXFBu/ipHQNDRte+ffiwULFgBwlnv+xLd+O29Y7+Hfut9Hs2DBgwftew4f2/PjT7+F4erP0EnzorflcDzaPM3+4UQOnrRR8mHkPUefvKeOUy9XNJLRVkdn0gcNz5tonCv8L6zc1pyMac1+fBfzqr7OpaM6ht/NBbD1NfOgtzrOMh8rSSmSkomXESvo6wp6tSPVMgvfNAFyKJahzAS641HVExzFtlJGY6bOTOlI5GwdFC0jhMVuFHU4J6MwmJKN4UqHIGOr5iF4BMfVhx/ioYceolk1bA42HBwe4dsWweFDQ8rKbr9HYsQ3g42JhUCirLRjORKiWlbWoe97dN2wXq3puhWaFR88GgLiTBw+nJ4gB0c2ZpYG1AWcFzRJ0RFMGSZmu2tiZ2AstNumwTGQY8b7gJZUcO99WfXvbISpbKeOT6WUGYaeYZ8ZYgYxjY1vGrwPJT+kLP07b/oPhc3hIcdXr3DjxlOc3rrOk09f53CzwgUhJksBDzrvQol1TUTo2pZBQbb1fkxdsqw1A2V67sC6YCmlOzwnVRsREXHssyXPh2DHmpPlknjvcSIMMZZROksX1/K8xBQRFfb9vojH579bMmZkpJRoQrDgPifEZFbBKWfcotFYcI8ht1mTv7KRyfCjPwvf8JX3+1AWLHggoSnRfPYWv/DYa9m9LXF4F9tyCG9qnuLgtaecHXS064Hjgx3v7j7zsrCgfanRoBAyPKDTCi+IaNzpaynZEzXfYvzebZgX9DO3nfpnzufIRt3HxXGq6mqk4/cyNUnbxLzT/DuKzdZrUzQNeRLiXjjErDKuZNsMveU7KArOFXJkxZ7pARTEj0Jv5wPksmqNWEZDEVinFIl5oF1teOjqQ7zpzW/iypXLSCguR86Rcu2+QPABcd5cnQazaG1KLoSdv62w+0KupAjK267l8PCQg8MDK7hzJqZEjNbt2A0Rtz1FVwdlZirhpLGxscqZSqjeaM1qtAbnSvhe8EhKuOAtKTv48Zo2TcNq1ZXjnN2rcsxDH9nte/qYyUBoTZ+RsrIfBkv79oprHE4CksE1yurggPXhIac3n+b6jRu85qErtIfrcs+Khe8o4rduljgxi1siDsssMRcnc6IayrWuYvbacYkxjqLw2h2ZP4/O2b5iTpibVM2WyeUxqbkbap0f5+iTaTTUmW1t8PZrZyTMzZ7l+uwJOUNoGkSs00Sy65gKEVqw4F7ho3/61/HBX/8X4S4FnS8nfMuX/Q7g6ft9GAsWPLhQhes3kU9d4+w5zHueD675U9758Od46vCA427Hte6EN4breFnfg4N94UiayegXpKPSCEiT4QEN431ZDL+9qEdUpz/qvPs4x04uoz6RlItSoap267y81Nl4oBabhdgE58F5xJtLlfPObFfFId5bGne2vIbqNOVCQJIjz8/GqnPatmV94Lhy9Qpve+vbuPaa1+CdI2NZF4gjaGbf9wxDxAeh8cFGsVQtB0MS1DTqkcjpWCQ7MUF223V0bQc5lu31xDjYiE9SYr+HpjNXrnHEa+o8pdLByDmNcpacEgerjs1mbencorRNY9eiOCOd+yhWs9YRma5H1kw/DJwNiYynae36DCmh+x6fIbQNjXeIq5p8ITQtB0dHXG87zk6u2wjVZo04V0anIiFkvC/nUsgbxRAgeI9Ppvzw3uHUmxi8nH+MkWEYxu5LCOGcRmN85FSBaJoOjHTWLpYUEhij5Zm46tAlQskdRzM0TctmvaJpnrnNXJ2pXLW5xeGzlkwVnT+4CxbcPdzLz4nlbvD3Tjfofg+A2y05HgsWvJRQp7z4oSmDF8c1n/mmax/gLLdcC7d4yJ/whvtUoQ6aOMl7Pp+Vt4bVS042ViIcXtqSjw4uFqcPBF72/7rMx6bmrkBj5kQR8uaUR/F33/f0fc++74nDQMoJLW5UIkrJzLNCWix1OWPJ4TnbWJeEgAseFwIuFAvd0OKDJUlLaBDfID7YhwuFnFhxGYEhKy4EHnnta3n7O9/Jm97yVh5+5BFC26LiyFqschG8b3AukIZcnJSidXmykmMk9r2tuuv5wjenNM78OydFJ5GJcSBFK6adcwTvcar0+x1x2OOLM9c43lZ0H7bMr+O26vU/PDzk8GBDStFW72UezDe3JJ4sXOvvSn1Nypnt0LPt9wyakMaIStI8JrvnnMnR7GiHIZIVfNNyeHyJzeERcUhcv3mTXd/bCFtW+j6y7wf6cq8pTl+udLhG/UjWKbXbuTEHpHayKmmLs67BfJSvdszsUpn4vIZDiljIopauxJQyPz2zKUa8d7RtQyW30708/3eLczWwz00BlEXsfs4ueMGCBefwHb/7f0U+OwNA3vt+/uif/qP3+YgWLHgwIZs1+to9R+7uGcGhNPzG9S/z2w9+ga9ff5yv6Z7mUL6w4uikmb0OPJ62fP/Z6/kPP/57+VTckvSlHVfeSMOXXHuc3RuOkHC3tO3lh5d9xTKOOs2rMLFRq1zEuLU4jLMciSnHQ2Y9hqoC0JFpaB2jKrqTXOb8xflCIrwRitDgGiMdOF8Kc4c6sT9FGNRGglRsnKnpWi5fvcrb3/ku3vr2t/PwtddwcHSE8wEFvG9Yrw7YrCwnw4m3cLl+YNj3Jv6uZKKc67nitI76lJyM9XrDwcEBQ4ycnZ3Z6rwPtE1H1zaIZPrtGf12a7P/Zf7fFU0JTJqYEALey9j9OTw8pO1amF27nNOYDl6L84lsTLNpo6halX1ORADvTZfSNCCW9WFjTBCHgX7f0+9708x4z2pzwPHlK4Sm4+atE05OTknJhOVaRqhiTCXHgrGL5cSN9r3Dfs9ut7Mxr7Y1Yf+sa1FD+Xa73WhvWz/atqXrOjabDev1mvW6Y7Xq6LqOrmtNr1NHn8o4lTihKc5Xbna9UsrEoR+vdx2bqmLw+XNf2LCNyDkZyc2CBQtux2//4O9Crt+634exYMGrArpZ8cbXPH1XQvCKTgKvC8Ibg+Oa7zh03Re80xpJfDru+a6b7+E/eu+/yse+64v4fz7+23gyb1/S/Tbi+drLH+HmmwNuvZq5oz4YeFmMTj0b5rkG8yI7q6IpoZRuRK6vKTka3kH2ZOdK8EVGRn1I0VyUVeXJ80dKMreMY09AcQIwYlE1GmZvW4rz0ZRKRm0FqjTdisPjSxxfukTTNEUg7OnWDU3TQtYxn2G73U7EKNu5+bY1wXVxzaq6h4qUbBSp3+9xIly5fJmrV6/iJDHEiBMrXKVY96YY2Q09vu1oNhu8SDkfgWwdnap1qfkTMQ74EDg8PBz1Fra6biL5rFNehtniOpoQGIbaEajHmqzjoJhL1XplGgTvi6jedDZTd8G0LursvvjQcnzpMkeXLnFy/UlOTrccHxzSrlYImKCc0p0qgv7q0FW7G/vdDg2nHHYdTdOw62V056qjU1UIPu9U1K+dc4WA+bLCYSSgaRsymHNW0dXgHKv1iuNLx7AVdD8UEwMbaXMSpg6GzjoaWm9CISE5o7lktpTr8lyhlwsWvBrxtT/z+7j6J5T4mU/d70NZsODBhwjx0oqvufaheyLY9uLY0I7b+kKTjKSZx9Oe//HGV/FX/uVv4s3/QDn44Kf5Fw99Bd/zr32KP3T8YQ7dvbHyvQiH8CXdY5y+TpCDDZycgj44WsxXREcDppXfWjRr1tE5CGUsCMefz2bsxxEfcpmVn95bC03quI8rM/Ui5wjIeCxSMhTKCrOMK86epulMFK42RlPOgFsnJ+z3Pd55dvuelKYwuO12y3a7M3G3DzQ+FIckR3DOQgntAhSb3snlK6XE0Pdst1tW6xVXrlyh67rxOsSU2Pc9u92O/W7P0A9WUKeIoPiSpG4dByl6BnPQGoaB3W5HTJGDgzXHx4dsSxZFdaASLo77OEJoCE1z7n5V7cJuvyOjtKsVq4MN0gSQaUTItOd2f8iM97FmVWwOD7ly9SpN07Dd7+iHYWYCMI0WWU6FPRdOHM4CTxiGgf1uTxyiichroCCT6UDTNGMaeO1meO/Hz62zUGUgrqSlVwLiUE2kHBGBJgTatildI4cPvtgG78oInM7c2mpHoz6b0yjX/KOOBi5Y8EpA/g1fzrd86z/9guxr932vIf3Sr9z2/df8s8d5z4//wS/IMSxY8GqBeM/2kRW/5egD94wU3C+SAXAz7/gLT/xG/to/+gbe9rcSmx//COnTn+VN33+L//q9v52f7lcML2Hx30oidQrdg2df/7zvptb/xpyA216A6BQodxtqJkD5/PliTjTmG5t03ZMmwEZ+rCisbkKCrWp752bEgWkJuazSF7nG1FWoP6714DhDL0hxmxqJRxm/yjplI3gX2Kw3HB8eEcQTh2E6DlXOzs7Y7/cMw8AQB7z3bDYbVquVFf6li1HF4CnGqftSRnOyJlIaONisedOb3sBrHn6IPAykYYCciX1k2PXstlt2+70F+pVZfyNnDl+Lc7GuQNut8N6RUmQY9jhVjo8OOTo8YHd2yu7sjO3pCacnJwx9byvuKaMlXMSN55jPfQyxZ7ffk0UI3Yq2WyFFJ+Frp8CZAlxzyZMoIYTlQSB0LZujI5rVmr6PbPeDaTNiImfLNRdxlpURixNVdYWi3s/MEKMRppjJyYr9SjCOj4+5dOkSm81mDCD0M60EVGvcOkFWrqHUaHJGHUU/DJydbemHgZiSjXhF62jU5/Dc75JinZjyMTqM5UjOkZxiEZ8/WEKxBfcPp9/8Nfy3v+8v39U2vvqnv4W3/vVP3vZ9/8Xv4H/zl7+X//TaL9zV9u8W6cMfYfuLl+/rMSxY8KBB2pYbb/N8SXtv3d3uB8kYNPET+0v8nR/8Wt7+t07ofvqXSU9dR/se9+FP8Lrv8/zfP/q7eDy9NCNUGSVRDYsevImFFzQ6pSUJGbmdK4wEoy7kOx2vl40WjcPnhXTMvY5mxX/5swp3czKhtxNHyrHkPWTA8gpEHAkmkbSakFlF6kTQSB5s/KmG8ZXvu/MFn6vHV0XhiJ1AKSoRG7fJ5RhFPM570xaoWejWMabXP/o6Hrl2jXXXEnNGNKNxIOaIeGFzuGa9WtvIUExkUdrcEoYAKEMcLHehaAcooznr4PDJkXNPE+Atb3qU1z58mcNVy63rT5PzwNmtU/LZCfHshN3Zjj4lIo7QdbTrjV23mGzwzAUsaA4a35CjQkyk/UAjwrVLxxyuWvrTG5zeHMhb8JpZH17CNQf4pmNYR7RPNG2LUxkzRGJOlp/R98Scoe1oVkc07QFaOjdZBXKx1S2TQzWjRMVampoTjTjWR5fYHF3i5OmnuHG2xYeG44MDUoL9kOhcEdmnsg0XcKFFQsL5jHPBjk2FoJXoCAcHB6zW62LRa2RvLg6vug5VYUgRiutU8NA2DSkm9n203wSpQYDK9mzHkBo0g5Y8DcCcturvQ/klcTNyLALBC00Q+l1EtWg0LvoyL1hwF9hdcXzjZrirbTz5xBFXP/5Lt30/b1r+d8efu6tt3yt80Z/+AF/xxd/K+776f7pn2/xEPOFv/9avBD59z7a5YMErBXJ0yMmv3nHV3bsV+PvlfneS9/zZj/8e3viDPfKBXyHt9lAzxG6ecPlHH+MTb3kT/+DRd/F/uPTJl+Q4Bw1We3r7t/4l1p9/QfG8iUaWjPmtljL9HOuSca68aoXh/OfjNRPrQBgnmVZma4FZ31dXdaurkhMh1dXuYpk6BuZltSKuFqnIedKiar2b6owgkyjcYaNSady5FXyCsw5NOVgp+guQ4nQFMWV8cCMRSNl0IM55Nps1h5s1bQiQlUZAh56I4pvA5ePLrFZrutWKnDO3bp2w2+9wQVgfrBAR9vs9WTNd25FESSIMOTOkSBx2DHHL8dGK4+6QdRB2pzfYnVxHUM5u3iSdnhBPTznb7UnO41YbDi91rDcH7PCkqCAZ72W8T955VIXd6Sn92SmbJnD16IhOhKyJs5MzBjJoZLdLON+jYmF9TddwdOnIgvQUxNu9iWkg5sGeHb8mtAdIWI1EcSijTPWeOgmjEDp7IamSEuA9m6MjLl19iH6352w3QL5F8A3eNficEfEW1qVCFoc6h2tX+D7T4WjXhxxujsjicRJogsd7x6VLx2MHo23bafwsRna7XRHWmzGAy01xBVPQSBM8vXdoTlBs8HIG8Y3Z++Y86llwDgmeIcXRoar8BtnvlSqSBect+6MJDrQHFFd0LC+oJbhgwX1CXn3h3FPOco88y1RDunmTs91b7uk+B4X42EIyFrxKcXzIl7z5Mw9EcvfHo+eXf/YNvPuDnyBut+dnwnMife7zvP6HLvNXv+HX8Qd/9S9z6R5ne+x14MdO387BJwVunJj9/gOE59/RGJNj532ICy+Zdwp0es98ZEpKg+D8INSdp62eHToehYx7qAWzJRdMDZgi/J4deS3s6ow+Kpa0XcZv5unkUNPHS5knzsTQ2VQfKWdSTmS1RPGUM6enp9y4foOD1Zr1qiMET0oRHwKb9Zqua2xmv4Tvacn+cM5x6dKlUSAeY7RRKuc5ixYgs+/37M9O0BQ5Pliz9pB2Z5wOO3RIiBO2t05gt4M+GilC0SFyIJ7QdsiQ8Q5yXUUv3ZvgPbsh8tQTT7Hf7XjNlWMODzY20pSUNEScUzRFztIpbesR39Hve9KtzI2bN2lXLevDA1rXQhXYq4DzhNCAeHJmtNBtGkHKaNhFeBGcFxyBpowuHR1fYr/bcXL9BqfbHbfOtqw2B6y7jixFc1NG5RQxwuOEbr3m+PJlNgcHDFkJoSGzQsmEUJ2j7J6bKLwKwJvRVSv4htB2eB+IfU9fjtuJ4J2Qsv0ejCNqcxI++x2pf4y/G+ULp1CTN8RJcRqLZPWgwpievmDBXcKtVmyvvTTPkn/4Ib73e/7qS7LtO+FX/c//Hu/4iz/yrK/pn17xdDrjit/ck31+78mX3pPtLFjwioMI+XDN69eP3+8juWsMmvip3Zs5+ogjX79xnmQUaN/jP/ppnnr/u/jQFwd+7T103d3rwE/uN/zV9/4G3v1DT5GffvqOx/BKxsveder5QpDnJCuqNv4lqmUaqlSAlf0wL+HkwnuLGFsqmZFxoyY6r1qPIn4eBlJKoxhaS7slNA3rzRrvg41gDTZzXx2NmqZhs9kUcbin73sjGwF6zM1o3QbYB3LydG3goAv0sSeOGRkO0WzC8LajyUp0jtOUGVJmiAlxniCu5GaD956cM/v9ntOTE27cvAEiPHztGseXLyNpMMtfEUITiKiNCrnI8eExvgn0w8Ctk1skVaRpkdCQgIR1FyS0tN1qdNqa56PMP+r1VgEvwUaxspKJeGC9XnPp0iU8sD9tzNnr8mUuXzqi356Sc0QRYlZSEYT7JuCaltA1ZdROaboW51piGkaHKe8D3jcmdpeqyzCxfH2+TIMh46rDSNTEjcfvqoZnxjIEGwWrXbI8Phfn6Ibtq5LWZAGBFkT4zCR/wYIXCv3St/PH/vW/e1fb+EC/pfvYF9br/iJ+at9z8KnnHmV457f/OH/8vd/EX3/zP7/rfSbN/IMvexh4sFYeFyx4PhDvGa6ueN3quk0Q8Mrtagya+KGn383lXx7GoM/boEq+cZNHfzjx3d/4NbzntT9215a+ltkR+XiM/Ge/8vt50z8EPvpJNMa72u7LES9716lnw0VZ+hg7cKfXanlHHdE6J+iduhfm+lNFzIzfm8S5k5NV3WktmlNKhKbh8uXLXLt2jUuXLtF1q8kiNQS6tqVpgomt+2Gc/w8hsFqtuHTpEm1rM49t246i5K5tuXL5MpcuHbFetazahoP1inXbICmT40Due/rTLdubt9Ah2Sp90+Lbls3hEQfHx8ScOd1uZ7a3OupavBPOtmc88eTnOT09NV1IEbxnAOdxTUezWtOuD/AhMKSBfuitMPaelC1hfdf3DCkTVUh41NtxVIcp58oInVZLYrmtiySYOLoKpPMQySkRQuDo+JhHX/c63vzWt/LI6x5lc3xktr0HG7rDQ7qDDaHrcE2Db1rWR4esDw4Q74g5kjXjvKNbrTg4PLR8jM2GtutGV7Eq6vYh0LRtyd4wR66YEknPZ3BM4u08CdDrc4mMnLY+N6PjVf3W7Bm2powjpuKMlUsQYMk9WbDgbqE/9QH+8p/73Xe1jT/1sX+VN/1nz95JeKnxh3/+f8vr/szzO4b3/rMv5RPx5CU+ogULHmxI27K/Eti4V74D4o3c877PvJ7Nx28868iSpsThzzzG//JzX8Gn4jMQkueBGgr4ZN7y3v2a//RT/wo3/u7rOPjxj41Bow8aXrkdDa1i8ioyhynQ4tl6GzqulteOxtSlOCcPufAuRnKScx4zJy4yNRGh7bpStLaE4BGcOTq1DV3XIQhDHMiI2cGG6Tas1+sxVK4SDilWu369tqJ+f8aqbWgCtF5gO+BF8KGhB4YYadsV3XpNUogx0mw2PHx4yFYFmmYU6FcnK1fO5Oz0lCeffJJ9vyfGyK2TU07OzmgkM+SM+EAWDw7ajUOTkLPlQyQnSPCoc/Qp02esC9KsaFaO1idAS0SJlGJamEbeJrJXV0icKxkgYjofVcWHAGS6ZmNjSiLsYySrEoJZ3WZVaEw/Lz6wWa1wocH5hpQtmFGc4JvAatURQhjJYs5mfYszgpXLNfIh0O8Hdn1PExy5OoEVAjomm5cOF5TOxkgyyhNX/pwnq+t4+hOJ8N6TS1fM+ODU8Vmw4G4R3vYWmm9+eYi1Xyy+76zD/S8PPe/Xv+0/fC/fdPJ/5se//c+9aE/8t/3At+E+3/J2/dEX9f4FC17xyJlwlnn/zTdw6/LP0PlXZpq1ZWc0nD1+gNx87NlfrEp++jpX3vsm/vHXvJM3HX/yeetTkmYiiZ1GznLiI3HDdz/1m/n7738PD7234XX/v08RP//kAzcyVfHKJRrAnFCMxdyzvLZ2MOzLml5goWg52w9cXTWWyTaX2g1hltwMTD+yLbVtSz/0XH/6aZwqQRwPXb5Ct+rwTmjbKWMCBO+mULi2bUcr1fp113VlnMeTUfqc8QLNqqPTQ6TfobtTRDNBHC40NCEQ9z0pWphhWK/wfSSJZ7Pe4ENDcgH1gT5qsaY1sjXkiObEerPmkUceIQ971ptN6WgoGUcILX3OkJQmNMScUCf4rrWuRtMQFbxriHi8bwi+ZdWs0SESNYzZEznnkWjUwhzAlREtJ0bkck5IseCt9whVS24XuzM5Cxo8rjXHLmqyt1jCe8pqOSehMUKgQkzR/gLImYAgTgilgyHOkZKFP2rKo8bHbreeS2mfE5SRLKGW4eEdpJk2oz6vMiMOM2Y7EV7FO1++50po5IIF9w77N1/lve/5zvt9GHeFH7zxpVz9zve+oPe88b/8EX7Tk/8+P/0f/6Xn9fo//cS7+J7/z28Zv373d3+I9MSTL2ifCxY8SNCUWT92wnt/6W185HUtl1x6RYrCM8rH4kOsHg/ovn/OQl/7gYfff8pf/NDX89u+4n/gdaF71hGqpJkT3fN4ynwyHvPh/Wt538mb+McffjdHP7zmnT95C/+Rj5Ku3xhdrh5EvGKJxljwn6vfnqujUUPkZiZZOZNQtGo0XMlF8B65KGYv/6shfVJWpHNZ0RaxUZ9+GLh16xY3Vmv6fuD46AiRTGgaK7BRfPCI+LHYrNqM/X6Pc250QFI1AqMoeRhsO4p1D5z9onjnUe9xSHkP7Pd7TrZ7jg6PWa829IDvVnSrNTQt+IbtvicMiZQKgdLMtYcf5sqlY/rdln53CjmyWrVIHiAnGq8MxQ2rDR1p2OIECB5y5uDSZbLz7GMi+0I02o4gDhkGMp7Vqisp3Hkkf66EH85TuL2YQD+nWNpHhQw6R16vCcGTddJJhBBYr1sr+mMGJzgfUIQhJusQiWeICcTRuVXpGGDicTXL2rbtUGUMxtOZnsI5Sz5H0zjqlbOlqGtxHKuhkVV3I8M0HCUyPZs6IxjTczvZFXjvcGWfLtsIG+J4Njq9YMGrBT++H/i5P/plCO9/we+99pfey9c99e38yJ//jjv+PGnmt37bHwFVuid3vOYnp9GsB7ccWLDg+UFTwj95k6Ofu8I/+sr38JarP8GhNDRidcj9sql9odjrwPvP3sTmswrDc4+BaUr4j36W8I/ezp9/wzfwhx76Yd4Wzjh03Rg2WN1U9zrwyZj5J2fv4rs+8dU89omHWD3WcPBp5a2/uKP98K+Qnr5O6p+b4LzS8bImGjqu8sr57z3DTRkD96al57GQtxn688RkJAlqdrVaZqGkpFRPoz1Yt8SZI1WMNQNhtp1CNIL3CGZ3e3Jywq1bt7h8+ZgmmNjaOyuOvbe8B1XFe896vabrOvq+H7sYrqxiiwgZZe2FlD1xe2rvcx4JDaSED4EQhPXmiP0+cnp6xqDQHByyOTpiyJmD42OagwNwDUlAgsdtB2I03YM7OgSEJnhS7NmenHB66yY57Yn7LavDQzarlpObNxicx3UdLY521YH3+Kbl8qUruHbFk9dv4NoVoVvhmtauV7Dk9LZtiUXwVDs49aOmcEPRZ+SMUOxuR1eo8trg7Usn4/VfrTo0JXKy0SfnPRloYsL5UBLBFVd0FxY4aNaxSUFwFuSXdXQf80EJ2bJavBdczjiEOAzn7j+cz4ZZrVes1mu2/R7NFhxZuzJp7rJVO2fVAaz+J3b8pPG0n1GDtGDBqw238gp57wsnGRVXfvj2kMGKjNJ+/0+One8FCxbMoBm9eYuHPtDzN37xq/iqX/MR3hae4sj1rETYSEMn4TkJR9I8FuZf6FTwpJlPp8QPPf5Ojj4R0f555AnlRL5+g9f+4Gf4F/6r+d5f/6v4Xe/+OX7v5Z/mjeEmO/Xcyi1P5gP+yY0v4e9+6Fez+ckND32g592Pn+JunKInZ+jp6e02ug8w7ppojDkAcyGvgJbkjJn2FZViNKs2pjIJsG/f7lS8T0XoRWeicXciWKj0JLRQptGUrIqk+T8YOo481eNLRXdRHFRt387GeBSTf/gQSufDsj3m+6lFMmAp4MBuu+Xk5ISz01MODw9w0Va4cw3tKILstm1HPcZ8Br9uzznLYNCshOCg92gTaBtH1sh+v0O8pVN3BweshoF9Vvx6xfr4mKMrV4hAt9nQbtYm0C6ZE8KeoR84Ojxkvd5wst3aubWB4B1tGzi9dYPTNHB06ZiHLl+iXW04O7kFObM+cBwdHzPERMbRHRwS1hsuhxZpOlxoURFiSoSsYxJ5JRPVgWpOqrz31mmKEUfGu/JzKVa5yWyFEaFddbOEcesCqM8m0i/EUBVCSGar3Ed8k62j5MCJEZ2YEsUSit1uPzqGGeO07aCMLlCh8eT9fna/xh7Z+Eys12s26w1nO9ChJHxXkXiekeCqEyrPHQIh2L5dCORhGEf8zjmeLVhwF/D/9H185f/t337eI0QXkTSzjc0d/xFJTzzJN/6+P8QP/K2/dlfH+Gx4Mh3e1fvjpx7jd3zR1/HEt76HH/jP/+z4/T/wLf82/n0fAt3d7SEuWPBgQpV8dsbmFx9n88/eyP/j0u/kNz3yy7xl9QRvap7kbc1TPOITG9qRQMwRSdzKPZ9Onut5hSfjUY5czzWfX/LuSNLM59IZf/PGV/HZ976Ot/3K4+Th+bk96X5P+sSnePRvPM3rvu8KP/+mX82/eNdXc/aoEE6ge1pZXc8cPLblXZ95Er3xUfJ2h6ZEzIql9746CEbFF6SjYeWXUM0+74QXftnPv0NnS8l3MgHVwgq0zMafz96YCr2JLE0ajZzzOeIyfZwnNDFGgvPniFHOiWEcqxHEOyQX4sBUeKeUGIah2KpOHY1KuKo9rnfeVuL7gORIaDs4OCBtd8RhIHtPWK/ZiCccHOHaFe3BEUEUX1LBA5Cy0raJrusY9gNdaGmbhlUlNF7QzYp0eEDbNDRN4PLxEZcuHyG+YXVwSOz3dG3D1atX2e33nG73aBGLb46O8E3tZtj5xZxwFJGz6ni96+jY/GnJWaENeIxAiBMs+67kllhgxehiVYMSvXeoM6JhY0zOMk7KzffeiKcPAe8cqKXIS3GKqgSjaRpwYoQnZ2KK9H0/OkrNHciqNqO6RdXuRCwuWatuRdQ9Z9tEygNdZ1qd+ZNcG3X1vXYlagujPLssYvAF9xCquLsIBf/vrr+V8Fs/8Yw/9yd7fma/58u7e2t/+8O7zGPxCn/lnW+9623lszOufud7+dbv/Lrxe8L7p4DZBQsW3BGaEvnzT/LIjx3zmea1fPdbX4Nc2/PIQzf4htd+mG88/jneEU64NEsOz2TONPHhYc33PP31/P1f+DLks6sxpi1tMpffdJ2ve/RjfNXRR3lH+1le50+47Bwb1+Bwd0U+qqXsZ1LPd934Kr7zn309b/3ne/j8Uy8oJE9jNF3FjZuET3yK1/xosFVqVdtOSmhW4quQVNwJd0006mr+uc9VX9JF10oRRnJRxNiqz7LTMmcvGVR02kohBa4InqewvqkIruem1W2qugUhs6LTtB9ZLR08pUSUSN8PpBL2NgzF0jYNJDV227bnOzV1lKgmU49ER231PzQNTpW035P3CRTWh4fEENhvd3g1d6q1Cim00LZI05jIPVi2hVNFSUgwV6SmrNYryYr64OnaFhELPVx1HUfHRyiZ7a4nO8/x1YfL+E9mdXyZkDPubGcjVKEFcZai3bQ454sjU0Kwcxw7Btgqfj3vSricLxkaouMqvstKVtNUhOBRcXjf2D1D8T4UNyvFeTd2QUjOOi6FsAklKN7m4VAnxZo3W+clBJwvie9qJgBZjeDUjkRNLq+akhACKWPakPLADXFg3+8Rt6FtWpqmIe0HdLZNrUYDmkvgI+P5ijNBvOZqgzuqhRYsuCdYP5X5k5/5Sv7A1R/j13b31jkm/+wv8h/8kX+Xf/e//Zt88+HNe7LN/+bpt/CD3/SriJ/81D3Z3oIFC14kVMm7Pf5jn+F1Sdn94obd1Y7Th1/L33j3NX7xVz/CtzzyE3xZ+xm8KGc5cFNX/PT2LXzHB34jB//4kHf+2A3c009AynVWnXzpkA++5lfxE2/4Sm6+Rdh/0Y53v/GzfM3Vj/EVm4/x9ubJF9z1SJrZas/nU+Qn9q/nr3/66/jwv3wLb/mnPatfeIx0dmadhhdxDTTGBzL74l7innQ05lqKKrZ+yaGA6DhDO3U0nsM1oI5NlZdW9yhxgtN5jgPUmfk6zpJG29LJ4UpmHRHvvZGMGEmqJHGlKG4QEfb7HWdnp6Y18KZIr4QiJUsIh/OalJrlEERMh9EEkiptt2IXe/Z5y6bbWGcETyhFr4SG6ALN5oBYuiauacfxI6rVKqYrydk6Gc45QtPQtC1Chqy4gw3NqmO/3XGzH8A3tJtDNCspR5JvIcDKd4TQ4Lxn30cT1jeNdRo0k7MznYJO2RMheHLWmc2thdQBNt5UBuKsxM42dkfRLuDNmakU/U1oTSCveXR8Mo27FiJpo3iNC9QkdKXY7HqPz8oQY3HD8haomBUp1yTlTMxpHOnzziElZNE6EsIQ91S72pyzBS6qOYK1bUvKg2WoDHZc9Tm0wMfqWmVn7Oro1zjqV575BQvuETZ/+8f4+b8N3/+n/jh/+Y/8Bb529fycY07yjj/3L7+Rd/ITz/q65gd+kj/3f/mDPPlf/H3+8KVPv+jj/DNPvZ3/6aO/htf8Xz35kx980dtZsGDBPURO5JsnuI9/hs0TG9abFZeO1xx+5oCfvfkOPvsVx/zO130AgF85u8bHTq7y0V98lDd+n3L4Ux8lPfU08cLIknxGaD7kuNoEHlqvkEvH9K9/hH/4tjfzN9759bh3nvCb3vzL/JbLv8CXtZ/htR42riHMQgO9uHOWso+nzE/s3sT//PhX8r6ffysP/4TnrT9zE/epz5Fu3kRfBYLs+4mXpKMxF7m+dChjJDKtCj+/B2Ua4DpPKSYleQ1Iw5XxqFKYixbthjicQEZwKDrrQEyZCELTWODe8fERq1XH6faUnDJNTajOOmoVUkrEGG38qnyvrpZ773FiqdU2/hNYbw7wpZsTxdFnpRche482LU27YrU+oF2vUefQEPBtGQdSC9czO6WMD46gnlSuX1PcsWJM5JxGR6V2teLYXyXFSGgaMkoXgq3O54xvA01oTfAuFmjjgzediwoxGqHoe8vd8NWVKszF/q50N6xr4aYlfnLKuJRIKeNcKHfN2YcIwftJUwGgZlOsYoREi52uczXPwpFLV0qcJ7QOV4iGVnG2qHVnnEect3ZxIWWVsZrmxBfyU56RXFLis7Lbb3FNvY55PJf6uXWzbu+SiRjJrOJwHfUZi0Zjwb3F6/+rH+EPD3+M7/73/mu+uN085+s/HpV3/pFnJxkVh9/zY/x/w+/G/yd/h2+79Nlnfe07//m/QXz89v2/4YcyD/+dH19GmhYseJlB40A+OUX6Hjlt8Tdbjs96XLzME2ev5a+88xI5OsLjLevPCW/+hYH1+z5OevKpO3YCamNBhx62W3j6Bv6xz/Dw+zuuXb1M/+aH+Ml3fTk/+KXv4XXv+hy/5w3v5zdufolH/BkrgUYEj3A9Zz4ej/mxsy/hBx7/Yj76i49y+ecdX/SBHe0nPkN+6jp5u7VRp4VkvKS4ZxqNOcn4gjrj6PlPhWd4YKR2H4qdKkWgzqSzgDIrn22sxY3fywj+nAakismr5mMkKFXgK4LzJnqumRh97MfxJ9MppHFUqGoyqih6HPOpo12+6g0yHkfbrWiCp2sDZ2cnDPs90TnUOUvwDoH1eo3vVjYy5i1IL5URoJp8jct4mVvJmnuSEYw0hs9lNbvY0HX4UDQGzoH37IceyUrTtbRtR3AeLSNfzknpmLiid4ijrqHmhlQtSkoJ54SmqURLcGF2TbwiyeFSxrtgfyGp2b06hMY1JXhjyrgwU6riIpZLyrgTNCVUMuJb084UUlfJXt1nms1tzh3PlBk5KKNzqnk206cjJ+j7Ho2ZGHuSJlx5+KyjMY1R5Vw6dNnGqEbtkJMiqHOlv7MQjQX3Ho/+uR/h37j+J/mB//zPcsU/M9lImvnX/6v/gGs8//yK4+/6Uf7q/vfwF97g+Xv/x/8Xbwrnhdy/9n2/n/77r/GO7/kI8TPPTkYWLFjwMoIqGgfQjPYDst8jw8DhEGluXeHmp1aEvbJ5vKd9cot85gnyM5CMO20bTeg+kfZ7ODklfPZzPPILR7zmxx7m5juv8Vd+1W/nr33Z1/Ilr/ksr+lOuNbeYuUGfujz7+RDH32UzS+3XPpI5p0fOcV/9mn0xk3SdleOeSEYXwi8rO1tXzie7aGpJGPqwJTWw3kluZV9oBbqRpmjPxe4VgvK+t5CTtRNRCOlRN/37HZ7+n5gterKOI+teqeYxuI0RivqvffluZexiJ2O3sZrTAsiOCC0Lev1Cpyjz0AYEO/wTUd7cGjCbx/QMtblXSDnSM0zr65WXmykiQzZmQaiCpxDaCA09MOAAj40qFN8ayNSSRyh2tIFP678N01DShER8N4hZJzAUM5LnGV+NE1jYXyzwrrmh2QU54uAnmIr6zzZZZx4uw3ZOk0ixcnKCTlaGJ9dOME5HV2jCt20ol6UtjVBOOUaNU0zamTi7C/CyQXN0QQpYXqu3CeI0TQ4qmphj/VZ0kwaIkkyKSekdslSFZVXIXgen1+1uSsjx24azavcZcGClwpXv/O9nP5nmSvP8pqMcu07Xngq9uZv/xgb4PP/fsubLvzLc/3nHuat/+8fYZl0XrDgFYgqgiahKSFDRPqB1dmO7lMbZIjorVN0t7MuwovVNORE3iXY75HrN7j0iQMu/cwVdm+9yieuvYOPrIS0FrKH408m3vXJM/znP4feuIVut6YrXToYX3DcM43GuayLc58UBx2tWp8ykjKOpz+bF9WE0Xmp7M+oQWlPjKJaZtqJO2MkDDp9lbXaklbSUYlHUQiU8Zn5lrW4RtkXJUNBlVy2mzMMMXK6PePk5JS2FuZZcWo6iRBMv4A4c2bKuYTJeSvwsWIWQGRKic5ksjpUHE23ZnPoSNLgdztiznSrFZvDY9p2ZaFv3kIIxQk5YkTBW6dBXcIXLYlkxeOhECDfOBvXArSs+jdNYwV40Xh47wh+TcpxXI0fqi1xzSOp19yV7kMIeBGa1rojTsS6JT6UkSaKs1SykbVSbGuG7LMJrgU0mfi6BumpMwcpX0bPstbjwITiPuDExpzEBxv3Cg2aij1xIUhVd5NiGkekvPO0jaWf+7LNphnKcxfHAELE+g5elCAZpwnNPSLBBOji7PnKgMqMwJbRKJnMAJ0ITvz43JmmpIb2LVjw0uAP/45v43t/8Luf8ee/65v/TdCffdHb/4+/8Vst4HOGL/r8Ly1BeAsWvJIxFnXJ6qPThG638ESpKVLinlm7qqJDT3q6hxs3aT/xGF0I4Bzi7d9I3e/RIRbr+sX96X7iRRONi+TiIuosrWgtkczlR3BkXLnvdQ6e0Q3omfZVdQLV/YlKWkZbWitorWYVKEVmxbkmRoZJq1Hm/M/xHVtFx/ty/Fbg23aqYDnhqrBabbVeVUzz4EPRHwRSzpzttqx2K44uHTHESLdZI0DbrkAc3ltBb0QqA462XRdC5cqqfLA8jeLe5L1HEQb1uHbNCk/UE1xMHKyPaHyLZsUHux7BG7mLKSFgo0fYNUt1dEkz1fi3MrZUOhChMTGzdTpspEg004ZA2zb0eysTQvAMpfthGRZKTNYd8aHBZ8WX14XQmGhahOA8OBO7C7Dve5zLY1GtivEuEuriOAoXU48CzkvJqRC6boUPYQw/FLFOjPcJ5xzdek2ryjD0iJh2oynjbJoUFXPGyj4TiTjviBrZrDaknKCMPK1Wm0IuhKxFp0MCMl6U1kPjMkFsPCqpIuoRFwhebByv/C7UjosRHikCevDiEbUOFxKY0sEXLHhpkD7wIX7nb/5m/uY/+R/Pff+3/qk/wZW/9wG49eJJBkD68Efu6v0LFix4maOOPGXgpXZkyjZapfv9S7ufBS8az5toPFNK97ORDbBC1hVCYbV9ef20kHtuROjZ9n/+daWLMSMfKs5CAS9sT8px37YfNfqDjHLb8+dbNe3Pco512yJC1KLtMBsry2cQcw4aYmS339OtVmVUCBBnHY3S4XHO03WrMbwvpYSqdT1szCoVHYeRjBgTuusByFlo2zUHBw2Hh4cMQ0/fb3GiBDXXJamC8rJ2qAoZN/5Mk2kzxnOrGoE6ugPjeJEdm2keRLONCzkjV1WDEWMan5EQzB0qF3JnguySaUF1f8oMwwBltMl5jxMTfVexvIUdOnLKFp5X7v8QI03T0HUrnHNlO4xi+px1tLhNpePifMC7gHM6dmqqTmZuN1xHuVJKxH4YAwetI2UhjlLupUikzNJVSo13RkTqMyV24c+Jyk1QTzEhqGNSU1Chql0TlbzwjAUvOdIv/Qrf/IavPfe9S/zoIsZesGDBggUvCC+qo3HH7Izn/WYK4ZgcneYKiReyGS1OUzX9Gyw1GtESwMZoY3o75MK2Zj+RQi7qsc3Odf4nTMV4PadzuypEqGZhpOJYhE6z99VhKkZzYWpby1uoxXotduv7zzlRzQpiMLeozWbDer0uoz822pOSIlLyIUqI3XQeGdWqi4AYz1+rSTthq+/OeZrGCupc0sWt0PYjCfK+IeeBlKzYb9tmtPiVYrVbz8e0Fc0oxDYCU857TPaeSG69XsMwkFIar00Vl69WK1LKo8C+dipy6Vr0fT9eRyclOFGt6N+XFZHR0hhGMb8Rpzjep7rdSkwuivlroKMrHYo6QqZiLdyca3dKR7I0CcszSAb8lKtShOCVvC5YsGDBggULFrzc8YI7GjB1B14Qwajboazgmv8oVdtQlBwvbFtazUDHb0wdEp1IyHMd0VxLMtpS1VGr2XnW4vMiKtFwzpyEhJK/UVbhUSX4YPkWQIoR37YjiaijWLWIhcnatuoPQghm91bQdd24cl8JzJwItW2LyAGaIzEOY0Be3d/FDpWI0LbtuM+6gl/fN39PPbb59ub2vvPrVotyy5pQpDhx5WxkwDk37rduuxKHSsaq81PXdWPYH3DunKotsF2TksNRiv+K2pkYyZOTErBnx12PZ36va0ejHt9thICpazLfn5Zn0TnBlzEvdVrsdIv4uzy/UsmDO//c2fu9dc2clExUN80BLliwYMGCBQsWvIzxgjsat4fzvQiyoVAJxiQKfzGOOrWT8Az7qfuQZ962jh9zh6fiTMR5gnXxfOvnltVg+3AlfwE1G9k6PuQbP41E5YSHc6vmF4v6OSFwRYRtWoA8jvh0XTcWvCGEc25J3jtWqw7Nnt3Oiug7kYv5+VWyUDF2YGavNcvaaQW/EpM5GZnGpcLoLOW9t9Rtd74or+dWtzsfU6qBdZV4tG07FvLz7kG9Xs45UsqjW1QlB/U86jWqP68WxDWHox7DnFDNUY9vHrBYyWLd//wauHI/XEmiN/2QjuYDzMiIq+5SbqYXcpSAQ849wM9n1HDBggULFixYsOB+4yUTgz/j+ygEYPy6djSehQ3cAXNthJRjmfoiE3sZR4vcM2y8kJ7bVolHN6tphT7nPBav82JdSmWYs44dm7q/en5V6FuJjXNVZ5DOdQdqUV4/9vv9eK0tWdpyN4ZhGK1Y6zHWwh4gpUwoTksmNK+Fc3EwkipwV1LKhfBNegwjEQHVmoZenb+qy1Mdoaodh6K7mHWHVGtXwca1yqUzPcOsC2LbrgF1oTSUbJVfEZzLI+mox+icL9qVXEhNU0a/4m1dmPkI2nzczMbqGEenKsGZk6s6MjV2lprGSOSMGM7P43y3yJWxqYyTjHcW8igU4b2acLxYUFGTimwbk0ZjfIbK85SeobO2YMGCBQsWLFjwcsIXPkdD71DUvyjIZPopdZMyUo35PkZhd3nN89g0s8mu541c9AVeyjiRTAVojJG+72naFieujAANo2i5ruDXgrZ2CipSSjRtiw+e7XZ7TqNgK/lpLLonTUhGpHZE2lkRbMvlJkSHlIaRINSiue7ftlnDGDN935MzNI2jabrSbYAQinC5iPRjnI5fC8kKLhSruWp9ax2anNRGgmqORGYUvxvJkZIuXjsN5ljVNJlh6MvXASN7UxF+0UBg3gEBI0EqWpLK07muRL1W9f6MHZcyulWJyblRqfkjJDJ2KoxeZMpwGFlMEK6a7Px1lkDPRDTArlPtfFRitGDBggULFixY8ErAi3KdqqvBL6yrUSr9Wo+J3lYIPtt+z6F0EOoa7/jt2cdcdlH3r3eQhcv049vGUy6OVN1+GDL/4uIWrWAvhWvtQtRsCSnsqI7f1G7JnUaVqiYhNA3Bh3HUKKVE13XnRq/qdippqYJt792oG7ECtjpiCRBH96NRL0Bd6Z+0FmBp3DaGVTs59uFkIi71eqqq2cEqRi7EIVLJh4wjQqrQNGEs3i3AMJfjV7wPhTxZFIdljMgopq4i+hiH0TXr3AjTbMyq3ttKKHLpTlRdS1u0MykldrvdOU0GYFko5X7MCV691vX+1cBDC++zroUTN3XKajp58RzPmsk4Ix3jY6RFs6LgigZIBSdLR2PBggULFixY8PLHixKDP/drQaWKrOc6jLJya1/YqnXWOgd1x33N5/9hWtVNKZFRS1oupZw5I+lY5ApF6zAboRp5TiUdztbSc11RLq9LOVu43kwEXAvWi50EVXvdGGZXtpU12/eLNqPqA2Ky8afgPa6Qi7muoRbJlTzEYt2ay9jSer0e3ZOGYbhN11FHeoL3oDUkbt79mToWmtUyNVRJxd7WOZ11NGwgLaGsVh1t03Hz5k2GPtKE4oyVIeaMK+M+di6urOZX0iKkpPjQjHfAbrMjhGoNW7UkjOTiouvU9D6z6g0hX7CgzeNIWe3wVLE4cG4MKudMP/QjSVitVqPuZbvdEmMc78koXr8wMledqOq2+74fhe+oWiq6ZlQjbbdGfcN+GMjJxtCk2D1XgqEo/X5PaDpSyrRNvV5lvOsFjhguWLBgwYIFCxbcL9zT0ampwzEfVZpgk0syuuuMtrDPsK1nhVh3RKrlp04Uoi6Tz2nFHWeg5LZPLuxCnvHj9uOFmKJ1DFSMuUgdNcps2jWr1cpIRoz4vrdguVIkV8ep+T7momsRIcVImnU97uT+NL92cTZeVbUf5kYlI7m5uOo/71JZR8aPpKdaxtZ9V4zjQ3ka8amoRfekpZgeuYsuXnNL3/n4Ur0WzrmRoM6vETBzplqN3ZvaRar3YC7irufRNi3SupGcDcPA2dnZSOTm51gJzHycan6st304wQdH8M4eB3LJHKk6oqLNGD+fhUJSflWcQ1whnprRYnO7YMGCBQsWLFjwcsc9IRoXx6qerQ6SWkGJjZU4cUwmPOddkZ6NbFSHp3nhPwrMZ52LmrXxQmF8yJ2b2b9IMM4d36xoV0pXBxtV0pxp2mZ0jqI4R/mQ6GYr7nV7VQ9QXY4qAUg5I6WDUVGPb+54VN8/XouZ+HnuxFTHfsbRrHD+cZgX+5VoXBztqvuek4TaAQDO2eVWgXs9rjnhmROf+b5ztrBB75pxP+RUbF8VV0bw4mCuUsj5cb6UEvv9fjy3SXxeRtWo42ScO+65eHx+rn6mn5mf45z4jBoQ52hDoGuDhQVqtBEyLURDFGVmS8xkd8tIVhxeHCoOhyOLu8MA4IIFCxYsWLBgwcsPd0005ivgz0uzITI5TJWORn3HXPvxvDoalMJxLPBn+59v4znIzx03z6zYu0B8LhIrO+7iJCV5THeej/TUYj2EQNO1oxvUvDMwL8Tray/mN1QScfGaz4+lFsBt0xJ8GMeltLgrTcTJAXVVfh42NzlMwdQ5mQug512Pmm4eYyq3xbadczrXtahEYf6M3Om4xw6GOBvB4/z1v6i/qETJNBf5to5D/Vm9lvN9pDS5VNXtNU0z2gHPOzI5Z6SMttV7VLc13+74uXM03tN6T47RAhS9oOrQnK3rBSPhQOuY2Lyj5IrlbTEXwPGCH+YFCxYsWLBgwYL7gJemo/Fsc+Sl6Ncq1FDO5VxcJC7PsecpK6MQjdsk3KMm5IWTjfn5XRQFz78/OxwrRlM2G9MwFbcxRrbbLUfHx6xXK6QQjfmq/kUR98XAuYsC/Iv7n3/fCIkQvLkxqU5kw4rugEi2BsvYbQiz8zQ3KSu+q04hoWqC7IloTATlYlK5KgxDnIgOkGKaibMrYWC2rfoMOBCH91MHYn6OcwJz/nnRc90aON9xaJpmpq0pHZfMqIWZX/+LpGj+vdoJmpPPO5Fu5+2cBEVzQiWC+JHEUa51HfXT+X0VIyvipGg57BclP9evxYIFCxYsWLBgwcsA97Sj8ULeU8nGmBT+YnlAIRI6K9RE5z+7y4n2C2Tn4njP/PsmjJ45EKVcMirsyPrekr1D0+BDIKsbR5Lq6vh8dOeiXqK6VV0c46rHUwv4aZRJUVfHm+S2Toi9bir45zCHqGmc6WLyd33NfLSs7nfeZanFe3XGmhfS5ztCMx3G7JyqGLwW9fP9zEmaiND3PeJMmxFjvO1aVkJ1cUxrriGZdz5qJse5183GvOZkZ949qV/b+QiuyJKoaeAOLI8kn/dOKzN3SkmY13rfy0gcGVVzplqwYMGCBQsWLHi54yURgz+zJWxN6i6r2OPKbQ1Oe/6jU7V4rza5WWsno0yw15+X/Z7/8/lTj3lh/EzHpaqjsxUieGf6k5QTQ2+Be8H7EtJmHR/nPJqnlfP5eNLF0SSo3YKpmJ13EeqfdfRqbrFaReZzsfi8O/BMo0vzLkB9TyUL9n1uO85KAKrY2s+sYCvpCEVQfbErMycalVjkbEX56OJVyMCcNMy3v9/vEDd1Jy4efyyvHWIc3brAnSMJlWTUP+sIVe2QzElK1smlbL6N8ZyohK2MqRXCZ2pwrSc2PUelaaG5OJbNfo+ymuPUfJRswYIFCxYsWLDg5YwXQDSevUifSEKpnaTKKOay7JKMPWYG1ERqHbdcavVxj/bzSew9fVimAHn6HqpWrI2vYBxNkWq3KzI7hympe/49mFaR5+d37jLMXi/VclXBiyc4sSJxTJUuieJqxXZOiZqUnTUT1Fyh2rYdXYbQ6splrR/vPSmeJwj1c7QSjYD3bgy3yzlBGX3KKjidiAEzojC31FUUL750QDwp1byKBBJm93UKShy7D07Ge25EoLpiMXYf5t2PeRdn/n1VncTx41wVJSOjhuDZWBJxGpkahh7nZ/oG78ZxsJQzw2gtbHoJHxqCL+GBd+iw+GDXMVaSUbaDlGQMVbNGnuVnVMIM5iOFc6jzEAIuZsR7FKiSbkFt3+X3IBeCopjWR1wlLtOz+0I7iAsWLFiwYMGCBfcD7rlfYshkVOzDxKtqjj3lA3FkhGT1tY2Y6FQEIhlxGedSGclJRSyc0FxIg3gUIWVAPCKelBVxnly2m5LlPYgtqYOrGQwecTUgzRypXCni0GTz8eVoKX9mzWMRXTsNIm7mNuUILhBcA1nwEvAu4CUQXKANnRXlYt0JyQ4dFMmgKZtDkYOh3zMMewBOTk7JGXywon3f79kPO9OpeME3VoiGppldAxAXzFnJtzgJaBYLtcuCiGfVbXDiSVFx5X2KgitnrZk+9qgoLvgxJ6RbbehWG7tXAuIgk0gaUVF8I6w2nb3PCTlH+tgT88CQ7EMl2/s0oaK0qwYXHDgIrSeX/0JzXpMyJxj7/f6cxex+vzdCqomUB4Zhz42b19nuTnFeaFqPscyMkkg50rQNNckcstncYueNQMqZXT8Qczb3JucITUO3XtF0LXhHnyJ9jKiz50uCp1t1rA42dOsV6sCvWjQYUY4xojnjnS+jTiXdvXaWxJOkQUJHtz6g69aW2K5mVOsKu7bn1RUSCipCKtcs5URONgqXs5IWkcaCBQsWLFiw4BUA0edWXC9YsGDBggULFixYsGDBC8Lz7mgsWLBgwYIFCxYsWLBgwfPFQjQWLFiwYMGCBQsWLFhwz7EQjQULFixYsGDBggULFtxzLERjwYIFCxYsWLBgwYIF9xwL0ViwYMGCBQsWLFiwYME9x0I0FixYsGDBggULFixYcM+xEI0FCxYsWLBgwYIFCxbccyxEY8GCBQsWLFiwYMGCBfccC9FYsGDBggULFixYsGDBPcf/Hy76MrXjfnDiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAEOCAYAAAAOmGH2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebxkV1nvj7+ftdbeu6rO0HN3RjIBYRAJg6AoUwRimC4iIIO/C1GuoCLCxev1er9XEPmq4AQqCIoXfl7hhRcn1IsiKMggeFEIMgVDEgIkIUOnp3NOVe291nq+f6y1d9XpPt3pTjrp7mR/8qrUqV17WHvvqurns57P53lEVZUePXr06NGjR48ePXr0OI4wJ3oAPXr06NGjR48ePXr0uPuhJxo9evTo0aNHjx49evQ47uiJRo8ePXr06NGjR48ePY47eqLRo0ePHj169OjRo0eP446eaPTo0aNHjx49evTo0eO4oycaPXr06NGjR48ePXr0OO7oiUaPHj169OjRo0ePHj2OO3qi0aNHjx49evTo0aNHj+OOnmj06NGjR48ePXr06NHjuKMnGj169OjR4w5BRHjNa15zoodxWJx77rk89alPPdHD6NHjHoNzzz2XF73oRd3rj3zkI4gIH/nIR47bMU72350eCT3ROMnwzne+ExHhX/7lX070UHr06HEccc011/Cyl72M+973voxGI0ajEQ94wAP4iZ/4Cf7t3/7tRA/vTsf111/Pa17zGi6//PI7Zf9f+tKXeM1rXsPXvva1O2X/PXqcSmhjifYxGAy4733vy8te9jJuvPHGEz28o8b73//+nkyc4nAnegA9evTocXfHX//1X/ODP/iDOOd4wQtewIMf/GCMMVxxxRX82Z/9Gb/7u7/LNddcwznnnHOih3qn4frrr+cXfuEXOPfcc7nooouO+/6/9KUv8Qu/8As87nGP49xzzz3u++/R41TEa1/7Ws477zwmkwkf//jH+d3f/V3e//7384UvfIHRaHSXjeMxj3kM4/GYsiyPabv3v//9vPnNb96QbIzHY5zrw9iTHf0d6tGjR487EVdddRXPfe5zOeecc/j7v/97Tj/99HXvv/71r+ctb3kLxhw5wby6usrCwsKdOdSTCmtra3dpINSjx90Rl156KQ9/+MMBePGLX8y2bdv4jd/4Dd73vvfxvOc975D176zfGWMMg8HguO7zeO+vx52DXjp1kuNFL3oRi4uLfP3rX+epT30qi4uLnHnmmbz5zW8G4POf/zwXX3wxCwsLnHPOObz73e9et/2tt97KT//0T/OgBz2IxcVFlpeXufTSS/nc5z53yLGuvfZanv70p7OwsMDOnTt55StfyQc+8IENdZX//M//zPd93/exadMmRqMRj33sY/nEJz5xp12HHj1OVbzhDW9gdXWVd7zjHYeQDADnHC9/+cs5++yzu2Xt9/6qq67iyU9+MktLS7zgBS8AUiDwqle9irPPPpuqqrjwwgv5tV/7NVS12/5rX/saIsI73/nOQ453sK75Na95DSLCV7/6VV70ohexefNmNm3axGWXXcba2tq6bafTKa985SvZsWMHS0tLPP3pT+eb3/zmbV6Dj3zkI3zHd3wHAJdddlkn52jH97jHPY5v+7Zv41//9V95zGMew2g04ud+7uc2HG+LeQ34O9/5Tp797GcD8PjHP77b/8G/Wx//+Md5xCMewWAw4Pzzz+cP//APb3PsPXrcnXDxxRcDScp5pN+ZGCNvfOMbeeADH8hgMGDXrl285CUvYc+ePev2p6q87nWv46yzzmI0GvH4xz+eL37xi4cc93AejX/+53/myU9+Mlu2bGFhYYFv//Zv501vehOQfgfbWGdeBtZio9+Gz372s1x66aUsLy+zuLjI937v9/KpT31q3TqtrOwTn/gE//k//2d27NjBwsIC3//938/NN9987Be1xxHRZzROAYQQuPTSS3nMYx7DG97wBt71rnfxspe9jIWFBf77f//vvOAFL+CZz3wmb33rW/mP//E/8l3f9V2cd955AFx99dX8xV/8Bc9+9rM577zzuPHGG3nb297GYx/7WL70pS9xxhlnACl4ufjii7nhhhv4qZ/6KU477TTe/e538+EPf/iQ8fzDP/wDl156KQ972MN49atfjTGGd7zjHVx88cV87GMf4xGPeMRden169DiZ8dd//dfc+9735pGPfOQxbee955JLLuF7vud7+LVf+zVGoxGqytOf/nQ+/OEP8yM/8iNcdNFFfOADH+C//Jf/wnXXXcdv/uZv3u5xPuc5z+G8887jl3/5l/nMZz7D29/+dnbu3MnrX//6bp0Xv/jF/NEf/RHPf/7zedSjHsU//MM/8JSnPOU2933/+9+f1772tfz8z/88P/qjP8qjH/1oAB71qEd16+zevZtLL72U5z73ufzQD/0Qu3btOuqxP+Yxj+HlL385v/Vbv8XP/dzPcf/73787bouvfvWrPOtZz+JHfuRHeOELX8j//J//kxe96EU87GEP44EPfOBRH6tHj1MZV111FQDbtm0DNv6dAXjJS17CO9/5Ti677DJe/vKXc8011/A7v/M7fPazn+UTn/gERVEA8PM///O87nWv48lPfjJPfvKT+cxnPsOTnvQk6rq+zbF88IMf5KlPfSqnn356F3d8+ctf5q//+q/5qZ/6KV7ykpdw/fXX88EPfpD/9b/+123u74tf/CKPfvSjWV5e5md+5mcoioK3ve1tPO5xj+Mf//EfD/kN/smf/Em2bNnCq1/9ar72ta/xxje+kZe97GX88R//8TFd0x63Ae1xUuEd73iHAvrpT39aVVVf+MIXKqC/9Eu/1K2zZ88eHQ6HKiL6nve8p1t+xRVXKKCvfvWru2WTyURDCOuOcc0112hVVfra1762W/brv/7rCuhf/MVfdMvG47He7373U0A//OEPq6pqjFHvc5/76CWXXKIxxm7dtbU1Pe+88/SJT3zicbkOPXrcHbBv3z4F9BnPeMYh7+3Zs0dvvvnm7rG2tta9137vf/Znf3bdNn/xF3+hgL7uda9bt/xZz3qWioh+9atfVdX0HQf0He94xyHHPfg34tWvfrUC+sM//MPr1vv+7/9+3bZtW/f68ssvV0B//Md/fN16z3/+8w/Z50b49Kc/fdgxPfaxj1VA3/rWt97meFucc845+sIXvrB7/d73vnfdb9XB6wL60Y9+tFt20003aVVV+qpXveqI4+7R41REG0t86EMf0ptvvlm/8Y1v6Hve8x7dtm2bDodD/eY3v3nY35mPfexjCui73vWudcv/9m//dt3ym266Scuy1Kc85Snr4oGf+7mfU2Dd9/PDH/7wuu+n917PO+88Peecc3TPnj3rjjO/r5/4iZ/Qw4WqB/82POMZz9CyLPWqq67qll1//fW6tLSkj3nMYw65Nk94whPWHeuVr3ylWmt17969Gx6vx+1DL506RfDiF7+4+3vz5s1ceOGFLCws8JznPKdbfuGFF7J582auvvrqbllVVZ32O4TA7t27WVxc5MILL+Qzn/lMt97f/u3fcuaZZ/L0pz+9WzYYDPhP/+k/rRvH5ZdfzpVXXsnzn/98du/ezS233MItt9zC6uoq3/u938tHP/pRYozH/fx79DgVsX//fgAWFxcPee9xj3scO3bs6B6tRGAeP/ZjP7bu9fvf/36stbz85S9ft/xVr3oVqsrf/M3f3O6xvvSlL133+tGPfjS7d+/uzuH9738/wCHHfsUrXnG7jzmPqqq47LLLjsu+NsIDHvCALpMCsGPHDi688MJ1v5c9etzd8IQnPIEdO3Zw9tln89znPpfFxUX+/M//nDPPPLNb5+Dfmfe+971s2rSJJz7xid2/8bfccgsPe9jDWFxc7JQOH/rQh6jrmp/8yZ9cJ2k6mt+Ez372s1xzzTW84hWvYPPmzevem9/X0SKEwN/93d/xjGc8g/PPP79bfvrpp/P85z+fj3/8491vWYsf/dEfXXesRz/60YQQuPbaa4/5+D0Oj146dQpgMBiwY8eOdcs2bdrEWWeddcgXctOmTes0lDFG3vSmN/GWt7yFa665hhBC916bOoXkz7jgggsO2d+9733vda+vvPJKAF74whcedrz79u1jy5YtR3l2PXrcfbG0tATAysrKIe+97W1v48CBA9x444380A/90CHvO+c466yz1i279tprOeOMM7r9tmglQnfkH8h73ete61633+E9e/awvLzMtddeizGGCy64YN16F1544e0+5jzOPPPMY65Icyw4+PwgnePBmvMePe5OePOb38x973tfnHPs2rWLCy+8cF3hiY1+Z6688kr27dvHzp07N9znTTfdBMx+b+5zn/use3/Hjh23GQO0Eq5v+7ZvO7YTOgxuvvlm1tbWNvw9uv/970+MkW984xvrZJJH+s3rcfzQE41TANbaY1quc6bQX/qlX+J//I//wQ//8A/zi7/4i2zduhVjDK94xStuV+ah3eZXf/VXD1uicqPZ2x497onYtGkTp59+Ol/4whcOea/VCx+u78N8NvJYcbgZwfmJhoNxNL8ndyaGw+ExrX+kc9kIJ/r8evQ4EXjEIx7RVZ3aCBv9zsQY2blzJ+9617s23Obgic9TFf1vwl2DnmjczfEnf/InPP7xj+cP/uAP1i3fu3cv27dv716fc845fOlLX0JV1wUpX/3qV9dt185mLi8v84QnPOFOHHmPHncPPOUpT+Htb387//f//t87XCjhnHPO4UMf+hAHDhxYl9W44ooruvdhNjO3d+/eddvfkYzHOeecQ4yRq666at2s4Ve+8pWj2v72yCEgncvB51HXNTfccMNx2X+PHj3W44ILLuBDH/oQ3/3d333ECYD29+bKK69cJ1e6+eabbzMr0MYSX/jCF44YSxzt93rHjh2MRqMNf4+uuOIKjDHrKvv1uOvQezTu5rDWHsLO3/ve93LdddetW3bJJZdw3XXX8Zd/+Zfdsslkwu///u+vW+9hD3sYF1xwAb/2a7+2oRykLw3Xo8d6/MzP/Ayj0Ygf/uEf3rAj77HMnj35yU8mhMDv/M7vrFv+m7/5m4gIl156KZAmArZv385HP/rRdeu95S1vuR1nkNDu+7d+67fWLX/jG994VNu3tfkPJg23hQsuuOCQ8/i93/u9QzIat3f/PXr0WI/nPOc5hBD4xV/8xUPe895337EnPOEJFEXBb//2b6/7HTua34SHPvShnHfeebzxjW885Ds7v6+j/V5ba3nSk57E+973vnVZ4htvvJF3v/vdfM/3fA/Ly8u3Oa4exx99RuNujqc+9am89rWv5bLLLuNRj3oUn//853nXu961bvYBUim73/md3+F5z3seP/VTP8Xpp5/Ou971rq4hTjurYIzh7W9/O5deeikPfOADueyyyzjzzDO57rrr+PCHP8zy8jJ/9Vd/dZefZ48eJyvuc5/78O53v5vnPe95XHjhhV1ncFXlmmuu4d3vfjfGmEN00hvhaU97Go9//OP57//9v/O1r32NBz/4wfzd3/0d73vf+3jFK16xzj/x4he/mF/5lV/hxS9+MQ9/+MP56Ec/yr//+7/f7vO46KKLeN7znsdb3vIW9u3bx6Me9Sj+/u///pCs5+FwwQUXsHnzZt761reytLTEwsICj3zkI7tS3IfDi1/8Yl760pfyAz/wAzzxiU/kc5/7HB/4wAfWZWTb8Vlref3rX8++ffuoqoqLL774sDrzHj16bIzHPvaxvOQlL+GXf/mXufzyy3nSk55EURRceeWVvPe97+VNb3oTz3rWs9ixYwc//dM/zS//8i/z1Kc+lSc/+cl89rOf5W/+5m8O+X4eDGMMv/u7v8vTnvY0LrroIi677DJOP/10rrjiCr74xS/ygQ98AEiTm5CKUFxyySVYa3nuc5+74T5f97rX8cEPfpDv+Z7v4cd//MdxzvG2t72N6XTKG97whuN7kXocPU5Qtaseh8FG5W0XFhYOWe+xj32sPvCBDzxk+TnnnKNPecpTuteTyURf9apX6emnn67D4VC/+7u/Wz/5yU/qYx/7WH3sYx+7bturr75an/KUp+hwONQdO3boq171Kv3TP/1TBfRTn/rUunU/+9nP6jOf+Uzdtm2bVlWl55xzjj7nOc/Rv//7vz8OV6FHj7sfvvrVr+qP/diP6b3vfW8dDAY6HA71fve7n770pS/Vyy+/fN26h/veq6oeOHBAX/nKV+oZZ5yhRVHofe5zH/3VX/3VdWUaVVPJ6R/5kR/RTZs26dLSkj7nOc/Rm2666bDlbW+++eZ127e/Rddcc023bDwe68tf/nLdtm2bLiws6NOe9jT9xje+cVTlbVVV3/e+9+kDHvAAdc6tK3V7uN8zVdUQgv7X//pfdfv27ToajfSSSy7Rr371q4eUt1VV/f3f/309//zz1Vq7rpTmwb+LLTb6HezR4+6Ag2OJjXCk3xlV1d/7vd/Thz3sYTocDnVpaUkf9KAH6c/8zM/o9ddf360TQtBf+IVf6GKMxz3ucfqFL3zhkO/nweVtW3z84x/XJz7xibq0tKQLCwv67d/+7frbv/3b3fvee/3Jn/xJ3bFjh4rIulK3G/3ufOYzn9FLLrlEFxcXdTQa6eMf/3j9p3/6p6O6NocbY487BlHtXS89Do83vvGNvPKVr+Sb3/zmunJ4PXr06NGjR48ePXocCT3R6NFhPB6vM35NJhMe8pCHEEK4Q5KLHj169OjRo0ePHvc89B6NHh2e+cxncq973YuLLrqIffv28Ud/9EdcccUVhy1x16NHjx49evTo0aPH4dATjR4dLrnkEt7+9rfzrne9ixACD3jAA3jPe97DD/7gD57oofXo0aNHjx49evQ4xdBLp3r06NGjR48ePXr06HHc0ffR6NGjR48ePXr06NGjx3FHTzR69OjRo0ePHj169Ohx3NETjR49evTo0aNHjx49ehx3HLUZ/Nd//AHA+tbw7d+qSoyRjeweIoKIoKJEdN06bbdpgBDCEY8/v+7B47gtiAjGHJ5TiQjOuW49YwzWWowxiDGoFHhxKKY7n/kHKCBz+wMQREAxxGjQaEHsumPO1hPasxEFlfm9KUhMj/Z6o+mQzK5/GsH6awSKABIjgubtNW+q7dYYMd1+YoyEGPP9jGgMxDBFfUOMEIIQPUQPIQZUAyF6gnoajUQMRbXI8uadLG/aRVEuEjAEZpdo/l6KyCH3sn2/uy4ixEPObe4sN/hMHe3z7F4c/vWR9n/w8g0hkh6a7ocRxUC6JwjGOTAGYwpsWRExTBtP7SNGhMIWhMZT1zUxRowx/NjLXn34453EeKJ59okeQo8ePTI+GN97oodwzOh/Q3r0OHlwNL8hx6Xq1HzQHWPslt2VOBLxUNUjvn9wsLsuyBQB44jiQAyIyXFjfgbEGKRLDgkimoJ+EUASwRAHIkjmJOn9fKw5ntLSlnXjQxLRyAQjEQ1pKcPs/FPPzI7QtYREYgANicS0BONgoqKKxrRNSxpjVNAI1IhGVIUYTCIaUdAYiRrARFTacWTCEiIhBJzGlnmhenjCqKrde+3fmjY47H3r0aNHjx49evTocfLiqIlGO3OfAsCD31WMMagqxsze72LEOzlWvC0i0eJw5EdV12VU5oNfRVAaIpJIB3NEg7lAWMmz1omPrM9UZMKRBpH+kln+QYw5IjGTPP+90fjaQzN3DVqyl8iHojFCzEQj/yfa0Yxu3+0RWoKiAqKKSEjrqUm8Q9tz0PXbtPvTSIyBGAIxBtSYLjOxUfbiSGQDtPs89eXRevTo0aNHjx49Th0cNdEwOXhOAWA7O92+K3kmG1QPDSZVbjtSvDMzIAdLYTbCYWVfWeBCjHRhtSpC7CLzLjAnZR80zjIaiQREIuszPYfO7B9h/FjAHrTunARq/nX6c27bLJ/K5KJ9U3QuOzK3dhpb+2pGKFKqRRBNcrK0rUGJBPUgAZvv/zy5QbMEi9l5t9e6/ftw175bPict69GjR48ePXr06HFq4BgyGnQkI2E2g61Kl8nIk+nrpUjcubPRR0tSjpTR2Gjd2ew6GJsV9Tk4nz+nqDGTizlJVPcMkYBJqYDDE43DXqGcOTlYJnXIuGe5hfkMktBuOj/m/H+Z209HHOezG9KNTVURTWfTUpCcbyCiWJHk9WgTJJl5CuvVTweTjI2kVPPvHUKiDoO7WqrXo0ePHj169OjR48g4JqKxkXG3zWx0s+AbxHtHQzKOJlC8LZ/FHdn+YLP4+pl3UtDcvk57m/2t2gXtM7HUTC41kylJF9C3SZ42PaQcbvyKSMzry1z2ZC6LIskXMiMgeUytR0MEI605PV8Hmd2XnKzY4Bq2pEWJObvDQaRBUKyk7VUEGyF2Bvk5CddB287v43DoPRoboydVPXr06NGjR49TAUdNNKxN0p3OOJwf85p6mGUC1s26C5hcSmnj2fhDcUcalh8uQ3FH9mHm4uSDZ9nNXJA/56TIkXwbhdvsy8j/5eC/3VPUeBhCphjaClVZJiXtc7ssdpygzbqkI+drnwd9WMvMIVmq+aPPMjhpfzN6krzuBjTiYwADxthsLE+elxhDklgdRdWwjSRu63woc+sdLQ7NkKzPomz0+T34s33wuofLSh12DOkAG1LJeR/T/Fi0ywaZddtZa7vvYo8ePXr06NGjx8mMo89omDnTc35I9mygpGCXHKihs1Kr815pZoHUweVDDw74NhzDBhmVY8HtnwnWGa3QORlP/ntdyd+Dg3UlE43W0D17aA7WNa9zGGFXt0+RHPYf6Rp1/5v7Q9c9HSPmPR2RQ6VcbQDdZjBsPrO8Tmvekdu+t4c7vmor0jqy/G2jkrRHqih2NPs5eLv556PKoh3pzW57Pei+zRHX/MYd+dz36NGjR48ePXqcCBxDRmMWMyYvxpxHA02VX9vXczGRthP7KkSVQwK/wwWIh6tOdDhCslEgdiwB5pGRZ7k7h8NMttQd60iba6tTmoXk0qqCuhntw/X5UCAQNXYXv50hn5c+HfHw6wjOxmscQcCUZ+NzCiUmQiE6TxpTxgdN/VKS8VxTSdwYiSjp/xtj/t4e0sMCUgYnrbjh56Jbd4P7fbTEtZcj9ejRo0ePHj16HF8cc3lbWE8G0t8zk/jGsnrJ8+C3P5ibl2Qdbta5HdORJDK3F+uCdZ31jZj5KzohFetox7whQ0I3Kz8XEkOWUh0+ozH/av1zGsIRiILOz74f7podKSBvvR0teZhldtLpJTlVmnify2S0/pBMVI44xiOgo3Y59XMkwnmwRKpdNjvP9ct6ktGjR48ePXr06HHn4RgyGqlPRsylW0Xa7tFdzAmsnyWeBYSC6tFJTeZD9nXLcwWiDc3mRxls3rGAMl2q1FvCtGka2gpLR5w5NxFSb+zDyHKSFv+w0NaOIXNGjPm3Zf1NWL93uA2S12WdjrCCyJyEK8vk0lsRQxJUxZlgLn8u2tK2EVVzOJ7TDX0j8pCI2Sx3c1tE4nBE5EiEo0ePHj169OjRo8fxx1ETjaosiCF1jPY+ps7QxhA1dZKOMclkIJucVbtZ/5gJQqu0T7H5vAY9QRRUBFGdmYe7mDPtQLI8Z94zwYbBJh3JEWkzLkcrNlp3YBBBxLRWgw3IhW5IgLr3yB6Hdd6Gud3nK7PxPtositAZOtpreTTHN4lkRJ0d6WDEXLJ2fszzR6ctUdWRq7iO16QefgId5WB9ZoOIEtbfy4OvQMeVEuHqXgvZ/zOfKZLZjegySnMkdz6T1Z1SJh8bvD8/mo2ujxzmucPBt1Q2/POwArZZseBD99d+Nnr06NGjR48ePU41HDXR2DQcsjYepxnmoDQCIhafyYcVS+09xhqsMTkQj4gInoia1iScY73ORJ72Px9q6Zz5NZWGFQSbiYuikgPjPNMdNVsHyNkGyAbinCWQgOCZyZDmswdyUJpE2xHMEhaycYh5tOZ00YM6fx+0SWv4Pez2ObCekaf57doKYAfvL22Z+ufNwtu53EA3mPnKvhsFwRozyVKAkK9O7HamQcAYFEtUQbEgNpFQDUQB1ZDlT/NHkbmjSM6JGEwmdd2A04dudnJKmwbKY8l/x7ms2dw16Gz4mbi0/Qe7R47l29uQCO/cevnam/nndn/QkerZ/qUbYjqFjhnOHVMwSddG+qRKrjAlkP04BpMkh5nMH0ky2KNHjx49evTocbLhqInGZG1KPW2whSNExTepM7aPijFFjsAiJkdhGiNGLNYYgg9dVqCTCOUmdxpnpTxTkJZmrtdLpaQzm8/i1Jhpg2LmpTVtFkPnQ8lIm9BQEWIn7Wq3Yn2AOhdg5r3OZEO0VbUybRHttEdtta1Z1S2lDaKNHCGavw3Mqk5t9O6hC7trJnSBuJGDt0rXpc2WzEL+9jzbgwtRhJDvS0pq6NyoQNXm+2aIEaKYnEWJXdneyLw+ay5Ls450zB1j7rxan0d7cklBlrbXdrucUUkBvsyO1Ub/ORvTemES8ciB/pwUTeY2a7NwtJ/D+WcOuh960PbtNZ4nkXLQ++1Y8oHM/L7ms2cbNMHs0aNHjx49evQ42XHUROOqr30TBcqqIkQlKCiGEGG4MCKGNlqzEAMaoSwcRi0hQogWtTYbk2nTGqiJEHU2Q9y+f0i4mcLV9pF0/+2yORKS5TvrpTaaCE436zwfJM9WWyfjykee/T+ToXaD1gTPLDROV0C7527c6yLS2UgPj7nId5ZWmXtv/X46n/e685ibLZf1DQFnuQ3BaExStNi+N8voSN5ZZEbEJEu35kng+juViWZrANeIqiT508FMae4yqLaZFTNHYVrEQ+iUrrsU+fpLJnjzDFJnxHCecHQXSmfXqd3xIUmR9WfXPc/fkY22n9/2qCmCcsi5Hh+PUY8ePXr06NGjx12LoyYaK5NICJG46vERjCkIUZk2NUsNybcRPIOiwBrBilI6MMYzaTzFcIHY0M3qCoIxs2pLram4m3WWWXDfSYSkDUIF1GCIOQDXbF1oZ8oVpNX1t9Ia1wXYljw7LPPz8jkcbGfZ10+EZ49F6tAdSdWXWku0aDequTzG7DnG+Vn6uUxCB+lmtcljnA9j24B/hoOIyLoodu61ZsowV3FqxuFmFaI0hllw3k6n5wyNYvIVW+/vmHkqDjo2Cpg5kpGIhmAOXX/udRqhIkY56IRgrmKVtPxxLmlBJhhJ6jSXdtD57NM8McufhFMoQ3Cs/Tt69OjRo0ePHj1ONI5eOuULYgxMm0BQZTAsEedwdsjSltPYvftWbt27G/VjysLijGBNCvWDKuIiiMWYTDCMZAoQMUYpXQGSZFBGwJhZbG2MwdpsEsZkX3TS83fZBoVZIN+SBTMLpyNpPeakMzJHYmbxNe2aXZYFRfBIzPIobffUbrA+8Dt09luzXGs+sJ393ZnWOZhMHA4HzbXLQZkVXf+cDPRzeYz2/ZbIaeyO1641O0LEqBCxgGHWNHBu5r/NtuTgP1WaCqgG0ADRoOvOf94j02YjBI0pU9SWzG3vbbetCBo0NY+cu1ddx3LRufOTbpsZW5yVR55dd05+70N7eU/mMfbo0aNHjx49ehyEoyYaaiqMs1jjEVWK0TJFUVKUFWefe2+K4Y0cWGtYObAf9YZG0kx5UsMY6rUJ1hWURUlRJsIBgeAjIdQUtkEM2Ew0xLYGWUAMBocYixCSF0RARDEiGJlp79fN9s8FlDGzC0My81oh74Nsls6bZPqjYmYkQlPDPMlekqhKN1d+sJJpQ40PcyVaN8K8EId1QbwqmZStO6WDjpMzQ3MEI+1jrnP5hpIeyYF9myZo5WHt+bSljA2Sq0mtP9m5rECb4Wj9G+syGm0GZ15sNL+v2XaJ/rQkUtev3xKCqF1mLPOstF27bM7PMX/Bkjxr4zLCB3cSv71B/dGWcD78B6bdD3NZuh49evTo0aNHj1MPR000ytFSktGEAMYwWFiiKAcghoXlbWyLlmu/+S2qANYAMaLBp1SCWIxCwCLFgHI4ZDCoWBgNWVtd4dZbb2bip4gkooEo0rSz2BCDEJvIwuISUSH4kEgCkaKwSM6AGJFkQjeCRgjeY63DlZYmepREUAyRsrAYTUQlasgNBUkEQyzRJAmQiMEJWCIxNhgMbd8KMYaoAVWwxhBjwBjbmZVj7oxtjM1XcVYdqg2Su4hyrs+IAtZagvdJiCR2rsLVwVKpvI92Xznj0mY4BIje00qaBFCZ7SNqmDNIt9dcO7aT+p+YNAZN3TKUlkRk036UJA/ryIKARmIMmWS02DiwboP8qJoyVdJmmzZoZNiyMJ3fV87lRO2qAOdUzezF3E4O7kB+cBPIYyUZB68/KywgHQFrjeFdliufn8knOzv23PiMQUzO9Mzt+3BkqUePHj169OjR42TCURMNjCMqqBGMLbDFAFcNabxHjWO0tExZjQghV56KAdFADAERS6GOOgSK4YBqYZHRaMS27VsYjVeZNA2TySrJA5FmwKMGYgzEGAnBolRIsQmjAXEBa5TJeDVVv9KAtRYBgs9VqBR8HSlLKLBMfI2K4ozg6ylVYXEozhpijImkkComRdFcOSkFdJaI0RqJnrKsECOEoFhLCrJVc8lTwRpp4+xEQGyRSEwIHMwQ2oCyPb6I6YJKUYfvJvTtLDOCgGmzEJDIS2tBn4NqJgRzMrCudJeCJsIgxs6Z79uStbnKVhvLi0PEpspZmiRjyZ6dTtKa7IVRsJmYSKtqy2OcEYNDMztd1bEjpYRmqaG5lE8iaHR7njN9zx1K2+zMbUil7upGfsKR/RZttbKQmz1CL5/q0aNHjx49epw6OGqiEXMg3s6cizVYZ2lCJESlrAbYokCs7WakDQZjDSIulcANkXIwoBoNsWVJMRhgCstgaQlTOGbegCy5iZEYlcYbpo3DjjYhqiwsVAwGBbfeeguT8SoafCpsqgrapMA6QhDB4zCmgsLhnGEwcOzffTPTJuBVcTa7LVSJInhVgnqicWAtIgarCgE0RMqoWNsSjRSwRm2DxuRFsNbgfZrxLxwYM/OQSCcHk06mFKOk6+SFuvE4Z2mCEqNgraUOoDEmCZVI6w6ZQVspkXT7nUmmZsV20wR/yvq0zReNMXNyozmpkbaBPKTeGSnrM2vEB0rejwhqBFVDEJM0aW2FMNG5ZoWAHhooz1Unnn0G1mnEcmZmjjDMibdoCUqbyUEOyhxBpxvbqHv4qYD5DMypNO4ePXr06NGjxz0XR5/RkCRNChrBKM5ZirKgbjw+egblIEmWNBJUMcROtaJG8XhwBlNaymGVZDnWUJZDxFqwqSqUMSZ7J7p+2bhokMZSLi9TTybYhQUWtyzhRSnGgyRmUp9lQkkKFJrAZDxGxOKGCzixDIZDtm5eRKQAX4OvkZxFiZpm6WMdqH0EW+KqEcY5SgMmTjmwfy+rXnEYNApWbHIUhJgzE0rTNCwsLKAoPnjGXhECpbXJui4meyek6yESQsC5dLaTSUM1MBgJiagUNs+0t5IZIcZAyJ3YxQgxpM7sxlqssV01r5ScSIF4jDFlmbLfw3uPb2oAisJhO9N0TP6TjnAoMXg0egShcCbd+8Kt83y099qQjOddliRnTg6b0dBWspWeZ13S5+RcelC2gk4s1a5BZwhHWsXdnP1jvfRonmy0y05mdKWW+4pTPXr06NGjR49TCEdPNNrgT1JVIGuFwlnEQIiB4XBAURWZbIQUNJpkqFaTgz2rmMJQVAWN92CFclghzqJZd64meyCknTs3Sa5VlQyWRzSxpiGCM8jAYtTiBERNki3lRoGh8ahVBIOthngpqBYW2bx1B2srYwweEz3qayA3DhRhbdpgJh61JcVgBNYxqhyVjURTUNc11tp1xuIkfTI0vqFhTLW4pSMeguKnU6xGbCZQKdsQCSGgUYnRgC2TKsgothjl5RGVgqAxF09KmRrvI96n8TosIZAyLAgRg8Xm5IQmMiImbxMorKUoS1QMdeNpmpqqEgrnuizCnIUjLcut160A1lAUJcPhAOdsunYiYASvknqmCKixuS9Gqmi1oTRqxmXmFmhWRa3PaMzWbw0oM3/GPMFIBXkPIjRzwflGGY2TOrvRWkzmxnfSjrVHjx49evTo0WMOx5TRwABRZpkHm6tHaWRQlZSFSybmELLEJW2YzM2ZcBCJovgYiApFNcAVBcg0x1QzeVAbZUUUH2uqYcFkYhGn2NLgSos0ydBMzH0zNKRxOsWVBmNLiqokegvGIS4F2daWFOKIyblOjIorKkylSNWArbDVkKAwGpYsjkrEWLwPOOfw3ifzurXZ8GzwvmHf/gMsbd6UyYelqkr8dIKJHpudDUrKYnjvCTFST5skIxODG6yyuLRE9IHGNxTOEfKxEEnbNZ4QkvG8rCp806Tx5DLAyW+ixJA8MsYYpJmiU0NZDVhcXEw3v1hhvLZGUVqccym7k83kM+N5xJD8NkYjZekYDisGgxJrkwFeczJElGTIbjt2azJ4q846q69H8ljMiEa+OhqzB6WVb+lMtsf8wdJr0TbDkapVaUdWZmSkzZkkDnNoRmNjd8jcVkeyjxz8PWGOHs2TqLwg30rmdyrz63X+mEy8+oxGjx49evTo0eMUxNGXtwViCDkAEjQH2dYmk/hwtJj8AUYgJN+CkjIgRtNDMUiIEAVjKnwQolpcMcCwilGPY84kKwYVS9HOVMeawiqFKA4ojE2z+FFSNaioqepTTJkMYxPxKauCRgQfpqgEbGGIoSZKIj9JlgReA2INrnSoMwxGJePJFEzEWsE5gzXgnMXZRBqMCJAqTVlxLC6OGI0G+KA0PlAMBqkyVmywyehBjB5UCNFSByWWjnJhGTEWFaFY3owzUI/XMKRMiKp2vTC8V6bTBmMdo4VFVldWqSSNK0afLBJdJiFJl0JcoK49VgqWNm1FI4xrobIVo2FFWVmQiBDW+UlQMOrROIUYcVYpnCTXRvSdzKoN80VsruCVmanOSud2n6S2KWKGYJhv0JiYR+w+d4p2lbxUdD5BgTDfcXwu8leZLZZ0XdPnKWcE5qtRtZmNbPJon7vN21B/TpLVFbTa4IvS7lJmXvU56Ve+MtoSmNwRfV5uRi5o0MoHNUJ+pMpfGzGcHj169OjRo0ePkwvHIJ1KM89R2i7PufymTdRgMBxQlFV67T1toIgIohETQYwiAQSLWINXS1SLtQUWsBJxKVyFZO8mkoL5whpMaHAakQhGk1RIoiCaujzEGLDOEGJYN/ssVrBWaUINRFxhaGJMHb5NG8qSCEDXTM5gjIKEJL+SgJFIxJPa14U8ykyqVIkxUNgU8IuFJgYwSUKFBlQ8oh7VBmtI/gqUWBjMoCQahy8KYlUixmB8g4kN1tJlDhCXTOgRjC1wgwE6qTHO4gqH99MsoArp2RgiESuCuALBUQxGRC+orRJZrEpsZRDxQCrFK5oyCqKC4NFgEPUY0RSIxyaXo21n4GcX3OQRCGZOhtVKnjb4ZEmbYWiXzJESJGdMIiomZx+y1EnbjuyznaqGvM/ZfSRXwup0SPnz3BEM5kmDzh5tdkJnzRQ7wiHrPmLrz2c29NnrvO/OdzK37oyAaPcs3bok4qWzTEif07iHQwR7v3uvX3bdjYT9+0/MeHr06NGjR4/D4BiIRgqMJdJVMxKTym+KCIPBkOVNy+y++WZqyB4LyXRBu4pMaUd0sZwxBmfXD2ODYq0pqFTFWpuMzdB5JORwEWy3P2G+YZ7IbAZ9/XaybmZ9XU+D+enrru9CPhmNXbAqxmSfSjJvt12sY0hERTSkxn/a7hts9j1EcThXYI3FGiEYwcw3E+wCe4M1BusczpVY63LH9dT3o73ywtzsvwhiwOCw1iEI1ro07qPoy6ACJmcJukaA+VocDzXPrJv5bJnMkxNhvdQpm8vnpVBze5utmz0c65RPyrrP4qHDn1v7JEwe9PKpeybiox9Cs+zwA8PHf/tt69674D0v5ey/Dwz//vPEyeQEjbBHjx49evRYj6OXTuUGda2GXkmN5JJ8yrKwsMDWrVv5hrs2B+l5DjhXMxJmev20v5RHsMZQlMVRjSHGiHOOSf6H1NrUyA4jybB8GIikMrH4lOlIJV1z/wsOlcC0xutZ47TUWK0lNNo+q3T+hLaqkhHBGptbPeRma1ERldSNHANZ/qOAiSmAt5kkmHlSo2STer5uedZf0EQsbPJWOOdANFfsSvPg3f8lG93RrvBTOi+TTjRyFDjoWpD6jWzoW7gdmHkmZvdC2ySJctD5z8hGV7p3joS09292S9qMS0uNMqnKlp5OC5UJUytnas/7pICsJxc90bjnYfyMR/BTb3gPP7C4cdbique+FZ4L93/rjzO4FXb+zj/dxSPs0aPHSYssHZbU/CvFJW0zXT0JZ9N63K1wTETDikEkdoQhBbspOzAajdi8eXMKesmz5FkSE0nBUdSIaZuzdfswFMVtEw3NY3DO5UpK0nXcnmnuN0ZaV9ZlUToS0Mp21m/RBeMpeDdJJjZXpSjGrK3velUkdERByc0GA8E3iG+IRlNWQ7TzMXQlXeeMwgcH8J0DoStVO/tt6LIt606/7SOh3XU+eKdKrmoVA6qWIwXVrbE6ZWtytqT9jYoKpqU2tx+HZjQSkWtlRZq7lc+buPMA0npzlaTa812ftIr5HFPfjy7R03kqZswmkeT15XSPG6s6Rsw39evN4PdMrDznO3n+a/7PYUnGPL780rcw1Yb73+cnGV1vOPP1PeE4Ufjqb35n9gBujPu88tMQw+FX6NHjeEAk9TcbDjGbN0GM6HQKdYN6n16H5AHUXMinR4/jiWOTTuVZ/SSdagP4FIxXVcXiwgLGmm7dVlfevm77RsCMOHTZhtuCpsDYGEPM+7B2Lvg/0rhZH6ClPhNkgzWHBK8tcWkDu1YeNhfx0/oSZhmNOa6T9x1DJHhPM61hOkEsYJXCkkzTIliRZAxuZ9Rb/b/kLIox2cMQO9KQKs6mPhqqqfHeLKZeP4OvMWbZ1Ow8ZhkTncsyHTmAbWVi3WXorrveYZJxMDopVDbAt9e3va7zGZ/5bWbbzi0TRXJVsFaFNhu/5izKYT49nSLvxJCMbgysl/D1ZOOehesfF/mJzd846vUrKbj62W/l8umU5xev5OzX9WTjzoI77xyuf+PwkOUiyr8/7C1YOTzT+LazX8CZz/zinTm8Hj0QazFLS+iZu7jloVuIFspVxa1F3FrATjxm6pFpwNx8K3HvPrSue8LR47jhqImGMQbvfUq/wSzAzbP+qsqWrVspy7ILEpEkl7KtByDHazGmP2JuOFcURcoyqMkz1Fnqk/X1kHYX2lKteTwxtqRHuy9FzNmONluS1otYVyAihBgoy5LximZ9/ow4geaqWXRSGmtS2VrVAWVRUk8nWX0js2A4Rsg9Q6KmalRtr418wjTTGiOKWCVIpCgd1cIoeTBCRBRslk5pTMeOUbGaGv+15KP1VAizgNvkMTqXsi+oQYxmE/q8TyMToOx1aZsNdhd4zs9BzrJ0kqv5v5nJl5KQqi1fOz/7z4ystftqf7jap04GZTdMSKVDxW4/G2vcbiPobsnGnLlaNJnpxWQmEfNYzVxGCUkVnsRwOB5yLJgndymDkggk7T3NGbSQs2XkLJzmNHeM+XsxJz/s0eNIuKiqePeP/CY/1Lyyz2wcJ/z72x/OMx/yme71zvJL/NdtVx5m7SN73z73yP/Fkz70DNwTvn4cR9ijxxxMIhnx/DO44dGbsBfvZufiCkENPhqaaDjgHdPG4YNlevUF7PxXZfO/3QrX30jYt78nHHclWombSc8YgRBO+UzTURMNkdTDQWz2N8SZfKrtbj0ajaiqMmUoYmrap9k03u4DkoRKxGadIJ0ZfL1UZe7YHJp1SPsz65a3pKEL6nJwqihibBe8p54RbeO8JEWaP5pqnDuGEDV05CFH3OtnlWWOdOSxJHN2amoYxTCtGwIBLQ2qnkkzTZkJWwKpF4dpXSAhgrGz4D9qJhfMmcjn2EM+D21PRNK1yRVu8znNCJuqZkKSiNH8uXcyHbKQS1uy1157nWVwOCjOTxe0y3F0mQM9aB3Y4F7Kxt+j9jhz63XPR5VomO1Uo5KsKd3Zzb0fk2Q1Z3/S+qk0sJHiSMq8Y8Js/C1Ry8vXrTT3WmdZnPmsTY97Bm7+se/iH5/6q8Di7dr+oqrir378DTx7939h29s/eXwHdw/B2jMfyf94w/8E4Duqf2KLHR2X/VoxvP/+f8olf/dsqid97bjss0ePeZiyQM/exQ2P3sSWJ1/Pz57/N5zt9lJIpCA34Z3Dtx5a8ZmnnMvf3fIAPvvFC7nwD9bgc/+ONvWJOYF7AiRVBDULQ9i1g+mZm/ALllAJoRAWbqiprrqJuPtW4mR6Ssotj1E6RReXhRhQBWtsznRAVVUMqmFqaNckTbzkYNZIDtTnzLypPwAp8M+B44bxXA7KWukUko3cxmCtpYkhG59nQfhs9jwFxlZMnplPWRgxgoRZFaW07m2cv9k42pxJrXLAn5cbYymLkmAtofbUoaY0JUVhqespa6urSKVIMUzlf8kEICYiZkwu3yvz1bVmCYf5azN/3PWh+YlHx/uYyaA2Io532vGTq77zmqAtMWyvU/rs5Y/WLPMBh/lAHufxdaRjjqDNZYXm5VM97lloFoR7udtHMlqcVyxSb8oZwZ6kHhFSVYi1vO6LH+F85wEo5FMsmkFe4/iQjBaVFDxgy7e46rjutUePBFla4paHbsFevJufPf9v+K7BXkZSYvI/KgdL+860kYeUX+c/Ll/DrefWvPoh38cX3vwwtv3Vl/rsxvGEsZhBhVlewt9rJ7d8+yK7H+m5+EFf5tGbP8rITLtVP7rvfrz/kxdx1j+cwdK/XIe//lunHNk4JjM45LDMSJZyRFxR0jQNMSRJ0nDYEo2aFAXnqkcCxllC3olkshBRiqJYN0vfzYR3AbzpxtB5MmLE5U7kTdOOLGFepqLZryAmZVJS1+nkLYld3Ha0gXkKA7tgNPsoYgjd+/NkQ4zgnKN0JVaEZjLFW2VYLWLKimkM1HWN2BJyHqA10xtpK0i1Qajm6lrdkeau2aHlgNvx0Qb3JxTSkYzEJ2VdVujOjp/nfRvta51rJCjSVvBKpZObpiZGpSgcRVHedQH+uiRZKzs7aJXeo9HjduDfXvUWvuPWH2Pb//p0MoD2WAe7ZQts28yZ77qJ3z/7E0CZH3c+ltwEe+/zYM8+wu5b75Jj9rgHQARZWmD/+fAfzv4KDyh3M5IhhRzeE2vFYIFCLCNT8htnfZBffdU+/nLnozn7f38df90Np1yQe1LBWOy2rYQLTmf3/Ra45WGRix58NZft+hceOvgmu6xhICkGDDnm/s7BdZxz8S28pfxezj9wGuWte4hrayfyLI4Zx5jRMDmkNYQQiDFSWsdkOqWuG5x1VFWVunNrqspkSF2ko4IzBt9Jrkwn95knGl1rtHVEQzqJVts7I4RAVVWpClVnOm8zFNL5GeZ7bmhM/gRjTVfitvU6zHsPNjjzLNNq9z0fyGfy1WVKWrVT7LwfReGoipKJ90zWAqNhSTmoECnwdcDXnnoyxZqi22db7jZqK/cxMy3/HMlo5WIa49x16EbdzYifaLIxq9jVjov8+i4YmbZUrBV1mdnMjLSZukg99UwmEybTMarKYDBgNFrKHqI7b3jr7+f6rEr7+e8rT93zYLdtZfWc4/eP+qf/39/lyZ96NuHLh/MU3DNhd+3ky79yNtdc8gcn5Piv33U5fPRy7v3ul3LBT3/qhIyhx90TWhXUWyIXDG5iJNJlMo4Wm8yQn93+ae79n27k/93xA9zn/z8kXnlNP1lxO2AGA7j3uVz7tK3svPg6Xnjmh/nO4VWc7RoWpaCQAQaZZZkEgka2G3j06N9537kPZm3nTqqygFOLZ9wO6VRMFrc2sLXO4Fc9TVNTFAOssymOy1WZZnIjTUbn1sMg0rW+KArXEYONprfboKsta9v1XDAmlbidV5kcFJi1JoI2UE9G6xkRScKZo5BO5aB+Nr65lbsMxlxwr8kPEjV2BEzEMB6P2b/fstkYytGIYenYP/Ws7t9PGUnm7LLESJvAyFkcafMCaSwKqSKTzPpIz7wqcxftkCvZjn3ed7HROke4FN1aiughV3H9vudM5m0fktb6kU5lfkzp/VkvC+2uZXf9D+Pj6MYmrN/24HWklVLNSJn6yLhuGI/XmEwmRFUGg6oz59+RuL6rmrvRYNcNeiabEsmZK9Mu68nFPREHHnMfrv6Bt932iseAr/3ADga3bGfHW3u/hhkMuPGyh7DnIZ5rLvn9Ez2cHj2OL8QQByWypeZexW5GUhyxCtrhsGgGvGDpBs599tu4bPnF3O9tDr54ZU82jhbGYrdsYu2RF3Dts5TXf8+7uHh4PUumxOGwcvjMqRVDheMct8Z37byGv9t1GluKuybTejxx9NKpHAAaIhLAxIj4QIHg6ynjyZhqWBKNptrhAkqEKBTWoRLwxGTKBiwCUVEfcIMCKSxNSEGoRbr41OSqP6oBK5qkRsbiIygGxHbjMsRUKjaSBmAcXgUfIagg1qUKTrZKwXqWbhlMzkikZc4J0Wj2TECMEEUwZUlQwRpJvo5cEWh9FgG8D9hqCMbiEWzhMMOKammBlVunrKyMKW2FlYphVSGlYXU6Zm28hqlKqmIzthlj/JSSVOnJx2QisMYRsKgBjxDEEl1BkCmNKtawrlxuiqkN0qVLU8NFsRExqY9GksEVqZkgJOIU5+lD7LZNCyMQU9lYjTkrlK6laoQIKhGJBqMu2yIExc5IQDeWdI3TtYv5uQ2wU/ZMtEDjnIGCeR/DXMndTg3VVkQTsJYouQeIgJA6tDsUYiD6hslkjZXVVVAoXUEAhkXB0nCEscWsTG53jzeW2nUZiI7kzFOvtupV289jJhMUzV3XtSVT6bsmKtm0nytOaCfeO+J3tUePw+FLP/4WVuKEH3jrd57ooZxwmO3b+Mz/+N0TPYwePe40aGEYjmo2mzXsHZisKsTy6IHnTy79HZ6z/BLO//0HUXzuauLKak84jgApSsx5Z3P99+1ix3/4Bn9+/p/wwNJRyMJR78OKYWQs24sV4jGlBk4eHP2wJQevACFgQ8SEgFXwTc0tt9yMrRxT3+A1oJICTiGVUg0CTQgYUyIRrCbPhG88xhpcUTCZpqBTRNCgOMCJpJKfGrAoTd1gbEFQiCooSWLkNCQSNEdQMBYfE9GIKhjrqH1AjEWZ6wyuKVWTen1ErHU5I5NM7EEjATBFSUTQtjRpbnhnssRL83XyIVAWBRhHFIMWDhlVDJaXWFtdpVmbMF1rKGTMMAgLowpjA3una6A1OrE0UmOjB1VCmPM4GAP5vKMKHiWKUKOYLvBWlDT2RNgMmb7lHiQBMTGVwFVPjAEoANcF0UqceVwyWpeOagrSJbZEI107SzpezN3MjbpE1Eyilon8Se7iPl+mNY1dc5msGdEwiLocVttMmNqgv6VB2ehtBIuFLLHLFWIRBA+pYRGB2HiM+HQtmgmT1QM00yk2xEw+A6UbUDmXf5gzMcrMt8vkHBTuH+o30e4zIaKZYMyV2O1kXMwtyySrTchgsnldZ5k4pPPu9OjR43bCWG5+2/E1dvfocbJBouL98dH9WjFcVDo+9Ojf5lX3+n4u/+z92fl/Yeunb0a/ecMp5xu4U5G9GPsfcz7XP73h5Q9/P89f/iLbzPCYs0pBI7eGwF9d9yC2falBDxy4kwZ95+EY+FHbKSGHojH3YNA0437d9dfjRiVr4zV8aOaCyC7aTXtRJQTfzeSmHhGpaV+SMx1kbM7eCQFiDJ3sKWpq5pYa2jE323uoiIeD5S+dxMrkZm55mbZHar0DrWwpZ1hs6lPRmb3nJC+Hmd9O7xuDKxzloKKqKibjGh9CIk1mgjihrByblhYZ+5rVlf1EXzEaDrs9GSDESAg+NRlsmw5mU357H47kM5m7Ihwqn5oFvcisL3bH3OblSXPbp/s4k0+lik5JGpeqgiV5V8fCjqBPm90izfcskQjaT0UmGQcjER9Qk4N3kZwlSZ89K5JIsUn3048n7F09QKjHWFGGgwEqwp69+5n4CVt3LFAUJaEloiJHGPWRMbvqXc2tDQlKe9otmZH51wd5NHr0uCMYSon/0L3u0f0bNn10Mx84/70nehg9etx50IjUnnptgVUtgckd3qUVw3nFIn90/v/h2nt5/uGJF/In1z2Umz90Eef88Tfx135jpou+J0IEu7RE/bB78+/Pdjzvuz7Ji7Z+kvPc4JiyGPOIKJ+ZnsHN/7KLe//b1/HT6W1vdJLhGKpOkfo5AEiqOhW8J+SyoTfffBPbT9uOD6EzJYvMGvB1MheE4JPBUYGmTtWprLNptj7GuQ9qJh5ZBhNCTN3AfSSGVNLWWZuyF0eIYbvu3u0MOIlkmK6qz3oJTswzyF2/CUh9LsQlr4f6JIXJAf9tfbHa8RdlQVFVNOU4NRPMx48x4oBBUYIxrE3HTMcTLMLCaAErwsSHTCoAa7BYRBQnitWI0ZCkNi0xawNUYwi30dSuo0St+Z65gFaE9aHxhhe4u/5tQ7mYhFS093xdnwxp6dnB5GfjwamJIAFk1hZw/pSMSbKwqKAxAInkiIAhXx8fITZMx6us7NvNdG2NYeXYtGWZsiy5+dbdTOspW7buZGFhEescYlwSOh1Uter2YJ6UzsoUH633ojeD9zh+sGL42/v/OX9z5RL/+f/+IBe84LMnekh3Kc79v0PecuYHua2GencVfu7Gb+fy51/IfW++kr6eT4/jCZl6dGyZaEHQ8W3+U360GJmS+5cl9y2u5YXLV/Iv54+47LwXc/83VYQrvnrPIxsiSFliLjiHq39wO0956qd4y/aPcY4rqW4nwWgx1Yb33/rt7Pp0INx8yyl5bY/6l1Y15uA6fVKjxkQqYgrGV1dW8d53M9ltMz2QrvITpLnpkDMTAE3TICI461JlKOjmfWfG3hRgpe1m3b4RckB429+eVm4y31BPTEsiyMcw3bhaosHcdqlaVZbm5GaDR4O2q7NzjrIqcdZhjU0PSdWwfNMQQqBwjtFggCjUk2makTcGK6m5jhOwRCR6HEopYEUxMWI0+SZShiHnQXLfiCP+wswZ6OeD2GMKarXNO7TZnllWI2VfJBurDz3WkY+QTTcmoMaDCa0JJREWIxhrcvIinXfbX8VZizMG4z1M1th/00187d+/wt6bbmH7pmXOO+ssNi0sMV4bc8vNu4kq7Nq1i9HCKGVFbEtO5Q79QLdVtjpTd/cd6QlDjxODQixPX1jji4/7Pa78rUee6OHcJRDnWPrYdt5y5idulyn2zsIN002EL19JuGX3iR5Kj7sZpG5wByx7wx0Ldg8HK4ZFM+DRA8+HLv0Nrvivy9j7XpAaDt/dIYIUJXbzJuwF57L3WQ/hll9V3vn/+21+6bR/5r7FApUUd/gwNwfPR668D0uf+xZan5qNE4/JWqJzQb/GJIFqS86uTaddE702w9DNjGflTJrZV0Ju8CcC3nuSZzc1qEt9NvSQ46aMhk8EQYQQI0JuAngbAVviO3MBNLMgWrvlrfa/LYO7vlxsm90QY4i+XXcDqddhrpuIoShLyrJMRClEfPDQgDURxJHs0qkyRFWWRB9YW1mhGg4pC4dzgoplGpUmNKgXTAy4GLAaMFEwYpPPRfN9kuzMvw2sD3rbDMRtMymFZOoXBWwqnyeCcQVVNWAwHDFuDI1nlslQuqvW9gE50hFUQqLEbeUwFFE7lykRRGwqBtB+3oJn6hvCZIpf2U9YXWG8tsaiMezatYMzdu3COsOte/ewsv8Ai4tLbN6xC1tWRFugKikn08nu7hDTYH4XB39cj3bPG5HBHj3uCCopYNljlpaIp6D292hhl5e54X+dwd9e8B5OlkwGwF+ujrj+O+++173HCYQq1A3lXuH6ZjMN37zTDmXFcEGxyCcufhNPWHoJZ//y/e+2HcWlKDGbN+HvfQZ7Lhxx64OUcx58Pa84+4+5ZHQdy2aAPQ4EA6DRwGemZ7DpEwPit246JbMZcAxEI5mQI1E1V4VSmtQpD4C6rokxYq1NvR9E0JhmtVt5fprMTdWD2h4TIaQO40VREELsyolK3CCY0la7L9nUnGaGU0Weg03LdBGcxtwd3Fli0OTrYG7GPvsbNOSqWHnGud3FLAuSjiVd8Dl/gfIJpii6I0dRY/aRJAlRWRSpoWE9oa4hhoCJFiuKM0IIKdtTWAcYpuMJGgKjpUUGoyHGFTCZUocmzeZrTWEiTlr5VMrWmG7GrpWFHaEfg87IUmdtYD35SMG9dnvUfDvIPTzEzl0QSQ3whsMho4URzUqDBEX1yKTicAG9Zh9NSly19ztdJ0Mrm2s9IkpsGtbGK6ysHKBZXUHGa8h0yvLSIhecfwHbtm9nbbLG7t27ObC6gi0KTtt1GkubtyXlXs7IhQjpMkp3P+ebRh4dtLUZzchGm3CivQ+m89y0n53uC0P70erJRY87B1c/6Q84/3Uv5fy/qCk++SXi5I5ruU8m2F07ueL1Z3P1d5yYPhk9epwo6HRKuQ+um26h0XjbG9xBnO4W+fgjfp/Lfv372fv6BzP8xy8RV1fv9OPeFZCixO7aweqDzuCbFzue84RP8JRNl3OOW2OrKanEYeX4FpiYasP7dl/Erk/tI56C3owWR000rLUpvmtiLoQjTCZTYoi5m3JDjDH1iyAH5bnvRausN2Zm+vbZp9F2GB8MBgTvsVZmft+s628lVS3ECOqTdCo1/iM3BJR1MWcbTPsQkiypKAhNjclSK9FEOmI2p3vvKcrUNM/a1CXa2DTG9LdNxEEk7yOVKu0yJlnK0/oUxKTGhhiTJWPp+oxGIw6sTZIcTYW6niJ4SpQCxTiLSJL+SFEyno45EAOucKnzurUQI40qhUQqC5WV7CMRrEm3NYaYy7oaVAzG5GWZSBlrsp/itqCtPzudr7bcTjtPjRWTiknJ7PzL9lzHq4j4WTZD5mRnmrq2d13QDzosbcUnnbk6OmldHpNoypL5psE3NZPxAQ4c2M94bQXxNZvLkp27tnHarl1s27pMCDXjtbXcld2yvLDIaGEx3V8xhBhQmwhAIhnpONqRzGPLLGhsWUYmagdnNObkhuqzN8jajqSvyyTqfLWuHj2OD65+9lvh2fDA3/lxhjcptobNf3jq9tq49bLvQrN6Y/cjPNc86eTrk/E9//ZMvrV7Exdwz/LI9LgLUTdU+yJfX93CmipB450uG9xiR7z7gr/iZ1/73XzyzQ9nx/uvIu6+FQ3h0Bn5ucnOOw0i7YxhPlY8puOJc9gd21l9yNlc9zjHpRf/C3+w48Pcy7Vd1heP/5gzbg6ej332ftz/a185ZbMZcExm8Jkpuz3fEAKT6aR7zzcN1toUpLOBRCRnD1rPQltiNoSIc21X7HwM6ILR2XKTMgBiSGWGUhnbVi7TdlZuo+L5AqSt9MnnD5m1uRRqmG3XeTTaILoNLGk7jOtcgKmzWerZUDdGtkmICNY5irLAuSJ5KvLG0Ud83aACRXQ4QKyhdA6omPgJe2+9BYOyZft2BtVWVtbGWA3QTJHQYIzFicvNENssjCW2KYrbjfacZTYrnyfc2/OalV5NpNBkT0aSxJn5XeXb096p2V06JGzPUitrDIqkjJMITgrEGDRAaDyxaZhMxqwd2M/a+ACTyQrB15SFYfPyiHN27uSMbdtYWlwiqLK6skYTGjAgxjEYjiirAaElS3kkMeYywSZJs27/tYND+3CsP88ePU4GfPFlbwHgBr/CJTt+htN//Z9O8IiODtMnfwfXP2b2z9nlP/QmRubkbmy1+B+u44Lp1Sd6GD3uxlDvGewJfGP/Fg5ES7TKXeGeGJmSXzntE/zeT9/Mbz/o+9j6+QvYfPWE8trd6OoYqUp0WKGjCmkCsm8FXV0ljifJh3A8gmoRTFVhzjiN5vTN6TghYiYevnUzcd/+w/cAkWTutlu3sPLwe3HdYyyPeNQV/PoZH+D+BYzMnUcuWjQa+N/7H8I5/0cJ+1fu9OPdmThmomGyebnNAKyurhI1zfhPpzVFlgbV7ex2bEuTSkcgQkgVlDA2ZwsCZVnOZmzbIHYusNcsCfIhIM7lmfOYDLum9SF0zCQ/M8uoZP9IzJWbnEsVpCK+m01v/R+dERy6Hhkhxi5Abn0nnev5Nq8dne/DimBb43sTUElmbzUGQiTWAa+KUUVsxFlD4SzYkmk9Zc/um9EY2LZ9J9u3bGJtPMFppLSp3wgas50heRhilo3dRuGpI0Jk7lQzoZjVT5LOjN/K0WaG/nSdzZx0rE0PtPIgyWxtHZHpLtzs2WgiTYKFkEhtUzc0dc14dZW1lQOMV/dRN2OMCSyMSnZsX+L0nTs4e+cuFquKkDo3YgvBFAYJFmcsblAhzhJ8Ir/JXJ4I2jzxuGOYyaDms229JKrHyYjT3SIveNEH+Ydfv3NMpHcUV73rIRg7q9H0nPt9itft/PzcGic3yejR466AhkC5t+Hrty6yOw6JNHCXUI1ENn5i81U87Qd+jb+/9L585NYL+fxNp7O2ug1XBEaDmoVqylpdsGf36bgbS5avhh3/uh9z1TdTcL1R9kEk9cVyKXydz/B3/55ai5xzJjc9ahu7H9Vw7tk3UwdL7R1r0wL/5Qs57VOBxc/fQLzl1nSMXLRIFhcI9z6TGx+2yN6LGp704M/zph0f4b6F3KWTF7eEMW/78MXc71NXEuKpXY/umIgGMPMdIHjvWVlZwQ0HmWhMO6IBh4ZnIinwjTF5PUwuIxtCoKzaWeow06bPbSfZUB28pywHXUDr8ox5nFt33sshSPYGZJlVJj6uKNLMP214myQ8YgwSw4yztJWp2g9hl/WIaeaemeT+cBy8DS6zLSUdh1RGF20N6BGvmvt6FHhVbFQsJSE2iIPRcMBkPOZb132Tydoap51xBoPBkM3LS9jCsTqZEnMGQKyl8akk8EbZpWODHEoE5jIas7K2XTg9I6YmVeqabSddpgjm+nUc9si5O7xYNMB0OmGyMmV1ZY211TXqaY2vJwQ/xYhnYejYvHmZ7Ts2sWvnFrZv3cyoKNHGgxWKwmGiJ46VYlAxWFymKAfUQWliRKxDxHafHdt5b+7Q1WO+/8chGY0ePU5CvGDTZ/niJ5/Mv/7lt3HWL5/YzMYN//lRXPTsL3Sv33+vPzipKkcdK77j//kxttafOtHD6HF3RwjYAxPkls1c32whlDfepRn0QiwXFItcsOl6Llv+BtNzGppW4k3yWDYEDsTAjaHk8sm9+PMbH8KXP3N/zvzHyOK/70FWxuhkCt4jy4vUZ29jz/2HrJwN4gXTgMT00Dzn3CwoO77jRl58r7/kiQtfYXv2DgeSVPyKhyzwvksfyl9d+W0U/3Y2xoNp0mPvAzwPe9DVXLbzX3nk4Buc4Soqqe66i0Zq0veBtfO54E9rwp59d+mx7wwcPdGImWiYFFmqQvSe8XjMwqAiZJ9GNVhMnbWzNKqrLsRMJ5dIS3LaRk3ehaIoOvKwrrtFm0UwgiFlNKr2H5js30gGc7MumFtvCFdUk9E7aspMOGu7HhjpeY5EMBc4z71eJ52ac/geiWQAWGNR65AQ0qy/ST1DxAjOOVSgCTVBIwYLzqIRggaiCdgiXafoA85arBFuvulbrKyucMbZZ7NlyzbKqqIaj5nUniApu2FEsSaxgfkwd+MH+X7NC5l09r6Q9tNpp0xeN92LmEv+WpszGjHpQZFcRljMnE1h/nMxRygP+gVsX03HDZPJKuO1NVZXxkzWpkwnU+pJTWhqSmcYlIblxSGnn7aV00/fxtYti4wWSgorTCerhCagYml85MC4JsSALQfYwhEkkQzFpKyJSM58pZmTeX/Fbd/t+dHPZ9haeR7rMxqH/OqfujrMHncvnOUW+cNzPsq/v/Rv+MH9/4Wdb96YbHzrpx7Fz/z4H9+pY7mo+nUeWA7nlpy6JANg5z9chz+FNdc9Tg1oVOzKhGqP4fpmCw3Xn7CxFGKzp+FQbDJwloOLyut51tI1fPUcy19+70P40A0Xsnv/FqZ7BkhtWDjrAN97ry/wqKUrObe4hUYtjTpqtcS534SRmfKAYpVNZkAhh8qctpnIw3d9ipdt/yhfefg26ryfRi0PqG7gfJcam9oNtr0r4Am85arHsv2LXz/lsxlwLEQDg6Cd4RdJ2YjG18QQUjnQ6LB2gEiF4ubogoFocpUgQUXxoaawKeAMGhguDPAhpKC8bdxHMg5HDUQCxgoQkuFaDFEEbAHWEa1L0iFScKuS9PWpBKrmM0hnIWJQsURNJumgIDiMSVIZYyySu0gbyUb4tGdcYWkmU6zMMiHdNVLNjawVUbBIKv0a06U2mXYbcYi1yYgdPM4YKhEaBQmKeI/i8ALiG0aDEWKUyWSCs47BcIm6Vvbeuh9rb8KZguXNm1geDXF2zHQ6pdGA4CmspY4FAUuNQYlETYTC2gLEoqkwLAaL5s7nqU1Iul5GCpSISiRxMkcQ8KJEyV3eRcEqQS2hNfCrwTqHMQWi9YycAZLvDa2vJrakpu2+LoTGU9eeAwfW2LfvACv791FPJ1kephA8hobKFWxeGrFr5ybOPG0r27cuszAqMUah8VQRfEifs337V8CULAwWsIMFgi2ZBpKPxVjAZJN7+rxIm61pyVaXx5qnSOmM1nlNWvXe3IsZrZD5zbqXKdcW5+jfrNllyuy0++sDlB53He5bLPCR//brPPmmV7D05/8KpEpOb/vk/wZgyXySTWZ4pF0cB9zZ+79r0GjgiT/6Uqpr/+VED6XHPQV1g1uDW5rFu6Ty1B2BFcMmGXJRGblw27/yn7b8M43CRBOJ2Gwim0xJITZNygLgAU886N/FI3XitmIYScm9xHGWW1v3nqE84dnSRgO7v7KNbSvfOKHjOF44+vK2UmCMEn2TEhMaQZQYm9y4T4jRYMwQa4eIKYnqEUkfB1UDIQXuUZSmmWIrC9YQRRkuLtJEcFVJ21naGEmdnmNAxYNxuVJTDsdsiS0HmHIIzZQYFFWPEUUN2cMBYiISI8Y4rBispOpCqoKYouvPYY1L5XtNIgUGsnE8GZxDDLjSMV7L/TysQExeERFNHKct96rJe5GqcgmqLs30m4ApSsQ5pk2Dn3hGVUnp0tiCRmITCapoWSAoa7XHWIexA8g+E+sGWBvZu2cfdT1l547tbNm2haGDohTqJtLEGnElEx1QM0QCGCkQLE0D1lWU5RBjSqI6QrS57wZorjIWiSAW1CIaiWKIRLwU1KYgqscaSUE9SWIWCVRFBW6IcSPENESts9wyJPIFdGYOESSTAY2B4APTScPqgVVWVsasrU2YTqY0TQ0xYI0H46kKWBgUbN2ywGk7t3HW6TvZvLxMVVqsKuIVvBLGNf7AGtiSes8KOlxkWC4iUoC6RKpyuiGqYAAr6ZmoRImJ1MIcVZgxhG6JtM8tuZ35WFqTjChgtE3spApckvqQqLRZM8VKEvVpbsJoTFu2OOWDevS4K7HJDPnEm94Gb5pfemJm+05lfNdrXsa2/3PqVvPqcYpBI3iPW1X2+tFRVJg8OWDFsCgDhhIPWX7YbW7ncU7G1oIHomf5q+bwZvVTDMdANEwK4MWkeXFVYiYBIaagyIfUudsVZcoKBJ8zCmBMQUhe5bStzgebgnMVo9FSIhUaOhmTIohJ2zeA9yGVsnUlw9ECS0tLjBaWqNdWEBOQqBiTGq0hbWLEdE3zWljnsM4l74WkUrmdmCcZKIgxJAlNjEQ0E5n1cipp5VTGYLOfqO3+LK1h3Riwlth2Ti8dxll8jMlz4iyFTY321CTiFXJJXVGFEHKiRjCmfU5EYDwep1Kt0xofAqft2s6gHGBFcEaYNpHoI3VsCCEFvdPVmmmzymS1xtqSuonUzVoy3FuDcyXWWUAJPnQz+2g6Pir4Rmgam8tOaUc8U9M+Q+Mtt+xpwO5h/4pnPJV8PQMaPFEbYvDp8xM8oUmPetpQTxomazWTSc102kBMfVo0NgyHjmpQMigKlhZKtm9dZNfOLezYuomtm5cZFkUK8oNP980H6vEazXiNcbPCdDwhqrC4bQcYQ+MDUU1OFeRytghtG5ekGGsbO7YZmDYfM5+ZmJOYZSowq4I2n++YIwlHdOnPSQ579OhxyuOjE6j2niqhXo+7C7RpKFbhpskik1NMrneiMwsnCjeGgk3XNsmzfDfAMfTRcFiTpR2hlZOkEqAxBBBDU3usMQwHQwpXouqxuayntQ5R00lyUEMMKbqPahgOF9m0aRsH9u1BVDBWsLmsqLGCLYTok87e2ZJyOGL7tl1s37aNtQMHWLl1dxf0G4nQ9tQQ8Gq6ZoJp3EpZFBTOoSEgkrMnOjtXYxva2WkFQkiSLGsd1hZYMxMcaVSMaU3puZs00DYWjChqFE/ACBRVSbkwwg1KggbqGBDfUJQFxtrkYMieDMTTBFAaRIRirjzuYDDE+8DaeJXdt+yhaQJrqxMWFkcsLIwYDIYcOLCH627ewy17a/avjFOZXhFCTNW9ogLZ5yLGINbNVfJKvgu85GyNwdrktfC+IUSfys3anAUhVdYCsEYorl+jLHcTMDSRnK2oiaEh+poQGog+PUIghkhoArEJaEiG/lS+2GJNZDAcsLQ0oCoEZwPLSyN27tjOaTu3sWlpyKgqMKoEX9NMp9STKc04G8k00NQTIDUeLAqHF8GHhiCOKEX2kbQ+nZyhyWRXaZtPtj6W9cSCfL917nk+/6FZZtea4FvM1d6aW5YJNrmMc497JIY3TnjdLffj/9l+xYkeSo/jgBf/7x/jvPf22YwedyFU0cmUhRtqvnTjaXzrrIoz7Z3fS6PHHcOnxuczuH7tbtMz65iIhjHkqkgpUDIhAqbLdjRNg3MFo9ECZVnhwxQn5Nl4S+FKkl8jIOJALUYcg3KRLZt2cNquM5msTohxinMRZwRLlpagKdCTAucqysEimzZtZefO09l7y618w14NuS+FFSW2FadICQFVErHI1ZCKsqIoSkLTYG2BMalCkyKUZUHdJNLU9oHwPmCM4IqCsixIfbuTVyCEmK5BLtfrMXMZjTx25zBZCmVVGSyOGC4vsRo80+kUHyMDA0XSyORsjBKbCNbn6k1mru+IoygHVIPA6nhC09SsrE6ZTG+hKBzbtm1nx44dNFPL+EDDyp4D7N69l/3796MiDBcWsEXB2mRKUMUWBcalyl8hG7mTPdoSpoA3OFtQFKm0sPcNIQSMNVRVlUhcW0oYcvf1MT6sJNmR5P4pYUY0CA2opzCk+9xKzjT13yisw1jFGk9VOhYXKwaVRfBUpWXL5mV27dzJ5k0LDAqT7rv3RB8IjaeZTpiO15BpgzYeESgLhwyqlJVov8Q5A6W0JoiUVZq3q6cMh8ncIhnhzZwLSSRlOZL8yaAChlTVzKwjHJqzZ7mjucwTF7rx3FYlsx53f8g/fY4//sOL+X/+c080evTocfug0ymDa/egnz+Nf7zf/fi24suMpC//fLKi0cAfff2RbLplH3cP4dQxSaeStEeM60QjzkSidXk2P0mLnCsZDkeUZYnWDtv2h1ByV3BH04BGgzUlw+EiW7ZsZ+u2XZy260y+df2NTEPEZo9Em0WJpJ4Zxg1wtsQYh3MVg2qB0XARYxyYIvVbkNzxW8EYRbIMyTqbDLcKhSuwLpEIMTKX0UiVoKxtl5uOMAiCsTZlNFQ7opG7/uVsRyDEPBstbddyxVhDUZVYjRAD1cKIhc2bqCdj1pqaECPaNDQRrCvAtsZsgdxU0OZrnbT7qXSstY7CFcQAk3FDU0+w1lFPhJtv3M9k6jkwrilsyZblzdRrDVNfU5oSsMQwwftAE0BMALFESeXVooJGT5iCiY6iMAQsqFLXgcY3IIKrYy4XnAJwkZSBEhFqnwoGKCH5bTRJp4geiR5RT0PEECkEBmXBcDRkYVhRFUXOakVUG3yzSjQlO3ds5ayzdnHajm0sDCtC3TCeegwRDcmj44xhOKiwMVI3nnHTUA0XEQx2cYHGe+ogqHGpsADSWt+z5MnkDBnd+7NKN+YQx3eiCiYTrfY5eSo6PrPuC5X+12YvNBMc7f5LFb5UpCcbPXqc4njZdY/knL+ZnOhh9LgHQkOAW/aw/fM7+NNHPoTnLX/upG9meU/Gvjjhxs/tYvnAl070UI4bjppopO7OMQe6aabbuYJGJfsW0qx/WVaMRgsURYV3BRIbnHMEddl3YbCmIGIQHAsLy2xa3sZwsMyOHWcwGHyFMJlgJaSgnIA1KVugQXBlReFKXM6OGOsoqwFlURE0YDRV64mQTNxRAd95PkzbXdyaVCrWWhAl2yhIQTxdd3M0l6eNNY0PlK5kisFY8rFyp83c68HaZC4SDJKvTYgxeytyqGoNxXBAtTBCncVrMpFLiixzQ0RNRvZcIUq19avYJG2ySfdknGUwHBHimMlkjUntqcqCySQwHo9ZWVmjDspocZnBoGJ5eYl9+1dyZS2HM47ochbDK5GQqn4lCkXMnhpozcoQiDTRU/sGY1N/i8iso7sRg1GPGIMPgWldEzXgjMEixBDREFJTwhgJEimsMCgLlhdGLC2OGFYOK6kYgPdTVGuqwrJ16yJnn3UaZ515GgvDKkmwpoEYGnw9QUNDWRicEWJInphqMEQj2GqIGIcdDpmoUsdIsMkXo/kGRTG5ulM2cEu+t8Z0mYtZBoRs2zCzLISY7hly75R5A3dbsS2TltTwMGexMCCJ4CWWwSGp077J3z0LZ7/vW3zH457Dpx/6v0/0UHrcDnx0Aj/7317K4tfHmE9+9kQPp8c9EarEtTWWrtjD1f+yg69euMzp1vfyqZMUX6iX2PZ5Ja6OT/RQjhuOmmigSfpijUmmYLFYB3UTCTEiUqDAaDRiaWmJqhpQrznU19gytWaJuTu2cw5Pym5U5ZCiGGCtZcvmrVRlxcQVST4jIXkocpdrEcG5grIscVVFmjE2DKoBg8GQWutcKSjgY0g9EAwYH2i7i1trCTGkbIBzOOeIGhBRyrLMY1SsdcQQiKo4V4BMCE1gtDDiANmroKRqVkUqixqiZAIy0+i3JMw6g6hHguYGdBBQJnVDNDAajHBiMWII2atgAqmkr0ulYqPOqiL5EJI3BhCbzqWoSpoAjQ8wbohqUSxNM2H/gf1sMptZXBhSN026ntkHYo1Bs/QnER3yDHsKhI2JaPRENYRM46LWRBqcSxWnVH061+yrEQzENMdfukgMUFWWwlhCrfgmpoY9anBGWR4ULC0OWRpWOCsQappQJ7LgAoMKtmxZ4qyzdrFz52bKwuDrKdFPsaIYa1OwnxsB+bqmnk4QhUFRMVwqqKPBugGxrTrWZjJStYEkYcq/vR0plLYccpbitZWlOjFU8m7MB//zzQ3n7B6dVKrt99L2LOmkU9LS1pAM6UqXZZv5O+iJxj0I4cqr2fnSM3nGuy7hL+7zgRM9nB7HgJvCKr/ytB9m6Yt9Y74eJxbaeLjhZk7/p0382ZMfxiNO+0QvnzoJsRZrfvYrz2fLv+0l+uZED+e44aiJhg8BQpIvEWMus2myJ8IhtmA0XGBxYRnf1IxGI1b2pMZxUSMhz4wrSdZkXUlRJPNzVAVbUFaD1MBOlRA9iM9+DkXFghjKqmQwHIJ1uaKTZHO0o5HW3RzpzLw5yAshoJnktMF/26lcNYJJs8epa3kqjasx9zEQSG6RVg6VFfR53ynboGn2PypR29nwGdFw1hJDmFWsypWsxBoWFpdZGo5oxlMma2OaukGjYE2BcYJUgnOAWMQaokbqpkkdw3NE7ApLOSjxAdbWaprJBGtLqsGA2jdMmpq6njAcLTBaGNL4wKSu8d5jyhIjQmEcNpOjoKT7pgoSUQn4OMXkpnxlmcr+VpWgGgi+yaVYBYvBaZIXBYTSWlSUoXMsLJQQDNOxQGiwREonLA1LFhcqKivEUBO0pjABW4BxsLg85MwztnHari2MhiUaG3zdIDERrsIKhStSmVgN1NOaejKlcA5Km3YSDbiKRi1eDGpSVi5Yl5o5km5rW9rWtp4NkWwUl8570SY7EEF0jnZIykKlP1tiwCz7ATMvSC6BGzWXK0PzGGRWda2fdbrHw3/zOvaOzz/Rw+hxDGg08KKHfz/hxq+c6KH06AExEFdWGX3xBv7q8gfz00/6MPfq5VMnHf6lLhl/YCdbrvn8LHi9G+CoiUZMkSdRYmr1LjMTrFhhMBiyuLTE0tIS1sDS0hK7berWqFEJoUbFoWqQaFM352GFNRbvk7SpLFwmAlkuIwFRTzLnmmwEN5SVo4mK9w0Qcc6g6plO14h+ihHFx1QJKyDU09S7IkbFOteVWQ0hMJmOcx8Nspk7NauLSiJJMZ2skMiH9w1N02A0QmgQDbSGYcXQBKWJQjFURJKIynvPdFLjmwkSApW1FEBVVmzbvp0wnhKmNWsra6wdWCWGiDMFYg1GLVEiU2m6ZnpichPDqEAAIkVlsMUwydKisnJggp9GymrAcHEIU0vta6gFsUla5NQwHFa5eSHZhO6IMVXZajzEmCROIQa8NlgHhSsphwWFNYwGFc4Yaj9mMl4l+Dr1HjGSA/XkxwkhMjSGTdUQg2UclXrqEY0sDQaMSkuhiVg6CZRlpCgMRWGwpWPb9k2ccfp2tm1dwihM1qapp4tG1DcYTRmmpq6JzZTY1AyriqWlZYI6xg1oWSHlIPVJUYu1JVIMMLZIny8jWHJjPNVc7FbA2FzWOZm8LSbJyDLflGzylpwRMWpQk6Rw2mUfWmaSiauZkY/EjbMvIzHT1K1ectWpuSpmPXr0OPnxjO/8D4Qbv3mih9GjRwf1DXH3rez68Fl87NHn8JzFmw7bqbvHXY+pNvy3f/9BTv+nA8SVlRM9nOOKY/Bo2JlWPxte2x4Z1ljKoqQqK4qyZNEss7CwiDUOb4SoASXJlYJPGYeyLBgOBxhraOoaiLjC4QqLSOqYHcQjNCTtuqPRSIypE3XUiPdZWmNSr40QPL6usTYRjSSNSZWaDClz4azFN54YEtFo6pQZSNmRRDSShCXJZVKfDduV8vVNYFo3qPeoTw3kTBcUOnzQrpyuyZ3FNQQ8nmYyRX2DWodmo/nm5U2shn3cumc/a6trTMYTRCX10pCIbQLaOIK3TBrPYOCoBhZXpKZwIQRS8JoM7eWgYDEsEIOwtjal8TVuUFItlEynNWqV4bBKpujC46OmRnkqpMZ8kpvTKSEqNrQ9U5KOR2IKwAtjGVUlm5cWWBhW+GbA6gHDZLyKaKAobNeE0BpDjMm/U5ZKbDyuVChLLFAVqZIUvgYTcKWhKi1FaXCFsLR5kZ27trB5eYhzip96QmgIoUEiVK6gMMJ0dZWVA/vQUFM4y/LSAps2b2ZlCuPVgHElWg1xtsRhiOKIrkyGcJPkT8kpEck9wpPBWywqSb7XBv3aZizmpFFdhiMTjkQ02nK1bZWp9B0SgSg5i9b2ldGYP3+u20/yGM3QezR69Di58Z4DW9C6PtHD6NFjPVSJkylbP30zr//yk7j4ob/P6a5vunmy4Mt15NZ/Oo1NX/lCUpLcjXCMZnCT6+LM6dGzdtw5lys9CdaVlOWwq5KUOmcnv0GIihgoCkdVlVhrUkZDFeccZZmaxYnNAVvMOncRgvd477uZ4RhT0/mU5Shz/4e2g3JbrtRgcknb1LRPCDFlIVK/DNsKVjB5Bjnd4xx8M9dLIU9itz1EYF6PL50gX3MvibaPRquv71wPrborzo8hx6u5iJX3DU30FFW6XlpYrJjkVzE2n6dirKPxDfW0JvgaMY5qWLDZLmFdwep4kjIRpaWyJVU1YDAaJAO3GIqxRTVk+Vc2H+fKWLmVdzpvFcCmbEcTCQQooTCOylpMsARrcYXDGsegKhiUDmOEpcURZVlgjMXXntUDqywUJWVRQoxMp2M0NlinFKVjNCwYDUsGg4KisgwWBlSlo64nxBiQkDMyZYmGiFHw05r9+/ZzYN8eDJGFUYWvh8QQqUbLVEYZB0WNRXP1M4MFI6hJmQeRTiCHJZXcFZQoms3u8/c83ayObHTeDWbJC9NWoMr1ySRnK4g5GaJ0O82FA1J1MzojeGsG7/wZs6P0uAfhps/t4qr7r3BB0QcGJyveuvdM/vqmbyf+xHIvmepxciIG9Js3sPC/v53fO+8RvGrbZ1g0gxM9qns8Gg28+aaL2fXphrCyeqKHc9xx9OVtbcwBkO1k60pETMCYQFGASMyVpwYU1QLiKtRZ8E1uuubwxiMGbGGwRare1PgmBffiqKoR1lVYWyYzrgmIFaxYTBO74CtlWHLZW2dxZQHW4JzDSAo+k+7eEtSnPEz0GGuIubqQqypcVWJ8Mp4bIKpNFZgwBJXUzM5YyD0snCtSMI0ihcuz3qSAlWQuTrPSMVUqkuRRMWKwRYEYizMmdfxus0POgrOoNQRjsnRfUIn41jARFJeJk6ohxGQYTlmYhrpp8E1IvozKMRhWiFhcaVmdrGKcUBYV1pVIVKIaKmsZlgX4iI+ajgcEnzuTqxAxSZyVWZD3ksrRRgiFTyYzbyk0XY9ISVkKi6MKZ5SmmbJYWbZu20xUZbI2Zlikz44GZXV1hUGpVGVFWRrK0lKWluGgYDQaMBxVuEFBMSjT8esGqw4nBRLBTwN10zBZOcB4/wFoAtZqLiPc4P2EYnErpSsZjyf4kDq+iwErJBlglishJvszNGc0ANEkk5ulMRA1yTfU+nTm3gNQNYlkdO3FBSM682JkJiEyRxwk9+qQ1sWRWK1oziRJLr7bmtR73KNw/n/9JH/4fY/kF3Z88UQPpccG+I1bz+fPf/6JjP7sn4EbTvRwevQ4LOJ4zNaPfZN3fftjefizrub7hmt9BaoTjK/7MR/67AN5wGevTbL/uxmOvuqU8TnaLDG2SB2/Y020NWWlFIMIeHxQBqaiGmzCVEOYutSfwKe+GSZ5ujFWMSZiLNS+yUGtpRosg6nAVoik2fWk97cULs06B41gDLX31D4g1mGLMlWSGgyIocbFgC1KVBMVCBrR0IAoQQWPYKsB5XBInEIhBtFUgakOEY9j4klleE2qaFR7jysLiqrCxIZCTFe2FoUQASdZMpPOTWyqIWRcQWkENPXeMBpTpGs9ZlBihhXRGRrRlJEp27KxkeA90jhMEyhDamgnmqRsybBusLZMqRAMwTdgoawKqmqRcg189IwGQ1Qtk3GqOqU+YkPAmYgYJSjJ+6KBRgWPI5hkPo8qaPA0QZEYsKo004bxyhou1AycsjQsYaAUNrJpqcJZZTKNjBYcS8sjJpMJqpaFxUXQwHhtDe8DUirDoaVwBmeFwkFVCqOBY2FhiFQOKRwWh3pBvIHGECaBeqVhsrLC6t69NNM1ygJKIwyM4AhMJyvEOCWWVepwTkDwOFEsStAAmm5UivNT5a+ZLEqyXGmWxSJ31QCyV6OtCtA29oskbpI+GEYle7+zPEo0SeokZSpMLt8cJfGTEMDGzgCSalBp23Ej9hmNHj1OMrzlc4/lgj/75xM9jB49bhuqhG/dxLl/uY2fvuDZPPSRv9tLqE4ggkb+auXb2PVxQ7hl94kezp2CoycaVpGQ5EUSUjMzYwzOGMrSUFVJghRjxBhHWQ1xrsx9B8hN/SzO2GyQ1aRjF0MITar2Ywuqaphm3W2BSGroZnJlH2MsrX7JZAmUD57K2SzDKihEUJNMzNaVSaGE0oQsYUJpQkNUcGXJYDBELbjYQGywVtA6oJiUFcn9EWJMM+HGmiTvwlBI6kLeNvsLmo8TSGVereQAkSQHU0E0VewyqoiziHcQAovLS+zfux8OrNF4j8QIIZmqYwxITIVlnTHJ++CU1AQvlRwurANNZWMbH/EmULhIUaTMgPdNCm5j8lk0dcPaZI3pZExRFhRWmPhArOuULZECrBD9rEpSymJp1528nkbWVgNxqjSFsHl5B0sLy9STAwQ/ZXFhkS1bliiHQ4yJFA7cYkVsPHUTWFwoWRhtx9eTZKrXZGx3VihsbtYYG2JITRt9jKgHagN1jV/z1KtTpqsTVAXvhfF4BZYrlhjhvdKsTajqKb4IyXuSrRLGCEkKmMo1a5bAkXutpD4YyQ6OmfUQUdNWkmpldXQSvq7qVFphXUUqaXVxzJRWbQLD5oaRRE2JELrkSCvKQ7osR8qW9bjn4R9/7lF816ZH85Ff/W0qKU70cHoAf7dW8Oqf/xHOv+buU/O+x90f6hvclddTfew+fPqinTzFrvRZjROEsda87/oHs/VfdxP83aUX+HocNdHQLKVRYqo+haImIALOWUajIY1GmiaVXC1ckZrhkYJbI5KrEVlCDs6MgLGp9GwMEecsRVFgjZ0FVUlkg8F0QXfaVrNno2FQVFhrc4nZmIMy8vaZ1MRkILeuINTj7NcwSZYCiGm7Qqcg1KnB5kpUmLScmNZ1zuEAo2EuYBTEWgIRQlpuc4nShBQyGgQrghW6xnAyGLCwMGIwSOV9/aTB+wBBUQfWOEonlIWhKNLMvzER75XgA76paZokn2pqT+MDRgxlURGrimJQEjXSNDUaLT4E6rphPB4TfGC4OMRVBdQN0xCoPSkVEw3aBLxvCDFViLJGKFx6pNsbUFWmdUMMnrJYoJ7A6uoaZeUYjAYsLi7gQ0Ow6Z6vTWvU1wyXRiwtLhN8TT0dU08nED3WCoPSpM7zsaZpPDE6JAbCVJmuNjQrHp0o4tN1HiwuEaJn3KwxbpQ9ByZMojIqF5Ag1HXAh5TNQkz+RM115lY6o3aboZAZQ5iZubPKKpIyHRFN1yrd4pkXp+t5YTrPD0qXHREBckEAa033Oe2qTonMtuvRA6j+z6epgOYNoScaJwm+0Wxj+d19n4wepxhUifv3s/VLU955w3dz8fl/xaL0Xo0TgetD4Novnc79rrv7dAI/GMfQsC8iqdlENkNHhNRXoyoLlpeX2bM/JrM2inM2N/eLXZ+KEALi0j5i8F1mwnuPb2qcTeZwycdLJuVEZjTPMgcf0OARzYbpuoZBqgftfY2GBitJUhSjpqpTubmdhoirbKrko4qGyHQ6ResJThtEPc5ZGh8JAiFIqirlipSJaYlMliz5mMqrJqJhEOuIPqA+gktExph8vjEiGona1iDKgWVMRnlrLc45bDbVq2Y/SlQKZxgMLFVhcaIQfSILzTSTjPTwPuAbT/CBKAYrhlgUJI6U5GPBR8bTmrXxlMlkijihcI7BoMI4l8rzhmnKtHiLaIPGdB8MUDpLNXAMnFDaiHWwbesyTgLD0ZDBsML7AdN6jf0rB1CJLC6NEIlUhaUoHYZAbRW0oZnCcFhSugFNocSQOnOXhcXY3FlCFSMO6wwxKD4EVser+HHEqcMorI6VyXjCpIlM/Br7J2M2x02cvr1AgjCeNoSYhUcCraOmLTGbeIaAia0FvK3f3GVBuupSbXfvNgnSGcLbLIdkOV3rwJgnH4l0i2klhJIaJqrk71aca8xHR7Z79Gjxg495Ln/5sT/rZyB79Ohxu6GNZ3j1bi7/t/P5xr0i9+/batzlCBr5zOQsdn0K4traiR7OnYajJxpdNabcRCNX3LE2NczbumUzK+P9ucEeqVStsxiTgjsNAR8jTsoUsPuAoFhjaGpPCJ6yKHHWYERT1SPaCkiaiEb2H4TgMTEQaqWZTkFHGIHoPYQGYyU33IOgAY2JVBBjbpwX23YGmYR4NDRIbEAdPkSCCD4IuIADCmtzP5DUgyMGj3qPaQNSwBWp/4QPycPQVr8iRtQHouZsS0zdL1Q9ZAIUYztznnX8GpNR3ArOGZwBiR7fTIhRUinffC0iSa7mXDsznh7GWqxLXcMrY5BamU7G7D+wwtraBAUWqhFlVVINKkyIrE1rZHWCRo90QXkmlQZcIVSFoyqF0gSsBLZu28LmxSHbtiyysFBhTOTAgf3s3bsP7wOLC7tZWhqwY8d2BlXJwqBkvLrC3j23sHdtH6pLlM4m74o16XytpAyWSY311DmcLamcgRqmq1PGqwdYHY9pxjXT8TRJ8AhYpywWI8xgiWiHTILSEIlt5kHz56vzagtdKTDV1MMCQQjJo4FFZO7StnF/a6NILCIvlO7v9i+b3+/6xZs5omEEY4UYM/HMwikx9Pyix4bwV3+Npz3hB/mDD7yj11b36NHj9iEG9JZb2fzF0/mHiy/k3sXX+r4adzE8gT+7+aFs+debc6uCuyeOekosBbWB0HhC0+DzI4ZEGJaWlhgMqpz5EAqbMhppoleJoUmPGNDczTlp5XPWI6ash3U2l9Kl82OgmraJgeA9MfpkaMrSKSFm/0HMQqvc0TvGRFRy8dhUOlSSpl7bkrNJk2/EYI1NlX2yrMao5Eo/WbOfCUsIIWUNQsy7n5XPJaYshEadKXFyBoXu/eRlaR+pV0LKevgQaDQm8zpgrM2Bb0gSo8mYydoa08kk9wCJiLhUDcsVWFdiXYEY00W6Yk0yyztL7QMrq6uMJ1OcsyyORgyqMmWgrACREGpCU6PBpyBZQzLSx5AqMjnBOaFwhrJ0lKVjedMSy5s3MRotYF1F45X9+6esrDYcWFlDgcGgoiyK1JixSJWzpvWU1bVV1tZWaZoml9dt5Usxe4Gku5eFK1hcHDEaDYmqHFg9wIHxKiuTMWtNTaMggxGbd53B1tPPwgxHeJVs3873UaTrHd82nuzMFSK5DG2c4wyt2RtmJKIzY8z4QCeRarN+M+TiwXSVxmaWkPzIHqI8hq7q7QZso++j0SN8+Uqe92OvPNHD6NGjxymMOJ2y8K3IZ/afw1SbEz2cexxuDFMu/+h90eu+NSsqczfEUWc0puMJzgyomwk0JONu0+AGJaHxVKVj2+bNTKYTEGVQFYgG6skYbWr8NMlfwjig1uD9kBgDhbNY8dTTCQtLy5SuQFRp6hqNEwzTVHkpWLx6gkv+DueESVMzmayhMWKMsLJ/P0tDx2TaZLkQXdO+EIUyB/mFtTRNw6Cw1NMpYTLGao2JnmANa00gSEGtloGrqCD5ECaT1Oiv9kzXViksREkVgRRoGg9YQhNp6prBKJEN3/jkt8iZipgbwiXjSMRkaVUTfMqYtEGqATVgXJ71Vk9ssllYBFsUDAcDyqoiamQymeLjFKwSY4NXJZpUCckYi5IC+7rxhBAxxuReH5EYPL5pUgf3GHKsb/OMvOAhmc6dxaL4psE5WFhawrpUlatpUgPE1XGND4IYx9ralAMHxpxxRu7/4RyxqambBhBEDNNpjaWkcKmfSOMDIYI0EKXBDQ1qDE2YYAubGkSWDusk+TKmE6Z1Q9DIUrnIpu3b2LxzB240IhqLcSWFKzPZSGVpjQiQS6DlDJ3mwgXJQ5F7oayTuAnEZNzW7LdJsiudyazy88zekZs/0lKUlvQCMTVHDCF0diKZ9/VILmvbNhM0picZPXr06NHj+CAEhjdO+LdbzmDtzECfH71r8ZG1cznn/WPieHKih3Kn4qiJRgwpk6CeVCZUPUhNPVWaeoIRyRkNzabvtiO0R6PPCihNFYSsoaynRN/grKFwjno6TdvZ1KMgRk/0Dao1SsSqS9tL6v6tmsq+jsdr1PUUNKRu0V4IvslGXXJBUANqiSFkM7ZBQ0CchZgyIwRP1AaNBt8EoklVpLz3qaO4MdRKl5FI20SCpMxJIgYWsQXBKy43kjNZl588Ip4YG4gxm8EjJiYZj48RVxQUZYkZT6E0DIqKhYUhrnAzSVVUEENZFIxGSywsLlJUFY0PRFbxasiiJ9QIXoWg5O7pBmstxlrwbVYHVCN1M2U6neCbBmuSFyNEoWnSWAvjKKzLTRgNyfPuqZsp4/GUAyurNHVNaBp237KHPXtW2b9/gjGKc3Cvc09nMFykGqR+FpNpoAlg3YCiMNiyAGPxMSQJHIqxiYh4nYIJoIYgHg2G6WSMaiBqoG5qJnVECihHJYPFEVIVBCuYIpEgzf4HzSF/kuKRg/mU7TBZumTUZPN3ljFpLnfbEgZNGbdWDNXaMSRK1zFcu3dMt0LiHbOKUSlZl8eVPRpJ05dqpbFuzZ5g9OjRo0eP4wcNAXfLCrfcsJWbv82ws1dO3WVYizW/8oXv49wvXpubSN99cdREw1qDbbUeRlJFohykhuAhRqqyZNokX4VzhqoqshE64EyJqmAMqDVdszJnUiWlpqkRIwyrkqoscNbioyBRclO1WTWp6BuMgsbAZG0N3zTZ32HT/jvpSa4oFFMWJIaQGrIZg4aYPQgpwIsakZAkWMkTQmcYl5hK+baBYWvv1aidWTmHryiRGNoypJKrWUmSS2XJlcaQeimkftHJv+JT2lJEECOUtmAwGmILl2a8JSazuEl9QYytsK5CXEVQi48KpsAUFU4MUnrECMY5vEpu8iG4qmQwrCD7IUw2njd1yg6FUOOswZoCHyzTOmDFQmEpnMN1REOIPjJem7B/335ElWFZ0TQ1e/assHfvmNU1T1laVArEDvDR4ldr9u4fs7JW00SDM5ZyMGAwHFBYQwg1NRO8Tw0Io3rCao0xBc66FH+rQ0gdx+utyzRNwMcprhIGixVuYAk0NFpT2TJLwpIBvw3fNXm8syfCgISu2pPpZE4AZmbmbru8c3DYL21xqjkTeGsDT9kOzZ8OydkMUUhHCsSs39JW0JWzKjEyN44ePXr06NHjOEIV2b9CeeNOrvPL3K+Y9kUm7iLcEmvKjy4TD1xxoodyp+OoiYZzFhtNDuINSKo7haZKU8nMPWIyCRAizhUMh8OU1SDP7EvqBh6tTVmFzj8hTKYTRCR1iM6kIYYc5Gn2UhgLJnks2upU08mY4BvKosAVyXyuJvX7MEjqMWgy2chyIZN9GgI466hNJjTZs2GNQawlRptL0JquPC+qOGtxzmbZ02z+GmmvT6f6T9vnYNFImvFWI22HhjyuQNM0TKdTGt8gxqTMhrXUTYMrYOgKbFGk6lFB8So0EZgGal8nOVQMND5Sh9QMsLIlpiiIJO8HRhiNRmzesolxVVFk0hBjKkuc5GpK4RxIAU26FtYKRmwqWSwuXwchRJhMavbs2UfwgcXhiBiV1bWG8TTgg6UyA4YLm4kU3HLrfmL0jKcBUwxxakAD4oa4ckhZFgiRsqqZTseM19ao11ZpJjXOBKJxqSu8JC/KsCrZtnUTReFYHU+QwrK8ZRNFZQja0IQppQ5yv/ZskG9VTtn/Ifkm5DuU7ork9dUAMZOC1gWefDZ5YefTaHMb2mreJBEYxeSmfq2nIw1AVBCTCje3O9JDPBpttkN7yVSPHj169Dju0MmE4U3C1fVOHj/8On1S467BFfUWtl5Ro3djE3iLo89o5GA7tsGSJMNrCIr3KUiuFkyqghRzo7jhkMIVqLVtQZ88KaxETYZwSIbw8cpq6jhtk7xH5gyxiGbjuIBN5WpT7wFlMp3ig0+yHjPLlLSkQUmiGGtTNiI1DhSCD6nfR+FwxqXO5xpSE0IEtY6QSZUVs65ZYDtG1YDJQWkKQRPRMB05SoQnGcIjhtQTA8keDRWUgFdlOq2Z1jUA1WBAYQtCDIQQUlnX3KvC+4iKReyAtXHN6u4V9u7fR4iRYlChAnWY4tVjrcFZQ1VaRlVJ5SqMcSwtLzMYjCAqrrSoph4Yqqn5nzEFaiwhaJK2WUFNkk2lEschxdxR8TGwtjaGEGkmDYJhOvEYKRgMBgyHI8SU7Nl7gKbxqVt5WeDKBRCHBo8PwngaEQuDsmI0GFINFxCzj6aO4MDEiDYp6A40xCaAtckbtG0TW1hGitRBXC1ErQnR0oQaFYdqgapk4z2QfQ/p05z9GamDZJdVSnTQYAioZi+HKKiZNfCbLzbVGcpN6gyfrPOpWcxcGSlVMJqKCxjbdiE3qbBAu6sePXr06NHjToZOpoxuinxp7Qya5Wv6ylN3ARoN/PXe72DwtT3c/WnGMRCNopCk6zcmBWGaa//nbuB1M2FgAj7WBGqsNZSDCls6TO0gGqJXgsY02RtSX4mysKgYps0URDGFwxapl4QRgxibS9Xm6WNN0ikhYjTQTFNGw5UWZ0v+P/b+PNiyLb/rAz+/31pr733OuUNO75XeK1WVSlUSAgnEIAmBMcgGhIyAphHGYIcZmnCEI9pThG1wt7ttt7s9EDZuGne38dgdjY2xHG0wYBsb3IABgSWwwBiMJjTU/IbMvPeeYe+9pv7jt/a5N6uk4j25nrIy63wr8r2XN+89d59z9s36fdfvOyARUW8+hEpLMZKWNFSxQCvT7Ju0KCDe2eOXZdi0E+TFXwH2uVWsjfs4oNZ6mwq0fG5jU5XS0oSWZvGCiDV9qyhOoGZHEiNrh5iYS0G6js531Ax5sudSamGcRiMxGlitV6w2Z+wOMx//zGe4utly/+FD7t9/yOp8Q8yR6+011zfXPL25gnRg8MLZas35+h6rYcPar6EWnIMYM8wWu+oA9U2epRXnBO9s4A4VpLYkr3aiX4tS6ZiSEG9mVBxUx2p1ju861puBwyz82KeuEJ7gvTIMnZHNPNMHz8XZhrN14XwS7t8L9N2abqiUVIiHkUOcidNkpnpskxJTRVTxfU8RRX0gBCNHOSccHunAR2tUV11iiNv9UJY2cLsnSzVSafd2kwjaHo0iGWnnPLVJ624dFHeio2jvdyPJhQxiscDocp/U5UGaBFHsz+6wi0WGdcIJJ5xwwgnvJWourN6I/M9XX8b+fZE1p0KN9xr7OvPHf/Cn89HHn3ip06YWvGOicbbx7K4mFLWhDEHwxDSTUuRmd8X7PvCViN8zxT3r9YZuPRD6nsPeg8I+7jnzK7xzBBXKPCPNaD3GiaqCXw8M5xdUDQgd2ooCi0CtYqV38UAoE6tQuLnZkaY9/dARztZcvfUWQxdsg1DshN57xzRb50XJZghOpZARijqLPy1CH3pKyUc/xiJoSSWhTqzMLyYzZ9diMa/HRaPJmQTB9cGmxTZgxhIp4vCqUAolWvmdqtpgrp6knlkduVOy7yEWtHrKHElpxLvCerVis7nED2uqOlx2uFUg74X3fehDfPXXfi3iPTEXHt88hU9+ku0nfhSZK6UcuN5dEVPiImfO1+d43yEKq25DGAJ+e8X+MJoXJAwgkRgzXhxxSvQuoBrx3gzxUyqo92QN5Kx49ay7VesOyXgvpFLY3cB+nrjeXVFKJHjbijiBB/cuOetHgnOcD4HX33efD76e2ayFebpBKfSd4kqgdIFcYZwy83xgtzuQr/b06zNSnRF3wPU94hyrs0DoO0rpSVnQWlimeZFb0gpCzebEcM7Zlqlyu/kwI5G1w9NKG+uSEtXISUuKWlKhBL2NO6ZlSLdI5UpBnODU4dWh3huZbluxWxGXUZuCUGrFiV2G8Zm7RvETTjjhhBNO+MmhpsjwA5/h+/7Kl/N9H15xX8vJp/Eeo9RKmv2XBMmAd0E0us6xa5pxcCYNWpqvpZJzobYoTjvJrU1q41gcC/JMP0ZtnRoF9UpJyTTqqqh3qDpytdNlSwGygUsrVrbWOh2kFlKKrFa9bTHa0Aa3qT5a61H2ZTp4bZsI684AG/gtTOlWD7/0G6hUilhbtHUgNFnXcXa923ZgG5CyGIfbY9T2665/Yzkzd97TdR1hGGDOJsFSzAvSm0fCd4VuGOhWPb7ryNUjLhsp6DwaPN0wICEQpwPiHK7rmEshOFhtVrgCNSuHeSKEgYt+QFXpekcnnlxmCgWRgHOe4At95yFlskREMg4beotmRE3aFZyj6zd0YcCHDi9CyhOHacf2asv1mKmuo6rgXMD1gc57gnd063POzi4gF548fYurJ094681P88qDFau+EJyVM0qtqHpKFWKKHCaL0c1FyDIf07XYz4h3ZBzrzQWsFwnUHanUstk4vmUtNKARxUUid+yyaKRBnnV8N3lfIxoISxP47TtM83a3bZe0x220Yvns9mjtv+8Kp04iqhNO+GLGPbdHf9bXoI9vSB//xPO+nBNOePeolfL2Y1778+/nP/uWb+DnvO8vspbTVuO9Rs1fOv///o6JxuZsw9O3dtSaEbyd+KuZhUu2Yb9WIxc1W8JPFzqc86Zpr8VOjLkd3JbSO997SomU1odh6UbO6jpKaeoUaxdXb6fNuWQzftfKPM+oOkudEjnGwLr2vcrSgdD6DZZ2cBHBh2DeD9Umq7KhdEkJohlxVdWSo+ptr0Gti4RmGVrlSG4WpmrFeUopi8xKmiG9+UgqOOfoh4HVMECdyDFDey077+zxy2zSs1hRZ4xYULqugwpvv/0mn/zkx1mdnxFzZr+7Yb/fMs8Hul4JQ08QR81KTUqqEHPBB0+/WuG0kPJMKhmqB/EEl+37h4wWUE0EX+l7j/OBVV8ZJ2vj7oZK8EIuMzFFYjwwTntijawvzvDDhhgnxmlHpTBsVpxvNpytNlxe3OOjH/owZT7wP/2V7+aNNz/J0D/k3r0H1Hxgu7uyFnbxiPMWi6sdfaekKqRcibkgzjXya8b1zgfbGtyRNn02jpuJ4+9vNxHPfE6pt/Kn5b0TPd4LyyPcfu3tPXH0btTFOwS35u4vnb9sTjjhZcN3nF3zHX/8D/LRP/Xb+Mg/cCIaJ7yYKOPExfd+mj/01382/8ij/44P64lovJfIVDgRjc/F5cU5n5Q3aXOZDeBUUCWmxDRPLQ3Kt0Qnoe8HvLdBPkMzUHNsw44pklJicI6UUiMaSggB573NZs1LIS3RZ9lGlFIQbSbpaULVpC+iSin5jiH8FkvoqPOeVMxDEbxv5l+9I443UrA0fS/koDRTN97D4r2od+rYhOOJeG3dGtoaum8H0NtIXbtI64vo+0C/6klLBG7NOB8IzhPjzDRFYiqU6ukSiOsAx3q1pguBT3/ikxymiYevvsL6bMNuGtltr+ic0q88WRXvPP1qjWRH3Edu9gf6oceHgNNKFzq60FGyUoslNCngpeI7IQTHvQcbHj66YFgFtrsdn/r0m2x3E6qJUifGeWaeJ8bZei4uHtzj4v6rFA08fvI228MVc65ULWiwzc00zwzrFavLc1y/IhVYbc549cteJ8U9tcD2+obdYaaSURfQMNA7cAWmOUNOVBStZrjvQ0/fWXrZkfwt78AineI4/z9TlFdbe56ISaaOy4rPiZot7Z5sW4wqx26S5fssvxazeF3e9x/n/jzhhBNeTPydH/lBPvELvx75rr/6vC/lhBPePUqmfOZN7v/51/mrv+DL+KC/Psmn3kM4hO58RkJ43pfyU4J3fCdd3rvEBb01OB9Pflvq1DiSk/kbSrbT9r43KY0Zui0WFqAU661IySJZnXfWiF0KImqDr3PHYR4xA/WiZynFDOjaInKnaToOfMu1UZsMa9HN30kYcs4dm5598HcGQUNpRKGUSi4WwWt9E/WZ73Nr/P5c8VRZrqENkxZTevs9bk+0TdYVgmc19PR9h3eKiqVbheAaeRPGw8zN9Zbrp1u21zvSHOlDz+XFBTlGPvXxj/OxH/kRPv3JT7C7eoqrmYuztSU/eU/1gSzKYU5c3ey42u2IpRxFPOYbsC2AiNrzKxlyJiisB89rrz7kp33kw3ztT/soX/GB1xk6h6NQcmQa91Qq6/MLNheX0HVo34MXUpmJZSZLIpXIYdxxfXPF9c0117sb/sb3/U2+67//7/mRH/0Y01yYU2WaM973nF8+YLW5BBeYM0wR5iykopTq6LoV/bCytCwU7yzxahhWqLNI3No8Endff233hzp3/O/bj8szH1skcNLK9Oz9LG17ZsSw1oztuAqitvFbHmuJ1122H8uG7cQ0TvjJYv0Dj/nmv/Lrn/dlnAD8vz74Z/mxb1s/78s44YSfNMo48eh7t/w3T7+O9CWRhfT8sNbAL//K76O878FPqLZ4mfCOicbmbG3dESxa9TZet5bscZooxeJjs5VXEEJP8J0ZnsUGOkM1+VMjF75tQZYtRfDhKLOCitQlFtT+XXIh52elUwBuSahaTLiid06VGxmoWOldO7X2zv84sheOMby3+nyLPD3+9x2i8Czqne/XNhpIK1+7++lyJCmi1lPS9YG+7widxwdHCIoPStcFvOssnWo/cX295erqhpurLXGaWfcDZ5s1Wis3T5/ymU9+kqdvv02N0RwyFdBAKcrN9YHPvPE2j59eMR4mpsmK8eypO5w68zSU9txzpeQCuVJjxRVh3Q/cv7jkYr3BVZPJ1VSYp0jwAw8evsrDR6/T9RfsxsTN/sAUJ0QroXeghf2452a3ZZptC/Kxj32cH/iBH2S73RL6DlAO40ypYr6MXMlVKVgB4ZwLKVdoZvqqDnWeflhzfnGPzdkl6jtSKqRc2tbiWbnS8p7qZxHSu/fMXZKB1GXXZffwZ5GNUjNQWmqZ9aYcv6fc/f5LANYdw3m9paqf3ZnxTNTzCSc05O//IcY//urzvowTTjjhZUDJuB/+NH/iB76GfYnP+2peangc33rvr3Hz0QvEvfxxwu9YOrVa9XTBA7NJk9ppbK4Frco0TuaT8IGYi6UiOU/fD7Y5cJbUtPhwczGSkVJqkqpKjInVMND3Pb51adBM4KV9fimZOc7Msw3YtUKM9kPRrwZSbh0VTR1TcgaxKN5nNhKtqO6ud2MhGsuJs/eOpEIuhb5JunJOqJiJ2jmFYsSl1HLcanjnrVyuScFqWYzg1hCeczFzek0gLeYU836ETglBqUFRLxaH23dsNitinDlM1nkxzYnt7oDvLdnrweU9+q7nanvNzc2e/e7AbtUROofrFQ1KmjOHm4k8FjoNRM1cP77hwfk5XjpKKpRGGKYxkeZEbu3fEhxeKuN+pqbK4HvW3Yp1t+ZGE4exMo+ZabpheyigjlgcOBjHhA9C3/eouyDOE5Ta+lKUFCM3T67ZPn3KZgg8eHCfs7MNIsIcI9vdjpuba6Y54n2POs8cC6UIGrxJpggE77i4f59XX32Vs8sLiy2OM+paTK/3x+6X0pif09v7jM8inCadK5aGu8TiLhDa7+96Ooy81tq2X9IcPIUWILD4NexrSq3H3r9KtdTgRo5tIbbI9p6VYX22h+SEL128/z/9W3z1L/zNfP8v/v8870v5ksfv+fv/A/7lv/xbWP3n3/28L+WEE35SKNfXDP/DV/H47yjcf/nn3+cGJ8rXdm/w+Gc4zv94T03peV/Se4p3TDT6zoZWVUtfMm3I7enrNE3EaC9WzQVE8D7Q90MrycvPbANs4MtNPmUt3TFGVsOA99ajcZQlHWVaZqqW1mRt85aQsxGfvutvlSjNT5FLRbUek4FKLYgGoFJyfvbxq7VFl1IpaBv+apNpmfE9L+QEbHjUW29GLTThzDJIWixVbQb1upxa1yXSaPl3oUpG22YjBEe0eC1EIbgAdWCeZyrCHBNzisxTstP6WnFdRx86ztZnUGGKM3mMTIcDiYIGaz8vc8VjJn3JwjzOjLsRVzPT4cA4ToxjZJ4TKbVh3PkmdSvM08R+tyfHxL2LS77igx9inj7GuLtiOszcHA6UJzu063F9RxiCJVP1GIlyHWEwYz3FCOrTmyeM2z1BhPPNmsuLc9arFdTC9vqG66vH5DLTdx7XOj58balkKrjQse4HNpeXXNy7x3qzQbwnU6nOW1HiHaIhUttGTJ/xS9zddCy+nIUE3hXHSfNbLB+4Tafi9nNbIIEcW8GXzcidsIBlW3ZXUnf8r/rs97rzJ6eW8BMWpE99mo/+wwe+5Tt/LX/66/7w876cL2l823riQ/+338M/8Zl/GP7i//i8L+eEE941akw8+JuJj6ULPhJOMervJb7c9/zqX/dd/KXv+nmEP/NXX2qy8c43GpuBrg9Y0fUylHPcbMSYSHG2qFqbtlH1DMOqxYsuJ7S3ZMM2GplaC957pmmE8zN88EePhn2dXcPdIS3GSGkEI6VErZXVamgle4ZSWrlcS5JSEUrJON9bUlbJ7QVoJ9w1Q/NSmEBGqFJap4IcNxJ3fSC6bEPa9Um9TbqyobaZjH+8MKJabw3vCN4rtQaGVc+02+McOAehs86S9bo/nmbPc0KBnCK7bQE34YK1o5+tz1g1EjenyJwjLog1oAdBCXQS8ECZC/vtnhKVFA9M02zvZa7UYs+56wJp2jGlmXHes99fk9LMw4cP+aqv/DBvv3nF22/doEDNmRQrNQuSCvMcSWtHl5QShRAUkUJOkTjPxDGRDpHBBy7Pz7m8uGDoOiCx349cP/kMNzdP6UNgvV4DyhQrxZtDO2Pv8epsw6tf9hpnF5dkWtBAKYj31vau9bg5MxJQjlsNCx0Tbof7OyZuPbor7kTPyp338tbofUsYCnWJuq0Vqt5GO38WjvzmtKQ44SeJ/PSKt7ZfTq6n/PvnjZ/erSle37km+YQTvphQC+sfu+ZvTq/xdw4fO/198h6il8A/+ejP8yv+sa/htU9+mPw3f/B22H3J8M4L+87WDEOPc3osFVs2GiJCzomUM+vek1OlZivL67uBUrHNRY5WohdCM1fb1kGbAfxwOFBKsbSgJQ1KbqewxZNBtQ1KygkV24SUklmv1zbwt0PkXAp6lMMUUE9OGd+3aNqcEW89CJ+N5Qx7IR0i5rdI82wm9UWGpYo0Q3dT2jR/gzVRO+eaaT0/cw8tJK22OVUUHOZjcSLMuz2BZkqWinPQD+HoEci5Hr0L45yJ02ilct7hvEedpwuBvhuoZEJQqEqaCmWuEDETf0zsb3bU6ChlttSrXCjFsrRQCIMDhNBBkYkxbpnSDciGzZnj0aMzrm/uUVDQPTf7yCElUsyUaj0lcapMaoFdzgvUTI6ZkgqbYcWDs3MuzlYEB4ftNW/lK8hbdtvHkGc23SWrTihVqVJx1ZHxzFnAK/16xcW9SzaXl4ypUA4HUpzJKaFlJtf8LEm8806UWi06WW9DDswUDhS1sniR253GIqF6JomqQtuaLYS6lLsG8PYlYg3zgsn3bqNxX86/YE74qcH7f91f53f85W/gd7/2PzzvS/mSx+7LB87VWZDGCSe8SKgVffMp33X1EX775Y9xUk+9t3ioK/7vP/MP8Ft/y/+Wr/rXH5Pfevt5X9J7gnfeo7HZ0Pc9zjui5CXQFbDT3hgT8xw524h5EkpB1TEMlsSx9GbAHalJ81wAdKFjmiZKLXR9bxG3ztnw3JKRjkNiKczzTM4ZRIgxklKmH4a2HbidAcXZGFeOm5DEqsXimnm9GYHb8+A4iN6RqnDr61hkXosM6plehCpNy9++t8ix2yO3QXJ55KMbpA2dKmKJSSGwGVbMuz0SCxItzUi00vcOkY5aIBWhiOJiQVzBzZlpTuS5kHOikqiAV6XvnflrKtRUqNFM3jVlqihxnHEoossJvxxfn5wTLlTOH6y4OO/YrJWqEze7twhvRVKqPLi/IqVX8N2A667Qt67hMJFFrYQQsbhetSjf4IQuDIQza8cefKBXj5NCnA5cxZn9diLohJPEevCseqUPgCquKKl6inT0NVBcx2qzpt9s6DfnOEBXK2S/Y7+9Jk0ZUkLaNs3KGfWOUb8eVWwLB6nt+Yvcks0j7twfd9/VReW0eCxu7x/7s8UcvqShqbZNx12934+LZ+/HE0444YsX3/Vv/D6+/c99+6nA74QXEnW356985v2UD1o58wnvHZwo39BHft2v+Av8+b/08zn7z2+ocX7el/UFx7toBu/phx51QlXzLgiKiIPqSHMizhMiBZFCJeKCszI43yNub8OVVGyBUCklEeNMyYkuBOZ5AkC9x4eAOOsxqNVkKXclSykmajNVzzGRY6Tz/ihHWuJnl+GupExtm5eFhJRqpXjOOZIqFBsJzR4iKMsvM+k6cVj99B3NfLsmFSMLiqDFZFdOzMztVMlYJUeBJu9a2FYbPPFUV+lCz6ofuFmtycykPFHJoAWv5k/oUmZIjlJc6yp3lAI5F6QA4sjNU5ElUbRS3dKyXlCsxV1U8eqouZJixYejicA2MDmR00wi8eDehlceXRBcxmlhPGy5qomhW5HTnpr3DF3h4swzTh2pRuZS6TqHOCMbIgXVjNOMF6FzjlXwDN7hSkbLjJOM1ojWTBc852crLs8H6xnprD/DF2VMEIuCeJJ4qiq5CgWhGwbcag2hu33N40hO0bZcCq5aD4xrm4vjuyp2EHmn5sTeuMW1jd0b0pjJkcRyS6DlmX80b4be/rkiJtdq98Lt914Eewvubg5vH/u0+zjhhBNOOOG9QE2J7dWKfKfz6YT3Dr0E/tGHf44/9B1fz8Vf/9BLKaF6xwI8FcfFxSUuAC5bHwKVKh2lBMhKOox0GvFuIuYteAjrM6RbgThCMzrXkpsfIpPnEWqi7x3jYXfsL+iGHtRRsAFymQKPQpWcoRSCOsocidNMcB6tRgxcOykuTZMvZGqckVpsuBSLyUUc6gKIR9Sh4nCiOBE8xsQcgsfh1TeJVNP7iyVS5Ra3uyQQKRWvgpaCp6Ji/CTb0oN6TLoyORNVUfF41+H9Cud6ag3MUah4CpZqVUpEJOM7oR8cXScEV1GJqEREEqoFlYoXJTj7pRRSGkllpDBTZaYwIa6gvrWgV0fJnpqEmiqSK1oLkmckTfQCK/Wc92s2fk2oAU1KnTPxsGfaP6XEG3o/c76unA2V3iW0ztRaiAWmWJmmYr6M/QjTga5MnPnI5ZC4GBLrMLPpKvfPV7zy4AEPH77C2cU9fN/jup5uvSYMA853VFXmnDnMM6lYitOUEnOqVJQQVmzO7jOcP6J2l0RZkbWnqKc0yRRSUCk4MkpCa8YJeFEcgrTwAS0FV4sRtZrRas3zXgQvghNQ7DWjGbxVsPtAClLsfqVJuGrzD8ndX1QjH9zdl9QjIVn8QC/bX0InfGHwJ/7AN/PDcfu8L+ME4G/8c6/fng6ccMILhJozXAcKJzP4TxVec2v+Dz/nv+BTv/QVdP3y9fG8Y6Ih4jg7PyN0HvHVthoCiAMcZCHNIyoJp5FcRhBw3YALwzGhyeQqrRujZFKK1JIJ3pHSjNQW8xoCos4GQhbf7Z3ivVLMByKWYJRjxKsjLLG4uhwDt80G1Ya5Jn1S0UYOQNTZZgFrgz4WuYlY63cj9q51blhbuTVO51LJLWFqkW0poLUiJaNNklNatK+o2hZFPaoOEYfgEPFI9UhVShFiqhymSEyVmDIxRuY4EeOMSKXvPatVx2ro6DtHcJg0SQpOCl6hW4iGVKgZqQmnBe+xIsDOmrljqcRcSdkkWSm3Q3zay0hjSEXxMtC5AV87pCrkytAF+uCQMuHqxLqrXJ4FzgaHI5HjRIoWyyslQ0zUOKF5ZtDMoIl1VzhfC2drx8V5z/3Lcx48eMC9i3t0/YDzPS4EEIeox3cdiHKz27Hb7ZjGif04Ms0zKSXiHKm10A8Dq80FfjhDwgC+w4UeF7wR0ZLIJVJqpNaEUnFim46j/buRDUqFXOxXKUgz8ctCAhoftiCAJYig3est1ezWv1Of+Ry4I/mD9tgc5V7Hyr87fo8TTriL1373d/G30uXzvowTgB/+Vf8uH/tPv/Z5X8YJJ7x7lEq40qPc+4T3Hk6U/9XZx5BvfZv6NV8B+nJJ1t6xdEpU2aw3zRC+t5NzNS36oumfp9m6KTAiICqELtB13XEQg8ULYduGlCIxRkK/JqVESunYx7F4J5YI2iUitNRCTrn5O+wNmeeZ87MNXdcRYzl6JO54yY9JV8vAlnNu2wk9avCNo6jNhNLibbMZuZ1zNmtmazA3DlIap5Hbr28ekNpIE+31scQtIzFOPKU1TKuatyOXTC4ZXwO1JXIhUEmQzUxfq+CcRzXQeU/uCnFOqFSTRCE4tVbxRWjjXPNf1Gp9Ik4oGVKqzDEhZFKuhM6jejsol1rJbetyiJXdlOi6QgjgYibGjHcc34uSIpTCqreNg3eOp9uJeX/A1RnvHIMXOhU6dQwehETwHZv1wHrwdKG1pK8G1us1ISip2P2iGoyctf6KaYpcP70iVofrP0N1gVdy4aF6tAsUgS70VjapitPKdLiBfNskb5afglTbTphBu8n1SjP3t1AAubtJkLv/KU3ydGsYXzpa7F7Xd0kOTp6ME35y+Fd++2/hXzzz/Jl/59953pfyJY//5pt+H7+dX/S8L+OEE94dVMj9876ILz1c6op/9Wf8Z/xTv+Qf4st/6Iz89Op5X9IXDO+caIiwOTtjtV6jeoW0bopKQcRTS23t4LmdFBcEYegHK+1TMe3QHZZcSyHOkZQSax/sJDoltJXjLRG3izdjMVxbP4alIy0N4uM4oar0fUdK0zEpapGaLANfaQVsqmo+j1rx/u7LcGvqXVCKRdx6Z7KvlCJLYq1tN+6UsbHE4NZjytEit7rt0YCltG0ZKpdIXCp473FL6hYVFYc4b1KzbKfjtfVnqLNY3C44agmA4sOAc8GupXLsP0k5W1N2ysyzPY9cLBHMFXt71CupFHItjWRBp47tVLnaJ7qh0leHS0KeJ6Qmdtsr9tsbKJl1HwjDCrRjsxpYrSbCkx3X25GcM149m85xtvZses+qd3RB6TvPZrNmGDzOKc47Si3MydriaxFqFYKzaOJxf8PuZkucI2OceOMzn2pN4oV+CGzOLsApVQUNgfV6wLt77G+E/fYx88GkaEpBSkWrmIqt2qbOelAWE3hLoNKl2PE2/lalBQAcDRzP/szcfvBEHE547+H+9P9AeAlX7y8iXnNrvup7en7gG6fnfSknnPCOId5TXpkJJyP4Tzl+0bDjy3/1j5D/3AfhL/2Nlya57h0TDWq1QbDv7wzVlZJtYM4lt42GEZBSCyLVNhp9sA3A0T/d5E+1ElMipoj33iJyU6bvPKFF4B5LzRaTbBviU0qUklHXUWtlmiZLefK+nVJnHFBMy3KUpSzlfnc3Gt6Z96Ixh7aNaIZg0WPqkHOuJTFlVEwCZjp/i39dUqgQoSbbCIgIzjlcizKlVAqFwt2YVeFIOVTx3uOdvTU5ZUInzR9ScXobm+qd4lwguJ7VakUpINXkWClXUsp3uh0EL4GshYlEThOIpVlVKeY3USVXiAVitudWstiwfzMhbs8wbLi46ChSmWImT3u22y1pjnTB0fc9w7ojhDX3zoT7F5F173jjrczNdULqiK+OXgdWfWCzCgy9IwTFB2eN7ViymIhY5K/YVsW2MJlxmhkPk7023pNqJqfEzc0Vb3z6UwzrgYevRIb1GqeVeXYM3cBms0EpUCa0ZtJckZygyfnM912oWbi1ZbfSvTsQ4XgP3XVnL5s66+SgReRqM+a845+0E0444SWAE+UXXXw/P8CHnvelnHDCO4Z0Hfcf3uBOHqOfcqy141/78P+Xv+/v+if5wP+8ptzcPO9L+oLgHRONWivBh+Ppv53Om8681tqG/whNU74M0d57gg+th+BZKVOthZIzORXUaTvVz4gE64LQO1E9NsUfCUBthEDatcQYAdtUWHJQvZ3vlq3DMtw32Uwqi3Sq+Trq3ecFy3Zieb6LvyS3pnDatWAVCosdhKUX4baPQVu3hWuaf3tKd0vhWrKs+UKckbKUImWOFu/rzcRu8UV2fa6lc7m1bTLASNE8J3bbHfscKaUw7kdytkQrdf72eS6+EidIcLjgyWLt6TkLqSq5KpILTIVwSIxJ0G5FPyhx2pOmA5bUtRiizVjdOVAXWHWeVac8OAtstzdW6iiC9+B9xUmm7wZC5yk1M06RnG2rNawGBu3RCk49pcJuu2e3t/i3oes5zMkawn3HXAtXTx/zqY87Upq4//ChpaDh2oYpsb+5YtzvKbmi6lEEqdlek9Ka6MvSFPNZW4rjfYuZyLGUsaVWg+ZnWUojdZFh5aX9ZOEltwTz2W8An8VdTjjhhBcYa51wH/0w3OzIn3njeV/OCSf8bSHrFV/14C1OtZPPB18dOn7Wr/mfefpHX4O/8SVHNMB5R+g6M7zmDOrwwSRPzjvGaaKWinbOzL+lEEKgX7YgYgNpzolSCupsqJ3n+djaXIp5Fqyzw8hGXWJES6FWPQ5wJRecN5Iwz7MN9M7hnCOnmYqgohRskBQnz/g9rPGb2++TzTcitVBFj6TIjN6LTMukW7VJn5wK1iZu5XoL4aoVckrHDU/OmZIzGoL9+IrgQ8DMAY5alHk0eVGKiZIz25st5EwNQu6g8wHnFXWKqm8ESQmhY+hXqHrGcWIcnzJOI+NhzzxHpjGacbsK6kxyJrXinZpECmVYr+j6gTFGShWjC7mSiyJ45lSZIsyp4sOK84s1Zd6zu3pMjJmSE4ojeMWLkOYDyMx6veHs/obztTJedgCI3m6Tur7j7GxDzok5zkdZnJfW4F0zJdtAnlNijpkQPL5bgYxs9weqV7TvKFMkzRP77Q3XT7qW1KSodiDC7uaGqydvoxS8gORCUMGJb4TEyG9tbHBp94ZKLYsXA4zQVUoB1Yp628SoLAEEYHIru1cLzetTF7nc8kPF8fd1MX23xyi5HH0ktxKsE0444UXCr9ns+TX/3R/ip/3Z38xX/H0nonHCFzlEyK8/5Jc/+BO8W2fhCV8YBHH8jtf/OP/QN/8TPPyB7qXo1XhXHo3QdWzWa0IXQMwHoeqsc6HYViHlTK9KjBbh6VTNo7H0BRwPcZtUJVdieyGdc03aBF0It3Kj45fY8KfNE1FKRVsbc0qL38JkWkcjuNz9phxlVcvWpbbtRFt0mK+iFqrekpJajAA5544G+EWTJM34LaWYDKmatErUH/sVVIXcjO5ZHa5dh7TCOOc9pQo0olHMgXzcIq03K0QrMc0ons3FJavVmlqqtXi34j0fAowTu92Ox0/eZjyM1AIq3mKAs5nNEcF7K/ybUrZixT7QDR1zzs07k5pR3GRbKUamuTBOmRgrLvR0/YpaTc5UYiaoQ7Ekp3k6kEol55lH/T02K2UYBlarNevNpiWKWeJXzoknT55Q5wlxSh883jtCF5BmkrcJv9B3nmF1TtWOOeXjRsx3HX3wuKxIqUz7Azt/Tdf1rM8vGdZrqlSmOFtkcbAEsVKrbSbU2WanFqpkalm8OpXblD9psig9+m0WorAQhOOWq1GSo+n87tbimb/A5fixRXrXFHws20GevYVPOOGEE0444QsOcY7HP+OMnz38GE665305X7L46iDsv/2aV/7oJfnNN5/35fwvxjvv0VDBdR3nF5cMw6qlLjW/gioVk/rM89ROhtt2QJX1et1kR20waxsFKqScmOfZhurQMU+TDbfB471/RkZyPA0WaafdxeQqKrckp++5HdCOppAmazIBS24EqNRCahG3R7P2j/OrNGP00SPC7XC5nILnnI1I5GfNO6J2qm6vTyLFaL0bpRxJRZxnew2KXdt+v+f6+hoE3ve+L+N9r385w/qCVBxFey4fvMrrH/gKHr76Gi4MHObE1XbHW0+e8NaTx1xtb5hjtLK6WsglkXIkpdmSq0ioZksOIxNcxWuFnKgpWmN4zkgu1iGigZQK42FmnhLTOFML5FTYbnfEOeF8oB8GS9AqVo4oqsQ4MU07YhqBRD94Lu9f8Mr7XuHBo4esztZI6ySpDsSZR6XrPN4rtllIeF85O1tx794563XfonwrwbsWJyx06gnqkVTJUySNkTQlpsNIyolh6AldR4yWdGapZ4WUi6VLCebXWO4XXSRPt/eZ9+YfWsIKnpH3He/R2+Spu/fs52wm2ve5/bjc8X9we/8eP/3ENk444YQTTnhvIH3P2z+78gEfn/elfEmjF88//zP/GOPXf/CliLp9xxuNUivqApuzNSEEoFJKpcRI5zqolXmemab56KFYGrM3m3WTlbQCPW6HppQS0zRRcqbvO8bR+jeOfhCRoyHcHg+OKU1t++GcY55ncs6s1yuoHI3kNB29leZVM2PngjrT7ccU6fTWh0EjI9RqxXrQNhpGjqxT4o7Rt0moSsltsBdqvSVhtZTjvFhKMSmVu02iOj4W5ssYx5HD/sD19TXb7Y4nT69s+HUdZ5ePUBUeP92yPVj/yH5/APV0wZK/NMz0qzXntRGbOZKmiEMIwVn6V/OT9CrUdU9GyPOBMR047EZKTHSt9V2qtvI5RVHGw4FPfuITuLxnvHmT7c0N56uB9bqj946UI+N0YJ4zlfb6yEzXC6Hv6FYrLmplFTyqhTROzDlb4pXzeOdAKqVmLMrXJG9dp/QrzzAMqPawmwle6bzjUGdKyuAcFJAikIQ8FcbdgSePH+NWPQ/u3+Py4oI3D3sO00xWRUqh81bJuAz6C1kotcUkL+9RiyZe3lAjVfV4f7LIoD5rGwG3vgu5Qy6WXQZy28FxSy6OX/GMfOokpTrhhBNOOOELDhHkg6/zM3/uD3Mm4XlfzZc0nCh/9+qT/M7vcPz0v3xBfvLkeV/S/yK8q9QpUeslcIseXc1QvXQGxDm2jQTNUG09Eqv1uqU3tSH+VmVCzpl5ttPlEDrGcaJi0hbXzNN3iYtoIyxNzrQUpqUUyTnT90PTuyuQbWxbYknbqXXJGee9bSJSRnp3HP5qIxPLv+2p16PcyniGPb6oQs23OvvS2hTaILicaD9rKG8kSpRazDyfc7bIXRGmaWJ7s2W73dqflUwusDk7Z7XZ0HlPaduTkjOb845aCl1wllYVOqZ55jBOpDKTm4ndq8N5RVSoFEQ5fmxKtl3Jc4IY8Sx9EjboenWE9ZrOCdvrG35o/5S3PuVYh8yDs4HLe+d0AWpeigUT05wQdYTO0w8rNhcdq82a+48ecu/BfdZn5+wPM9txRpwjhI7gHUPf4R0Egd47VKHvpMUpO/ohEPxAqUoIDks+M+mec4Jr5KimSpoS8xjRaWKaDoTuVR48fMBhv+Ow3SL1lkSW0oilFtth1KVR3mRVC1FeSIjdj8v7XBFKIwu3m7Ql/paK3U8Lyb5DHo4EQ4C6yP0EkeW+uWsUPxGMEz4/Dv/1h/m6B5963pdxwgknvEhQhzvb8Mlf/gr/0vv/KL2889HwhPcG93XF7/wl/wXf+Y1/D+FPfu8LHXX7LjwaZoD2XnFOUWfN1mmKpmF3lZRNomMTXOuRcELXdW0o53iKTzvRN++CmYCDd8RkmePqLKWpyp2cnlqPyT7UctwWqAhzSuRcCF13R+uuHIvUqpiXROyk2untVkTFgyio2gk+1hBeEetXoD2X2ro5mjrGYlcLog4nrg2catddjYw5VZworp2IO+fpukCQ5mOpzWcgUFJmv9tZCV1MhNBRSuXq5oZYhTCsefjwHt453n77bd58401yioTgqbVr5m3zK6zPNogKh+3OSERJ5Ll1lHSefhjo+o5SK91kZCaEiHOOOEPMAiUj6jg7P0e0cNhdc3O9I3eZXhybi471eoV3nlpMulYr1vuhBec8q9UacfZa+tAT+gEXAgUY48zNfsdcMnglqOP84pyz9UDvFAekeABJqFseV4kpUWvm/Pycj3xkg7qBYX3BOBXeePsxj59csd8dqBWGlOxx5pk8R4auZz1sKFOiZisqbP3d9v5r22BQ0RYWoO39A5p/ZulEWbw9lZIV1XZPCM0IbrcVRRAKtT32s4qottFgUWB9rlzqtNE44Z3in//oH+GXrl7c/0M64YQTfmoh3qP3Lpm/7kNcfPun+Pn92zjZPO/L+pKHE+XXnX8/v+vv/ZV8zV94saNu33nqFAdEHb4z87JznhQF77qj9CPOBw6HG0pNWFJPRHXDql/hQ8ecC52a5MhIgqBSSXFEgc55ptkGRO8DoVuRi5ALuJrpvCOliAs2dOZsnoe+79jutpRScV2H9x1xHtvQq2YiR1DvGWOEkvFSCFqRmhAZbIDN4MQ6L3Kx56C12PORSt93hBDIOdOtBw4tAleRZrpeMm7lNmGoFjqnaGWpmaZQmUsy0lOa9ComDjc7tk+eMh9GXn34kFIqMd6W/qU4s9tuceq4vrrhjTfeJKXI/ftGPlJMjIcDOc4EAekcuupIzgZTp4rzVobnO4c4I22heRvCekD7mZvrkTQmfG+DtNNMzQnyxLpXzlaOoVe8amsr93TeUXNkKolKxnlTMqkTtldbShq4uHhIH9b40BNLIdXM+b1z/OSRXcVV8IO3sIFaSTFSsa1WLpmiiqvWFJ5Na0XXBzZnlzg/kOuBEATViMhMF5R1BysBtiPXn34TufeAIQzs2HOzP5BzZtV1ePFGKFCUhJPWL5Kztarf3S7IrS1j2bjZuqxFLsviRxJMyyWmVhOOhNY5h6gzQ3petm22yagYATUK40wuKLfpVKcwkBNOOOGEE/6XQkKHe/UR19/0AT7+7Zl/+yN/jPu6et6XdULDQ13x23/+n+XPffTnwff+9ed9OT9pvIuNxgwSCUHpgrfytyXeFaDaqXlME7XOSCMCCoTQ0fUrVALqQEqi1IxgaU15isRpsi1CsuFOnSd0A+oCIg5Ksl61ZFsFVYHSkq2cIyWT7ajaIFeKSVayWsOzih4HQGpGKWjNULKZiZ0nY8VwgnECJxUFasmAfX+vSk6zeSoK1ghYLTPItS3Isq0RLDLVOYdDjpKnwzxBLqgUyFaqp8C6H3h0/wG7fmQYVmy3Ow7jlnm3Z7vd8clPfALvPefnF/TDir7v6fuezXpD6HqkZjp/zrrzbK+fsN8mer8xY367Dm3yKQRytRN97z3OBXJV3LCC0JEfbxnTnjiPsI30XtmsA+t+YLNynA/K5SZw72IguIK6Qud6qlTC0AF2nD8MK5yec3a24Wx9D3WdGbBrwXeBV+5fol7Zb29I44gXsddqiiwdJz50FieMIBLoQ0cqkXT9hE99+jO8/eT7yAX6YY3vAqKJbgBk5rC7wqkSxsjTuUJU+s2a9eacaS5cb6/ZjpGqijgHau+Fa+9jaZq7UqVxBD36OJb2cBUHSxoZFaT5cu7I7BZRFVI/a0txm3h2yyDq8ZeIbcxoX2s/i+/uh/yEE0444YQT7kL6Hv2KD/DG3/EKN9+25Z//Wf8139hf4WT9vC/thAYnyi/Y/AB/5Ov/Lu7/VffCyqfeVWGf5ERQR991OGfypSUmtpQCtRLniZISgjMpDRBCYLVa4YNv5Wi3+pFarXdiHEfC+txSmGJCxdF1Hd5bpKxUbSf7JpWqzawrcEy0mqbp2Chug/5y2nybHrSkTdG+rrTNSggWi1ub52Tp2pAWfZtTtjhddcw5W7ISlVrMByIL4UKeGQQr1QZd74mxHuNyFbuJcKBYatZhv+Ppk6c8fvIUHzpAmFNmGDYMvZ0y5FzMj7Kv+OB59PARfReIccRJZdX3dJuBPjg6pwiVmAsxV9SpRbgChULMGdRkU+McAYe6jvV6zX4fKds9RUC9Y3O2Yj10BE04lwlDx+bijOEskKYtacku9gHvuxZ7LGjoWK1WnN+/x/rsHFHHOEfmmkgl4YLn/uYeqxBI44iUAnMiMpIqSC10fYfrA7Vqk8B5SvUgT7i5uebm5hrEJFXd0LeNm/Wr5Jw4HPakYiZ9cU+5HwLr9YZpTjx5+pRx3KNSWfUevBp5FFCMfJTybPLZ0ZNTq5FMNU9LuRODe/dzpRnD7zRoPIvmz7j97eLduPOxO/fUSTp1wo8H+Yav41y/BzgZOU844YSfGBI69KNfwQ//+od8+Ft+hH/hA/8/vrF/m4vTNuOLDh/w1zz5GngQPHV6yYlGyQnJM84LXes3KCWh6qk5U0jU4piniZQz6oQUI9KGeOc7RJScJshGNqTF1OaUmeeZ9aU1iMcY8U7xwTczbb3trwDAivGs1KzivEdEGMeRzWaN9+F48mxNa0t6lKVNpZRZGpyX4jgjNErJuXktGpop+Ph5wZG3uaUNmWZfhaNWf5FplVIh52OE7ULGzMBu24XQyNphf+Dp4yc8uXrKeDggAn3X0XU90xzp+oFhWJGSGedFla7rUaekPJMPMzUnOq9k58B51psVXu8xjQc0Zlxpep+m7iq1lfbVyjjFFgGbcd7KCl0rWgzBsx4G+k1v3Rs5UQV839GfrXC9Y04juZiIrAalCz3DMOC9eTguLy+5vH+J7wIxR6ZpplBxQVFR4jRDydRccaVAsVhde19pcbc9op6UKzkrfjZPT9cFVkN/lCTV5Xn5YL4gEVJM+M6illNKxDjTbzaNlMoxmngx7ssdY/bSyVIwOdwSX2yft/S1LP4JWjoZxzQxM4J/frVTix84Pu4xUKBWPtufcfffJ5ywIH7rN/Cbf+8f4Zv6E8k44YQTPg/U4d7/Zfzw//ohv/XX/wl+1fn/yIe8sJKVHX6e8EWFV1RwX7lFVwN5mp735fyk8C6IRoSqOG1EQ5qkSB21ZCoZSmWeJnJKOG8legC+9Q6ICLlUKOU4WNVqJvJlG1GbNj/4wb5GlxtfbjstqORcrbeiFLo2eE3ThPcB39rCj9KUNviVYmb2pRBPVI8Ewsy79rnSEqeWwfFIEMQSo2rbiCzbDvS2o2OpUShtYK6NkEj7fOccwXu8U5RKmhPzOLLf7ZinuW1xAuvNOSF05HzDzfU1292eLvSoOrxTKoWUMuNIe7xWDFgi02weA1UrmPNdwKtrZmd75W1oLqRSqRooOMYpMcfC1Mr6jgFKWhEvhCHgnWfde84u1/jVQJZMODsnuJbAVSqrYcXmbMMwrDjbbLi4d8n55QUIbPdbQkmoE9SBdwqlUlMmjROH8QDThEcYQqALZu4vOTf/jGvbpkrwytnZusUKQ0y2pck5o22jUQrkEvG9NdXnloyVkhnju75HdkrKiRgjwVV77eRuTK0evT7HIf847NfjVmxJuK2lHrdqVernJRlLuMFt2pQsCqlnJFYnknHCT4TxV38Tv+Jf+jP81otT8/QJJ5zweSCCe/iAT/097+fbf91f4Lff+ytc6oAiJ5LxRYq1Bj766lvUywt4evW8L+cnhXfu0aBQSkJcR+gc6ix+SQUy1RKdsOG/tvSlnApUsfShoSeEQJnNP3EkGqWSUmZqTK0UK9ETVbrQWWmfKjUnatsMLNuB3CRMC6ZpaqfQzSMhS8Qs7cy4NonLXaJQ70TQ2kCnqkhd2rnLcXshWGHbovy6W7SmSzFfvUNW2mOq6vHrOt+KCGslzjOH3Y7tzZbdbsd0GPGhI+VMKcKwWjFPE/M84zuBzuJ9tZmJl6FZqJZsVLNFu1LJcaLmSN91rPvekiW8lcwhSsyZcZxsmxGzvcOlMk4HdruRcYqUmkk5cpgSIVSG/ozNasVqPeCHjuK8dV9o16JmQaVytj7n4uKS9XrFer0m9AEdLBZ5pcb6QufJeWYeD8R5pqZIniam3Z48TnQiuMH+AhSUWDLqMl2/wolDKYhU+qCshh5xnorJp6x8T8m5GKkoytyil6v61vcykdMi/bPSxMPhgKPDdYJzykIiRAT07vvY7r9SKPnIIhsxkebXqMd74x3+gN1xmN9uNI5/fIdgnMjGCXfxsV+m/O8ffd/zvowTTjjhixzu4QPe/raP8hW/6Qf5Rx/9We7r+kQwvsjhcXzF5jE/+Oij8KPP+2p+cnjnG40STXefJobg8QpSTT61xHnGeWY6jOSUEIQUTSLl1HF+dgbYKbud4togJ6rklJnG8Tic5ZxMsrM2U5KqdSPknAg+UJp8JRcbtNcbk7DM83wsVFt6L5bfC7a9KHekL6pqDdGtFjrnjFNFxAhSLe36vadiLealFBtCq3kkcnQIZkjXZgZPuTQZVqHkbAWHtXLY7RmCY1JFEQ67G66ePOX66dNWNrgmpcLu5hoN1gsioqzXK4bWrn44TMzzxIW/x3q9RgSur6847G4IKmyGjs2qP/Zq0EigScUcXdczrNY4HxinyNOrG+aYmTTjfSGEQN/bCb3zSkqCa+3c03xgnJVh3eH6nrP797h/75zNqme1GgjOYmBX/Yq+644+l9A5xnTAO48LHTklqEIXBrRWppTZ7q6Zdzs0FxSYJzPMd11H5/t23wg5JWKcGA97RAqbzcA4zezGHbUKpSqPXnkfINzcbFt8bT2SsiITu/2efn2Ga+3eKWUO0x6nhVV/j1qUVK1rRO4Imz67Md5uJFpzvP1GZIlH/vF+2X1aW6dMqQUt0hru9dbvVO0eVafHr1lwirc94S5u/r5v5t/4lf/h876ME0444Yscul7z+Nu+ivu/7cf4Vz/0h3nNnaRSLwo+tHqLv/ba1zN81gHki4J3EW+bUakohS6YhEqlyaBasURJiXmeyNG2GiVlcrKhezUMd7rHFsO0nQYXSutG4KiZVxFC8Hd08Pb6qnNkMwRYD0fbfjinR6mWc3qUMJlJu5XvLaWB9VYPv/gnvPfNWO7MvKtGhGyl6Jpcq7l92+m1JVlZ6SCxNF+IXZ+oo5ZCqYVOfYv0zdSUGXcH82bs9qTZOkRsgE7MsxGMrleTKW3O2O53XD15QqHS9ysePnrEZnPG06dPeeutt5jn0UzT3lFzj5OKdyu8MzP0tB/JFNR5VuszROD84j4X52f03UDX9Vxd79juDqwOB8ZpZk7xePIfFEKTOQ1Dx9nZhve9/hpf/dVfxYc//CHOL89xtTLu94y7PfM0sb2+5ubqukmvCg8e3bNBP2dWfcdhv2V7cwU5QZrp1DNsLtjfXDHFSHBK1wVijDA5tA+NNFZKjhalvLtmu73Be+GVh5fsD5HHT6548vgtVqsN69WGi8sHTLkSCzjXk6qRlVwSnu5oGo8xMU9z25IJRSpV21AvC9mox/tl2V7Ybfzs9sJCCJqfo8ISK7aQpTs/VCwFgIu0Dnjm/jyRihM+H/bvU37tZvu8L+OEE074YoY66td+hO4f/Ay/9yPfyYf9QBD3vK/qhHcAJ8pXdm+yfd0xiEnUXzS8c+lUNV+FOsEHJXgrISt1IQG1bTFM606TLJWUcF1H368Q545RnvY1i0m7Ms8zix7eDLcVdXdP5e9ci8Um3aZdAc6ZJCZnK4ozL8LydbXJp+x7L4ZevSOjMsO6Q6HF1bahcJFilUKtBVVnAyK3J9uleTFEFNWlXFDb5gaoBUXwzuOdZ54m9tstu5unzNNEHCfGcWSOCecDF+cXnJ1fkGtlv98zTzOh6widDdvjeOBwOHBzc8PhsIc7BYS1bZlKThR1iFRymhnnA7kUpvEA1ZKyzs4uWXUDev8+Q79ms96x3e8YDxNzikxxYp4mOhU264GLiwsePLjHw1ce8v4vfz8f/NAHeeX1LwPvuH7zTT79mbe4uboizjPb62um/Z7Ly3v4TnnjzSfcv3eJ947DYSKOM7ubHfubKxyF81XPZljZc2SFF/P2iLMmc2tdr5SazJuTEzlH5vnANGVyKYDj1VdfYTxEDrs9N3lP6NcU9fSbDZf3LslV2U0ju90e1cAwDKxWA4f9jRVOxkjUinqF6j5H+VR/vNOEo3lcjulSi8wvkXDq8a5a6WA1+Zu4JbJWPsctvmw2PufbnEjHCXcwffs38qf+6X8dOMVRnnDCCT8x3P1L/tavPuP3fuQPnkjGC4ivCG+xe7/winOtbuHFwjvfaJRM1Yx3nTVbB4+KmXSX7gpROy1OMaJiqU4l25ZgvV7hvWNsp7fHFUU16ck4ji0+Vq2orRS8c3Sdbye/5bN07+a8XTT03vv2GCZV0mVbIeYUFrmNoM3Z/CSLYbe0Lg77s4K0ng2aP6NIQZoh3HtHaa7fCuRSbuNIn/Fs6G3iFEtTtH1sv99x9fQpu5trK8KrlaH1YeQKKSWur64YVmu6YUCdUpvkbLfbE6+v8aE/Pr4KeK94b23UVWozrCtOwSlIzZQYiaWyu1Zqrky7A/3qnGG9YTMEOnfG0Hv2w57DNJKyR9lwvt7wysOHfNlr7+PRq69wee8+ZxfnrM/W5Fh465Of5ge+//v44R/8IeZxZL0a0FLJMSF4hk1PTCNpmjlbr4nTgXk6mEG9VG5ubtg+fcL5es2rD+9xce/SYpJLoh86vAuo86BCmibmyeR5XQicn22I6YYnj98mJfjyD34lm01HLQd2uxu2uxEJPX3JhLCiX59Z3O7lBZvNOYdxpOs6SyBr6WfJQSeO4ppwSvUntlqIxeDWO9Kowm2AwGIIp4JrP3JCQVRbiV9z3N81fLcfj6M5/LMM4Uuc8wlfuii/5Ofwp//df5cTyTjhhBM+H8R75p/5FXzFL/oxvrG/Ipx6Ml44vM/NTK9FdLMiP52f9+W8a7wLopHMi6BCH4xo2OC+yIlMSpRjIkWTMEk1o62oY7PZ4NXfJvk0KcqyGRjHkVrN/xCjRY0658zfcPe097iXuNNT0IjGdrslpdyuzQzki6FXmyej1Go+jcozRMO3bUvJCWrCWUgttfAM0XDO3xKeuhQGqsXwYib4unhDGhFwqnjnyCmx2265ub5hGidUhb5btQjdSoyR7e5ASoVhveHevR4fAofpwM32hlRso9J1PbUWtrstOSWGPrDMq5VCaRGuTioSBMiIZFQygpLmkV2uHLYH+mHP/QePOLu4YOjN6N8FZTU7qsCq77l3fo/X3vc+Xnv/69x/+ADfdcwp8+Ybb/PWW2/xiU9+nE98/BO88alPI1QePXjAuh8Y9yPXT6/YXKy5f/+St3ePeSt9hs16oA+eHGPrjxByLszzzG6/R9TuM/WBAqScGXyHD56UUhvirfDRaSuQdMocI2+9+QZ9f8Zmc0k/rHn89IYpV1JMXF1d0cfE+uICEbWW95LpQodzHmpsmxEQ1zwT7X+fh2eASvMc3Uqf7pLiW3/Hsvn7rK+//ccxEvezP3ZKnTphQfqlP4//9vf/+8/7Mk444YQXAO7RQ37k7+753R/8b7nQ4Xlfzgk/CdxTz9krO+Te5QuZPPWOicaiJxen+M5ZhGz7o6XoTsCkJ/NkxXcVYkqICF0/oN5xJCYmUrKUpGxFf9TcPBqxRYQ6GwCXKZpnVSYWJVqQCt454tw2Ib71b7RPWoy3zjkEIbeT5mVoK6WgLX73WKjXMkYLhVr1eDptm49KOQ6OsGxYltjVJryyj7YiQ4o9x1QqOZnpXLHvOU8z+/2e/X5PLpWLy0tWqzXTNPP4yRXbw5ZYIt53+N6e25wiOSe6PhC6cDwFL7WQcyIlIbu2SZFKp1Ysh4LUxDxlShnJKeO9o1LohxXOO7yC6zucd/R9z71751xentN1gXmKbPd7rq+3fOKTn+JHfvRHeeONNzgcDhy2O2pOuKrI5QXzOPHk7bfYbgO7m2tWQzAfz67j/uUFYIR0s9lQkoccub65IeaJ87M169VgCU4tyalUSzUrtaDKM8ln3jsuLgbmMTMx0oWBblgzDD0lJqpzqBjJnKYDu+2NxQe3+8KHQM0F7zwhBIL3BCfHKOOml7tDcxcITq0F3RKN67FDQ0SN0CLHDZ/+RERhkei199Ee47PSpu78OuFLD4df+02Ml44/+y//Xk6lfCeccMLfDjoM3Hzzh/iaX/K3+IX941Pr9wuKXgJf9fBNtq+/jvzox144Q/g7JhqhriEp4jL9SnB9oWpGXAelQyvkMVKHwrTfUctMxTPOB1BFhxXSB7JknELJAjkgGihU0uGGmm7wmjgcMjkLzvWEvrfTZVUyejvEUU3alKOV1TmxDUKK9K2ZmirNzl2Pn+/UW9FfMcP50bSLeQLSPCPqKDWj5g5vnRjRJFXOdPupmAm9KuRaqNUiUaXJvKiZGiOSIi5HAhlNiTRHPEIuMB0S+1JIcyIXj+/OqSWzPWRuDk8JnQ0TJRc8Qi+KqwK5EMSxHlakFvurwSQ5NReylHbaDw6HA0QcSKbkAiUhGShC1j03TzPUxGHfkUvGe0+/GkCEp0+estvt2W338CM/ym534DCOjAfzlaSYGK9viNME88y83/PkcEDnA6uhx5PZPb5i9/YbBO+4vHdBXQ3Ecc/mbKALikgl9CaRSnEkF0u46oJY8IALZArjOLE77C3SV5S+6y3tqUh7rx1BC7FU9ocrpnRA1HP/8oxUYZ4jXpRVWNFpJqcDqQquD4TVimlfQBzBBzpXCTXaPaaQRdEK5Q7hWFivtK2M1MX33bYbIi00wciIqKDYFlCqSfOo5VaaJbbKqJRWrGjpX9rCELQ95k9IVk54afH0N/8C/s//3L/Ht64jJ5Jxwgkn/G0hAj/tw7zx9x/4tz70h0/bjBcYivAN936MP/bBj3Dx3Y7ago9eFLxjouFZW2ytK4RB8KtK9QWpAWbT0MfZBtj5sIM622l9nKgiuH4grFZUtWGqzCDZIeopOZLmLXm+acPmTIoF8R2h71CnFMRkTMW2EzTPRomRmiNeFaUQp4ngW8pTu/a7xMSpkFKl5oI426qYZ4NW8kY7nS7Hr6vV+jpKTah21h3SonBpyVMqVsZXS4vQLWIDfUl4qaycoDmyu74GlGmcmWMB9RQ66yApmd1hZrfb4YPj7PyMoQu4agOqr5XQtjtzykiB4IIRHBYzeDr2hjipOEnWZpfb3FoqohXfhlfyzJgiq6Ejp5mrmxtyrQzDijlG9ocR1/U8euVVUircXN1wOByIUyR4z8XmzF7bOMM8U6Y9u31i0Mz60QPWnYMJxv2B8VDQmqj5jLoegJmy6VmvegoFFwLrzQXT7saa6LHtTC6VkhzzNDPNc/PyOESUobOtmCBsdyOhU4IoMRfGeU8qgnplGDZ0PpBLosYdZe4pfUd1Hb7rcN1A3u/J2HascwWfEpBJVSgVM3wfO1kwuVQFSrFNVlUjp/U2XUoB34oTLTMrU4uClBawQEvmMpay7E8AqgrathrLVgRZyMoJXyp4/Nt+Af/kP/MHG8k44YQTTvjbw52f86O/8j7/0Tf+Hr4m9Kco2xcYTpSfu/4R/uMvVy77/uUlGqhHmtfBOaXrA+qFMtfjUGWDVyU3WY/qQCk2xDsfWK1WJp+aIohJlHIt4KwMcJ4PaG8pU6lFxIbQQcX6EGoll3zcQFTkmEDkGkmYp9kIAJ8VHQqIVJMyiZm4vXdmAs4/not/EcnI0X+Rs725FlVr16diw6WqJVMtNdWq0AeTNKVpYhpHDvs9++3W+kiqnZyL80wlcZgm2xRMEyUXUq2M+5EginM2cC5BWMucWWvFEoarnXrrItpaErHaUJtLk3DZtYuawT6XfOwQiXEmqKOkzO5wYLfdMU6zbZK2O9Q54pxsk7E/kGJi6Hri4cDF2YbgFZy0uN/INB2Y54nglPWqo3OFcZ6hJHKaEXpUYJ5Ght6zWQ/EOBFcYDVs8M62XmnOZKnEbNGzueTbU30RqnOEUOm6jj5mJGdSEdqqg5IrN9fXeN9xcXHJfhzt/myhBdOcmZMlhlmrfEc/DJytlKF6aomMBWaEWoRci/l8SuvPqFBKolZBGvmR1t2yWC2O8c8tca2iKIpYhgIsSWU0Q3m1+wfRRqgcxwgzufWCnPDy4+Y3fjP/zP/uP+I7zq6f96WccMIJLwpEyF/zIX7Vb/gufnbnTyTjJcBXhsccXivo+Rllt3vel/Ou8M6JBvU47KrCMHRm3F4KK6ClNBXmOBPjjPRtW1AyzjnzADRD9nFQtEIKSs2M055Nf46IkGKkHzqGbtWowrMm2tpiQmstlFwIfYeIMI4j5+fnz0SELk3dYDp/YSn060CMrPy4saUNS1RumpP1aqg7xvkuspYlQUtVW7eI/dlut2W/3fLGZz7NbnsDtRB8D+IppcUBjxPzfs94OBBTas3SkKaZMph0zLoc7ngE5FlD/HI9Vhi3xNxWSus6yUtDehtUF39JKYXSXrfaSg3TPBNTIqbEarMhzpHxsGcaZ4sVLhlKwQlM08hNzWbw7hyrVU8tMylHxukAnYcS8cGx9l173TMiCcSTYuTp0yecbV5n1Q8c9nse3bvHaugZdzvK0nSeMqmRAyqodzh1LTzAZGJ930HM5GmyjRRKFxxzqszzRIyR0HV04tAWOjAVYZwzKRe8D4hi968Tel8I3iRPwbKiqNVZRwy0gkC7x0s1Q3hp91jO5ZhuVquH1hqfS6Wq4orgi6dSEFzr67BQgbokTjWSIe3/JOoSn3uSTn3J4ObL9UQyTjjhhHcF7Xt+7Jed8/sf/XmcbJ735ZzwBcBaKnlTILx40tl3RTRqbQV9YJGgaoVwWm+jPEvNzNPENE+sBogxklLGu8BqtUbVE0vBA1WreSXU2sD3+z2bS/tuKSVWuqLrB5Z2ZivEMwJhJ/PumOTjvUdE2O/33Lt//yglOm4zGqE3SZQeW7elEY3Ph0UqE1NEjhIpE7noElPafCDeKXO2rcs0TWxvbhi3O26urkhxYr1e0fcr5jmzn0Z2+4nD3voqSprRWlDMtO6paC2N0CxPpB5JBtzpEnHNL6CLwV2MaGilFsjZPqbtIUoplFTI1fpK4hQpaU+OZsRPczSvSTavyrw3ohFCh9MW4VptE7W9OZDigcvzM9SBD45KZp4OlKQEl/FDxyp0VDLiFNWCd2a+Phz2fOrjH+f9r30Zve+Y54gTz3pzSU6Rm92WlHMLGpgRKioBFXAqhKBMUyXOI6kIIXSo75lTYY6ZQmGcDtSnwr3799lcXEA3EKvDizMzufOU0BHnxNtvvcmBkbUmk2Z5Be9Qdfjg8a7Dhc5CB9TjVx2iDrBmeCMa9t7kAqnY61yqWMRtVdRb8/oxqrYFCbi2tqriUHHtcdt9+Fkxtye83Bh/1Tfxp/7xfw04DQonnHDCO4c+fMBX/Yof4v7Jl/HSYF8Ft1Pq/BLH21IzlWxFdFST/bSBVWqlSG6JRzDPE/M8M1CIeaaUTNd3rFebFiPKMfIzZ5MblVKYpkNTYVm6kKrSdb2lWv04lyTtMSyFyEjDPM9H4+3nfralQKl3jXDweaRTtzDTOJSUjyQn59xkMYK0mNuSMyqOEs1XMI8TV0+ectjtqCkxdB2roaPkxH57w3Z7YJ4ScY6W/iS1bS4q3itD5whiry8shu72djRp1MKgjFS5llRkMqlahFqUUqrJflIhk7H6imqn6+1xS6nsDltwZh4nm0wujTOuC8zjgXmc8SIE56kqljAlJplKKbPb7/DeSFHf9bguUEsErRQSuaVFCQpFqUnp+x4denJMHPYH7l/ep+ZCnAt9p5TqmKbIOO+thDDPqBNquxUtrjiR80xKE7kqSKBWK1ZUUbrOM6dELpGYEqVWHK0Fvji64ChVSRPUPDLPM5IPlLrnwEyVTBUjZK7rcC4QfMB78yY536EuoE7xLhgZCx3Be1DPnJVUMe9Pxa5NHepAJB/9HrY3s3u1UkxeRTluOI6JZp9zb5/wMqIE4ZE7kYwTTjjhXUAd25/75fyuD/xbp2K+lwg3JeC3CtP0vC/lXeNdbDQ4FuepCr7z4Gyj4cSkOc5hw1yM5BQxX4NJXkLfsdmc28NUK5SrRY6le7lkpmk8tozP84yi9P1w/Bp1t03ey6lurYWUskmVVI89C975o5fCPr89hybZutsOPjapjXfuKOtSUWpNt6fIVY7bHIuXTccNT0qpEY0ExchITsnK36L9mVeHV09Omf1uZHdzwzyasVlKxpVsEp3gUAUfYLN2DGtPlUosuXkujMSkFFtE722UqqjeSrnglsTFYhKt1NrNJVv3gyheHTVl5hiZp3jsCZH2vhSw1z2a+TzHjBShpExJBXWCE4dIJsZIrULfWf9J33dQlZIPzHGmZPDexF/zvCenHqcXrIYVdA5yoqTE0K8QcVw9vbF7IxfG/YFSEqqVUIHgULV+jHk+AIVh6KlT5jBNzBGqKFU8OKzrpEntYoxUTcxVmUshY5uxnCtyLIB0+OpwbfyvUkEyNY2kNJMnTA6FBQIsv0zOFXDB/B7qA9UF8zipA3GIeER9IycB9R2iARFHVQc4CyYoGXHO2tFF22ZLTxuNLwFI33P9odOQcMIJJ7wLiOAuL/jYr098XRdZamJPePHxdt4QtlDji2UEh3cpnVr+rc60784ppWZEbTPRdY6cJlKaW6GaDXZzjAy5sNmcWc8AWAmatlZlMjknDuPuKHGKU0QRhm5A1Juh3HlSTsftBWJG6JQsjcU5807ElOj6DuccqfUgLB4Mi72tR7lUCIGb7ZYYI957IyauNXuneiQatS6Eo+JELJK2S5RciDFZhGxtaVYizNPE9dOnTOOBmgo417Y2E9ubLTlOrRSwWuKQqzgHZxtrUe+Hjvv3Lticn3GzP/D21Q2pWJTunDLjNCHO4yyDF+dMwFVKJVOI1QgMtVDmYh6HbFsXAO8DfT/gQ2CeJ0rKOGN5zX+h1JIstjhmqGKFi9le35zMFO29o+RoHSgOalGCv23KDr4jib1nQ/A4qcQ4WapUrXTOPr693uI6Ic4TwVuy19X1DdvtDdo2IjUnMhnXuyZmK4gUnBO6zl7NOWa8M9lRLMIUEyknShVC11kXR87EcWYulRlPdh21mCFcm9jOEseWpCga0eC4c7i9pwrg7HVGjAimhMwTqFLFkTHCI6JGIDTgfMCpRzSALATE2XvatiXOB9Q7tOvMk+Ic1bkWp3vCywz5aR/mr/6O/+fzvowTTjjhBYKenXHzLV/Nv/zN38lKuud9OSd8AfE4n+H3mA7+BcM7JxpSqdiJuEBru26nxNRj6lKVSi4WS7qctpsMytOFni70zM7TDtURB0UBCjHF5p0QUs7UAs4FutCxb+V8y0ZjMUCXnI8bDe+tOZpWrGdldQrcKeirt23ktbWjHbs0ausxsHzYo4F8KSu8NYBbMlBtGw5KMSKkNpaO48j19TW73Y44RxxCAXKamcaJkuKxtVuau0NQhiFw//4Zl5fnXFyc8fDhPfph4FNvXTHlyHY/k0tp8b61RfzeavdLKcQcySWCA/GC1mKSqVTJuRKjbXxUM6WY4bhmzDFfmv+jVotlbc+zJEsIs8Aua0uPOS3BTsembiSTs+KDbylM3ozsaULFXv/cih3XQ8/5ekUfPJ1X1queWipxOhB9h2pgmkbeeONNcpp432sPWPU907gzQVFOTIepkb9sG5ZscrjOe3Jx5Lk043YBZzHEpWSmcSZRiLUnu4HinNGHim2FUJZ3ZsmJuvXF3KaRHVFr+6xKaVu6xdxtsisrRLTv0RLaxLU/Xxw+bSOl3jYi3qPOI87huoB6j2tkw0ojT3hZIaHj+/839573ZZxwwgkvEHQYiN/wVWx/6xW/Yv2JUznfS4RcC9dlhRvr5w0u+mLFuyAa2KltNTO18w7vvQ3X1aQplYRIpZRELhnnFOccMUacD/T9in7oOTgHuY1rTXVSa2GaRlKKqDpSjJRS7eS9Gz6XMICZlnMmt+2E94FxHMml3JpsrS67nUTbFmQxUC9vmDQplQ16RpxKIxa5ZDuZro1Ite9v9Qnl6NloXmziPLO7uWF7syXFaFIaIMfEPE7Mo20PFJMROaf0wbPZdNy7f8ajh5ecnw2cX6y5f/8C1DPlmbevV0wxQyq4snhQLNnKTMlW4mJlhLV1MNjQXCTR2BK1CPOcrW+jmIfBB09wniK2pZAMqKNI6y7JYgf3zdORs5GPUioUOaZdVcwHMo2ZaUzkM2HoO7ZTYioHWHUIGfNWO7wTSpxJTghOmYsZyCuKiBGNcTwQ48hhv+J8syKcnZHigWk6EBYZVoykZB4Vp0pKlXmaGcdEjImkFcVB6ACLX55zZUYozlFckz0JLdHJQg1KzZY1JUYEbsmF3A1Nvs0crkuaV22EojTCcdv7YvywHu9NETV5lNhjZoQsyrG8b8nAVW0BCIpf7u0TXkroZsUP/Ybf97wv44QTTnhBIN4jH/kQP/QbHf/hz/wDp3K+lxBXeYUfrT7hRcO78mhU6rE/wntHCB51atsJp+RkUp2cEylFRAXnhHmaEecY+oG+6xG1eFlqQarJYEotTONIjAmRQErZTLs+MAxDG9jkOOjLMhCWFiPaZDxPnx7IzUi+XHVpWa7O3UbCGkkot5uAGI9dFLYwaBsPTEoEehwQtW1GSjK25LT1PafIeDiw226Zpwlpf1ZjYhon4jRTcsZpIxi9Z73qONv03Lu34dVX7vPo0QWrtef8fOD8YsNhjARfkLYRcM7hKsjcSNAdc3gpxWRaFMCb8EcqoO3rrejOqSOlxDxHYM96vaILwXwpxTY7KrZlSTVb23XRRr7EejmSydakbY+892b6rok4Z7bbA10/oALTnJCc6UOlCw6VSs2Z6TBS4gQ50g898zgzp0LdH8hFmWOmC57g18xTJMXExfmKQ5koJSGipBSZxgO5COp7VJSSTaIW50yuQiqJWpOZv92Ec2opXBrM1G5v7zFGdknTMvfGsoTQ4zLDSAe3/gzk+LHl9W4ZxPa/5b6plVzr0fRtb12m5rgItpqHyIj3wlfqQuLaV7x4mRMnnHDCCSe8JxBB79/n49/2kH/8F/2X/Jwu4U6yqZcOsXik/O0/74sR72KjIcdTfppUynlBtUI2GU7KGZFKjJnYTNC1FqZ5tLjWEPC+B5RcIlpK66goVCrzHCmLdKpYOpA6j+96GxK5JRlyHMhuSYOqMk3TUZ5jyUvYSf6zSpcjkRCxTcU8TfgQbBtQKurEYlgbgaxVjgoabXKqo4QJKC3O9rDfM47TUWo1TRNljtRcceoIK0/XeYJXNuuOe5cbHtw74979Dffvn3FxsWYYlPOLFX3vudles9/fME2HtnXx5lkolZgyrr1ex9fD3iy7pmrxwSnnY9wqyNHLUnJhPIwIkDt7zXIxCZJz2kiYvbe1OqTIothqm47FJ2EbH6lWapdKYRxnnj65ZjzsUCKdF3ICCR7B7g9KRofAWA/M08zV9ZaYKyKOXB2hX7HZrIlxhpK5fnoFZWYYPCqZeR6pJSMY6UqzUAqkVIkxMk2JVCFpsQ1MrsSsttjwimuxtcXin3AKrsrxh1lEUXFUaYbwCiyEwmIBbNNV5ZiiZnUq0tLDFlmcETJpsj2qlUZKkwPW2pKnRGzDt3hBakUbsSmove5LZNsJJ5xwwglf8pCuY/7aD+B/ydv86rP/if4kmXop8cBviRubS2t83lfz7vCOiUZOc2ueVmoROhfovQOJZoJFSFVQWTHHjnkSai4EjczzFVIioV+jbg30VLHkn4IlKVGUONpA6JwylkSsCekH/HBOUYeUhCxdGsuFLVKtHPFOoWbiNB9lQ3Yk3Cy+4trvi6ULlRYpWwppnvDa9PW1ItWGTNSUL6VUUqnMuYA6cq2kXI+1FnGOHPYHpmlqp9GFFC11yk79TW62WgXONh19gLNNx6MHa1599YL79+8xrAe8d3TDgO83bA8jn3pr5PH1xBzNB1ErpGzXk7M1X5tkKFAlk7F9Rq4QS6Gk1NKwlvm24kVBgyWC5cx8sJI+WrqSqoCanKc4bUP2Uj4nZt6v2VqysxUnkiriloN8JWXYjzPjVOl8ZtVZ/oWKUIPg1RK/Mp44zcTpwJMnT5nnSGhenk4dw/kASYkxcv30mjSNPHrlghCEEgu5ZjP4U9sGIzHPhXGaOYyRVEGDo0gl50iRkSwB5zqCZnyoQEZQ/LIAKkLFUcQTW6TscbGFmcaN5C4SKvv4XQIgdfF32J8d/1ebW6PexjNb0IBtOqQAko1g1MVjonekWvVkBn/ZcWrxPeGEE94h3CuP+NFvGfinvuq/5DXXnVrAX1K84m+I5wIvoEfzXRCNiO87k4Fk6F1g1XmUmQioBLIGVAdiXjHPSs2ZzmXG8QB5wvcrnD+jSE+WPdUlm+LJSHbEQ6LGgu+gMDPlSOjWhPUFRZxNz0veUM7WNSBKLokcI8GbQX0eRxwOJw4tSm3NyyKuRdK2qTEnggiuFmqMSAjmp6hYLGzrLyjVTrTnUpjmGXGenNs5czuZnqfIdrtjv92RUzQZ2DwRnEnMnChD57k86znfOFZd5fI88OqrPY8erbi4GNBuoFRHGC6ZcsePfuaaH/3kzM3OTMKquZUBAs1AXoptEUoRcrZrL9XicKW2zUVNSCloaTlKVezkHo+IPZeYjTGJE6q6Jieq5g+QitRGYVrPh7hCzYlahdxO9bW2VCWp5CKQTTo3jSMlJjPN10pZ96zXHThPzErOSsxQqhDnCKUSRKhxoquZMAxcx0zKI2lOHHYj/mzAqxXsVUC1Q50yz5XDIbLdjuzHTEVxsdqaoBPwlVIioUZUE8FnPA4nMHiH5g51KwLN11Emas62NStGrvTYXVKOWyKkbbrEavuqLHulSqqpbe2MmBRphO0uMSkVqcViA0pGF7M/UMUfTeNyfNwTXlZ851/7r4CTxvqEE074/BDv2X3963zkW36YX775wdM24yWFE+Wh2zKfgww97HbP+5LeFd4x0fBBWzu1UEXwTum6gNgRcJMRuTa/V+KcSDESBkctqRlrlaFfAVZcJtBmtJbEgxKnRL8GqKQc6RX6YSnt+/FHrFrttN85bfG20U74F88tljhUy61jv9baIk3tu6dosq1jw3kpRzlSaUlL6rT5F2gJXIqg5JQYp4nDYWS33RPnkZwiSrV4UoEuKPcu19w7Hxj6yvnG8eqjC155dI+Ly3NC11PEo9KT1bPdzrz5+JrHVzumZFsU5z1eKhUhBCEXa+/OJVFwOO8oOVBSJuWK14JTJZdKjglpRENwUM1foHrHnKx26p6SdXZIM/nr8v4svmeVowe6VsilbXZUm4xqSaGSRjwcpWTG8bZZPXiPU4vbrblQq1jZnbcTmVKsS2WaJs7P11wAqolKtm1RtgLJlAqlgHYdPgTifmS7H9kfJsa5Ah6XsNS0XEgy0TlPDYmuWilh5zs639F7h2bFlUoQxUuAEigxkqO1vVPsdbR7oiVa2Q3F0X1RbYch1WJxK7fSPWsOt9estKWHiuJQICNVjgRFWghBqfY1LSTthJcU7md8NWUVCPI9z/tSTjjhhBcAev8+n/75nt/3gf+a97n+tM14iTFIpPQV9CXeaJgBurS0T8Wpsl6taKNTK8CzgryaE+NhzzxPrNZnlByb2Xpgc74xaQ5HFtAe0yRL42HP+X3Tp8/zyNn5BevNgCpk+7RjbK5VPlhhXoyRruupFaZpou/0mPSz/OzdTZtaTOQhBAArGWym8rtkRNWK+2rNqEDOE06BksnFnsBht2N7tWXez8TZOia0Cl0XGLqevhM2q8CDy57zs571Snn04Iwve99DNmcrRISYC1UrhzRz83TiMDumXJkrFFVUvBXVJWNoXTJCl4p1ZDgEFwJKZsyT+RqqWDKTyDE5y6RjRg5ZSMOd9K26JC7lihNnFRFLeV+x03tpn2txYdh7L4rznkKlFOtFycUkQVaWF0CElITD3kzx40EJDvrO4aikYvI25z2qnpwKh/3E2VmmX3mqDMTZCvN2+2TbF5RUK74opSrTlNmPmZgdiLctFuanyalSYqZOCekyORZqElrcVHtuzrZH0qFq9453HbWzCOQlXnkJGagt2tja1zM5F+vtyJlSjaCKuuUWN9KwpJ+1xnsjLEuze0Ha/UZuP2/aflAqLO3gJ7x8+CX/yffyOx/+ABCe96WccMIJX+QQ75l+1gf56C/+Eb6+2+JPW9CXGpmW/vkC4h0TDRs2M6XYNsI5Yb3qjYAAUHAtprYsUbWtBC9na2/uh56L83MbJEWbGdaOdaWd7k7jwTYBZNJ0wGnlbL1CVSnybIeBtBPknKyV+uzszErxxgnvehviqOa1oN6RuizdD+VopF5Ixt3nu2w0qAUh2zWlkd4PiFTSPDPNicdvv831k6ekOFNzRRG88wQf8KqsOuXyPHC2Vs7PPJcXK1555T737l2ACuM8M6bCnGeebGfeeHtLv34Ioac4Z9sMcWYKronczNrOCTEncpzIMVjfQmtIzxlSKUgWayUPSm26sJqr+RAaa6sYiajtJL7qQrRMYVZTIsUE1ZrHF7/A0jRRSoFsBm91ZiDPxTYi0uRY4gX1npJhmqxkMTroglCSx7lKjBWqQzWg6qH1m0xxZAiBfnDUKhzGmTRGQtcxrDZ474hZ2O0nrm4mdvvCYWq1IHfiaqsTglYkQElAbgljuTV/azPQVyhOKTiUgLjaTNoWS7y0r9e790mTrJXme1nur1orVQq5bWGWDUwut/KpKgVZSHEpLXRAm0xqKV6sx3v/RczRPuHz4/o3fTM/Z/Xvv2eP//f/8N/FP/zan+IXn2aRE0548SGCe+3L+KFv7fj9H/xjXOhw2ma85MgomtuB/wuGd0w0BDu9pSU/eedYDQPeKd65Vv6mTQ5SmhQp4b21h0/zxDBUVuu19T6IyXdqse4G14bXeZoA06pbe3ZhNXRHXXwptR3Qy+1pcNtOqLZm8BhvezLqrdzkOPjd+XW37O7u748dG9iBtzSfQkkR1w04hDkldtstN0+vGfdjs+y2RmkRe061oFIIqgQXWQ3K+WZgGLp20l6p6pnSzOPrGx5fjzzdTtwfHpBFSRWqtvLBAkihklsCF1AKOUVSivjWKyFqZKOUxJxzaxA3skUpy+G9Gd1bElKu7bReWmqSCillYkombcoZsO4LUbfsNdowbI3kJRduSaC2+6DgqpqB2QwH4AWRQmom85QifXC4JuUqVZr0q21JajJ5lu1biHFmirMR3rCmX60Y95nHT254ejVymDLjVEkt/leo1JoQL1T10GX8lJimSD/OeOkpWii5tCbwZfPTNiaNhOVmBldVbgVO1eRoah9RB93y81IBFUswU9dawa0lvCCUvNy7Fu282+7Y3VwzHfYWxwvWHl/z0Vx+IhkvH57+5l/AP/bPfiffun5vokR+/Q/9Mm7+6df5g//mN/OL3/8X35PvccIJJ/zUQc/OeOtbPsDf+61/np/V5VOc7ZcAYnVYJdqLNwO883jbJY2plZM5pwxDT9/3TLPJilQVWjNySpEYZ0rJqAjjeODyXqUfOkIXjJRkmvO6Bdxmi5mtOVFLYpr2iGS8E7T5L54hDdxuJ0y6ZSRhjjMxRhafrl2+SayWVuWcm+YejnGvi1SqtMK/pRhQdWkPn6FmgndQCuNuz367I83xSCyMkFVLe9KK9h1Ohc5VzjYd9y+t+Xu1XuP7gTkXxmni6fbA21c7rveJWJUkjlQLpSoiDnEOjxBjodQZAYJTomKvV04IoT1fk/WUig3/JVGdwyFtSC6WfJRbs7hW64vI1kBZW0GfdfS1TVA2kklVROFYpI6g6ijVUrDM92H3yNIDUYp1QMTmdYFGTmtmHmecFJz2OO/IpTLOltTl1RE6Tx8VF8wfM8WJXArOeUQDuSi5OFKBOQqHqTBOlSkruXlopBbzpFCRXNE5EyfrNhm7EZWAVvBdpQtQ5dZHIVT7PbSG70q5NVw0I/pCL5sZXNQIhijiFOeUrh9Yn52xOjtj6DeoD/ZaiUPUMU8TN9fXXD19zM3VFbvdDdP+QJz2zPsbUjTfT8q5EboTXgbc/MZv5h/7Z7+Tf+D87S/4Y/+/r1/l//G7voOH/9MWvud/5K//i9/EX/69/x0/rz8NJSec8MJChPwzv5LxO57yDz34rpMB/EsAuRbezpeELdT5Bcu25V0RjSXEFqDiROi8Z+g6rsu+DXOtNaBkSozM00iJEe8c0zQhTun6jq4zc3cpNuCCmIE5RtI82+l5TkyHG3KaqGW2JJ+lxGwxa2vbRjSJzdKlEaOd8GtrXr7rywghHGVSKSWs6M83IpHvkAtt5KPYqX2t5Gyn++TCfJjYPr1hOozWrVGlpQZlak6UGqkB+q7n4qznwYMzXn31IY8ePbSBc72hqme73fP05sCTq5HdITNFLPK1NA2/qElrWtGe+sTSZeK9I3gr3ys5ocv6ZjEOq2tG9wSl0nmP8w6tDtHU5DzJ1rCueTmyNKOyNKHObRHdsj2SKkeplTRyx/KeFHv9Sm2ldNJ6Jkp73NaSrepQNX9JVSMpCYsqVvt2ZBLbXUV9BAmEzqOqDKvBPB/ak4qw289Ms5IJxKIc5sKUoNEn28LgjGAdO0BaalaK5HkiitA7RUKwQklu/UBGmm59EbbYWLYL2h57+TjmVxFFXCu0dAouUMWTizKlgpRExTdzvIL0rM4esNpc8uhVKyE87HZM+2v2N08Z91vGw4FxHJnji/cXzQmfi/nbvpF/4f/y778nm4zvniL/yW/8ZTz4K39hccMx/NHv5p/99G8nnQX+5H/0H3zBv+cJJ5zw3kPPzvib/2DPv/11f4DX/XtjAM/VDiMVOUmyvkjwyXif/kmlzi9eZe+72mjYv+pxk6Ct+duGrkwtkVodtbg7G42C88o47UEqXdfhgz+awK3vAmLN5JhaDGomp5knb1zxqY/9CLvra+I8WckbzXROPfoRRHimHdzSo+pxAF76Cz4bd+VSn20CP35+0/jXAg5HjZV5jMQ5MU8z0zi3a67kkrAmlUTn4eK849HDc15//z3e//p93vdlr3Dv/gN8twL1bMeZpzcjT68m9ofMnIRUxMhF0zcduyvENRf80gVScaL0wUPJFj9braU7dB2ZSm56f/MIWCt1EYvb7WogymTRwDk3mdDylKX1iCxko5o/pnkTaGZ8ae3h7VWzWIBy+xoCVK2IOtsQ5GRejFJgTHhX6LyHamEBVMVJRZ1DRSg1k0qyLo4efPCE0OGDAxwxwTxnduOeQxSmmMnVkasSsyVCqQq+DfTLcyyL3yglSp6ppTcSrVi8LNnWO1KOKVJLrPIzz63KkZjaluP2uZdicjsERIWUCvvdxH7MlLIzQ7h6I4O6CAeb5M4rWh2+W+N8x2pzQcnWjB5jNHJ4wgsN/fqfzr/3b/9f+Ug4+4I/9pO85//0C38d5VN/43P+rH7PX8P3/Rf8e55wwgk/BRAh/dyP8rt+6X/CLxxu6OULa7rKtZDI7EvkaSlsVFiLI4hrMfAn0vG88InpPsNVpvUbvFB452bwJW2nFkpN0KJPvXMtBaptDsQa7nJOxFZeF7xnt9tCrYTg8d7fibS1rYPXQC2FGEfiPDIfdnzq458gl0RQR2w+BJFb+dSxERuaVMokNfM0Ukpu246lvbsetxTQyuIaOVnkUos5/C7RkGot3DXTHntmz54cKyVW0pjttRCsEC5PeJdYDR0P7p/x2msPef31R7z6vvtc3r/P6uycimc/ZZ7ejHzm7RveerpnnCqxuqPMqGQb9jn2LRipUjU/gD0f6EJozxWgmkwrBEqtTDGSpVhTXiktIrXigqP3HnVCLon99kBKERumFRbPgSiiSs6tLVtoKU76LDE7/oMj0ZDmocmpkp2ZnGt7T2qppJrxzrYTNQviK6Im+UJtSNdq7d0+uGbYx5KmKuZrmCuHMXF1NbKPMEalSkvfKoWKx/lgxomSgNIM7pmcIynNpDhTuohqxntALS5YpNCyotqmrj3B9mTvktKcbknsQm5pmzfJhTkmKpHKSKqQcyWrN9O794h6+0moZjRXpMnZGrFbtonizG/jT6lTLyrc/ft851/7rwjyPfTyhSUZb+Qdv/WX/mbK3/pRavr0F/SxTzjhhOcPXa/5/t8U+OWrT7H6ApOMWDNXZeTjyfPd40f5k2//dD60fszP2/wIX9m9wQfcngeuPxGO54BC5TPTOeE639YRvEB4V9IpliG8VMDh2kZDxKRUpWCal2q9FNM0NkO4Yz7ENtS7Y7MytFhQWkFZqczjxLjfU2tmmnY8efwW55uzIy05Drhye7JcSmkG8EoIgZu8ve3BaMO1yOcSjYVcqN7+0HyOWbwNmCKOOGUev/kGTjxP3n7KNDXJQ6mkEik5oloYes/5xYqHD8955ZV7vPq+V3j0yn1W6w2oZ7efefvxljfefMrjxzfs95GMp4prp+31mF7luEM0fMAHf9ziKLbgcI1k1CbHUbXiPFI6Rtsuvo1czXyPCKELDOuBFOMxeYqymOQBsV4MJ7UVxt16dNqL1V5bKxSsNR23R4p5XHJJpJQRSjOe22ZEvSME+yWhp+vAK9Q841VwzfewXvV0nREeUY9zHbU6YkwcxpGb7cTNdmQ3ZebsGCPEUi0KWS2gAGkERtr7WrLJ+0qklIjUhJNqzeAUcsmoK5ZERTE5YOu3uEtA7VXn+JyX16a0RC8p9lxLaxAvOGKppFRIOJAIasTNXkPb5Gi71lYLuPAWaIZzXry/Z77k4T/8Icr5in/zj/57nOkXfovxF8fM//G3/CPo93/vF/yxTzjhhC8CiFB/+of5DT//uznTL6xkKtfC98eZ//jpN/OH/9bPonzvJQ/+RuYHX1H+0Ee+meEj1/yaD/81fsO97+GjIbPi1ED+U40xB9yUX+7UKWin+7VSiqAKbjlht7nfStqqUATiNDHuD8R5pkjH47efcH19xX6/tejbOwlFJbdOh5zZ73bc3FxTnaOWwnjYs+r6FueqTTffnCLNF1DLs36L3KRTaNtoYN/Le3fcYtgQbG+YOkt1Ovob6iI7sjHSIkYrh/3IZz71BmT5/7P359GWZPldH/r57b0j4kz35lhzV1XPrXmkkQAZ0cgIMPgJxLJ4mMlg+xk8LPu9BfYzLBYPG4wNz/B4GBD2YrKeAQuL0QKBJaHBtNSSutUtdavnrq7q7hqzMvNO55yI2Hv/3h+/HXHOzcqsyurOsfr81rp5b54hTpyIuOf+vvv3HTg+XJEszpoUIzm2VAEWiykPXFzw6CNneeyxB3n44YtcvHiexf4ZMsLR8YrnX7rMcy9c4eWrJyzbRMKciHABLSL1nDLijOtfgsBL0F1F8J4OE7gLbGyFc7IAPNkAKmEAGQbIpO9ZO8EDVbDQxfliTggVfR+JfSbGjd5A1EL3wOhAznkojlKF7DPqOVRdOd5ajifEJHRdR/COytv9qhCCxwVPHyNCT13XVFWAAE6tLQ/O9s95E2b30ehNOStdTKzbyLrt6GOi7SIn65Z1EtoodMmQ2Cjq1wQ543Ox7M32f/Kg7THLZtW0+SqaJC1GCJRjMopg7CIsgnk1EXyhmCmDBW7RqIgD5wyQi0NTJqkBPJw3QX0qQChGm1Jh13oqV+Fot7yr+67kb3T8s3f+I+DWg4wfON7nz/+Xv4P5T77vlm97V7va1T1QIvgHH+BT373Hf3v2fbhbnLVzrC1/7Jn/Cx//Z+/goZ9tmX7q8+jlq+xPJzx88RzLJ/b5B7/82/jEv/4g//mb/hlfU0VmO6erO1rLWOO6dF+uM74Oe1vrrXLKaHZkMSpH3UyJaivIMSWz70zQx571ekXXrpFKePELz/DUJz5Cv16zOj4gdWukNHOIWGCZwmrdcXh4wmQ+J8dMu1zTT3qjzDhK8rQWXQikmEcqTYxGndJMoeAY435I/2a0ZLVGMKnSZ0WdI4nQ50xd1+S+G3M9TNyeSW3L6uSE9XJlzlo5ITmR+w5iS5DEYlbx4AP7PP7YBR577DyPPXaeBx7cZ7E/B1dxfHTC8y9c5vPPvcjzl66aYNlV4D2KR0VQ58iSjVokDrxD+9JoYvkcIYSNWH3UBWRyTFBlpKR5SzYNTC4WUlpcqGLX0yE4rai9YzaZUIVAu+5YSw9iYYRaQIM4TxBf7G/twBj0kE0OykDzKahomMKAATpXzgXlmNfZkskVpet6vFfq4AneGz0vW/ZEHyPZmcYidpFll0gR2i6z6iJdhiRCUuhzJiWBLGU3CyAqwXhosfFVBck4pzinBkI0WYJ9NveywXpZUci5ZIJsTb62lClaQFfBpTY5GUCKuBHYuqI/IRg1KmUhZUiaLMtDBVWzu7Xj7kyOk7UAOBlffVf3T3W/4d386xd/9LZs+38+vMhf+lP/Fmd/4Kduy/Z3tatd3f3ye3tcfc9b+c5f9wHeXuktn2b81PosH/+hd/Dk33sOfeESabUyU57jE+TqAbMvTHjzs4/y0e6d/NXvWvNHHvkhnijajV3dmWpTIHTxvvzrf/MajZStES5p2LbmLEznC7poouo+ZYJoaZagbdes1kv2mynd0WU+9eGfZ39vQWqPkdyimixUjoHbDn1S1queuhEkB2KfTZfrIGqk8oEUE1JSpHPKoELqlXbVE0JDVikWqMYrcrhCzbLwCAViVlxWupTIzhNFWMfIfP8Mq3Vra/XOIdmselfLFUcHB6S+J8dM7jKp7SBHKp+ZTTwXz8959OGzPPLIWR58aMG58xMW+xWhDizXyouXjvns51/gpZevcHiywtdTVEp4m7NmMnvbxy73iKtQLyQp9Bm1iUKoKgNUKRZnLcsBSTGiyRr2LNBJxImJorM4O86a0ahEoqVxNBUhmLha6wAoPliORSo0LnEDfciN0x5Ra9QTaiAGQdTARs5K10XTFDgPkordbrYV/JhZd0rTBKbTqWkmYib22AeogmZPIrNc9biUqCcNzjvWbc+6TfQR2phZdoll15seJWWEQOU9ztk+BcwXKjlXxOqxNO0VitGnUmpJsaPrWlShqorBQEyFG5WAtNHIFBqZlvc0iIYGIJJHxOHHx5aRD06VygnBOXKWotkwh49x+hHCoA4B1PJTTn267MYa90u1v/HdfNuf/mn+8PlP35bt/9mPfiePft8OZOxqV2/UkhDI73yC574z8j0X3kcjt3aasdKO//7p7+LRn1yRn/4CGnsYJ/gJbc2ox33m8zz6kw0/+uRX8evOfYSH5s/tgMYdrD55qnj/0abgdWk0TBzsvSAE8kAFCWbh2XZpIBkZnShl1quW5fEJi/k+pMTRlStUoub0o0YIsdVfGByWcs50fU/sk9FyUrJr3hntxvIzhqbOmYZCHDmbINyCDAxMiHM47ywieqs5s57PAghjSqYZKMJnV57rvK2ud+uWo8MTrr58yPHRir7rIVlOBtpTVcJiWnPu7JzHHrvII4+c58LFM5y/cJZz588wmSxYtpmXLh/x7IsHfP7ZlzlcLsEFmsqTo9KlaBMb8UUXIWytl4/7LSKId4S6pqoqolpGifdmcWsJ6Z05M3lP7YPBicL/12yi/pwTCUu/Vg1FzwIhOJRQnJIyzg50OTtFb5CVvo9kVcQrwZXznW3l3SyIs9HrvODE44tOwjQP1oj3fWK16vBSmm4vdJ25KZhWwrI8YmecxOw8zgtdn81tKipdn+j6SN/Fki8BOMzJSjwpS0nr1lFvYkGCRvPru461W+HwdPNuywbZdBLD5GwYVWz/93qhj9uUvqKcP33dqZqwe7BQFvDl2iuEM8CmM2ACMLsY78c1jF2lX/NNfOd/9xP8kYsfvy3b/96rj/HAX5relm3vale7ugdKBH/xAp//tn2+82t+nsf9MXBrf+c/E+Hpn30Tb/+lj5P6G1in5oSuVtRPX+L8Bx7nH3/tN/Arp59jKnmn1bhDlS2UbAMC76O6eeqUr9CiR0iYk5ET0wxUVcW6LSFqY7MF6/Waw8ND9vbOAcJyuWSxmJdVcaOkODHtgPelycrKet3SFa/gmKJx+n3NaJ+qmybOXs8udMsXKLasAi5YGnPOxQ5UNk1iRpFMoQNtBbBlJcdEFkfMmeXxMZcvH3Bw+Yhu1aJRy0wk4SuYzSr2z8y4+MBZLjx0jrPnz7HY22PvzEUm0z3WXeb5S0c8/9Kay0drDk46W82fVWS8TQlyLivjJfxNwGV7V67oJIbjajqNYFSkojEZdr/ve8Q56nqCr2wCwACknGMIqBClhOoV4CGF2uOE4DcuU6YHd+XcMOovvBcqHGA0H3tu0TLIAI4GOtXgYDWAPWHI5ogxsVq2hKDUQRD1Ng3z1oRb7p9AVNbrHucsnXuThTF4FDiCr9AKcsm0AGviUXOrUsAHIbhAcOAxbVFOFvZoWhc/ZqWozxvq2EhP0+KqZcd9dNgqWRvj78rWtSnDZwM2zbD8Fz9ejxafSFHSFIDMeLfhla0Mj13dH+W+5iv4nd/7j/k9+5du22v8wsnjVD/8/tu2/V3tald3t9xsxsk3PYH/tS/zOy68j7POaNG3qpJm/sHBN/Hgz2XSlYNXfaymRL58hQsfuchPfextfPLhMzzk13h2QONOlAGN+w9kwOuaaBgrn8E5ylkTj7gRYA1ibaOYwLrtuHL5KovFObIqy/WarOB9xRCQ58Q0EAPVRZLSrlvarkcRYrIJRlXXII6kRd6slt6Mgi9Nd9t2VE1jjS0QvMd7T+oG69bSLA4NH5a/EaqKEEIRt4vpBFI2oHRwxPJ4TewcOQVQQS0HHheUeiLM92r2z805c3aPM2fPcubcWWbzs3S98OwLL/H0s1c4bj1trshuijqPcxNUQ7H2NTcoVUFyCbrLNlHwDHFwWgThjhCK3WtOZM3m0OQg50hMNt0QH7ZW3BXnBS8eCQ7RhMOcpVKO+FDZNEMFkWxULjAHKsCHkr7edaRk2oHgLE2971O59o2u5HxpqAGVjJIMfJRjbvvqS0gdpJxJbUKTCd+dlMwSD1UIVCGgRQAeszmbFQ03KdljnTqqYI5NbZfMsnZIVJeAdx4vwbbpMsGZdkUK2K28ZzqZMptMWK9XxNSBJKN5WeKF/QroMK0YgMcA1rCJjdPxceUZp6YfeRDoj8nzHgpFDyCXicYwxBoBTlbux1WML9fyDzzAf/NP/hbfcJvyKi6lE37vv/Y7YN0C69vyGrva1a7ubklVw9uf4HO/zvNfveuH+ar66LbQpv7hZ7+OR3/uOWJ+jXwGVbRtqZ5+iXM/9wT/4pu+lq+v/xXB7exub3dlMmmYaNyHdfMajSioM6Fuu450+YTDgxXr1WqknDgnZYXbKCpt2/Lyy1dK092zalvAbFUHUbc4o2CZ6NUa2rbr6Pre5gbJ1nvreoqTYPQcttq/bNkDqkLfR0LTFEtTcN6oRiq6aQrZor0M2RlQRMiKx1GHitVyycHVAw6uXKVd9UYxSomcI15Mi+IDhMYx25uwf36fxf6CyXSKSsXVw46DoyOe/twLvHB1TZidI9OQpCFqRl1dmmEDZeboVfj9aroHp0arsUnMEC7oCjDyNv1QE4jnkOn9AKjKVGGckDikAA4pTlUbOtAg8y+0JxQfHLgKSTo6c1HIPSKUYDsdAxs1mg5EnMNpSbpm0Ooo3tsajImaTSCNelBIKkjO9GTWbY9mR117Kgz0SbYJSJ8TKWWjf+GNJlWOj3dG0RKE5DOaBzCayZrwA0WpaHWcZgMZaqGP0+mEM3sL9hYLcu6JqyGHpUy7yiEaryG1qZqWqU0uDsJj1MwAFMrgbTtzJOeMM/sue4yTzQSkJHcMjKktxLEDGvdLOc/f+fl/zBl3+yhNGYiffeZL2saldMJFP781O7SrG9b3H5/hr3/tV/CW9Ev3pYhzV3enpKpxTz7Gs7/6HN/87o/zDc3nmYm3KT02ifhSm/ukmf/t+AnCPzxHfOaTN/UcTYl86WUe+ld7/L2v+Rbe8+s/yq+eHO0cqO5AddEjsb3bu/FF1U0DjaPDNUmVo+MjLl894HDZcXjS8dKLL5ewvIqUjErjnHHjuzZydHTC1SsHtG2kXXeAEKr6lI5iXDEWSChdzGWS4QrtRAh1jQsVMacxjyEXgW0q9qNdikxLY6giiLdm/NoebRw8lucPrlSx7cpyubI6OuHw8lWOD47p1kqOZv+qKVKHRGiEahKYTCum84ZqElj1HS9cvkx66SrrtufwaMXLV0+Ifsr+rAYJtNHRJpips/TtbHSowb3IqRKzFhwgeGcAKKVYKGCmk6nqQFUHRJXgTGdRVTYhETEtgBOb9qAOyWbrm1OCnHCacR58eW7X5QJmAOeM9uSMWlXYV8UeOBfqm93WNBVZo626y5CrAlD0L1gzjwixT6iYK1TOBWQgJurvI7Hv6Sthmmt04shE6CPOeWJWYp9xzhsQEkcIDVMqOolGxdNMDkIVKkQ8MSbaVYTUQS72BX44Lo46OCZ1xWI2Y28xp2kqA3bDJMhvU77sytHidmZoQEY6Xs7FwYoBcOg4qdgONhzd23JGnBkZoGrfig3zOB0tIGVHnLp/yr/rrSzkZ2/ra/zTk7d8Sc/XtuX3/mu/gx987z++RXu0qxtVVoe292dzsKu7UCK4poF3vplnfuN5Hvp1n+ffe/gneMhnKqlxOKwz+tL+KiTN/Gyr/Ikf+y185T/8GOm1phlDqZLbFv/ZZ3nsh8/w57/i1/Gut/9dnpCwm2rcxkqqxOQh3n+p4PA6gMYnPv4ZjpdLluslx6sVqy7RlG7UyQAAo3FJREFUJcfJ0tK/LRlcCaEChHbd43ymW0euHhyR1NHHRFKlqhp8VSFdR8qWFr5ed9R1TR8TXd/bREPBVxVVXXP+/Fm+MH2W4/4I1UROSuU96rSAD8d6veZCCMW+FJqmIVQVzns0KbFkVIRgFKhULEODt9Hf8brFi9CuVjz3hWc5OT6mW7ekPphtKiYWT2pTlVBVhLomqnLl4JBLl6/Q9+WPiwZS8vTZoZOKmD2hmeCbKT4lS4UWNY1KsgA5LSvZlhmRTAkgnpgSPjtijHRO0NQTgmfSNHTrNaqZUDIxjFqUiMmoZ0jJN8kJTRHVVFbUB22BgZhR0FyyIEYhNPYYGLQH0PfW2IsE6rohlQA9y9GwxXoRo9apqgGpnAk+4H0g+GAKj5yLu5c9zg3jEl+hrjgvaaZrIylm+qyIRHzMVMV5y1V2vnPXgUY8gzVuiyal8oKTjEgmVFBPPE0jNI1jOq3Z35tz4dw+i8WMtl3T922hOSVC5e34JUXKuYcSMpm16L1l4za1pdOyCU4RdGMgTNhQ0CxUUXHBJkDDdsyVuUxOhmnIwBHc1T1b+iu+nu58zd/5K38ef4sTv6+tv/v1bwF2zeuudvWGKufx+wv6r3kLn/nuCb/9Pf8nv+nMB3lHtWImFe4WaiE+0a/5ne/9j/jKv3CFdPXq63uyKnm5ZP+Dz/OZH3+Cf/rIV/J79z/J4hYnle9qU5lMTO6NT5367FNfYNW1xNQbjUUcKtUoSB7KqECu5BEoMWXariemYO5QgHiP9xXizZ6273sLLFMTcSOWcYHzLPb2eNPjT/LYmx7jpUuXeWr5adq2JeWenBJOjGKjGO1IAfFuTL/23rIasmY0bbtWGe0oxZ4UE8EHSJmjg0OODg5ZL09ol0vaZUtOFUpt763oJBDoo3Ky7JGXjzg6XpUmM+CrCVXl8KHG1w3JBTLOMqbFLE/H/AUTQzBmMeAKc0rIOKOrjRZyRYgsQzM/2KoqVV3hgzfNRDYhtYRgU4RkAEJt1INzlvbtiiYFhtwHX8AGFN+nIvTauC6ZQDsXcLnN6Bn2xXQGvgjAs5qYOmcdV/1VDVB4N4jaYwEoauIMV9m1IlqschN9zOV8ln0sowQtwnwh4SShkhCn9vpVyVZXew8+KCGYRiP4imnjWMxr5tOa4IV1jqYXKlS8nIdzNBwTSvc/vO/Tzf92YOfpwyKn1p+G8zY80oIX7QUMzMioBRmv1VPP2dW9VN2v/2V815/7Yf6zc5/ldgTyDfUbPvab+PzVs7wp3R4Xq13tald3qUTwZ/bpv+7NfOa3NPxHv+5f8F17v8AZJ8ykGilTQ5kj4RdHn3oxnfAffPx38fb/IZE/+dQXRcvVGMkvXuKhn32Qv/7uX8Gv/dqP885q50B1OyulYu5zH9ZNA42T45YuWZJxFsiiqB/J5IViMvDSyyqvGgWq76Nx/p1NPZwPlnEhDudNST8ADRCjU4nDh4rZfMGjb3qcR558goefeoqnn/ocIhEhEXMkOFttzqN2Q8tKegan+MrbPpcG0jInSrpiGSFIoaesViu+8LnPc3DlCt26I8dcqEO9rUg7h5DGdPS+h/U6IxLpI/gQCFXAS4WKWQArNvZKmgioCaad0Xg0J4YAPGUIljNHLAtBdKgL4PzI97dFf5sCuO1m3gXqUAORtusBA0QpZdNUZKOpUTQKQ4g12Oo9apoWZAgCBNiACR0bbAMrqmKC7AIG7FDa1EfKuMRJETTnRC7XhT138G1yBQTYh2jOkb5XfLB9dl7RZGGQw+tnsXMZU8QNbkzZrgfnBrG5OWiJc4iKBQ9pxlcQasVXUFWJqsrUFaA93eqY1cmqWCSXRHFka0LhQAftyRYdSjf0Kh1GUmyAwfivbD7MB+CgqqSYSM6S550DcQawDYhqOeYbjceu7q1q/413823/zU8XkHH76t0f+B4e/E9aHnvqI7vZ1q529UYqEdxiQf/VT/L5XzPl67/5k3zL7FPsOTOCyWT72yOnF3Udr55hkTQTSazV7Oh7jGb+hz//m8n/04O4X/hFs+n/IkvbltlnrvDsRx7gA+98nCfDczutxm2qhPWc92vdNNBIUcjZLFJzabaVgdYxHIA8rsQO6duazR3IXHYMgMznC5rJlMODAwxYDGJYKdarnqqqaSYzFos9e/xsxrlz53EhmGtRqK053uLBD0LxEIJZ8IoQ6qrcDy4Yv3GYagxOSH3fs16tODo85OjqAXG1pl935JRIMZFTLoAlWVhdVpSAUCE0qNYoFc7XVM20OF95EkpMPRlPTtFmFCWNWsigQ8rjMFGwSUkWm2gkcaj3ZXyhIEWMLQ7v/fjeU0rEGKkrP4KHUehe6FmbJfVBF1Eep4w2rlkFSTYZSllNcC+OnHQEGzaZMJBhW1MKM2tEQjrcU/puJ4ITsdBAsduTFscpAe/FwutyNsqYJpJ66tqVNO1g+osUi9mATQG8L0J6yQTP1v8N+OYcjfZUKGF1cEymgWYaaCYN83lF0wgQ6WNrtKmczBa46EeGBHa231PRstjQbNDTbMCHlPe5qXJtFhvhoQywRsjOQhGlgEFnlsFaROB55zp1T1b8td/Me/70v+KPP/BLt/V1vvn938NDfygTn3r6lm0zv/Qy7/i+P8gnf/dfuWXb3NWudvX6y02n6Lue5JnfOOVd3/YZfs8jP8WTYclMrD1L1nmUhdjyHOxv4/ZUI22N1FuNXM4dH+4u8L6Tt/FSt8fz6z0urRYs//YjXPyRj5FWqy9pvzUlePkK5z7yAP/o276BXzt9mpnbAY3bVvexzf1NA42sFpAHJhDWoeENjqpqLLBNSybB0EyNQWbmlDSZwIULF3jowQdZL0+4evkKXduOOQzOGRAQ55hOp8wWC6q6IcaEz3Dm7DnqqmEtK8SDaIV3Qkr9lpzANAEpG8XIhwBlhXsAFlJyJWIfOT4+5uTomIMrV1keH3N8cGjvMiVyTBbc5hScWdqKCM4HQmgI1RRfTQhVQwgVVajwvgG8pWqTUBxJIzn3JkZ2ihNF1D4+tFC87HiVOYJiidE4cAHnPeJSOaQy0recH2hNQ0heLpkSgT5lYtsatUykCLwNb4hiRK5R1Gwr5ilZkx+LqB/nCFVNSoLmwXHJkh9sYmXXhAGAApbGlXv7YFTNeMls3qbtRc6Q+gSainlAT8o93iUkeEI2GtlAMxuvp1EvojgxQ1hfuXKtFScsV3I9UEuOzwaIQuWY7zfM96bMFjMmswWTyYwq2HEUFD8AoWTnznm5hvi0mTBsS1i2Jw6Dne9wvlQpqegFcLtC+MrJjptIcRzrRtocAMWRyrGjTt1r5b7hq/i3/9IP8u+eef62v9bRRy5w8eO3Nv07n5zw5A+18Ltv6WZ3tatd3WwNwu+3PsEzv3Gfb/uOX+C3X3wf76iusOd8EX4beOg102N296bhy+XvhBs5uxml18RSez7eT/mbL72HH37/V3PuFz31kVIfZ8Jx4uIHP2G6jC918UoVPT7hzKeW/Own38wnH11w0addWvhtqKxa+qn7c8Hx5icaGAWIxJYNa0aTBZ+pCnmgmhT3TlcEsFXwzKY1Td3wyKOP8fhb3srh4Qmf/ewXaNuXQRXJJTBOBC/Q1DXTyZwIrNYd3gUWi7PUzcToUaJICXazJteCz8ypKZBicbjy9guLKKRMjkoVBC+BNnacHJ1wcnzE1StXWZ0siX0mOEcqOQ3ivGU7aEQwAXhdB+ppQ5g0SNXgJzPq2QRXefCOKMk4lOVzgDJFAcyiF4eKJ2tkaJ1tLmRi6jzoN7DV+43guOg8sBRzcc7ctcTjxBeHorIK35sgvKpCORfD1ERxWcddE0ALXSpnC9Fr+0jKFnBXTJgKmC58q0JLsrT4zWRocEmCzfRDtSSCa7bgQW82s5rL81Im9omsHSIWgigIftBwiNLnnlwoYN45gi+WtmQ80ARv7louUwVH09Q0TUWoTM+hKZNibwYBswnzxZzJbEZVTw2IaiT2S7J2QCRlIcZIELNhHo7BoJmw0UOhS3GNUkOMFubE/knl/qwlmC8LweQ4ZvebjQqHKin2NtEp2TEqbgRnG6Ch17zgru50hYcf4o/9/e/jWye3/w/qN7//e3j7f/cx7k9m7q52tatTVQxPxHukCrgHLnDla84Sv+qEbznzGS74E4xNrmTJBWAoa1UcUAtUanbtSbXQqQyQHOWOF5Lj/esn+VMf+jc4+4NzvvJ9L8GLL6MxGr8/Z1Lb3rIJucZI9fxVpp96jPe9+218ff1hzsjts/b+cq0eJbX+ja/RyFUg9YkgUCG4lEo6sxLw5JxI6pAQDHmLEARiTkyqirOzGas2cWaxx6yesVicp2nOIHKM0wQ5ktuO2XxOwHItmtmE9cmK41VnYmwq6qZBSfigaE7kaEnV4PCuAgJ1PWPd9WiCuq4QVeLaOP01HnpYnyw5Pjzk6pWrnJycsF6vS1BcRdf1xJgBa2BtRd4a1el8Sj2dUM+mSNPgZ1OqvTnUAbwQCx3GOU8IRgfSAbTgqesph+kA/IQcS9q25hJ+6OlTb3S01OO1p0ItOM85knoTBAkgFcHVOAIp96RUgF+hkHkRnPc4ASUCES9lGqXWzCaUYENYRKDPma6HFM061ocao3AqEozWpqWBxtlqfMqJTCxWrSbMHvQUBi5AsmkxTMANWRKaLdhPRC3+3DkERVwyACFC5QTnHX0fcZWnDh6HoilC6nFOqSth4gXvMkikqYS9ubDYq6kbE5sb/S2ABFQryJ60UiQmtIn4Cvq+wwdPLdCdrIsAX8o0JxfaWmZIonfO2QrDFojUQh1zLmwENWouYjnbaoRzArlkxwyKnLzRYwTn0KKlyYNlsCuACcbp067uXulidttBxv948Cj/4JvfzAP9Z0l9d1tew//Yz/NN//Uf5AN/bEef2tWubms5j5s0yN4CqWt02pDnEw7euuCFb4FveeIZHqsu41F6hRMydQEYaxV69Uwk4VGqrel2UqNVtRr5VD/h7175Fv7R+7+Rt/2dRP3Bj5EODuFmrWu/iNKU0MMjznwm88MvfCXfvfchFrIThd/qWqtC6+FL0NTczbr5wL6S8qwKosVDyTnUO6OeaL8Ry7IRBjuxJOvFfIo4c/UR76maCVVTW8q4Ki5RJiQdmmuEjbC3j0YpCVXJjpBCS9KIkvGuIriAEw86BLM5PELlA3WoSNpDoXet12uOjo44ODjk+OjEXKwKUhwckcxZScuqgRKCp24C09mE0NTUTU09bdg/f5a9M/uW7J0jfdeSB+4+Jo2W4vakRfMAxUlKPMWJt7ymrVx75+x5qqPmYFg516yoG4g+RkNSzCJ3WKUYHJ4Gan9VmVuTF0WdkOOG95/VBO8xKm1v38WZ3kTV03U9uIzXoh/JueSl2DYE09Rs5iMUNLIljk6KlHC9wQpWddjPEqoXsOlL8DSNw9dC0cEzmTUFqCiaelAhiKOphGnjmdbOhOAhsLc/4fz5ffbP7FE3FSpK37Z0q47V2sTmDIL2DLHviSmSRHFVQFzASTaXsGzjOQsjzBv3Jx3eplGetFz1Nl0y7UkenaKkpKSX84SQFNP5bFH5hrwMcwJz422qIG7T1O6E4Xe2/LlzcOHs5oYq8E9/5O/d1tf8nw8v8gNf+SCwvK2vgyquv70vsatdfVlXoUe5ixdYfcXDXP6qhn4OuYE4VdIjLb/srU/zHec/ygV3ghNlrZ6ufMa3GlhroMOzLy2V7xlMZHMhZwM8m4S/e+Vb+N//5S/jrf+0p/q5T5KOj2+/tk8VPVmy99kVn/jUI3zw8Ud5yL+4s7q9xXWSHW7p0PQGt7cNkkFymT4kS5gWLHXZJbykQvMIRQPgigjY431gsb+H+jVt36JOaaY19aRCAkg0hyhzqerwqTO+fhH4rrs1WRPVpGYym+CCWPaEZpRc9ieSYk8QmDYN7TrgAa8QyopwH3uWyyXHx8ccHR1xcnzCet2RYrTJQrFMjcnE7qblEKraMZl4prMps8Wc0NTM5nu4KjCdTJhOprSxo++K/mOgvCije1DO1tAD42MYBNlbx9kVJ64hz2JoPLMma8qdmIPU8AHiNisHQ0L7qB0uFDfB4X0woFEsnxQlFlcto0xZIF5KIF7RNpHJdDGionhf7HfLSnuy7nkUPhf2jx1DAaSAJQEJCSeK326gMyVkz7QYofLUjUN8xvuMqzISEj4EmukENNCvW/rU2bly2ASirmgmgSrAZBo4e27OxYvn2DuzINTOdENd5OR4RdYlMcXSvAtKJsVEzIkkMHFTXFWZyD5p0b1gADvn4vK1UWyM2opiLjBcM5qHyYcdDynTkWvP0/C1sSmWUT80iNAHB7Dtvxc7vcZrlz93jtUvf9uXvJ1nflfi09/xN27BHr12/dnLb+P59gwffrfAjiy1q13d3yWCm82QNz3CS9/6AJe/c82/8a6fpXGRXs1lcz+seUvzEo9VVwBYqyero8O+r7VirRVJHYRD9rS3RTF0dJI6ycq/Wr2Tf/SBb+TNP5xoPvTUnQEZpTRGqhcO2PvEo/zIN30V7548SyM7rcatrCOtCEt541OnnHY47cskI4KC8wlRTwhKcIrXjEq2Ff3iICUo3nn29hYkEZbrJarJkq2rgFnP9qAJESWlnpx7UmwRZyFrXbeiSx1hEpjMJkhwxGhJE2ZNm4uAO+MUau/xqmgfofJoygYuDpccHBhVqut6W82OsegLiu1tzuYsJUIVAnVTM6k9k0lgMptSNxNmiwUXHniALibEW2Bcipk+xmLf6/EOVFPRIgxiYCspK98yuDQNq9RlvDGkmQ8Nq3H4rcE9BUqKyN05Z2nparoBKfcZ4LAcUYqjlSOTxaNqjkwxFq2BcaJQhW4d6WNvVDjviiZj0F4MDlS2+u5L7oM1z7aaP7y+LzkdPijBZaO4yabR9lguSVbFewg1ow6jahz1tKKuGoJr6HtoNdPGHmJvoMUJLnjEC6F2zOZT9vfn7O0v2NubUdUBREldwkug65SUOlJyZHElbTPSxg51Qq3NlkPX0OTnAkLLBGfI8MCmEybqLgCvnJ+ROsbgEAbehxEgDO9/cy1sgMPw8yjOz8p2NvhumvHqJSHw4r//bg7eoXz6//q9d3t3brr+/c/9Kr7w7zxK+ugn7/au7GpXu7oFJaHCnTvLydvOcfB2eNvDL/HW6UssU8OL/R6XuzmX2gVX+xnP1Bc441cs/JqJdExcTy2Jda7o1JNxTHLHVelwdEwkcaTCS2nKZ/sH+Kuf+jYe+jHP7EOfNbrUHfw7oVlhuWL2fOZDLz/KSxdrHvJGPd/VramjPCGcyBs/sC/HJUKkDkITQmnCZ2Q3wR+3XDl8kaBq+RpgTghaqEHimO/tsVZl1a5RLGAu1AFQa041UgV7nhLp4hrVRPBC37e0saWua+rp1ChbxXNBRHDZ3I2yRkQxfmDKdKsVoonjw0Oef/4FlsuWk5MlXdeRcyo0oFSE1xtaijgIwdM0NZNZQ1MF6iYwmU7wdc10seDM+fMcn5wQs1ojL0JKmRwNHMHQbMrYmI9lOz7+V9W0DoIW4MG4b2BTDiVvmlxhFH1778nOEiOHlXWGiYlStBuMtC0LVDQ6ziACV5VR/J4S9D2sukgXs1nLuiJWH8XeheLlTYcypMLnlMfJkPfOzqezfdYikkYTKScQsyGuq0DKJjp3Abz31HVgNmuYTBqcD8ROafs1q65l3bY4IjU1vvLUk5rZvGF/r+b82QVnzy2YThtCEEKA4APqA2Rou0zWjnadWPeZ2Ee6viXmiFTlQ3HMNTHBd5HeF5e1zfkyWt0ALIYMl3J/oa7ZqVAT6zs9ZcUMp0HG9m3brzFO2gYq2q6uW8/+4V/J6qFMruAz/9b9pzn40F/+Os599NY6S+3q7tfXNs/y6f/3b+fCh4Sz37c7v1825TxuMad78wO8/NUVvPOYd194mseryzwvZwxotDOurKc8xXkAGp94cHbE49MrPNZcZeHXZBV6DSSziqEikRAmkvhMf5GfXz7Jj7/wDtbvvchDP/ci6fIVE37fydKMrtfMn+/5zLPn+fRbH+Ct4TmC8zutxi2qq2lOdcwbnzq1mAeCr9mfT1hMJkynU6bzPdRP2b+y5LPPvsS6iGZtOmBCpZxs2uOrmslswUkbAUc9mVBPpogLxTHKGl5fhLCx70ATIVQsu54YE5NpRTOZjI2tFFqQqmkUpLKV/9xnjg+OuPLyS3R9yzOfe5bLlw4LRSiTUjQRc7Kmd8iUsGwKW6mvm5pmUhnYmNTM5hPm8zk4j68qfFWDa8mpx4dApZYcruU9k228KZT07S0+/kiRESGxCW/btrrd5uLb830JMjSaklGsPN55YnGgGFfKC/1moOtoATDOW853ziA+4VxCHOUcJfqopGTzISGQUzQXJLQ02jISvUSskfdZ8IOzVirbFqxJL7oDr46oWEZHti9XhN4qFnLoPFRVRajEaF6hRlxFjInlesXJumXd92YYLN7S5YNdD9Npw3w+ZbG3YDabUtUWZlgFT9M0aALU0fXQxSUxrtHOpjZ916Eeggt470YwZZSmYuMrsgUyBjrc5ndDCoBwbEDHYKe8fW6vBRjDV75mleJUNsyA8HZA41TJu7+WL/yRzRj5f/nGP8fX1fcnL/ibfu638/BPvbgjS70B66vrKZ/6t7+Xdz3+ezj7fXd7b3Z1R0oEN52gjz3EpW+YsfrGJd/+5Gf4utkzPByuslbL9jpoJ7z48j55GZCVRxI8c/E8zz+0z+p8zZuaK0XTZ38PsjoyjqM8xUvmRw++kh95+p2kj+zz2Pta9NkX0O72GEe8VmnXU7+8ovn8GT548iTfOvkCC3Q307gFlTRzNc2oj0xecD/WTQONNz32EIvZlLN7c5o6UIdAPZ3TaWCdoW4cadUa0FBH35vHbQqOk1VPH4XpbI+rx5dp+4QLDc1kjopHxZfn9NTThhgz61VLTlA1Fd36hNWyZX/PsVjslRV4hVzMXjOQMuqVl196mb7ruPTCJV546VnW7Yq2S7aancy+NedYGvKhqdPiCGSNpnPCdNownU1pmorZfMZ8sWAyaYiD9ShmddtFA0OWkeALRWawU7XpiBMPGBVmCNrzzpGDR3NCtTgQbRg3sNXQO+/NGnak/csWNWkAN0XDkcsKeNgAk0J6QtwQ1ieId4QqmO2qGuAAIRX9heJx3hUtTCKXNz3Sv5yg0RK6vddxyqIU/Ug2WptXwFVlupKI2V5HVeh7Sz1t6qroaBpSyrRtIqWMaiBlWK4iq7YnK1TNhIDpULoYx+T5tu0K1SijeSvRWwQXHM3EMeuFo5OOIedCS7aF94GqrozKt3U9mIPt5k2Pahodpkr2Xgb621DbkwoTv8sIArc1GNuajG3dxrjfA1jcmnJ9OYGNK//Or+Ab/8MPXve+t8/eyx8+/+mtW+5PkAGw/OB50id2q9272tV9XyJmXVvXpFlFnNrfiYN+wrP9OXoNfPDkCd734pM8/9kLTJ4PhCWEE3BJOTma8AU5y6JucSiXuxmX2xkH7YQuenJ2xOxYr2rCJ2ac+WRm/zNLwmeeI50s7yhl6tr3nSeBfl95onmZmRgTYFe3ppa5wXf379/+mwYab37zE0wnFbOmKn5HigsVGh2hEpwfQs4yST2KR6UiZs+6Vdad4MWTtSZGh4inbhaEMKXTFSITclZidCQyXZfpe2U2rQmuZ33c4h9tmDcLPIEg1rzmAjhimzk5vMILz12ma9dcPbjM8fEBKhnnqpJQThEyl0mBDKvR9n9fBYIXmknDYm9OM2mo65rpfMhdqCAm8N4ab2e6BxVbhXfOaExGtRkSFGyaYQLoTVjg6fRoHVfJBzE3KhY6yECd2mgkcs6bzBJh/HAZmlebGmSzxUWNMuUFVzIsXHD45NDg8QmyhxyEkBxRbRKBM8cnL/bBltWAw0ZnYgnmNgEogK+YaimQyEiyEa7gy6QqFL1IJmkmdhnpI1k9U1dzvIq07RoUplMTcvsQ6HOg6xWNQHCImB7mZNlyNRzSrYWUpuwtGhaLBpHKLGERs9H1rlCpElXw4+TKeyEEjw/Bvnuzlh0mXEZb2lwfw/HXEW9s0Z5OAQ22gIaMYGMACdeCjmt1GjnnrURyLSBDTz3vjVr+3Dn+wM+8D4C3VT/FV9dvTE/27z8+w9/8ru8E4K0vfnw3zdjVru6X2v783axole9uEBoiCtWRsnxxwi/6R1mnikXV8ovPP0L36X3OPQXTlzO+zfi2LDDlwNV5w/Nn9ggu89Tl8xy/OKd+MTC5LNRXlflh5sGrkea5S8jlA/LJkrxa3VYb29cqqQLrBybsv+Uq3zT9LHuu3tGmbmElBElFD3Mf1k0Djb39BVUQKi/okPXgLDTP1wGpjMtvEm1PQki9sl6taeMl/uWPvZdmsaCLgN+jqad8/nOXuHp1TXvSsaiE3CuSE+qE9SpxfLgCN0eTJ/ZmY1tRk9tMd9KzXh7RLVtcEnJyrJYdXRdJKdJ2a/o+oaKI64mp0LmK7SuF1jRMDKrKaDbOKWfOnmF/f4+6rpjNZtSTia1SlPA/FUfMGXHetA4KiEOLg5I4xblAcIYEUraGd2DBbEDGqRGGVVkpHxpLMHclUZsXSEo2WVAt9KBqqyndTGj6aEJi8QZqfBB8ZWa7TgUXLVncBzVReBLwGUowXnH4PSVg18GGtYCrU29BtORrDM13ps+ZmBOaHZWrzbWpoJHNCn2i60/MTEGg6zomzZSUAifLHh8MqK46RftE32eaAHjo+sxq1RGkousyq1XLatVSV4GmrqlCw2Q6wYkjRWgaZTKdUNctzq2M4uTNVcx7NwrxjUKVLZTSYsU3U42C7solVCBiASDXAIBtetRIY7vGaWqYpG3XKVcqGI/VG36iIcJf+9A/4ZGwKDe88UDGMnd8Kmb+xjf8SvJyJ/ze1a7umxqmFdMpEgLadaaHyIXSUhprqQISAqhSHyuTFxxdN+cjhw04ZfJ0zfmnlL3Pt4TD1lw3k4IXcthjfT5w8PCM4DMnX9hj/9Oe/c8mZl9YEi4doUcn6HpN7jozvBkcZ+5mNQ0nD3u+6aHP87hvCczu7v68wSqrQ+5TkAGvx962duaiJJgVrSjihSrUTOZzXPCoC/QK6y6yPImsTjqWR0v6lHn/hz+OVjXrNnH+X/yfTCZz1idL+tUxe7WncRmXW+rKXI6uHHYcnSj1bI8+OS6/eMwLzzzPxz/2C3z8I59kfXJA3y7JfY9kB9SgziYpmuhjJulgpWruSjlvGkUfPD44W82uHJNpw2I+p2kqnnjiTTSTCV3fUVUBKcCiL91wTokuRtNpeG8NeCqNYLaGOwRPcIAKXdxajWZwipJTq96u6FQGJ6qcbSISQjBBs0abKORMzqlYxwp1XVNVFV3bbmhTsnEtCsUq17Qnw+srzhutS7yQ3ZBLkouoXtEsm1V0iqOSDiQs2KR4DILn4k7lN1MX1WznJLVESUYZCoJ3JahPzJ54tVoRc4+IkGImZaXtI7FPdp0F6GNHjC0VmVwHqlmN8xXOV4SqJoSGmKBdR9Z1Z+nt5Ss0Da7yTGeO+TrTNGsQyKk3ClzwRQeTkQI0AFQN1OHcqSmCoqCCShGNjyMOHZDkK3QY238HxiR1DECEEE5NNa6dXGTFjAa27JHfiBWefJyL/o0HLgA+2i25nCf8qW/5TaSXXuK2Z2Tsale7unUlgtQ1/txZ2q98jDjzTF5c418+Qk+WWNJtQlOijMtBlepEmb6o1IdCfLHCRdj7fGL2hTXh0hGyaoeVJAiBSROYXVywfKzmZV0wf8Zz7hM9s6cO4KUr5KMjNEZ7nbsNLoYSh0walg8J37D3OfZc2E0zbnElLNbgfq2bt7d1jpwiGWtYNatFmZnNE3hHEmi7yOFJy5XLS44P7CtmtRUAX5PVc3D0LN4FvEBFpm88PnfUEs0WFoXLJzz74iHqK2KEX/rQJ1jMZiyXV7n04uepQkLUbEvJSt+tQQKoJ2ki06NitBljFxWqipj2oKoDTWMWu3VdsVjMOHf+DPP5nLe/4+2knHjxxRfoSqCbiukXnAvEbBODqjHXJyk8+pGrr2X1v4SypZRGe1gRcCKjgHhgPzHso7Opw+Di5H0RTWc3Wptp2VAIFV6EtFiQU7J0czWNjIipsm0x3kLxVBOQSwOdt243Y1bLjchj2F8urkd5WFlnaLIH2k+5NsSVacXwwZcNSJQcjZwiScFJMPqWt9ttKqDMFrXpN2IiqXKyPDaAUuQRvnLg8ujsViUtP5sX+fHxEskdTSXMZzWL2KBZSUW/Ye5YjhACs2lD02xNgQQGWlPKZo882NtmzYj4bZkGwwkYwMag3BiF/GXic23dyF1qDOu7hjo13CZl+vPlUH/mx/5XKnnjAY0fWjb8t//pv0/zgz8LvHS3d2dXu9rVF1shEGeebs9THQfcskG63hr/oflPCe163LKjPoyoD8RW8K3gItSHCX/UIqsWbbvNRKLv8Zcr9j9bkauGfjHlwkc6Jk9dhktXyMvlvTPBuLZESFPlgXC4y8+4DXXGr+jnZul/P+rBbxpoyNhLF+GvSBEvq1mZVpUleedM7Dvadk3bdURVwBF7a5yrqqbvM+otIbxXOF52VBKJTgme0rAn1unExOIaaI9avrA8oakd3guaPX0fEe1N/JvLSj4lbM8bRSnnDJrxzo9heFVVMZnUNNOGSVMzm025cPE8e/sLRGA2n9N1LZQ8C3ECOJsIiNjsISecKn5wgQrmWhSHBjVnejWb05gzLidiijZh8M6aU+csgA+3OcjO0tR9ZbQn7z2T6dRytwtoUc2mJfGegNr94uDqFdp1i5b9SthFOditpqQl36MkgqulqxswyIXyNUwozN7VmuiSbq2bFXUtLlMi9lpiQ67Rcniwh3XikBBo6ok1+dMG74Wce9p2TR87vHOs2xYcVM4To6IJnPe2kq+mWah8gyfjnBKT0rY9tcu4CnIWYlK6daRte7uvqej7QAgJSPhQURfRt3dCGFzGxHJOUk7UzpX3K6iW/JFTorYyJUO2aFNbQnEZUjZsevQKzDGAv4F7tbVdZEOxy6pFHZKxjBNGHvAbdaLxRqqn+mN+10d/DwD5f36Q/R/86bu8R7va1a6+lBrYBqlxxIkQpwE/CfhlgLZYxadkj+s7ZNUSjjrUC751+M4hSQlHPbIuIKPvTEs5LDYdnVA/6zgX98i1Z/LUJfTlK+TVGo39vQcwoNDGhNQoZ/0Sx26acSvLi+OCP6Zb3L9/928aaPikODyi0QCGM8qNkqnrwLT2uJyoxbPXVKybQF85Om/5DE4dsYujDiDlhKeybQlEFToVQi4a65QR7YqmwKPZ4SzSGs3QxWQNaVlhtzTushztNqneRdBAcIkmiKWLTybMZlNm8ynNZMLe3h4PPfIwk2nDlSuXUaBqGhBPKlZLqsmASyq/7KkjxxaPgR3vA06UnCPRTG0BEO8JEiA4MgnxFbO9BS54JmGBqytEwDsPhbbjfUCcZzKZUlcVwZuAGedR50HMtSg4qDSzPrxCVrEgwuWK2PWQ7FDnrOQOUu/Q2iNlquCdklwyC1o1oOEchACpuGC5XKYv4tAkRaRcPnA1o2op2xmzYBMtNCRxYwtdVRXT+YJzFy9w4fx55ntzgvesVisOD66ybtd47+n6jtVyRR8jKWacOEJJ6e5TBGfgjRgJmiC1tF1iUnkmtaeqJwRfmWNZH5n0PdOYynXgR35tCFKa90xdezv+wZVUb0fTTEh5jVKhVOTsjGI2Bi5uRPujTmOYUjiKs5dNNSRn1GEWzGJmx0YnKwGOReztsX0SHaYeBnBjyUVx4g2HjPbG9+8Hzhu9kmbe/o//AM2LgSf/+HvLrZ+5q/u0q13t6gZ1PWH3q5V3xEaIU4hTRzWpcHU1ahNHA5aUkbbDn3Sod7jeI9HjkuJPyjSjHzQWRp0aJvySlbrrbZcuX723QcZQIuSJsudWO7ep21B7bkVcMOqA7re6+YlGkrLC72zV1ZUJXhE3T6sJPptv8ryZ0O8JKTn6LnOy7KmCI8aIJxbRuK20J1V8FcA7W0EXxalaAnkqv7+aEDyhsoasj5aDYWwVMZ2BKpr7kSbjvAGNqppQB08THE1TM51OaCYTmokJhZvJhNl8bj9PG8KyQZ1lVEgIqNjOKtkmFwzNZAEf5fh475lMGtAFoaqoqxpxRm/CeZyvmczmTJoacc4mLE7GbA0fjDI13OdDwBeAYfkMkJ1HfSDjTcquCa89miKusu26MlUig6TiipUFssMRcFIC+HzCu4h3Du8SyYklWGchFDCXSgOeksdtuS2JDE5a13yglPTyYaoRqsB8seCBhx/mkTc9xgMPPsje/h5VVdOuVxwcHNB2HXVVse5aDq8ecHR8DMB0OmN/f4/ZbMqqXdPFlth2dMtj2pMTTq5cIq6OrYEXh/gKFxp8XVM3E+pmYq5ozpFHMbZdJ32MxBJqNGhlvLOp3GQ6w/vjQgtzRYSVx79Hdgw2DlKnLGnVJjuGJIpQPIO6YqWrG1rUaXrUhpg2bDPnTfaGOgMZI8DYAY17tr72r/zHvPNPvve1H7irXe3q7ta1n6Mir93Mq+JSMUpxoEHQKhgVd/txOaM5Qx9x62gLp33GxYwsW7Rt0T6eFpMDpAx9jy7Nqla77t7SY9yo+oj0u79Lt6vO+iX9HGPD9Hd7b15/3TTQAGdiFFVrnBDLvxCPJI9kj0aBCJWv2Fs0iDQIgaY+oe9iyQ9IZI0EZyv0okpTV8TYGx1noOdAobUMgtiNmkHFRMJDuN4wuehjsuC3Jhgffz7joQcf5Ny5M6S+BzVBclXXhCrgg7cQu8oaUnWeycxC+SQEFmfOUtUN3nmCDxs9hhNm0ymTifHJm6amrhvOnD1PjJG6rgmhKo5WjiG6z/tqFBoPtqYjWCpagTGfoVBsRARRLToJISlk7P8xJVzsWC5XrNcrUsw2SxFH0musUGX8hxEODKvxRW8x0OOcGOgIalqNiHl8J0lG68kgWDijiIJTfHBUTUUI3uhU3rNYLDh/4QKPPP4mHn7sMc6dP898PqduGlKMLM6eo489Xjx97Fg9uKbvegMo8zn7e3tMZhP6kkmSU2J1fMTVl17k2aef4tJzn0PimmpaUU/nhMmUMGmopjNCMyF7T5cVnx2VD2QJ9DnRJxjMh1UxkOEddRWovCWnjx/+Iy3q1T/ot0P5Bt0FlOdmA9A3+luxLQ6/dltwWsezo03dm/Wuv/YHefADmSf+yc+8xpWyq13t6p6qU6vEN9Y/aMrQdtSHiVR7fFecBoNRAcQ7dJhsbGVYSc5IpwY0umjTjK43kJGSGciMxPtkNu7ji94Hnyaq6HJJfdVxNc+4X40ukmay+YYC3FOC9rlE4iKbycB9WDcPNIbfA+E099w5yIKoR9TjsjXWQTzz6QznAvt7c46PD5kvZrRtz0uXDyzZuapZrVtUI1VTxLlqOQ4OcKL4QQ+iuVBgChWlcOCdd3hnHXJNoJk0zOczFosFb3r8TXz1V381Dz38EJdfvsTh0SFd29E0DXWZLGRVQlWxWCyo64qu65gt5lR1zWS+QHM2kOGC6Scy4IQqBFwIpksoQXjTxb5lZTi7VHNZ2UaciavzpnnMpcm3Z26tVg/C4yI0FjZTWR0Ax+BYVSx1u75nve7o+74E3Q3PH4LedPwauuvB6MJu00LXyePjVTfCZpEMRDRFc4pyMkgKLIuicsz25pzZ36NpahA7pmfO7nPh4kXOPfAAs/0zVNMZvm4I9YRQg4TatBExU+fIfB+8d+X8NDR1jXgPDtPUVBWaeg4uXWLa1OTUc3T5RSQ4qGqb9jhHEk9y5oKGq5GqxtUzXDUDr6gLOB/wCmG4fhw4FFIkdR0xduRcmcEABeielmqMgFBTHvVKuYjqh1IF51/5x+La7IztCcnwfXzMQJm6TubGG6n+0G/+ffzv//xv31Mf8DdTb//bf4B3/JkPmyPM3d6ZL9N66//x+3nXn1u95uO+6q9/nP/+kQ/cgT3a1X1RgyXtYMv+GlEUGiPVUU+aCK4vn9XBQfBQLPApLIVRUxfz2NfIurNpRplkjCDjfgAUr1K6bqmvwtU0534CGkkzrUZajaw1c6RChbLnhIl4KvEE/F3/mzSTRJpnpK7h5OSu7ssXUzcPNDSVNiqVRtaEwNZUCXVVUVeePgpJbdRnQmbPdDbjTY+d551f8U7aruULz73A3plzzGZ7PP3053jqs8+wXK2gWLcOqdIORk66K0vuWriMIhBCMLpL0xgVqpmw2F+wv7/H+XPnePyJJ3j7O97B2bNnOXfxPAeHh8QYmU6nVFW1aQpsdGCBe8ksfEPwNLN5sYN1JW1akFyayVxcmqBELYglYKMj/35I0x6Ahwm5jWY10I+GDIXhOG6ayEF0PIADC7lL5Vw4HxgnFEWzYdOGAjRKcl5Omdgn+j5uQIhzRQtiKeXqBaeKuLFVJutG7Gxi8QQS7Q1h7gfBO0IdWCzmPPTIQzz66CMs9ha2Oi8wm8/YO3MG30zREOjV4bIlbvtg6amVc1TIeGxMrF/jq4B601ZkUaLzVN5TVzWLM4m98xeYLPY5PLzKOvW0WYk4Io6EI0vAVQ1hOsM3BjKkmoHvQDw+VEY/80OeOUZIKyJ5cgK185R1cyQ2x7wgDR3g4KDZ2PzBGEXiosWRawMQruc2tV2nMjhGi9z7+4/Ra1X+yMdZaUeFp5Hqbu/ODasts+vf/LHvpvpth7z95APkvrvLe/XlUb0mMhsg/0ee/xY++h17vHP1EXLbvubzf+lXz/lfPnCB37n38u3czV3dR2WLWWKrf6Jcd6qhBRDEiD9uCVM/2o3myuOqYAm3ZWHIeNalOc0ZYkJignULxaXKKFH3P8gAA2DNVeWluEfmRe6HdfdWe56NLT+6fDtPtQ/wieMHeerqBc5OV3zlmef5qtmzvLV+kXdUVzjvPTOp75qj1twJMotQ37t/F1+tXgfQiGjJPbCvQvshWlZbAKFYqIoJmp3HXBicMp8H3vXON+ND4M1veZy3vO2dnHvgYT748x/kJ378Jzk4OLRGU8EheLFGdmjKY06knMkpgQhNXTOfz9nb27PphDhmsxn7e3vMF3MWe3PmsxkpRV6+epk+ZXzTUE1NAJ5zJnZdATJbgXehout7cspjIrfEjGbHuKgtroAJaxKdiOkwRFCXbT+jieYBRPwITIyp5McpjaqMLk0bhQPAhqcvW59XKoM4ffOYqgpMmilVsBV9LZOXhJplbKdUXRiBhvceCTVaZ8iZru0tm8MVsXdxnqJoB5xknM94ZyDMOTG72MpTTyrOnD/Lo48/xlve8hb2z54hpUQfe1zwNJMp2VX4ZoqrGtQ7kliIYHYC3uGcxwcDWs6bPgbvS1qyIi4QVVi1kegSMSnqanw9xdUTUpeIWSDUuLpGfWVTDfGoq1HfQGigqsiuQn0A7/Fq2ouc40jVC8FThYD3ts08AMYNeWkciW8jVR0fs8nMGJUXeSP0Hn+dtiYXGxrd5g/OcJud91wCEt/grlOq/LY3fSvu67+SP/kP/xYP+Y43jeF9d78+0q24mhv+q7f9clsk4HO7RO87WE/1x/x7v+8/Jfzo+7duzcDBTW8jn5zwt7/9l/Frf+YHtoIhd/VlW5rRZPq615ouaErk1Rr37CWmR/My2RckZfRkia7XG81FzmjKyHJVXiOP4OKetaj9MqmkmWNt+WhX82c+/1v58P/5diYvC81lZXI1c1Kf5ycvPs7/cRHaBxPv+Iov8Jsf/kW+ZfYp3lV1nHF33oJ9Jp4L54/h/Bl48aX77tq5aaCh9FjblEa+vznpZNSpOfgESPQgvgi+e5BMVVW07THeqzWm7HH23BnOXzjL4296jHe88+10faQKgUkwikxw3rRZOdOnyNHJCV3sIWdzilqcYb6YU9c2mcgxGd2pafDFqUmc0PWJHBNaQnQyjnXfQ4as1txnBYcj5Txy98lSPkjKpGBs7gchNJj9aZlYiDOB+2CHatp2FLU08mTgDBGSLXUjI1izqQSDZXChOdnwwSMeUszkpEhwiHiguCk5jxNPVdUEX9EV7UUfI12fiTGTNdJMK3ISs7gVZyGA3hOd22gznK3w+2y2uBmjf8UcCQ5yEGIye1nvHT44JtMJDzz0IBcffJDFmTPM9vYRJ8Z3zJmYoaoafHGFcsGDC3acHKjY8Vccvgi7kwo5bZQRzplzWSrnqo9KUodUDSomjm/7RBsVFyZkCazahK8jUxVwwXQ4WPCi944QKvpYhHZSpkkIfd9T1xMQy/6wU+6G026/C+U6sKGUmhUujMhi1NiMlLdhWrWhPm3rMLb1GdejRg2TklebgLyRKn/oo/yRt/xyLv3ffgXf85/88N3enbF+/Lu/lvTJz/Baep1d3fr6V+vMH/qjf4j9H/3SbYJ/94//zA5k7GqrWcsbytSrNXCqJuA+OkLXa8S7sT/QrjPdRSrLYykhMZqZjObTOoz7rEm82VJvrIB7uXpNvJBW/PDyrfyZD38ni/99j7f/zMsWnNj1aNuC95yra7Sp0PmEo3c8xl/62if4q197wP/9K3+E3773WRZuckf3u5GKr7n4HE8//i6qj7vX5vjdY3XTQCNpMoce78hkoipZFOcDlatNAN1U+ErBmf6Ckrg8m8+ZTWZmgxozzgeOj09I+Xm62PPoY4+hCsGb6LpyrmQzFHqSKn3OdLG3JOWqshX8ygTXMSZySjhvlBg3NP25BOM5T5LS2NmbATbNvQXuDVMNRSii761pw0Cd2axEb45NHjhSW/dLaU5RtdUMLKF7W5RNod/kQZtCoTsVxwoFa8azIQEfqtJcO2JSo3uJo2t7licrVuuWvk/kZJOMGLN9z4lY8ihSUrJTvBfAbZrfsruu5IJ4X5zBFJL3lmUhgnfm0ISAeMd8scfFBx7gzLlzVJMphKpY+ppw3ZJSAyqeZMjCbs9lZT7LeChUBJcHOZCWiZCUByveOZIrrCYJiKvJ6li1EUemmRzhPfRpyrmzc/Z8javqQsGyTJWcEoJlaGiw9NasivOeUFVkHBlHzJDwiFQWapiHbJFy6mwXUZVRNz5odXRgVekwoXplUvhQp1yrrgMi9JrH3Ohxb8S6+D/+FD/6P87v9m5s1c6m9m7UDy0b/uif/f1c/Ds/dUu298fe/1381m//n+5pet6u7mC9nsY/J3LHBkRs29oOVKhhswkYZp5vUHAxlIigHtw9HF/da+KZuOIvvPQefvAnv5kn/nli9sHPkK5cHc1fNJe/xWWRGSfsPzNj/0PnWL31PH/yu/9NHv+Ov8l7pus7SqNyCN+y/xl+8cmv4YG6Iq/fsEDDl9V6SGRSttsER6+eLDXN5Az7ZzKumjFd7DGZzwi1Z9JMaMKUrreVdpznxZeukLlCHzPT2WKLvV5WeSk0R0xP0FSNTRvyJjROSqMcKk9yJhYXN2DqIhfXkl+AkMmb1Wj7VqYKw4r0xo0JLf8t04vt1Wotr7+9xD2sSo/3F7WwUN6IDFqMrYM6rngP73sgCxk5zY675VnYB1gBIuPrZVLfc/XggEuXXubg4AhpW5xC2tZmOJts2FQkk72gzm/0L97hogUSDl85lyBCDxWelCPCMMkIiBequuHchYucf+AhposzSGiI+HLMnU16XAX4svJjSd5kIUFxC6Os1A9hgcOq/9Yx0hKopyWXos84V1GFBu8bcnbkLKyWHS+my3TthLr2XOACIhVDIKLmjGYbW3vBplx4+pRsX30FPqAukF1NEm/HHAXJm/PKloh++Bn7MHDFFWIzscivKiTbBg2vmGRs0auuFYvvaldfDvUjK89/+ef+XR78q7fOMvit//YHeemZljeFHdDY1RdROZVFpDT+XX+jTytes7wn1YLn3gQaSTOX0orvfflf44f/0bt5xw8d4T75DPHw2FYur6nt9O3UdcjxCdMXLvEWfSd/9LHfyt/92r/Om8PsjonEvTi+avIFTh4THpzPYL2+I697q+p1UKem9HEQE4ut+iZPuxaO244sc/bPPMJ0v8JVU5rZjGY2AWei7cY1pGwCXE3Q5R6jGDnEl8A6YxyZ21QR5oKWSUg07UGZPOSS2eBEEOfNQNbiwG0KksvqMX7gnrCl3i210URsmwrJZqJaXr0AFtl6DLYCX7BIEZJtGtHhdYyWZPaxg7ZCh+DBUx9Km/BBpSDqgnCMyqUlO6Q3N6VC11mv1ly5cpXLV65wfHxMlTO1q0gxk1LRi2gmpTLhSJmQxLQcMGpUjP61ATo25LEW3bMRjmcGilVgMply5uw5Zot9XKjpsyJ9Mn9xAG/p3n7TnpPF3r8Mx0qGY7/lsjQ09+VfHRrwZPOGkBJt26PqEDxOzM5YxLNcLsmpZb6YcPHCefr9HqZTRG2akWMETXZt5YxKsn1x5hjiQ00z32O2X9GfKG1rwMQxXFf5VNN/raj72p8HpzC5ZipxrYXttdt7NUCxAxu7+nKpH7j8bh78y7c+l+Q3/g//Ob/4n/3lW77dXX2Z1LjIeH+tLN+ukromzmDmXtuQ4W7USjt+fPU4/9v73s07fnSJ++QzpBuAjFeUKtp3pNgz+ZlPcvz3voo//9B38Kce+THOyJ3TazzglrQXE7KYw+Ur9xWovWmgsVp7Yja+ftRMm5STdeTwOHG4zBweg+qM6fQMrpqa8LpuwJkFqpeASI0PwTQK4vDVYDGbyXi8YCvqYmJk0TiuFhsVqYSzOSni2kJr0qE5tZ9zLs1foaw4lXFGMDpm2VavmXAIbjh35cG2cJ1LOjSnGmQ3JDkPyKUAGgMfG5BgvbMUIXcBE2ruTvY4AdkSfw80q0EQPgrFB1taNUqYQtf1LJcrlsslXdsabazy40UopWkfnpdSJidH9kPTvHn/tj+Wmp2LhTCA94GmccSUaXtLA3c+UDcTQqhRHF1M5JQRb2gxS0Z7wfsSvrgdQDe8ZQzopJSsGYfx/mEakMtkSZw3P/LcE7KSuzXtujOBfIYYE32n9H2P5szx4ZLjwxOWZ9fMZhMqB7lLZtGbso3Ac0Q1gis2yaHC1w2TecNeWkAjLFdr+tUBOa5IsSf1fUkR39CgxoGXKmmwNhxoesgpHcb1NBpD3chZakPM2zxuV7t6o9dPrxMf+y+/mor3v/aDX2c9+mfeyy+78gf5uT/xV275tne1qy+3kqYmzmHu7j33vV4Tn4nwF596D4/8mCN8/HM3DzK2S5V0cMgDP/w0//LRb+af/76P8V3zS3eMgrnnMv58Sz4zt0nafQRybxpofPCjnyui6EzMmTYlVm1m1UIbPcqCLtZUMkOkQXMFNKa7CB5RyDiqMMGJ0MeE4gm+MiEyFCVEHu1hSzhB0SJ4MmIJ186+0CER3PZRtoCG/d/h1G1E3GxNKzAO/faqutOiirZ7reHNWyBCynNERqAyfN/QoEoDmQcxs4I3YDS8ncHJqGAOm03oJu9CXNmXotfoNeNy4TGpmhUsZsHad5HYR3LMaFI0lCmNFPGxFxgmKAVYJc3kclyyDoa2utm3rEZRK2CuCoG68qSc6dMJmnNxBvOkmDi4ehU5PiFhAm0JFQkhZcU5b++l6E5y3s6ZMIqUvZ9NOKOdgw2wilkNBIiisaciU2mm6xIiHu8rUuxYr3tEsgnzs7JuO1bLFetVQyUKfUJjRIaJhiZyiiQVXFbAoxJAHNWkYq+ZMVko3WpBtz5kvVqyXq3o+o6cLSnepi12vSbFvNKLgMO0L2L83WKF7Iryfph02AWwmYBcWzuQsasvx/r13/17cMcd1YdvPcgY6sJf+xl+wwd+J5/7zjN85D/ZTTd2tasvqkRg0tDPlck9CDSW2vEPDr6Zqz/xME++/znywdHrBxlDqRKfe4Enf2DKf/Hm7+Grf/3/l6+o7kzOxlwcj128Sn/hvGlMv9j3cBfqpoHGhz67IlQV3ptWIyaI2cSy4moynmo6w1U1vqrwIeBxVK6m8hVd7FEV+qi44AkhGGDAIYidKNnwHEeaSjYfKHEDXx40OwMdbGxhh5TtQXhLARGareFlEOlKCdMrK+wxJ0QcdVURjddUVvYHIGDbGsGjDBMW2LSABSKlPK7EDyvcOefS8DtUcgETmZTTSMPJOZFiGp9DaUJzWXkndkiKxZHJExViyqS2pT85Ynl4Qu4z3tVU3ihEiUwSASeE4PG1TY+c96hAnzPOCckLfcxE1Khp3uGDQrSXFkxE3UwnzGVGHztSVqa1pwlKoGd9eJWTtmPZ9mRfI9WE5AIJm1p5sJyO4dwUbQhldd8NAYRsgbiBljZoO2JEciaIEp3S50RSxTcTXNOQuh5SIjgT3vcxslquODk+YTGr8BqRmIh9ixdoKk+KjpQotumOnAOSG9oorNqKKFPUNbi9M0wWPaFvqdcr2tWSdn1C1y5pu5acOyQnHBnvleCkaAQzYpEiOPF454tlMqRs4DCTcSVxfsxN2QIeebiW2ExDdmBjV7eq9B7MRuw1IT//8ZvKxfiSKif0/R/h8V+oecfZP8gnf/duurGrXX1RpYqLsM41mSO4h5I0DnLiX77wTs59PMGly2jsv7QN5kR++vO8/fv2+C/e9d38zbf9b1z0t9+0JKEcrhsutqdNB+6HummgcawLfPY43EjDUQXvAkEqVJUqWPBNMXNiq1vH+wpxZombswmOY4zEWCgjoSQw502zntLQiIPm/hTdZJuGcy015drK2TQK13LnR1AwcHlecd92krduTUY2HH3bvoGFnHPZjwJsdNBJpPI1vJ/h8bb9lMw1a5yiDNz+bL7bkntcjmRVonoTP2sm9x3aLukOL9OuW2SwSS1OWxKwSYqzvA7FTJ4y5uikJVRIRUxk7QZdRrHdFSGj+OAtq8QL025KSpHZtGFvNmU+adhbTOn6jsOrVzlaR2gsJE9CjQsVs8mUumg8BmCRx9NkDlibYYYdu+E7Yknodg0YWHQqZYIgRBGi2JSmRnEixKx0MdLFaNqUvqdbm36kX7f2QZMypIwW6+Mi2SBFoeuFdSf04sgugHfgalyY4Rb7TKY9Vb8m92tiv6Y9OaJfndB3J/R9i4vJwgy9ww/kNS1GCJi7mBPBV4EgYucyG2VNZVvjYdQ2gx9b07b7iJu5q3u30nu+iff/v+695vq3fNt3o+3Td+z1tO/w9ya1fFe7uj+q7agOhZfiHkkvbcSs90BdzYFnnj/POz63JK/Wt+Tvp7Yt4UOf5vn/5Wv4+/+Pd/B795++7RSqg6xceWGfhy9dLovn90/dfGCflGZPN7kQ1hApTpW6ahDxY+Oc0iBAjjgfzOHHyXUb+c3Kvj1naNi3Rbcpyrjt4bHbj9vOIri2rn2N6/Hib+TwM4KJAVwUgfj2/ptTkqVwZx3Xn8epzPg6g06hTD8Gipjm4XmbGi1uc8ZlEzCnnEf3L0WQGJHYktcdMUb8ltbBiyPJYFG7SSsfLH6HlfOBhnYtQCunFuccoaqoqoA4mExqYvJMp1MWe3vM5nPm8wWHy46YMsvlCpccE18TfG3HKxtYGMMJt6hsYBkZrmhShmtq3AekrOpvdA+p6EgUyxJxLpDEplwpQ9v2HB0dczBrOLM3ZX9eU0kNKRNzMpDjpbiBDfbFpuePfW/hrZ3Qu0h2PTmCeB3Bgwu1hR42DZpnTCZTYrum71f0XYvG1ihZKZJTJHibXGhO5GwjFDXbNgNeQSyVXezacF4o7uw2K8slylHzZiq0q129Aev7j89A9yWuOO5qV7u6c6WKxkh9CM/1Z+lJpNdwW7xTlTTzbDxDeLYhXLpM7OMt23Y+PuahH3mOP/3u38Sv+s7bT6F6OTdULwXk8PiNO9FQhmnD0AQP04MMROPjd47Vuh2fMNA9tDxK5foTg81kIL8CZFhJSebeAIVrQcP1LECvx3kfgApwiobyytfk9Dbc9gRlG2hstjNsY2iQh+mFajbXobyZjlAAx/YEY6AMlRceb3dqietZIaLARtfiwZy7nEPUjS5Yp0TV6CkUb4AOc5u6Qa6DPdx+aZwDxILumqZB+h5f1TTTKeIDx8s1y3WH+IrpfEGYzKmnM0I9wQXT6Vzvdcazex0R9AaQ6Nb5smvIYkucuY2FmlBPSH1F7nti0uIs1XNwcMDB3pQziwmeTCjvXYbk+pIHosW5jEK5avtMnxwpJ6JEsjPtRcqOlF3R0AykvYCb7NFM5kxQLAU20vUd7WpJ7JaQ15A6cuxJsSOmNJ4TJ0ol3iY4muy6cXbshbRBfCOrcDN929Wu3kj1J176Kn76934D+Qu/dLd3ZVe72tXrqa6nPlSeb/etv7lH/kRFEr+4fhN7T4EeHN7aBl2V/OzzPP6DD/L/+fp/nT//2I+wkNsT5Jc089n+ItOXhHyyvO9YDTcNNHLe6BrGRlQFJRHTEEoD4Mb7c1mpz6qFNrXZ3rUAYWjUr73fyllo3XWet9m/fOr26wGPV26XUwDh+jUIpS00ziYaRcuxBVhsH1IBHptGeRCGuwF4UcTf4+uXVyk/nGrIC0hw4nEiqDqS8yABJw6XE66viER0XQNpdDzKQxp1eZFxu2oThky2BrpMEWyqcTqhGizw0DkBzXgfqOsaRcqUoyYhHFw54PDoBB9q9poFoZkioQZfU9V1achPOzVtn4/h0EsBotcCD83ZwNRokktZ2Xc4X1PVU/p2Qt+vEVOEoDkSu8R6tebo6BjJkUlV4bXodIrmJ2VFnZ2ZrEofe7o20XWe5CMRZ8cpm61vTMMEaBiImOWyK5od7wRfOaoJ+FlEc4fLa1Jv2o7l8hhdr8muA02oGN3LSGqCEwMwycEAVp3TYkTwSqeqXe3qjVL/5C9+Oxc+eGtC+Xa1q13dudIYaQ4TL7dzEvfO36eD3PH9n/1mHviZQ7JZo97S7ee2Ze+Dz/Evf+Lr+PBv+wne3dy+Sc6n1g8zeyGj3b0nuH+tuvnAvlHoPDTSrtilprJCP5xDGTXSRtmx0DlK0vX1dRIbsHE9Gs+1q7jXNlrXAonrAY3t7V/73BtRUQYaT9aElkyP0WBqYzQ1AgvJsjk+BU6ogqgrF9/oUcX2D6ebbRNKDynU1miWiQUBdRYq5xBIEekq2rimCwGNRW9RNuZEEO9B+9N2rDpQz0oon7OcDO8zwQeyt5wScDjn8d6a67oK+ODBOaq6wdcNGWeuTaFm6qf4ZoKEmqSWsO1dGG1rt0FGwUOIbKZE28d80GmMqeyqpv8ZnoiCOpx4qmZKaCd0K19S1D2aI10XWS7XnJycEFzGMaMJAe9L7oZ3oxOXoiRVur6n7RJ9X5FyT0dBFCX5e0M1o0xEnDmCDfvsHUGDpae7Gu8aRCaEeoFrIvWio2tbunZF3y1JfUeKLZp6hnwPxSYo9j4z3mGTkmyTEL3P+Jm72tWudrWrN25pH6kPIlfa2T0V2fexfs7yX13kgU9/mNTfhgZdlfzCSzzy3kf5G9/+bXzjYz+B59YDjYzysZOHmL3Qo7eQ/nWn6nUkg5emnaJTKI330CCnuN3YA2yt6KNsAiquT5UZAMb16DWq40ZvSJG6drpwvdtf7TWu95xNw15WwGX7/TG+/2Fz3m85LeiIt3DiCBIYRzojWJHxsQPoGMTSRmtywwjEEs8l2Bce7xxOE84L6aSmqmpibEmxN3CXFVyF857GibmFFYAhbqN3Eb9NScNcp7w3u9zy5pxACEKoPR5HqCdM5gskBMs/qSdMqEgM+2gSaDPBdWX6UN6kXnsMy7UwgNPBdaocH2NJGSUpJS1SagvAyyheBScV9WSPuF7SL9dotEDA2CW6tme1aplNa5u8pUwTKnBF61Kuz1T0R10fseGYo4+ZPEwTklkES3ZlImJCdUHxQQq/zLJN+qwgpqewSEGPF09wE1wlNFWinvbk2JNTR+47UlyTY0eKFgw0fEejgSRJBqCkgKxd7WpXu9rVru6B0pQIRy0vryd098jEvdfEDx18I4/+5JJ0fHLbXie3LfsfeoF/8YtfzeWH/w8eCbdeFJ7JfO74HJOXTgpb5f6q16XRULZyFobmsDTPMRu//NSD2WqJtprpG00RrjeNsNu3G9TrU6fglSBj++eBInW9ica19Yq0ZwrdRhTFMRDmN3qMzTuVEnQn48TDGlNlC+SIPa6wk64BGm4DNJy1qjZccCCBTDBhtHMWIOh8oUZtUtNN72HWX8E5QlNR16EIrhl1HDmlItIuQvxYmuwCyixdHVtN10jsOxSPqxt8VZXG14F4xFtLbUF/Q574EKKop47RK0/8sFfjwR7ORDmCdkdmcP/SrdmQRyQgvgZXkbLZyIooOQt9l4jJ7JFDVVFhE4m+70pmiQd8mbyJ6SfUmRtXAsWum0wEFSynw9v0CtN7GKgrQMPGW4XmZXMtpwbWxkBKbMolWhsMqaa4MEdTX0BHR0w9qYqQO8hL+z6I4O8R/uuudrWrXe1qVwBuHVm21T0z0TjOLf/rh7+Zd330adLtzJxQJb/0MrNPP8rT75nyyM1bLL2uWvUV03V/y+lfd6JuXqOhgztToUSNeg0Y+O2U9ebNMvzQESlw+kTfzCTh1GN1c3yv97jtKcn1wEMuic3D9xulMA/bkq1md+ODVOgxxRNo0FrYZjZCg8EZSAoAKIrjAhCGyYo7peWw0chGoD00rBRgpCUZfWvEYaSiAa1sTUkc5vCF91QhUBXXKOf8+L4tQO60uD7lTM4GgkLw5CRlqqCk2NP1PQlP4zwzEXCBpEJCyCJ2jVhrXSYTN54cGTXquof/mkcNx1bHWwY9S6aEAToFZ5MecZXNUpxN3VLMJbdEURXqxlLC+3YNCKFqxvDEnLPlwxTK32Yql8kkhmwWcbp1LjKpiLZlvCL8uPNSzr1TKeBTS1hgBlVEsukyxPx1BQdaGVjzNeICJKOJpVycrHbUqV29wept3/8HeMf3fWA3q9vVru7H0gxdT9tO6e+RX+Kno+eBf96QDw5v+2vpumX6gvKx7hG+dfLibXkN73LpO+6/eh1icGtOB5BhVrfDvVoa1GsWpLU0WiKFdpRfAQa2qU03Fm+/dke6nZNxvbqRruNaytX2Nk5NSAotZluXMfxn4zYlr/iyRr0039ikQp2JrDer31v7M9Klhuc6KIBCxaFq28kq48pBpgQXOnNPMm2zhfN5byF8w1vJajOHkaLlXBGxb4Cjhek5nC/7J0rOPX3KJDwhpZLV4UiqxKxEc2slDaBLhkjFIYhuc0xfeZ42UG7rCG+frdLCF0OBklieKbkg4nG+wtcTXKjR2JGSgheCrwhllJmyTQNcqHA+IN6b2L1cYoMbV8rOQJiaCYBiKeIjyNHEkGW/Daw3V1gcp1Ra7kvlHItufo9sMla2reU9jpOwQttDcUnQ5Ii9kJKQ8mv/PuxqV/dT+bWgtzug71XqyT/+07z97f8On/o1f/Ou7cOudnU/l8REaj3dPZACmjTzjw6/kQvvfZ4Yb7+mQWPP4rnIB0+eIO09f8sF4Q5H5TL42zQuuc1189SprSlGLs3/qaZ86yfLPIBN86inVq9fSY26EcDYAgI3uP16gvJt0HKjycW19KjrAY3xNU7twcDN3/zfOTEaTlnBlmE1XzfTh2EFXMWoUHnQLgzbccNriIW2jfe5IoYuwEMH16Wy6j7IG2RISd8uBdlMKySV9+cpTkmnaWrixMLZyyq+qhvF6QY4yvtzm0Y/5Q3QMGoTIwJ1snX8hNMAbOtYa3HI2jo7W99160cdNsRAnsoqZHU4CYRQE0OFZIf2So52rVa+YjKZEKpqnNB47wmhwvUdDiE7T84QUyInR3bZckskgwzAQAtwMiKXwGbKMZy7cfii4+5SMkJUKcYCaitAI/jbWC4PG8hFh+I04zKQHTl7YpZykHe1q13dslJlx0nc1a6+hIoJWk+PLdTdzWzwSOJvfehbedfzH7szL6jK5LklH736MPnh2/PeK5/QcPdB3BdTNy8Gz5nB6BUYeDqmP1DAbahRpxt0a5j8dacSm1X0a61tT4MDKWvCG5rSNl3JGj99ZZO99fMrJg2cBhuDduOG9KsRoQ6r2FvgBIcbr6zt1XlQlVHHQJlWZCgNqj3UuQ3g0AJQRDa3WMNqiGJcGYcCHtL4f9XT2RND4rTkBFnIw0p40YlkzeRCLRIRc5wCUl8oVUAYNCMhoM6TxCYEg+tYn5Ixe8rEZgRX22dj+6atKc4pF6wRGI7DgG2yVLnutsHb9mvo2PAHH3C+Icc163bJ4WHm+GTGxXwW7ytSynTZDPjquiZho5heTPuSS6hfHFLdSahLoGm89k9BoqIfstNTdj4PV74BPfED0NhOsKfkdzCKu7Z+u0hYEGZWs0YWAjhvVrc7oLGrXe1qV7u6l6q4M/b3wETjcmo5+96GvL5zU1J/5YhnDvfpNVHJrYUaDuFcs+Rgdq40D/dXD3DTQEPEGe0DLfSVwpzX4sYzNEnXHoDyHOuvrhV6b2s+8jVPOw00tru7U4Bn69bTpJPNcwctxDCF2bbYvT6VZ/t9l9cegIbemF51an/H+82azIBQ3lo102F93Oj612hCxoZ86Ly1tNvaI1j2gssRjR0uJUhKjmX12wmqiT4lcoTKNQRX4UfpgKK5J2sarXSdCziXydHCASHjXMYHC6gLocaJJ7mKyXRO1UxR54m9EpNakODWgZdRwm0J6YpRskxOL6NVbXlrm4O1dTYZrzMHWUcgY/SlMtHA6FqigAtIqMnRk8SjKqzayPHxmtVyzaxuqKcNoKTU46vAxM3IvRKTJ+XAcrUixUB2Ss6JPudCA7u+mEywSR+jjmgzSRMwfXgerI7VMkGG68ZRtBvu1FUzHEbnsckH6TpAele72tWudrWre6DEgfeICr16MpmkclfSwZNmfrE7x8VfWHInE7T1+ISTw4sstWdGfcu3/2BzzEtn6tuw5dtfNw00nBQKj3VTDNkGp6g3lPb5VKc/TAheqc84/Zhr4IGcvl+KredpOLGZrrwCYsjmB6O7bMDFq1GptvfvFCgZXk9GSFUeu/247bX47TegaIojeBi3rbbj27kI29tzTpBiFWuvbivrNgYBUof2LRojOogk1BrYrJmu74kkm6g4jw+5aDwyigEK5wOoBSJaM22UIB8E58EHE1ZXVY1UE9RVTGYLJtMZUQKZ3lLfddAo2PtzqAEAQ6HlMcWzS4YJQDlaBXCMoK0g9vEMZ9uuPdttTU3KO8kJKYnf4jxRISGID6hk1utIu47knKmrCk0dKfWmz/AelxSi6V/W60hOE5v2aMSyKDfX3w1r3N8yISvTmxFMjeMZXy6B8l5VrrvZQfmhULTl+Trgele72tWudrWru18abCWzw5M0Ee7Sylgk8XcufSvVM5eId3DlX1dr5ErNUVYu3mLulBfHo81Vfn7fU4srfeD9U7dMWXJKX8F1fr6BCHyoV5sq2ONPp3ffKDvj+s+lrCRf/3HbE47h+4ZWtXkf9l5MnH3t87ddqk7fX8TgZSV+7DFVyMOwRIZpxab7FgR1jiwlqE88FiqXQDPi1OxQY0/fdcS+J8cEJKJAKiLmlJN9pUxKiZQU54fV900DbI21oX/nLenaeWuwnbckcFfVEBrqpiGEQMwG4px4FE8Whw6UsOFoq1pDvwUirj1328d7eyw4am8GsDrI39XOgVAULMMltnW+U1YkZXoiq/WaGBNNPQWElBJVVVmeSG/HRVUI3hO8R1Mm5UjWwJB0P1gaX6/cIOzf0vxsxPyQ02aKcb1Aylf8/9R9w+HYnnfsZhu72tWudrWre6PECRSgsc4VcPfSq5e55yc++XbedfjpO/q6GiPVoXA517zlNmz/TfXLtPuOPSd3clBzS+qWSthf3dnp+gBj+P+11KlrH3M9Afl2s3ptPsbWs1F1Zfs3BhpDMvVmuzLmThTyV9FJyOZ7Wa0fBODbr8lWu23aiULdKts7NXzZnpro8H1D87LsDFf2IiNkshNciuSupe87YkzkFEk5IjmTRclOUZfH7ImclZSVoBvZuDmIJVLU0Qp2YIp5LyXAz7Ql4gUXPD54FEuLT4MIfKCHlePhRo2JnJrk3Oj8b87DBnQM1814bsYpgB3fgY42hAFKoVTlrOSYyDFCisSYaduetu1AeypJTJoJqpGT5Zq+tenGtK6ZNTUnEdYpopqMArZBh9e/wq4BvNder9dzJNu+ffu512wZ1VcC2yFZZFe72tWtqef/01/J3/9Vfw6Y3O1d2dWu7r/yHq0D6pSMI9/FNI0TzfjPTdA74DZ1qrLiV8KJ3h5y0xPVZbqzAt7DnX5vX2Ld8onGqzWSr/aYG2VaDPcPQORGDlU3nmoIr7YavXn9V+5vSoPm+BrayvauKqOQ+YaVB7oPBXDk8v3aYzNoVrbvt+C8pK409AZ4agcuR/LJCeujI+JySUg9QcBXgXpS4RqPhIBzFW5LnCQlsVtVyEmJKReKECPQESBUgcm0wVcNVVMhVbAvJ6ScaWOmT0rKjqhmzyqiI21oOPzKK8/59c4BnKaw2e5sQOoI0spEaIBnKSckRVzKox5kEGYrEJNy5eohL758mf1pzQPnFuwvFpwsj+jbFbHt8NMJ81nD3t6Mo5RYLgtZS7YAzg2A6vWmc4Pl8fD/612frw4y7PWMkee3rr/dRGNXu7rV1V5Qvq7egYxd7eqLKREh1x6c0qkn3UWa70H2zJ4XNN1hepFmfAvL3AC3XoT+gD+h2wcJ4a5agX8xdVtNeV9tovF6qVPbE4sbAZUbrQqbtMLxar3u6VXozQr5+BQpeoPrPvfV9CcYyMil8R0fZ/u2+b5xJRr3Q9UoSSpk9SSFmCNopCUjqSedHBOXJ4SUaKqaSVMxnU1o5jWuDiQRYp/RrDg3TDLERhbqLOm9yD6880gQNHeIU+ras9ibUU8X+GpOdg3qGiTUdCr0MROjAgERz0ATy4CWjRrmcANis0P5Kuf6lRONAbNsxPOobPXaWxoHGTQcRlfK0YL2Do6XqPZMm4b6oXNUdcN0OmG1PCS2a3KM1KLMpg178ymzdctJn23RQJRcplE3AkvDtXmttfLw3Xt/6j3daMJxo5Itx7MbTVV2tatdffHlemGZO2bufpRa7mpXd7m8JzcBBNZaWV8hd97iNmnmpTRn9mKGOw00gLBSTm4T0DjvEv1eRiYNnJzc8u3fznodgX2nqUXXfjnnrtuIvdZE47VWuq9Xr9WYvWIfKPz+Gz1v0AEMDa2CBakZIBCnr1hpv6nX3RIPbLTE1x677b3c5uSbPS2qNtHIZiObciLnHnJEu5a8XlOJYzKbMK0CwRug6rpIzol139P3CS9CUwe8rwjB4UtKneoABMp7FaNLhQqapmI+nzCZL3DVnCQVUWsintxncirZKs6ck4aIviL9Zpwkyca+99VW9l9x3E7fisi295IJygXBu4BHERUjliUlpUzsE+RotLLY8fKVq5zfn5FSouta+rYlxw5ygtTjSSxmDdVhJHg1kbhziNoE53p1rVXyUNt2ydvvL+dX6jVeazpn29oYDnwRvzK72tWuXqUe/6/fy9d9xX/Ap97zN+72ruxqV/dfpUQ4XNM8d44PnjzJu5svMHN3x3nqmf48k8vxlMnOnSjNiusNaN2O2nMBeXiNnNmHly/flte4XfW6Avuuxz2/tq5dud2eZtzOujkQcIPHXDOtENnK6ShgQLPeEKfYc4amfQMUNpuX0mxvbtYtSpdJGEoCuJbXz860GCXXTbTMCnJCUyLHHk0GIJwzKlTfJ9r12mxraw+VY913dG1PcJ7ZtAY3wfmGSW0TCBMq2wdBSgknSlV7ZtPA3v6Mc+fOUM/26LWizwHRmhQ9qbV9Q/yglGCTNeIQSRuLVzaBdq9+/G4EQA2pjWLwUx5j5VzJILq345+TkpPaeXMOXKDvM1mFvoscHx3RtWu8qLlj5A5Sx/5izrTpqGtwEQtPFIcrovBtLdH1QNO104rhtuvRA6+dxF1PrzJQ6TYTuR3Q2NWudrWrXd07pTHiX7jMxV/Y5+9/5dfzDd/wNL/GPcs5N7njU42n2geprrbcFcW0QrpNwZ+NVPyyJ5/h5cefxD31NPdTI3DLoOZA+ck5n6L/XM8d6lrayM183e4a9MoiBigGIyHntvfh1b+ssXZb34cvj/MB8QHxFeIrnA84X+FDhfMV4sL45cp3nEecOSFVweNlyN1IZLX5QQgVTdPgvbcwurZj3bb0MRJzSQQXhy+JgmPmA5aq3fdpnGqoKlkTItBMGvbPLLhw8Qznzu8zm08IweO8Q5wr8wrFhwrvK8R5A0tOxq/NMX3t478NXk/9XEDGcF62v4ZzMz5fdQvfCVkNfPhQU9VTmsmc6XSOOMdqtaZbrwlOaIKj9uAlM5vW7C+mVMEjYkL54XoWEbz3eO9PUfleK4fletf99vsetu2cO+VKNVgcK3ZelARSTAl2tatd3dJa/PSUH1ndzTzjXe3q/ixNiXx4xN7HD6h+do//33O/gs/0E5bake5gw59RPr28iD++OxoGyZBvk1lLJZ5/8+KHOHpTg/j763Pqlmk0th2D4NoV6Vdyy79oGtIXvX+v+YjyuOutUtsFbG9heC9bjxtX7imSgdMNrzkXueHOjbuUDvSlPK7Oj2LsrGV6oZAVyYmMs1V2lJwiUihrwQVCzvR9T8pDc+7w3ihF3mXqUNFMKpq6wrswrvrbwKmcs2yuVlkF54XZbMLZc/tMF+epTyJ6dU1ewbo3AJMVxDtEAk6dSSdkcILKZVJUFhZuEuVfj6K2ASu6dehl3OYI9WQ4znastbx2jErbZfqUR+pVTpGcekQz3glOlL5dUc2E6aSynHPNoKbzQN11QQK8MtV+AA3bvw83ozEaHrNNrxJXdCmUnJDhve9qV7u6pfXQX3wvf+V73sN3vO2H7/au7GpX91epol2He+FlLv7Cgl986xP89MW38abwYWb+zmo1Pnd8jtm6u69W/G+2vnXyNP/NE45z0yl6dHS3d+em67aJwa+3anszDlTXq5t5zGsJjG+2treznY0hY0jcNtDYAA459Y/dPjSFZk0rDFJsY8Bc02xuOFVmR1vABSmjKaJJCi2rJudIjg5iJCcL5BMRfAiEqibj8CHY/8VWw51zhOAtP0KciaWzInhS0hHsDKQk52A6rTl//iz75x9kuswQjugvHXOwWpXG2BMLiBLxBiykZHGIK6BDx+nOazXI1zcI2F4NKYhDh/vLGXGCUwvr884mDuI8gpCycrJqSZo4Op5yeHzC+qRiGpJ9OCYDc6lrWR4fcvZcpq48QkKkiGuSgbeU0gg2bjSB2b7tRtOMa7ex7VC1vZ1xoqHD8ze37WpXu9rVrnZ1r5RmRZdLJs8dM/vceT61fIh28eFidXvnoMZJVzPrV3fs9bZLA0ykv23bf8TX9F93grt4nvzGBBqv1qxv27JejwajDCLo4fbxmTcJNF7rcTfO0biZ/R/qdGNoK/IGFJyapuF605mxgZZBjzE014AYhWcQSlvkwybH4tpNqCoyAo2M+oz2ti/eO8QJWTMp9aRktJ6YEsk5XPCEuqLPkBX6mOiTgRE0I63iAjipqaqNEDnG3sACFOvaRIw9WTOh9uyf2WOy1xCl4eAkoqwR8dR1jSZPwgYJGy2KWEgf2W5z5nD1RUl1yqq+HSB36vug/HCFruacQ7zHidG4ZEgSh5KALpycrLhyFWKT0W5Fu14RU8YRjErlHbMm4L3DSbHjIjNcxrrlSCbO8kK0nLdBUD9cP4N4ewASAzXKOTc+sDwNJyV7RGwKo4B3gncO5yhfzuhiO6Cxq13tale7updKs2k1DpdMLp3jxXZBp6ZvvJPVR39XphnihFQLE3f7gEYjgd/z1e/jxx/7Vtxnn7lvpjY3DTSsicyFB58LlWjLnjXD4NTEOMHIm+bsBr3RdYhI15KsbnD7tVtx2/3+Ka6UqJI0n5oouOGR43M2wALZmmaoAL5sz15nABAbutSIEthMMoYdcQPEGAXRrgCRDc1q2KvN8Ry1FDnb3dkhqhB8CcdLdCLkrqcfV8AhVZ4U1bI9+p6YM5oc6widRvBCUztq8YgkIJJVEVeBE8vD0EyXI6t2xXJ5jEpiutew6PaoplfG8+CdJ6iDrDjKfg7UKXtEaaL9OInYNOKbczcOKbaup+Fw6kgcsrOWSwbIxiRMSQpkpcaZFsZ5EI9IALWPucrVqHqOj1uuVIouBJ862uWSmBLzegq5w6WOabNP7QMp9RvrXzK4ItDOqbwRN6aCl8NQgPYgJLGpjiOV56QCIgLi1ABScexyLpc0diE4j3OCDxVV5fFB8M40Kc77UW+zq13t6tbVJ773l/PBt/wFYHq3d2VXu7r/ShVSQk9WTC9nXlotxk7gTlaf/F2xtgXI9e2daHhx/Lb9D/BP3vIezr2vQvu7l8D+eup1AA0LQysKgWIddq096/bX0Fvq9k1lW6c2XPj1m2nBadtXKVT8jUXqq+3l+MJswIJtypcV7g3lZgQLW7z3ge50mgs/JHu7UTAwUmC2HnZ9cGnb8iPF6JUp4tvHMOfC1xebbODNPpYcEDIuB3xV0UymxEVHKu5TOSVS7KDvSOshLbwnJixUL2bqLiE+MZ066srjNOF8RlQQD4qjH9hCWenaltXqhD6taCbnmZ+dMtub4StPzhFQvLODqZLQcr5lPOgWVLiZEnHq5A+gwg1uVYPT0uZwlBz0EjAII1jTAeiC2QCnTHaK994saQc6V3ZozvTrzOHVJS71BGYEN2VWO7JzaEpUTnBEtG+Zz2rmsxlO2gKgFXEZJ46MkrRHyZAt32Rwu0IKTU68OUUBwQlVcLbHZSziJNvExDlCCIQqlGupWAv7ME4+fBBC8PZ4b6L+157e7WpXu3q95fd6zrgdyNjVrr7Y0pTQ9ZrJyz0vnszo9c7/rer7uzTRCIH1eeUBfwTcvjyet1YVL357z4V/tke69PJte51bWTcNNOKWk9TQDL9S1AqUFeiBYlJuehXqk7zyu5ymJzlAX8OL+XraivE2KRz+V3vMdba1CewTJAt6HZ79qcffYH90nIRc33Vou5x7pTVwdgLZ40Sssae02pogF8GyZnLsiX1vovDYk2MkZaWPSt9FXF4zr3smEwUSKUdSzjgJiASSgiSHSiL2idglUrR49GpSs+drzp47y3xxmXAlEXtzQLJVfcqkRcdTNwjNBycrkbKCz7Dyv6HabesOhp8GYOGdw4kr15VspiKquAwaFSSXvBO2jnM5h+pYLW16cXKY0big9ufwZyvqMKGuKlxwoBkvymzecOHcPvOXTjjp1qQsZjMsRlXLmi3DQwCXyhDPpg3BU5y5fKFzQXCOylenHKWcc1RVRV3XVNXmvmttcRElBEdVBUIwQJJvkOmxq13dj/X5eEx18MamA+7P1/iLF+6bxmBXu/qiqojCq8srjg+mdHeYNpXJxM5/yeZBX0y5s2fon2x5MvTcTqDRSMVf+TXfx5/9+t9F+JdXLQfsHq+bBhqDHuBGmQDbdSOB7M3Utc27NVuyWfV+HdvY/OzGlfAN9tgAm6Ehvd4+jI2t24CdoRl8NYvT00BjE7h2I3vTa5+7fdy88wglz8EJ4sAVrQda+PsMDXqBNWPD7VE8mhMuriAeEpeXWB9eoutanASQGvDWwGaxr6gQlSp7goRx9X02m7JYzJlM1/QpGe1KxOxsdXB1sjA9ew8lvG+bbjYASTEanlHTsOmH2wAVXJlBiaKSx3MxGFhZtoiBC1s4yWRNZI1kTUbjsg1YaF+KQOZ42XN80rE3dbiJY3CK8x5iv6LRlr2ZY1InRFtSErJazglsUZi8LwDJAIV3gaoK1HWDr/xIiXMOquAJIYBIySsRqqqiqiu8c2N6eIwGZLwfBPSJa5Pnd0BjV7eiwmHL9159jD9w9gt3dT++46f+Q978p997V/fhdtfPftP3884/9Ad5y//zp+72ruxqV7e3UsIdLuFgn149X5w484t8aVXyOtx56pQI6fEHecdjL7Lnbh/IGOpXT474j39/5l2/9ADxuedv++t9qXXT3XsfIyklYkzE8vPwlXMut9tXSvmVeRq8klx16mtLHLt9WZ5qzEVe9Wt87PDzQKFh4OwMXxtR8QBEDAi4U18jOHAOVygr21+jAPkakLJ935C5cO0kZPsxN7p/eL4PARdqy9vwFeIqJNS4qiHUE0I1w9czXD21r2oCYYKECYQGVzXUkxnTxYLJdI74ij4pMSne1QRfGa0sC04Fnx0SBYlQSbBkz0IhCsHTNDVVHUqexuYsDpS0gU62ySAZHpNRTBcCCcgFDJgdrn1Xm0w4cKJ4p1j4X8KcoEqWxJg+rgwSkJQzMfZGG0uRREalpIVrAFejrqHt4OrRmktXj7lysORk1dux8I7j46ucHL9MU/fsTZVJFQnepiUMGoqqop40NJMJzWTCZNpQNzVV7akqz6T2zJqKWeOZ1v7/396bh1uS3vV9n3epqrPctfcZzb6JkcBIAmEJkAQJCKEQmdUOTmRASpCMneDIJA/wBOd5An7sJAQTCLYBx8aGCOtBCJCJwCwWECzJ2kcjzXi0zN7TM73e9ZxTVe+SP37vW+fc7h6pZ9TdtxvVd547fc+5darq1Knb/fu+v9/3+2VQFZRVQVFaikK20UZIlbh9he7C+dDiXAMErJXcDpHqhD1kv0ePLxbxI5/in/3MG/b7NL5ksPYVpzH33r3fp9GjxxVF9B6mM8oNfcVSsj8fVDM3W7la0FXF2Rct8a3HPom9Cg5bI13y9q/9JU78ldvRg8EVP94Xi+fQ0UjC7piExp2CWwrJEMLnJa5f0ClHKVkBzlNTaWY9jy7RjTFd5KXMCcae/aU/VVSikdjT1VB7Np/rQvZ2OmLMrzlPm3FeZyKEcAHh2KNNeJaORt42d0fODzeE3KOALCzP3YH8FdJW+dw77UgOtFOaEANtiEQfJdE7alTUhBBlNAktuRGpfg9NwDee6APpBVgrTlPWigZBbHMNqChC6EwoMuFQWU+hZcwLz/mL8Wou6NhzrYS4qG5/Mf0XUJ2LRbbPlT1EfPB419K0LS44IUF57Cp1p5xv2dptUcrhnaFdsWg1YHlZnL62Ns5gltdZWTrK4bWCs5uKqDW1L/A+orTCFjLuZK1FKyUdlyDXSWiNS05YJGu/PG6498177wjBE6NNHY2cDi8EXmslpgDEjmicHxbYo8cXg4Of2OGut78VgP/1DW/nu5a2rurxf3NnhbXfHV/VY+4XPvjS3+CVP/NdHPhbt+EefnS/T6dHjyuGWDcUW4rdUAFXT7AcCKj26o5hKmvRNx7j9FcFXr/0KYy6On+ffWUJ97zxITbfdxvc/9C+6FIuFZdONDpdxt7ug5TB87nxCzUPaSY9k4jFZ3NBzLyzkZO183hMp5FYaL7k0jK/Oi6SDCVbZwH5nE2obt8XO8+9ReCF+QcokwLpznseLshM2PPuldrz+V9sNXrxtYsdku46L5Ck+XOkgL3cOZgH1SmV+weI0Ft2JoJp54g+opVBa9PZtio0OihpFqgghMSJRiMETyRgrKWsSrRREngXPMpmkha67oZa6A7NP7DMIOejd/Pu0HmqjIUGFsgYWCZVMUh7NH/62or1cNMIWZt5x6yeUdc1eCcycmOJQeFCoHER5xpCjFhTMBoYahdTh8fjvKOZbDIYr7I21qyOFNPGY6zFBXA+UFiNtUIktJWxNh9Dyj8JhKCJvk2kPBCVJiaBt1KqG5PK5EFrTQge7x3eO4wxIuR3bco9UV33UGtNWV751myPLxF88H7u/KB8+48+8L381NELV+PCN5/jvq/59Sty+N858xLWfvVLZ5zo/V/5m3zTrW/C9ESjx19UxEh0jnI7sh2GBDa5WjkanihEI1ylolsp9Noqp151A9/4Nfdzq716/zZXquDHX/Aevvfb3sYtnx0SJpOrduzniksmGo1zUuTm0aZFdyAWVu3Pe92e2jsuFPgLY06k/e0df2JhoVtW5bud5MJ1z84XiIzqBnjSY835ydSLqc2AuBWxt6OgdXI6SonTi7t4tu7FRR93/zv/2lzY2chfizP5WiFCDFnaJ1/5+TaamEmUUoR07WLyW9UqYmMALyv+zrXEkJLFo4wq5Q7C3IRXSZ6H97jW4dsGXQVMIRkToNJqvljidiQiuysFGW/Kouw5GdobUDcnJIvX3XRBdTFm21eN1ha0TuLslE0BWGVRrkVbzWRLU7eeuvWEpkF5sEoRo8Elq+KAxQOYCl0M0aYCZaWQB9qdLablKaqoWBkozqkWHxpM1AQV0KogBoePioB0hFAabaUb0bYtRHGyyuNlorNQFxDJTDYWxxFHoxFN0xBjxFpLjLHbJo/T9ehxuTF+53/gYmtxjx19JXzNVT+dHj16XK/wnmInsuFHV/WwbQzoqyjP0MMhs5fcxuSvbPHDx/6ISl3dMaYXFoYXv/4hdn77JnjwM9dsV+OSiUZdS/vr2UTPUkA9++sXC/uLrv4v6Ba6QqwbGspOVolALHY7ut2ozqWo63Wklf0uM6NL997zQnlVJ/SWPWdtR0d68msukTA8Gz6fy9Wzv2bvKaRGknRyWCR+8/cmRbo8r2MkeodvalxdE9qGGFzSQCiIcxF1JBCVDCkFPD56XGhTV0ME1d47fHBiKxs8MUrgHMZ0Y0SBFEKXMh+UAmttpzlYHI/K40BaZ5JhZOwoBELwaEWyd7XYskTrEh8j3nl826IJhMEA1dZsnzsjnYcA3oFvagqtsaqUk0idhWJgKEcjqtGYYliiTAUorFaEtma2fY5AwdjAuITNsxtMG09RDam9I2AIUcIKjTEMqorBoMIog28bfF0T0qgZWnXXzZgBMSohe4l4e98Sgrx/7wN1Pe0IhVJxz98dmXT06NHj+sRP/d+/zE+++g24J/dXhN+jxxWDMUwPaW4rT13VwL7Q/e8KQymUMaibbuCJby75yRe/i7vs1R9prlTBW274E37kG97C0c88es3malwy0QghrzgvjhMx70zk0Z6FSjyVkguP59vljsR8EAhxMOq2y3tYEIgvHnsB2ZmqO8HFPzPxyDkY5xGM85GLv724OMG4dKR39QW6IPNziHufjxGiFxK1h7EuaFgWxsXCAgFRMeVxOEeoZ7T1jNA2GIJkNmhF2zqcd7Q+4EMLqsVLBB9BSTaFKQyESNvUzGZTKZq1RllD9BE0Xbcjf4bGFBS27AplrS3GZDIxF8FbaxPJmIvuYwjJgMBhtcIajTaGohpQViOUscQQ8E2LbxuibzDBs3PuLE8WA2ZYlDLSyXAOrELpOcmJ2hJVgYsFLhimdYtWgarUGOdxIRB0RaUGrA0LTvptZtvb+HZEGyyttihT0YaIMpbhYIgnMigLcrR3dB5Piy0ijZeQP8nEiLRti9aKsqpSp0/IVNvCbDalKEpsEZnNAlqbzlwBkLGwHj16XJd4xcDw9g+8k+/98tfhNzb3+3R69LisUEVJ+9V385o3fojXDDYorvIqP5o0b33loIxBj0bs3nOQm172FC8fPEGlrm73JuNFxSY7Xz/hxnet4545eU12NS49sK9bmb5QEJ1HfeZyZEGXxJ1W15WZk4zcQci6j0Wycj5iFL8i/Sz6isXnLlq8dyvoz0YyMgmRjePC9nNyFJ8/2VBz8vRs59ldw/TVbZdbGDGvYkeIqcMTc05JSqcOc/VK1q0oovgse4dvWmJTE32LjhIcF6PD+UjbRnEN8y1KO6Ip0IXGVgXFoMAYQ/CeWT3DOU9RWmwxQhVjXBAhuEo+uyZ1g7QyKGUwukC4jif4QPAepUI3mtbUbn6JtYxkiZOZo21bFB6tIlpbimpINRxRVoPklqUgRApdsDQac/DgYVZXD1Dv7rIzmdK0LlkBy/SZ8x7tA9NasTNr2dqdYJXGzTy72qGVoyhKRiurLK0eYDgacmB5wKGVETs7O0wnO0y8IpgKXQawFdYYfIxs7+wy0VAaQ1UYdFmA1rRe9BcAzotIPUSf8kukc9e0DTZalJYAwhA9McprdbL8PX/cr0ePHtcnVvWQf3X/e/i+V30v7tHH9/t0evS4LFDWou+6lcff4nj70T9hSV9dowcNYnWfx/Ivd9GdOxnDIRw9xMmvsvz3N32IQ8aIO+c+4ICp+M9e+Ek+/tKXMvh3G8RrcCHykonG4mz5Xkeli6z+X/B4QW+wMB71+Ww6LxBEL8y473VoWnRbYuHPubvU/JzOp0LzY83fxt73qJQCHdmrSLlU5J7O3i6PEIC9W3VbJ1YWF85Lk7oSnY5Buj8skKAYIzEsjpiRwvFkbCo0Nb6Z4ZuZeEyHNC4VHN6JpMLn8SkV0VZTjkpGyyPKgYwVtW3LrK7xwYt2QJV4FMaIfiXrDBwi3Q8enAtyOA9t2y5YHstnmlfp40IhnT/7EPKoVoMioLRF6wJtCoy1WFtgjaUsLKVRrC+N2NzcIvhIcNA2jqZpMSqiJTBctEYEbAOTmWZrpwUXUGONqjSu3sH7lpWmwRYl48EKlVUcXBtzbmvIzjOnCV7jvFzvYijnoYylbRsa72iNIoYy6UrkIzLGYJO2QoiWkNjsVuZa0UBVVUVRCLGz1uKc6+7jfN/3ZKNHj+sfh8yYH/93v83/8te/Hz7wif0+nR49vjgohbnhGA//1cP80sv/KQf18KqfQuACOe7lQyYZVYU+uM7u3QcZvOwsrxg+zEjtn0GLxfDtax/lPa9+OXd/4iDuxDPXXIjfJRMNMF2p3TkVKYWSijj3Llgs5OcF/3weX56/cPU+F1EX6DS67aRo0yoNDCmA2K3iy+u7M8w/nhMInc91vk03EqViZ7/b0ZI8LaUiqGxNGufvO499XcxFqnO3kuRrVKcuSeLn2HV0uuukSPl7qYOhcp6GEsF2HvlBESJoDBGdp3REe63E5ShNtMn4UnCoZoc42yDMttOYUcBjwINrPd7JeaoQMNFjjWI8HrJ6YJ3x2jq6HNPGkjNbU048c47TZ7bZ2JzgY6R1WogEEedaOb6SjpV3kbaVXJWcKJ/vA9GLe3zKr1gkngpJEM+i8uAbYgworQkx4r18ZaG8NRp8y9Bqmt0tzp58ht3dHZzzGKOpCsVwJBkkbuZpnYwyzWrHrFRUeGqrWR2OWFpaoa53CTEwne6itjewywWry0PWlw0nTswItSaa5BRlPK52mELG85SShPG2bZlNIJbi1FWVkkcSg9yUecQsOLGsjSEQvcIoTWkKfAz41kEEaxXKaGLQ+ODFp7xHjx7XPb5uoPmr/+IP+IWf+w4OfXyCev99+31KPXo8dyiFvfEGnvzuW3jT9/xbXjmoMerqZ2hsBCg3FDh3eXesVJoc0aiyJA4r2rFmVO2/JsIozV3FFsN7N3A3H0KdPkOsr60a4TnY2yZXpgWljdZpsEgrERXnCjdtCflxlHGaZxkROr87csFIVoxoYhcAl2MEIqprk1kzj50/X8eASg5JWeNwkc5MJKC74n7RSleKY0PuxmXR+iKxWeiIKNBKhLyR5PzUjYrNnZqy+DkLzmNiRflx9wXENDqE0sSopMjGAlq+D5HgJawueIdO5xx8S3ATwuQUfuc0frZL2zrJvIgW7zWhVYS6QccWo1qs8SxVA44cOcDNt9/C2tGjBDtic9vz8U8+ykc/+hBPPbnBznYkxCrtJ6KNTuNJcm1iNISgpIDGIb65e2+NTtSertFi92repQn4tiEEl65nwCe9QkitkuAagmuIbY2vJ7h6gm9nQMQazdLSkLX1FXxUeCLUkk/RtIEYNUZbNjc3ifWE224+ytGjR0Wfgmc222BlZcThA8u0fpXPPRw4O5thhyMMFqMs0UVcbEBFjIbCaEprscqgghDc4AJRBZTSFNZiMCk9XUalVJQRsOACVhtc7XB4rC2IQe5NYyQTpLncf4n26NFj3/Dm1ad580/8E+56+1u580vH6bfHXxRogz16mCe/5za+/fv/lL+59qmr7r4E4GPgQ7NbWH0kEGf15R+bikHG1psGvbXL0hNDPvPpw9x/+wu41T7Jqrr6HZyMZW24++ApTh2+g5GZNwWuFVy6GDz9qVIQWTfeQoBMGDpxclzob6RcBa1FPJzIQx4ZuaCwP+9ni1/np3LPXzMfy1p0v5rrPzTGFPONEzHIK++LInOt5vuYW/EGVBp/EScgEccrRXJIuvhI2VzcbJKGgi64TSmFNkauidbJ+Uk6JtporLGgFCFIgrZO7ZzgwfuIBO6JS5F3Htc2tI3GNZHgRCDtmhluuoObbuFm27TNTATfUREwIvuIKW07tCgaBqVmfW3A0aOrHDq8wtLyAIqSp588wwMPPsxnP/c4kx2IfggYyYmIMSVdq5SJYQBDDNKBUMqB8mkkbK7sz52xkBkHeZwopgI8ppV+6ZTERDB8yrsIzhG8w6WRsNDWqNBi8alLpAgBJtMa9A4+KrZ3pvgQsAZmKrJbwGo1YGgM0+k2Z86cYmn5RsZLIxrfUgeHDw3r6ytUo8N88MOfRiuHNRYXAkZpjFYybqahLAvGw4qqLFFBQQwYJZ+zCMHNnhGo/Ng5J2NlIaCspbC262iFEPAxQiLT/eRUj6sF/w0v47vf8Of7fRpfEnjTa9/LH77u1ZS//6H9PpUePS4N2mBvOMpT334b3/jGD/J3DnyIJb0/oug6On7r5EtZeqImXqHFuBgiynviZIp9ZpPV/7jE7331V/CKwWOMlKdQ+2M9P1CWF6+c4P89ejfjsoBrLFLjkolGJ0RVQhpEZyPCZGIkxm72R36299VScMYFvUJXkOtuTIhEVRaVFyrZfC52AjIhyM5XcyJiumIuE50YIwqDLYr8RBdArhb2oXM3YWF0S6WOjTZSJM4JjpoXzR3mhCgEL4nbRmNtIa5BUUnhnIlUugZyTFn5Dy6nWVuUKUiL3DJuF0F5RUjEguiFaDiPaxpcXdM2MyEXzQzX1rRNjW8muHom+Rne0TpPGxWBlugD2rWUKoCWtOylpRE3Hlvj5psPcvjgkLJweA2bGzucfPosW5sTfFui8EALysjnS0SFXAQbeT5KB0Yph0TpJLraDVEmG94Q07VJ34d5xyuHARIiIXgJ1XMO1zoJ3nMuvc8Z0TUUyqMKQ6kNWOkk1K0nTBpaD5NJI9fbwiy0bKua2Shy5OgSBZrZbIvd3W1W1pYoBkNi43EhUgzGrI3XKAdjbFljioLWSTfVWo0uNGVpGAxKBmVJoa2sfoSA0qEjntbKr1zWpiwS52xduzfQT+4xY3T3O5j30aPHlYT+ynv5tl/4Y/7b9cf2+1S+JPDjhx7inbf/Jxze7xPp0eNSoA32xmMc/85b+do3fpT/6cifsm6urvh7ESd8w0cevJ17T5y+vBbw563sRR+grmFrm/XPNrzvs3dw/+FjHDWn941oaDQvKM/RrCiJGbjGcOmuUxd0Hxb1FqnTAaJHUIuvk0Ipz+cbI3SChf2ZlK+wWHDloiqLYjN50F3mgsEajUodhWyParSV1fXUQYjIiJe10tHIhT6L70J1nlDMedCCGDxKMrpvc5KzdEKyM1LTNDjXdt0M7wM+iODXaEMAnM+6EiUFdy6uQ5BuR4x47ySTQhsKa4lEEVMHj0LGZmKQtG4VAjpGgnOoGFApJ6Ntp4S2Ifjk1hQdvm1F1xAVPoILHh+CZGmEFh0DhfKUpeLAgTEveMEhbjx2kOWVCq0D5za2ePyxpzh1aoN6KhqBEGaAp7CluIkFBzqng2uUkq4GKEJoiNI+WegUzb9CIhchyBhYHqHSWtyrgnfEZDnrvKdtHW3bSBfAtymHwhODR6uUzG0yQS2lOC9KvPNoG0ArtAlEWpqmZXtngrlxlcMHDnHu9IzJZBcfHCvjdfTI4IoVoh6wO2ux1ZDx8grKDtBVQVkWWKMoCstoVFGWBTrpT7QyGKPSyJu/gEQs6pAWuxv58SLxWOz09ehxJXD2d+/hJ174u93jNfNxXn31JyD2DS/8u0/xlne/kl+8af/ml/75//iz/A8PvBX9px/bt3Po0eMLQhvsLS/gkf/qJr7vr/0hb177OIf2kWTUseX3d+9l7eMFnD57+camLvbvbQzE1gEzBo9tsPyxI/za7a/g7pv/DfcU+9PVaKPngcmNjE4GYtNe9eN/ITwne1txRYL5N4ASkbYU/HOxb1Zjd2vXWokLjzHdeJJOTjyZTBRlKSnLgA8ekOKrLAqqQSU7SqJwlXQQOXdB0pLnbka5MBNbVcdkOktZBLEbUckp1iFE2rbpRrBEIzAfrQohJsF0TG5PgjzGE0LonKKkg5JONa3SB8Az7wDJuBlzdyktNC0gou+ohKGSwtqcS45bSkMIRNdiQsDESPQNuJboGlyT9AmuRhMorKYsNDp6QoAQNSEaIWDp2ig0Wkv+w6FDS9x4w1EOHzzAcFDI75ixPP30KT794MOcPHGGekYaiZoT50Ipog6p9RIARVQakPEf72tidHL+EnOeOlJJ6xI9SkvCtsoKk6zDiAGidEPyZyOkRZLH830o7mBKSF3waBfACsE02qKLCo0D4wGPC2KF50Okrhs2t3Y4cqBi/eBBlIlgCsYra6wurRGqg9hqmRNPPoUuKpbXSlwoWRuvgi1w0WMLTWFT3gcyzqlVIocEnPMpO0N3xGGPAD4RjUwu8nZa6+4+895/Xqe2Hj2eM5Tikb//Cv78jT/Nuv7Ivq3IXQtwTz/DmfrQvp7DS6oKNzDsn4dNjx6fH8pa9O238NBbj/DTb/hXvHZ4ltFVtrE9H8/4mn/60Ku44b4JYXd6eXaaBeDnIYaI0kI21JlzHLpvlY/dche/tfpSfnD9IxzUw6tudbsTWz586haWn6hFn3KN4dLtbVNAWkhOQCoLf9PqvjILHQ3oROA5wi+TifyVCylrLUVR7PkT6IoqKcAsha26Isw5TwgtITTkIa2sfWhbCXnLVquZWMj+At6HREDyn7HrkORCNj8/JxrgXcQYmx7PnZRkhV6E4Ysr8ZKIHfAhQgq2CyFZtkYpxhXSiYluLrIXDjd3uVLa4ISlYFUE71E+yHUNHlxDvbNNPdmine3QziY4N0OrSFkWjAYlZVEQ0XiR1KOVJihQUUT0g1LsW48dOcCB9SMYM2Q6Dcx2PcWK5dy5XU4+c5bJTgOUkvitsmtSg9carbyMzuWBspi1MgZrhGQaYztNi9VWLGqNTaNpRepAGJqmZXcyYbK7S117fCIVSkeUd/J97oyYeRijwhCCo/VeRvm0QRkhwVpZcR6zpQjLI0SkIxZVZGN7m42dETe94BDl0DJcPcDSwaMsHbqRxqxyZhseeeIkkyaCLiAaBsMhyhhcdGiTDAtUoCxKIcDRClH0LSmvD+fcBV2LucXvvGuRfx+UUsxm084a+HxNU48ezxeqKDn+w1/Np7//HwP7Wyj0EHy63cU0VyPauEeP5wFt0HfcyoN/9wDveO3P89JSU+yjtSuICPw9Oy9E/9kaxec+h3OXaUVfaZQxsmpINq1h4XtP3Nll8Mhpjr3/Bv7F4Vdy18uf4VtGx1nRg6tKNp72huNPHuDeE+cu79jYZcKlD3srk8o937k4RW0WJmA0ObIvkhauVdZTiCuVMYaqGlCW2fZMURQFVSU3aghiCwp0K7jee2IAY4pkiSrjSjnMTYiD7y5u6EZv0nx/OtJipyE/zl+yOu4uMpYiNxMYtLZSvAJgupn5eYiaAuY2rnNBuyZEhWuDhOilFXtyp8Mvvj52AuksjcZHQusARVABV88wwVMWGl/vMtk4S72zia8neDcl+gYVpVvTxoZpaGhNhcKCsUSjcTHgfMAosFVFYQ0rywcJ0fLMyU2i0aiqYuVgyWBq2D43pakDBI1zAWsCRaHw3gmzjwprLNWgQOnszltgiwFWW8AzHBaMRgOUkuA/a0vG4zHj8QilDcZYyqIkhMjZs2d58snj1JMdrI4Ek7pLPtIGT4gtSmuKyqA9RKPAa5wG5bwQMBVFRRICPjpqNyMohSkseNAhoJUlKI9XoIoh0QzR5QoHjh3mwNGjDNZvgNFBzpyt+eRDT3B2Y4qyQ6wqGJYjbGExVlNpjY8t3je4xmEAbQdpbAqaRnJHyrJke3u761xkIrFINoyRFPCmaQgh7NF0OOcoy7LXaPT4oqGKkmfe8tXc/7Z/vN+nck3hY4/ezLnbJqyb/RG0/hf/8Ec4/N7eeqrHtQmzvspj33WUf/ZNv5hIxv53QKex4dce/8sce/8O/tzGZXWbUkYn05ysL927CBCdI57bYOWBIbO1df7B0uvg3t/nNcMnWNUlhTKyBHoFScckNPzW5ss48KECTp6+4ByvBTwHjYaM2EhWAF2Cs4wfhYURkLztokuUwiRxtQ+BpnFJMB0wxjCrrZAKF8RNyGcNgaz8i9B6fkMvFvOyTeyK905k3p14fg1pxT3b2eav+ejKs92eMvIUSLmTe/efXZK6MbFko5teJyNaIp3Ox6UjQHF+zkm9HpP7lOgV0riQd0mX4bFJ51I3NbOtc0y3zkIzxURHqQODUUVVlSgl27TOEV0r3ajWUQdPExq00VRVgXOK6cRz+vQGZ0LDaGwphyNuVmOcL9nabDlx4gxbGzuEkLo/SkaEBmWJMpFqYBgtVSwtD6gGJdaWFHaAMYM0cucoK01VleKi5KVTU9hCulWFkMi2dcxmE6bTXZxr8MGL61b0STAeUCqKI1Miuc5riBYVLbY1YtfrnbwmBlyIeF8TYpvGueS6l1qhbUVRWopKoYoRqlpm+fALuPH2exivrbFdtzz1mad45PhZjj+9ydRpquESNkhniJRZUhaGiBHypjVVKZ256EOX5eFDpG1bYoxYa7uu2fz3a65NWhzJywQ6/yx3Nnr0eN5QiuM/3JOMi+GuN36Mdz14B29effqqHO+k3+U7PvXG7vHK4711dY9rFNoQbr+RY//pk7ys3KZQ+0PGz8dT3vPUZw9z76OP4trL+PsTgwi/Y5AOxkUK+BgicVajT5/j4Ccrnl5a56fC63ning/wsuGjHDM7rGrPWGlGusByeRPE2+h5586NvOM3voHb3vUZ/ObWZSValwvPkWgkcXUiDbIC78Vdp3OMSskPAfl5KuWzPanSknTsnXQhVOp0BC/5CNLBCGlP2QVKp88426dmTylBjMwvbhfIl8Xqch4K1blN5TI/MO94zOnHeUjOQSHuvdEWxeIhjVudn/8R0utkTCcfIXUtEsnoziD9EdJNHRauRQiOtpminWNcFQQP061zzLbOQjuh1IHKKgaDkrW1JZZXligKS4gBrQ2lLtk8s80TJ55hsjtFG3HNmk09sYEGmO3uYAkcPrJK7cCWKwyXj3ByY4vHHz/BdDqlsJbCDiiKIaPRmJXVZYrKgPJUQ81oPKCsSowpKYoBRlfiOqVFaG5MSnQvRPButEmuVArXtmxvbXHm7Fk2zp1jsjshJrutkEgDgLEa1TmHKZS26S+CRHwtEJyE2kVP9IHo5JqK9kM+x6AUUSuCghbFThOZ+gI7PkJTrHLq5JTHTp7mzMYuu1NPG0tMabBmSGgl98IYnWx9IyYRa7lNHDEYEaXHbAIwd9PKnbtsl7wo9s7dDEkEn3f8rLXdNq7P0ejxPPHkj30tzVrkM2/sScaz4X9753fw3T/wM6xe4WTjSWj4+l/7EW7/scUOxsNX9Jg9ejxf6OGAp1+xwo/d8m9Y0deGS4SPgQ9Mb+XAfZqwsXn5E7EvRjL2FPKB6Bxhe4fisVPc4ALnzqzwi1/+WvTNu9x8aIMXrp7kxePjvHz4MLfZKau6vCyEo44tfzRd5qd+63u4+18+jjt9+pokGfCcNBoyAkQunJKDEjHnUORRInFUQsn4E7kgBAlYS6+TosovCLlzIZ5m67OwO6TRpvyh5M5ELtI7TbpeoB9xfr3TyJRKKmvVdQ6ycDx3GZ5llTjm7oTqxOKw14UrxtgJvFViM4uF43zkio5kdOF03ZOdhHyP6DnGQHQ1bjbBBIcuhkTvmO1uoMKM8cAyKBSFjlSloSo11kS0CVRVxdraGodX1nC3NBw6Mubh48d55swm0zqPqMmRZzswGoApLboo0cWAYrjM8Yce4fiJpwkxUJUF49GYajBmNBpz4MAaw/GAab0NyoneJF1vrSzWVslJzGGsRyG5HyEF36h0TWeto6lbmkZSy422DKoKYmQ6mwkhFXUJxmhciDjviZF070h3AZOyObwhBidhft6jjHTIQtQ47wleE1WUZPOocMpSjFYZrBxmuzVsP3aGk5s7nNmdEVVBMVhmoAJtE1DRooKTUUCrUDhi9Cn7xNC2LU1bAxqjB3J+MYrjr4LZbNbph84PrYwxdiOBbTt3McsTfXlksO9o9Hi++Adv+hXeML7GTNavMdz2E+/n9N/wrF7hEeu//LN/h9t/+n1X9iA9elwOKIVeX2Pza2a8vDqOUUv7fUaAZGe8+9RLOPTRLcLldluKURYsFx4/6zZ1TTi3gZnNOHxqmfUHV6gPDdg5+AL+/cGb+MNjL2Xp3nO84bb7ee3y/dxhJxww1fMiHD4GzoUpv771In7+d17P3b/8FO74iWuWZMBzIhom2ZouiqDn+ReChSJ5QSsh4l+TisN4nkXu4uvpCveuIF/Yct45ycV/6IhG9HSjUfOsDvlfTubIQmvZ88LXwoz8xZDfY9eZyeRFK2LU3ehTDEG6JIHuOhBzx2W+vxgv0s3oiFsSpLsgtq3OEdoZrp5AdMSBgugoTWBpOGJUKmIzwzU1dZA8jMZN8TGA1kwmW7Q7Zzi8vsodtx9gsBwZH4fJrKEaDAgu0ExrNs/O8C6lUQ8K7KDk9NmzfO7RR9nemVBVFbYYsrK6zHC4TIiRpq3RtSS2F2WJtmpeFaf3HNJqgFJgku2winr+M0hFNYxHS5RFyerqKk3TMp3O2N3dZTqdUNczmqxVQdM6R9M6fErNhkgMHhUdBGl3KrHXko4IEa1LUAalNKXVDArNUmk4tLbEDccOcfDwIbZmke3tHSZB48wKUVuMtijr0TEQPSgtnSLhENJ1IgoXlsdCkH0UMwJlTBoPm3cysvGBcy6RJTrSbYzpCIVzbk+GS+dy1qPHc8Rn/uXLeNXgfcC1MfJwLeMH/ru38Wf/5Jeu6DFe8PMfedZx3R49rikoTVwecfTwJmvXkBnJZ13gvvfdzd2feyA5lV5mXErxnshGnNWopoGdXfTJ04wKy6iqUIOKsDxmevMy777zNfzq3a/ipi97hu+86WO8avRpbrUty5fQ5fAxsBNr/u3kGD/6vv+GY79XcPefP4Z76tomGfCcxOBSWKuoUvEY55KIPCqURoQiafV/oeMgmgrZUcydBUgC79jpE4AuF0OsbuV4TUpHU6lvkcMDc8dDKTMnGpkEMd+eBVKS3k43RiXdgyAEJuaBqnnKN1Hoi0WS0H3ShagglqpdkGGM8xGrkCiRksOmSbK9ovSY33/oyEdIzlht2+Jah/ctKtSEZkYTWtqZoqosK8sjlgcFyjdM6ymtS6v+RcRYRRugaRui36LZ3WZ38xTDcUXrGlaqhkOrBYcPrbO6ukp0gTNnNnnyiWewg5L1A2uYouLTn3uCRx59mrqNRKXRRlOUlmpghTSqQOsalAEbCyQ/QyNBfWnkyUd8aIiAtYOUIxE7HU+MUBT5eutkFBDTfSIuYyEGdnd2mcwm4uZkhLTWdctkOqVtGoIXE2GdzAdERwKFtTJ6VFhsWTEYDCiKiqooqArL0GoMkdlsl4l3FJTYYcEgGkzUBJTklQTpVrXBEUnOYSo7Q2kRfscAOlKVVnI7PLhW8kyULrr7G2In+s6Wt4uObEqplBMS0jYOpRVtK+SraZtL/rXt0SPjdS96YN9Eztcbhr/zQb5p80380dv/+RXZ/zf+wH9NWX/4iuy7R48rgTAoWSk308Le/qOOLb906jXc/u4pfmtnf08mRhnVFocfYpP+jVbizIrSDB8pGH14xA2rS7THVvn1O76VX3jRt7L+Faf567d9iG8eP8hNFkbnuXi10XPCN/zJ5C7+j099Eyu/vcS9//4E/qmncfW1Z2V7MVx6MriKoElZDns7A+K3xHw1G0VAshu8l2raKDBmHrxHsm+VVXwp0mOqxrOgXAExyIqxVpGoQleYm5SfgRaioI1OhCGTO42oMEgr264bfRJulK15pUDUMUhmQQy0zmG0Se4+kkitQYpAo3AqJmE0acVc8i+00WTbJe8jPjhZ0SZrObL1bw4mJOVb+C7XQjoZgdBKV4MgoXzBtwRXszMJjAarLK+sYfHMdhuisZhyKJbDpsKHAtdqgreEUEngYSE6gqLQVEQMOwzbyAGjWDt0kHtuvpUnj61Atc5NN93AqdMbPPCpRzh5csJwfBBdjrFFhYueSTNhMBhSlgU+OSOV1YiyLDqSKR9xSyRQFGIkAHQBh2VZEoLcL0VhuzGzotRddgSAtVUiIIaDeo2iKGgaCehTWtPUomeIRLTSFEXROYJZa6iqCqM1IUpxX5ZlKuRbvHMycmc0jfO0saWsRhAiOgSqZNfrvIfoUBqKgaYwhbhC4VCmBBStl7BB57XoR2IQlzYVcLUEOg4GA44cOYz3vgt5lO6e3GNAZ54wm81omobxeInWe1SQ7pnSRrpoPXr8BYAL++9a82wwf/JRXv+i1wDw8NtexH1v/rnLst9v+cEfovqDnmT0uH6gjMGPC9arKYZrg2jc18B73/VV3PKJ+7t/P68JLHYXMvkAYtvAZAJnzmIeVRz4WMWhP1giHFnnHS9+HT/3ym/h61/+IN9y4FMMVBptR/GH576c9/7ZX+Km9zpuv/8E/uRnrhuCkfG8fTIXw8Yi7BnniJ3mIK1ap25GWvjv3JkUKYQOcL6RFfmuG0Enis6jWjnATukoAlwj2gkfSKnaUqyL49X8XELwqOixWsTl8rx0MKyxYKR4M0YTsQxj2bkhgRSNVstqvlZGUqhj7Do5MeS8j5yfEWlbKajrtk3ZGSSxe5C075TDoRVoJenfuQukuoi/NPYTkmjeGnwITGcN9chhC4uyBZgSVUjrpA2KZuaYzmpaJ0GDq0vLjJdXOLQ+Ymmg8O027WyTQgd0dAwqQzUec+fKYZYO3MTZCXz8vgf43BNnmDWKwWiFcrhETKNyg8GApaUlrLXdirzWFmPKrgskY0A6jSwJFT3fWSmnZGcXJufkM8xZJ3KfkTIlbFeEC62Va1eW8rOc65I7AjERi2whqxIhyiQmBCGhHnDOY8sKtKF1YkVbJDISQsAojbamO3fv8xgY3XMxdT1CMidTXbheSEnyqtNl5PGnRVF3VUkgZdZn5J9PpxOMKVDJ0rb1XsbievS4zvGvt9c583Xn9vs0Pi/8xiYAt/699/OGv/fyy7LPig9dlv306HFVkMJw/cgyttdGN30zTPm+D/8gd7zjKdzOPnczngsWOh/ROcJkAidPs/bZigP/3zrH77mbf3T7i4kWVADlYP2hCfc8+B8J29vXrRHMZTPknxeGe9OO5Zu5tqH7GZEu1E/EE0nzkV8XuyI+EtFGEVXWPYQ0+ySExBi6QDyFQhtFYctUyIKKEaOhtFJ4pgoxrcRXyf0oimVvmoW31qYAOY0iYrWiKOyeVGcpHkXUnoXhEkonq/rOtTRNi/OBECWxejar2d2ZsLW1xfb2LnU9I7oAyne6FHSUALh0zbwCZSxaQwiOSdMwrVtKa/FoWkBc2Dy+aalrRz2rASUp13qV8fIKx244wuGDS+hYM905h2snFKWFYozXQ6rxAepo+cyjj/PJhx5mty0ox2tUwzHGWgJ0eRBZS5AL9/PJw1zInIXOdI8XyUBGvn5CNuY5JPkXK+/v/HTsrHPI5CG7NWUdUP48gW7fiz/3XhK7i6JAa810OqWqRMTeNA3eh0RWDDGSPu/5mFsO4JN7Or3XZGUrvxdxgaDM816y9bN0eNruWi4Kwb2X+8UWEZXeX13XNM218Zd9jx7PF//72Tt576kXAk/t96n06NHjC0AphW4D5+oR7T4vdPkY+PWtuzj6KwP88U9f8/qEz4tEPMJkQpjVFKdOc/g/WFKxJ5s0Ld611/X7vGxEYx5ct0Aw0veRiDIqrezOdRtJ/JBcq+g0FrkzoZSSVXstXQx0JATpGBRFQVmWXcE2GAyTG5V0M6wtKEpJxbZGoQgUhSRRdyve1lKlURoZvyGNTJmFQlXsbaN3WCNCYohoY9FKpe4G82JTqQXLUgnGixGiUjgfmM1qtra2qE4XxOhp2ilKeZSKxCji5iCMCaU9Snu0EaKhosa7iPOB3Zl0ElzdUjee4MXz2bWOWS3z/dWgxA4qqtGQ0XiJ5bV1Dh4+hLWe3e0VJpNtQggMl1ZZWjvMpDU88uRpHjlxhlCMqAZL2GoJXZQSkKd1J2LOn3dVVd0K/WJydUhL+8bqRADaLgk+k49MIhaL9VyQ5+/nguh5cF0mGvPjyfiFpMY7clZF1kHkfco5iw5kUSORBdn5cSZDc4IggvMYIXi5f5USZ7Tg92psQHfnrZOmSOyP50YJYltrKYoyEVLPbNZgTCZtWdMUCdHRukBMLm51LdkoPXo8V/zeh/4SJ4/9MUfM/qeA//FL1omuJxk9elzTUKIvQGuUi5ydjZjtM9F43E346ff859zzgU/j/yItugVPrD3xOhuLuhRcNqKRV7IzurGq1Cmw2iwIwIOws/RYK4Upi66zAaT5+gGj4YCi1PggM/IhjRtV1YDBYICxBiLd/P1i3oAxlsGgwlpN8M3c2razl1WI4U/EJIJjDBSFTmNRIY3kqORWRAqQk3EgpQ2Jd6B0tstN9kMqj9M4lNKJ4Gj0sKKwq5SFpSwMg0HJ1uYWk+mU2XQq9qcxFZI6EHVAFQaihuAxqiRGz27TMGsaXFsTfItVYI0hGAg2rZpXBaos2JnNOH3uHAe3Vlg9sMZyNcIuWQozpG49O8Fw+tQOTz69wUOPnOCpM7uY4Rrj5YMU1RhrNK6p0SnXIa/+54I8j1AtIn/+xhja1ner9vm1i92tPH51sW6YEATRlkj3wXXjUDkAT7Q/cis3TZs6HLF7LPvTqKStaZombR/TyB3MZnUiToNEbjyZBbetR6u4MP5ER3zmCfW+e7/ZpjYTTpDcEK01de06MqGU6giIdClUpy+ZzWrqukZr07lmhRDErvf6XdjosY+454c+yAe++fC+29ve+cc/wF3hE/t6Dj169PgCSCRDGQPGoHzg3GTIdlQcieGKpl0/G+rY8hPHv4073znBn9u8rlf5v5Rw6WLwhVn0xVn7xS7G+QVkfl4K89z1mBeRIt41lEVBWaRV8vT6orCMx2OWl5aoKsusmRDxeB/SzH4hHQY9F4EXhWE4GNC6POfe4pxCa5umpfamMUPEuUXL3izaNmkFW9ystBYHqzxzH6J8abLlqKNtPTlgTUap6Fb5jU7kKgS0gvFwwHBQMRyUrCyN2dzcZHtnm8nuLru7u8xmM1rnaJtUxDqPcx7nIkSLwuC8Y1rXhNYRg8doKJLbUkjaiGA0dXCc29zi6UFkeXWZ8doBVDkiYtmYwu7Mc+LUKR5/6hQbuy2OimrpAOVojWKwjLYlldXY1NnJ134+OuYvOkKV7wNjddflWUy6hvlYU75Oi12NbIOc7yutDC5I8a/QEvDoQlr5lwLde+kwSPJ8Q103GG0wVghnURR43zKb1UCdhPnCPoMPycLXSifKebSW0bi2aVPXSrpUoimR+yiPQy1qlPL4k1yrssuJCUHuNyEmYY/ofd49kWs6nc6YTuvUAYJISO/Z9X+39nje+J//z+/nR1fhgb+1P4F9d7zzLbzwxz55bYk3e/ToMcfFXKVCwG7OmDy6zgNffpSbzNkL3JGuNHwM/N5knU/85ou46YFPXhk72x5XBJdMNM4fjVksEBeFroskpCvek7OOFKUyumKN6BmGwwGj4RCjFcF7Cmuo6zqtlhti9KAMZVngvLgALS2JRWPbtqgQABnLcq7FeUvb1oQgq9XOQYwuBQBKUZfHrWBeKCqlKMuSvMqtddGNuoSgiM7Pw/nSiE0uhnOas9aa4XDIZDLpjiEuW0oyKlpxR1KFjGuV1rC8PGZ5eYxSkaZpmc1mzKZTJtMp0+mUelazuztlZ3fCbDrDuVYE021LXRS4tiV4h2trmhAwIJa7xmKrArSiiZ5J4zi7tcNTp87RqoK6aXn08eNs7U5xGHYbgx6MWVlaw5RjfDREXXT5EGVZdroWyYSIe4hFvq6ZRObn67qmqkoGgwEh+D0airx9N7qW7pncIcjWsVqTCnSP1tIhqesakPOp2yZ1ThpxdKpbZrMp1WDAaDgitp5GObSyItj2QiTmwYiZhCritKYsS9o2BxDKsSeTaerGKIyxEi4YI3Vd4710UIRwBSaTKd57BgOF1pKl0ba+G31a7Npk8pWvW13X7CbCWdc19Wyaum5AjGKrG3qm0eP54cj/9T5Qiq/97FvZvFPzqb999QjHnf/6rXzZTz6E3929asfs0aPHF4ko6df6zAYHP36AX3nZ1/EVt/0mtyhDoa6Oa1wbPe+vDW/7g/+SL/vdk/id/u+Q6wnPa3Qqk4nzXYRgHriXt5PVaEVhtNiD2oLBoEpC6zx6Y4ghYKymqsouYM8YjQ+yAmwsMn6ExmiLcy3eJeKjFBFxgwrOQ4DCWDQKjcY7j1J7uxbnv59FgXAu/rKGwGqDipDTxWNARqMCXeaGVrLqTlRSpKbuhjGy+u0a15GyqAM+yhiM1fKey7JMpCZ0x2/bhrZ1QjR2dplMplJMJ6JT1zMZO1IKH1rwDqNEXETwDKsSqyNDGzi0usTq6jJeF5zbaahdYBoK6hihGGDHCmUrqvEqxlS4CCBjQFYrjJJeQu5enE8mz+9mSbYIKZskolRMTlt73cku9lnk0SO5XgZrClRpUjdE7ek4OCdkJndMcrii94GmbjG6lu+bNnUhpOiXlO0W5/zCfay6UaqmadLYnMY5ybLIYnClTEcOptMa52Q8K4+R1XWTOmV5dEvJvZEIlXeeupZRKSE9DqXElWwy2WVne4c2ib+0ihgTMFphjaHUBl1cu5agPa4DxMjyOz7A6BtfBn/76h324H0Kf+7adpnq0aPHAmIgBo3CE7Z3OPCpbR54/x28Y/2r+BtrH+GoGV5xsjEJDe/ePcqP//5f455f2SY8/Dj03YzrCs+ZaJxfGObnFleoYVGjEYhp7EgSpC1lWaCVTiMnkilAFFtRbRTW5pEZhXfiojRQFVVVYrQE73knwmetNUEpZDhFpUJQp5EVcYRyTQsqdIXj4riXMaYjFVlnskiWuvcSVTdXv0hWYswjYAVZdOJalzoyRepmeNpGdAjGGkmN9k7m7ZX8fOan0BEsQ2Et1mgK6xgNhhxcX5NiF7BFgUqZHzld3LsGHSNlodFIbkhlDZpAgWNpIKF1dePYnbX4xrN6sCBWNbUTuzVTVNiiQpsCHVX3GWkiRs3HmPa+/9iRj+zglDs91liyoCC7c+XrvuhSlrtK2e0pd4JIkYry8+T2xOJfMKrrEmQtxFw0LmRFxqQEonlYHFeaC7mzpawIyQtmsxmQtUdyLm3rUidFIJqLunvPVVV1HZD8fCYZZVl2GSDT6XRPF2NRFC9J6FOMMQyqiqrUaCUE0mglzmjXho15j+sc5k/v4yX/8If4+I9e+a7G3b/6N7nz7X0Sdo8e1zQuNjaVyAZNi3nyFDf+2ZBfXnsNq6+e8J1LD3LoCpENHwNbYcbPnn057/p/XsO9v3Ec/8RxYm+Gct1Bxb2ihR49evTo0aNHjx49evT4otFHDPfo0aNHjx49evTo0eOyoycaPXr06NGjR48ePXr0uOzoiUaPHj169OjRo0ePHj0uO3qi0aNHjx49evTo0aNHj8uOnmj06NGjR48ePXr06NHjsqMnGj169OjRo0ePHj169Ljs6IlGjx49evTo0aNHjx49Ljt6otGjR48ePXr06NGjR4/Ljp5o9OjRo0ePHj169OjR47Lj/wehQKfnp+VclwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAEOCAYAAAAOmGH2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebhlZ1nnjX+eaU177zPUkKQyVUKAMCjQja0tyiiIAeRyREDfBpQWB0RobO1LuwWRn7ZDt6jIoHTDr1u47JcepNsLRVFoBNuhG7AFBJMQIBBIKlV1ztnTWusZ7vePZ52TFEmgAkUiyfrkOleq9rDW2vvsveq5131/v18lIsLIyMjIyMjIyMjIyMg5RN/dBzAyMjIyMjIyMjIycs9jLDRGRkZGRkZGRkZGRs45Y6ExMjIyMjIyMjIyMnLOGQuNkZGRkZGRkZGRkZFzzlhojIyMjIyMjIyMjIycc8ZCY2RkZGRkZGRkZGTknDMWGiMjIyMjIyMjIyMj55yx0BgZGRkZGRkZGRkZOeeMhcbIyMjIyMjIyMjIyDlnLDRGRkZGRr4olFK89KUvvbsP4w657LLLeMpTnnJ3H8bIyL2Gyy67jGc/+9kHf3/nO9+JUop3vvOd52wff9/POyOZsdD4e8Yb3vAGlFL87//9v+/uQxkZGTmHXHfddTz/+c/n/ve/P03T0DQND3rQg/jhH/5h/u///b939+F9ybnhhht46Utfyvvf//4vyfY/9KEP8dKXvpSPfexjX5Ltj4x8ObG/ltj/qaqK+9///jz/+c/nxhtvvLsP76x561vfOhYTX+bYu/sARkZGRu7p/N7v/R7f9V3fhbWW7/7u7+ahD30oWms+/OEP81//63/l1a9+Nddddx3Hjx+/uw/1S8YNN9zAz/zMz3DZZZfxsIc97Jxv/0Mf+hA/8zM/w2Me8xguu+yyc779kZEvR172spdx+eWX07Yt7373u3n1q1/NW9/6Vj7wgQ/QNM1ddhyPetSjWK/XFEVxp5731re+ld/4jd+43WJjvV5j7biM/fvO+BsaGRkZ+RJy7bXX8vSnP53jx4/zx3/8xxw7duyM+3/hF36BV73qVWj9uRvMy+WSyWTypTzUv1esVqu7dCE0MnJP5KqrruKrvuqrAHjuc5/L4cOH+bf/9t/ylre8hWc84xm3efyX6jyjtaaqqnO6zXO9vZEvDePo1N9znv3sZzOdTvnEJz7BU57yFKbTKRdddBG/8Ru/AcDf/M3f8LjHPY7JZMLx48d505vedMbzT506xY/92I/xlV/5lUynUzY2Nrjqqqv467/+69vs6+Mf/zhPfepTmUwmnHfeebzoRS/ibW972+3OVf7FX/wF3/RN38Tm5iZN0/DoRz+a97znPV+y92Fk5MuVX/zFX2S5XPL617/+NkUGgLWWF7zgBVxyySUHt+1/76+99lqe9KQnMZvN+O7v/m4gLwRe/OIXc8kll1CWJVdeeSW//Mu/jIgcPP9jH/sYSine8IY33GZ/nz3X/NKXvhSlFNdccw3Pfvaz2draYnNzk+c85zmsVqszntt1HS960Ys4evQos9mMpz71qXzyk5/8vO/BO9/5Tv7RP/pHADznOc85GOfYP77HPOYxfMVXfAX/5//8Hx71qEfRNA0/+ZM/ebvHu8+tZ8Df8IY38J3f+Z0APPaxjz3Y/meft9797nfz1V/91VRVxX3ucx/+w3/4D5/32EdG7kk87nGPA/Io5+c6z6SUeMUrXsGDH/xgqqri/PPP53nPex6nT58+Y3siwstf/nIuvvhimqbhsY99LB/84Advs9870mj8xV/8BU960pPY3t5mMpnwkIc8hF/91V8F8nlwf61z6zGwfW7v3PC+972Pq666io2NDabTKd/wDd/An//5n5/xmP2xsve85z38s3/2zzh69CiTyYRv/dZv5cSJE3f+TR35nIwdjS8DYoxcddVVPOpRj+IXf/EXeeMb38jzn/98JpMJP/VTP8V3f/d3823f9m285jWv4Z/8k3/C137t13L55ZcD8NGPfpTf/d3f5Tu/8zu5/PLLufHGG3nta1/Lox/9aD70oQ9x4YUXAnnx8rjHPY5Pf/rT/OiP/igXXHABb3rTm3jHO95xm+P5kz/5E6666ioe/vCH85KXvAStNa9//et53OMex5/+6Z/y1V/91Xfp+zMy8veZ3/u93+O+970vX/M1X3OnnhdC4IlPfCJf//Vfzy//8i/TNA0iwlOf+lTe8Y538H3f93087GEP421vexv//J//cz71qU/xK7/yK1/wcT7taU/j8ssv5+d//ud573vfy+te9zrOO+88fuEXfuHgMc997nP57d/+bZ75zGfyiEc8gj/5kz/hyU9+8ufd9gMf+EBe9rKX8dM//dN8//d/P4985CMBeMQjHnHwmJMnT3LVVVfx9Kc/ne/5nu/h/PPPP+tjf9SjHsULXvACfu3Xfo2f/Mmf5IEPfODBfve55ppr+I7v+A6+7/u+j2c961n8+3//73n2s5/Nwx/+cB784Aef9b5GRr6cufbaawE4fPgwcPvnGYDnPe95vOENb+A5z3kOL3jBC7juuut45Stfyfve9z7e85734JwD4Kd/+qd5+ctfzpOe9CSe9KQn8d73vpdv/MZvpO/7z3ssf/RHf8RTnvIUjh07drDu+Nu//Vt+7/d+jx/90R/lec97HjfccAN/9Ed/xH/8j//x827vgx/8II985CPZ2Njgx3/8x3HO8drXvpbHPOYx/M//+T9vcw7+kR/5Eba3t3nJS17Cxz72MV7xilfw/Oc/n//0n/7TnXpPRz4PMvL3ite//vUCyF/91V+JiMiznvUsAeTnfu7nDh5z+vRpqetalFLyO7/zOwe3f/jDHxZAXvKSlxzc1ratxBjP2Md1110nZVnKy172soPb/s2/+TcCyO/+7u8e3LZer+UBD3iAAPKOd7xDRERSSnK/+91PnvjEJ0pK6eCxq9VKLr/8cnnCE55wTt6HkZF7Aru7uwLIt3zLt9zmvtOnT8uJEycOflar1cF9+9/7f/Ev/sUZz/nd3/1dAeTlL3/5Gbd/x3d8hyil5JprrhGR/B0H5PWvf/1t9vvZ54iXvOQlAsj3fu/3nvG4b/3Wb5XDhw8f/P3973+/APJDP/RDZzzumc985m22eXv81V/91R0e06Mf/WgB5DWvec3nPd59jh8/Ls961rMO/v7mN7/5jHPVZz8WkHe9610Ht910001SlqW8+MUv/pzHPTLy5cj+WuLtb3+7nDhxQq6//nr5nd/5HTl8+LDUdS2f/OQn7/A886d/+qcCyBvf+MYzbv+DP/iDM26/6aabpCgKefKTn3zGeuAnf/InBTjj+/mOd7zjjO9nCEEuv/xyOX78uJw+ffqM/dx6Wz/8wz8sd7RU/exzw7d8y7dIURRy7bXXHtx2ww03yGw2k0c96lG3eW8e//jHn7GvF73oRWKMkZ2dndvd38gXxjg69WXCc5/73IM/b21tceWVVzKZTHja0552cPuVV17J1tYWH/3oRw9uK8vyYPY7xsjJkyeZTqdceeWVvPe97z143B/8wR9w0UUX8dSnPvXgtqqq+Kf/9J+ecRzvf//7ufrqq3nmM5/JyZMnufnmm7n55ptZLpd8wzd8A+9617tIKZ3z1z8y8uXI3t4eANPp9Db3PeYxj+Ho0aMHP/sjArfmB3/wB8/4+1vf+laMMbzgBS844/YXv/jFiAi///u//wUf6w/8wA+c8fdHPvKRnDx58uA1vPWtbwW4zb5f+MIXfsH7vDVlWfKc5zznnGzr9njQgx500EkBOHr0KFdeeeUZ58uRkXsaj3/84zl69CiXXHIJT3/605lOp/y3//bfuOiiiw4e89nnmTe/+c1sbm7yhCc84eDf+JtvvpmHP/zhTKfTg0mHt7/97fR9z4/8yI+cMdJ0NueE973vfVx33XW88IUvZGtr64z7br2tsyXGyB/+4R/yLd/yLdznPvc5uP3YsWM885nP5N3vfvfBuWyf7//+7z9jX4985COJMfLxj3/8Tu9/5I4ZR6e+DKiqiqNHj55x2+bmJhdffPFtvpCbm5tnzFCmlPjVX/1VXvWqV3HdddcRYzy4b791ClmfccUVV9xme/e9733P+PvVV18NwLOe9aw7PN7d3V22t7fP8tWNjNxzmc1mACwWi9vc99rXvpb5fM6NN97I93zP99zmfmstF1988Rm3ffzjH+fCCy882O4++yNCX8w/kJdeeukZf9//Dp8+fZqNjQ0+/vGPo7XmiiuuOONxV1555Re8z1tz0UUX3WlHmjvDZ78+yK/xs2fOR0buSfzGb/wG97///bHWcv7553PllVeeYTxxe+eZq6++mt3dXc4777zb3eZNN90E3HK+ud/97nfG/UePHv28a4D9Ea6v+IqvuHMv6A44ceIEq9Xqds9HD3zgA0kpcf31158xJvm5znkj546x0PgywBhzp26XW4lCf+7nfo5/9a/+Fd/7vd/Lz/7sz3Lo0CG01rzwhS/8gjoP+8/5pV/6pTu0qLy9q7cjI/dGNjc3OXbsGB/4wAduc9/+vPAd5T7cuht5Z7mjK4K3vtDw2ZzN+eRLSV3Xd+rxn+u13B539+sbGbk7+Oqv/uoD16nb4/bOMyklzjvvPN74xjfe7nM++8LnlyvjOeGuYSw07uH85//8n3nsYx/Lv/t3/+6M23d2djhy5MjB348fP86HPvQhROSMRco111xzxvP2r2ZubGzw+Mc//kt45CMj9wye/OQn87rXvY6//Mu//KKNEo4fP87b3/525vP5GV2ND3/4wwf3wy1X5nZ2ds54/hfT8Th+/DgpJa699tozrhp+5CMfOavnfyHjEJBfy2e/jr7v+fSnP31Otj8yMnImV1xxBW9/+9v5uq/7us95AWD/fHP11VefMa504sSJz9sV2F9LfOADH/ica4mz/V4fPXqUpmlu93z04Q9/GK31Gc5+I3cdo0bjHo4x5jbV+Zvf/GY+9alPnXHbE5/4RD71qU/x3//7fz+4rW1bfuu3fuuMxz384Q/niiuu4Jd/+ZdvdxxktIYbGTmTH//xH6dpGr73e7/3dhN578zVsyc96UnEGHnlK195xu2/8iu/glKKq666CsgXAo4cOcK73vWuMx73qle96gt4BZn9bf/ar/3aGbe/4hWvOKvn73vzf3bR8Pm44oorbvM6fvM3f/M2HY0vdPsjIyNn8rSnPY0YIz/7sz97m/tCCAffscc//vE45/j1X//1M85jZ3NO+If/8B9y+eWX84pXvOI239lbb+tsv9fGGL7xG7+Rt7zlLWd0iW+88Ube9KY38fVf//VsbGx83uMaOfeMHY17OE95ylN42ctexnOe8xwe8YhH8Dd/8ze88Y1vPOPqA2Qru1e+8pU84xnP4Ed/9Ec5duwYb3zjGw8CcfavKmited3rXsdVV13Fgx/8YJ7znOdw0UUX8alPfYp3vOMdbGxs8D/+x/+4y1/nyMjfV+53v/vxpje9iWc84xlceeWVB8ngIsJ1113Hm970JrTWt5mTvj2++Zu/mcc+9rH81E/9FB/72Md46EMfyh/+4R/ylre8hRe+8IVn6Cee+9zn8q//9b/muc99Ll/1VV/Fu971Lv7u7/7uC34dD3vYw3jGM57Bq171KnZ3d3nEIx7BH//xH9+m63lHXHHFFWxtbfGa17yG2WzGZDLha77maw6suO+I5z73ufzAD/wA3/7t384TnvAE/vqv/5q3ve1tZ3Rk94/PGMMv/MIvsLu7S1mWPO5xj7vDOfORkZHb59GPfjTPe97z+Pmf/3ne//73843f+I0457j66qt585vfzK/+6q/yHd/xHRw9epQf+7Ef4+d//ud5ylOewpOe9CTe97738fu///u3+X5+NlprXv3qV/PN3/zNPOxhD+M5z3kOx44d48Mf/jAf/OAHedvb3gbki5uQTSie+MQnYozh6U9/+u1u8+Uvfzl/9Ed/xNd//dfzQz/0Q1hree1rX0vXdfziL/7iuX2TRs6eu8ntauQOuD1728lkcpvHPfrRj5YHP/jBt7n9+PHj8uQnP/ng723byotf/GI5duyY1HUtX/d1Xyf/63/9L3n0ox8tj370o8947kc/+lF58pOfLHVdy9GjR+XFL36x/Jf/8l8EkD//8z8/47Hve9/75Nu+7dvk8OHDUpalHD9+XJ72tKfJH//xH5+Dd2Fk5J7HNddcIz/4gz8o973vfaWqKqnrWh7wgAfID/zAD8j73//+Mx57R997EZH5fC4vetGL5MILLxTnnNzvfveTX/qlXzrDplEkW05/3/d9n2xubspsNpOnPe1pctNNN92hve2JEyfOeP7+uei66647uG29XssLXvACOXz4sEwmE/nmb/5muf7668/K3lZE5C1veYs86EEPEmvtGVa3d3Q+ExGJMcpP/MRPyJEjR6RpGnniE58o11xzzW3sbUVEfuu3fkvuc5/7iDHmDCvNzz4v7nN758GRkXsCn72WuD0+13lGROQ3f/M35eEPf7jUdS2z2Uy+8iu/Un78x39cbrjhhoPHxBjlZ37mZw7WGI95zGPkAx/4wG2+n59tb7vPu9/9bnnCE54gs9lMJpOJPOQhD5Ff//VfP7g/hCA/8iM/IkePHhWl1BlWt7d33nnve98rT3ziE2U6nUrTNPLYxz5W/uzP/uys3ps7OsaRLw4lMqpeRu6YV7ziFbzoRS/ik5/85Bl2eCMjIyMjIyMjIyOfi7HQGDlgvV6fIfxq25Z/8A/+ATHGL2rkYmRkZGRkZGRk5N7HqNEYOeDbvu3buPTSS3nYwx7G7u4uv/3bv82HP/zhO7S4GxkZGRkZGRkZGbkjxkJj5IAnPvGJvO51r+ONb3wjMUYe9KAH8Tu/8zt813d91919aCMjIyMjIyMjI19mjKNTIyMjIyMjIyMjIyPnnDFHY2RkZGRkZGRkZGTknDMWGiMjIyMjIyMjIyMj55yx0BgZGRkZGRkZGRkZOeectRj83/ziz5JiRAu0q5ZPfeIGPvGx69nb2SP2iRgSgiKKIsaECChjsQYaZ4i+RSRhbd5lCIEYI0opYoyIyEHsvNYarTVojYgiKY1Ifk6ShNIaUKBAG0PvPTFFrLWklAgxYJ1DUISYUEqhlELnp4CA0YamaUgp4bseYwxGKbz3eXuSUAqUzonYCgUy/Fkkvz40Rg+1WkzDsVtECzHFg+fHGPExIoA2+bUZY0ApYooYa6mbhrIsidGzWu3ifYerG4wrWa1a1p1HGYdSGg1MmpK6dDgFldOcd+QQF194DGsNN954I9d/8gZO7+wRk0IwpAQBBcpQlCWuKkFB5zvWXUvf9xASKggkQWJAITinMYXFOA3O4E3EG0E1jmJrQjGriQpCDKQg9G1HSALaIEohylCUFbPZNs46YhQk5vdLkqBFo9FordBKIRKJMRKCJ6WIaEgS0dZQ1gXGObQzKKPoQs9qbw/aQCWW0jgAfB8IkqBwSGHoSUQSSoRaW2xM9HsLUttRWUvhLK50XHThhSzmcz78oQ9hgmBCwojDaAvGYaczqq1tYlXSaY0qCoy1WKMwBBQdKSzpux26dpeqEbYON2wdnmErxbpb0oY19aRhMj3EulWsV4E+BKq6ZHN7i7quSNGz2FvRL1u6VYdfevBCO1+z2l3irOPP3/y/vtjv/t3CE/R33t2HMHI7mI0NLvvjnldd9Od3+Jh/9C9/kENv+EtI8S48spEvJX+U3nx3H8KdZjyHjIz8/eFsziF3ynXKh0BoPYu9OfP5nLZd4fue4CMSQVAkUaQkpLw0RylFEk1MiRA8PgSU0igFWptcVFgLIrlICIHeB2QoKJR2aGNB7RcXGqV0LkySkJRgjEFpPRQqCmscIiAIeigUIBcHkIsGkUTXtaSUiCEADmMtxmgKZREgSiIOBYRSuTjQWqOANCyUFbmIAYVSgEASQSHkGwClcuGkFErnPyulhtenUMbk9yml/Bq0Rhk7vE/5cUYrBCHGgLEWrRXWGEqnaeqCpqlwztL3PT4EjDU45witp+87fEhEpTHGEVPCBw9GI1oonKUqC3znaZctWglJGUiRKAmdEgpNTBFRgqgEMZB8IPaBqCGmBCKgFYr8mCT5dulBrfYoiwpnCpwt0M4hMRFDJIZIEoUSEEkkEmiNKyzOWUQJymiK0oGC1nes5it88GgRnLbopEgxDAUgGJPf74TCGosSIcVAionkEykIpOH3FSIRaFdrfNtTaIsyCZM0yUdCBBKYmPLv0WgQQSSQckWNMQolBpUMRjkKV7O9OWNrOqF2Bc5ZCj1Drxd085Z+vaZoJsPnNrFcLFh3a4xRxJCLNiL4VU+/7FFRIT5hXEEzae7M13Zk5PNy7W9dxlsv+g+f8zF/9fJX801//d3I//ngXXRUIyMjIyNf7px1oZFSwvc9i70Fp0+dYmd3h/V6TYgeEYhRQGnSsNAWFAiIGEIMxCSEKIBgDBhjUcNVfUkJrS1aCSoKQiAJmIPJLoXWJv9f5Y6HiBBCXlha52DoRiilsM4RUyRJQpQQY75KjjB0EzRaKVKKuUsSc/fBKA66KkortOihOFEYY/KCVYEkwSg1FBy54EHnIkINnY6QBOGWLs0ZhYW6pfg56N6Q9620RisLpLxtCXl/xqCUxejAZFJRlS5fSTfgnMFYTUy5QHPOUhYF1hqQPr8PkouYqBShz4WGMhrjNLawaGWoyhKrDSlGQtfRd5GYEipFTDKIElCCUgJBEB9JnSdpCCkQEfLbNbSOFGgUGEhEfMqdoiABowya3JnQWiPkdT+Su1haBG0N2lmUzu9NjHkPvu1ol0tSSkzqitJYVIok7/E+YI3FlSWiNUlplDIoSYQUc4EQQCWNFpcLFO9JUWgXa0LfUVpHjD0pBfTwGUzkz451hmg1BI+I5KIsBvJHOyAx4UxJU1ZMiilOVdAZ2jYwX7bszRM+adxU4SpLVTmcs3R9i08JRGFtARokCBQgEZw43MRhxNA0ky/0+z4ychv0Qx7Ag499+u4+jJGRkXsKB2ucgdHc9F7NWRcabdsigLUWow1a6bxwVipfgUbyYpah0Bgu6EuC4CMk0Cov2rS2WGPRSuer+Enlq/4qFxRGO7RKaGsQUQcfWqXU/lKW4QaM1hhtkKEA2Uf2L23DUGjkxa2zlqqqMEbTth0hhoNj994jkhjaLcPiN1+hT5KGwiaRYh4Bs9aC5LEv0jAupswwppVfW3596Ywv3sGYmCjscMwppTy+pS1GO5BA30WEfLW9LEvKsiBJZDZtMBqUBLTWFKWlKCwiAeM0dVPj5ov8uki5+2ENEiUXR+QFrSQhBcGnSFA9xjqsdThrcM5QlI7Q98SUx3ussRitUVoQNCaA8QJGUCkhOqFs7i4lQCsFQ7cpiMf3uWhC8vtjlcWYYZ+uQFuDUgatFEbymJkyhpQifdvS9x2ShBgCKgoGhY7ghi6RHz5rShkKa8BYehFSjOT2Sv485tEtg0HhUKQUMCgIAZNg1kxY+kgbOhT5c66NxTmHcw5lLZaY/wuBzncso4cY0CLMmppJvUVdTEltYme1ZrFYMp8v6TqPLSwSNXJY4+qCsqxyZ6NtAcEag3EGVSiiLQlFpDQVhSkQL7eM642MnAOufeY2f3ff37m7D2NkZGRk5B7IWRcaXddTFiV1U1NWFdrkrkJMuciwVpNQeb4fISVBkRA0MZEXqEqBCFob1P4MP7kgyONGCqUNxuYxKoSDzkhKiRhj3uJndQBizCM++6NHIeaRFqWFRCJGn1+s2x/HGYqBLAMBkzslkK/8a2VAQYgJVC44og/5CjagdV6cppS7KcrdMpaTr/gr9P4IWYpDATaM26RBL6INQsr3K0g+HWhOtClQKpBSvmpurGFS1TRNhY89ViuMSigllKVlOqmpm3Lo0uTHV3VJVZWs2x6RlHUUKaKGrtD+OJdSeYwshoAPAW09hbWUhaMpG0gVvu9o+w4QlAyvI4IKCfo4dCXAlRZTWhKKLvj8O1AKGd5LGX6fCoUmd2CU9Oho0KnARIc1DmM0VhucMmit8MGzatd0qxXJB6wxVDZ3YVQfCQiVMhTWoopcsDmtc4clRbQxWG1QOutrNAmRiEHnxymPxZB8RKPZnGwga0/QPYQ8fqdNHl/LI36RFBNRAr1f07errCnpPSolVEjMqimxENaLNaduPs161SFRYSlRXtGZyHrR4ypHWTmUOJR4IKFEU7iSumpQovBtQKKCKPQhF34jI+eC9Mh/wDd+w3vP+vGf/Cm45P+ZkJbLL+FRjYyMjIzcUzjrQqOuG8qipF+vs46i6/OV/eHqq1E6C45TIqY0jE+BRucF+DBWlKLk+/a7DUOBoG51xd9Yix5GZfICUQ/jWQFJCRnE3QpIKeJDQBCMyS9HkmBsvvIeo0dpwVpHUVqEyLpdDcVLzIWGKLQBqwwpKZzLYzf4iAyjYFFyoWELR1NVhJjHcCaTGussoevp+jZfsUcNguY8Kpb/i4gMi2ydix0fcyclhURCQCWcc3lMy5Ukyf2HonBUVUFRGKQVJPYoA8ZAYTVV5bDW0Pc9MeZtbG5uEkIioVjM17RdLr68H34XgNXqoIuQjMmaFAU+9kjrEVcMxWVD2dR03Ro16DqSzh0qjc39LAUB8iicpDxOhGAk63HQ5N8dHBQcWmm0MiTNoOnIxZpRBtEuF04aur5juVoS2g5CwrqCwlUUxpJSwApMJ1OaqiQGj7IWjGbet8QIFAUYS4qgo0JMoI8aGxJGJ6JA8pFWWpyxNLOSwhY4axFJGGvQxiAp0K5XrFthGTxJRSQFUkhoybNiIQRWyxW7Ozssd/foVi2xCyjRGDEocqFtsOAtqTeItVhKCi2klLs1KhmcKbHGEv2KvfmcxXzBet3lTtHIyDng9JUVr7zoL8768R/4x2/kSfU3wFhojIyM3BHjqNTIrTjrQsM5h1LgfSCliHWWqirp2xZNHmFKEtEmX1FHaUKKBB/RWuWF/zBOpIYZ/hgDPgaUUhTWHnRHjMsLPIvFWkcIkZgiKIt4P3QisqNUjP5AIG1MXuhpnd2LlFJZj6FhNptQOMdqvqTrOsqywBWOUheslyu0hsJZ+r7DOo0og0+QRGGGLoqklJ/T1LhhHEtbTQgdXehIKusjlFIoDzEaQEiiSUO5oY3J2gklw3HKoKGQ4SehtMVYSzGI2euywGpF6Du0RMoi61lQKV/9txbrLD4GqqKkqhrqSUIbh6AROQ2ssNaykg5XlCRJTCYNaSj0sJI1DNYAIDHifY/3PVVV0TQN1k7I5lt5XC6SBdVaK5yCPni61ToXmxIRrYk6619y4SkHo3BZPy+g09DFGsbnjMGVBaUrQITFasFisUfbrtEhURqLEeiXa0QbKldyaGuLh37lQzh8aIvd3R1c4Ti92OETN32GIvS0IogxOFtR6hLahJ+2yKqDbg2px/cdMQop9cyXK1BZbI9A4RzKOXofWO7u0BqNN5AQDFlL5JzDliXBF9k1arELMZJ6j0FTuRItmhQSrq6ZNlvU5RZ+HRGfqKqazXqKDx2r5R7rvR78HFcU9L2n7XJXKUg4GEEcGfmi+McP4Wf+xevv7qMYGRkZGbkHc9aFhjHD7Lw2aJ2F0dZZJLpsF5vnUgiD+VBehkZEJYw2WDs4HsUwOEt5QshFSFVVWUfAsAhHsVqtMMZirCbEgHOWjY0pbduxXC9RCGXl6Pqewliqus5jOm3Mwmmj0UZRNzNs4QZbW4FUZTEzgtZ59CgGm0W8hUGbEq0VXQigNIUr0EYTfE/fdbngQZjOpmgFwfvB5UlRFyWFK5EktOseFJRSICo7dvXeDwv7vI1scQvRp6wjUHJQkBVao8rc2TEatCSsBVuUaKOIoccZQ1WUeQwpCEbbYSxLUdcVIrBetywXK0KIFClrFIqypKkbyrokxsB6taLtO6qixJYuW/wOLlIxRtarFX3XMpk0eVTMaMxgsysqdyd8ykUSRrIAXFmi0lkH4iMYPYzMqQO3sf2ulFIKo8AVlrpucKVDgrA3n7N7+jT9qsOI4Jyj1A6bQPpIkEhKGudKjl5wARcdu4D0ievoQourC2ZbU1TskL4jonIxM7iV6UqhVYE2oEnYUNJ2a5aLPbreU1uDsY6UoCgctq4Riax8R4hCcrnTZoyicI6ydIhEJPn8mnQihB5REWctSkeQgNbQ1IaN2Yy6Osw69tllag0pQAoKv0zE1KETSBSi5HGwelLj0mBsMDLyxaAUoXE8uWnv7iMZGRkZGbkHc9aFhqR8BTd3CWyeg7cOW+cr/cF7jNKIIi/GU0IN2g2nDNYqrFM4caRkiIPjk9aajY0pVVWxWq5o2zVFWVJWG/S9J8YObYSisCTxiPLUdR4vijFhbIErCuqmzqNV4nPXwDmqpmTr0CYhRHZOn0JrzXQ2QWkIvadpGqbTKYW1dF3HpK4REXyIrPoVIeauACK5eyKJqijZ3t5mc2uDGAOLxS6iekiCtbmgijELsMuyOMjLaLsudzDUvrA7dxV8CNBm9948IlWiTEG+Ti5IyiJjq6Eqsug7xkDnhbIoaOoJYOj73GWq65qyLIbuSERIWGeZTadoZUlR8N5jjUYLuKJAYiQN3RprLVYELQklCU8uNkIMrBTYoqAoC6y1aJM7V6IUFsGIwQxC74SgRJEYHJtUdhkzRufnHXywZChU808KPWvf0bYdi/mCbr2GmLDaURUltXEYn0gBCBGJgveRE6d3SEo4tbdDUTvqzYYNF7DSUw+vQymDCppu3tGKx/seYwVTlaSgURJIxmQdBiD7+h1rKAqLj6B6IUVPlIhxmqIoqZ3GOUUSEFHEYFAqgVeYwuFcCVGRQqJwBc10k9nkCIU5hMQeXcDRI5tsbU3Ym9/MdR/7CLvzk6hCY7Bok0hFwhaaKIIP/Tk9CYzcu1Blyf/46J+h+T+Mma0jIyMjI19KzrrQUEqRDmxi9y1byc5QEYIfLGGHUDilddYAaI2zDpIMWgmLNeUts/wpYqzClQYXDT5piio7UoXYUZYVxursUqU1qAnWWrz3nN7dQYJgnaKsLGDQBuqmycVKXVGUBTs7OxRlHrGpy5KTJ0/Srjum0ylbW5uUZcF6taa0t+RQSEoYW2Jc7obEfS2IAu3yIjtGT1kWKDXBB08KYQjqU1R1hVYmF0SD65S1lqIq2dzcpGkadvf2mC/mhEGw7JxDBmdYkUCUiEYoCk3pDKUzWKPpk0crRVXU1NUErS0xJorSZmvfGFgsFpw6tctiPs+jbjaPodV1fRCQqJWiqeqsg5EhcBCwrsTp7Mq0EskLbxHW6zV6sHWVSmOVzsJyUVhlqW2FIhAkX4VHKYxSYDViFLKfhZKyfieliAx5JPSR2LYEyYVQ3+f9OJudqUptKK3DKgM+S8olgk+end05V3/0Y5zc26SuLU0zRWzEiKUymqI0BLJOp3YNJmj6vTXr0wt2bzjN6U+fIiSwdcWGPYSRRGo72vUKNZgQhOCzDbPKblqKhFVCUylKJxiX8zScqwkpEXxAksEqi9UVKQlooWw2mEyO4fQ2Oyc8tqrYnm1znwsv5ZJLz2OxOkVtSz5y9QdY9XNUEHSpsUYjKaKspijrc3waGLk3IQ+9P06dvS5jZGRkZGTkC+WsCw1rLau+p+s6/MEIUIKU0EpRFDkITpmcFWGMRRsFWuGMzaFsaXDw0XkUqyhrClcA2VVqa2uDY8cuIKXE6dOnmZkpTd3gfUfhSja3NjHWsF6vmc/nNL6k7RXWAirrO8rK0UzKrAUg6yjKsmBz8xiHtg8RvGe1WqEQNjambG9vM51OkBSRINx88wnWbQtaZe0EDBoTgwl59IdBX5D1ETXNpCb4POevtcLZEpIh9IEQ49B5sSit8thS0xyE/+UQwqzV8N4jyyWi1oM2wDCtSyZNRV1YFIkUs7NR6QrquqEqK2IuTbCmRGuTgxF9vmIfY8yjWkMeSIzZtUlSonAOayxiE2VRkGLEDLkecQili3FwWIqDi9TQ3dExIkqRB90EMeCUJSkNMYCo4ajyI3yIRLL7Vx63GkatcqofKXY54lGpwUSAW7pm2uaRKckBetlGFlCKPkRO7+3iP/VJ9tZ7VBPLp27+FLqCcqum2m7wMdGniBFHUolKFeha0agJlauZNBucOnmK3d1TedxJBnF7jqOn8z10Bo/k980YXGEoK6FyCef8gdbEFQWCofcJrRM6OQiWhOCKmo2NC5jNLqYsZjQSOHLkMEcOb9OYDaR1NHqDS86/jJtvupH5J3dZ7a2pZgW2NITUgxLqMUdj5AukfcpX899f86vAWKyOjIyMjHzpOetCI3jPerVitVrhfV4wqsFm1lqDMXmkJ6Qw5CK4IWNDsruQiWfY1FqtmE4nbGxskJKwWq+IPuAKR5JEM8maC2ctU9Nk16uyoPOeqq4o64rp5gaLxTKPkqjs9JQD8WDdrtDeMN3YZHt7i43ZJkhivrsL5JEh6yxFaWmairIsCX3P3nIXDNldKShiTMTEkFYORlvKoqSZTJDkScEjKWKVUBaGoigobEXb9uz22YnKWsdk2mBsThzvg6dfrWh7TyQLzn1ICIlC8nhVURQ0dc3mxpSmLtAIoVsPKeZCVVXUdZ1HmCSL3gtXUpcVUjmCj8znK0IIrNdrwFAWZLG7yaL3ru+AhLWG6XSK7zpizNoULVCVVQ5KVJrU5kBGZQxGm0HrEHJGShxspZTBKtDKEJQhihCDENKQJD4EKCY9xIoMonClNNrpIewwGwuUOu9Hoym0xSkNbUD6iBVFUWQNhfGRveBp2zV9qEltYOkDjWtQKtF3S7q2R4zCBMdysaSf9/hFh/aGDbtJU0zZOHqEYlaze/Ik693dLLwmd7JKSVgGy+WYcNZR1hXWRWK3pDD5M+vFo62gTYVRDmc0QoFPmhgVTX2Yzc3L2JpdhC1LLrxoytahDZraUbgh30NrSlvTuCmxV+zN95j4msnWhOg1ffS5fTgy8gXw4l/5bTb1WGSMjIyMjNw1nL1GI+Yxl31jTa3zrH12IMoFgbYW6TvKosouVEkwRqGNRaW8UE++RwFVM2Ey26Ssm3wlf72m8wHlPYhQ1hOqKmsZ6romScrjNCrRzPL4VLFegzYslktC8Fht8wK9qUlJgTaURUNdTjHKsre7w2q+wiiDdRYliuCzeDwpITmFqhxeJ6ISRKmsQZBE8Pm1G2Nx1jGbTLEa+m7FerkgSqQqK6qqQpRitV7RhTVBPM45dKHxMeJDJMRE13ta71n1ntZHvOhsz2sKCqOY1jUbkxlVWYPk/ITeCyEqJGnqokIbQ9d2REmURYkhgESs1lRlSVmUKBS+9zlzo8jFoQAxJZarJUJNY2pA6CXhRdA6J70bbSgqg+s9lh6tcydCi+SCQufwP0kJOlBBD1awjmQ0QQu9RHrJ750GoskhiKKzBkIZBdoig0OWEYVVmkIbrChMFFxSxLajX66z3scUiESSUtRNQegSKXSolKiqGb32qKKkF1jszlmHJWWV9Syxhb1TC9pdjwqaHTxVsWRaN9RlweTwIZTVJBFsl0XxrVZZkG8thdGIVhQRDBCjQobvQQyRaALaBZQy+D5BtKjkcLpg1mxx7PxLuPjYpXjxbGyVTGYFVe0oSoUtcmFTVBVFOcGqBh0DZdpkUx9hq9b0PuDbUQw+cue5/l8+gq8s3g1M7+5DGRkZGRm5l3D2o1PG0tQ1EiLr1RpQpGHOXwDvfXYRUpqqyovjEALW5QJERX3gNKW0pm6a7BSl9WB9qvJCriiBbKc7nU4HIW5B13UYB04pbFHgvaft+9xVkbwwds4ync7Y2JhhTEHvI1pbgo+swprlYoXvI2YIG2zbluVymaeXrMEUBlcVYDVJMeSC5DTtnEKe06GLomTSTHAGOg0GQVKZF6NK0YeA9x0owZUWZaDt16zXPZ2PJIHOB9q2Y7Vu8b0H7bCFzRkRRuOMI+cy5NGnvu/wfZ+vsDtHWTX4GGm7BUgeqSoKhe3AaEP0uTDUSlEWBUrZQVtADlMcfm8MQX4pdPiUcoEwOBs5wBlLYV12mVJD9giCUXmkTCMkOZgmy/qJEFA6FxOFyXkbRisMEZ+EkFNDUFajtUW5AmUrlDI4NFY0Ngr0PbL29F1PXLUQhaIy6BTx3lMUltnmJmVdsrteE7o1KTWIVoQImuyQ1q677JxVeqyUiFcYVRISdCkRZM2qXVFaQ6lN1oxYi61L1NrRx0SpYFrXmBBp2w4dhMI5IhVKbNYgJY0oSwomv75kULk9hikKNjZnHLvwAu5zxXFCaglphSkSzkFRamypiMHhekdZNBw5dB7nH72Qo4ePsrmxjTVF7lQtxgyDkbPn5ud9LbNv/zS/c/9/y+VuLDJGRkZGRu467pS9bVEULIa8Bx98FoZrjTUmj5Ww76hU0Hc9WmuquqZqGk6dPkWMkaLMhcS+1sMYk4PwbBZ7W2tz4vcQSqbVfnp1FqBrrQ/0DLm40biiAJVtcjc3N9ne3qYoSvbmS1KCtm3pu2xPa0x2hvLeE3zA+zCMCymsy2Jqbewt+5Q02JgatMqWtDmDoyCFDhEoy5qUAuvVkhT7rF+RHLSXwwYVXd/R9Wv6Pg6C54jvPTEMOSAokICkSCDQdoLRihQLkkT6rsP3HUplfUYzmZAkZtG6cbkY8T1VLHMxEfNYl9GKSV1nu9kIzrqsGxkyS/J7DcY66tLQp8RyuURrhdI6i86rkvk8J7GjQOecc4xSJHIgn1a54JOUr8rHKCStUKLzaJ3KP5ZEVAmMznkhxmFNSeEmeYQqCvhE7Hr6PY+fr/DtGp2ESVlRq4IUEn0bUMpSaIdzinXfEroWQqQsC3wf8W2PLfJjlsuWVbektgpnKlxV0KesoVEIoe9IXSIai4kpi/p1LppD1xOjDDkbMljyaqwtsq5EaxgS2ZUpiMkSIkyabSaTbTQFvhVQQueXuFpxaLbNujV0fklKHqM1dVkQbaLrDJsbU+5z/DI2NjbZ3NhEK4ckRd8H1Nl/bUfuxcjXPYxveM17+PrJb/B1lQaqu/uQRkZG7incOjh2DOgb+Ryc9YolpcR6vWZnZ4fFYpF1GoNY2AyZCMDgCJVdj5xzQC5SlNKUZYlzjhByynYIOVNjv+AoyxKl1MFtfd9TVOXgmJQLEe89KSVCCKSUsNYymUwO9mMG96amaXK+g4/s7pxmsdjDGcvGxgbG5JwONNR1TVEUQyBf7mLsa5SFHIjnnMP3huQ9adCBhBBYzud07RqrFTF6lovFQS7IpJlQlIEQA32fF5JOa7rUEjqPJIWWhNMKZTWQkOAJQy4FLmG0RhBSDKzXK1IKlKXDlQ40+NYjktBKH1jQ5uBBQ+g1ZWGZ1DVWe0KAXkLOEJGYX+RQNIbBTcsNtsUKTVkUVEWJUWoocHKhoZChoMh5FOisqxABNcS9KyBr5hUpQQpZn+NMdg9T2ma9h2gIGpM01kdIEQmR1EVU38GihWWPDQlnDCUaKxBFMAL4SFx3VNWEpixZ+UDygVJq2nZJRNFsVkxdQ9QdEiSnj0vAJIdF07YrfGixKpsWGBEsCmMcRT1BbEXqA4hglMk6mGqKUhBjxCcIMeADaFtQN1OKcoqIoypnHN66gKOHz8Nomz87Rjh5+iZ6X7O5WeF9JCWPFo3LUTQYBUe2NtnemDGdTildTYyCwpKSorTFOT0JjNyz0E3Dyz/4Tmb6PdzfTRgtbEdGRs4Zty4wbn3bWGyM3AFnXWjEGFmtVnR9T0qJoijyyFIIxJQwSh10G/q+H0ZbinwlPoTs2mRNHslxju3tbZqmYTUIzKuqoiiKXLgMHRJjDMGHoVBRB7a2fd+zXq/x3h88T2vNer1mtVoxm80OOg/WwWq5IKZcEJVlgXO5aEkpUhRFzjkAuq6nXbf0vc85ICq7MyE5DSKKp/Ut63ZFiD6LpEUIktDG0MxmVEWRi6N2lReiIdC2Ldb2gMrjWn2fF9rk2f9sCqwwWqFV7jpYa0Gp/Pz1kvV6RVUWTKdTLrjgAlJM9N7nhT+CNQZnLc4YVMyL9tJZ6tLRrju6rie77CqMMVR1zWQywRYuC/3bFtEeU5RYV+QxtrJEA6t2iTZ6SDLPYnWlFUpUfmvIhaZW2dxK6dz1EISY0xuJQwK8thYdBZXNqIAE0hFji0r5RGUSqBgoUkJrIWrQKiLiiVEjEgGfsz3Wu7hZ1k4s20A7X1C4gpQCRhlqXVDVFh0ivgskn4PxtAhaGSy50NrvPEVJpJigT6gAhSlxdYMSyUnpXU9MucjW2lBXE6ZNjbETXDHFmAkxOtpOcL5CVgXMCrYPbzOZlGxuTimtIfjVoOmOGCOgAtF3xNCS+o5pU1K4gqpqsK4kBAEsRhdUQ1dwZOTW6NmMH33fX/LYekGpCmAsSEdGRs4hQ5GhhiwsGf7NZrCzH4uNkdvjTnU0lFJMJxP0sOhfqRV91+VU6wGtNc5ZZrMZs9mMtusQ8vjSfudiNptRFMVBQbHf4dBaH2Q8pJSG0Llbfm69j6ZpDn6MMXRdd7AdyBqPPni0ShSlwxiFSM5DKAqbszPa9ZALAoii6zzrdYfvs5UrgA99Fh6nrCvou56d3T22t7dRSF7sq8SkaagnDdZm960kgisKqqahrGq6tsPYYijCIorsaOVDIMQESmOtpigcrigww/hWCJ6270giTCYNR48epapqTp8+CeSUb2tyAVXVNSkl+r6lW7e56yDCul2zXLa4okIpjZCtWK0rcK7Io2LOEZUhKY2yBV4SKYdk0Pce68zQOQk5gG9wo1IohKzN2S/eYP/zMGg5AKtycJ/EhEoRpQWl7EHWhtWgLRijs5FAVLTas0boTcznN+eJWgjRs04rJCTivMdrDzbrF4x1SAhoEVLrkS5RVJZCHClGJIKOgyVvFArtwFh819NHjyiHFYMKObEdPFFFrDbI4A6mtebYhRdy2cXHObx5lOg1y1VgtUh0raKNCktCegWrAr0ucKGipqZSJY2t0DYQQhbYG60xCkLf0XcrfNciKaGMozA5LT1E8F7yqJkdR6dGbsFecD7pvG0e+dvv45uaDnB39yGNjIzc0xjMcZRWqIMR9zwvLUkPF2RHRm7LWa9Y1us1Cmia5qBz0a3bnHw9hLrtZ0M455g0E6qqwjibr5aLsLe3x2QyORhx2td97BcL+0VCCGHQUli0VgdFDnCg47DWHjxGKXUgRt8vYCAXRz54jNFMpxNi7xkSHFBKUZYVZVVmNyyBm28+xWKxpO9zIJ4yatBR9Af7bruWT99wA85Zjh49TEQobUE9mQ4dm0DnPUpbtCsw1lEoQ0yg1x22KJnMpqQI7XqdLXOHoGxXlJRVRVHWxJTwfU/vPd4HtFY00ymzzQ2WqyWd73MSubPUVUk9WP46m3MsXGGJg9o7pVzIJBTGWZZthxVYdz1rH2gmDbPZBh5NHyHqVd5GPUGlgC4c02Ir54SEbNHLUGjIUGjk/I2hZkuCUikXI0guPvSQnM2QkaE0SueROkVC64gtoCwtdV2SEFYrhW0hpAJlcsckSSR1gtFZp9OpBX4eEHGIclTNFI1G+kjb9cxPzammBX3b07eeFBRGWSRJFtf3AYLCJIMWjU46p457IGl8FERDPauG5PYJ24c2echDHsIDLnswRaw58ZldbrzpNKzWSIqURcX5sxkiikSijBW2t9hgSSuh155iKiTlCbLG2ezJ5ZNnvVrQrzus0aiUzRayMQC5k9f2gy3xyAjYyy7lE78y5W++5k1396GMjIzcU9kvMoxBGQ1DkDHeIxGUHooN0tjVGLkNd6qjYYzF6Nx5CCHQrtf0g/OTGzQW+/kZ2Z2pQBnNum3P6DbkK9/pQJfRdV0eMzpwrlIHovCUUr5CPRQ3+wXHvvjcOYfWWf+xvb2d07UPguayWxMIs9mU6CNlURw8B3KAXt/37O3u8cnrP8nOfI++9zhXgzJ4Qs79sBZjLCKR+XLByVMnOXR4m42tbcrCUU8n2ZEp2pwMHRMJTR8Svo+sO8+q6+mDkETjoyeklEPvBo2LNRZnCwpX5G2EQJSENpqqqiirCgGWq1UeBZMsUi/rmmYyYdKUFDZ3BNCGRJcLnaLKmRXWoWxBUg5XVtleVmtUUXHovAsoJ5vM1x07u7u0qwW2qiid5jBC6Fvmu7uYlH//WltQhiS5MwOCtZoYe3zoibEnSbbVVRrQghHJoXbWUBQlxpYoZUji6X1HSB4jghhLUTl0XVNGS1IJTBZTpxTpQ820q/G+J/WQOkO3Erou0bcd/apFyCNb/apHJOXsknVPCLnLokiELhHaHvEBiZKzOsQgXiBqDPl3cuTwIY4fv4TtQ5sIiY3tKZcfv5zDs/MIuzCrNXGzoJCeVeGxpmY23QY0p3ZPsTff4TPdkvWiYfPQFNIGyjnWfsmiPU0KHVYLKoVc1MbApJnQ1BOUMqzbjhOndtnZW6K0RbidGdmRexVma5Prn/tg+n+04CNf8x/u7sMZGRm5t6B1LjaSIMbkYF5RKOItxcZnMxYf92rOutBomoa+7wm9RyQHxm3MNtBK03fd4E5UkVKi63qsyZkW2eI2Fx9ZiG0ORqT2i4X9AmS/sIgxEkKg6zrcMEq0X2DALaF/++wXLPv37W93v2gxzuBcjcSs8t4vTCQJy8WSm06c4MTp0+zuzcnOpg6FQpnsmARDormBnJ4AnfcIMN3YAEn0IY/3WOfQsSTGjq4LdG3LarlisViwXC5p120eD0sJwQyNAQNDHokPERX8cAUhX0Uoy5LpbApasbO3y3K1BBLWGNCaoiyoqhLnCkQSSRQJg0/QhoQXhS5KXFmTsMwOTQkxIUrnBXjU2HrG1tFj6HVHNCWiDaIF5QzldIafJ8rpBpDHpgpbYmxBShrvQw5NlIDy+So+OuGMxhWGojA5b0MEbSzOlBRlnV2btMH7jp2dJd16Rdu3tLGjmTa42mFrh9ZCIiAqoUQwyVKVNTU1TjlcbOhXws0n91j3gb5tUUWBSop20bJuE0ECvvd4n9AqYYygokEnm4MZ+wDaUrgGVzqMsjhtmM0m3Oc+l/HAB1/J0fMOgU4UlaGpG4wvcbMCa6ZsbkdWi5526VFYqnrCet2x6k9x4807rPaWtHEDU2smaUKRDEELaEUEfNfh1yv69RLfdxR2l53dBZNTc/oonDi1SxeEyWwzF3kj91qUK/jIr9+Ha7/hVXf3oYyMjNwbUToHGzPoMkXy/5WAqFu0GweMnY57M2e9YtnvNuyPKhVFQaiqA/cpbjX25Ps+z50bg48BVxRsb29TliXz+fxg5Glfn2GMoaoqrLUHC/L9v8eYMIP4fL/A2E8mv7U1rnPuwDJ3XyugjaKqiiFnIuKDkGLEWsE5RwyJnZ3TfPzjn+D0fI96MhmsegXvA1XhaJqaEMKQARKyFawxhODpvT8YHZKUUFoRvWd3vuTmUzvMb1VgdF2XrWhR6H3hdmHzFzUlJAkhJnxsaX2f9SuDnax1DmMtbdeyXM7RgDY5r6P3PV3XszQrVuslpPwavY8sVh27ixWLtqeuK6x23Hxql6qZIkox3Zixc+ok5azE1DO6qAmqgKKm2ThMSh3L9Zy27Ylo3GQ6pHcbrC0pywZrS5S2pBTo2zmr5Q66NaADVW0oKo0xQpScaI7SaJ11BkorUhSM0jTNFO89q8Ueq27OYt1SzWrqaY0tDWhBVBa+g8qZG8ZQmAInDiWKsipZ+W4Qdxt67+ljT1AB7XIcudYOa3KXx1Ki2vw7CypSmoppOaMuJ1RFRVWWnHfeYS47finHLriYje0JSkeME2KKdN5T1BV1UzDFsNlH+i6AgDGO5ULo7ISVnnHDjUuWssdenHK4PIKZlWw0h2ikIvUdoV2xXuyxOK0IPrGzO+fGE6dJfIJ1n5i3PcqWlM2U3kfgCef6XDDy9wz52oeyfMn8Nrc7nbj2K15/NxzRyMjIyIBWgEHlmeYDMbjEmM1e4CAmQHwOEx65d3L2gX3W5gV33x+MOsmtMiZiCKzX6zwilSQvrEWIktgoCsqiPOiK7OszvM9ZHE3THDhHtW2L3s+t0Jo84z+MEQ2djhjjwSjVfgdj3xI3hHAwPqUUOGeIQehaT9d12IPQvYI2dazblr7vhwLEMV8u6UMAUXk+fujG9L4f9qswJutEjLWDfW1P33esViuWyyWfufFmTu7O86hU3+diSmXBdl3U2b1JabTNc47B9zm0UIQYU05P1znkTg2djRAjadUTgmfSNEBO9+57T9u1xBTouxZnLFpb+j6wanuiKFzZUDQTTFGR9BJTVpRVw3Rjk3UQNraPYIuGLkFEY8qGsqro1wvW6yViXF7UO4dOkEShsaALbDmhaaY0dYFWPfO9UywWp0nKU5SCMgEf16DigcumUha0RlIWVyvjsGyikkXEsepW9H1gsdvRe8EUBlsY6rqgrGqcUYMALRF7IYaOvoM++iFPxBNDoose5TSTeopyGlGCoLG2pnQTLCUpQtSRutJM6xnbG9vMplvMJjNmswlHjmxz9Og2TT2jsJakPOhITJ6enqAMhQuUxmFqRSUCKZFSwBY9h8uatdviZLiJG248gSwURzmPQ/U2nfQslwv2Tp2i3dvFt2v61ZLF7h47p3fY2ZuzWve0UVj1kYjBlhNknJy6R6NnMx7+pztcXr6N79v8zN19OCMjIyOZ/QyAGNmf7sAYUJJDeuMtelr2Yw8GEazI2NW4t3L2gX3W0vVdDr/z/UEXwdoeSRYZxMspJZx12Q606xGdRaw+xRz2NljVppTydkzOwRAAEeq6PhCUZxFzttZdLpe3FDdDlZxSQmt1ULwUw4jVflfDFgZjOcj78N5jK4d1+6nbgfl8wXyxIAJVWbM3X6DQGL1v35YGi1s5KICU0mhjCCFy4qYT3HzqFLu7O+zt7dG2PXvLJa2X7ODEMMJlc1p16wMmgLOCNQVKQRic4dAmXxQIMQfuJYVzFiFbqxotKJNdo7S2WGtwhaOoSpw1Q4AfdL5nuWppfaCoaspJSVlP8SF3DqazTSbTDXxKbGxuY03J3t6SZqsAbSirCmI/iNoNGxub9N2KrY1NjNYEn+jaQIyCH+yNldaURQ2bm5SVBe2xLqGsJ0kHOoHKxVQSIQxFRt8FIokYhFnjsKpk0S3ZXc1ZdSu6pUe1AVcYjGgsBbYwaAyklMX3a8+69azbPnctjEEXBXW1wWRriqssfciFYNsFUhJCyJ8lmwqasmFSTNne3ubooaMcPnSYw4e22d7eYmNjgisVVWVyW5gEErFGcCV4WdOrnpSyNsYqiOROU5t6FtJyqvsMn977BNefvJFT/Q6hFj61cz1Fkbjx09fz6U9eT+pajmxtct6hwzTTDVarjr3dG7np5h2iMmhXINrQ+4josdK4J3L0z7b4wQv+BIPwjytzdx/OyMjISEbyv32SNMQEIWdLKaMBA0ZDBGWGmYM8+pGDedVwhXGdkBjHYuNeyFkXGl3I9p8MV4jrqiKGQJJI162JMTCbTbObz2B5W7iSqq7AKJa+Z74SmqYhSGS+WmCtYTqZ4QarWUmJetrQTJvsKNS1dP2asqrQRhCVSCJZPyGKJAFIaGUPsgU04IxBAFNofOxo+54oCVsW2NIhCvoY2Fus6HqPLSqM5AX0bLLJcrXKYYI+EEIixABK45zJi1it6fvIJz7xKbres7O3x3q5pO37nB2RhET+0mltsvuSqJxW3Ue0UpSFoFRHWTlsYdEGRCLic+iektzRsEZhDRidsEM3pTCKqnRsbU4577zDbB/aQmvFclWyN5+zWi9Z9C19iASlsVqxbj2maJhubNHU02wFawzaGSRFUugRv87Fmtas1ivW89OsV3OKzQ0uOO8Y1mhSDJB6ghZE8snG94nFoqMvHSkFlCisMljlKE2BNjVKxVu6TzHSR8GEiEmRqCLRBlwZsbrEFYrSaXYXmvlyQegiEjRdiqR1i69KyqJARNN2gcWyZbXuMEVFM5sRlKbcrNg+7wi2dnR+jV9HvEooY9DJEVvQSTN1WxzdOp/ZZELhNIcPz7j4kqMcOXKY2caEqrD5go2OQDYW0DprUEojeITeR0InRK8RMdkooW1po+fETZ/hmms/wvU3fIzd1Zq5X3FqvYv7O40xPb5b0C522WhqphNLUR5jc+MQ/dpwaCMSuyld3yMqIKpD6xZbjAFsX+7o2ezgzx/+lSv5m296JVNdMYbrjYyM/L1kv9gYJqBUSgguFxLW5AaHqGxVojQUDlUUudgwOkvE+x7p+7HYuJdx1oWGcgodDYXOY1BlUeB7hSss2uRIY2uyQCh5hUTBGChKiyodG0UWghdlgVY5zs1oQ0LyyAtCypHTgCIp0M5icBin6bqOdb8GAWvyyFHfZd1IXdc0dY0gWGeHvIeEdopEGK78FzmN2zoiihQiu/M5i3UHKndkdnf2cK6kW/WEFJFKoXV2SrLGkhcBQhKyDuP0HsFH+iHhPI8p6uHK/dBiVEPiOAx5IFkwpZTHFpbKVtTTCmMF71uS7pF+sDXVuUhwGqzRB8nazmqaqmRzNmVjOqEqiyG3w2ELhyeyXC9puwjiUFrouhXNJLFc99T1BJSm63pCjBTOEgrHSiWUzT7Zi/keyfdsTjeYNVP6rsdWFSRyHgUBJQGJHt95JHlCrLPjlF9D8liTKAw4IxidwwlhCMaLgg+J4BMiCWcVrrJUpaZJBU1V5NePYt32KD0UCOvEfNmy0B0MuR69F3wvGGupmil2WlMf2sBNLMt2yapf0vmOIInCNDTFBkU5YeYOc9HWpVx2/mUcOrSBsZ6NzZrD521SNSXWabSKOKNzIKXkrBCjFDElbOzxCiZFzVolFnueEASlLaVrWLSnufGmm/j0jZ9i3c0RFel9oI1dLlZoMSaS0govijas6JNHmZIjRy6hcRfQXxbp1ktuvOljfPRjH6BfnmJ23uyOv6gjdzn2gvOR7Y2zfnzcrPn9/3prp6g/BapzflwjIyMj5xxJWfAtCjUY7+zrNYgxdzK0QRUFUpdIXaDqEu0c0nbIfE7qurHYuBdx1oXGvu5BXKKwDqMNXinQiqZpsErTrtcggi0d2mhc4Zg0DR2RymSrUGvNQep1SokYesIgMj8I7xsC4ERpqnpKUTh6H1HKDvqOXBiE1LNct4jSTCY5DFABohnC6hRaW5wrSVERQkKpbK3rvWe+XNF1Hq00iXzbUI8P+3Eoowexk8IPSd+99/Q+EEPM44cMoYKooZAY2ocpXwHQOg4J3mr4bimSCHH4klpnKUuDtTqPiukeJQmrNVopDFkr0pTZmtcosMawXrfcdNNNFLsFRV1RlAXOWiwaJQktueCJvkdS7shsF5tUdYUylr29Oa5wYBSn93ZxncU4S5KYXZB6T991tKslzln6pkFSJHqPD54QfO5wiKBtiSu6nNodexS58xH7Fb5fo1IYPkk6ewegENEgGqVyLEdR5HE8bUwOMRRF6SpEckGKMvgu0q5XhJiDGMuypHE1KkLoArHtOXTeUTZmU+b9nG45x+jExBVo7ajVJrXewsYps/IIR7fP48ILj3H++dtYFygbqGqN6IQ2Ea2yba/RgpYeRYekNT7OCcFjXIXRiWAVrjD0SrFct5zcPc3HP/kxPnLd37G7PI0rFb0EQvA4DX3oQcXsZKY0IQqdT6Ac041NTGgodUDj0Epopo6132M+Lzh06OwXtfdEdNOwfuyDb/e+8q3/+y77B8weu4DlP7yE7kdP8M6vePNdss+RkZGRuxX1ObquKtvbKqPzOJWzpNKi3KC5LV0O7A0BCeGOtzNyj+KsC439oDyVZAjpu+V2V+TUZdV1WGMOxqokZYFQU5a0oceoRFXkUSIfAlqBdQW2cFjr8sJba2LMiduL+XJIEp9SFFPqagM7OE31vidJFoQbY0lASjGPTGmVF+wipJQj4rKuApQyxCis1i2r1RoZOgFKK1LXY6ylrFQW3A7OT3EYoep9wAeP93k/gwAjb5/cwJB90ZMaOjMp5eKD/QyQnIi9ryVZLpdYq4AG5yxNPSFah5JE1jwLOqWsibEOZx39IMbv+xzeJkowzuZCw1hMgs1mSucSy2VP6APWFGzMJkyn29iiIqLZm++x7taIgqIqKOs6J5M7i0I4dfIUN37m03TWcPz4cdbLRdbgGEPdlAchfbmyUkRRtOs1Xb8mhQ5DTkB31hL6nMrufcT7kN9Ln7UZKSUY8lmyZe++BochM2IozOItz1VKo5TN2R0+kNpAGzxKabYObVMc3uS8jU2Obs8oqxKSIayBroK2AV8zKw8zq2fUhaOpHEXtcLVgXMg6GCNARJQnSSCmFZKW+H6P1WqHGIWm2SYFiMHiY+LEzpyPfPRj/N1Hr+HGUzfS9iumh6fMNMiNJ1DrHmNiNkuwGqUcyhRokwuhqp5w6PBRJsU23Tb0bWA+36Oophw6fCFFVVKU916Nxo0/8gjW5wkf+b5X3+79D/nlH0LfRf9+7T6057qrfuuu2dnIyMjIXYm6nX9nhmRw1CD01nroZpz5GCAbvhiFWI0ohWiFKizGB9S6HfUa9yLOutCQJHk5PXymRPIS0DlH8AGUoqwrpk1D00xo12vme3vszvdoqAm+RxUOQ53tZoNHW0fhsnuT0ib/GEvfe0Lb0vYe360gaepmQjXJC+GUIsYVaGMPnKC0tfgQkBSRpFCoPOgkg/0sGq333a7yDL33PUqrPFYF6BAxzmQNR8iOTmHoYoSYiCHmOUOlSGkoYlR+T9TQs8g7zdkbahgFk2w0jSJ/ORUJJG9vvcop2iKRyaSmKAqssSgleeQxDkXN0AHQOo8XWWuH29JwjJG+91ilIEFTljgjdGsPksXlfbeiOHQEZbO7l2hBF4aqrtk6tM10MqGwhklTs16v6dqOw0eOYq0hpjgUWImUhIhgjRuu9qv8u0tyEOTo+xVGJYwKKPFoZEh0d1QV9H2k7TxdF+h7n0ebQn+Qr5KF93Z4LzQhBkLvSTEBuWiUzhPosgWwGIz3dLsLbr7+BlJoOXbp+Vx46TE2tjbROLoFtLuw6jXrTuWipenpO0/oA1XjcrK6jtnlK6VhxCmSxCPiEemJ0hNSR/CJvl1jnKX3gU9++ibe+8GP8KFrruWm06ewteG88w9x7MKjBN/jw5p04iS+WyGpxZgpSttsPmBLtCmwrqSZTpjVm0waQ+gikYS+uaSebjPd3GA6a87R1//Li+v+9dfyt//PKzGf44ra//2xMVtiZGRk5Jxz6yLDaNhPCb91QXIrq1vRaig2NMlpKLPBhRJBrVpUzJpU0mh7e0/n7DsacLDI3ufA6QlFYR0xRQrncMOiXxmD7z1d21IWmspZYvC0Xc9ytSYBdm+OK/L8XlFWGFvQ9V22orUOZwqKokJhSFGG8SeFcyXGuiygRrBliZdICJHgPZISpXMgKluYRsEMDgjeBxaLJX2f8zj2HazCoLXIC99An4QQh5RxScT96ns/TG8/PmRwUhKVNRq5rFGoIQcDEho9aDOy6DsEwdmcoxF9ZL3qUKJJVRZ+Gys5tVvyfnJnJF/1r6oaIQ7CeJ1F2ghCInQeA5jSIjprOYx1LNc9i/kO7fYhjlywgRg4vzoPV1XUzTS3NUWonD3otKQkOZTRaLz3bB8+nC11h7ySPkRE5SLDGYcxUFUlEiek0qCJSFjj+wgpHgQzKpVdxYwtaBpNStAHf2APfOuEeElCSoEUAinkDolSgnifbYhDpCwrKlMgVmhDz+5nTrJz8gSpbzm6tU0xOwRJs1q2LE927NwUWO5C7QJTN2Fvc05hofMFG7HElYLoiLEKMZCU5PwQpdGmpCgbUvR45TFDYOXOXs/1n/wkV197DSd3dtk4tM2RC7Y5ev42mxsNXbtiMd9kuXeadjmncGa4EqSGb5dF0EQZztNWZV2IsWxub3B4cQSfAkVpueCC87/Ir/2XH3/3qq/mvd/8bzDq3llkjYyMjNxl7K/zhos6ar9rYQzKGJS14CxYm/9sB5e8/aA+Z5GqJE4K/NSSylx45Gnpmmq1gU4RWa5I3Wh7e0/nTkUM51wL8sKXXLVqaymGsaq+7/IHVCuKqsBVBav1gu1mg8mkoixLlNIYa/ExsrO3x/LUqay/0DoXHNaRkqCtZVJPKcs6L1BTIg6WatrkRai2Jls7DVfZrXUkZfDB0/XZflWj6XtPDJGYYN159vbmLFdruhDxMdLN9+h6TwiRmPK2BIVWOqdSi6BSFjOn/eyOgy9GrvC1ypV97lhkRwat9a3es1wKKPJ2tNb7zZBchAhEL3TSo3SgKAymyPkVxhiMNljrDrbZ9wGl83sQh5Ex5wq0suA9YSgESHHoPClC9Mznp5lsbbK9fQhT1oQEcQhmUJLzT/Z2d1mtloiALUomTcNk0tDUDSFFvO+Jg1+2tbnrUFiLUcJ8vsNi7xQSPc4IxJa+XdK1K9r1mvU6F5HrdUfXRxSWoigpigK3UVCWJW3b5nEqEdpVS9uviTEObhY5QyOl3HbtUiSFRNNMmNQT6Axr3xH6RFwKm+U2l11wGZIMp82CtHeCm9afZrnboSrHzs07XN22fGaz5tjFhzi/2+LQ0Q3qSYHEhGBz0npMGFPgrEIrcA4MHqMs/SoMjmKC7wSrS847coytrQ1S9MwXC5QECmdp6pKuLrMewxpCjAfmBVVRM53MEBI+rLG6QFtDUSk2tmeYwtE0M44cOfxFf/G/3LjfG3tOPFnYHl1fR0ZGRr703KqDgVa5wCgclCWqrpDCIYUjVZbkbtWtiEIqDH7m6GeafqZJw0pTCSTrMO0MB3kSIibE93ff6xz5knPWhUZKaVhEDzoDsley1pp+GJcJMad8G2uxZUE9beh9hytLjHNYV1AUJVUzoapqmsmE+XzBYrmk7TratqNbzum7HpRmWTUUpsBqlzM7nMM6e5AdYV2RW3SQP8FDwJ0M2oxeAqGPrNdr2rbNi2/fs1zmK+dt2+U0bu+JKeYvlVZYm3UkCYX2HkkKSIMrVk6nNsPV6P1RH6UtWg9ZC8NYmdGawjmM1cN7GElpuM8Mi3tAodFYlJgslB4K/CxkL3BGo0RyRkabNRcpRYw1qJAdvHRhcqGhc+dFhowRVCKEnr71rGPCLhzFyZqyrtios51m6AMpgtbqoAOVolDVNdPZjK2tLTY3t4gh4GOgSpNcGNr8ezHGorUQfUtKHgkdiKcqDEY1+K4i9jNWqyW7u3Pm8wU+JJarjvVqhYg6cMzKv7tIXddszDZwxrBardjd3WUx36NtW1DZ7QwRUhR8aFkthUZZGtdgbc2qW6N9SaVmbDXn0VRTzpsJR2ZzDk8/w6c/dZrYGYiO1WJFih3bhycoMVhT4ExJTJEwFJ4pClErJGqsNRhdUta52CmjZ2Oj5v73qUky5WM3fAYfA6c+fYp1v4ctInVt8X2HcZayLOlDR9uuKcsppSnZmm5y8YUXc8H5R6kri7BG8Cjt0NZTNRpbzpg2W1T1ve+qvnrP+5knd3cfxgjwgj9/N79yvweNVyFHRu4FKKPBOVRZoCYNMm3oDzX4qSXWGl8rYqFy1z+RCw2n8I0iTCFU5OuxId8fKgVUVJWhbEp0isTTu+MI1T2Ys+9oJEG4RZMAudDYT/l2VYmV4iDIT2uNcY6qrjFkAbkyDozFWYsrS5rZjO3tjvl8zmq1YrVcsliuWMznLBZLVrunaEVlbYXNgnFjcyFjrEMZQ5Is+g4xZTeovicMWRtJ9sXZw0sYxo/2i4MkeTzJDCnfdvi5JZUc+t5R2D6nTaeYk7slBxhqbeh7n7UhkoXDahilUgoMefylcvm4U8qhgfsaBMka6NxujBwUMlECKfZoGQobV2AUpJjo+0RVFjmNPSZC7/PomBQoWiprKMqSwjmU1qz7nlO7u7R+l361ZrG3izaOssrjaFqXLFctq1VL13f0fUdKieksB9hNpjOscXRdjzIWpbNwXhuDcQ5l7NBejYM4PL+fSgTnDE5rnAEpi4MCLgc9FiCGFHdZrVv6AFEGsXffsl6vEIlMpxO2Dm9y+PxD7O3ucurUzczn84M096Fqo+s70mJBUW9Q1jOcssS+ol8X6Dilcps0haYuNtmaHeX48QU7p5acumnByRO7lJXhvKNHOP/8I0xmJWhFu/ScPHUarTRNU1GWRbZN1pHSJZwTUvIY3VNb4ZILLmB78zKObn2Cv/nbD3DTJ2/i5N6NqMIz3SgwDvoQ8QI+BqyqcGhK67j0oot58AMeyIXnn0dVKpCAVgGtcvBh1ShEsiYmpXinvrr3FP7lgx/Dv//wH9Jow6au7+7DudfyTU3H13ziPfzmzkN5x1cdQrru7j6kkZGRLwXG5CKjqWFjSjg8ZX1BxeKYodtSxApiLcRShiIDVBhGjsuIFAI2QVSoTqM7TawhTDTrIyXljmM7JfS6JQ2upSP3PO6U69T+jL0Mc3gy6BJs4SjK4ozHi5AX2WaCVvu+TBCFnLGhwRhLVXKgDZg1NdsbLauNCfO9Pdp2zWq5xveBlLps0xo0wRi0cShtQA+z7SknkbdtDqrLlqHZPrYsS4oiX3kXSRRFAeRE8RByd2B/DGi/yJChK+C0oS5cXtSHrAvwIbseGWOpC0cfPG3bE0Ie79HWDMVGvjofQkBpQWuDtYaUsn1vGmTeMSb6PrtwiUqI7nAJCuvQjaaqKqzWiPf43gN5365waKMIMdKFrKvwRjNtasq6ZDKdUMsEMYrFeo1azFku9wgp2/xGD2U5ZbHq2Nud03ZdLia1GlLYodjdwxpHWTeUVX2w36KsMTZfxUiSsAhG6YPCkxSzhgWGoi+Lweu6zt0mH6mbPo+AKTN0lCRbDSdD7ztO75xksdpjd3Ga6XRKWVccOXaUyaEJ8705i8UiZ3j0AqLoQs96vuTY9AKOX3Y/LrjwIg5vHUfJFEkVaTgTNhsF9eQQm4emTCY1Te1ompKLLznK9nYJRtH2ka7vWa06qrLG2moo8AStUg4glEBMGm0KJHkWp3tisGzYQxwqjnCzOUHHkq6f0y0iYhNRCz5pkjJUxlIVjgvOO48H3P8BHL/4YurS4UyiKBRKJyRmx6siKFLSIB19H4HNL+Z7/2VJWq149qVfj3ng/fjZt76Rh3/WOWfkrmPbNPzE4av56z95LDvPuhBuPkXc2b27D2tkZOQcoYYJEWUtqq4I2xOWF9XsHTcs7hMxhzpm0zWHJytmriWJpk8Gnwwh3WLYIaKYdwXLdUm/KuhaQ98rtFesl4pyd4PJjVNU34+Wt/dQzj6wbxAH5dC5odC49X2fdf9+EaKURumcmyEig+Vsfm5h1JALoQhW50yN0lA7zbQasjK8Z7VumS+XLBdrOu+JIc/oizJE0SQZRpMiGJX1Akopqip3PoxRB2Lv3E0wWJdD/LTOV4iVVnkESGUnJyVgbL7a7JxDlCKGSO/9kFru8SFfUVcqkYJGkTDaDN0Lyd2PlPC+R8RgncWY3KERUXmUKuaCRgbNgaiEsRFrsu5lMp1y+PBhSudoFysWiznLRc5wONwc5rzzz8M4y+58j53Tp+jaFeuuxXWOsqny+NPGhMluTbnnmC/WrOZ7GF1SFTPsVkllHUxnFEVJ27Ws+45Tp09z6vTpPNZUVWxubuFchXOWqp4w29hgtrFB3TQ4a0Hn15FEDoTct3weUg75Gz4Xfe+zM5X3aK0pSkcIgtYKU5VMJzVBcoRjItH2LXs37YGBsipppg3TwzOmh2b0bc96Z0nooGst65VlOjvMZccfyPnHLmbSHGW1FIpSqGqT/bzFo0vYKB1NcYjzD21gnebwoRpjIZIQPJCYbcxwrkJrS4p5zE101uMEhBAtxhVUpbDauYETnzlFt+6xa8fR6ihmltjtTzIPuyz7JVIqbD1hYgrKpLnPpZfy0Id8FV/xwAcybRpIHbZQlE5AB5KJpBSJXtH1mtArfK+4NxYa+8S/vZqf+N4f4Ptf+1942nRc3N6dvOnyd8C74EGv/iEu+dk/u7sPZ2Rk5FxiDFiL1CV+q2R5vmFxWeT8K27mQds3cnlzMxcXpzhkFgB4sXgxLFPJKpWsUsFuqLmx2+DT6w1uXExZtSUxKiRputYyv8ExmU1gZzcH/t2VXQ01aFAk3XLb2FU559wpe9s0WLXKrRaT6lYeyjm0juxEpNTgsKRIg9lsXnzmRbVKQlRDArZzlM5iVEX0PUurWWlBYsRMG2YbUzbbGat1S9d52uGn85EQoPOJzgdi2P+85H1qlRCd8EkIMbtJpUG7YINBqXylHRlchVIiKcnCXxKFsZROU1UFxub58Di8Bz5E2nXLYrkkRk9hFUbf8nZqazEmO0yJxAMRedYzaEJIt6rUbvm/Ir9nYdh+3/YYbdjc3OTQ5hbr1YrPfOYGTt58M8vlAmOOsbW1RTWpmW1M2d05zWo5J0iiC55K19R1zebGLOthFkt639OulvTtGms0m5uHMK4CpVh2K06cvJlTOzu0bYeIoixKmqbJE15JWK/XxP2uxKrN2RtG0KkjtHNCt0arCFbntmlKhBDp+475fMHOzg7L1QqtNJPphIkIImHIH8lakSiSQwGjpygdyxZ2l3ss2yV96jl0+BDT2ZRm1rC5sUlsNd3a0q8qjh6+GKsmLHcTJ29akmIuHjcPlxR1IqlAImGdYbZVsjmt0BpclVA655+06yUnT95M1ykUBc4U1FVFU5e4QoMKKBtRVmGVYE0NsWBxckW/9rBWTNUEKbYQCXSxYxlaiknJoaNHmE0qjjYz7nvZFTzg/g/i8MY2FtDKIixZrVc4l3DOUBSGFAwxRHzyBH+rk+K9FPOO9/LrP/F0Tvz/3soPb11/dx/OvR71sF3sfS4jfPRjd/ehjIzcu8kLry/u+UoPNrYGVRbESUl7yLK6UJhdusdjL7iahzTXc4k7yVGzplF5f4k8tdKKZiWWeao4GafcUGxzqDjE1B3idHeLxnDtHScuPp94aIq5qST6AHIXaTVUFrjnQiM7XJ5RcIycM85eDB6FELN9rKSUOwDaoI3O62Uhi7H1EIs9eCwJgmg5cITNlQj56r3E3I2whqosKYscFGeLBuMqunbNer3ES0A7w9ROmc4UIQht29O1nhASXZ9oe08XEiEkfIi580EiJk9MKesyoifGSARCyEnlSVIWThsN1qE0pBBJEnP+g04oA7XNeRsuRzkz0RbZmlGeLgixR6tEkiym9jGilBlajxaUHbpAQkIPgX051E+bPAYF+x90sqVt1IReaNcdXdfjnOXw9hZKH8aWsFrvsTffYXf3FIcObXFoc4vDm1tsTmecPp2LDZ0UOipKbTm6uc16b8mpm07Rx5auXbO7t8PGoQWHzr+A6WyGMoYJG2A1u8sFq51dJs2Ew0cOc8EFxzDGDZ2amItHpZAYWK86VqEj9SuCXxH7NYZI6QxVoVASWC8XrFZLlssl63Wbwwmb7CpmtCKlkBPHfe46+RDw2uFjwEtAoSmKkqRy8nxRlIQYaVPA6hJxBZU+xIWHLuPI5HJkXuEXsNYdNYZ1pagbwTiNWAaHME3QEaN9DmhUBqMK+jbxmU/fzNV/ez3dWmFUw7TeYGtzk6aKgCfRYSvFdGvCxrREREFykCzSByppMAqcM5SmRELOTamrCV9x3wdx+WUXc3S2wayestFMMCpSVwZrFPP5guXqBEUJMz3BmWl2+/AO6Ryix5MhQPPf/oJffsJV/PC3/ObdfSj3ej74tW/ka//xD7AxFhojI3cPZ1jSDv9G3NmCQ6lbCowh2ZvCEWtHt6Hoj0S+8vAJHtx8igcUn+GI8cy0wXGLHWAiERE68cxTz0y3THRHqT1ORU4WE5xKlNrjxfB7l2yxPlYz+0SNWq3umrX+fjE1WPVKCCjiXVbj3Ns460Kj73r6vh+C7vKCHTjIdjhwhbJ5/EjpYV7fOtBCUmn4HuSMCVE6pz0n8EmBT0RJFNagywkzVzNJnr29UyyWO6yWq+xGlRgsYjV1WaDKQVwk2X0JND4l+hDpQmLZ9yyWS5arJZLAaoMahN6yb/GkBK2GgL1hjEkkEEURkiZIIOmEsmC0GZ6b8jE0JRsbU5qmxnvPfL5AOgGTux9JwKic3yHkYj2RHaWMTllUbUzO6QiSszdEUbqSjekG0+lGDvGzBlc6ilJz/gVHOHlyixM3ncAYxeZsxtb2IUBRVzV1WbG3W5OCp7YFWsNka5tusaI91nHjidPM28B8MWdnvscxEpQGIbtkHTpyhKOL7AZmC8fm5gabmzOy0mYw5DUmp6GLELwn9GvaVWC33WVvb04KHVaBUREJHb5vSSmglMpWuZMJddNky14UShLBB/rO07UdnfIYAtZGSgWFK/Hi6cWjnKae1IQUc+ZK9PhWM8NRTQ9ThC3iylDYEr2whL1A2OwJrcHXuajDmMGeWdBOSCqPdaUIXZ+IIVHoHKA3aw5xaOsQpSuY7y44deomYmppNkqUaBo7ofMtvveDHaDCaIe2DYVz1Kpi1a2YdysqU3Hx+Zdw5RVXYmMkx/Xl7lt+ak9ZQkygVQDJV3i00jjjsMpB8OfsBPDlzhX/b+BhH/4h/tXzf5tvn+7d3Ydzr+byH/4IO395OfGa6+7uQxkZuXcyWNJKGsaBzqa7cevAvVsVGaooUEWBVAXJaUQDSrA6T3w4lSiUwmFw6taFhspGNgqiivQqsKVX9NbgS8OmXdPonkZnE4m/ufBCdi+8kOlsgtrZ/dInhg+vd1+Dgs7TNjK8fhhzPc41Zz86dSvthfeetm1p25au6w6KDT0UF/vOU0VRYIuSoqpBG6wxGK0xNofMGa2ISg1Ca010gZRy4J9zjsKW2EJTNQW7bpf57py+7ZGYx1tQEEIcNB+CNgbrChrnUNYSgUXXsrdXsDe39F1PkqwjSEN3BswgAFeIKGLwBCWkpHHOUNUV09mEuq4HMXkerYoxj22JJGazKVobVqslMQascxjnchCd94RB4KTQgztuzAHipOxMhbpVwZPfx6Yu2Zg1zKY1VZU7LSIRpTQb0ymXXnIpW5vbXHjBRRw5coTJZIbSmqouqBpHWSjme7uErmW9atHGsrE55YGT+zOZ3ci1n/g0u4t+SPHuD/JNkgiuKDh69CinT++wXrdDQGLuZoBCq5zpYa09EM4rmdC1BSm2hLYjeEXfrlnu7dF3SxRC4TR1XeXMjMJhjD74TGhyh0yp/M7IoNCIIRGSJ+lITIE2rKmbGl1p+naNp8dVNaWZMpUprihR0WJ0iTMVGksKCd+D7xM2JIzNoYoHmSfK4KwihUCMHdYpjl20ycZ0goo1s2bGdFISvXDTZyJYhw+RalpQ15quX7FaRbq0QpVgKoWolJ3EkuCT0ANBaaJyqKLB1VNYLdk3OY5R8CGhlaEoJlgLSfLomg8GiRofFYtVx8mdxTk9CXw5Y975Xs5/J7zmr7+dB/z/X8WDi9GN6u7iTZe/gyce+Sdwzd19JCMj924Oig3gDrsbnx3KZ3KIrLI2FxllAXVFKh0yGL+ooFn4kmUq8XKrzsmt0OicRSvgVKJSiU4FNnTLUbvHllkx02s2dItTgX946Hp+76ILidsT9Gcc3BUudsNoGFp//seOfNGcdaFRluWBo9C+DSxky9i2bVmtVnksaRD97nc5tLVYV6CMwRpHUTgKm52LrM0LzcLaLDIuc2BbVZbUdXb5KauSjY0tqqJmc7ZF6HzurnSBvutYzFf4nDqXF3Xek0QwIkQETaKuChQTOmfyaM7Qm1OoYXQpL3BlGLEShCQRbTSTScNkMsEYO3R0uoPk6sIVQ8Hk0NoS+p5J07BhDHUzwRUF3vfs7c1ZrdbEmIgxj2oZY8j1h+SWHQmtFNaCc5a6dpSlwWhBUiDFeJA4npTm0ksvRWHY3Nxia7YFGJQWoljiXs9ieZrTp29msbfH/8fenwdbmuZ5fdjn2d7tbPfezJtZmbV0V+89A8wAszbjGA/DEoMFDjaBAiRbIAxIso0tIxmBJSFFWCFhFGEpYAgQlhBCgQGZsRAg5JAQhplBCIahx9M9M73VmvtdzvJuz+o/nvfczOptqnqqKru7zjfiZt6823nuOe85+Xyf33dZX15QVTUf+vBHOTq+ga5r1u1IOzwgBo+zNsvHhMROp+Wz2YymaVivN1cFetnEzmN/ziQ/kjJBlEipqKqKxWKBHSR+zN9XTMWDWufvGccR5x2mKKnrmqqsMEoBKZPQ0mCI2OSJKTDanj4MjHGg8wNaa7y2XAznXF5uuLbSXGtOWZVLal2RduS4Y5EoogIMCU1ImpTy7QgREQREkoiokCk7e5KwqAKOTjTHxzNELKcp04gKkhvPlyxvPEMIHiUNCUXXOWK0mFLSrMocQTtGYvBsW8d2O7B1I30CrQxWGrwoMCYQxgEfA0krdMjkW8oqE3qvsIPL10mEsQ9s2p6z9cEA/cWQf+cf8wd/9e/gr/ztv0gjD2lUTwt/6C/851zGhh/+6EcPufgHHPBuIiXyxn8qz5v8s18y3XiCYOwL+YSaZERGg8kkI9UlqSmJjSEqgYiAF/TesI0VU4UuSoirVNE9IgklBAaJEYFSBBZyICAISWayIRyFiHzb7BX+6nO/lPG0ovl8Aa1853wae2nY1Jn2xs/lmP4D3n68pdQppRRlWV5NLIwxVFWVOzC6jr7vaduWcRzf0FWRJr+ClBI1Fb1JJZEStFKUJp9uFybHny4WC65du8bx0Yp5KCkKRVk3NPWcYD277Y5NWDP2Y5beqMlAnSLOR6z3pOAJ0eNjNhmL6BDRo0SgKsxVxG2WQE3rEzInZSXwKRBTzKf8IRJD7m2QAozWU7ytQog4TSxybO4cMIVmuVxw7eQEJRXnFxdcXFzQDwND12OtQ2vDMDq883jvSSmgpKbQirISlKVA6TjF4pLjgKVACkFRVVRlhVaG5WJFXTX0/cB2s+Fi+5B791/l0aO7dG2LtT27dkPXtWj9MWazmps3Trl28pAHZxuESLhxwI02TwOmdDBjDHXdIIRgu93mZm6hvuSa2KdLxRhxdsR7zzCOtLst/dBTlAXHqxMqo0HktDBrLaO19H3HOAwUpmA2a6byP4UyGk1EJ4cWCiM11kmiS0TpcWrEmQKaCCNgEtWsYDGfU0RD6kGa3OMiVZFPLYRGiAIpQKmIVJngSQQyZa9JCAPWbYlxyNI/WaBVgxQVJENKklREjE6UGGQoGFtI1kJIaKVycIBUMMuPlTv3xOEcr4DSkEyBRzFOX+9CIoXsYXJeEHz26DgH1sFocxCHlJCShKKgXMzetheAbyaEz3ye3/odv56//A//2oFsPCX8z+tISBt++Gkv5IAD3uu4mlTw2OxM/NIJhlJXXgUKcyWXSnVBKjRJCkRMqBF0L7jsKy78jCFp4MvLeOUksVYICiGoRHZuLOQAwEx4KhExAq7pHfViwM4XzIyZpjHv0H0ykbEU5XTAm0OAUogHI/g7iLcknYLcp7FvBN9Lpa5kUvrxjxvH8apULYk3mmx6pkbsaZKXjeICNRmjm6bh5OSMk5PVJB9qOFqtWM5myCRzb4T1WOdJQmQpjilICAbn6MeR0Vmid0Rvc6ebiNSlJqExOk9lxORO35cLFtoQSXjrGZzFhixvQkSU3MvB8tTDWpdTkiY0TY1ZGdptR9+3eNtTFYrr169z4/Q43x/Oc3l+yeXlJeMw0k4EbejB+0xgqtkU37qYsVjNWS0XHC3m1JVmHHO7+dFqRWEKCl0QQ+Di4px7d+9x997rnG/vExlomoLV8gYiJWZNxWuvvMb9e3c4OTmlqQrmdUmhJck7hr7FDh1NU6OkyklcwGIxpyxLdrsdbdsyn09FhtPjvyclaYoOHq2lbVvOz89xQ8usbjg5mrOYVSjxOIHLWks/DvR9zzhY+mFgtEOWUOl8TUUSLjmCCKgqT8BmNBihELVAVHDSnLA4OWIur7MwDTE5tu0FyQaMOEKrCps8OmhchJgkQmm0jkjlUIScT5YikoiLlr67oBsuUUZR13OqKqBlfn2yQTL2ETs67BgIW4VfC9p2ZDcOtMPAbhjw3k+yMsHF9pxNt2Z0PdYNDF3LbrOm7XZolX1KUih8kLSjI7qIEIkUi4loSEYXEdJTVgkzm3FSVl/r8/2bHv7efX7LD/x2/vDf+is8ozo+aOZPe0kHHHDAAe8aUkxTKM9jUpFP8R9PO7Js6AmSoaZ/P+nXiICPyNGjU6LYKsxasd7MeKU/oZ2VhNR91bVIJJKAEVARrqYgRsRcQkyOxPVeIWJ6d7wRe7IRmIqo9x8/EI13Cm+psG+PfbytMebqc1ebzulC2cusrLVYn83jKT5+INNkK2avlZeSFCLOj7kore85uzhn0ZScnKx47tZtuC6Yz2ZU9Zxr1w1VVbPbdZiioKxrEoIyREo30rYdfRewYwQSShVvKB00xtA0TS6XS4+jlH3wWBJCFZRCoLRBqvzkjIGr0/joA0pnY3FVFBxNnRJKSoZ+y25zyW4z5+RozmqxpLlxHW0Mm8sNDx4+YrfbsdvtuLxc0+5aQoiUZUnd1BSNoZ5VrFYrVqsVTVUjpSR4j4+O3hhOjk8oioKu7XjllVe4d/ce9+7f4c7DlxE68MILt5ndusXR8gijJBePzrg8PyN6h08RUkBLMRGrET+OBO8RRpAnPYn5fM58Puf8/JzdbkfTzPNjnh63rDvnCN4Rg2W73XJ2dkbbtixnFdevX2M5r9AykbybCEye1rCfcCnNMPTstlucs/joCSkhZDbUJy0wTYEoJhO5qbDSogpJWRp8IRAWzjcPOd92sJmTLpfUXGdWX6OsG1YsiPMF5fGSYlmSVEQZixaehEaZiNIJREDIiNQCpchJZEkyjjGnfw2K4A3jULA+39Ld74mXMA6OPli2bseu32LjkMMEguXR+T0utud0oSOkkX4T2D16hO8GfF0ghUIIhbcJ10eSIxu+KRh6WO8su77HppZq1rJYrTDV4bT+qyF85vP82x/4Zdz/332Cn/w//8mnvZwDDjjggHcHT57Y76VBVxKhSVI1GaDZG6En2RRSTR+bnIMpQQiIlBAhUmwU5aWkvyx4rT3i8qQhcHF100o83iOGJzbteaqR5VQVgZAE6vH2HpsUIUjkdBi9L4R+R7EnNCk8lpIdDODvGN7SRONJbT5kMgFvlNA8Ofl44rvxKeFizDKmyYSLgHxNiekxfqLsz+aNafQOU2g2u5aiqADJvJlR1U028RYVxhQIrXDeUwhBTY3WmsKAHQzOjahJ7iWFoCgL5vM5VVkRQqDdx652fU7TmrSMgmxaJ0Wsc7m8TgmoS5zzpAhSKhaLJcdHR1RVhQRs3/HoQcv9u3eI3nHrmVvcunWLsliyXMwwWuH8CX0/cHFxyXazJcaEMQVSC3xyCC0oTI47TTHLwSR5EkOCFCJ933J+9oizh/eZz0ueK25x59HLvPTSy1xcnNGud3z4gx/MKQ5TIpWUsD3fMPYdVaEJQhG9w449zo65fG+aWMznWcJ2cXHB+fk5R0cnlGWZixdDQClFShHnHd1uy/3791mv15RlwY2bN1ktZkQ/kFLkyafwGyZiUqGVpixKQvDY3tINAz44oohEmVieHjG/tsilecKjhEYmhRsddoykMXD54BFpW3Kjep4hDMTk0SknN9koiKLGJ0/bJWxyFMahpWNIAlcWoAxSC+rZnKIpJtKp2O0i0YMdNF0rGXtB13nOH3jaez1imztVogkMMWB9oLc9u/YM7zsuLh6w7daYWnM0q2gWc2ZSUEuJnO4HOzh8H5BBI6PB2oSzgcuN48GjDRftBWPqKOaKk2FJvaiA938NT/f3FpaveH7FJ38TAD/8sf+CX1IcJkEHHHDAewhPJCtdEYs9mZimGoicwijE4zRGAGLMUfvErAopNMXWoDeSs7ahi+VXv2nElX9DpoQBEGkSLGWEBEM0ufA4Pj6ofldxIBjvON5y6tR+erHfLMKXEo0vJh3RO5IURJljOwV7Q1KWLsUUIe0L/XL3hp88HhBZr7eQ7rHb9Zxe67l18xmOFkuapmE+X6CNIYqUuzNijslNArRO9FowjpKiKFgultRNjdEaOU1b+qHPCVrjSIjxis3HEAlEdAh5UyxkJklItNSEqT+6MIbCaJSQFNqwnC8IN05xtuXs0T3GcUApyXw+Q2lFYUpmsyY3kq8iq+WCru1xzhNiTlgaXE8koFSeYqSQpy05gneaHBFww0jXbahrzfXT4+yJMAbnIufnG17V92iqGdF52l3HRz/ycYLzjEOP9xYlc3JXCg5n88cKZiitp8dasFwumc1mnJ+fc+PGDqUUsybLUcZxRAhB13W8+uqrnJ+dU1UV14+Pmc/nyOlFLCVQMsf7xugnU3wghj3xlGhtqMqaGBNSaqwb6e2I9yOb8w29HdEzjSgF9bICBK3tSAgqrVmsKigM11Y1L53dR+JQsxnPf/B9XLt5k5Nb15gdlcgid6OMfcfDzUOi91w7PkLqFfVcESmJURAieKdot4Kx99hB0e8Em8ue8/Md6/MtbmORQyTgEXWiSy2tu2TXn7HePQDfk6SlrCJIx2q24kMvvshHX3iRualIIhG8Z+h6XOspZYMKmm7j2G4GLjcdl5c9676lT5fEtuPRNlDONfADb8PT/5sb9Y/8A/iR/P6f+0ef4I/f+omnup4DDjjggHcdUj6WR2n9WDYlHpOM/Lfc69jz94U3Somkj9kQLqDQgUo4FFke9eQ0A/J0I6SIROaODQGKhCITjcAkm0IwpIIUpinKVAJ9UDF9c+FNE409nmScT5KNvVejaZo3EI2UIsm7iVAnvPePpxjk5KeY0sQ78kUuUu5nyF0dieC3tNue7aZFJsnR4oimaibpTSRJkfsotEakiIiRsiwQosnpQjJPMWaLBXVd472nbdsrr0SIASEVyoipwC8hFBghMEajlUbJ8DimVoDWatoUi8ngPFLVJU1TU1bP0NQ5OWq33RJizGlOQlCU5dQMHhBKUVQVQulsnA8R6yxqkFhvAXDWI4gokV8oYsiswzuLdyPBj5SVwujExbBDSUVdLXJCVu+5f++M0mhunD7D8eoYZz3eOrSQNFWJRyFSINgxy6l07hlxzpESNE3DarXipZde4t69uxPpytMhIQS73Y67d+4yDEOO2W0MTVESY2QMHpUSeu8h308rp5Z0N/k6nHV45wg+n6AYqUAVYARKKNqhp+/WRB2hlJw8c0JlSy43a5BQ3Ky48cwpclRU0nPRvYR2DUn1HN+a0UTF6DXaz4l+pO3O6bZneNcznzf4qOmtIA2A0BAF3iXGQWBHyThIuq1n/Wjg/r1Lzs83eOeRRLzoSSaga8lIRz9e0IUzWvmIxEBZKJQGUk7nMkIhvWTcjVhhuXfvLv26ozFzFqWA0bO7dOw2jnEMEBQpgnM955vX6B89ol6+0ZR/wM+Pv/sffjef/qN/j48Xzc//xQcccMAB30j44i6MfZrUfk+lZE6TKgzovURKktQU8Sq/iGDE6e2LfnbUAl8nbsx2HKkO8+TtfgUoISApoohIUvZfkhhSwiXJLlQQBOlJknPANxXeUurUl/vYk9MNKSVa6yt/htpH10pB3+euinEY8SEQYiJNRhwp5dQizlWPBCFMzd6RFAIuWkCw3e3YtR1lWU1rymlPVV0jTf51QooIKdGmoKjq/L42KFMQE3T9wMXlJbu2zSf3It9+jCmHwylNobgyRQsB2mgEEGIkRo/WuSEcclyrUi11UzGfzVk2C06vr7h9+xnatkVKydHxCSfHJ2itcTY3S4cQ8dNbvnclQiqKosoTl3FktA4iaG2IAZwdkSSaukAQuFyfsd1dYMcTpNa88ML7cFFz/95DjJZIWXD79nN8/MMfQknJw4dn9F2PVorlYs4QEtZHUvRXBECpvfRNUNc18/kc7z13797LEyRlaJoZQggeTn6T4+Njrp/MCX4kOUdKPhfxiXy/ItJVAN7jayl3kuSivhE32hx96zzeB3wIuJiDBIKLjMESVERjcH2g2w2MYSBFwaypOW4WyNCzOAlsHz3kC3ceshnPmH/mGZrlNZ65/SzP3HqG1aJm0dQ8c/oM8+UCVRZECcMYctqUEPn6DDk3QwkBfqRrd+w2Z/TtmkggqI5OXFIuDKubC0oTGIcBzlqsW2O3LT4oKlmjUsXF5SU/9VOf5t6DDUc3jona89rrrzAzNR96/sP4WcK1gmEDyRf4kOjbkcvtBRv3kEf9a7TxHjeq5Vt+or/Xcfznfpw7/8aCjx/iCw844IBvNOybrN8K5N6DoUBrRGFITQVGk3QmGEnnKUYS+euFj4jBI6xDOH91+JsmpUcwkJrArXrNkewwQn5JtO0bljClTyEiCoVMubyZFLFkotHFAkJWV+TpyqHb4psNb8kM/tX1c+kqAjdHx+YNpVYSowV1adi2mp2UjKPNiVFERMpkI8VIStkkLq/YuII0pfAQ6bqBh4/OmNczJIKqqogxoo3DxUBZ1aicA4spCkxUKCUoCgPkacVgfY6ZtfZKnpWTk9LVmkOKEBMxeFIMiKKkKEtMWebEKSkJLhBjnrpkL0lApCk5qiwoSs3R8QptNIUxmKLEaI33ETtadFEw9MOUXpUIKRFCxDk3rUMSYy4kJAqUJG9ug2ezsZSFYj6v2G7XfPazP8vLX5AcX7uOLk84vf4M8+aY5bzmhWef4drRitms4cH9+9y5e49+sCQkVTMn2YALHikTWopJ3pRPMnInCtR1TdPUbNY7zs7OqOuGBGy3W7a7LUdHRzxz6xSjItv1gPOOQmfCGL2D6HMFX4qEkAsMg/OkmJAyT8IIkRRSLuizkeRDTndyDh8D3k8JGj6yebDFD7nvxHvPg3APKSPhmds8c3SND3/8Bb7wc6/S9o94dPkKF+2GRX+L+WrOcv5BPvjiB1k2DcSAiwk3CLxNhGBBBgql0LJAYqiqAjcObHb3eXD2GuvdQ2wcsaFlMz6kKy+oZYUor6Fnitj0aDlQhOzbiG1gHAUMEdsO3H+w5ZVXH1EtSyg9wfWcHp1SxIKz4hLpG0q5Qss5vXU8evSAh+u7uPIiJ3zIgaI6JCl9Lfjjv/438x3/7Z9jJQ+lfgcccMA3APa9D0a/0WvxxUgJpr0MMT1OlJr8GEJrKAvSrCLUhlgqQimJhSQpSDKTDT1EzMajdgq5v51p2hEqTagFqvEs9YARX/3QZi+fgiyvyr9PlslLka4UDpIERcRXCgrzpf0WB3zD481Lp5547N8on4L9FSOUQCCmsV1ud1ZTA7hSBqQBqVGqRw4j1jlc8PgwVb4ncjnd5IUQJFLIfguQOO+5uFxjzD2SVFw7OUEbjQ4RlyJm9FR1ndOkpCEKASFMWniH8x7vHf3Q5/Sofd9HiLkbRBtShOACpIQm50cLmSgqRVEWIAQuBJz3WO+IPiKEomlmzOZzmmZOWVaYIpMcQZ6ApBBBFdRVSVXUDINCIfOpudT0/UAIFimzPyCERJyei0nE6QmrQEI/jmzbDl0aqnpGTIqXX73DnQcXnFx7jpvPPM8HP/B+bj9zk6PVjPX5OZ/7wue5OD/ncrPGlBUoRUhkghMDIYHUBq0NPib8vtE8JaSIrFYLus2W87P73Di9zjj2nJ2d0TQLrp1eZ7ZY4MeWHBQrSBKETCQZ8yMZHM5anHOMY/7b2UwgYgAhNEIGEB6EIiZHiOB8JKaITLmRnJCwo6WzHcrkqUvykrNX1qStJD2jeeb0GRYrS9F4Yiz5wIsf4Xu++wf46Id/MU0xI/aBzaYluAhJIWWBEIkQ84ttKKGoBKYUiCIRladlwyP7Gg/9fWQJaE9v12ziJaPXpG6kNBqlQM8dxzdKRp1wOuAvE86OCCXzmkXC+xGBwFnL5fqSytSkI0mhofcW5x/S9i33hzvseIDSHUIkJAqpD6bmrwXhUz9HFwOrw4HZAQcc8PUOqRBKIWc14miVC/SMym9KIkLMEwgfYbSIfiQNAzg/ff80BdmTjLrEzwvcyjAcKcYjiV1BLCAUiWhADZLywlBeVFTriHQp74ECjEeK4TqUlcUlRZsKXGqJIkGKX+LTuPo1chXul3xcAaUI3C4uOL2xYfv8KcvPLpAPz3I31dMwae9LDQ94W/GmiUZ8UnLwJOmY/i2kuPpwICGUQBe5SyABQur8xNE6R8bqHtH3pGEgBptPvyfpTpoix4QQuWiG3EANitEGHj66YHSBy+2Ok5OchLT3etR1xdHREU1T46OjG1rGcYAUsglcwjAMV+3eQgiUVBhtMLLEe5/bolOazEuSShY0RU09b0gCRmsZvUPHvDFvqhl1XXN8dELTZKOys4khjDjfEkOH0Yn5vGLezCmLhlKWUBVoOW3u3aTJFymXGaacMKW0xlmLdQOFMJPMLJMN1luUaViubvDg4QZrI0oaFs2Ma0dL6spwcX7GnTuvcv/+PYa+JwrF0WrJ6BLdYNn1jq631N7jQsL6gHUBZ0dSCFMrueNkteDioWa327BdnxPJDebPPn+b66fX0FJC8pR1g5RQFWBEIPmESp7gQIkEIeISJAd+TIyDx3lHSJ7RjQzDkJvffZ5kxBSz9CoJko+oJKlECV4ggqCUBT4EhJMEIXkw7tg8vE/XeWJa8r4XPsz3fe+v5sMvfgvGF1w83OJbDz6RPMhoUCl7gXwYsWlEVVCtSuqjkuZajZlDdQPc3ZbWndMcNyyOZ4hxRdpGTCOxDAzthrpUlEbTNJrS1Qz9SKdHhE6oMmAJjKElWE0aNTEJpICL3QVRC5RZM1iLC4522NKnLal2eDVikyNGg0iHE/mvFb/rY7+Gv/nZH3vayzjggAMO+PKYphiyKpHHR7j3nXL+LQ39qSDUiVBBLBKqF+hOoFuozhLz1y3lgxa5bplOK/OmWSlSWRBmBW5h6E417W1B/2ygutmyqEdW1cCq6NnaijubJY/OG9SFRncy384AvoLhpue0stio2caKLu1oUqAUmvBVyMaXg5mK/G7rC37xtbv89y8e036uYfVKQ2y7d64d/MvhDR6XA9l4u/HWzOBfYaKVpmnE49jbTAqEEAQp0NpQmAI1pT1l0rDX78epGTshIfdpPDkxmbwC+zSrGCP9MOBDoG071usNy+WSqqquzNpnZ+cslwsigc1uQ9+3KCVYrRYsZjMgXv08rTRSy9xKPRmWgsiG8JgS2gi0MZR1w3y+IkmBHgcK71Amy8QKrRESgmu5PN/Q9Zau94x2IMQewUCKI1rBcr7k2skp1689y2x+wqxpEEISgieSo3aJCaMUwhiCc4SUcMFBzJGyMXi6tmXouykFasb166e0uzZPD2JgHHouzz273Zqh7/PEVULfdlxeXuKTwgbBOHqcz1G9MQSGwTJaz9C1eDeiJBgpWM7nHB8foZTk/NEjZoslt59/gWvXrlE3DcE7pBSTpHNKGyOSYi7E8y4bv4dhoGs72naka0f6fipXFHHqnsiPjVQSYzSQ5WTe5xHs1LE4TcASIiV0DATvsHKH23ouxQ7nBGV1xO3TFziZ3+DBa+esH+4IvUBFQ7Igk8ydFRESCRtGfBpQTaIeSua+YC4qWi751Gd/gk9//ifo4pZnT56hlCOyFrz/5nMkHXlw8Trn23OE1JTlHF1ommWD7jVuE0kmIIUiCUe33dF1G6IwmCl9yl0GzrbnCKVBCpSWBCxJBrQGqQUmalJQ4N/Ss/aAJ5BC4E9cPs+/dPTq017KAQcccMAbIbLkSdQ14uZ1dh8/5d73KG5+xz2+5+QO14odK9XTyJH7bsV9u+ROt+Jn7t9g/XNzVp8pWL1Uo3YW2TvEkENlUlPiFwXjkaK9JehedLz//Q/4rusvc9NsuK43HKmOIRnuuGNeHU74QnuN+92Ci13DZlNBguaoZ1GOjEFz5uds9QUL4VFCoFFfQjYep089nmpEHkdKVQKuqZZvnd/hp194hvX7b7D85BxxdkGK7xLROBjQ33G85dSpr4R9/O2ebDwZfUsQYLLmP4Sc3uQmaY4xBq31FdnYf2+MkRhjlss8ATXlPaeUGIbh6ucdHR3lTXiMbLdbvHf45On6lhh9LnfzHu89Sgm0zklPpGxAF0IQw/42JaqQaCXQShEEtP2ILCxV3VAUc4oioI0kBMt2c46SgcIIYvB4L3EOrPNUpWa5OEGkkfX6nPv37/Hg3iOWy4e8+OJHuXHjWcqyZLVa4aJjGHpi8igpUWii0VjIvhLnQTy+f+xocwRu8FnnmBLtbsfF+TllUVAUGmd7pJDMmhkCuLzccn5+TkiSJEsCiqIoKcrcMh5HmwtFyS8SRirq0qCU5IPv/wCv37nDnTv3Wa0UR6sjiNBtOxCBcRwZxwE39iQPCk90PTJ5XN8zDD1D39P3PV3X03YDbTtgvUXq7M3Zp5fljo7swej7nnEcrx6/q2LIlBAy5oZv76Dr8FgCFT4YZoXE945XvvAavld0a0caFcIb8JK6bGhqcN7Sjx0+jpgKjIBdXHN/N5DuD9zfvcKnXvpJXnrwcxRLyWIXUPURSM140RJkYDteEBhwGFwsMEIx+pHODoxuJESB0YZCVGhrieOIT24KF4iYEJHCoITB6IJERIpEVRWYaiIdfkBGEP5w2vK1Io0jf+MHv5Wf/JEX+DPP/+jTXs4BBxxwwGMIiSgK5Ok1Ln/pDe5+n+D7vuun+Z2nP87zes1MRgx5GjCkxJhgGw2fu3XKf/v+b+XvfORDbH5mTn2vZvYgUD+0yDEwnpR0NzTdzUwyPvKBu/zKGz/LL61f4ppqWUhHI3IYzlDeYdsYLo9qXnfHfGG8wc/ubnI+NkiRKGSgDQX3/YqH4ZxGbJDCUwnQfGki4pNejZByvG184jDZiMh1veH9q3P+0Y1T4qJCKEly79J9fsA7jreNaOyxJxtPFvzlYrs8NYgxXhGOPUmIMWbJjLVvaBcHpgjcL8X+Nqy1tG2LMSa3aDdN3oRbh08OrRV13VDXFWVhphjZ8CXG9hgjbsz+AaUUZTlNYYzBJ9jsOtrBI1VBCPmUebWsiWlgHC65fXPFjZtLtIYQC155bcern36d9fohz966xkc+/AIvPPcsDx884qWXXufzn3uNy4uOD36o4/azz1M1NVVZUpUFtveIkH0dIgaIHm9H2l2bzeIClFS5oTxkg3jfD/kBnTowhqEnBkWMHqWgKWvquqKZLVhvWx6dr9nsdkRRsDqeUWpNihEZI4UuKPUcQaRQkmJK3CKmfPofQy6bA+wwZMlaZYAABFLKYdviiT/3BCJViZQkUml0UWKqCmstIXogTZHFuTF8/7gUhckN89bmIAE74n0gxtxaKkOEEJE+ENPkJ5MSPww8uHeX5AqMXDC24DpQsUQEhZJbytqAzrIpFwb8rsefdUQ1EsuOVA108ZwkBxarkj5tePDoVUzjmK2OeLS+IMhAMVcsVzOkghgdPmn6dmDbdvTOI6JGKYEsDKauKPyIEJ5+6HF+pJAOI0o0BSJ6mmpGUZSYQoEIuMHhO5u7Uy7bt/lZ+96Cv3uPz/4b3wH/yYFoHHDAAV8nmKYZcrWk/fgp936F4Pu/+6f5X53+KL+o2NIIMxXgyS+ZEHzIPOCXlXf4zSf/kP/vRz7G33vwQV5+6ZT5Z2qqs0R/KhhOI/HGyLe+cJdfdfppfln9Es+rHTMpKEXuu1BCEFIiqohLWz5q1twv7/Dx+pQvjDd4YBc8tHMeDXNe7q9zqrcY4VGiQ0mRD2m/yq8YiYwpToQjd2nEbMKlVo5QR5JRXyXH6h3AQSb1juNtIRpPFvbBG1vEAdITsr194d+T37cnDeGqpI8nSEq8yoPeS6e+mCSM40jXdcxmM2azGQDeu+yzMIrZrKaqS0RKeDfivSNNJ8lKKYwyAHTdwHabW7rLUtPMK+rZjLKYYYoGbWp8SGw2W1J0SCJaW0iW1bLi2nGN8zusC6wWDYLE3Tt36dtzjlcV73vhOWazGVpJzh49ZLcdWG929P3Azdu3SCJhlCSQY2zHYWDoOvzQg/fgPcHlWFxtDClEwnTib62lmc1ZLRfMZg1lWVBXBTkmO1GVBbosGEbH8mikqBrinQdYD8erFUerJVVdgSlJQhF9ToVKIWBjIAbP5fk52/UlWkr6rqPdbqnKitx14kj7lK59AaNkSq6QmKJESoVWOYGrqitq65gNLntehgHvHSFkXdA+HjlfK3VuIHeecRzzZGQY8pTDDsRRoKRGCoWzHiU9whR0Y8u9R3doR4cSDbaHYCWaiuRzLb3UAlUIhE64MDCMLTa2qDKgZ4FyCeUKjk6WSOt5tLN4P9J2O3RdIE1ElRJdQVQ+G+u9IPiI84FAIsmcY65Kg9EVRfCkAZwfCdIihMLFDm8ts2bObLFktZpBjLiptFClRFPW+To4JLT+gtH8zH2+9T/6F7n9q17l//Pxv/a0l3PAAQe81yEksq4Iz51y77sM3/tdn7oiGStZTU3bT8iSnnivFIZSBE7Vlm8pfpxfs/wp/rub38p/ef3bObszR52MPHOy4f3Lc7736HN8e/Uyz+uOlVRUQl+RFwA9beVqAQ2BmXAs5B2OZMdn1DP0seAlW/JSe0KtLDZpAneoTIsR6g0rexKRHNozpETIZ5YEBEPK29CZsqQqEqfEygO+efC2Eo0vF3+bC2PyxnHftbHva3hyqrGXU4Unpg1KKXxMbyAuX+52Uko45/LJeAiUZUlRGELySC0pyypLoILL/QxTmtIVaYmPJyQxZklWN3g6a1h4z2qpaWZHXLt+HWMqZs2cs0f3uby4RIie1QJCtFjbMo5b2l7y8KFlt93g7Mh2M3D//j3mTZlTrbzH2ZHNpsfaQAiRy80lR8crqtIgUiQ6y7Dbsd1s6PoO6z2ChFYql/cJmceLk/wrJXElJyoLw6xpWC1mVJVhHDq8d7hhRErJrGk4OQLrIhHD9Run1HWNc46+X+NDylOf4NBKYJSia3c8uP8w96IsZgxDx/nZQ+qqAimI0ZHSgLN9JhvTLAOR35P5IsidK0qhjUYVBlN6ytHQa8kwDjibfw+t9ZWszhQGow0xJqyzDH1P13Xsdjva3ZZeSGLwBCEJMuW4XuPRTYU3Iw/b10lRE7wgOoGICkIuAyyEQQWFTDDYDusGlEkYKfExEFzCdgmRAk4kqnKBrBZIDMNg0Y1GmIQNA6F3KCGRUeHHhEQjlUZIj5ASqTWmKim8RRmJty4HsUlBCj63wFNSlIKikHgbkCIxqyuapkIK2Gyax7GDB3zN8C+/ynP/7qvIv/4x/uk/+YP8pQ/8d097SQcccMB7FXtvxnLB5UdnLH75I37njR/nWyaSYcTPX9JqhMIIRSkCC9lzbfUPaT5s+fFrH+CF2TnPlpfcMhd8pLjPbd1fkYy93OnLGrkTzKVECoviAiUia9/ws+oGvTfcHVYAVMLyrNoxF4nAl5rClchhP4GES2Cn0+eIwKJwE9lAJVCH/9++2fCmicYXN4I/+feTn/9yJCC7+Lnq2dBao7WmKAq891hrr/4OIeCcuyIBQspsVI6PDdxPriOEgBAC5xxt21IUBUopqqpECoM0uURQSIjuMbnZ/xTvPZF4ta66rvEhMIyW4D0hePy0CRRCsFgsWcwXLOY1r736Ge7eeY3gJWdnM8rCIaXHWknf9dlQPY4krRnHkYuLc+xo2WzXWR4kEu1uy8svfYFdu+XmMzc4vXZCpSW+7+l3Ldv1mq7vSUIgpULEnGkd4z46WxJT7tzoe8t6vWV1dIRIESlzK2eeAPQIKbn17HO4kPBRcuQjwxjp+45+9LhUMEaF91BohRIQJPTRc/boAV03cPPmTUJIPDg7Y31+hlGKqqmBAMJeGchTzClgMQRUSjkCb3rMlFYgJYWSSK1QRqG1xAyKvlfEEBBS5PtIZ1N4WRZIKSm9oSg0Zko0CzHiXKLrB1yMJFMShGB5fcXzL77I/OiY0XpcCPTdwMXDC3bbNX60RCTlfEE1X2C0Ju080TrK0lA3BZhIkI5u3LHbbhhiByZRzg0+QEVkXkvcOOKkQxmJLhQpgLUO5QQx5istpjRdRzntrDAmy6ykfCxLk4kQLV2/QytBqUuOT1aslkuUFGwuL4k+0A79m33aHvDzIH7yZ2j/2ffxb/7It/JHT3/6aS/ngAMO+GbEk4dDX3wg+0RXRjxZsP6A5Dc8+3N82JwxF8VXLcT7cjBCMafkOT3yQ4uf4kPlfRayZyZHZsKxko5GCN6MQEkJCSnSiIKbylGKNdX80xjpWfuGSjpK6aikQzK1gH8FSASNMETpsCkyJmiTZoiGR37BS+0J6swg+/Hx/XKQNX1T4C03g38lkvHVyvykkFdGi/1pdVEUV+RhL5l6cqKxf3/fvv2ViMx+xOa9Z7vdXk1IVqslRWXQQmOtQGlB8Flzks/aH29880QgTcWUEqM1MZR5hOgj3lq6bsfm8oJZM+P09DrXry84Pq6YzST3H7zEZz7zMtvtitu3r7NYnHLj+oIb1y8Z+g1NIykLQ9e1uMHRlCXPPXub7dbStpZxHHj9zutcrs95uFpy/fgIg2C32dFuO0bvUWoiSzGRhCSkRELkBDsUMSnc6BHbPAU5WS2xY4EdOi4uLlBKcu3aCWPfk6SiKjR1UXBx8YhtZymqGfXiGmU5p6o0hdFURuPtwPnZJSk43v/CLearFSSBKSXbtieGEa0qjNHEGNAi6zyVlMgUQaip/2HqVtkTjqkbQxlJEQ3UNc1oryRRMcY3yOWGYUApdUVEnXNYN/VxJBiTIClDICBLzYc+/mE+/m2/CKZJCQJ2ux2vvOS5+9qa3WYHCGIFbRwIQ8IlR1CRJAyCQKEMRWUQZYPvHFpoqnmFKECYSFko9jqm7EEq0Log2Kl40UekKCiMhpRf1n1wJALKSKTIqVoCARIUER8cm80lY99RFiVdP+Py4oyh79ms1zjrUPptt1a9p+G/8DIP7eJpL+OAAw74ZsSeSKg8OUghQIqPN9HT50RZMp7OGF4c+a7Z5zmREiPUW4qM3UMJSUPB+7TlSN7Z1+WhyEZy88TPjKSvSmbU5LuQZHVDJXqq2ac5CzMciiEWHKkW8/PwFjX5QObAiAeyjKpLJa+PR3zh7IT6vkB2DmL86j/sgG8ofE0TjS/3ufjEhfHFZCSRm7efTKR6sj38i9OqtNaPNfg+MQUWvMG/8eRt7X/GOI5X05AQPIvVnJoaIRIqihyFqvPGd28IF1fSnscpWVoblBRoBSJJ4ugY5Y6H6Q4+DHjfcXJyxMm1I06ufSevvXadL3zuU9y9v6HrE6tlxPuKsqw4PT1FiNxJIYXm9PQaTbUkJc163fPwbM39+484vzjj8uKCoWuJo6M2BcMw0g+WECJSZWrkYkJpTSSTt5QESEMSMUf+dj3tbksMHinyVGE+myFVIgTHvfuXNPMVUhc4Z0khUmrNrG6om5pyNqeoKkQMeDey7bd07Zrlsub6tSUhJpTSLBcNXd8yDjucLShMSWEUmBKRctunSBKjJJJEDI6UYr4WSFPvikAhIQlklFmWZQxlWV6R1zzpGnHOT4bwkb4faNsdm82G7a7H+oTzHl2VaKVRVcG1G9eZzRsenD3gcn2BkDCOA+O4ReAwJlNYl0bW2zXDaDM5kpLQBsRGUJUFzaJmvqqZLRpmq4bF8YKL7RkPz+8TpGBRFRTzknJeUDYVWmksHt2P2DYSbIQgKaSkUCpL9oKDkBBRIKTeV1OShCSGSNu2OGPpuo4H9+8TnEdpRVVVVEWJVD//GP2At4bXuiNcCm9KonDAAQcc8KYgBEKb3Ozd1LnToutJQ94TAJlkVCViPmP7fMGHXniNDxcPKIV+y9OMJ2GEoqHAyHw7T8bKQm7rDim96SLuPN2AhcwE5kRe0CXFNhZIESn29QZfhRhJxNVrbMCxBoZouNOv6B7OuPEgIYbxy9T7HfCNjDdf2PfViMQTRGO/6d97MaYveEP87V5CtZc5FUVBVVUURYExBmPM1aQiJfe4xv6LOjaeJCh743AIga7r8lqUQBmFMRKVNCnF7NFwjhjDlWdEkH0k+3WVZYFIWbkYQ0DGSLCWNlwyjh1dt2Gzvc6Nm9dZLObcOL3NanWEHXu26w27bUtCcXLtGkdHDUKMNLVmuagpdEGKCmcFpIKQJHlwk2iHFi3lZITWaJOQ1jOOOXUqiDzRkDIiTQFSZd1jFCA1SairONicjKVRUlPXJdvtJffv3WM2X1IYxeg94zgglaCpqhyT6x0pWWIQDH3L+uKcy/NzCIHV4hpaCULIudx1pZg1Bd0wYscWoyN1ZVBaIFOOCt4/5iGGx82OV1QjXfVt5OsroKWmKMzUxyGQUmJtjvAVYqBtc/JU32d/xm63YxgtCUVKnhQE0hQ0VYmREpUEKils72jbHbvNlvXZhtAnlDeEmLAKhiiwQlNpA0IQwpA9HzZgtwPJOBarBlNCWUFpQeuQ6zxiQSELmnJOVdcoadDBQa3ZDme05z1qNMzNnHJWgJC5G8V5JAol9PT8CKSsLyROUxtjDFVdkarJs6T1JAHbvdmn7QFvEuP33+NvfmbBb5h1T3spBxxwwDcJhDbI5Ryun9C/eMx4pJi9PmLub2C9hZgQs5q4bGifX/DwuwO/69ZPcFsFSlF8TdOMJ/Hkxj7PzB/v40J6stdCftV27z2eJBuVCAwpsJI9EWgmU/nP//0xqx6SwIiITYqtrdBrRbkJCB+m7YJ8d0v7DnjH8KaJRtf1jycJIsuP8j/FFdF40rD9+A2U0FO7M1cbenElh8qt30rl0+yiKCkKR1GMOO9xLk5Txil7+YtGallAtF9Xvs0QI+M4sN2KqZ8BECUpBuww4OyYL3at0Sq/ZbO6QEqN0UUeFaZEijmuNZBbsr0LtLtIwrLZnaN1QVVWNHVDUzfMFjeo64gUEMKIn5rBUxxpdx0btyFGCalgHBPERNPUHMdjalshBCybBXVRYUdHjNB2I8M4ZpGOUAgpqbRAoq7uQ6UlJQKiRAiF0prV0RFawTj0dN2Ouqqp6wZiwo8ekQSFzoQlpUAMjqFr2W7XjH1Ht9tRGMnJ6THzRU1MFqWAlKcls1mFtQPbzQXODXC0oK4qxOQ7ECLH3cUUEVKRs3H318EkhcuWE6RWCCQxBqzLTfFFWSCVREhBTJEQc6pTfj8QU0CIiFKSSghkAaaSlEqyubhg2N3keH5MGCL3Oli3O/wWCAUqQogB5xM+KJJU+CgJIpGERihBEh7rLZebc4awYYwbejejbDQ3bx0jC0Ey2YfRt2P2nWiwvaPbDXgbpgmZpixLlDKE4BBElFQUukTpghA8YxhJyef7QkpiAmMM89kMax193+ODz2WXBzP4O4I/9MnfyA99z392mGoccMABv3AIgZzP8B99nrufmCG/74LvuvUKP3V2i/svX6N+7SbKwXiScCeeZ54/59/9wH/Pr2xeYyWrXzDJgMcb+8fYm7DjVZTt/t9vhWwoJBpFKRKr6fs1b07mtTeGGyExeGbSYlQmFEkIktGIokB4nxUbB5/GNzzeNNG4e//RG4jCk9inHeUY2vyxJ2NsjS6mIufpJJv9z8gXUQgR5x12HBmGgcF6bAQfBRFBFOLxAFGIiZNPJAVyhGiMVyUwKSWs94RdS5gYcYoJpQTOBoKP5E2vn7ohIjJplMnTBKMNhdbIidj44Bm9xQcHMqFElhXtNpaUBIWp2BY7tDaZtIhMWlwYCH7Auh19tyEGz6xpmDdLjFagErqQzJTEFJLgZwgJdVFRqAI7uGweX29pfcCHiNBgqgKlFVordMpESwsJVARqmnlDvbjGyfVbaAXtdoOQhuOjG4zW4iNoN1KWkUjA5hoKgnN0/RTxmyJNVU3ysGME2UtjSpNL5kKkrAym1GzbDcO6wwXL0XLJrKlRIsunkgAhI0JJRMqPpYwqp2QRmUK/SMBu6FhvLtltN0gpqJsKRGIcB4ahx/oRrzyp8mAjMoD2AlMoKmmQyiC1ImG5f+dVSmO4dft5jucLwpFjuGxp9Y7RDfm1KwkgorTKbfYTmZESpJJIZUAkbBxx3YhjIGrLaXGcm+hFwAbHuLO4S8e8W3JydA28RARN0yyoA9SpppYN0SWCTfQ7S1lp/CyHFQx9hOCJPuR8LjlJyhB4n1PJ9ld8nnbYt/AUP+DN4rnf/NN85M/+Xr7wQ//x017KAQcc8A0OoQ3p2Zu89itnfPsPfZp/5fbf4n3aMdxKPPq44fWwoo0lR7JjKQdO1MBtpahF/baQjD32P2vf0J0hr6Ybe7IRmKSjb4Js7H/ukxG7bwVykqsbAZW0FDLH2iPIRVhlifAerCXF9EZPy5vFFx/IHQjLU8ObJhoPztZ5KvHEBp8pujZPK7KMKaY4berl1GCdCcg+eSqlOMmsEiJvRQk+n1LvTb4pZrmNtR7nQ94FTyRlL8fJb1NPQ/YZP6HrS4gIbioDFEkRfd44S5GIcd/PEZEpEWPIUbhGomSiLgsW8zpPQkjElM3mXd9hrUVIiZIiX7dSUEhQIhH9iI+eKA1IhQ3gg2J0BsuMelZSH60oigKBwBiP8h7lLEokVF1ijEYCMQBGMqsKZmVBKwXeRQQJJcEYyWxWUGlDgcQkCD6yDpF6eZ358S2q2SlGJZSsqKoVm/Ulzq0RRLx39ENgtBGPoLeWvl8z9tnnMl/MmM/mVNUM60K+jyep2bQHRkvNfNXQjy3nF2vsZpOjawtDWeQ4YVJAyYScpltSSIRWSBQhZu+OT5E+jlx0ax5dPqDttigtqGOB0uD9iAsjwghkJRB1oio18qgBcuM2SLyPuDHLjrbtOS+/7Lm4eMRyfkSIAht6orBYMSKUxJNIeLSIoAQxBaLzJJEQWqNKjTYFs2KOKgRVrZmvKtAFF5ctO7elXGl0oWnbATckKjFnpuc0ek6zkqhaM5Nz7M5x8eCCrh3YrTtOmhWrkxJdKS4vR4IUOCexvYcokELRDyPehUmOKK56Uw4vmO8cPvJ7/jEf+vd+P5/9HT/8tJfyDQslJD/3J385H/l9/+BpL+WAA54aZF2x/pYjbn7/6/yrt/8bPl5ISjEjpMgtBd9KCzwuX5W8vQTji/GlhEOCyOV5+cgxEVOkFOZNk41f2HoEhRAYAlpOh2kCYqVRTZU3QUJM3VEhE474JqVUMhMfIbMRH76MCf+Adw1vmmg4n64kUinlk+i9jv4x4tSJESYZkiLGbFKWV+VrvKEr4+o7Y8zxtj53DgghEEqDmEzE6YtJRv5+/1XSCYSANDpizGlUcbWgqau8Bh9zQZ6WeQIhRLbkxtxXaQpJXVdUdYUxBuc82+2O3XZHCBExyVtIAmMKhMweECkVUmuEKZBO46PBFAbSktm8YT5vUAIEiWgt3o7YGPBpILiATIEwbcjLQrFaznDDCmctquuJUqBKgzY5/rVQikoqTIiMPoKLlKZiOVthdIWIDkmBJOK9wDq4WG95dHlJ24+4JBlDoO172m0L3jObzyiMpu87Bj/m032jJxO3ZMoqpjAGIVKWu5mKbnRs2p4EVJVBi0hKLjebBwtElCrQxiCVzpItBGP0bLqW1nYEnVCNQemEKHMqFVGTXCCR5XkKqKqSWlRTEzp4F/AuUtiEs4ngYNftWG9bhLiH0gXWR/rgSEaSVNarpghCTF6flD06UaRs0BMKoXNkrdIC5wOXlx2Xl1vaYYsTPTfqY2azObXxjL1l/WhNrBKlrGnKmtl8iQqK9cWaTX9J3/dU84rR95wuV1y/eUJVFVyYDUPvOfdrxsHnF1wymVZKPTbsSYHUB2nPO4YY+OifeB1+x9NeyDc2bv0Ph8KtA97DkApuXOPhLxX8ked/lA+ZlDfwPN7wf728iu+L9BwJg0C+xcnG14qQEjYlhmSwIW9FkxLEyiCbCjFN8hn2x9vhzUmp9h7iPcmY/vMUSZCi5ErCfcC7hjdNNMZhRO5L94SatPVPeDGY/BIiIvZ6P/LnirK8mmjEGDKR2HsLlERpnWNvjbmaaMQYshFbKpLKG66wNxhn2+x0i18ZKcZ8GzFmv4d3xFSglQJtMBLquqEuC4pCUehspg4TOUqkqZOjoqoyoTCmYBgGQshSrRTIpWxCEIJETpKh6HNEmxHk2wNKrTBKopVASWj7FmcHvBsY+w47DIjJf1AYzWqxYrlYMqtr5qslZxcbtuNI6xyjdYzDGmsKlmVNmQRjP+LHSOHB+IjdbHHjkD0aQ8vF+QV379/j4fk5u74nSo1H0I4j/TgQfU67ms0qTCHp+i3t5YCPMcvXphQr5xzeBbRWVEWFUppATlDqB884XiBSIEVHiiMhOoKzRDwgsu9CabQ2mcAIgY2OkEL2iqQAIU+zpNYImUDGyaw+PbYpIaWAkKbHK+s5VWFQRYm3OdXCdg7vsjYsJIGXEFEkKfGAT3Ka1uTekOwdybHKIUIcA9Y5Eh6pEmWlUUYgokYpgwgKhaYpG3QqKJRBCkFhFE1dkbzjtbuvcu/BfcZxRBjJfDmjd1sgslosSEEgkqLvHM4GSC3B52s+imyaT1NKV3rihfOAdwbhtTv88n/r9/OP/q3DVONrQUiRxV/6n572Mg444KlBzhraj51y+5ff5XvqlylF9bSXdAUl5FXAzh6BRBsTRiQgy5jeKbIRUsQTGJNnHRUP/ZKtK/PnCvC1Qs5KZIh5nzgpZlLc/9/85pBiQsgIUT75wbf1dzngzeFNEw1rPUUh0RPZCCFkydO+XZsno2pVNllrRUpg6pIEuZhvjDgfSDFPBYSUaJknClJplDaPuxL20w2tCD4SSYRJevXlUrC+GCnG3IVQlGitCT6nThXaYMqKwkiaesZsVlPXBXVpGIeBlOJEHCLWOrS2FEVJ0zRorem6jr4fcNbhyROQKYKIFDLNciGTnKIqkCqbtiujqE3uTujblq7dQfDURYlZgisLYvR03Y4UPSJ5mqpgvjzixq1n2HSOzTBw59EZDx9dcH52znbXkXqP9omx7RGqxHQj7Z2HvH65pe9burFns1uz2W25c/8e7dCTlEZVJS7BYPPUqNCSutKUhaCsFFIX2GjZbTp2XYcpKqRSeOsY+jE3WwuJ1gWmbqjnS6RO02Qo4uzIMOywtkVrASL3RIRpJKqMQRcFyiiS3E84IyE4QrJoC85rlBZ47/DB5etESlIShJCIE1FIMhLT1LkSoHeebT/Sdo6QFEFoQpJEIfLvrgqULqiqMkcDT830WemnUVojlSDiCdEhlaGqCpqmICVP3w+M1rFbtzk5JAmqoqLWJZUpciGfjDw4f8jnXv5Zok/M53OqoiJiCWFk7DqGtsdIRV0UWd7XlAz9kAm5ENOpDPl3FNO4+3Aa845CPXebv/KH/xgwf9pL+YZCSJFf9bt/L/U/fhnig6e9nAMOeCoQpkDcvsndX6H411/4MW4r9XUbMBGu2roTXVLZlyojkIuM324Z1Z5kdNFxGSNncc4jv6C1BSQIhcDPFDIUaCGydd37K/nUm06iSvFKMrUnF5moHPA08KaJRlnVV/GzMUZcCNhJJpVjYTMJURNpMMagdI5f1bogpoRSCaUiSkbiJINJSRB8nKRVEq0MRhcURYnRmlF3+HGc0qTIuv5JunV12XyFjZeWirKoMEVJIjE6T+k8cq6oqgKjJEqrSQKmMKYgTV6RRPae5MbxhLWeuq7RStHUDUoqrLZ4nzenyUeczElOQkm0zGlaZVnkFmslaeqKsioYh57oLaXRzFdLFnWNG0fs0COBYdzhnaU0FfN5zWIxp6zn3NA1QWs+NDpev/uAL3zu8zx87S7D5Zau7bGbnlqDu3/BHf8z+BgYg6V3I+t2g0uB0TuSFMhCImSkkBKjC4SSlLWhLCUEixsBldu7q0KT5IxhcHgfEUlQlg2VEdkbkwQEQd+N+XuMnNq15wgBMQWkygZ8JSBN5AAtSCqClEgtkXJKnRBZ2pYb2j0q5sjXGD1SCrQ0ebomFFJJUFP8KwqSJowCT8RGh00uRwALgRfgkyAGj4ma2hjqeYNWkqHv6YcB7yNSCbQxaJOTskLMEw0lBQJNWVbcms1BDkjjMEbiRgdO4EdHUiVFremHjvX6nJgcs+Wco6MlCWh3O7ywbHcb7t29y2J+RJhil5WSCJVABoQ0VxKq6UJ/nBJ8wDsCUZb8yI/+VYw4kIw3gy5a7gbLb/hT/yrP/Xv/I0X8n97CmeMBB3yTYCrlk1WJvHnKnV99g//ZD3ySX9l8nlLUT3t1XxFKCFzKcwKXJAGBSg6IVCQkklK8fQWxnsA6WrYxcS80fN7e4PP9dbZ97t+KBlwjQWiiyWZx7SaSMb29lSSqPNU4/If5tPHmPRohoFJCkQtmijJv4J+cJmits4b/iX6LFALjaLPMKMYptjSPEaUQV2ZwxNSQPLVKG6VRk5zFK8U46pxqZSVOyKs28cdej8dt3yCQUlCWJfVshlIS52yehCRQ2lBVTTZ0y8Roc69GCgHvLc5ZrLPEup5iey0ptXRdR1PXGG2oyoKqLIneZ/N68DjnEYnsLUmJENO0YdUoLdFS4l0undNSUs1mLGZzjJTYvmcYRkQKbHcbonekBsrKUlqHqaBpZhTzJce64Naz7+fjH/4W7r96hzuf/QJ3P/syZ6/eQexGwqM1l5c7xuBIWuVN99gjSoVRWb6VUgJvKaqCosolcDJBchYvUiaNxuCUzKccPlJow2A93kW0UpRFiRGaGMHGxBgDwzjQE2nqgllTURQ1KQW6fofzliQjaJEPJmQiJE9KEZ3y46tkIikQAXzweBsoUNkTFrJROgmBVgm0QUrQhUabPFkRqWAYEmMAuRuIMuFjyslWk68mILIcSQmE1pgiJ1YVzZwYclBBjFnCBpkoSxVJ5CmeKAuuHR+zWBqS6AnRcf7ojMvzCzYPNyznPeKGpGkqlosFPP8sQuao5cvLNbtxxzj2+EGSfIJnJBGBcyOIiNICZCKJfcFhnmRExBsJ9gFvO9K3fQQj/senvYxvCKxjz3f+vd/Li7/9kzzHjz3t5RxwwLsLIbKXT2vEYkG6fZ31x1bc/f7I//77/wa/bfH/47qqvy6nGY9jb3Nb90wkUA5gMmjLHD/7Nq7dpcDDMPIpe8xL7pTP9Df52e1NPvfoGv29OVWb92O+FoRCIWcSM1NUpUava+S6Ja03xLZ/bOz+cvii6cvVJOMgm3pqeNNEo5nNstdiIhFaG0abuy6UUpiiQOvcl+FDPkWWUrLPqUoCfIpXciijs68hhYAui6nHYoozIn9vqUqMFIwyTzuyHyRPIMbR4pwnhDAV3OXNcwgRrRVlWVE3NUprwjSBCc4CibIsaOqK2WxBUSiCHdlu11xcnCOkIPjM6JfzGbPZLBuOY0QpRV2VlEWR30z+uypLBAZnXZ7KaEOKKUtdphP6nM4VsW7EjpboI8jE2dkZdVlRFxWrpWIYe+qQfQplWSNVCdKgTIXQhjA1aaeYMLqkMhWVqqhliQmS1DtSt8GLHJMaJHgRkSngeiibBlVIAp4YA6pzmCqgjCQWiVQL6qbExITvRyqpOZovGO0aF8EojSzy9EAgESiUFBiRCEAlCoK3DF1P37ZIkSdZCYH3CRc9RZ0frxgDiIQUkiRTfn2YChSlliipphfzLB+SGGKK+JimpDExJYI5wjQdM0pTzxqgoOs8uyHgLPgYiBGS0lcSrr7vEBJ8zEWKQkmaumE+mxFDZBiHqddjIEYLaHwYubxo6buB2cwgtSO6/PtenG8gRLQ3nIUz2rokESiNoagrIpGiKShThdEKvxmywXyzxpgC6x1t1+KjQyhw3hFC9jJJlZPMUgQfDi+Y7xT+/H/5p4DZ017G1z3+6c//IP/k9Wd58bd/8mkv5YAD3j3syUVRIGYzOFkxvO+IR7+oYPjOln/mW/4uv3n1j/iAhlo073hy0y8Ee7KxJxNS5FmkmqJnlRC/oGbyJ+FS4CIO/L3+ef7S/e/g5fUxl+sZ6aJAbyVVK9A9JClwM0gqG8NFgP5ahWlLys2C6s4S9eCCuNmS7BTz/pUkUVMC6pcQjIP0+F3HmyYauihQWj9RzCdJQmSjMAIV8wn+XlaVUsoXrJJIkTfvPkRCjCgpp1QfkXsntJoMxh4pJVorfIiMo83suiiIIZOILG3JqUQ6JsDlKYoQpJjHl0oZirJCa4MPEe8s3gfUlHK03XVw7z7WDpxeP2HW1AgB280lox3xPpBiYLttGYYxG9alRGtN2yoIASUEZVkwqxtWqyWzepZN3tqgZUJqQ0LiY8yRtykRUsq9CD5Ozdm5qLAoSqTSSAX1TGPKbIwqTElVz6nqJUmVdGPAjzv60bPd7NidrdncPyNc7ChlwaqcYWVP4T2FVgQhaL3NJXFSUhYG344IF9FSTC8yETUEhIKoI6EWxKZk1B2jhGK5pG4aqqlsTk2eGoFEThIoKQRKgEkCKQQ2SoJN2HHMBm4RETISkiOI/O/aVDSLBc2swlSaEBzDOGDtQEo+94TIKt+mzvf93jfjrCPGRAggdX6xTC4Q7cBARKtIDJqqLFnOZkjh6G3E7X00QPKJIEe6LpOOumooioJaNZiqwMg86WjbHdZC8AkhU27+VpFu13F5fkbwA6XRVKZAx4oYHP3lyHg5IE0+odGFZn60pJrXzKoFi8UxtTa47cDQdbnbxA1EIIrIMPY4H2EaWYcoJnKhUNJ8UdLbAW8XHvzLn6ARf/9pL+PrHh/9u/8c7/9tn+T9nD3tpRxwwLsHIRBFgTo5xn3gGS4+WnPxLYnTb33Iv/i+v8+vnv0st1TxtjR6v5vYt4eriVTs2733JOMX+ru4FHgUev7u8Cx//DO/mvVPXaO4FCxb0G2uIog6EQ3EQuAb8E3C1xCLlPNZEshRM7uzYvWFGfVrLepyBz6Ac6QQwXvSPgo3hDf6xg/k4qniTRONYXRXxFHr7DnI3os8gfAx4fcSpJgmM60ixpRbn2NC6ezF0FqjlJ4mEB43eKx15GlDOU0tskY/xIhMuVpGKI02MRvC01X1XzaP+4gATFFQ1k0mJwm8c8SQY2eNVmglsc5ycTnivUUrxayuWR0fUZUFfd8xDgPejaQUsvRyancuipxYJVTI0ijvs6E7eoK1NFVJXTdopfPp/JTURMqn0KNz2UTuLUpqnHdopRlsoHW5v6KqKqQqsnk+apIVjHEk7DxBagKSXdvTblpiZ2HwSC/AQREVKIUWoIzKNvUoiCEXHyokzo6IlAvpNLn9XMmImpqw3Rhw7UAfA85oToqaZllQG0PXjyCy5jHEiHWWFOJUxJfwZELlXS4a7PseZ22WIMlcNihNPhHSqmC1OGJ5tEAVktEOKL3LAQJEjJGkFBjHLk+3yjInkKWEMz7HE5PTu7JpOiKSJHjBaAdi0JRac7RcIOkRaaSzHqKfggQEiYAnEEUCmROejO0xvaHQBc45uqHPRMA7hIgYo6bYZvBjJAWJ8wmTBCoW4CE6CMFfdbOImaYXI107klSirGvifM6iaSjrCuss4zhgnSOIwDzO6LoB57LBXYrJByOyJ+YrnuAc8DXj1T/yCf767/n3mcuDN+Or4cUf+d/wsf/jJznM1A54T0EIZF0jnrvFw0/c4OEnPN/9rT/Lbzr9R3xn+To3VUH5dT7B+HJQTxim5ZcJ3P2F/D4hRcbkuR8sPza8jx/+wvfT/vh1bvxMQI0JEdLkyxDYucQuRE6dahJ2lWDlqOYjdWlZViNaRu5cLnn1Q3OaOyuqh0vKbcLsAmbr0ZsBuelIXY/oB+I4QvRvXNRe6n8gHu8q3jTRCCEARS7II2+e8yl5OZ00B0LwkPKmPBMGwTAODP1IiCF3Q5STxCpF/BST6lzWBhqTjeBaa0KIGG2Ik0G2KAxFVWZ5Uq/y6W8ib2xTnhAYY/Lpe1VPG/yE0galNEKAkpCIhBDw0bFee7SSFEbzzM1TFosl88UCZzMJgYgkXSUdaaUwWlMXBq0kyXuCd2iVPSVGyb2SPpMpU5GkxIWICR7Z97lULgSsj9jRolXuliBOJ9amIgnFaB1+CAS/pR89/eAIUmHKiphgd7EhtQPubIN/tEZ3FjM6lFIkDX0KjESsFgShcSkxBIuLgWgjSeSyRGLCaE1RldRVTSUjnc9EwbuEHCMm5hOP6AOBhBeZ2I3DiB0swflcdkeYwrcSzgWctXjviTERRUQZSTkvULKg0BVKGLzN8bGRgNa5c8QYhTaKGB3DUOGDn85WcteFKTRK5+lQDI4UI9pkkzhSYN3AODi0qqh0jZgpRFJIMWBdwAWPi5EYPSGA85DGnMCRUpoIoCGFxDj22YeTAoKIjYFETk1T0hBjvl+SU8gokBF0AiEUPlhEkCivkT6T7jE6us2ay0drmllJUWrKwlCUhqasmS/mXD8V2MGx3bZcXu7YbXp8zA3wSsgv0aAe8AvDK//mJ/h//vP/AS+aA8n4cvjBT/0GNn/hWQA+/lc/RRiGp7yiAw54F7EnGS8+z2u/9hq3/6mX+def/zt8W3GPU6W/7iVSbwZv5/pDygmh6zjweV/wX62/l7/6uV9C+okVN37SUd3vSVKQjCKUimgUSeVpRqjAzxJp6Zivep5ZbnlhdsFz9QXHumV3WnHnhSNe6464t1vwYD3DXxYUZxWz1yuWr8ypX98hzzaIdZqmG3xpS7h484byA37hePOpU0XeiKapR2FwI957tNZUVXWVRhVCuCryizETgL7vEVJQ1XUurxOCMOb42kgCuW8aJxOQyegdyd4OKXMK0L6zw3n3+PZiwBhzRW6qusaYHJG7L+KLwefI1AhSTC3VUkFKbHdb7ty9S4yO27dusTpaMZvVSDEVuaWEmlILUswm6HlVUhgNMW84pUi5p8Fn6ZcxmrKuKao5yhQgJCElBjsyW+xYbzfsdi0IhXcO5/KExLtASB02JC7WO7ablmFw9IOlG0Z8Epiyoq5rTuYrDIrtxYbdnfssk2JVlkQJY/LY6BhSwiJxUjCGkFvWY8JP06CUIjEEdNCgNZWsKI1GBYf3ieAt47qln7fImFAJbIoE4mTED7nB3Y04NxBinkqlmJPEgg9kO4EgiYRPgdKXOQa2bIgBdrseH0dC8qAiSkvquiQlAyKb1eSkIQ0hZdISIykJpDAok2N4weVQCu8ZB8vmssPZNVqVKFngXEDHhNISIzWDs4zB42SWYEWRM51iyIZ2LXVuMU/TNaDE5L0JWDvmqZ3SECMiKIwoIQW89fgYcud9EBhpKERJchLrLS5GMHnitd7uoA3MZw3z1KCUpDQFi/mS0+s3cNbz+mt3ueMfsFv3pJAQWqCVeXtfBd7DeP1f+wT/r3/+/8bHi+ZpL+XrDv/p5gZ/4V/4dVR3LtGf/3HgraTYH3DANwdEUSCev82rv+4a3/YbP8Ufuv03eVGrb8gJxjsNlwJjcjwMnh8b3sf/49VfwSv/8FmOPw3LlweKO2tEP5KqgjSrSLIEFFEJooFQJ8IsUs0tNxY7Prx8yEeae3ygeMANtcWIQFgIXFIMyXDPH/HyeJ2faW/yD19/ge6nl5x8asXy5yRytNnH8aRPY/KupnB4JXs38dZyy0TebDvnGIYe7/1EMjRKZ5N0CIFhGBi6fppyBKqqROlcfKe1zqlO1mJtnlbUVZVPp2PuuVBKI4VCyUQ1KymKTBi884zW5omE99OUBcoy37Ypiuz/EEzlgoLoA+M44L3LZXmlRqtcrEdKWGt5+PABw9DjnOfZEDi9fp1mViJVAiJGKowyTL1xFEZnU7RkaimP+OSRRaKqKuqmQZli8hbkVAqjNMWsoZjNKJYrltbRtrmNW8SEHwN+19H1nnbXc/7okvXFmhRBSU0ZE8p7YmfpHl1y+/kS7QKy7WiAmTa4YWCQFltEHCHLF1MuqnNEvICoJru9zP+IMaBDwLlAspFCCrQo0YVA9jviZqCYd5yuFvRIFJFRgNc6d6UoQ68kdJE0ZOKVQiTFmIc0KcuSBDmaWCjBrJmxmK8QCgY3ICQooRnGjn7b0l62GJM9Kzk8QEyG/ITznhAiUmrquqaZzzBFordbhq7DjY4QIiF62rZlGHy+D3XBbD6jbuYUQqK0QHoQSjJOUjBiJCSPG/3VBEsLBTFQlQVN06Ak9DEy+EhImfQIsmcJkVBSURYFTZmv20hg9AND3+FFQGpBIk/zIp56VlKXDW7w3H90DiFx8/QZuvmIs55u04OLk8RN0JSGpvn6jUv8RoH/lb+cf//P/jC31d/jlj5MMp7Er/vB34rYdiTnkPd/Ev/zf8sBB3xzQirUyTH3vv+UD//6z/CHb/8NPmTKr8skqXcDX1z0B48LAJ+cYvzI5XfxF3/qOzj+0ZIP/JMW/WADXU8abe4pc1WWAtf50CzJXNYXqoScOY7mHbeaDe+rzvhweY/36wtWMlAJkb2/wgMjY7GhrV7m4aLkJ1bv5y8uv5M75S2kn7Pcdoiue2Kqkb3B+4PtnFx1mGq8G3gLHo0OH2ze8JEoSk1VT70aKdD3LUIIrLV0XYdzjrIsmc9nmWgYhbOe3faSYRimk2nQqqApa6zMMioQBBfRSlOaiqIySJn9H90w0nYDw+iyWRZJ0zSUZUFpdE65ijlpQEqBHUf6tptMzFAaRaHzSX72Z0iapkYJgfeeO3cf4INA6xrTVCgjpijRbNouVUkhNCoIVMimc2WmCY1MJK0wpUFXCiWzATqJhPMjbhyRRUHUBd4khJmxOr7FbAyMu5EwBFZLT+wHen3OTXWMP+rxw0BynhQ8tm3pNy0+9NhP/Qxtbyl6ixosYxygMIy1oStyB4gWiSaSm7u1YJSJtR/ooqOPiS5AExXRgh4dRg5UQnM0bzgtaq4nTetHOGtRUUHUbJRmLSM7YBQCpQoiEu/jVMY44kMiJkFMAZ8iUkgikaopOTm9xvWbN1gslrRDRwz5MjRCs11veXjvnF27ywlfdZnv332iWAxTL4uhrGvCTOOtQNcRXSqEMtjoKJqKG/MZ86OOvu8pi4rV0RFlVdL1A2eXF6jRcVzWRNFwsQ20vUWFgDCa4AJBJFShiSS0kAgfSNaxmM85Pio4e/SAR9vLSSpo0FoQYgINRWOo5hVdu6V3HQFHlB4MyCITDYHn+uKIpm5IQbDbjujO4G3ibLfhoV8jZb4+S2/wvqdsBMtGcf108Q68FLx3oD70Iv/1n//TGFEAxdNeztcFLkJHmyK/59f/HuKnP/20l3PAAU8dQmvU88/y0j/zLL/lt/0d/qWTf8A1Wb8npxj7or38fiJOLi2JRCEIKbFLjs+4mr++/nb+0qd/Gau/X3H9n+zQLz8g9T1p34cxQSiFNppYKfRCZq+nBq0jpQrUytFIy0IONCIwE7nTI6dhSSSCRiRWMnIb+LD+DJ/4yOf4sec+yH/+7d/Nnb9+i1t/u0S8/DoMI0zKFCEE8eBzfFfx5lOntJpkbbkLQ6nH/0GH4K8mDCklisJQ1xVFkWNrrR3RMbeEZ0+EIaVsSxAim7NT5Ko4T2uNlAohEu1ulycUUuR40ukCKYy5KgmUU3Rsmurq9zG3MYQr6Us+YVfZ9CQFKUpiCCgpmM/neOfZbnoe3H+IUQVjiCyuHVE3FaIscUIjYiLgMAiMUrkHgohUGl1UOabXGNAChydEj0oQbWIcHGJICAM6SoISKJeyrl/oKQI4QVJUaGyQ7LaO3WZLHAeSd8ShJ7Qttu+wg8U6j3MBH1KO/1UaXxpSIcEGlE7UQlOXJbIq8ZWilp6Hm0s2mw2j85iUCEisCwzS4StPCgEjJXOlkc7hxwDtwLJU+BDYWpenDFWJqAxpSkFSCAZlsM5igyO4LClLZJKQS/Ykm/WGzWbDdrdlt9tixxFvc1N23w/44NHaYHufSRKJmC8QlFGUlUCJgFcRKwI+eUqhSMkwb5YsFwuGviPFxNHRklkzo5nNkFpSti0hDlxuLNb2xCRZNUccLU7Y9T2bXQ8ItCmycoscU+xsYKDDFyWLxZxrRycEH7ncbFExogUIKbAhsL5cs15fEqJDl5Ki1gglCNIRUsiFgMIghWRWzkhe0GMhSJKL+Jib5pUWEBISgZaKHLDlCP6gkf9aIX/Rx+ieX7xnTyT3+Ivb4zf8+4/98d/P9T/948C7SzLkbIY8PsK/9vq7ersHHPDVIEyB/ND7+OzvuM7/4Tf9v/mdy88xl+/N2GuXAl2ybGOgS4IuajapoiCwkJZGBCLwGXeN/+ril/K3fvbjLP5Bzek/6dCvPspRtN6/UcI0kCcMRqN3BWo0uQdBJ7QJlMpTSk8jR2bCUgmuej2eTMPKr+L5Ty0VH5WB5xef4RMf+xz/18Wv41PmYzz3NwPi9fvT/jA+JjuHaca7hjdNNLz3V94LpabcZSmnVnB19TnIqVTG5BjOEAJSSqScLgZtSElgrZsavrOWX8rcrSClmAhNwFrPbrchpUhpzNXXq72sReUgthByapVA5FSoiXjkKN4sbxJTCVtMCSMlwhgEkpgS4zACUBTZ23H37n3OLkZmRzc4PrnO9esrjleCeaOoikTUAS8tioSUikIWgEfEguQLYjSMgHOJNDjaiw0X9x9BiCzmC5pmhipKbErZSD140uhIg0XsRsYH54R1S+wHRL/Djz3OjfTjSDd0DN4x+oCNCScEQYMsDMWsopzPkCIxDFvcODIKjZGSqqloyopqXpIEJOdxtkUlDzHiXGIQsLMaM0i0mKY4ukCkSHCBsiqoBJRR0QWXG9RlLkc0xuDLAhMCnogggBdXyVtSKqqyQkvN+nLNbrej7zuGYWDse7y1OcJOSKTUpCAYew/4q5QxIUWOWLYgggAvsKNGFB5Sg1SS+azhZHXKvf4OY+fR0uQkLeUwhckxwPMlIsFm09H1Ce9HpJEsqobS1Gzbnt5agg9oKRFaEYOndZamKFnUNVobKlNSio7oA3G0JB8QIULIfg/vQ45ernROjkLmqQzZezQMEVsnoouMgyclspkfCD5gvcXELPOqmpKikiQRGFz/9r0CvIcw/tB38l//mf+Iuaye9lKeGv7A3e/gTr9i/X1vjKa9zo+/uwuRiu5/+R08+jbFi9//Et1/+N0ALP6HnyNcXLy7aznggCcgTIH4lg/yc7/ziD/6G/4Sv3F2l+Y9+pqxJxlfcJJPjs/zufEmX+iu8cr2hHkx8sLsgvdVZ0gR+dsPP8qnf+Y5jj+puPZTHeblh8TLNWkc31iaJySECNZCPyC7Gj1UiKhIKmF0oNSeUjoq6ahEwAhxRTK+0kQpEw95RTj+L8/+df7A/2LGo7PnuP6jHtn2pGEkjeO7eA8eAG+BaOwjXqXMMhY/GZ9z7Ki8IiB7wiGEyBv8qWQvxv37cvqa3HacUv66J79fqZw6FYLPp93e4XUu9BOk/HUkxLQB9T5vepXMfQ5CqTesOxOg/YUOIFAq6/RijAzDMJGjipTAjYGu67m43HH2QPLwuOfkes3J9Yqjk5L5QlCYiFGJShoiCescasyTnqQbnChxDsaLjvuff53XP/N5xOA4PT5iOZuDEDiXjUpGSEwCGSNmjMSzHab36BhJfc/YbnFjn83EwTMmzwBYIbBS4qXGVCVmVqOrEuksLiZiiITo6MKOwVvk0LI0N6iVYVXV9J1F9AGZInIqVNwNfU7NQrAoKozIZC4KDT4xKzVHpWR0AhsD1lmQKvelaA1akVzus87JYLnKuihy9K8Uku12y+XZxZQ2lkguQRDZvD+R1RjyFCOR/TZK5JLCZBM2WHDgeo+pNNXcUJUJ8KRx4GjuCaNg7Dwp9iRP9lEkMIXhZHFEbUoKseEyetbbyNBtKWczVkfHLOcL1tsd6902E9gYIAZiirRdz3bboQXIACWCEEDZSHCeZPPETMoCFz3ORkQf0EkhyxKtBTHF3C+iDbudxXYjbTviPWihkEoghQQRkUpQVBqhJFIl+rGjbbdvw1P/vYXLf+57+U//7T/OXL53Td+/9tP/FPp3evzde097Kbz2r303P/2//ZOPP/An8l8f+Mu/j4/+kZ8mbg/X+AHvPkRZwi/5CD/7v274D37Nn+eHmgtK8d6UV4YUpw6MwI/2H+Gv3fslfPbeKdypqO9LHpTwqdP3IU8HlIrEl2acfhqOPtNjXjsjrjck677UeJ1i9kx4gRhHRDeguxnSZr9GaTzXypZnyjWnasNCBiqhpxLBn1+2ticcHzLwB9/33/D7fvCfpVqfMvvsBvHwHMbx0BL+LuNNEw1jDEVRXBGNx8V94iptar9JTNNIar/JL4oiF9WFfGq7L94DruRPZWmQUhFCJLOB7KNIU4KPeCIFCvIILqQ4JUrlU/mEmMy5IGLMsinBExMYcbX2vPVMWcqlc2qVQEMC3SjKsGR0DcMQ6e6tuX9+TnNPcXw64+haw/FxzWpeMqsEtUmYFFDBY2RAqIgXPp+4b7b0D86Jjy6pXELYxM4/om13BO8py5KjxYKqqiiUpAwCMToYLOMwENstaWgR0WNEwiVILpCUICpJQBCEQGmFKEpEEmA9KqRs1ha5S2QYOmKrCBLQEj0GigAkQSk1hRBIDWMMpL7FJIGpoZJ5cqSlJgRohMIVhl4lRj8yRo8PntF5etvTu4Fhkk656LNvQUi00sgkcdYxtgN921+leMkoEcLkxy1kM79AIHImGVpqtNbAY42lQMDU+B2UIVkFRM4vNoikM5FMmt1lT7Axp2CNgaapaJqaSpU0psKXARkl603H9vwCESPXnrnFjWsnlIVms93hnM1t9z7QdwMbtWVZN2gk9CNYjxAKkwRJapCKKAQSg/OBcYj4JHOogDZZxhdgHAWu7/HWE4IAFNqUzOrsGxpth1Q5KUsXEmQkjREfDvbct4KHv+97+WN/8E+/p5OlvucnfwsnfyDh7772tJcCwE/8y/934EvT0z7/W/8ULy5/Nx/53T/JZOA64IB3HlOErf/Oj/K53yX4M9/3H/N91UAp3psJf3tPxi45Xg9zPt3e5vP3r6O+UDN/GRavO0Ih6U8kw2lDNLB8PbF8eUQ/2pHabirS+0oypSxhSsMIuw5zMaO8LJGDpNKeDzcP+GX1S3zYrDmRmlKYtyx3LYXhO8s1v+vbf4w/d+8HeNYumF1uSfFAMt5tvGmisd+gK6WuCEdOifJXE4knsZ9yQDYmex9wbvJy+Hg1IdlLrJRWxJBw3uaI0tGy2W4gBgqjKcv8hPfWEbwHEkJk7wUpIafitse18/sLW7xhkrLPU86t5Cq/TetQspymJorgFUJ5RNDYkGhHz8X9kQdrz+JR5OREsZhDUziWtWJWQKMTRuQeDaJEu4Q92+AePWRhA0eqpOod/XqD7npkClSzxKxomKuIcqBCRMbc5eDHnmAHVIoUQhBiQASHSYKIAqFISSKToEiCMkm0i8TBwWhJPhJFlq+lGJFR0j66QOrc/cBgKaKgkppKStDgk8uG/tjTJ4kuSsqqwEhBKQVBSIyEUkiKJMB5dm3Lum3Zdj3DMOKdz9OI9LiDJIZE3w2kmAguIpPK0bdCoSYCmIvopkkYApmyyUwqhZElhTE5jUpqIBFixAWH6wNxSDTzOa0fePD6I46uHeGd4MGDC6SMzGc1s1nNct5w/eSY2azGJEUpIArBALTBszl7hHWW1fExy8WceVPRdR2b9Zqxzcb8ftcz0yVHVUMsG3b9BjHmtLRCGAIS5332MclEALyHNEyxwDKRoiJJgw8BIRVKS6wfiTFSFAatJSFZIjabx6VCFZpmVsF7z4v4NePh7/te/p3/03/CD9bv3U3r9/6T38zJvyIIP/fZp70UAF75y78YzU98xc9/4df+Wb7vb/wm7p2t+ODv+Mfv4soOeC9CaI1cLGh/xYe5+Be2/OVv+3P8kkJh3uMko4uOh0HyM+NtPnl+m/h6zdFLsPq8pby7JUlJvaoY7xfEQlCdWcyDHWKzy1Li8NU39FckZMhFe9XlHPX/Z+/P42zN7rpe/L3G53n2UNMZex4ydUZCQsIgkAgkIIMgCIgKCihqwAlFRa/eK17vS+UiAV4gww95RVEBJaAMyiDiTYCQBAKBzJ1OOt1Jd5+hhr33M67p98d6dp3qk4ScTrq7TnfXJ69KdVXt2nvV3k/VWZ/1+X4+n04xMQO3FZe4XX/8JGONmSz4Uxtv4Q0vvYP777uDybtt3muc+DMeVzwCM7jOG3XWka7p0AcBPGxcKpuxcwQtCPq+JkUOm8CFkFhboHW+eJzLo08hRIZhwLkB53LLuNUKrWWOTE15nCpGnzfzQozd4HnMRkmJUdnrkUgw+NxUfuSaEmLtIVEoyVhAmEeopEhXCIhJiKJHhYAJBvqK0ELfGdL+jKG3PBAHCpXY2lBU1rNRJqzyFGLABEfhPGm/hmXNhrFsmRLROUChtMV7j/Egu4DWYLSEkPAh0IaB1vfZ76DySJh0oGLCpByjajHIGOhDRDcOZIMXkdg0aB9yqWLKipAZywZDiCTnkSFgI5lkKE0hJUkmCD57trzPEaxKj70jMkezipj7HERCS4kWiRQGurahrRu6wR2qXTKzv8NrpR9nIwUSrSzOtYSU0IU9vLZizJ6dQwIrBCmAHzyERPJgTH4hQwgEH3DJ0dUDs2qD6WTOBx+4nwBMZxUbG9tYI5lvTCmtxg8du5f3iEMAJK4bGNpACg4rBd71rPYukuIAeDa3t5mf3qFUilqtICRc29HXDaasmJiCZow9FlKAVIQEbduTtEYW+rBdPsUcaJCjmxUpSoSUiJiIyef2+DRQNzXGKJLIZYq5I1NgrKWcFNkYf4KPiYM/92n862/7IV5ePTWfr1fv3c7P/fXPZfsDu4S733vcyznEj3/Kj6I+xjjK61/wWg5iy0t/8q9w+1e/9XFa2QmeUjjS9n3hZWfZ/OoP8p+e/pPcZYqnZLIUXCEZXfLsxsh73VnetLiD+x/aZvaAZHa/o/jQAi7tI6TALAv0XkUyClF3iFVD6jpwLo8n5Y3fhz9Qyvu3FFP2ajQtZulRnaZUnpv0HjtSfkIkA8AIxW1a8DU3vJH/8/bbSJNiPNA8weOJayYaVxOJ9eeUUoSQ273XysZayfB+TEVyHmMKlFIopdFajabXxDD0DMMAZFN33+ePU0pYozLRkGJMjQqQAmm90UqJGEP+fIwgAiQ1burGEasRMSVETKQor5yYS5FP3NdqB1fIkCoS05mmRND3GrQhiZJuqPCxolkqujaiVMA5jdGBy7rH6oFCdMxiz4aAiddMiw0qVWBlQYg1ukzoErp6RYoxF/UNER2yGhOEoE+RlRtw3mMLQ6EVPmUvCDITlSA1ahCowRF8TRh8LrkLPjeUj54XobN/oihKuq7N3y8UOgkKFFZINPn3TyeB0paJNlRliS2LHPOqwKtIUJKo1z3d+TWaTSqabqCu2yukZH29jGqWFJJ+cMSUjeO2KAkp4XpHP7grXh+RI4VDSiQfcvt7TDly1gWc9KNHB0Icx4h0Vra8z/djy5IHH7rAHdPbedGLXszNN9/AufNnsFrxoQ/ex7vf9odcvnABJQ19G9g/WCGUZlpZpvNNehFIAly/pF4mqnJCqUBVJX3TQwKDQISEUQatx/LIwRFkZAB8CNmzMhYESUl+XkZDm5T5+TZaI7VAx4QeBqJ3NF1DRUFZakxhMFZSVIbJtMQUJvteTvBRoZ5xJ//ol/4L59XredpTsO37ILb82c/8augH9AO/c92V7P2Tl38Fr/3N137MsZRNWfE7f+yHecFrXsUz/sJHV0BOcIJHBCEQ1qJuOMfFl91E/ScX/P3n/me+YHrvUza+9ihCSvQpsh8td/fn+f1LN2LuLdh4f6D64BJ2D0h1nW/cdlA32Rc7OKL3eWTK+ysG8D8KKR5u/KOVDBuR521+iFv0gol8dPpKKmF5xeQD/Ppn/gFveccLOPvAJuHSpRNV43HENRON6XR6JUIWDv0ZwMNUjfVbOvIiKqVHj0eBUvIwCWoYBrzLp9cxZg+Hc0MukdMKY/IpvCThY7hCcsb3iXVL9FqNgOzfyClT6zXmdY4V9OP01DotS+XWvVzQprMXQAmJMglj85iLkGNalSro3YRVLVmuIsEJvJcMrsAlwUEzYKsCmxKLkFgKwSxKNpEgK5KyYBW+UCgiMUmEH8Z4WYcOEb1O9VKaiCAKgVB5XUWI9MpBTGiuPA+kyOASMia0VrlIcHwNXMxeFgFEmceutJRYoTAIVAQRs/dFhECRJPOqYm5LSqOIUtATkSISrIZSI1QkBZE33EaxMa0YXGBxsCSGHC0sxg12IEfvhpgIw0CIKfsXpEKZghAFIXiavhvHrNYpVQJhciRyEiPxGOOT8+uZMikjIBP0fUvvKibllKIqkEuJrQq2Tu2wffo0WzunmZUFG9M5Okne2r+FCw9dILhMXr13lEqzc/YUpirp/EDT9xiV0MkhlSImR+xbSq2ppMK1HUVRMplMqbs+qysx4BJIoxFaknLmwUg2BFIwts6PJX9ksquVRKkcM9wPgRgcUFJMNpjON5hMSpSWuVBwJOYneDjkdIqcz/jP/+snmEgLPHVIxkFs6VPkL77yLxLv+QCp/8BxL+mjwt97H3/qRV/EL77llz/mbf/BAy/jmd/4Vk62BCd4NCC0Rp0+xeLTb+fBr+z5Zy/+CT5vcj/bskKJp2Z87UfCkBKXw5R3Nee4+MEtTr0fZh9okBf3ias6N26T0yvFMICUeRRqjLBN6yjbP2ozP6oaACiFmyo40/OCyQc4rRSaRyeCXAnJKVnxred+ha/6otsY7r4F88aa2DSPyv2f4GPjEZnBj3ZlHCUca6xJxtocDuvI2FzslpWOXJaSU6XCqEjktnHvcwpRUdg8iy9y1C1hnN9fG7xJxLWykRKS3DUgBUiZN3IpCZRUYHIZX0xp/Loao3QV1liEGH0fIeSSPQRS5Q6PGLOB3CqJnkikkPgkWJYRLXqEGGhdRBYzoihZtC2TVFGnDUiByz5SOM8sRS44xWYHskuINjCRgU1TsFEUiOgghpw6JQ0IRaFLJuWMYehyElGSGKWZFiW9c4DAR49IDoWnkPnnNeMmPohEFzwhuNwOHgK+H5jaEo3EykwyCOOJQkrYJJiVE85sbVNYQ981NH0LNlKoCjktkBNNwhO6ITd0I5goy8ZswtbGBoIVTdcSY8pJdjGNz2UYE8ISQ4gIoUAItDEU1tC0K3yMKLJnRludk5fGMbzg/Pia59daSYlUcmw5D6xWC1QhkYXAWsPzX/h8zt54ng9dfIj9esFdMXDz+fOURclNN91CvagRSbJcLphtzCjKAl0Z0JIkBoxObGiL0QVaapIDnwKlglk5IfaRyweXOLW1jbJFVl9IhJTwMYFWoARJgpAJpUDKiBIJKcYrVubwgsEHguvx0ecipAQRSdv3hN09mralrEqqScl0PqOabDxqfwCeLNB33MZ3/Np/5sXFU6+E792u5s//k7/L9mt+C3jPcS/nmhBvPXdtt0PkDP4TnOATgVSojRnhrtt4z5dN+cYv+lW+bvMtnFYV5oRgfBhcgothg3ftn6P8oGF+/4C6eECqm4cnSYl8ACik4GERtvDIFAOtcFPBznbN7eYSpdCPqrKkhOROY/hnz/tv/P1XfC1P++B5xPs+cPK35XHCNRONYRjyhm+8wKSUeUPOlVSntXqwVgcykQA3eLzwrL3Y6/Ek57Lx2A3D6N3IPRvWmlzQF0I2Lcc0ei3WDDhv0GLwo06RrsTmjolEiXG+f62whKxprNUMOW5UGU/Ij3pLYowQJCpplAajobSgZUtIHi0FSkXsJLC7dBTTQO0Vi8ETQoEXJU5VKKUpdaQh0MvIvq+zz8A1zGLPzUpjS8OMhHQR4R24iJIFFsXUVOQspoQUCak0woJWCi8S+DwiJUUiiYQQIR//+1ySBwGtJMbYvLn1Hg2YCDrFvJYQEEJgpGZqLWfmW5yab5KIdG3DED1SGnShkFNLLATOe7xMJJEjsRWSaVFyensbIXIpn/MeHyNuHH86fN1IeOdJjMWPxiCsBqeILhCjI/pISPl+iDG3vacIIntqlMwm/pwi5nE4mm4Bi0C1VXH2xnPccuetBBIf+OAHsCvD2bNn2NnaQk0mTGeb3H7H00lR8NBDH0LIyHRjSjWrUIUmpMCqqVmuVrghIFNAIJgYjSkrrBQsu55mscRqgykrTFlALCAG3NBnX5EEpEBqgdICrcYRKgFJ5nnYru/ww0AKA8ENCGL+o00OBBjcQNf3FH2P8wFdVExnT02T4keCes4zae7Y5Kv+358bScZTB+9zK77zwufxG//xRZx/zW8e93KuGcPnfwq//G9/CK7hxPKO6iL3fPKnkd7ytsd+YSd48kEIZFEgbrmRy592DveVu/z483+UT7JQiKeO4vlIEYFlKLlcTyj2oLjckeqWNAxXJUllUpGuns98JCRDClJhaU9Jnrt9kTOyR/PoJwQWwvCy8gKf+8q38Nsf+GTO/eyKcOHiyQjV44Br79GQKp/2I7IaESESjozv5NZwpVTe2EpB13V0XTsemAdSkmO8raPve5q2pu86UgxoLTHaoI1CCUijHyP4kE+LR6IhyMqEiOMMv0iZQEjGU/S86c6kBEQCyKakBIejV1l1GUespMpmaVMgRf75SBKiQQSN0gqrIpIWQYMqNGVp2dg02F2PniRYOaxwJNcRdMEKSRCGiZAkrZAGfJxglCEq6BYPYkNWO2YKpkqQfKBtW5JK+CgJY0O0XhcZxkQkjeNDEKXEak0k4VICmZ/nkNIYCwtVWVBUee7UDQMyJAwCGeP41yFilaGyhs1qwqysEEnQuoHWOwYtUFaSNGgr6DQMMWaioUAmmR9LS2aTEuccIkV8DPgIXe/xIRBSJn1CKpIQxPG6UUqSUmB0rmeiFwIknRvHR7UlxeyrQWYlAAFRQBS5saOcFWye2uTW22/mpttuw8nEhYcepHUdScKybugGz3SiKKqKczdM0LpgY3ubJDyzzSmz+QxbWpKMLJcLLlx4iAc++AD1QUPyCS0kPjjq5RLXexCC3cWCDa2JcvTChBzRK9UorY0kQ2nQSiBE9g4FAsPQMQw93jlIIZMMkbni0Ws4InAhsmpa2N0fI6BPIF/4HMJ3Lfj1Z//UcS/lccUL3vg1pCRo797kad/2W5zniUMy9r/20/nP//w7Mde4yfu2nffyvh8+w3v+9guRr/+9x3ZxJ3hSQWiN3NxgeP7tfOCVBS/73LfyD8//ErfqyVPeh/HRoITEoNiRkueX9/Hcsw/ye6c3CVMzdp9dI/KJ8h/9dQAhkVVJf8sWi+cP/MnTv8cZ9eiqGUexrSZ8x/n/yT/6RsFbuhdy+r/2hIPFCdl4jHHNRANtKbUheE9dr3JRW8qEIASPFJKqKlEmn7YOwzCW+olR8Yj4MCBIeDfQdw1dsyJ4l0dlpMJqmaNOR7WCGEjBE73Lm09GNWIcg1o3gIPIG7MYCTEhZC55y36MSAzj6ftIUGLIyUbBZ2IkpUQbgzEmJyEIj0j5ybECNBGCIxBBJLSMoMAoQZwLdDEwFZKbnnsj933oMr0WHKhAHRQyaoyuCMLQiYSzFjHZYGh3Ea5hHsGmAZMC1ir6NtD5lj5p+jhAcBRISplHyWRISB+QOretS53X2YeAF9DLSBQJLRVTbZgaSyEUpISTEj+Si0QEGTFSMLWKWWmZFiVCKZZuYK+rOdARNykQM4OZKoQOdAqCzQRDCUny2f+hRUK7yGyi0Kqid5Gmc8SYkEriA5TTvJlHCvo+k9B+6Oj7DpLHakWUiug9CoFiHLUb/0fuG8/ljynmzhAlMJOCm++8iac/65lU8wkP7V6kdR27Bwf0zqGtZQgBn0CZClNOkEmwowpENWfV1eNY0pQUB6RMWDNDpYLYCXb9JXox0HQtQ7ei6wZCBA+0rsPXC4Q2JKUIJJLMREHIXAwptUSoK6Qoxhzz3HctKSakysRBpJyihhAIow8LJZGSCLTDgF8s6NxT26Ohz5/jHd9+B8943v380rN//riX87hjdf8GBAE28Z7v+bSHfe2u73g34fLuMa3sj8aFb/4M/s3f+T5u1Y/sJPkHbnoDX///Gv73b38ad33/RcK7r58ErRNchxjTpOT5s1z+jPNc/sKOf/Sin+aLp+9jW56QjI8FIxQTabhFN7x08/389vmnMcwNVo+Hf9cK8UcQk9HDiVKIzQ12n1XwkrvexYvK+ynEY9vCflpN+ec3/Crf9I0zdi8+k+rX30bs+pPenscQj6BHQyCkAhmJCZyPpOCzryJBWVrWx7E++MPkqMIYkhA5vtb7w7bvrmtIwWG0pCxtPrUnj/LEEAg+3z55P5qAx83YYQ8Gh6bzo1GqcTzNR4iRjCTieEGvU6i8y4kIUkjKssym3ZSTqZTMXowUY05uSnl8awj5xF2q8fETSCXYmVf4MLC5NePZz3k+b3zjW1i4SJxbVi7R9wlF7ocY+kjbZh9K3DAs9wcuuAHBgNQCaQzewKptCVETU0AklzsYCBSjYbjrPCRJUiofmsu8wQ0poYUAJamMYW5KZrrACkkMES8STRxnyKREGIWViomxWKNJWlLLyMJ1HAiHn1nEZkncsIitCbEyxLGIUPo8EiTGpnWZEtrAxuaESYDlsqPte2L0KGlyr0b0ONdlb4YWnDmzjbUmPx8pv57BBS5euMDuxctjpHEihjwyF7OQkb0eMSCSZDIpuPH2czzrec9iMp9x9/vuZnd/gTSKpu8ZvKeMkabrWNQ1p5ynmihIgiAVTigWzcCyGxhiwmqwWqCICKHZmG0yrAa6+jJN1+FixBQlcfA4kaAwDNm2TwrZ6L52fAuV3+d435R1jOgJMY8hJhGQaoxpHkfLDv80q8yMZcqeISkl0XsGP+Cbp+4fRDmZ0P14wT3P+cHjXsqx4Z4v/6GP+rWXP/vLuLS6gZu+/PoaNbrwLZ/Bv/xbP8KnlR+fwfPHbn0d3Po6vvyTX8H79u7i3J++h/QUJ9wnuApCIJRCbm7gnn0r93/OhKd9zvt49a0/zwtsYCJPvBjXCo1iUyqeV97H/OyKYWMz+w6vxlFD90fCRyF1Qqn8b6S1hDObHNwV+OLTv885JR+VpKmPhdNqynfe9jP8ia/9Zp52/62oDzyQTe4nno3HBNdMNPp+GE3c2TgtSSSZG5+FHHs2gBhygtR62yQ44n/wjmHo6bqO4D3aaAprsTpH5A7rIr4URw9GwLkewpUW8qNpVusI1YenS62byfO4TYx5PEdK8bCI3hgjXdePxvDcL6FUxNrc6RAJSJFTj4IPmWRoQTrimSisoiwL9vZq9veW3HdvRb18iKqsmFuFnpcYM8OYGT5oVq1ksRpo+4KDvYLLHg5Ch5IBISRNiiBcjo0lopWAsC4pHAjWZmN6WeBTHAmURKFRUaODp4iRQkhKaal0SWksCogpIEMiuJGYCYlQ2RQvtcYpQSMddQos6BlKKHcmyI0SX4A3Al0aZITkexLZL2G1RiBJCrTKRvaExJaTnPCxd0Dbe3CBwhrm8zmbW5ts7WyysbmBsTp3mEiVFSUE737HO3nzwZtx/YDSiiRy54UUkBC5DTxFqqLk9Nmz3Pn0pzOEyLve+ofsH+xTTicslzW9GyiKgmFwXLx0CWsswQXOnDpDVVZIIeh9Q90tWS73OVhYZpMSo4EYCG6gb1v26gMevHyBvd0DiJLSTPASopHI0pKkYqxpHH0rOTks/40dk9FiIKaQSUb0pBTRJv8RPnrtCsToRZEjLc7KSFqPxsWED+4T+Z1/QuM5r+v4rhv+23Ev47rFrz/vZwkp8oX/80/C514fLeC73/DpfM+3/gCf/SgcVL726b8CwKt+89N470s+8fs7wZMEUiGnE8T5M1x4+TmGL9rn79/1i3ze5B7OqQrzMXpbTvDhMChOqZobNxY8tLNNnE8RqxoRAsl5IB4SCfGRxqrEOD78ESCUQliDmE45uG3KuWdc4sXlfUwex9fpdj3he1/yE3zLX/h6bvmVOZPfv49waZfk3cko1aOMR6BoBJyLo3mYsUk7b+C9d3jncCkRZD7ljjGrF12IQO5/GIaB4BzBO6SA0ubEoXX6lHfDYapQSnGMvM0dGVJ8eGzu0c6OvMb0sLdsEgcQh7cVY9HbUay/tja1Qza4K60RMRLG0r8UIknEI2qK42D/ItPJBpOy4P3vezur1YJz1SnOFIZp4VHSIWRLVJZeJZbWs995hsETbWC37emFYiUkl6RhY2qYCc98yL0fglxS6L0n+p6JNJiyQKVMvjAaozUawcR5dNNTDBEVdK7USBFHyuNnw4B0ERXGLayW+GQYpMhKCpE9IgvREwVs6JJZJRGVwlSGoHI/RIgeQaQ0OpfPCU1M4AOYckI1mSKUZv9gxQMPXuTy3oLtU6c4c/YcO6fPMN/eQBtN3TVcvnyJelljjGEyn3Jq5xRd1/Ce97yHSxcv5hZtyWiiljgf8CGPQ21tbbC1vc3BsubSBy+yu7dHSJF28FTTCcZI6rplMIG+G1guDvjQ/fezvbnJ6dOnOHvmLNPZFGsTfb9gb39BaS1GSwQ5arjvei7sXWKv3qcTDikt/dAQo0RNJvQj4U6jsiPG61QqSSSNcmwkEYjRk0ZfE0Sk1B+RKK8VOiHEYYLbugRRa30YJ/1Uw+f94ZJv2zkZm/lYUELy83f9V774f37pdUE2mnPiUSEZR/EDN72BX77b8F33fv518TOe4JggBEIb1Klt2hfcwn2fZ/jKV/wGf3Hnt7hN2xPD9ycIIyK3TPd5/5nbGM5OKbpNJJDajjGWM48/fSRVYz1JsvZrhEAaD40pCkRZEE9tcPA0xZfe8G7OqZxi+XhBCclnl0v+yRf9F/75zV/Izn+9nZ3fMMSLl0kuT9J8zIjeE1wTrplo5OhZxnjZcYRJjMV9QqDkeDGl7IdIKeY59L5jGDIR8SErHVLk2XVgNPlmCAQhBvxo/iZF5DrZNsXDQsC1KhFCQOv8I6zJxdEEKSVzZ0ccFZI1SVnfzlqbezOUoqoqpJSHjdRWWZSUxJSISZAIowE9EUM+kZ5MK7a3Z9x4482A5NLlByhtYHMKd9w4o9SC1aKmrvcIUQAGEQWSSDGxqI1Nmiipo+CiS1TJclNVcWpY0HcrJilRFRprJkg35FI6KR9mYBfKgNJYKVGqZEKJ1QGvoLXQj+btqLJ3RYQAPpvMAxIXJX1yrFJkj4E9JailwwfHymluMDO2tjYpNie0XcsQMoGUCKyxFMYixXiirzRCG4QQOD8gCJw+tcW58+c4f+PNmKokxEhMniQVm9ubbJ3azm2k3udmd22Ybc3ZPrPN5b3LeO/ztSYFQkIYAlIrNjbnTDemtEPHxXsv07g6l/4Jwe7BPoOLaKMZBkfykT4F6tWCyxcv8EGt2Nre5JabbuKOO+5gPp8ymWj29mu69gBEyiNfShN8YDU09ES8EhATbdeRksSWM1yIV+LMImOGOKSQPUOIiFQjmdWSkHL0cErisAtGkBWm9e8SYt27IUcDXlY11qlqMT5+f4yvBwhj+dQ31yck4xHACMUv3vXfWNzXAfDy7/q73PjDv/e4Z8fXf/pTedM3v5rHInL4lRPH5171M57/nt862Rg8VSAVsiwQN53noc8+R/zSXb7r2T/Hy6rLzMRJ8d6jgVIEbiz36c95lrdYYAc7KZAHubAvGQ3WkPSobIR05fdPCNJ61Lz3iH5AuDyalCYlYWtKffOE1TMHPnP2bibCPO6v2URavnx2P7d+yo/zbdM/zSV9Mzu/O0Vd2iPWDanrT0Y0HwVcu6IRPFJKjNF5XEpk1SHFmMd4RI6jTePGK4SAHwZ83+OdH5vDYy7u03nmnJRwbhhzl0fCEfMmL4YwtkwLRBIPO8U9SibWJ71HScSh6iEyeUnx4W3mWuuHtZqHELDWopQ6vD9jDcEnQsxRsVIptBZ50ygS09mUG86dYWdnh7br2ds9QNABLYNbcHH3AW44s8Ops3OqZuDipX0Wq4Y6KNpY0HmNnt1AaW5gcLBatdQ+UiqLSzVVv2JG4tR0xqlphU0VxgVMTOgQsVKhRvdH9DmBySCwyqLLRC88rY4spKdLnoDHiIBVApMESkhCoelKxdLCrvJcILBSCipDTAI7kfipgUrTp0A4NGWDkpJCawpjEAhcSDRDz+pgn7535FEnlU3SUXDp0ofwKZGEYra1xXZ5etx4J+q2ZrlY4oPHaE1SgtvuvJ3lasn+3h5GaawtAUHVDxRlwdlz5zBFweWDfZqmISqo65aUEpNiSnCeru/RRpNcVhWkzqlPbVszuAY3NKzqfU6f2sEPA3u7F3Psrs4+IyklAkWQkqih7wNSGajs6JtJRJnlFhEhkYuKUgwEP1o1VCYNSo6N6ahRJcsJYjltS5JEHN+PnCWNpFxJlFA5AGFNfN1TZ45UnT5F+VrJPz3zxuNeyhMOSki2VY6J/P2/9wPw9+Bzvu4bKd+/S7j7fY/54wutac7IsTzxscHVP+NLDv4aZ1734OPy853gGDGOSnHbTdz/+Ts8/Uvfwz+55ed5phFMZHXcq3tS4bReUey0rG6eE0pLcdZgF3OSEripZJgKQjEG1TiQPhOOMWAR6RN2GTEHA3rRQUr47QntuYKD2xW33/Ygd5pdzGNsAv9omMmSlxYd3/Wcn+Kvf/nX8IGbdth55yazexaoh3YJly6feDc+QVx7Yd/Yb2HM+C0pIcgnrm4QtCFAyKrFuuXbu7F7w7vckaE0ZiQZYoywjSNZiXGMsk1h3KCJUSDJp7n6qjETrfXhaMnRsRPgcNxEiZxKdLTb4+gI1VrZCCFQ1zXT6RRjzEioDGGM5FXKAJGUAkpqppOSG286z+233sLu3i7vv+du3OBQKjCfWXwauPfBB1h2NbfcfDPnzt5Ary333X0/l1cDq1RwaaHo5DaymoGG4FZgwE8FWjlgxXK5RxxWRBHZtiVblcVIhRoiVkhkGEkUkGJ+LnoJKwIHeJZWcEBif2iJybNZWsogKLxGCYGzktrCrvZcxHGZiLcVk5mlKi3lbIKelQircd6RiFilkLZAxGz0t1oRXGToO+q2pRuGTBKVBqFw7cBquY9PeYDITKdIC0VjGaKn9y53ViwWtG0LKbI52+SGG89jtOTiQxdo6pau6Wi7DqkFZVGOfp8B33eIEFFCjWlikYnNreo+gvQyE0UJWkiUgqRySAAxsH/pEstLl0GACwPKCIQTJAFRp9yqLg26qlBJMzjwCZCSIAUx5cjnmLIZXKT1iU5C6kwqBAKjFFFE4tjeroTMY20xKzZSq0MruFh3vIxpalKP12tMubjwKTA6pU6fon3xHey/asVbnv4Tx72cJw1+7d/9KKvY8RU3f9rHvvEnAKE1l77+JfzuP/43j+njXI03/fP8eC/7K99E+XMn5PRJCSGQVYm49UYeePkOZ/7E/fyjW36BZ1tJIU46hh4NeAKX4sDbh/O8bu/pDA9M2VgACYapwJcaNxX0WzBsJeIkIAaBagW6EZhaYBYJu0qYOmL3e9Reg1g1ECPaB6qY8EXF/Re3ufi0itt04Fq6dR4LFELzSbbl/3nez/Ca03+MN93yNM68cYtTvycQi+U4RnWilH68uGaiMZtO0UYDiaHvx+4LjVYKVVgkCadyd0bfO7zLRXzeubEvQeVkKTF2CaR1VX2OsvVjItW66RtyuhAxz+ZLdcWjsSYIRwnHmnRc7dPIoQg5YvcoOcnRuyOhCIGu6yiK4sr9AUpJQBFTIJcE5lGv+WyDO269A60U77/nHhYHe1RVhdESQh7Vqr3k4KFdVl5Q7dzAqVufhv/AAavQcjBYFr2lFXOi2qD34KNFyUSQHrN9is1pB6sZcbVif1nTrFo6OyFN52xvTAEFPhF99o/EEOm8oyewEp7aCOLGhFAIhoPEav+A1nvmU0URBVYbUqFZmsRCQi0SsVLIWUm0Cj0pmcynWGvJJCsiYsphSFIiJBijUVIypGzyH7our2cs2YtCElxOGRNas7G5xXRzgxQ9D37ogwwp0QVH2/W0XUvXtogEu/YiRhhETGNKWUfdrOi7HiUlfUw0TU0ClNFMy4okJcMwEFOgEpYoI0GqURWLWCspJxZTCCIOF1z2fURw3YAPgWJisdLgk8eNvS1xbLOXxqArTY/LqgISmQQiqVE1i0QfUSlhTFZ6jJU43yNFyqOF5PEvoSSRmMlzkg9X4MbRqTXBXrdcJsjlf0oi4pN3JEAYy4W/9GL2nxv/yHSlE3z8MEKx+/Wfzs6P/dZj9hhya5M3/9PHl2QcxS/8m+/lK37usSVTJzgeyKJA3HiOC5++A6/Y5dtu/yWebTghGY8SQoos48Abupt47cUX86Z33cHmeyWTC5FowE0F3aag30kMZzzTMw1bk5ZlV7BalviFJV1QmCXYVaC82KEuL0nLmthlb4cYBkw/MGeH3fdO+L0X3sbz7LuP7TVUQjKj4DPLPc7c9D/4j9Wn8195EcXBnPm9BbTtsazryYJrVzRsVgO8y50WKQaSFPkkPfhsBneOvu+oVyv6rs3pVFKgZO7HOFQdUjpse44hqw8pBkTMXoowFtLldm/9YelSR8em1ilRV/svYoz44Ekpz7iv/R1KqUN/x/o9MBKdcLjGmBJar83ueXQqJYXRkp2dU9xww43cf98HqFc1Wml8P2ClJAroe8cgNCjNqnW0Hm49dzNbZy8yPHgfB52mC1NqX+BRZG2oREtHTANRCszGlGpukf0Ww94+w94+e91A1+yzn3pKbVGoPH4jBVFCrwOLOHBAj7MKYw2ytNTRsHSK/bpjpTUGwaQsMFNLIwLLEPDKIAuNiwE/9Kg0ZWILjBCk3qFTRDP250mB1gZjNcPgWTUr9g/2Wa5qYog5jcqM6lcICN+jZUJGR98sWTnPsu/pYqR1jqbvUFoxn884f/os9bLmXW97O/ViBTExdAPEbNCvygolDVZZbGEpq4oowPtAlyRJRjaqGUpqZASlJRBIIqIsSJXwqcflXT2FLXF4Fssl0ml0UZCSxEeX3RNSE1D4JIhSIW1WRUSSmKgxQRJ6hw+598MqxbycMJ9PKApN3a0YQofUudMloUHlacEQ46G5O8aIVNmjslbZpJQYa3I0sfcoJUfi9+TD/d/+GfSnIrFI3PMVx7dBfSqgEIZX/+Pv5zt+7EXHvZTHDIUw3PtPP4Pb/s8nTpnhCa4N8sxpdj/lLMtX1PzTu36JTy32mMhHv0n6qQpP4F5v+KEPvIz3veMGNu5WbL7Po+tAv6PpNyT9dmK4wXHuhn2ef+oBzhULLg4z3r88xf2TTfpuDh8U6Dog92vSYklq2pxWlSKEACFghGDjfRNet/cMvmT2DmYiHpu3Zk02nmMGvnbnN7nwSXPeeu+z2XjzFA4WH6H+/ATXimsmGm3ToJQcx1M8gnzanGLuvfDeMfQdbdPQ1CuGIZ8+K2tQYgy6FSAOY2fz96U0mr5ZNyIzGmS5Mtcu1eH401rVuNrcffXHIeTAUYk6bJxeKxtmLBVcf8+abDjnDr9fa41UBqEAAUqJbFAHhFBoZVHKYHSBGxxt0zCZlBilc4u5TwTv8bQ0BwuaZU2MEh81vZMMQdMOicF3KBkptEcLh4hLvG8YpMdq0GXB5MwO1azCNQ1923Jf2yBij4+JYYy59UATPINOxEIhrcCKHjk4XBwYCkUQltYHlICiCGjlGKKnjQMBQeg8IUWKacVMazZsSZkEDB6rJISIQqILg7aWkBLd0LGol7RdAyFQSIMx2aguBRgtKVRFUhLX1vRNg5MKZTRaSXSQVEXB5vYGz3j607nrGc/k3nvez3ve9ofs7+1ipUYkgZIaawxVYamq6jAEwPcd/dAjhcAESXSR1PQIGSmLiqmdAoGubxjqDi8diEBhFbYoKM2cPiaCzsqV9DnFK0lNTyB4gReJIQXcurvEaKwoKJJGrBxt36M8TIoJs0nFxmzKbFohVCJFTxocMVf5kT0ZAiSHjfZrBS2bMhJKK6S6cq2GkOOVxahumEfQs3m946G//hmEz9nnZ170nTzTnOTcn+DRgRGK13/Dd/Kpm3+Hp/+tNxz3ck7wKGK48wwPfUbiW577el5W3cfsxJPxqMKlwINhi/fdf4bZ+xXzDwaKSz1y8EBJ1IJoJNEYLto579Geg0nJh1abPHh5k3ShYOMeyeY9Pfb+Pbi8T2yaKyQDcnqp9wjnOf07U97ytGfx41/yYr5p+3fZlsdn5FdCUmF5lhn45hv+J3/35Ts0v38D5eXdxz1I48mEa96x7O1evpLwFMOhQpFSJIU8/tS2LX3X5Rl9KdE6jyuRRE5KSplErMnJWskgrWNoGbsSsmnbKEX6COUtR6M/Hx5ny6GhO4RAFAJpJErLQwVDCHHowxiGnCawJhvrhKNcEpf9I1KAHhMVYkwEH9i9vMfFC5exusDqkt1mlxQSfTfk03wUuIGu69ianmXLWpaXL/HAfffRtwPDAM57nINuCEgxIMuBUjuSXxGHFUl6opC4sVdETwqKeYkMjuXuJeowsPIOrxSUBV5KatfT+gFjFBNr6GMi9R3R5Y2uEwGKXGq0lAERWxQCYzU6CUQMWKmYm4K5rZgqQykgCYmO4IeAMZrSFiQladqGVVszBJ9N/tJSKINWIvesxEzuhFIEATKBkhonFS2JzmXDc2FzetV8NqW0BdYYNuZzNuczCpW/ZpRBSoVWChkjfV2zXNU0zQqlJZsbc6wsiX2gqQeih6GakuYOiLR9zeA7kvJIk5AWQumgsFizwc6spA8dUXiSApKj62s61xOUJGmNUBolDdIUFHZClTTCdaAHlBZszmbMJhOqwlAoTTe0ROdQQqCsJqVAJIDKhUhCmGw6FwLIiWdxfM6m0+mh2iFVHh10zh1+/ETH8AUv4Znf8Yf8vVM/xOdWATghGY8nPskOvP8nX8DtX/3W417KY4bTasqf/+Ov4w2cjNQ8mbD3zJLnPP/9fN7s7eyo4nEpeHsqQSIphUOaSBrHi6ULyFVP0XnMnmZ2r8ZtGLqdgoOdG9ktwR4kbrgcKXd7zAMLuLyXS/DWBOMqj8O6jFm88x6e9h9v5z/Un8uFr5jzrWd+nRtUdWyvqxKSmSj5lMLxL5/10/yFL/0mnn33ObjnAyft4R8nrploDMMwdlokUoooKZCSvCGPEcYeDEhoo8f6sqwSKKlQSuZIz5jGefYwqhq5pC97N3IsrsjdZEiZU5VCvDIqtY6jXSscR3s11mbvdS9HGonI0XEp59xh98b6/WGh4Kh6pJTw3jMMPVpJrDEIkcmNkpKDgwPe+Y53cOcdt3Pzjbdw4aELdG7Ae4eSEvyASXB+c5PnPOMZnN/Z4Q/ufg8PPXAffpihhUGmHkmA6IipyepQCqSUfS1ORJwQoCXaSoKGNjqWvueichz4lpV0qNmU6akZoiqR3iGbGhEhBkG3avFDj/C5Cb1PHh8FxkpC8oiY2JpO2ZptYoWiXq7o2xodE7Hvib3DlAVIje86jDJUtsQWltY76nrFYrUkpIApDHQRvCeEfHKvpMim/hhACEpjCdYQXUQFmGiLVok+eKIPtE3H7u4uIQTufPrT2Zhv4LoBQiIMjnrVsFgsaNuO4HJ4QEwBNbEoBFpKogg4N9DVjtQ5pI9IKWm6Ve6/wJOkR+iItgXTSWJry2IKy2qxYtEuUJUiyMBBXxMUmNkEay3SlCSlM9EoCopeElxDERIyAU1HXbfUKaCNxCfPkHr0TFPoMsfzhkggICRYY/GNRymFtZa2zeOGxhjmsxkgaLsWIXIggfd5hCq3qT8x8c3veTcA5/WbeGnxxP05nuh4l5M8/R8c8GTPUvnWU2/mxf/hVTztz73luJdygkcJe89OfMv53+E2ndDHZB5+MkMJwVx2TKYdwWS1SPiI6HoYHDJGZAhopZhYSypMTl5se1LXQ98T+z4TjI+1MU+J1PfEd72X2/99zesuv4QLXzfnX9zyc9ykJscaUVwIw6fYga/7jN/gl17/WWzf/wCxOyEaHw+umWjkU/00jnysG7i5ku0vBUJlFWNNQEIIeWQqgUhjG7UQJBHwBHzIBlpIueFayrHEbGyaFJlsiLGsLaU4dmdIrC3w3tM09aFXw5gCSAyDyyQGcDGgEyDUyF4USUgYuzmC94CgKApciPjgqKr8xyuGSJISHwJKJorCopTADz333n8v0gie+YxnEWTi93/vD+i6lkXd4NqOm86e5bkvfjG3Pe0O7r/wEO+++27aZokUklIaKhnxwoKUJFVQ2ClBQZcaOjRLX+MczMqSYqLofcN+t2LZH7BINa7KPhJhAmYq2dieEWOiXRT4VU+/bBicJwlJMZ0ikMS+pTCGtm+JKadGDTGx29RMbYEpDSUlIeRNf9N2yBCR3jOfzSiMxlqLiwPLVUPT9qQkcD4w9D1lkhipMKPpH/IpRgK0zF4afKRMAikUDoGKCYXGCsNi0ZLCQ4Tg2Tx7Gl0VXHzoobwBF5F+FVn2Hc2qQQaBlgakwOoK53Oz+3xrTiub8fR/wMeWiSkxKdB3PSJ4jJEIKXGLjpXZY663KKWkubTLcv8Syii88PRhQFiF3YpMYslky6BlifeS0A1w0BI/dAnb9QTnqb0bySroQpNMglJSFlvoEBiCQyRPxCO1xgeXx6REJsdSZE+GVgZBNqGLJPNhEOS4YKnw4YmbfvEnp2v5+YRkHCcuhjn+ffce9zIec2zKivOnDnLO9Mlp5JMCZ599kZeU9zIR9qQr4zGARDIVA1tVx4Uij7MTI/RD9lkMQ64xOPyGcRwlpo+75C55j//gA5z76Za7+7v4V9/c8H+d/zVOq+NVuifS8lWbb+bffdYf49Sv7xA/9MBJ+tTHgWsmGmv/wrqsTwiBHGM8Y4w473BuII0jSuuxJq0UEokIY7M26bDxO44XqxC5c0FKkQvKRDZuIyXeh4cV8+WWbDGOSAWUUoejVFkVuLq4L488AYf/Hda/JJnR5P+UkhDiqJoYBpdJUmHVWKY2lqZJgdASN/S87R1v5+LlXW6++RY+47NfhhSSvd09UorsbGxA8vzmm3+Hu+99P8vOsb25wbKDbrlgmgKRApTFqwqSwjlFCNk4HU1iw2gEii5GmtCzigOdTpjNihQdMSai8Cx3L9M1NYWyuFWg3W9pm5bgA0VhCeM4mUsw0YYCCN4RyWrCEDyrrsWkSBEihtzsLkTkzOY2m9MpwhiktTR9x6pZsVzVtG2XR+W8o1SKmS2w43PlvccPLo8DAUIO+R97bRHSYKRFIpGAEprVquPBi+9kCA5TGISGbuiIwWfClyJOCfoQ6ZzHCosWGi0VzkO3bHA+MZ9vcOqGM2xtb1IvlvhuQIhAWRrwJV3dwJDVFoXFDYFmcUBpNVNtaKLAN/k1mAiycjIs2Ntt2TUPooqScrbBxsYmZR9g2SCdY+h7cD7H22pB8gPRCkiSNPT4TuBET1SRKCIyRkKKSKXz7wcCaTIZTy4wtAOofP2nlK/VHGwg8eHJH297gscGv9MPXAxzvvvpzz7upTxueP0LXsud//YbedZffzdxuTzu5ZzgE8QX3fQ2blTpcW2RfipBIrhRJf78rb/ND/afxV5/CrucUS1baNq8j1sTiqP4RDfgMRAu73L6F+7mN8sX8eq/2vB3Tv32YU/OceHpRvOlL/ld3vzpL2b+87vEvj8hG48Q117Yt97AH32CY1Yj4tiVEXxuzM5fioeEQwp5mKyTP+cJY3zolbbvD3+s/HbF5K3UFZk0jCNbSqnD4r2uyw2x6xGqdcv30TjcNY5G5R71eKSUcM7RNBBMJj9lWaCNyqlAVmMLg9KaEBO7+3s0XYfAoLWm7weGvoPgSdHRux4XA5OqIGlJiIJ5IYnRM0hBVDAIQUw+JxelFudqnBpISuHxdF1H84q0ngABAABJREFUPdR0fsClQNPWSCMoqhJlLP3gOdhdkALEPuHqgeDiOO5jSVLhgycIWLY1Qkj8SAyllBitkYAuDOW8JLqBRd/AIrG5PWd+ejMTOiVJQx53EymhERRCUpUlU1NQIPIfi+BJwRH8MCaUQRCOJCQiBISJCJWQwmCkwqWA63u6rqXtO2KT0FaODfOJsig5tbPDMBtolh3tqiMFGJzLR/1DwgWHd4HoP8TGfM7ZnTOcPT/DtVnCHdqOYfCk3pF87vmQSiOEpB16nBvY3t6mrZfs7e9mEpcCSebUquATvh3ADKikEcUEGSHFiPM+b/5Fjp+NMhFEQkiZY3dDTkAbhMeJhBcx+5ZkDnJO69japHJje0y0Q4eUagwqyIQ4jg3k6eSP3AkeIX56tcFb21t485c9/fFRMrzn1Xu387e23//YP9Y14J5X/ih3/t9/lbv+r3cR9vaOezkn+ATwmdN3M5GPf4v0UwVKSGay4Aum70Y9I/K98Y9zud7mht05cn8xKhaPXLW4JqREuLzLDT97Dz9vPgvzlwLfdur3HtPSz4+FQhhedfp/8/lf8ELueuftiPe8j9T3x7aeJyKumWiI8S0x/t+6mCylIyqHzN6MlHIMaozEBEHkUjOx9mEgDr0e6/IxIY48ikiHn1daIUQu21sn8KxJxtGyvqtJxNpvcfTzh0bv8b6vJhhr30dMkX7ocX3COc9kUjCdTY54QwTWWubzed6QxkRd1/kU3wfapkWmgJYJZSRaCaJ3eLdCpZKZKRn6gSE5QhhItAw+p2wZEymrRDXTyAJa31J3B9TdHkPsiDInEIGm6x0MEaUt1k4Yuh7vB3zMBu4kJHH82UJM+BRHRSibihGgEhTWcPrUDudPb1Np2Lt8iYNLl2hSj7dQbE5gcDRtS5IgjSLFgIyBSucuDZ3iOC7nid6RokdJshqUcpRrWleFppjrzBWZsAiJ1ZJpVZKip+4agtQUVYnzLisagI9pPM0XIEUmFkNEBEEiYJVi4WtcH7CyYGM2g5gwxmKEoozgEQzdgI+BEHOBXt82LJZLzp07w9b2NoMb6IeewQ3jhZm1F6UkxpRMtMFE0AmKwuBSHNPSACmJKiEk6FlJtCBMLhAMjEWAo4NJKzXKzTEHF+Rfjvyzep/7Zg5/OeKo/kiSODnJO8EVfN/ebfzEfS/+I2+jfvA01c++EXh8xqXC/gG/8iUv5G3/6SZ+5JbfeFwe82Phnq/8QZ4W/irP+o53EPYPjns5J/g4cadZoDmJs30sYYTinCr4nMndXHranB+8+HK27pkwvW8ceX0sD7tiwF+4xE2vVfzU/OV88te/ny+arI6VWN6hS171af+L13zx53PbT3WED9x/0hb+CHDtRGOctV9v3AViZB6RGMVYtMdhuZg8HPVYx3ge8XUc0pYr0bQhiNGHAXBFgRCIQ1Vj/dhXp0ytCYIx5vD+YoyHvRlH+zfWfRnrkSu4QkDWI1iQSZIPkdC2+ODyxjQEnC/QOseOlmWFc56269FGs7W9w6SacPnyJerFAX1X473DKE1ZFtikaHqPiw0FgoJEEhoBxGHAi4RSkqoq0KWk8w1Nt2LVHuBCS5IBNBSVzUbimIgIrC5zU7WLSBlRWpJiBCkxtmA6ndD3HZf3LhMD9MEjRDYja6MpZhVbZ3fYOL1J3yzolcfZ7LPZ71ccDCuUTwgChZFZ3ZEcbnwVAhkDMXpS8Lk7I0XUSCxiftFJkpEkRYSICJFIKhEEqJgIQ0uKgaosiErQ1g0+BNrYUS872mXLwWKBC3EcecvXmkq5TNHFhEkQlKBpB5xbMnQtRhvmsznFfIPNaoIbPDE4YkiH5XhVaVFGM9uYs6xXDG5ASYU2BlMU2LKkrEqKckpZVVhboFNiJgSuGxhcjgZGKYRVJCPwKlHHjqQkATJBkKPXKQI+J7GREpFIGEekhMiFflKOo1SjEigRqCRJ6eQk7wRX8D3//U/wtL/7sSJc73lc1nIU/p738/bv+jR49fVBNADe+2d+kDsm38Sz/ubvn5xKPkGxI/WJmvE4QKM4ozSfOX0Xv3zHs1mcuYmZlKT4OCjqMeAfeIjb/kvF37z1z3P+87+fF1uO7XU3QvEXNt/Ku//UeX5n/wWc/5mGcOHiyQjVNeKaiYa1duy/yJv4uE52SmNU7ZgiJY8ctsrxlFbKoyV7gRDXI1biUH1Yb/oZb7/uzFBSHZKMo6Rh/bG1dlQScnqPc+4wtnbd8g1XInGPNoqvcfTzUspxxAukUgiyOtN1Q/YJhIGqrIgxIaXKhvaY1x1THp8JITeBKGOIPuD9AK1HSI2KCoOklIJYKKZTS5CSVe/pU0CXIGTHqnX0Q0vTrUgiUM0qqkmBMhJbGLQxCKWIKRcE1nWL7wMChVKCACit2d7Z5oYbzrOsl6z6FYlIqUoSCa0V5bSimlcEEVj2S7phSZt69EYJg2e3X/LQco8NW1Eohe87fN9kT87QE7qeQmkKq8Y2v0wuBNkjltvdA0qqPCokEol1SMB4si8ElVFMi4IYI50fSC4by4ZuoO8dXTPQtwMhJITSBJ8fQyNHD00uPElI2rbjQNfMZzN8EqyWK5ZNR1WVzOdzNrY3MdrQ9z1D10L0SCHp+w6lJGVV4YOnKkqqSYUxNhc2xojzkaFuCG2HTIkw9CQf8TGRJOhRidHTktp3pCavOfhEVCCiRCERUeCHAWsMSip8jPgQCCkTMCUVQguSEESfZ2KFzH4hGU4UjRNcwZ/5vN/gN1/5qZhffvNxL+XDsPmWC7zgjV/DW1/6n457KYd435/8Yb7wH7yMcEI0npCoxJOztPR6gxKSAsMZ1XLTdJ/d8ubHdwExEO+5l7v+jeWr+Wb+f6/4UT67HI4t9vasmvLPb/xl/uqfnbB77+2Uv3ZwclhxjbhmoqGkIol8qhpGdSOtCUfIUbKH25+07sw4/PBhSsMVv0YeYTLGjJ0b+U2qKyNPOdozEwbvPVpryrI89GHk22QiMwzD2EVwxSey7tRYl5+tycTa1zEMw8N8HlJKyrIc7zN3hsQUQUJIicEHGBw+5e2yMUUmFM6zrBu0LjlYLInBYa1Gq4Lg88hSbtc2GCHRKWCFopiU2FlJ7SSLbkGfOhrvaKMjRIcqNNVkyubWnPnGDFvoMf1Ks7e/z8HBgqZuWC1XOBdQQh2Os2VCognJM7iOGB0uDRSVRSpBJIKOeAb2V3ssmgAMqFIxLSdYpSikZhl7ZFQMEWLbEeqaoW1p2pbY9IiiQMuCmOKoXkkYSxlTDAgCSsjckSLJZCNFxDjraSXMjcUD0TuCd/jBEXpH6D1dnWNjk0/IlMMFkKOChsjljOMpv3eBJASDD7iYUNqA8tRdx7JpWdQtvQtsbm8SY+BgeUDfrA6fM61zEzcpj2ohFGU5wXvHpd3LLBcLYFTsYm5Bz2NOEmkMpirZNIrNjRm4PN4llMRKkxO6ek+MHmUUsXeoiUHIhCanS8WQb6+ERob8GLixKHE8TYr9iWR7giv46fe8kDvf9dB1GVUb3nMP4bc/A1563Cs5wZMFJ2rG4weJYCISO7YZ+6XSh5vAH0Mk70l/8G6e/d138Nd2v4n/48v/M189f4BCHE9q4Vk15btu+xk+50/9bZ79u5uEhy4cyzqeaLhmohHXaVL+ij+CI74GSISQ5+nl2Dch1kV4MRyyjjSSFMgjIlKKcYxpHG8ab7NGIl/UR30Z1tojCkn+urVXTjnWpCTG3DsAHI5SHfVtHDWCr9WQ9f1JqZBSjbeL+RReJFKSh03iUg4IoZBSU5YV0+mcpz/tmUymMy5evEDwHTG0pKBQBLRUpCQwQ0LIgOgDSjuE6ki+JcQlLjg675FFwdkzN3Dm9GmKwhKTQxvNZFLinWe5XLDYO+DSxUu0TTMa4w1CCZTI/RXe9Vy69CCr1S6D70FEikJhS4k2JrdNq0RIPSk4RPCQPIU1BCLCFAQEl5YH7IcDZrpgKjRlVVAkiVUFdAMqRFLweD8gZDr0FmSFVSCVGiflEoeDd0c+NiLfRkwrZIy4fsAlkBFcO9DX/ThmJMY/dPkP4BhQduV6SVlVSkJkTwigjMnRst4TnaPpWi7v74GWTMoChMgdMYfRtBLIJu1V0zCEiDIWLQQh5qAAuS4hDJ4wEmqlJTElurZF1Q1VN0ckiUyQHNhkKKzF42l7gfaCiKbwhsHnUTYlBNHnmGiVFGokFqGP+G6gH3LggnfX45byBMeF//KSH+YbPvtb2fr39x33Uj4ibvuRd/GsF34d7/qsf3fcSznEn3nD2/gPdz3OJ7QnOMETEKUQbOuGdM27xUcZMRDe/V6e8X0rvnPvq1B/6Sf5qtmFY1M2btUTvv2zfoH/cucrEBcvn8RmXwOuPXUqxMP27DAqGBxJhBIil/FFHxBKIdQVpUFwhUAkjqY8jf4OIE/8j2M3Qh6JrVW55O8jzMKtPRdrsrNuUnbOfUQ/x9GP10rH2puxVkdCCPR9jxCOoigxxqCUJm8+E0qJw8bzGKHrOqTUqImhKEo2t7bYXtXUbcswSFIQiKgxOqGlyj4KE4g4HANBRXzo6IYl3bDCicTG5hbbZ89z6223ccP586TouXzpEk1bE3rPpYsXefCBD7E42KdZLen7gaKwaCkRSaKMQWmF847lYo+mkZRVwcZ8Qjs0KCOZTAuqaUUi0vUN/TBACiQfqIc8rrQ0NdEHuqYjdp6touLm0+e47cwNbG2eIi1b6kv7NPsH+H7I7e+MqsZICMRIIhhf+zE4KRMPue5hSUgSpqiQCepVTZs6VEj4biANYQzCvdLJwuGUVr7fte0njUqK9wMpBaqqoKoKhEi0TcINA33b0CwtldEU1tAbRTcSjZAiQuYAggC0g8PFhK0KbFkglMwxzhwh1FIhtcojcyMJEjEhYsQ1Ay46knPYic0G+KbPvhSh8XLIqodRoCW+d7jQYU1JWZSURcFEFTg5UPdLfNujHo8Z2RM8YfBcWzFsXr/jdOHSZYb9OwkpXjen0V89f4D/aO7M/4bFdLJZOMEJPgq6lHjH6jzVxUjquuPxJaSEf+BBbvm3A/9s/lU842u/l5cWx9cc/pWzu/nXf+JLufNtU8I45XCCj45HlDq1VgiCDyPJiOPIVBqDgGTeVDKm5kBuykY9LK42xjSmIV25/3XnRfbLZtKgtc49GjE+jCwcVSWOkoW1krFOnFp7Otb3v/78Wh056vUwxlxRasb7HQaflQ2lYEzUElIilSamnEiVYkLrgJQFy9WK3b09dvf2WDYtQiSMNigBMuUoYKEU2khMIZCDxxEZYsCLiJoYNqYTbr71Gdx48+2cOn2aqiwJ3iGS4MEHA7uXLtIsa5rlChEihdSgPEYAweVxHp19AEnm6GFSANTomYk41xOCxBYVtijRXUDWnqF1DF1P1w8k2aGNGY39ksl8St32PLi3R2kqylMlRVHilaFPgojESA1EYgrZ7BzzKb1C5tLFkTgKqQ6N0UrJTCy1xlhDaQpiAN9Hlvs1Ogqs1IRIbg4KIMaLR4ypZ5l3jIRXinydBk8IHlJCa83W5gYbsxn1csXe3i5d06B2tignJbGbZHIgJT4mQoLBRWIMaO8ZQmCiFKYq0IVlCI4owGgFcRzRc2n8eTTESN90hBRIzcDQ1fhVg9SAzGRHa0OKAiE0UQiqzQ3KWYkUil54Kj2h0hWlslS2wPkO7xraA0c4UTROcBXe8g9/gM9591+6Ln0aAM/8K2/ik3/2z/Gml/y7Yxt7OIpCGP7HvW8E4I+/7Uuxr3jylxee4ASPFJHEPX7Gb7/7Dp757prYdse6nnB5lzu//7189Q2v4tde+d3cYWbHso4NWfI1X/q/ef0vvxT1hj88SaD6GLhmohFCIHo/jlDFdXjQlREqUh5/GvspYowQ82iVHzsz1hBSoFDAFY+FUvLQBL5WQtbKyfp7jyoPRz+3Jg1HfSDWWqy1h0TkqLJxlFCsyYYx5rBbQymF99kEnlO0rhhO4mja1VqjTT5Zt7ZAaUk/OOq6ZlU3tF2PsQKlBTHJvOnMuV35xFwlXIrUw0BDoI0DcmKYb22xub3NbLaBSJJ61ZBiRAuDSopm2YCLVMbSh0BSEmkUWmWSF4XMQapJoETEGolUAkmg7wfKKo/qeN/S1gopp1SVYVJu0S9bDoZI8pCkRBsLSlFUJae2dticzqkvLbi8WqHiRU6VM5JRRGPwY0qTTP6QUMKVE3+l5CHRQMqcSCblaP5XFEphpKTSBWlri9Wi4+LFfXSSaOSoYOSAZbF+PdJIMITISkS6Yvr3wTOM3RxGKbz3FMayuTGntAYtJMTIMPSkGCmsoagqlLF4BG3n6IYBozVoRVISXZUU8wmegCKhhEbEhFYGYy22KDC2OPTtNE2N8AnlQYRAan1WQlLAlhYf8rWlpKBKlq1yC2kNKHlIRGRKmKiIbiCtPH4xjOb3E5zg4UjXr6gBwA1f9g5e/QfP4e+fes9xL+VhuGW2x+U7b8ff8/7jXsoJTnBdoU+O36rvYva2Av3BB66Lsd1w4SLP/pdTvvrGr+eXXvCaYyn0U0Lyjdtv5DVf+dnc9a5twsWLj/sanki4ZqLRdx3eu2y8HUdG0hgxGsMYYxoTUuQXQSrw0eOcG283QnCYTHTFLr7usZDrQo2RDCTkw8aorsTUHjaVH0mMOvr1o6rH0bLAo5G3Rwv9riYzWkP2BCdiDpMayRBHbpcL1rQ2wJX7U1qNakDEOU/EY2REj+NlLniiAGU1RoEMPWFI+BjovQcEwXn2mz12dy9TL5f44KiXSw4O9iF6ppMqKxheYEe/hVICjCZKQcQjUsBogS0tymSyY6xmNisIyeNdx2qRzeFlUTEpS9TmFkY2JCkwk4ooc/JRAk6dOsX2dJODBy9xsLfCNz1TWRCUxAuBZqQBSSLI5m+lFNpY9CHREKPYkROihMhKiyChSQiR28vPnzpF1zm8S1y4vI8IYfRDHA7ijSlfo9pGHoEwEpQSxBAYXE9wPTJp6sWKmsS0mjCdzphUFSJFVqs+t6iHgDKWSlmmsynTucEFT9M0uODp3YDWmvnWFtZalIRSWazQaKVyq/z4u2GkQCXQMVEKQVFWFIXNo1YqxzWbYkKKCqQmkCinM6ywDH1gCAO1WxF9YFJUmGqKHBKpj6ggmJTlI/09P8EJTvBR8O9u+/+449v/Ms/8y+8/7qWc4ATXDUKK7EbP/3jwOZx6hyPuH1wfI4YpEe75AJv/4gX8o3/9OXz3ja87FpX0nKr4ls/9ZX7qTa9k+2caYl0/7mt4ouCaiUZXL66YtRFEtY6fza0YwScSMU/hj/n/QuVRF6WvxNvmMr88RgQcjksJATEKZMxpSCkJZD7IfhiJWPtE1r0ZWuuHKRVH/3ttCF+Tj6N+jDVRWasY60jcK4rJ2AciNXI0q6t1KpbITc1hLB3UXDHEa2uYTCpWqxXe9yQfcrqTycUTLvS4EJnO5hTzit26ob18EZUk0UlkUFS6oNCarllx+fJDfPCB++mGlpQ8Pgxsbs7Y2tmhmiv2LkWicxiZyZiZV0QNdVvTdwOQUEJS6hKpNIhIpQuaLpBcAh+omxW97tjYmGKmimpUcYoqYazJIROuZu+Be9ioNphPJLGOLBf7dGgKqVETjesDKimIWV1QQmCkxspsbJYj2fBC4FImGyhF0hJEQipQOqK0oppsMZtZCgvF+yKXLu9Tt44YBKx7KcgXzmjNz4oY2Qg/KQo2phVlkeNjrdE0TcNet0fT9WxtbjOfTEhoXB/ph4EYO9rVwGTeMZ1voIwm1B2LxZL2YJl9MEZhbEVVllRlRWEMIkb2Ll1isX8J3/doIbBKQ0rY6Elj10hZzZhsbFBNpvn3JUSkUDRdS920HBwc0HQdXd8TgqeqKopTp0la44cWHzoCDp+OZzb1BCd4suLlz38n93/mC5Gv/73jXsoJTnBdIJJ457DNve88z1337BKvpyjXGFBvfDtv/v4X8W++7UG+eeu9j7s53AjFN229nXv+5hl+a/Iizv3X9xJOzOEfEddMNNzQ5ZNcJcdI23UDW24vUHl/yfqkWQiBkAJtNTHmbWHWB66kEsEVT4aUa/VhVEYkCK0RWhzGzx71YBhjqKoKrfXDTOpwhSwcVTHWY1VrtePqUSrnHNbaw9jcSE40MkZjrD3s3lA6qxhiJFjee6Qy2KJAKUVRFpSFpSoMDk9wguCzD2NIjraviSkx25plQjK09E2D7x2mnDE3M0pdIFLEhwEXOjpX07plfi5sIsiONixRFuxEE7pIZSrKqmR+ZoNUwN6+YrlIuL5HiEDyAyIptFHgAq7u0EphbcGqrmnbBm1gulFQzCWkiBI9RkaMzE3gqetZdSuig67v6VxHj4ZqRqUMLuQeDykSMbhDkqikxIx+DLTJCkRKRCRCa1Ayq1++A5WwRUFRlhTlnMR5BD1GBi5eXtC7REwa7xK9C4QkECmhhEBLQWkNs+mEjdmEaVVSlWX2DpGI3lM3HV0/sGoahJA4FwhJItAIkfCDp1msMFIznc6QIdKtGpZxidQKW9jDMalqMmHn1DaVNQwxRwgn1x2O++X2dckQAOdJtsQqg5xu0Dcti8Vl/OBYLpcsV0ucd/m6GkcJrZIYLQhxoB0aHANRewZ5Hf3BP8EJHgF+6vs+jz/3f7yFm/XxzFZ/NPzYra/juZ/1fG5+/XGv5AQnuD7QpIFfOngJO2+VcOEyKVxfG+jU95z+uXfxIzd+IXd9w4/yiqp93MMmZrLkX93wOn70bz7Iq5/9J7jzp29E/+67iU3zuK7jesc1E43sn8gFfDlldDR1HzFVH010Wn+ckU/+rzZ0r9+vx5mO+jOOjj2tb7N+v76f9e3W379WOo7e5upm8BhjJgxKPaxvY00ktNZ5s5cSKV0Zv9JaH/o4QsgFdLmXYzj8mcqyPOwHMVojkyWIRBcdXVtT10tW9T4+BnxKzLZP0XZ9VkhSQMqsINRdzaJbcXnvEqt6CckjSRRKU00tRgpWe3toqZAKgoI+9lhlGeJAGCJCJcqqwBqNTAmJPNzAxpjjVLXRaJN/3q7vCHsDyBmz2YTCWtLoy0kKtM23G9qBVd1QrzqCS0yKGaq0aGXxMfdZCB2RZBO8KkyOmFX5NWIsSgwjoUxrsz5jmWPwBC9JKWC0YXNjxrkzZ3LTt08cLFucH19PofAxoRFoY5hWBdOqoioLCqOxWmKVxmiN3dqm0AUHixVd77LCIgTaWlRp8euOGO/poqeKgUoJklb5LUSiEAwx0LUNqWkouxZbFRg1I6TcJC+FQCqZ/yhLmRvM18R09NGgBEMKXF4esDxY0HVdVvWkyGV9ShK1ZEiBZdfQ+p5l3xAklPMpk+njP5N6ghM8Gjj9w7/F11z6O/za9/3AscVTfjS86mt/jp95wytQ/+t3j3spJzjBseNDPvGL9zyXW97WEFf1ddmCHXb3uP0/fZBX3fAXee0Xfy/Pt+ZxJxsTafmrW/fwGV/2vXzLXV9D8b3Ppfpff0Dsjtc4fz3h2lOnjngj1l6Eoz4IeHiU7NGmbQ5Hi67c19HbrEnGUaP31ZGzH8mLATzMc+GcOyQk6/K9dTv40fWux67Wt1uTjPXnsvgyGtJjRIyFf0eJztHHPUpiLly4wHKxIHqXFQNdUViFkpG+b3LLeN/zwIMPUKxqgtJIdYUA1M2Su+99L3Xf0TYr+r5GCcHObAOjQMTA5nRGKBxC5u6Gxkh8CDjl6Vf7+OTRWmGMRmqTT9h9GH9WxTAMmRAxKj7jGJx3gb7psUojU46S1UKCUgihwQhkTBhfoT2E1BMUyMJgy4oUHLF3xBQoJoqqKJnYEh2zs0IpnVUqyCWGRCICJSRGj0QEQUxZKdJCYbVma3OTs2d6mtbRD4EYPElKykIhhEIZy3Q6ZT6dYLQkOE8KeTQuREccHFpb5tMp1hQMLoAQGGMJMYAE0/eQEv3Q03U90SiClniZ8luEGD1pyISgsDaPVsUcWBBCxKeEGdO0hJAU1jKZTul8Ytl5Bu8JKSeudcNAM/QMRNSkoCyKtT0JbQxlWWCszslWQlDOp9hJSVkWzDfmH8ev+glOcH1g8trfJn5fBK4vovHNW/fxjB/597z6S7+c8LZ3HfdyTnCCY0NIkfe408R3zTAPfOi6MIF/RKSEv/d+nv4T23zDbV/Hz77wR7n1GNRSIxQvLhQ/+dzX8IV/+a9wy323I95590ka1YhrJhpHC/DWJXhrZeDqjfyacBwlFGsc3exfTRiOkpH1Rt45d5hAtf7c2pthrX1YO/jRPo2jBX9rchBCOCQW6+85uo711wGk1mOkLQ/7uY+u+egYV4yRrutYLpeklJiVBVKODd3WsLGxiTGa+eYG/dCytzxg2fW4EKimc1rnWbY14eKDxLLAi0gKDiUF29M5OxtTkh+oF3v4xYrJrMKURe5jKCR117DqVvR9jxKSqipRtgBy2aIfCaKUkmEc0UHk56UoS7bkDoKAMQoVFbEHpRXKaoTUDCHmU/0IsigoUQhtUNKiqwIzLSCVDLUn9QJtSmYbm0xNQWh6kvMkqXPnCAKdAoFs8D563UghEaOykFOmJLPZlBvOnyNESYySixf3aTuPlJqinFBOZplQIiBEjMyGdD8MdMNw+BoZUyK1ptAGpQ3GWNCSajbFB384QueCpygKpFKshpYiBUyIxJSvp6Io2NzcZDaZMq0s1mqKsmAynSGiQycwSnHu3FlOnzlHM3geuHiZzueggPVvw8bOFlvqFGVRYK0hd8gIjM7FizHkkUMp8jU4DD3D0LM4ye0+wUfCkb+z1zu+/DP/NP/t9T9z3fRqrPHKieNfT+zHvuEJTvAkRiTxh+0tTO+H1LTHvZw/GjGg/+AexM8/lx+//cX8nVN/eGwR2jepCa/55B/jL3zR3+K2S6fwFy6deDZ4JKlTfX84brTerB9NbLpagTiqeuSuhIebuo92XxzF1SrJmjQcHck6ShxyI/aVkzGlFNbaw3V67x/29TVxgStejvXa1xtNpRRm9C/I0Wy+JhtKqUP1Y30/66LAvs+bwI2NDRKJtutJ3lMWmrLQ2M1NNrc2SDIxP9jn/R+8n3pwVKVFdw30jsE3+MHRp4BGsFNVbJQVmzY3j6fZnIcuPACDBy0o5hNMYVFOIRoFBxC7AB48PidnjQRBC401JSkJlDG5fC54lJRMJiZHqA4DISRQEWGy6dq7QO86hn6gbTpSFFTVhMl0SlVM0GVByjFMyKCzzV8ropGHiVRJiMPxIJAgc6FdLuAbS+6Eevhr4bvs41DZYH/uzGlcH/BDAGqU0JRlgVL5ehCHPS0e7wbCMIzkSkBUJO9xzuNiMyaJSZQ16NKitCYJ0NYwK+YkmcnO2dNniCmPVeWoXoFWWa1RShLcgBKJjfmceVlmb4rPRGW2uUmylhQS040NlI/46KmbBilzipcxeURt6HtC9IQQaX2ND35MefN59MsYhr5nf7HParl8BL/iJ3iq4Fd/9If4kpd9BeHu9x33Uj4m/Pvu5Ute+TX84H8/nhPIPwq/8LOv4Us+6RWES5ePeyknOMGxwKXAG/duZ/ZggL4nJ8JcvwjLJed/5UP8yIs/my985Vt5vj2eclAlJC+wii/7mtfxv973x9j47w3x5N/raycaR70Ya8P0UQVijTUBWKse+TbxUI24uql7TRqEEB9GGtYfH73N1Y+zvo/1ONQa6/tb92Jc7f1Y3+ao0fyo4VvrTFj0aARfKzpHDeXr26/v+3AkKQWczw3UQ9/S95o0mzGZ5s2pUIKyKHKs6zjGLxVIJbClZrYxo+57cJ5SK2TwrC7t4YBJaSiTZlXXLOsVqmsRU0OwkrIoKbYsQz0QBk9ygRgi3g3EkNBGIYOktCWmKAkp0PUD3eDyprl3uLrNyVpaUkwKYpI472j6hmFw9H2Pd4G2d8QNgdYW5wfqMBD6jhRyK/fQO2QSOBMITY+OUFlJEnn8K4aQCUZK+f2R10JKSYiR4HMrt1ARpSyFzZ6Nne1NQBJCVkByU7diUlqUkBzsLejbFiMlZVlQ2CKPhoVI13SsmpZ+8DnxTAqU1iPREFTTCjef42KgqVcIkb0cRmmqosRoQx8CXdjPpENnnwwx+3KETEQJKMOy7Xnw8j6rpiUi8FHQO4fUBXHsYplUVSaoB/v554gRt05AE5BCQBvNbDajLAoqNJ27/mZlT3D8uN7UgY+F8LZ38Re/4W/yT37ox3h5df1sZJSQdC+8HfOrJ0TjBE9N9Mnz9gfOcfuFPI1w3SMlwv0PcNt/O8v3fNLn8X03/wozcTwx8EYo/sapN/Bzf/Z5bLzzJvjD9zzlVY1rJhpHfRRXqxDrcaWjRGL9luNn4+gZyERgTRCueDgy1t+zfqz1bdZfu7pk72rCcnRta3Vi/bmjMbhXqzFrNcIYc0g6Ysy5u2v1Yn1/6/Gqvu8P7/foczCdTnMUrspdGm1Ts7/ap6kbtrc32NiYoq0hxkSIuetBtCuECBgLhZUYBUmD0QU3nT7DDVunMC4Smw6RAlNbYtuChw4uUx/UJKexmzN2Tu9QzgpWLFi6AyISFHQu4aNHRUXyCYEED0oZClPhhojrHLHzCK8QSRF8JGqBrAze9ayWLUoriqKC1FEvVvjWIVxCbCS0lOA9IkaG1hPaAeEEsQDf9EgXmJWBaZVrGmMM4+t/peFdKIU6MnantSGFnNwkpcBqxWxacWp7C4FktWxomh7nQciEEAVKrQsYNbPJhElZIBDUdc3BckXb9viYiEkgkIgIafDEkLBVgfCJxaVd6r6jH/p8PSKYlBVMJgxIXNsxDD0xBYQSyDG+WWlFiIEYE5PZlNl8znJVs3+wxIeI95GQ8vMfQ8zxuOfOUmiNEYqhywqGWBNaIfJzFQa8aNGmYGcyo+SJtaE8wQk+Gsyv/g7/8B9+E3/jO36SPzPfO+7lHOJXXvMjfPbffhWzn3rDcS/lBCd43NGliL9YoRYHcJ2lTX00JO+Y/u59vP5/P4+3f9Wv8dLi+NZySlb8P8/7Gf7xH/t6zr23fMp3bDwiRWOdynRUTTiaFnXU76CUOvRVCHFltOrqzou1ErFWC64u1gMeRijWH6/VjjW56fv+sAsjz+Mbuq479FasidDR+zuqyqxHraSU2Scg8oz82tdwtXqxJkR2VDyEEEyn0/F5CdkIPpuhgF3vWS2XDENL12+wsTVHqkxMuq4lyISeWAo0Q7/CGMGmsWyUM27Y3uKGrR1MFPimJ4WACx692KPuHUO7IHhJmSq2q21KWRCVo08NPkm0ypG2Lg1IqTDC4IZA07dInaN7K5vo6n361UClLAidVQkTmWGYVBv0g0MZQ4qBMASsDpTaYIQEH/AxEIesUgxdxHWROjps8KigcC6gRECriNXiMAJWShBKQiT7OEijqpRVMyPHBnmVvRultUzKgtYaWlL2cgSwRUFZFWgpmM6mGDljUmbloKlr6qamaRq8jwilkVKMrfaSwhb5e4qCum1YHBzQB4dUihQTCMmkKKiMpV6s6FcNKUV8cAiVFSmfIlIrYkokITFFxLlI2znqpsX73JSeR8QE3nnaEOmalu2dU5za3kEBy8UCHx1GaqQAxrQ21/bUYsHO5iY3nD338f22n+AE1yHmP/kGvv1lX8mf+bIfPu6lHEIJyQ//q+/mW3/q0497KSc4weMOB5h9ieh64th/dt0jJcLuHrf+8k28+jNfyWtu/9VjS7ZTQvKpxWW6z10if3Enx90+EZ7DxwjXTDTWm2y4MnJ0VFlY+yiO3mYdB5tSeFii1NFOiys+DnWoDhxu+I8oFEdJytHbFEWBEIK+7w8VFKUURVHQtu2HjTsdfeyj41xHy/7kSJ7W5GN9v1ebytfrWI+Jrc3pIeQNs7UWs7mBlFBYQ9e1LBZLVs0KXeSEK2st6bAlPeC6GpcC8/k2WxuGMoGra5yD5BIpwqqpSUEytRu4CG1w6E5inUFLhRgEwkkskkpXRBHoYkckUakJCk/oW9zgiUGipGViZ8hCIVyibwaavsenRFF1FNOC06fPEWPADwMmSaKdUGlLqQtS7/FdIDgILtKsWoa6J5ZQMWFzMkUmQ0yRrh9IUZLDlGJOfUqCJAtE8vgY0CFgYkRpjRBqjBvOfS1aCsrCMptUDN1A7wK4gJDgvM+N5lZTWUtKMStGSlBNKnxMrJoW5x0IhTUFk3LKfDpDKslBXbO/PMCliDgkDaCsYTqbUWjDcn9BTCkToOhRCYIPpJBVkSgl0kiUMkhlEELm8daY8niYyP0rUQiEUhzUNcV0wtbmBsrk6265WGQjeIqQBFoalBCEGPHjyNUJTvBkwm0/n3j2g6/iu7/uR/mCyfXRE3OjStzzLz6dO//Bbx33Uk5wgscVdZQU+wLRO4hPnA1yGgaKt36A3/+FZ7P6a7/Atjq+KPhNWfKX7vpNfv5Zn4O570OQnhjK0GOBR0Q0gIdt0Nc+iDUpWG+6136OdVys1pZ1E/jRdKg1CRiGgaIoDker1sZrIQRlWR4mQq1Hp9bjTOuCvaNrWq/l6jWtlYmU0iExuLrEb/0YaVy/GhWco6oHXFFCjo5fHfUXaCNRMvdCiJSYzWbMJhOcG1jWC5b1krquqbts+i0nFbayBBlIwWBTxLiesFxyuXXsBoVMGonNEbFSIbSisnMiGpolohOkVQCj0V5RpHzbSlcEkTsdQgqUcoKSgRQUjW8JA9jScnprhphDv2i5vHuZth/wQ2Kxv6JwPdunt5gUFQ6J8pEkPBpJ6hyuG2hXjrr2uM7T1R34iN4w+KlAzUqQDt/VBO8RwmBtgVbZN+FDwPd9Hmcar5uUEhZARBABKSI+QggRoyXz+TS/fkIg6p79umVxYYESYJRmPq1I3tE2DVpriqpkp6oompa66QBBNZkym84JPnF57zKLtqFPHk9EIJEmJ0TZ+QRRFrT9QOsHfPKkKEnOj2WVkkob7GSKKkr0pGJjexufItnmLpFEiImUcrRuCIEkEpfrA9K+ws4q5ptzMApV2kykBYiUKK3BKI1IYI1C2OsrFvQEJ/hEUfzim7j1F+Ff/M7Xcdv3fw/PtsffFbOtJvyNL/lFfv4fbB/3Uk5wgscVTdLYg0QahuveCP4wpETcP+CWX17wnr9seOkx/lNphOJl03fyY5/0Bdz8/5kc0vMUxTUTjaObaSGyCpQ/J9HajFG0w8OSpvKolRpHlq5syGOK6JiTmvJMe8SHK5G5a1Ljg6cfepTM92FGYqG1Ho23ecPGSFyUVih5hWysS/yOKidXm9mvjrqVY7KQgMMY0jUhWqdtGWNGJQWc81RlmQkPOc5WSYWWCZEiOZ5UYMuS2WzCZFoy72YsmiX+YiBZwXR7TjIQRWBeWW49dZqJ0DSLlqHtKO2MjY1NlKwYek9I4EJAJs3Ezkhe0LmOdq9DzzVWFFiV11SqkqTAJkuSIJUm9B06GUqTC+jCkFBAaQv0RNM0HXXXIpXAKIPvPZcevMipnS2IgegDMiR8P9CtWppFTbMa6DuIXkAUlMagZUmMkrbNhYOgsEYzmUyYTC3goA+EFAku4H06jOhUShxeYylJhFQkJESFURJVFMRJoO0c+3VLXS9pm4bSWpKx1CmSgqdtW1KMFEWPsQVCSObzOVVVUk2m+JCyh0KCNAptBDF4YoI49mVs7GxjJgWroUMWlkIrVMqFh1Mlc0N9VVLMZkSlSUpiJ1MWqyUiJQpjwBpkypKqVpKehC8MRiTMtCRIAUZRbcwQShK8z79kIeTnPERiCHRtx359Em97gicnil94E3/7oW/itT/7b5nI44+Z/fMb7+B7/sM387Q/95bjXsoJTvC4oU6WYpHA+zw+/ARC8g5170P86vJ5vLQ43j6cG9XA6pkOUVXwFC7wewSKRiYY6rBc7sq4VIw+JydJgdb5pD/7JLKS4byDsVU8p/gooojkQCqBGImGCx6pFVrlNuUUI857gsxFaFYbpNIIKRlG5eSKkqBQKisbSImxBdbawzjbq5WOo+b1oyQjpUTwAXAIqbBFeai+ZJVjLMJTghgDMLZBE3OrdYggs2dAS5mzW4nI6JFJUiqBmlhm81Nsbk9wBPSk4MLeZeaTKbfdcgPPuv1GQtfy3nffywP3X0IogbEWJTTBR4a+x7m8vsIWxHJCCIm+8UxKgbUTyiKipaS0U5TUBDPO+vtA3TsUkkIUCBHovad3idB5pJBINcXqFqSn0gUhQl0vWMVEZQxSKEKX6BY99UFPu/L4kL0JiWyKNlWFLCwHTcfewZJCSjZmBbacY8op1aSC5FBSY4ynaQd6/KgoCbxLeD/gnEcIhbEFShqESAgJSguK0lIUEolDhI5CJealgQhx8KQQEU4ghSY0gaFeIbVgY3OTympEHAhdx0QGJjtzpN5isaoRtkAoRYgRqTSnNrewxmKQbFRTREyolCiBmczENQrBkCJ13+N9QmuBEYnNWcXEjt0vUiFGFW0gEksLWjGpphS2QKX8+xAHz2JvHzc4UvTEYSC6gRh8Jh1PYQn2BE9+pDf/IX/6xV+Mf/qN/Pef+rfHmqa1rSbcddODuGNbwQlO8PhjGUvsIsATIXHqaqREWi75yXtexN8/9Y5j/fsxl5pbbr2E2NqA/f2nrE/j2omGkTl1KSaMLTHW4H0ugYvJk3wcE4TyKX4iEKPLjcnj5lEpmWNcpcydCSgUeRwmuqwgSKMRWo3jS4oUwYWIDz0u5NQeawzrl0tJRUQQYshrkyJvlo1BW4scfRprUrR+f3WL+VGFI8YIPhB1IsV8kuzHURclFEhy54F35N5zgUoCq3XuhyBhRI5ujSGQkoeUSZYQERn6/F1DhyCydWqLg12BEYYzW1vsnN4ghZKD5ZKDRY1rBS44YkqE6BHCI4XHFgpTKqQuEEIRIBfiKclsJhFJoIRGkhWlECOu8wyrgLQm+yOEyoapGEeyAEIVaF0y+BXdqoE4YFKi9AKLxLnIardmtd/he0ipRMpIEgOOAWk05XyCLAyLZc1y/wAlBGf8BspoqsmEsrQYKZHSUhYWKSxGu7y5ZlQzAtlDoiREiTiMOgapJWVVMJkUVAZKGQgyYkkMvSMmhUwK4a4EFYCgVIqp1agUaZcrunpFdB6lNafOnKPuWnAOZQoKk1Wh0HR05LlxKSQh+Ty2JwSXL13ADwMuBDqXR6uKqmIrbVOWFYUWRBcwUqMVtE2Tm8dFoltFtLWkosXpgvlsg6qYIIdEbDy+awnDQPQOSUCJhHridLKd4AQfN8JDFxAPXeALb3kJF/7ap/Lr3/5dbMrquJd1ghM86RFSZD9MMUtHWnsFn2CIg8O/cZv2U4Zji7mFPD71otP38fbzz0Xce/9T1qdxzUQjF+5d6a8Q48bc2ixvr70OxporRuoYEEpitSWMo1NHzdXrZCHh/YeNTnnv8cOAkvphxmzn3LgecahKHO3LsEWB1pq+76mqiuBcHp85Eo+7fn9UzTjqN1kjd1A4Yso+AkQmSUarw1jWo56TnFiV5+pFEpACKcaRHIBM8jCtyHvParUgSpCcQaTc3q2FRCuDKSynTp9hdeBITrE524EgODg44OBgD2XAFgJdSnTQKG2zs0Dk0S+jCiBBEMQQETGO5uKINRplFHHIF73RChUEfXAEPOAorcBqi5YBEBR2RmktXd2zuLxgud/gBxDJkGImQEEFBDCpSqbTCjcEFqsVwzCghGC5aii1wkqBlpFZqTFSUFhDUZRIpVBS4lzAp4hQUCg7EjQO/RBSKbTJJvrJpOTU9hZd23KwvxxVJjmqTBJbFDAmPZWlZjKr0ErS1ivqeoV3AykkhFQEH+i6nt41JCRJShISIXU2dQM+BGKCMzvb7Mym7K9W1ItlJoJSEFOkdY4hRc6cPUtIibrtOFgsIf3/2fvzoMvSPK8P+zzrWe7yLvlmZlV1Ve893TMIhgkWmcB4MCDJNliSJQsMHoUlhExYlhxGDmwLL2GLCNshobDDNpKI0ILEyLIsISPwYAQKYSwMI2aYYZhherpneqk913e5y1me1X8859x8s3oQVdPVXVNV91vxRlbevO895733nMzn+/y+S8aPpakcJQkkjK3YXm9o6gWVrqh1Tds0cH7GfqvZb24YvIOUEEogpCgSsiOO+DggRe790b/Cf+nif8Kf/b3/Ap8x3/1yv/v1lgevvEx4/Y3v+rGPOOKDwFeHF9BXHSl8CCcaADlx/8cdP+vVBxpzK5F8orrib5xbaqXIH9M+jXdNNJqmRRs/EYWStqSkKoRDCIRI5AzGapRUOFcWVMbYMuO4lf40L/rnBT/wnG9iNoOnlNCqTALgGcmZ5VLAweQ9d2DMv8YYaZp2KpAL3xK/e7sEcP6+mWQUs3gx8tpgkLPPZCJaznusKYRITY3RHEhUWRCXJydSLlKXGDM+CDIRFxwpR5arBT4HUvScn57w1sO36fZbiAJtLFpomqpicbrklZdexmjFk8eP+LmvPC2kR2WyGMmT90HKCq0UQpb3O4ZEJhJCZDd03Gx2JQbYB2rZkrwj5AxB4oIj4lA6QQ5Y4RG6FOLFIJFR0m8du01Htx3wLiAoBXWCEn8npeBkdcJ6tSbGyH63J3hX3nMEwXt2ux21lixqiaZF1haEIRORUmCsAVE84KU/Qx2uN2RCG4E2Bm3Kpdu2DefnZ7gxEFxm6EcqawGN0RXW1mX6oBQpB5zv2e53DMOOYehJKSOFQlUaoSuEMiSXCCkSQ5nypDyQhURpDchCJlwpE0RbhpQYY0RJA1LhY8LvO+TNhpOTU07v3uPp48dsbm6QoiRSjX5EGV3kWVKxWq2x1rLf74i+xCOv10saq9nvLPvdFj8OJZVLHc3gR3wr/uCDH0D0vzwSm95vfPJ/+1f4e9s/yJ/77/yLfO67TDb+9U/+ZT77h/8JvvCPHYnGER99BCL/ydtf5PTyppT1fRjlPjnTfOUh//yrfz9/8gt/mkqYv/P3fAeRzMdbivCuiYZUBiMUQvjJFF12lbVWhySnZ3GxwLSzLqWaJFfPl/TdLuKbDdZzatOBZGgNtxq+ZwIChZjMJXrW2sNk5ZlvJE3H/9vH5N4mOrNvY36NQkBuHR+QqhTHSSEIMRJjwCoFSh/6EYSQqElCJsjlHIQEEclEYvKkHLC15cWXX8Inj4+R9dmKYdwzdntc76iURSJYLGrO1gtWK40QkcU6cXZHlaSm6AgxIVRVUqakhpwRk29k6MrCfrfdcX294eb6Bh8ixtbUpw05ZZ5e3bDd7wnR0SwV6xON0DC4kRAzCAMhMQ6ZYXAMvScniVSGFEsRoJwiZ5u2YrlaQpZcX9+w33aQi9xIADGViUHfd4xDi28sISh8CMWvQ5HfWVv6PoSUCCmJMTGOCSFBa4m1EjmZxa3VLJqWi/M7RJfZbnuUtDif0bpmsVihdQkg2NxccXVzw9DvgVKsF2IGKaiEBm1BGjKOmEro8OE6TRkpNYvVGmsrVssl0ihcFnjKV5ooZiQjQuTJZoMwlpPTU04u7uJjZrfZ4FPp8hi9p9aKk5NTTtZrnBt5+vgpbhypjKWtG5aLBW1bs1wt2Gyu6fZ7Qjwqxo/4Vvz4P/drsG/++Ad9Gt8xfPZ/9lf5l3/bf4V/6cWf+KBP5YgjPrLYJsfbX7nHevvTH0rZ1Iz0+Clv/Miv5qf+Kfg1Nn1gXg1FJn3MNc/vobBvNlRroMiWqqo+NH9bm6dJQppasyVay8NzRXpWdAffWro3R8venjgASCHIUjxHDsItI/gss5pfr6qqA2HJMSFuRfHeJhm3OzVud2E8M4zPRYRlkZmn60SIsvjNKZJyIglJEomQpg4RIUgCICInI3hKCWQkRo/zA0LBxb1zPv2ZV5BGsdluCDlh1KcZBleMzD7R1g3mjmS5qBFyxIc9phq592JTFvJ7h62WtO0Ko9akqNjv9rixFBXm1KHUQF1FjB6J/hopFHfOT/nS97xCNzi+/HMD+90lba340hde5vt+xSeBxOuvv82rr77Ffu/xAVzKaKHQ0hBVJqUynVFS0LQ1y1VLbQ3OO3bbHcO+I8eMRJXPMMXi18mJGNNhET9dDVMUcSYEj5ASrUvRoJCKECIxShCzz0eUqU3MSAHWGJqqQQlF3w+EMNAPnrpeYuuGLOBms+Hq6im7fUeMvsTNCkhCI1V1mGZkIYmU6PBCMAVVXWNMRbtacXZ+Qd0uCiEeOpIUCGsQAqIAHwOJjNIlZar3njYl2uWKs1B+9v2+lPdkJCfrM+6c32EcRy6fXDJ0PSmm0j7e9wQ/sl6vWa1XNIuGzc2Gm831t3XTH3HEEUccccQvhjeC5vxnBNn5D+c0Y0IaRj7xFzf8gd/6u/h//oo/wT21+EDOw2dVMoE+xnj3zV9CkBGlzG6WKGk9LbonuZAoi0CldZkATDIoay0pp+eK7uBZed/8vJkEzD6NQgYKqZ6nFzMRgTJ50FofSMpt8lFeG4zWVFV1mLhIKQ8+j9slgrf7P8pkRgMlaUtXpsh1Zk+JYPKXCGR+9rPE2TSeEkqWve2YPJmAkBGpI5mENhJkwtaa8ztnnJ2t6Pueu+enXF1dE71je30NAiqjiGlku9uQ5YA2kZMzQ0SBEBitOD9raKsTUlRcXiaePN4Q3J5FK3nh3gW1rXn1m5rryze4urpEiTvcu7sEoXn8+C2GccmLL93n1/3a7+WLX3yRlAJ3TldYpXj11QdcXe6JMYNSVFaWplCgNhXtoqFpW5SEse/ot3uGbkTmcm4ilx6JFDJaCKzV2MqWKGKl0EYf/C4xBrx3ZZKhFBo9p90epkW3kXMqMbAJ/OjY3NxwfXnFGAXeR4SqSAK6ceRqc8PNdle8QDlDDEXSpyRKAsoQ0lzWqKiqEtu8WCxp2gXaVlTtgsViTRKCru/Z9z29dyQhUdaAUhgh0EZTNw22stR1g0AwDCNKa+7eu8+q69jt91S15eLiLiB48uQJm6vrkqw2/Xzej1xdOwY3cHZ+zmq95uTignr1wfyFecQvX3zmR/5Jvu+nXuNDqqg+4ogjfhnA58h/tPkB7vzUjhw+5JPzFJG/8Drjn/w+/k/3fwN/6O5fYym/u8ZwnyOvD+eYTfhQT4e+XbxrohEOcqJCMuxENADUVIwXU8IYQ63UgRSUnosE8ZmB+50N3d7750oA4ZmUybtQJge3ivXmIsDbMqmZtMykI8ZIntrDtdY45w5yrPkYM95Z3FcIjyDnkZwThlR203XRxgtRkpCkFIicUUJirCp+kNHhx4FxHIhxJCSHkImqMayWC9ZnS2J2PH76iG98syLlVzi/c8563dLtdwxWsN3sud7uCCFQNZZ2YWkWCmMyQnhW6wZtM8uFI0fLslW0lYRscKPg5iZgjOb89IyzkxO0Umw3b9M0mZQUxjpE7mkWJ7SNYr2q+OxnXuaLX/gU56eW0Q186lMvklNmv+u5udlSN4ahL3IjYyS2blit17SLFuccu80NYRxRUrJoGlJZxQMSkSFHS6UlbWNp2xqkLD4TIUg5k8ItIhoTSFc+u+kzUqpMNw6mfVGuuWEY2F8PPHrwlKunV3jviFkTM6AUSIWymtX6FG0MKTlSdAQ3ElMkYFCmpV2uMVXF6dk5lTEYo9HGFI/IlGqWQmQS0R2u0bqpMaZI7FCly6VuGhaLRQkvcI7tZst+t0NLyen6hPPTc05PTrFtzTiO3Fxf40Y33UdlOieYUsqUpB8G4uUlnszp2Tknd+9+G7f8ER81fPY/+b187//yVcLDRx/0qRxxxBEfYtykgX/rJ38DX3r1deKHeJoxI2523P8Lb/IfvvIb+Y2/56v8vc2+pGx+lzDmwJdv7mOfDh+6PpL3E+9poiGUQmmDtlVZhCk5SUDKtMN5V8zRWmGkLIulUORC5SWe+TPmRf28wJ/bvqGYsefJR3nes3SnZxMH9azYLwS894dJxWG6IaCavB9AST+apFq3icV8nNvneHidiYR4X+JlQyyLeK1KwpSWispapNJlYasUUQlyKEZwRKZqLC++fI/PfO6T3L13TsyOp5ePIAeETEgR6fcbnj5+wtD3DP2efr/hZrMlxMDpnTUvvHSXKkOIHfeXdzhZr1i1Ce8kMgqUcAiRsTbQLjK1bbh70SKy4+GDB7z11i8gZIepAs7f0PVPuPviHT792ReROnNx94ST0zW6imQROatq+m6kaRWZgaatULqQGaEUGUUImd12xziMpJCw2iCUJmdBzhJyiTEGgZaSs/WS5aJGEtByKqHLmRByiUIOkRAmH44LxJhpF7K0iGuLmCJqU8zEGHBjYLfd8+Zrb/Hgrcdsbjb4JAg5gKqQWuNC6WJJUtAslyiRIXtIpYcE3ZBlRV1VGKMx1uC1IqfScD70Ay4EfMrU7Yq7ObM6PYOcGIcBkcEoSUyJcewZhtL+rZWk6/Z0uz2uHwnOYaRkHxPm5JR2vUJXFU8vL7m8via4ESEypELYtRRIZRASULJEPitFFAIXP75/YR3xrZCPLPFjQjLkx12DcMQR3yHEnPgpt+b8P7Pkm49IKWyKxDfe4tN/es3/9Ff8w3z/r/tjvKy/e2ES1ynx6qNzvmd7QzxONP7OsFV9mGZobZBKIYAscklRTZkYEzHESeIipyhOgUAh1fOpT7c9F7N8CjhMTaBIo6ytSuHcFG17e3oxk435+eM4st/vGcexeEiswUzn3DTNc4b121OU+VgzQZknH9ZWGGuRUwlhSWwaC9HQEgkYpfDOEbRBClH6N1IsJnkUKZaywqq2LFcLFusWrVvOzhfE6KmtYuh3PHj7DW6urtFSQHKcrBVSGh4/2bK59lSN4kysqOqaGHKJhNUKlSNjGPAuomVN28DpaVNkYsqz32959PQ1tv0j7t5fAIaqWSGMZ7HUfO+v+Cznd8+5uHuXqq1AOHTd4H3EZYcwkXqlsHVmddIyOui7QNcP7HYj4xjRylJri8qB0tcx+Vpy6VMBAUrRLhbcv39BCgNDtyHmSEwRZQxaWqQQxChwPhFcxJiS/GWMLSWBKeNDYBgdmYx3gW7Xc315zebyhuBikUCFQFUvsHXFGD1PLy/Z7rbE4NAiYyQYIzHWUjVrdFXIbAqOm6trrp88ILqBnMpELGXwMePHkbquqSrLfrPj8cO3Sa5HqymJahwJMRCGFTqVlngZAmpKilLAuN9x7TzDMNKen1O3Le2i5brvURkqayClydQPQgqaRcvFCy9ycuccnxLX2+37cOsf8VHAr/prv5vP/cH//IM+je8KHvyp7+U/fuHf/aBP44gjPpIYc+CPvvn3cfFTW5L7kMumbiGHgPzZr7P4M9/Pv/75X8///OKnvispVDEn3oot8psN3Lz5ofa7fLt49z0aKKTQCKEQFN397USn+bE5JjaEQAxFFiUApfQkN3o2LQAmE3AxY9+eOMzPKTKZfOjs8H5OvRLf0qEx92eM41i8GM6znVKpZsnUHIV7kHXx/KTlmTyseDu0MQgpCClO3oSpR0QAUpTd8phIzqOkRGUQIqOVoLIWERPD0PHqa68hdCSrz3Fx7xQpy6RDEBEys1otkCnhfY8xCm0VUiX2XQVCo4Smrpbcf+EOQnqUSKQUcW5ke7Nl2DuE0Ni2xtST70A6qkby4ifuUreS8/MLmmrB4DKZioijbhpeeeUF6sWKhETpGrJnu3nKpt9xdu+EX7X6Ekpb+i5webkjxA1iiBir0bpGZoMGNBJSIpIJIhMj5CyKsToE4hQzvFwssDpDdFSVZdk2VNYSfGC/7xFix+gdShmkMAg0OQmcG+n7nmH0KKNwLtAPI370pJAQZWmOD4lWGZQ2JaY2J0bvGPo9Kie0AEGADKra0qzOuX/vLrapECmQvIPoSydKyoic0UKSc2TodvhxLGEAwSNzhBCBjJ66YnJw+KFjvVwhrWU/jqXVOwtyjDgfCDHR58xiteTizl1Wdc3N1SW+7wo51hpTVTTLJe36hGa1RCiFEJKqPhaXfdzRJcef3t9n+2jJix+Tf8C0+nhm0B9xxHcaMSdeDYGf/tHP8z1vfJ3wEet7SF3H3T/3df6dL/4gv/Yf+Tq/rdl+x8lGIPIT/ec5/9lM3u+/o8f65Y53TzSkmAzhkHJZfCkpJx17mVBIVchAzvlg/hZCInI6LOCLXOpZ8lTxVcyThIyUzyRMSqlSBkc8xN/O0wilFNZaYow4V/T8dV0fzOFKKWLwdENPZSuapjl4MW6X8j13rElKNcupUiqkonQfqMn8Lg5RrOSMEgIl1aTaz2QhUJIy9bAaKxS9g9F1vPXgLdp1halhuaxRUqGUoDKW1DQMux27XUfbNlgDUgQqK/FBcHl5RcqJ09M1daMY3Uj0I0PXsdvecH15zTh6dFNzcn7GydkpSYCtFS+9fJ+Le2dcXNzFuUDXB0LUQMa5PQlDfzXSDXvWZ2sQidEH6rbmc1/4zGTmz1xfb/Gj5Oay55vffMSbrz9lvw3krFE5o7Igx1Aq3mOeCh6LoV8C+33H1dUV6vyEpmlQoqIymrqu0EpDlmjtMbp0rxhjUUqTM2V60Q1st3t8iNRNQwiRcXD4EAkpg1BIpZEyFu+ErdgPA6MbCaGUTJZGjwy5TKlCnK5TBFqrqXk7QY6H56aQQBtIETd0BD/S1JZl0zBsBmJwJWlKCJCC5BzddsvCVlgl8VLiYiLHiAKUFITg2F1dse8H7t054/TsjMZquu0GScYaS93UqKrG58TV9RVi39GsVixW62/jlj/iww6fIz/4N36I89/xVb6HH/ugT+cjj7/pBuqvfYCtX0cc8R3GmAP/j5tfy70fz6Trmw/6dL4jCI+e8Pl/e80/ffeH+L/+5h/+jpONIQf+wpPv5eQXOrJz37HjfBjwronGXARXyvkAMilFcpKEJEiTzEQKUarupsV8VVli8CVZKN9e4JduhUxCiCKPOSzy87T418+idK21t6Jn5YFozElTM7kADlMPL0A4h/NFvhTD5PuA8nqi7IDPx7vdmVASpDyRiEZjqwo7ReeWhWiiyOcFVquDlErk4lgxRpHwKC05WRhCrkkMPHr8FkI7Xv7EC6RljV4u0aZo8KUxmLohCoVHYNuGxTpwc71nc3VFcNc8ObWc31njxq5EtMaEJqJyROXAuN+wNZnFqqaqViRhUdpidYswLVpGdOpRUTLse/Y3l4xDJPiMXayJ4R7tsqUxhnvn55OfuqQmLesF3S7id09pTMOiWpGGgBsz0TtSdqWYMc/yqRITS87ElLi6HnFjR9/tOT9b09aW0STGMaAF5BTwPpBzotKWylYoqcgJnPN03TDJpiTeJ4bBsR8cfcoEY5DaIE1FoysW6zXW1nSDo2zOCKTUpBgJRERWIAVal/enEBqJUBqtK0JMZKb+FlGmnoVAF6JdG8OyXeBvbohBlOJKU67XlBM+CPa9Z7loqRdLRJZE78AHcoqorMB7hLEEN4JouHv/LpyfsLu5KeV8Y89+u2E/jAwxoZuWs3SPyh6bwT/O+L6/9E/w2d/zNz7o0/jY4A9987/FK3/4r3zQp3HEEd8RxJx4Ozp++G/9ej7/c9cfKdnUc0iR9PPf4Iv/6pf4Z8b/Hv+Hv+f/zu9oH9NK+74fKubEkxj56S9/ku97401C/GhNiN4r3r0ZPOfivyCjlUXLstubZ0lRLtKVFAMpl34DIQVaWjxiIimyJDaJQjFATLvJExER4rkGcRDPJEzTpAIoqVfWHgjG7Xjc2ybz2Szedz27bsA7V1KxmhYpVVnE5kyapVhTd8YcjZtyhJQRSZZdeSGRQkEuExApgByRMmOtoqoNknLsmBJKKJqFZrGyKB3waUfOPUoFpI4ImUgiEoUAa9CLBYaMy74keLUrzo1ltW558aUVlVEs20DYP+b66VNyStRVgwiRhdUsrKaLDh8G+v2etj1DqCVjVCAkjzcBSUQh8UPP1aMHhP2A9BkrLJVR5H6HqjTGSowsK2yVBUY3bPuRt77+On/jr3+F/Q5ghc62mKVHX/pOKJOg8pVIMZHz9GuMDH1P1w1c3+w4OVmzWi5orMTiqU0pSSwFjBXaVqQELhZfxjh6QCOQ7PcDm92OIWT0+oTV+myagFjIinaxnD4zhRIKowtRzRMJrCdZXF23tO2Ss7MzZE7oZgm2xrsAOZJSIAlNSgIhNbpqiulfKNpmSW9bcpT4lImpmLUjIKSii4qFXmDtghgkSg5k6RAp0rQLGqFYnp5QtxUiRbbbG8LQ0202xL4neo93jpSnqOjoGCuJqz/e5T8fZ3z2P/z9fOF/9NEt5fvlhh8dIm//u5/mgrc/6FM54ojvCBKZr/kz5Nca5OMHpI+YbOo2cgiIn/oqX/xjn+WfG383/rf/+/wDizepRFm7vV+lfn12/JtXv4EX/6IkXV59rP0Z8B6IRlksRrKUpe35lqdBTG+iutWunSb/xIzb04hD58TUXTGnTQkhEPpZClQxgz/rr5i9GfOEY5ZR3TaJz38OTL6P0vWRUkkfElKSedbVkVMujc4TSSlJUwkhMilLRBZT6pQDBEZNiVNGIbSY5DUAmZwTWQqQGaUlplKcni05v1ihdWB0FSH1rNYVTVMjVUnqytkTY0IaQ7NYQg5IGdFaYI3EapBEchzJwTF0O3ia2G037Hc7BAqSQGlDypEMuHHg5uYGoRKqWmDrBjeO5DCyaixDv2dzc0mdBAu7KF0oOZKCY7/bYiuNVqIY+mMiZYnrA08fX/L44WOkLNG4UKRwsdhXJmkd01SjkIw8xQ2XzouM92HyKeQyRVjVKC0IiUMpX8yC5Iqfoe9HbjY7+mEgxMzQj+z2HcM40o+OhEBXphRIGsvYBa6eXiJyCSVorGHZNLRti7aGqqmoa4utaqxtyLlcD8RA0y5AKkKi9H/kQp6ykKSU2ex2pIcPOVmf0mjD6uwcl5/S9X2JA1Sq3CNKIq3FVBWruqISgtDvsIIpkU0ipSl+CynZdFsur54wdHuMAIsgj4HsYokB1oJAoNtsDz0mR3z88L1/5O2PnH763eLk/7Lmj/+f7/GPrb97CVs/1n+Wiz/2V79rxzviiO82EonX/R3qS0Eexg/6dL7jyN7Bl7/O9/wbn+V/438nl7/jz/JbFj/Hyxpa7Lcdfztmz3/an/Pv/8h/mc///14j9P37dOYfXryHZvB0kCzNi/6ZOBhjDibwWTI1ex5uTxne2V9xO6p2Tp46EICpRE/KZx6KWRp1O5J2nnQc+hVuJUndbhq/nVA1N1Lnood5LgWrnLtG6uln1Qop1NTxFoqWXxWyklMupEOV1Kquc8QYEDKzXLcoZdEmUVWi+EdMWVwbrRiHga0bSSljbU3bLFktF6hp5zrGkZwDEIgpEnPpcSBmTLPg9OIeKMPmZsNu2xF8QCqFsop6uSjdIaNj8NcsTiQn52esdIt3Pa7fcLO5YRgG6maJ0JrkM6P3jN2AjLDIFW1bY4QuEqgAeSIVpbhRkkUi5Agqoa0sxCE9895MH9L0rs7N6fN71RFjZBwHdtuaZa1orEZrCyITQ8KHSPSJrh/Z7fbl80TRdT2bzQ7vAyElspYs1iviMNLtB/rdSIgJqyvWJ6fcOTnBGAvTlE1ER7/p6bjB1Avi5CM5XS2maYqdronSmoEokzWpJtLqPdE7VFNhTpdcD1tyGEBkpJmuNaVZLxtWy4bTRUs0kkFldM4oYNj1EBMxJKplw1IaejTOp8nzBATQaFCaKBQhZ8YxEcTw3u7yIz4S+NX/+3+KF978+E4zzJ//cX56/zJ8l4jGN/yOP/P7fjOCn/quHO+IIz4IxJz5xniX6ip/bLwE2Tv4ytf5wr/9Gf6V7W/nT/3m7+ef/fSf5++unnIi618y2fA58jMu8wd+9HfxhT+1Iz58/LGfZsB7kU7BYbE+JzbNZKOavAtzROxtYjFPGN453bg9pRjHwqJnAnE7Bcp7R0oBrTV1XR9IyXzsuq6p65q+7xnHkRAC4zh+y/HmpKmZEDnnSJNUao5mn8/LGIPQEpRAal2IhyiN0dZYKquLSTh6XEqMzpOSB5FQSqI1dLsR58D7a5y75uxsSbvQGK2RQPChkAOhsMrQ1BVG6yJVkgqtDd5FRhfxfkDKXCRjVQ05US0DlY80SSCUZRgdLozYyrJcLFi0C6Re0lLRrE6w2jC4HqMle+/Ke1HXDD4w7J4iMSzvrqmaBcJYYoZxiFApjLIoCffvvcTZ6ZsopfExoIhIK1B5kgvl8nW7cR0pETkTcp5SblUhUynhnOPy0rG5AaMEtVUYW5FTptv3dF1HjiXtNfiA1Za6bgk+4MeIc6FECVeahalIOfPw6ROcS2htcT6SmpbWWpxzPHz0AOdGpBIlulYbkrR0IVFVFbz8CRZNRdsu2NdbUgxYu8RaS1VVVHVNVTWYqjo0fwc3cp4cpq2IGbRWJXzAVizalsZYshsJfUfoi3xPpiJHO1+d0Q0O4QKLpiKuTsB5hr4jx4TIkowgRPApk62lXqxoVt+9HPAjfvng4meG8g/kxxg/9zvu8durv5//21/+9ziR37n0NZ8j//QP/h7EN48k44iPNjyR1/ozqk2Cj5GXIHtH+uo3+MwP91x+7SX+2X/wd/KHf+A/4rc0b/2SyEbMiV/wI7/vb/5ePvUnFOJnv1oSLI9490Rj9kHc7qKYMU8SfrHpRc6Ztm2fk0vNrzdPR26TAuBAIgp5kYTgD0lT8/HmacXttCmtNfv9/mAGnx+bycncA6KUIoRAFsVILilehPk1ldYYKVFGl5JCObeJF4LlxoSSAkQmBY9zHSGMGCtZrZacnLS89IlTbC3o+x3jsGO79axW9zk9XSMlhOBYL1ZlAVvVIATBB5wbqCuNloKo5vSroqNUKJLUBO9IymLaJSe25kwIYvDs9ltEShhty0JVQVUZKqNJ0dP3e6g0TdNy8slPMZ6ec/nwCQ9efxvvHHExsF5HaisZnWc37GmbhvXSQJYE78lJYXRFCoJMAimJORKSLxKf6fM8XAPTdTDL1MRkDp8nUDFGnE+kJPAxo32R4LkA/ZgILpATkEFLCShSjHiX8C5CTrS1pp2ijVXKLKoKKRUhJKIbGLsdIXhctyMEh5xSn4QyBGHwUrFcNNS1pV203Lm4S11ZpBQ0dY3RmhQC49Qun6Nn2AfGTmAqTdtYrFmTYkIAi2bBul2QfMDtt/TbPXl0mJwJPpB85M75He5dXPDg0SP24wha0FQ17XLJMI6kBNJIUsiEDMI2LM5OWd+7S3tyTJ36OOELf+J/wOf+1z+Bcj/5QZ/KB47w9gMAfvff9V/jj//0n8UgOFPt+/b6N6lnzIl//Nf/w4S3X3vfXveII365IuXMzldIl59TdnwckL0jvPo6p0+vWH/t0/wv/qHfw2/5LX+Df/ziL/NF07GU1d/Ru+FzZJdGfmw84ff/Z/8kX/jXIuqv/wxpOCoPZrwnojE3cM/ThXlROY7joZX79jTidvkd8Fwx3+1275kIzM+fych8nBh9IQa59HLMN0OMkf1+f5hSzMV8t6VY+/2evu+f69ooJWzPpFoiQ54mMbdL+0RKSKmmnXg9Gchl6UG/vUOvFGCQspAgbRQXd8+5e2+N9wNX15fkXMoHY4hcbTZ03Y7lasHJyRopS2+HUpK2sYxjx37s8cHjppZ0oSShd1ze7Ol2Gy7u3mGxPsWPYykFFFBVNd1uixv3rFY1TV0jdJkQQGbRNKxWLdGPyBzRQqJEhTFLnMs06wvMes0wOr7+tW/wcz/7ZfzgOF2eQlYEL7i62bPd7jHVGuc9gy8kSGpB9gJuRQeXwr7y3lpbFa+G96SY33GdZCKZbnBImVg2LULXKBNwri/likIhlEEpi5ClyE9JjTWak+UKlaHf7fHDiK0kQyh+DmsMzvVYo4vZPWZy8MShR5lA1hmlW5raEoLn0aNHbDY3JO+prCHFRGUNbhi4urxkGAa00ggJKUakllhj0EqTYyTHBM0euz4hjR7f9aTRs2waTtdrRlvRdwPLdsmu79gMe3bjQGMF7WpJvV5ihp5+35GFQhhNWzc0p6e0d86x6xNU/f6nZBzxyxciQx4/+trp94J4fcM/+spvJP3gD/DP/Gv/3uHx31Q/eVfE40e6mpi/dfHwL/2B/z71/+uvAQ/ez9M94ohftohk9r5C+jkm8mOGnEnbLeInv8IXrl7mb/7U9/O7f9Ov5Df9wM/xD138BHfVhpUcWIiAeUcOy+uh5cf6z/EjD34lb/5/XuF7/+QT0s9/8zjJeAfeNdFwzh2K726ThXmCcbvnYp5ezJOKvu+fSZImAgLPpFgzUZkja29PJJqmIiVzICBzqd9MLuwki5kfrw4RtDzn3bhNNGZCEfJEFBCHn6GQKYc0CpkzWiuMNjBZvqWUaCnJqfQyaKnJ2XNyssSHgd1uS2ZFJrLvtgiRMcbivaPvPE+fXPLaa69ydX2JMZIXX3qBz3/+s7zwwj20KqV0efJo9EPPMAaUqWibBX3f8+prbzP0PfdfeAUhEjmXYrusAsvlghwC15dbvMul7E6o4ncYAyknun2PVqVoUAiDrCRoTw4RaS3aaFqpuH/vPm9+801ee/Aam0d79tsRUIwug6qQMqO1KMlbIj7zP2R5KFKUUhJDIMGtNDGeI3TlfZU4H7m+3tM0DXUtccNITAJtarzPSGWw9YJmuZoeS3R9R1VZmrrBjyNudGity7VkDFJLXHD0Y89ydYez81OePvGMvUMrASQkiURiuVogJHzz1W/Q7TvU1P/S1DV3L+6gpSiTlHEgTQEIKZafO2rFqllgpSotpKlDakMjNWMGnxKpG9i4NEn7HN/s34TG0AdHqhSJgJAJe7JkmSNBS5RQtMsVzeoUvVwykNn6nkXznW81PeKIDwPkX/pJ/ugXvufw+z/ww7+Lv++LX/47ft83frMi/SIlWjV/7X09vyOO+OWOBPTBYPzHkGTcQvaO9I3XOHv4hLMfv+DVL36JP/Sr/y78OhNWEbEIKF3WrhkgC/TXas7/Vmb91S2ffv0rxMtr+JiGdfwX4V0TjRjjQRoVpobn2X9xu+17XtDf7rQYxxEhBFVVHcjGTBJm+dT8OrPcaRgGQgjsdgEpxSHidp6cvNOUPn//nEI1e0hCCAcD+MHke/CRTBMY8cxTkFIqnQizsf3gB1EoJVHThCPlBCGiraaq7GG6M09VjNYs2rbItNwNT6+vceMlXb9nc71HZM356TkX53fRWjEMHeUt82QCUNrHS1GgwdgaoSou7r6EBLSqkUSkzXT7G7ZXG6xRWFWjpeP6aouU15zeqZFGs7nZ8uDRA/phx8Xdc7RUNNWC7U3PV7/8dciSz39vxd3FAoFg2bZcnN/hra+/yc12h86WGAXZRbISRAdST38xpakVZfJjzORTSok0BrQm+EAkIJn8HLc8PBmJzgJragSKcfAMvSOGgNWGdrEEBDFnhFI0q4oxBpIUWKPQtmLsy6TEVg1ZCHxMhJgQOTGEgEsJaTTaKIY+k3JEpNLiXllNZQ05J5zzOO/RUwljCJEYE+vFirR2jN0evEeJUk6ohCZ7T0g9xlosYIgwjNjWkIWk94HODwg1IoQiIfCixCebkxX1oiIpAY1F1hU2tayVQCHJSHrXEW4cXYpErVHHHo0jjvhF8fkf+km+9kGfxBFHfMigZCLrY2x6DoG43SK6jvath3zmJ09AK5CSrNVBCj7tmML1hrzbl++L8Wj8/tvgPZnB54U4cJhY3J5cAIcJwuzRuO2LmF9j/poJwSxzmicSt30U5TXKtOG2dOq2D+RZk3c5j5mA3P6aIad42zRPOlICJZ87N5iLCcXUWh7QeloYT90ScwpVTgElE6XED6qqoqkbmrqlMg3dvuPJo0vefvMh3vsyOVEtJ6dLvvC5T3HvhXOkiuSp7E7KBCKSckAqQa0rbL1kuViDNAhZkX1EK41MnkggdCP7qw29yNT1guhht+2RastqfQ8hIbpEt+t59PQJb7/9EIRgvTxlt3V842uvQ5Y0Jyec3T3BKk2OnkpprDSIwntK8tQIaIEIAhEFeWrOzrn4E3hH0thc4iiK0oxEIKdnk7Ccy71rtaWpmhJ9OxTSEGMmiETT1FR1TVM1oDVCKxYnK+q2wSpJYxTjWKRSWQjQhpQ9WQiygG4cGUNg0TYsT0/xwZFT6XvJJIyWaCXohwHnHXHakVBCMriRvus5X69pqxo9EwRtSB5yjEgEImZkTCAgpEC/72iqBmE0WINPmSQFurLouqVtLdWqIcjMEB2d6/Euk2RmcAP9sCeHRHSBMQSCkDgpqVZLxNnRDH7EEUccccS3D4PgxXbDa6sXqJQkf0T7+t41ci4y6H4gT2vQ24mpt30s2QemqM3v+ml+mPCeiMbcwj17J+Y0Ke/9gSjclkbNj83TB+BAFOYJwC8WWTtLqMRU7JdzOnRuzAvUmeBUVXU4h1muY609HD/GSN/3t0iLIosig8lpWuWKUsY3e0mKJKz0cAiZkLL4M2ailVMs5xQDMSSMmcoGKRKzq8sr9rtTJIlHDx/x5usPuHy6AQRKS4QALXvGwTP2A1IFlI5IlQjeEZMjpEBGoXUp2wuxRPku2jXZRxSJFCK+H8ljpJGanCJEQWUajM4EnxkGj06OytS8cO8lTs/Oubq54snlJb/w9de4vuoQVEQf+erP/wJ376/49MuvIElEN+K6gTgEshd4L4oky2bwAkKJuCVOPSSiTBDeiULQpg4VIZ8jhjlnpBBYY2ksBLcjhYTVlhQTo3dUTc1itaRtW3yIDEOHrSxnZ+dUWhO74meIQhY5nDSounhelNbUlUVVFbZtiTGgbgzCaFTOZAnKSITIdJNZfG6nz6KUDw5jSYvSUmCNZhgTpISWiizUVEApCTGBFCXuWJapha4qaqMLadAas1jRrFdUtcX7gScP3+Tx5RPGMLJaLYjrFXl0uL4jjZ7sAzFEkpRIrakaS5vDe7rJjzjiiCOOOOIXgxGSV9orfn4tWRkDRxPzNLGIZHdLKvXOPz/iXeNdE425K2P2aUCZaswL/Hni8BzbmxbmRdYkDm3R5GnnecK88w0com6ByZfhDgb0294MKEQgxoAQz4oAxTtedyY6KcXnkpCUUiCn4kFK0pS19lDsNwwDQgu0sWgtUGoyqeepDT0GnPNoMftRAtoIhqHnG9/YQu5YLhpurm+4fHpDnoyHfjeQkufm5orR7WkWgpPTilc+eZ/zizU5O4QEbTQKgwuJqydPSWw5Pb/Hsl0jpwQofCYNiTgGdBZkFNEDQpOiYLfpeGquiOKGetGSRabvRtwQ2NzsefzkhhQN69WK6+6KV197jU+9fs69s1O6fUe/3zPsO7KLGNlibYXMmaRMaUuPTGbvIvEhlbHFLEkrC/b8nOyOW9dIIZsZOcX5to1i6MtUoQyOSkmkkFOJH4lu3NN1HS0LmlVDpYs8qW4XXNx/AY/Ati2qMgilEKoUKlaVwViDc0MhGbZCUghm2zQoJRnHgZxKNG6Z0pRzSzExjo5mUXO+PuGpG4g+TAWJGhCgJcpaalumcUJCUIJsFNEWcivrFrM+QbRLfA5sttc8fnrJ9eaGRCrTsRRZGoPOiRQCxIiIgRAFOUbMOFK7j/uW08cL/8f/9r/Jf/r3fB9/6/d/H/nHf+aDPp0jjjjiIwSJ5EV7jTsRCHv0/z2HI6F4X/CeCvveOZ2YOzTm/58X+rc9Gs+IBpAgpjJJUEqilQSKqTYj8QFiLIt5KctudEoRARitqapq2hkXxBAIwTG6gcpajFEoXUr0Qoyk5BmHgaHbE9xQphDRkKMvnozpfKEkHpEjKkV8iozOIWLAWIOWBqkFxETyk9wmpcM5kUsPyOh6mqZCSM04DnztF16jbQzBJ3KSLJenKKUBR8aTGXjjrYfsukfce2FNs1as71RoI8gJJBqEwQfP1fWWfoBMQ2VXWFURYqBtTiEK9ruebu8Yxp5ttyWKkV3nydnw9GrHa2+8xc12x2a7ZdNt2e33jD5yen6XO3fOGAeIwTB2gp/5ya/TX0XGvWN32SNUxcmdE2qzZtGesN2N7MdANmZaHEdIESFKwpQUJZ6WWxOq59K8puI+qeR0rQik1CijUMai94be9fjoiTEgBVRakb2jHzuGriN5j0uRTgpk07K73NB3PUIprC4JXraup0bvjNIaJQVSWWy9pF2dIVVViJFSrNbnKGXJISMRGCkIkqnxPOMz9DFxVres71mG4Ok2G7S1xCyxxrKoKk6WS2prcf1AP/Rcb7aEzRYvJbQNi6pCGw0kut2OB2+8zv7qGpEjWgnGrmeXM4vzc6QyjKlHkInlLkErTTV9HfHxwW9vB357+xP8ttWv5tvrrD3iiCOO+FbUwhMrQB7/hjni/ce7XrGEEOj7HufcQZ5UVdVzfRhz2tTtIr+2bRj7HqGKVKrvS4u1tZa6LiVr4ziWpumYEEpilCakRFVXNFVFSpkQHNuxPzQ3h+AhB2prSSngwogxhrquyFmhZUkUGiei4b3HKImoNEqVnfaQEwmBUpqYEptuj0BQT4ZokTMGjYqQUyCkiMSWRCKRybl0P0htMAg22z3eO5QMaDHS7xWVLX6NTI1UNVWdGX1HSgJTeT5x/km+91d9ipc+ecEQ9iQXMKLBaENd17x49x4vvfB5EjWICqUrtDTsadC1JYqGM72kubPn4dtvEqqueFnSDqks/RD5hV94g6eXN/QukJJkv3csT05ZNS9RmzP2rieGAcUpV4/gy9ePqasKqy0vf+pL3Dm7g/clUjY9uWK83uBTLD0aKSIokqlc5hqIXAhmnCKJpZSk214ZKQ8GfIQAqQlGoK0l7zRhAGsk0guUACMgO4fwjsYHovMI58ghEtuR/nrD5c2GkBM+JcYQqBYt2lbYuuH0/KzE2qZJlletWbR3qJuGZrHEtjXddkOOGRUDeUwYU+HJJARjlmxc5jQbTk9OaHwgVzVtbcv0JmdC7+iGnt3NDd3NthjkpUJqXUziFs6FYZUFV5eXPH71VTYPHyLdiFVF4peAICNVs0ItFTvncaNDaEuKkWq5RLcL0n9BpvcRH138qT/xL/M7f+sPEb/yCx/0qRxxxBEfIRgRSQaEOv7bcsT7j3dNNGYycVuaNGvsgUNK0+2G8BIVWxbs5Fz6JwDIxBgIYWLPuRS5ZaZ26bljgTK5SO8o+yvnUxKvMhkpZ9O5QilBzhJrDclHlm2LX63YbDakEErPgSomYCFAzLvvQqCm42ptkUByHh+mnXUpMVYTfSDk4hsp05AScVpkYeB9JAqPskW3n7MkRgiecn5SoURg398Qsuell+/z4kufRNvEdrelMhJjaypdYXSFURXCVKRsCVHiXcJlR0jgfEbZBRUaISwX9xXVzZZvfv0bvP76Q0zVEKMgRU0KGiVKmpcxC9btGbVZoqVluVAs2wUqCVSCWluUEIzjgE+w2XcE7xl84HJzzbbrkLpC2wqpKAv+5IFEDOm5awQ4+GsO5n0lnpNSzXK6GCNVbblz5xyNJIWIVaKQHiWJUZJiIjqHBKJUDJOXJpHxU5RuSmVioG1AKc3Y92w3e/quL9MyJKvFkvsvvsTypEwzlNScnpwg41j6PpD4BB5NlgZdVQSgGx3D6PAhsus79rsbUohoJOtmyapZsJSKzc2WmDJaCuQ05ZPA2HdcPnzIw7ffROZQAgCEKPeGEEVSKCXLkxPW48iTJ08IU9RzEIKsFNujhvZjiaWs+bN/8T/gv/Fb/xHil3/+gz6dI4444iMCIwLJlgn/EUe833jXRGMmFLfTnubHn3UiPPNFzM+LMRapkQCl5MHLkVJ6rhNj7sOYCcX8q60seipEA259X5FdCQFKF2IxH/cwZcllSjKOI13XkaYyGqkUpFS8He/YHS7nFhCi7EbLQ7Ech4mNnDwDQghIuRTWSUldVWglyUmjpCMnGEePdx0+FMKhjcGHkXEMJBI3N3sePbjknlwismW/G8h+gKZCiIBUHokhZskwOPre48cIQlJby52zM1St8ONIDJnN9Y6v/fxrfOPr36SqWzKa6BKS0hdS6QrblCkLKRG9w1aWRbugMTUygRaSHCO7nWAcBrx3uNGx2e2m8sM0vRfpUAY443ZHyjzleq4p/Na1VP6sRM3m7JFZoJFIbai0QZ6dIlIkxECKlEhZKYlCElNEhkAUCmksykb86MiAqRpc8OSpJyWlhHcDMYzIyVjf7TK7zTXGGpIQpT3cjyzqhhgDKUMUCo8mCk1TWwSZ/XbD9fUlbr+h0qoQz+ARWtOPA+1iweLijGg1m82OLkVaq1BtzU2349Hrr7LZXGOsJoyBLCbTeS7FhzkXuVa9aDm/e8F2v+Pm+oYsFVYKbFOz7br3cIsf8VHDv/Pn/y1+5w/9D5F/6dgUfsQRR3z7sCKSLM8V7h5xxPuF9ySdmicaWuvnmp2BA9mYE6PmRX+MxSyeBKX8zpjnyMTt75vjcuHZot67kmhV2Qo19WSknIkhIARUVTGnK1HMyDGHInuSEq3VoX+jnE9JblJSIURxMs+76rd/HikVUkiUEGhV+jPIufhLcirlcdYAGXzCTb0Ktq5B1ORoyWkgeo/3iZAiQnqEGBGjw8cBpTQvvfBpXv7kBavlCbWtSblm6B6B1UipiTHRdR0hjuz2kUePrrm83HC6PueF+y9hmwVGGbrdjm4/0u8dD99+ypMHVwz7yLDfM7qIsTUyabwPLJolpqoQGYauRwqwRpfGhmmsNPqRHIvRPudETJkQPTklqrqmQhCyxPny2UklUcZCjqQpunYmGjPJmA3h8xTsWTRyLh7yKJAIwjgydD16vebs5IT9dsvm+hoJpZekqtApMvYDnQ9UuuLk/JzFHUN9VYzVIUaCG6lay2K5LFOxGJE5Y7UsiWGu4+bpI5wb8Tkx9h0qewyJGBwhZpLURGnR9YL1aklTGUbfowRFKx8iOoIWBpEl+65DGI1ZFrKRGksIkbZdom3FzfU1NzdXDH1PU9dT/K689StkqUAptLWsT085v3uXmIt35PT0lHa54Hqzef//JjjiQ4Mz1fIv/vF/ld/7L/yPOflGwP65H/ugT+mII474kEIJwanqSDofov6POOL9xHsq7JvbuoHDorx0IeTnFpfzQnKWU9mmLibhd7SGH3oWpHyuJ2M+1twWXiJQn0Xlipym6cQkN0mZkMOzskBdInhJ4JU/lOh5H6bXdd8ymZlje7U2hUhRUn4EGSFBTB3SCJBKIMpAZSJdHOQxIRa/SEpFwqWkKhGnzQIhNLv9js32Ch97YhpYrGuqVoPIrE9qTtYv0FQKYy1uDDx9es3V9Z5xSHgvUVly5/Scs9UJVhi2l1sePnjAbrvlrTff4us//xrd1iNThfMB10fcOBBCIgvJ3fN72KbCGI2ymrZtaBcNVutDytM4jMTgGbqOcRyQQhC8p6osrakQQtG7CN1IcqFIfySAhPxs9Dp/xreDAWZJ3XP9JlkCgTCAH0bGvmdQisZa+r5nu98hMsSUWK1WmKbFx8zoXCkK1JbzO/dYnpyx3lzhvOfp1dPyWUmBC6HE7uZICiBShhhw/a7s4GhDDh7ve0JypfUbQRQRlMAIWC1a1ssFN+MeJTKSDGPAJoVUiiQEWRr63nF5fcPF/XucXVygjYGY2W93GCX5zMuvEL1nt98xxIreORAwBk9IqcjKBFxtbthud+z3++LzUApdWQbnjzraI/jVVcVP/K/+Ff53T77If2x+kPrPHButjzjiiPcOiWQl+yKdmmTkx7SlI95PvGuicXt6MadOPVdwd8ujMfdazOZsI2UxU9+SRN0u6Xun/2MmGc45KlsRYyxyqUOaUfFIyEn/LqcuDHhGGJSUxJwOjeBN05BzX4hMThhbobRiYg4HCVdJyCpxvEIrYvBkJnmWmfo5pi6McqwKrRVaSkLwbDYbxmFkGPaFiCiDtYq6bkk5465Hdrsdfb/h+uYxLuyJ+XOs1p/B6AUpj0Bi6B2bzY5hcNS2olKa7Wbg6eUNV81T/D4w9iOPHj3mzdffIKfM0yeXPHr7CWMf8GPAh4zAEH1GSsNiuUBkUEIVKVrOeDey23nIkEIkjCW6l5QZhx43OiprMNpMaU4WIQ2oSEyl+DDERMoJgSiyNHhucjHj9iRjvgaA8n0ZYvKIDFophmHk5vqa7XZ3IIguBKQ2rNcrquUCRkPTLDFVg/eR7b7Dh8z5xQXnF3cYxoFx6Li5uiLlOHkhEuSEIBJDJsVA3bSoHOjHPdF7jJakSDGta7DW0DY1WpXPOHhPigEVIzYpcsqILFg0NUOObG82GGO4/9KLaASb7Yarh4/w/ciybmjrGrtYEWvNGANCK0bn6MahJGfZiqdPL3nt9dfpuw5JmaxdXd8gcpniHXEEwB+6+Ar/xg/+V/ncn/mgz+SII474MEIiWAhPNvlZ8/URR7yPeNdEQ2v9LQvHeUd6bvMOIRykVbMcqq5rZC7lcc45xnE8mLpn4qG1Pjw+73SnlEoyVWURKU8yn0neNHkklNWkmKiMwVbmMBkpk4U4NW3LW9IpQAgEU3t5SiilkRPJKETDTL0OJUY3ePnMsDttJEtRejfMZEBvmgaRMptxYBwGYghEP7WfjwOgaBYLqsqyWrUIeY5Sp9x/6Q6f/fwrfOGLn+b84oSYRkaX6YcNMTiEUFzcucCohu1Nx5MHV3z1b32Zb371NbSqcINns9mx3/WIXHpKvIukCCmVUsIEKGWK5MnWOOcReiSTidnjfI+LjpyKSVpmcZCNxRAI3pGCR7QL9vsdLgS0qfGRSRYXp1jjA9cDnhn65ynGPKm67eU5XE+TV0Mg0UoRpMI5Rw+EEMlZkBKkFHEhIpRh1SxZC4ExNSB58803uby+RCpJiI4XX3qR8/acR49KD4v3AZXzFKsLQjwjy03bkozEdRuIhagO44C0mjxd3+WxQhLHYURl0FKjKVOwbBQhgyFDzHQ3W8blmqgHuqsb/L7DdyPb3Z4ORTSS2FiyNZyenXF6ds4yRZq2ZT/0PHr4mK7rib5cx1EpvAuIDKv16pd2tx/xkcQf+Qd+mD/yo/9dFv/Bf/5Bn8oRRxzxIYQU0wTjOMk44juA9zTRmHegZ4JxWxYjhDhMBHLOB4N3zlOZX4qHnew5Hvf2NKTv+4NUavZ3VFXpOvDeF429UigpkapIdJQUJBlIyU7t0gZjLEqV6Qqp1DvXdU3XdUipiHEqOxPPTMlqmsaUCYvEGIs2EkRGyKmOfurPyDkh5FweqLFGQ4p0+46b6yuGvis73Eicc6XM0HqGocNYyec+/0nuv3CXk9OWFz9xQdMadCURMuJ8QumWEHpC9CxWS5b1GpKi347sN1v22w370CGFBTR+jGQPWUjadoFsJSFEgo9FOuUDMU8t6XmKqJ3kSyGVBKWQ3DPJWxboKcVLKgkBYgp470gZumEk5Q0hFV8B0iCVLslbMSLEM0ndPNUI4dk063Z4wMGjEzMxOLSyNFWNrWzp5FASISUpZ5he17lACJmTkyXGaPa7juvrS548fsx2twMJKQUWywV1U9P1PTElYpz8P0mjVfHhTLFjVFXF8mzNsLuhCyVRqhASibGWqq5RWhN9mW5JrdBYJJkcJEJrpFaknKmUpjUK29RYBGFwxGFAhIARIBOk6HEBhhjpw4abqw31oqVZLTnJ8PjpE66ursv55kKMBRJmjh+/3dv+iI8S/sHFjn/+rmTxQZ/IEUcc8aGFCEfJ1BHfGbxrotE0zbcsFLXW1HV9aOueF6tzmpTWxdDsksN7d5BLlQ6N+jkD+DAMh9eLMdL3fSEl0wIfyo753DadUyKGyDBPQGKgaSI0IKxFS4WwFVqXY3rvGYaRlDNSKawpC2Rj7CSj0s/iV0XZ1c8iIpUgC1WmFJMZXElJzhEoU5IYAsPQMw4DwTtyLjvmShna1rA+WVFVmpQ9xgru3ltz794Zi3VFN2wJY2Z9ssBUNcOQWC5XOG9Y1C1WV4QxF/mUNlycXdDvPfvdQPIZKQxGK5TULJsl69MTrNWElPE+MIyO0YeSDqUUwzhOTuaEkAojKmTSpQsjCUgJNcWtHkr2UsLLEaQuXQ8RUpZkUaRnKTNNip4lTAHPff9MOp4r75u/MsScUQqU1RhRWr3nyFvnPCFEoBCNm5sNSmmMNuy2O66vr4jB09YVyIwbRx68/RbrkzUpxkJ6q5o8TdyEkGQ5E5wiyVqu7rJcn0AKbDc3KGMRypBykdYJY1GIIpUzFTCWSF0hcdFjtGC5WrFar2kWDdootNFsNxtkSkQfyDGiRPEQKcpkrKpqvPfcXF3jphjgzc0GPxZCLIVACIUSiim94FuS0o444ogjjjjil4qUBSIeicYR3xm8a6JR1zXOuYMEBjhMMGaPxZxGddsY3vcDLkaULM+HMhHpuu4wEZkJyu1UIiGK9GcmMMBh0lGeU/qSpRSkIZFiiRn13lNVFdbaIo8R8nCcmaSkFIkxTa3U8kCK4JnXhFnakyGTKU10TF0bkGKg6xz7TSFFY7fHjSOkRM4SrSzGSIyRSCUYfc+Ty0veePsrfPmrP8aXvvfz/Pq/+wc4OVuSRSTEDqUlVS2x9ZKhV2g0AokkoYWkNhXrpqW7uaTf7slRs1w1GGvZdyNvvPGA+vIJ9cKSBYSY8L6UElpTY6qKxXpJFqCMomkrjDWE5Om7jjCOEBLESAyR4F0pN0yZytpSFCckKcHoM+PknRCqxATPRv/bhv/bpv93RiQ/+wKpBVlClgKhNQqBVYZmsUJIw83VDTlljDKkkLh6ckVV1bR1xfl6xSZHdv2+TACU5ubyElLi4t5dTk9Pyho9ZZj8FClEfAgEJKvTUxarUz7xyie5rmu6rseH4jupao2qGupmAVVkdXJKToHkBkSGtl3S1i21rVBk3DDw5Oopbhg4Pz0t163W6Mri3ECfPDElfBIMTlA1DXaKbq6MJflAHB3EVDpXpEIAsnCMIms7RhAeccQRRxzxPmFOnDziiO8E3jXRgGfm75kczIlQs+4+5/wc2QghELzHu5HK6GeLfTgsRGcfx9yjMY7joVVcCUlwjpCnnWg4/JpSQgrQk0EbURaSwRWZVZFoKbi1AIZyL8UYyW4s95WQCGUQ06RFyikZK5UJRohuKhssvgzJ9POT8WNgv9uxubpm7PsS36t1ORlRTM5FchVARHwcuNo8IrElhBdxbocPk57GF2JhjIEsSVkwhkBjShxvTpnaWkgZIxRaaIaQCC6yWlbYk5a2bRn8jn7sSGScjwyjJ2WwtqGKLaapcMGT+kjnLMvVAlsb6kULVUUePWkyO8egqYwpDenagNKEmBhGz+DG4n2IGWSYIoOfN4G/0wg+451EI8+FhzEyBk+WgkRGGU1TN4XExMzYjxhtEFmw3+7pdh3m4g73Ls45WTa88eYbXG82KFua3He7Lcv1ijt3L1i0y5JG7Pw0XciknMlSo6sKhODs/KIU7GnFdt/Tu4CsWpQy7Pc9kkzVLnh5tcAqGKIHU2KXh92epw8fFtP3vsMIwTAOrFcr1qcnnN45Y/Aj3djjgoeskKKi60e6oUdISVs3+FSmHrWuEJLy2edSdJlyRgmJke/ptj3iiCOOOOKIXxRKSE5lQL3Qk04WICTkoz73iPcP76mwTwgmH8QUASvlFOtaphnB+2ct0ICxdlp8N5PcKCFTMXMLwLnZTJyo6wqlJcNQ4lSNLmV7QmRIESElRtviNRCCTGnmPvg6sp5kJiXuNoZAViWKFoqZvWlqYipSmZw5mJSlLq+RcjlWjJFMIuUyJclktCw7yUJIsiiyo6qqS7xqyvRKTW3hkLM4GMurWtMuLBnHOO5I6ZT7d8+4d3GfGBL9rqdZWKrWQE70ux273ch22xNd5M7qnNa2RBdpTINCEV1AC4WMke5mQxwCxtRkKUGWaZASoJXEaAVZYKymMpoUfJGjZRj3A2PXT3XsGREi2QVETCW+deorIRa5mZAaHxMuRHwGKTXGKJwP9N5NZOOWJVzM8qmSEjYX0uXpzxDzJkqJKs4pEVMgBEkMCaccSmq0MZyenLDXHTkkkg+IFPE+8PTJI0QeOb845YVPvIgn03sHUhNy4nq7QT98zGrRk5yn2+0JzkNKgCAKQZICo2BRWWIYOD09BaEYrm4Y+56333idh2+/jdaK9bLlk594gZOTFXK/5fH1FZvNhs3lFd12SxxGNIKsJJv9lixBNRajJUOKdMETgoecqVTFcrnm7v0XEEaSleLJ1VNsXZV7RIDI4hBskGMuIQS2+vbv/COOOOKII44AVkLyPS8+or/7EkYpcjoSjSPeP7x76VRlDskE1liULqV2WmvqymK0wUlRkqcmzb4UGaV0SWsSAjcMDH7EakPd1Egl6LoOHxxCGAQJJfNUHpfIMqOVZEgBITW2mlrFc0QgDlKuxWJBzolhGKjrupCeEBApo3PZoRZao6xFDAPZh4lUTH7xabc95RL1luffxDRJVvIh5lZojZGFFGlVJhhSCIxSDMNATAEpFLWtsMZQNxV1UxGjodYLdn7Hk7e2/PRP/DxPHlxxerbg/v0zXvjEXVLyvP3WA9588zFXlxu0rPjCZz7Pyy+9DEEjsUg0wSX84EjOIVJkHDyOLcJo1KJCVJKQE9FnRCyTmFoaGmXKK5jSep5nU3j05BgJPhDGgEipfIYpoxOQQPiE8yMhRXxMZK2pVy26qdn1Pb7ryDPHmH7NGTKCLDJ5flAW+c9MMuIslWPqpoiBkAoRyqkqje4hYaTibL0mjJ7ry6cQPVZmwtjz6NIjF5aL+y9wh8xbbz/Ch0CKmdEF9rs9Ngu6mxu6mxt0zjAt9pNSOBJZZK5TKo3vIeFDZPvkMVkqsigkVGtD6loWRoHzPH34gO2TJ3T9nuBGdM4YWXLIE5lAZsiRvR9JbqDvBzKQomC/2dPh0VXFS+sl64tzOjewYAkVpQwQUTwkoyPEkriFVJhV823e9kccccQRRxxRUAnNrzt7lf/3i5/izBqydx/0KR3xEcK7j7dVElVXB/+EnqYYWmu0kqX3TCkEmaymBKMYCD5hpujZEEOZIAjIVGijqSqDoEhdUgyQS9O0VhJpBFElmli6KpQC5wLeD5NEB6xVSFkM6JAxRiNEkcUImQGJlmXqMEuoysRCHtKp5sd1yqDLz5ZThhyQuXgSYp6SknIgCFW6OwA5ReaWdXkuSUVGY7TAaIGSpSAuR5BZk5xke72l332D17/xOstVxUufuMvLr7yAkJGHDx7y9tuX7HYDtakR3iBTxXqxRkqLVBXKGIo2a/oMZJmemLqCpsIrweA9MQz46Cb52o5+PxRZWl3R1M1zkcUxRYIrZEMkEDEVgpGmgrssSryqVjS2BmsR6plJHpEp/1HeayaJlBKoPE2aeEbqckqEGIuJXEWYpFMpRlKKCKGKl8EFdpstbVVz784FClESzIJHyxI5LJWkd47BOWxdszw5xYwjznlWyxUX53cwwM458jgUcpjLcZJME+HJOO8xVY2WCm0VtTaM3pMn/apAMHQdTx89od92XD96QBo6yKkEFiiQSpOVIIZEs1iyOjlBKc2w3eF2HU1Vo4TGh6mBPCWGbo+8Fjy+fsLgClk1QiKkJvlIGkt6WQyJKAL9MLx/fwMcccQRRxzxsYYSgk9VTxjOJMJa2O8/6FM64iOEd000hMhUVVVSlmI6SJGknBbdk0l61sSUlu9IjIHYR5QpGn5rDUoVGZUAKmtRskwnnCvpUTFLopQIoUgpUtd2SqiKpBSIsciz2rZlsVgczOUlGlceNO0Cprbr0ng9S7tCiAiRyXpKPZoWuDFGdJTkSYIlpSzRopMvJMc4+U/SFF0bsdP0ZBhH9vs9OZeUI68HrLVYZ6lshZTFi3Lnzh3atiGkkWHYEsIeJRXeRYyRjKPDO4hRMsTIG288oO8ipydnrNo1qmmJaJI2RJWKB0UpspIkBH50DBSiFbMgK00iFmN4dGWS0/VIuZk+15LCJKUgpUDwJelLpIyIZeojYjokhhEVktKyHcaeIDIYhakq5pHG7OURt97H24b/+TlqijqWvkxUXEqEEIlTaV9MmX4c2e53OOdYtAsWTU29XODciMgJWxmWZyf0o+ONb746Tb4msmEsF+fnrNoF/eaGjdG4KS5XimLSTwhSLu9XSgKpDHW7RApJVe8Yw45Z6xVjZvZhV3XN6t49Hj5+m2HoUaZ4k7z3NLrh/ov3uXfnLt12y9Wjx/h+QI4BvxtBKJoQiSmirKLyI+7Ks3n4gN4NpY0+ZjRyaqgHpCJmSEqTzHG36YgjjjjiiPcPtfDECtD62A5+xPuK9zDRUFijEVIQvEdKMZmkE0KoksQkMimnW/0UAmMUIcRiMJ6K72RxDU+xuJo06QElmXxo/o7IOdKTZ+Vu84J3TpKqqmfN4fBsx7zsoBePQUqZEAMCsNpAVaYPORViI4wpXRpiLh7PB7LyXFKSlFO0qJg6DlKZllB26IuUq5jZR1Xat6WUGG1oFy1N07BandC2CzKJftihJNSNJniBQFNXCyor2e+vGUNmsx/phke89fYT7pzfw/tAFzNeGqIVJCEJFE1l6PckVWRiWZSuCKE0KiWIiRiLN0UqiVT6QMpCmPs2BChbSvskxe8RI1A8AlorYk7ESbaVtURVhtrW2KqZ01efIxS3MT9+uz9lJiM+RnxKJCh9KUaDFIQYyEIweMfV9pqmvc/F/Xss2poYPNZoUsrsNntGFwgpkdiwXC751Kc/xd2zc4a+w0jFnYsLKinpt1v80BeTuSxTOFIiiwTKYGxNie2VQImjlQicd4zO0fcDq5PM6YsvsLWS64cPGPueWmkWixV3Ly74xP374ALd5gHjZo9NApMEwie0COU6kwJFovIeFxPWjaQQDulYRuiSOZYEIgtEpiSIpWN76xFHHHHEEe8fjIjECoQ6phoe8f7iXRMNY8qiXyAO/RfOle6LEiWrD49774gxIUQhKFVl6boON46knDBKQU5YqyFnuv2OGANzXG1OkRQCwloqY3Buaq4WAiUFdVVNvonSX2G0wRrDODVzK1UWh4IiickhkKb+i7ZpsMbgU8D7MPkJZmJUpFBlklG6IlIsO885JUQuMbeHVmmKx2BOV5oXzikldm5EZqbdc8HanyBVaRHXsiLnxKItExghiwckRYgRjF5S2UifBoSsSGi6fmT/9kP2+wGtLbJpMFWR6kipiqxmLIZsaTQgJwmamsr0IGXPol2RieQ0Tx8SIZZJhou5lPsJgcwgU4IQyaGcWMoBLcsEIIiENApdWZSZekWyejYJutWlcTvu9jbZuF3cF2Ik5VQK/6Z44aIOkwgliT6w73v2fc/Zes36/BwlM9kHrp5c4fZDmVzlRMyZUSl2NzdcNw0311fsNxtkzrRNzWrREtxIt+/Yjr54daLDJ0BqTN2ipcLWNWm/h0zpvkhFatb1A9c3G5Yv3OPeJz+Nr2oev/02tTZ8+lOf5IWzM+Iw8Mbrr7K/uqGSGp0z2Y9oih42RIetDEJkVHSF0EWPSoUYJx8pwcQKUEhjsFIjjGFRtd/+nX/EEUccccQRE4wIpCqXicYRR7yPeE9XVIoBKTTGaFKMZMBaS1VVZefegFISciLGseyeS4FWRV5VJheZnCB4x9DL0u4dIxKBMqbIksayKJ2nHkMfDk3hSopD58Vut2Xs9tSnp1RWMw6J4EeUrBAlDwpBxgd/8HTAJKcKEVJCSEEMAeeG0qshSqSo1iX21olMcun5iOlc2sTn6c4wDIcW8PkJ80SlLKQzo3M4H9AmTdHAuuyoUwKQUpLlPPuA0oKqWpGEJaRcJF+xNGp0LmJIxCTK7r8o729CEuNkak+QckKm0vStJgaVk0Zqgw8QYpgW9gKELqRBZXIqSWKSIp9CRwhF2oSXmNqUOFo/kkRJkvKjJ4aIVubQSfJOsvHO0r53kg8pJWpq6y7xwpGUOUw2sijF2NfbDcF7Ttcr2trS9wPbzY7kI9YYVM6MbkR4TxpHxm5Pt9uy322QGVwvMVKybFsu7r/AiZBse8fNdou/vASlC3nTGm0t2pjSKh4SOYtios+ZbhjIQnJx5x5Vs+Ti5BxCZNHUOBcYdx1aGYw1pMGRRSYpUe6hKcEsJIeVEkQiRl9M+WSkKtMtjS6dH0mUfpFJolZV9S/tbj/iiCOOOOKId6BLnh+5+n5Ov5LJm+1RNnXE+4p3TTSWi2byNpSpQpalS6OubPFqKME4OmIAoxUpqUleFAmBQkYE9H1H8GX3PsdIzmWhXCYm4J1DTR0dcpIqrVeraQc8EkJCkDHGsFws8N5PTeGxTDuaprSLTxp4ph36LAqJIOXJ7K0OC9qx2+HGoogvxCCxaBu0fnYeeSqiyymTZSnyIyZSCIeSOinFLc9DmXqIEACo6gpbGbRRU8RreY0Qpp39mKbGbYGa0rBiKAb6mEr7dnARoTQ+5WKHEMWX4WIhb1kWWZcQEkkpOJST3nJu4B6cKyRIlm6KXJRpxJQJqUjfilQnTYwllqi7nDGVJclCoKTWwBxdm0kp46Irpv8QDu/bjNtSquLf8Yfyx5TSof29FOslEomUIovFAoDLp5eM3mFc6VbZ7bYsmwotZPkZsiDFcl0MqSf6YhaPfsSNfQkgyJnBOTrv8SHQrE64c+8+bcicjCPtas0wjsQMfhwQSlE3DRlo2xatZ38RIAWVUjRC06xOqWPm6skTnr71gFopdE6sFgtO2oYw9Pi+IzuP63sG12OVQoRMzIGcA6OIZCNwISKERBtdJmohE0nk6JGqtI3n6V454ogjjjjiiG8HMSfeioK/8LPfx/f83JbUH8NGjnh/8a6JhjUaqyVCFglVimnySBjq2iCFLNKiFCkVz5oxJfq+Y7FYYuuayqipCM5P7dxlQiJlkdswyYysMehJ+jTLr0Io8hqRc5lVZDBaF2mWNeip08OYkmKVBMRQNPvW1lP3QGb0nqEfSzO4lNNutWfys09lgIEQAqAOU4q5M0ROxuk4NZGLaTe+rutJNlQMwWnq1FCTtGyxXlK3JZY0+Agkgo8T0cjkJMhZFHGaFKRUErOkMAgliCmV/gUUIoui8RKylPulZ96YeYpwSJqdHpNAFqJIwJQqKU+3FvhFuiQQoixic0qTV2X23KTSDD69uFSKPE1OQKIUxFC8NvN7NreCz3KyGbcnHCmlKdEJ9CzxSoVUumEEK2nqhrPTU9wwogSMw0DnRtxoqHWFyhKhdSFJZKRUGFuI0NB3+HHE+yK/EwikUoQMg/ckIdn2Wx4+egSA1Iqn109JKWHriovmLk3dUFUVXbdnGAaEAKUM2Tn6p5doa5H9SN7uuXzrbUQMGCmplKSuLZXR6KaC2qKWFUKcYoSgu7oii4zTiiEEgjGgVZl2JQlJoK2mVhZlKqStqRcLTHPs0TjiiCOOOOLbRyDyo/1nWP7NCvnG68TgP+hTOuIjhndNNIIbsdZQ2fIt3gekktRWY1SRAFmjiUESg0TXFilhGPa4sZTwSSWprCV6P3kSAmhFZUu7d5FQMUlHMiE4tCw7yGnq55DTgl9Mbd3aGIzSaCmxxgCZrutBCowpRuiqttjKknMhEzEE0i0/gZQCozVVZZFKIgRIyTShUFMJYNnhF9xqKBcQp515P7Wah2nCEVNptraVoWkamrZFGT21aXtyFjjn8T4jkFMjeflZsy8lhsVHUURgiYwSCkUipoSkSLcyeeq7K6V3kkIu0jRlSCmVsj1R1P7RebKM0xQlPJs0pITMJY53lnwdWt9zIpNxwaOVQutpGhSmc1GlyFCI55vAb08xZtJx+/H5/ScnFFPM8HTeMUd8dESXMNZSm/IVnJt+BkmMkTE52mpBe7KeZHcjSWR0ZYrsSpTPUUlZPA8TkRqd5+nVNc35HUJOPL2+ZByGElBwJcgxY4xi2S6oXrCMvufp5WM2NzekHFBSc3V9iTEVla1ZLRbYHFHBM+z3ZCUJAjbXJfpXSoEymvM7Z1zcvYNKGVPVpBzxSiD7HY1S2NpS2wqZILlA6AMpChCKTJHgpf3ul3SzH3HEEUccccRtxJz567tPs34tkre7o2zqiPcd75po9EOHVC21rFCTwVgpSVVbqsoWyZESeK+K10EplJYEv2Qzaf7qpi4G8FQzDHmKqS2ynJQSwTtijIUgSDH1FxRtvFISpeb0qVgmHbpMQ0Io36e1mWJaI2SBreopRmryl0g1SXqKVh6grorHRCmFmhO1Jh3+c+lIUs7mh+nx5xfR4zhOyVfFg5HIWFvRNDXWmvLzBQ8iISXF0zEt4Eta0zTRmGRFpTF92uqfIlhJmWnOgxICgSTldGiO1giknL4nlulCIS/PJh3eeZSWzOYQOS32J3cHMpaGvjiRFTETlpl8kElSTkWHTFInDpOL+etQgpi+lXzM56NUWfSLnBGyNMFnKF0ZOSMyZJHouw5rDG3TltLFtmUQGTcOuOQAw2p1wtnpCTE41FNNXUmklqQUECpDzKQQJxJZiNLoHPuuwywX2KbiZnuDCw4hC7nrhyIbOx1XpBjZdxt8HInRk2Ji9EMJQUBw/+5dVm2LFgmRAsXJLlC5yNNSSoXMmoowBh48ekxwAV1V6EVNVpaTO0tOTtZYqdldX7PZXzP0A64b8SETAbTBVseJxhFHHHHEEe8P+mhQQy5ezCOOeJ/x7olGt0OpkvhktKayGm1MaQU3hjAZroWATClay7kU6DVNDVMngDUGJQTkyDAkovcMFNP27LMwRlMZQ84GspgmEcV7kKY269JpUKRKwEHrXxaveZo7FAOCEJNpWpcoVHLGe0dKoJQ+mJfnpmyVOXRulG4OVaRZSpFF8VNIIUnTIt1aS24alFJlEZqh1rYkTGlFyp5xHBAyo7UkEwnRI6VEqyKTiimQU/HAxBiK2X6Kip0X74rScp6iQGuDEMXDwXTOE5copIRpQZ8oRI5J5hQiCF2mQ5Q+CTVFrRIjIsWp46QkUJUhxcQo5PSupgQIpFAlFYqZRBSj/UxqbhOLd/Zo3I62FQhkTqToiwcnFbKBlGQUPvjiXUiZyhpWyyWLuma/2+B8wAUYYiBLialrbFthjGSxWmK0xBhF3/XsNnu8K6lOmXJd+RhQZLLIiKntve/3U5yzoWoNUgm22y390JX3lbmgMBSVYM4EHAmLlKXdXolSEimna1BrzapZYBDsr7Zsr3ekrIh9IO72YARnd885O9VIoeh2PdurDdkFCAk1fwQxl2LJI4444ogjjvg2oYQgZoEM+bBBecQR7yfeNdHo9h1SKJqqxhqDNRYjFEqI0iUhJUlAZTReG/owkGLEWoMxBueK7k8piZEGkWuUAO9GvBuxlaGuq7LAsxqjNTEW87W/teifF6dxuiGUKkV4UkqGYTgQDmP1JOnRaFPIhFLFI2K0pDa2yFBiIEk5pVkpUtKFpEwyrTlFSc+Rt1CidqWC4OmHnhgC1hrati6JVqkUuimlGMeRfuiBTAqSJDQpBFIIWFOhtMS5SAyRnErilZwHJmWIgci5THS0JgOj6wtBkqK0WE++FCkVPiWc98R5UZ/jFG9b/BBaqfKhF8USKmdUnidHqZjAcybmNEmwJikWgihKv0lOeSo1LJ6NUngXv2XS87fD/BlCadtGUqZVIgKhROUiEaIwHasU3ns2N9dYY2ju36Np6pIwphQL06CNRSkBRGL0dD6w29Wcn55w9+59Qohsllv2+46hd+y7AZ8SPkQWSiOVIqZYEs2m6zkLUGZqQI+lvVwJQXRlEpRVJotEbW0JGIieFBwqBYwqviVi8bk0dc3C1IzXO643G3SW9CnjYyLEjBQaLQxKGKJzhN5BiIVgUEhLyhmlBVYd4wePOOKII454f5CyRIRUOpyOOOJ9xrtesQwDKBnpa8+yFTTLlkVTY5WCmLFSUTctUgiGfkRkgVIGrTRaSJZ1Q/K+dFLkBAqUFUSlcCpRGYnSJVZVpQQhkEMk5oySoKw+SAeVNeSsDx0M4zActvMHP01SpITJuK2UpFgBAlpmGiOJlSjNy1KgdfnyfkTETFU3WGvIEqQuEpw8pTkJIPtAzkUiVdsKWVcYVfwSSoHWCikKychxgBTKwjSU1KwYIiorCCV5CxcR3lOmL6UVWqRMiiWCN+dcmtKlRyiFziCcBxnRUqJy6R4JziPJVGLy4/Osi0LVdiJjI8RQjptSiRWe4lZzTiCKyT6GWMzulHK/mMHFSFQQJQSRcdkTBWQ19bCHwl5KEtV85cz/IyYTffnzA9kQAqFkiW9Fo0QmB0FMxYAOoChmd+EiMSSc61GqRPTud1uM7lkvlyxNi0Dw1A0Mw8hD53n09iNOTk45vXPB8vSC9YVm9IHRlZK8um5o7AKdDbVZ4mJA2yWQEdpg7YqxS0hvWeQluEAdFQJJ1OABi+a0alGDY+lziSIOkZxDkdA1Neu2RZHpuoE8eLLWZBJJFGeNSAKrKhpds93syM6hyeRcCvyEkGhtSWgW6/Nv+8Y/4ogjjjjiCI3iN5x+jR++9yWs0eTxONU44v3FuyYaOUu8j4y9Z+wdaVEWqXJaHCulUVoTU6KuqtI0PcWnaqOolCLkiPe+yFQMGFUW5DkaEIIY5rI/QRLqsCDVWmNMMYznKYoqplxkNockJIHSGhWnArgQMRWoyhQzNLMBGaTIRaoVw9QcHqGqSxHelPA0OoewGjX1hUgERhvkNEEAgyQRrSlSGQlCRoyUk5Qs4McOkkeTCSHSja5MMZQm+EgUocTSxojIZXdfMRneEWQkSZZdhpwzOWaIAZkSMTpcjJNjY7Jc5CkKVYnSZq0VajK5L5YL6rohhgA5E5xn3HcMXUdwARGL5Mn7gA/FvG+1IseIH0ZCzvgYUVWFXTQoo4DIEAM+x2LMVxrS84bvZxBTr8qzqVTx20ASCSkgaYlAg8zgS4GjYJIhZU2sSn9LnEzsSpU2d9/vGEUk9G25TkIkOY9L4EOk6xz7MfLiKxXawIPHj7nZbRFSsW6X3DtPWGGotQUvSCIjleLk5JTV+oxht2fXO8IYMFliZV08GuOIE4naGEQEFQVnzYrFyTlNVXO1uWE39AhryErQu5HeuyJjKwI6hFQIUSZk1lQYYYgu0u86wlBicLOShAQRAUpjl+tv45Y/4ogjjjjiiAIlJL+5/Sp/9DP/Tc7aljiOH/QpHfERw7smGlVlSzFcSgQfijcAMNoi5GRqFhmtNFVVYUdHH0dCiGA0iCKrEbLE1RptyVkhRdm5LylI8UAIlCqTiExZuM8lfVmWyYJKGSGK3n6Ovr1tei5xrSCkIuZMnJu9M2QhSVngQqAfHFKOLJAsqwXKlChdHwJKFhOvdw6BIJqI0XpKn4Is8mSmnlKqVEmPAibDusBaW4r5BocPjiDUs2bxnAuJUWpagCuUkEXbf8tzUTzxeTLNR8bRlbbzWGROQpSJBEqRtYBKIZQq5ENkXArI4CBpTG3LBKOukJVBNhUxhEKkpCKMI9eXVwx9j/diSoZSJSJYCLLVJK0IJHwM+BjIAoQoBus5VnfGO83h8+9nz8Ycb5t5NuWY/3zu6DDa0NQN1lrGYTikaEkpJ1VRYnQj4+imQAB16OOQQkyxtrBoGlwIPH36lMvrS5Qy9NUGK2C5qBmdLV0vfsQowfnJivM7p7hVi9SCzdU1Q9+zDyXC2aGISmCXC6ISSAXt+ZoX7tzh9OQU/eBt8tVThhjYe8d+GOnDiFQSFDgXkKoU8hmjaZsWY6bSQ6PAa7SWhGkKlABbWxbrI9E44ogjjjji/cHLGsYv9XD3HK6vj8lTR7yveNdEo23bQ09FziVBKeWENmWRHKbsZakUla0wdmRwIzkkfPAokcgktJIYq8mpyGhymrwBokw+hMgIFFppchYwSXeg7NjnWJqTpZJoDN4HUirFb0LKafpRphjW1khVEqSKh6AUBKZc4kITopTUxYgYHNKMSG2KfVeJKVVpMi+LIjHSWiNkLn0UZLRRzyYaoiRohVA8JcZoYtTEENBasV6vEEKTYiKKafGYMuS5RTuTKD4KIabiulA8EcTyPpEyIicUs89BlLhfyvNDEpAkQpf3iJxIwBg8cehp5LzoL++jXjUYBCJljJCs5Qmn53fo9nvcMGC0oa4b8pT560jsR0foduTgCrmYWtJ5x8T1F0uiuv317IlM70ORSkkpycXFXpKuZKayFdbYqdzRYq2dzP+aICQ+RJz3LKeJkhDymYddSZaLBW1ds3v6lOgdRqkpDrcjhJEXX3mFujHsdjv6vsfUFffvnLOoLYu2om4M1arm8eUTNvtdKWnEoiVko7jqtohdT50FmcgujIwE9LJBx4joe0ippFDFkl1uKwtKk0IqZNpoEmlKc6shuildTdHWFlmtMO2adtG+9zv9iCOOOOKII34RtMLyX//Sz/K3PvMrqb6uyFPR8BFHvB9410RDyiKNUUrgg2e/39E2FctFTVPXU5NxKV2rKktdVwzjOPUxTAlKpPI6WpLSs4jUubBPSklUEjEVx8WQkFqipCLGXEzUU7ubFPIwvZijUpVSoEqClNLFBC6ULs+VgehdWeRnAVKhTY02icEFBufJ+w6hdYnBNQor86EUUGuNsRZrbCmyixEpwGiBICJFPnRCBDJGK6SA4EqRYVVZVqsVSlmGYaTbD3gfcD7MejCg7M4P3k1lepkcp/6OlEtRX05E5xExkWOJgE0U4uNTIluNyBaZMsoWk3ORpUVCGkiCqYwQrLWHFDGRKcRPSxaLBcpqtjelX6RZLMuaXUlUziTrcDIzkohOEHOZHCilyvTlHdOLmWQcWsCnFKrynPK8mXbMkbdzjHBK5Xrz3lNZe/ic67pGK8XY96TgCW4kZJDaYG2NUrsivZukV5XWuL7n5vKS5D1WaZx3IAU+jiyWNYKI7/d4Ijp49ldPcd0GoTVZS7SG04sTmvMFiSmW10cYRjZX14huoAuJm5tL6kcVwihkZZFVhbCGk6pBK0MKmW7o6PsOlxLIzGKxQCo5+Y3g5GRNrHXxpSsNuibrhjErEs8ig4844ogjjjji24ERit938f/lH/3+X8Mrf7UlbjYf9Ckd8RHCuyYaKSX+/+z9eZRl6XnWif7eb9jTOScihxpkybKswZJatuz2gG1sZBtojM0MDYaGboblBhtoDIumL3fgrnWBvtzL1I0ZDQa6ocFtcJuh23DdZnB7HrBkGw8tydZkyZKqsiozI86w9/7G+8e7T2RKlnGqVKpUlc6jVauqMkMRO05EZH3v9z7P8zNeYXo5Rw6Hwm7nOV/3dK1boHbaFmSsYJ1R20cyWFksTRWO4WAdLpQKUWpdampFJ48q99Wf2uVQWsnFLBsGuWp3EgHvPa3VPEKuepCutTJPgZKUZyECuWi2o2IwzuOaFhsixKUGd7EvlapAQNDDs/ce79TSUqoOPJSCWEPJlZwjQqHtrLZA2ULNhrJsNc7Pz/BNS9u0sAAAY0zkkiFVPeDXe5C8nPKVDUlAG6FK0QB3LpiF2K2kcsGKDmmOSnVOG6KChumrV49/rIVY0kItr4hACoEUo1rdrMMCcxLEGBKFbGEKI4eU9OvhHFVgzoW4tH4Z0a2Tssfv6YO3GUeexv21tqC1xNqcu2xFWAjsS6ajlEQKatXzxenmShbbXtPQ9T0pBmYjuKah7Qf6oafpWkoqS0aowYph3O04bLfIYn0jZ3CGy/GSOU1UEtNhR9jtKGI43L5NqRnjG0zryU7I1tBtBq7dvMl6tSLsJ566fC/Tds+w8E3iFLSe2BqYZ6rdI9ZzvrnGjfMbNL5lnkfmOLM/TOxDZLNeEcPM7bt3mLZ3MTnoRqMWzerYmWQmYnW0q/WH/YN+0kknnXTSST+fXu0F+YI7yD86h9OgcdKzqAcPg1MQK2pvQvkPtRTmeWKamgXG50lFOQht29D3nf7+PIMzeKf5BL1Rz8A9cNvxYG2MBsSNWMQZqpjlxr/irNaulgWApoOGwZiKc46u7ykIIQQqEItoGDiNOGcwVA2Rl4yIwTeNHkJD1jC5Mbim0YYpq1kSBfzd254csySlZKSqRUmWA//xJt85C9kiTmt6NSjvFzCeHqCtO5CyHqCPQe6yDDdFdCtgrg7qVvMfRatvG+sgFd1qlLpYrBI1ZkoMCtcT9fRXZ6jOUq0s24O4fD6Q48w4BaI96FZDNDfhlueutZJyRnKlG3r2+z0xRVKphKKtVU4MqejrUUr5gE3T8fX64A3HB9qn1HpljVkgihrqF2SpNDaI91cgQx0iYZomzcsATdfR9wPdsELEsj0caLsOg0IAfaPZi7u3bzMf9rBsdKxALokxjNzZ3qGphpRmpGTyPGnzVwiIm2nWK3CGfZiJuz1Dv+GR80d4ctoS7u5wsWCrjlutWGquVIESMzUXcs1kOyEhsr2z42J3QTGFkAtzLoR+hRVhf3HB9u4dJE1QwnHlR8Iy4xjOHqFp/EfwI3/SSSeddNJJH6hWHP/Va76Df/LYL4d3vfthP85JLyA98KDRdS1t09A2DVCgZkpJTNNI17d0g3IjxAipFJqyZCWMoaRCWJgYyqqQJdOwdCstg0aVuthd9C6/Vt16VMC5paa1FHLVm+pyRdTWwzFV35dzjrQQxsULc0iUHJdQcFF/vujNede2jNPMNAVGM9Ism40cIjFbcu7oug5phGILzjq1V2UNqzfeIFIoJVFKoopgnCgLxCyWINEcS13askT0ea2zuOKUis09MKGzXjMauVBT1prbvOQzSiXNgZwTOUZqKvp2JVNixhQF4ImgG4LFflVkmdeMwTjLva4qqKZQcgVrKaJ5Dt2kaO7DNw2+tPi2wXpHSJkSAqUEXBWccRSzsADNvc3G/XYp59wV/0SHxHIV3lea+/Ftsw6e5V6G5bjtySzWqxIZx5HoHCEEci74rkGMJebMOM2Q1W7mvad1aiVrrOXa5ozGjYQUCSVxKNqwMY8jYhzUggFtLas6NLTWceZarHM0c6HMlfVYaPaReGeLmxMb1+JihhiVfVgrGB2nnTEY71k3LWUM3HniFrv9lmQLxRpSEbpmwFurdcYpUXPClHvDeK0F7y2b9epDNHqd9PGuP/Nf/13+u3//nyHf8yMP+1FOOumk56GsGH7F8Fb+/st+Las3WiinmtuTnh098KCxWq3o+46+cZScSGnWXEAMxKgWHGstYg1+yWt477R1abVWG09NlKz+fDEWa5SbISybAtFDOHqm1ixE1ZC3LBsHMYJUPSgfNxvGaA6hlAKidPCYEkZgaFu8d4yHRIgRZ6BrPLUUQij0rWdqG7aXOw7jzCYnun4AI8tht1zRyK2xV3YlOQa20Vpavck3CyQQfVa/DEwIBW3CykktREPfEvOAixEjx2Fj2WxkDYHnUilkctUDJ2bZ+nQe4w2uOMjK5YghUAQkVmw1+nqYZTsCixWskkNaJoIlXL/Y2cQYqjUUq5+bs/q5VqDESNltWa/PGIaBjfXkUjiMBwXgTQq/s8esxX1k8A+2St1vETtK//le7uBY56u5nXtvr19rcwVxPJLcd/sDh3GmZDBiaZqW+TDq9iNX7oa7TIeR9WbNzfNzHrt5E9s4phi4O25Jkumsx+SCqUKmYpylxqywRAwWg6tCj8GIoS+COcyYOXFjtaFbG9J4YN7uSDlgCkpW14mPzWrNjWs3mA8jYXfAiaGUpJs0oMaIpEzvPcE7UuaKFG8AWWqj+6bhqSef/PB/0k96QevLhpk/u3Y0D/tBTjrppOetHrcNt/8jy9raxQp/0kkfuR540HDO4r3mFYoRqAkoV/Wv0zSCCG3f4RuvNOWqTIvaQ5oj83Qg54Q1FSM6aIDmD1hu4Y1UKsebbDSLUOtSW6pZDUFBb6bCNGV9jqpZB9scm7EqIcxY7+gaD7mlpojUgrOC8Z7GWYahxzvHYb/nyafvMh301nh1tsZ4ixhDyZkxJlJM1L6ncV4J0YuNylnwzmLdUm2blbBtRbMoFUBZeBqGFwPiaZqGdPw8RSi1aG5jyVBYZ9U6BMuAs9DJY9LBC93mpBA5HA7M+5FyiJRYqAVSPW4ydIthrGXYrK6sWccDfF1sW6Fk3SqkxLxsG64anmrl7t27NE3DMKzompbet9Qmk+dAyIkiQl0I6nAvpH/cbBw3GMeqYlVdiOQG4xyloHahZQvkXCFMgRTTVXDcunssDueUwTLNM9vDnqZpuHHjBjtzwf5yS01ZQ/fjqHA/73jRJ3wCL3r8MXIpXAtnCo+0Qpgm9m1LDZFUKyEnGu+pbUOygKnYtqH1zWLvgs1qRXt+nZX3TJeX3DWW/bhnnEdi1RCRtZZhWNEPA9s7l4SY6FpHyktWRCx5nqkp0TtP8A0xOTCtZplcg8nCMKxpvOeJp574SH7mT3qBKq4tjcipmvKkk056RmrFYT/rrrKfYnjYj3PSC0QPPGikFCnZq6nJoLfWRfkUIQbG6QDGYL2naxRKVxcEXZ4LcYxYY5mmA6XEBdTGwjlYfD21av3s0rhUaiWXhBiu4H3aOmX0gLmwGEKMlKLwPlOr3mSXssABYei6q01GSRErFe/0WY21NM5xebnlzp0L9rst6/WK1WaNMYY5BA6HAzUXhn6gcX45aFqk6u36sUe1XmVHklrCjFClXBGwjVFWRRGBlNVGVos2T4luNGIMkO8Fwa+4Emhg+rgJqEuIWgTECX7V49qG3EXyGMhJ7VTGCuIs1juk8aw3Z1fNXcK9TYNulECcHviPm4haIYTIfr+n6VsohWk/Mm0Pmt1PGVMqfrG4ZbgaXu7nZxz/boy5apY6DiBU5bAcB5RSK1aMDlliSCYtFPiknAnvcNbpZskYuq4j5v2yXYu89MUvwYmhpsI8jsQ0Ka3dCCVnrAjTfs+tp24xjyNd22KdQZzFVME2De1mjZ0mHW6tZcYQSkUcVFt5en9JvLzg6Tt32AwrbqzXmJTwfcdZ6/C5YzdNJAHftbTrgVQLh3kCI1pju3BdjAjEjOTCMAzEpmUMDmMEMSDWYtuW9WrAWUdzbOY66aT79N1/5W/yq370N5J/+h0P+1FOOumk56GsGH7rK9/E9w4vhf3+YT/OSS8QPfCgAVxB0qw4anFarypCDIld2esNrQhiBOsbpELjtQnKotyCUjNh1ltslqYhKZnKvdv1XCox6TYEU7FGW6D05r1grM4l3jn6wTBNMzln2q7D+VbJ0d6Tc2YeD5Qw0TYN3lqkcRgEZ7QhqFZw1nHj+jVu377LE7eeYrfdMqxX+NqxPxzYbbcYo3wQcwyIi8FarX8VypIBScoJ8S0mx2U4kCtTkF1sSVXU6uWWWtmS8tXwVjNqbVJPllbTVshFsxq5ZPIC6tOqYH+VhRFvsSuDaTSTYGohUxVyaJUquC+zMisWK5pZ/F+lqFVLkihA0FqapqHvOtquw3vPql8hQJgjYZyYpok5piU7stibDFDlCsCnWyjBe7vc3utrcX9O4+r+VXRjVZd8g7UKevRNo/awGjDG0DSNbq3Q7ZH1XnM1qTKFiHVOg/VLE5Wgg1mOgcY6XBXCdke83FEOE/t0h5gLtA2zFfx64NEXvwScIYRwlZGRUjFFK4XHkNhNew4lMV3cZXt5gYkZS8V5w5Qj2QBeN3eFwm53wXjY0TUWWb4/jgDJXDJSKl3TELqOOHr9uuRErpGmW9E1DeIdjz/22DP+gT/pha33/4oX8ejb3nnaapx00knPSP/p2Zv4zld9HnLr1sN+lJNeIHrgQaNvWqxYDELTdPRtS06BGGdySsRJWQcpFlIs9MMK55bDvcmYRqg0FBpKjaSsbTrVCMVUchGKVBKZJEKx+nvGCraxeO+0gWqpnNUwtXqSq8gHcBbCQqvuvEAplBTINeF8o/8/a3BLTiSXijWGs82GRx65yWEaiTmy223ppRJCIISgtbeLd78AmYq3FmOX/EMpGIS28XTekkOllrRgvUFKvcpg1JwoKWEpeIFQgaRQETdX8pS1nrZWsDokFIEiejAfxwmkYp2lFf19HXaKwgi91WCzQCpF261KoqQCmSsQoSyDhiyWLCuGxnX4tsE3ShCPtRCnwDzNiLHaRkWhmEo1VcGAVSBWakpI0a8RIjhjtW1LzBLe10GzlEw5bjEMaD2u5m6M7luoRj9njMG2HlcLWSpZIJmCb5SvIinTpAY/e+I4U0vmcrvlcrfnzuWlQiWtwRkd9NZdQ5czdb9n2O3pALGGi5TYhUgygh0Mvl3hW0+c7hD3BywskD/AOuy6p+t78mrF4fYFl3c1FD5YB1XIRQgmk1LEOIukGTmMPCKFG+cr5unAZZhJ1lAbxySWlGeyVDY3ruN7xzwd2O0ulIFC4WJ/iYkJ352AfSd9aL3p//k3+PK/9wWUw+FhP8pJJ530PNTLnOPdv3LFJ/3AKRB+0rOjB+doxEQRQ2k8znZ0jaNUxzwbxsOBEGamKRFDphaoWRh6wfWGWhPVFIwrGAdYKLmSasFUo2dsMWDvg++hZOuUEjjBtC3GuaXZymg2pChFG+fIIbA7HPDWIaVCyliBvlXwX8lJtwVG61MtepNfgSKC8471es1qNXD74pL9YY/rWhrnGXpt+jELRyOmuNRgKSzPUrQa1wjeGM2eOEMtRuFquVBFNzQ5aYFULVy9vcREDAUnnlY8FSFmmGMg1kSWSrUGPzR0XYd1nnkhs9dlY2Jq1caonCmmatORtYDBFIOvWrfatS1wnyXLKoXdOYvzjVLdndNtC0JOiTDNzN2sLVemgjOUUIk1EWoklkRh2cos4fxjpS8YatYWprJsLzQwvmTGZWkfW2xomv9ZgvGAcQYjYBuHrY4QI1MOmOJonKFaMN7Qdw2SNSx+cbllTpGpZHJONOIQa3DO0jUeXxI2JVpjsSlQaiJKJTtDsB5jG+Y5M42BJ3/2CXZ3nsYBzjlCLlTjGW7c4Ozxm1x/5CbGefaxIvkAxVCLYG2DMQnnHJvNmhtnGxrnaH3DS9bnbA+XvPfQcBAhmJbLVBkX+9rm2jmuc8SntEo450IZJw67iWI83WrzLP4RcNILTW/+S5/Kq3/fv3vYj3HSSSc9D9WK4/O/7Md44q+ck5++/bAf56QXgB48oxEiXdNgjVBzYpo1DC4iNG2jGY6lonQ8jJQsTGOg7Rp8axEryzb/uJHQjQbogdNZtzQ2mat8BkYUeFYLKSt13FiFw8UUmccJKuQYmcZAnGca1zC0jTbwih7whbrU6XJF9c4IInVprtKHaBvH0Hfs9nvSUh/bnw30XU9cIIDjNCJ9j0PzFY7FaiT66WhDlpLJa61IWQLbuehNfq4Ihsa3eCtMbeBOvmC/3SFYuqanFY9vW3COGmfmoFuW6gXXtVjfYgVqilqjmhJi9PU1opXAToxuoKxo8N5qWH01DB/EsVie2ejnoUujirOaffDeU0slxci4P9B1Lc5qeP7O7TtsLy+Z55lU9HO82O5JKWOto5RKSlFhfkbrdPV/H6QK+ZjLWSiMsuQvrqx4zuJrs4T+M9M0UWu94m8YERpnkVqIcyBG5ZNUEUKOSLUMXUczDLi2QUJCrMVUA1U3QsYaDfQbIaZEmCfGcdTPoxYqQqrClCKEyDXn6YcOc+M662zJ7Za406E7lEK2hn6zYnX9BrQth+2O3X6PiYXteMnTeWQvMJaZXaxk03IWEt0YuLxzyfapu+TLA65C41vaooUBvk4f6c/9SS9gvfVXfx2v/8e/m5d9xY897Ec56aSTnmeyYviqx/4P/sTrfy/uuy+pC3fqpJOeqR540BgPe9rGkmJLMAuZ2kDTOGVr1Ht5DbUbJfb7A8571puBpvNqx7GOrutxLi/NR5W8APessQuYLZFTJAWtL9Ub3YSxgm9bnNeb7f3uwHgYqTkT50CYJoamg80GZy1iCmJ0fSALN6KUTIpQo4LfQszMMZGBcQ5aOVoTYQocnGe93tBvVtgYmaaJ8XCgb1ussZSq2wmWPAQVyrL1oFZKVRYISyWqEQPLcEOtWOPou45h6NltDxwOI9Mc8OLVdmQd4i2N7aAkqjGEmjFak6SZjyVrcQzn16Vq91jFKwUg6yE+Z8a8MCmWvEfJeTmQq4XIuGNwXW1SbdvQtTpwxGkmxgkrhnmeqRSGVc9qNSDWMYdMSIXLy70G8VE+R9N0Cw9FQ/+FuvBP1D5Va6HkpSb4PjhizpmU0lXWw3tPSomU9HtM0C1DSolpPJDHSLN2uCOHIy81vgVCzYRamHNmHyONFcQ7bE3LMKPD55wSJc4LyVy5JyCUpaK4WE81Fdv2uKZh2u+pKbJe9zTdQNxNXO4u2YaR3Bo2j92gu3GdQwrc2u65eP/7ea84pjSxM5HZO2L1xOrohpZYhN1+4u6tO4x3tviUWVmHz5madBPV3lcFfNJJHywvlr/22d/An+P1D/tRTjrppOehXuUnfuZXtrzqx85OW42TPmI9uHUqBUKYCKHBGL8wFoScFcIWYySnpR61VFKqgLZDTXGibT3DakXbtnrDDUszkYa6rbFQIYbEuPAZ5jlgjKNQmWNUCF/T0HQthcp4mNjv9sQQmA8zYR7pXUtKlbPNGu8LSEZq1tCzUUZDLJGUMofDyH6cmOZALJlcYTdOjPs94xSoYgnzzM2bN1kNAwffkItyK7TpSlkVhoKtmeKUcG2MXRq0CsdUt9qJql7sIxjRKldjhKbxWK82q1qq1rzWgpSEcx7Xtzg3aHtUq6/HsTpX5BiU56rqVkF/yiU5BuhlqdClHnQQKmqlOtLYxRoKGYxuEEouHMLI9rIsoXPH/nKr3zRGNyTea0UvCCUIOZulctYujWNm2bCY5deMVvjWqq1jpVztN5xVavzR0nUMiuecrypx72+sylm/BlRwYmmsYyYitWpJQN8veZtEzDpk7aaZW/UChhU3uwE3dKQasCJa/4ujxLQE1DUD4xvHNEPNumVLNmO6ge5sg3We7d33cfH+JzBT5qxZ0/mW2jja/ozcGuywJvuGLEIa1ux9R86V2vbsq5CsJ9MgvqO/doNmtWa8vGS/P2BSYfANa+uwsZJzwphKf8r5nnTSSSed9FHSuen4nC96M0//85ciF6etxkkfmR540NgMHa0zOApuOUyWWojzYuOo926kjzfRKRbEBmQW5qhE6a7trvz/HG/fpVIkL5aYmd12z36/1wCybagCU4hKrDaC836xt0TdfoSo7VG+I+TC03cumELgbO1pmoIYtdjYXGAZFOIcOOxHpjATUybkrIfjWmicJTpHTpHLi7sMw4obN2+yWq04jBOHcWKeZxrv6JuGxguNMdgipAwmV4wstqTl9VOgn9OMgx7BEW8xK8s0RYbLLVOIVAyt65e6W4EFoldEg9OlVqYwLy/5Uhm7vO4Wg7cNxquNquRMqZmKcjSsNTRNq1uMZQC5aqcRSCUyjZMyPKxdgHk6yKQ5XG0Wjq1UYg25FlLKTFNkCvrPxhhyUeCeNe7qVTiS4PX7RBBxGFlu56tRC9VCDj9au46DxVHHDA/oYBVDQMSxWq3xWObDSOxnbly/jnGOO5eX5Hmk5MhUC7f3O7yxbNZrShbGMOMpRN/g1h3XjYdhxXo9kEJkvRrIh/2y2dCXa1ituX7jEbrWcxkih+2W6fLAzl7ibEMxhuot0Vvc7pJu6DhbDWAdoe2YxhGDYayOlCBR6FqPHzaYtucQbzOXwtA0iDX60lQ0aF8rMZ/6zU866aSTTvroyIvlK1/0nXzNL/0qXvaWDfnOnYf9SCc9j/XgrVOtp2k83hicgLdCxRAiFHTwEGMwsVBKQCF6mRIjBkMNYEwAhGYJ7QoGqRCrLJapyDTNjPuR+TDp1oBMESGWQlhyIFVmxW6gh1lEMN5hxVJSoqTMOAeqRLqs/Iy2sUAlp0KOiZQrVbRBq2kFnxXsZp3De4/vIvspsL/c8bS9hTGGfhiY55nDfqRSGbqO3HcMXaO1ucbSoIf8itqkRMCYekV5ZoHslZxxxtE0ntW6Z3O+Ub6GOGo1euOPDhixKtTQeU+/GrjeP0pZuBNH65Q3SvNumxbfKB9Yh72oX2jv8YutK8RAzgpaPBwOhHkm5ohD8I0jxqDh92VA0C1OuiKky1IxK8YoybwWqkDOCZahp5R8L0Cfj3kQBRKWWpahRfGLx5HsWHl7HDQ+mCiuAEF/9b2Ssw6nIc/4Rut4wzQTQmBjLW3XwXYLYrBNi6mFEgIzMOZCDYFxnnFL/iJPE/0j52wefVRriwXKaiDcMcwpQhVMzXTtsVlsos4z5EzjHcZaQkqEWAgBZip5e0HbtqRHbnLWD9jViilGTMkY0aplRS86fNuBcxxSYqoFa2FPpCI4UyhO7WDmZJ36iDTXyD/dfeiK4N+yfhqrVWjPa3USsa96+YmpcdJJD0G56p/R5b7LwKOeL3++vL65ZPOGJynf+mK4uDw1UJ30jPVhbDQGXKOHWamZWhQmZgyUlEglUzCw3Ia3nULtjjfwOWvtrZGM1IVyXZWDEEMkxUQMkXmemaeoh9+USAWqsWiaW6MIFb0d1/D4PRJuLhVjHd55jFRCDqQpUxAw2jRVSiXlJZyN0YFnOahb14DRSlg3RzAH9oeR7fYS3zSUCjFlttsdMQamrmPue8KqJw+95hBqS8Wir4ZZDtTLbXiRq2N1Fg2lg8E7R9d3TDEt+Q0HxmGsowqkWrGt59qNG5xfv05BcxZiBO80z3FsiDJO7WrHl0XMkuGoEFPEiCWmSNMoZ+RysenM88xhd8F+e5ecMvqkC9ckZX1fYglhVuJ71TC/dXaxRhmcq2SqWscQSl2sTnUZIGohV2WmGCMg90LppdQFfnhfI5YxC4fj3qBx/DVrLSEEYqnkFDlMe1rb0g8DGJjDTIyRkBbLnfNY69R616+I1hBLIRkLS/nAbreH1cg5hf3FXUxJmDzTScE5oVhH71quDS2dFdKcKCEo1btoQ3HMlVShVB2+DSClQMoKsrx+jXncM29nWn0JwBg67+nbTtvUUqBYoVpDlkq0UKqDAsY6XNM9Sz/+H3/6yp/5Jfzkncc5+/K3fcjf/8bv+Fw+cbjLX33JDzzHT/bs6gs7w6/+X3+Ib/x//Co2b71L/om3POxHOumkF5RyLSQysWammplqZa4wVUtGKFXICIMkNqawEkMrDo9iAj7WB47rpuO/+OQf4O98/q/h8Z8eKNvtw36kk56neuBBYxhaxCz0bjK1ZG0HWsK8OVeqsdRq9AbZ6sG0IlRjqKI06mOWY/lXYogcdgdyypRUSDGRYiKnRM6VkCLZGKx3GO8QZ3EL6do4p88E2CX3IRUlTVdlc+Q8s58iIWq1a+saTNNgJVIIhKjtUuIM6/UG3zVM00yVcdksVMZJb/43Z2e0bYOzjv3uQE4Hhe1RdZvQNoS2YN2yzbDKqKBqsNhe3c5rCVNlGcralrZvsYcDcU6s1wPOdxRYqN6ebujZnJ/Tr1eM40zKCSuGrutpnDZDTfNEiDOl3GOKiL4cxBQJITAMa6hRv15FoXhDP9C1HZ01eBHmadLhAiW/e9dhnSXEiDhHLdB1LW3fLduLSnEFYzzjIRBC1I1JSljrMWJ1SKgslHSzNH6Vq2HGiFlsZffI4jqAlCvC+DGvcVWBbC3JaKPVPEdqEYZGrXkKJTQ412ByWqxPlfV6zfradWpKTCmjTcgVKVAqXG4vWV/chZwYL+5gwkhTAo2piPOU1iLznsOdW7RON1iNscS6DFJLiFwQJIM1gktCUypnXYtbdczbC25dXuCqUKvBSOXa0LPuOoTK+fmGa4OjlQjhgMlJczcVjPXY06DxjPTZb/wKHv1N7+QsfughA2D84id4+yM3+aX/86/n2z/1nz+HT/fs6w9eezd/8K/9TV7xTV/Np/zhh/00J530/NdxuNiWwHuS4wenl/N9F6/kbReP8PRuYNx21NmAq4gvNF3kpTfv8nk338nnrN7Bp/hbPGojg1ha/Mf0wOHF8suGt/AXP+9LedG/eQx2uxMI9KRnpAceNJbOILUylUSpiZK0ISqkDOIwThBjMQZyVitMrmqTyjUTYyan46GpIlUoKTOPMzVrQLmUogA4sYhVMF5FD6UpzBAVSOeyxzX6lzFGMwwst+RFh58qlmI8MQSmGDjMicY6rMgykFRKNdSlXld8i7EeTF4apbIOByUzjSPzPHPer1ivN+SszU3WOZzX2/JcIISEseC9hqorUErFVMFah1mCxrEkYsmYqu9jGHo2IdL0mWvXboA45hDxbcvm/JxhvcI2LRihloUvouRAcl1C5EWooRLjgcBeD9vLhkGrhxO9aThcbqml6sBmLH3bY41lMg6HZWrGJWi9tFg5HaIKEHOilkrbtvRDj28baoUcE9Nh4vJyy3a75+7dCy63B1JKWMPVYKjp82U4Lelq4My5fsCAcazePW4ygKUJigW6qNDG5BOlWFIIGAqua2h8hyb/85I1UUtTsZWm7emHFePFJVPMkCo2C6RCFkM47Bl3O66vB6oUSpxxkikpUmsmm8J4d2bMgebaOTZnWucxFmKtYAqybHT0tW3xztKLwc0TXddyc9Uj1zaYkBBjidKwbj3EmULl0RvXadkwb2+zG3eEcUSKhutjTUz7U73th6Nf9Kav4O6P3+RT/uybyfEXzrfkp55m+H1rPvMv/TZ++Bd943PwhCeddNLHsnItzDXxVAl8//QSvvH9n8sP/9TLWL+l4fxtmf7JwCddjJjtU1AKtW2oQ0s6b9l/wkv4p694Kd/w6s/l017+s3zJzbfyWf07eZm75JpZthzysbnleKkzfMGr38a7X/1q+ne8m/oAf36edNIH64EHjRimpSo0E3MklUJMkTHMxFQwtsU1Ld4v1iF1i1CAlCOpJFLUOtWStQXJoJYePUhqcxKlKuE6Z7XnCHr7vQwtqVYoQiwJVxIup6tbbjHqdteeWQXxVWMwTU8thTDP7A874hyvNhGtb1itVpjGEDPkEJlTJmUNSmsbkjCNI9vLS87OrvHII48wDCt2uy1SK13b43xDrUJIGZcE5y1irLI7SsGK2pxMLWQSuQjkTEkZGotvPGfXNhSxCBZrPJuzc/rVSjMXYq7+8g6s2AWMWChRh54aMy4DsTLu91xc3OUwjhjRalhrLbff8z7maWa1WnHt+jWGYcAWIcSR3X7H/nCgUOnagWG90lap5fX1XbNsipQ50XY9TeM19zHNjP4AGIzxlAJzyOSsA0NKCVPlaivG0bu6gBrTkgG5P5cBXDVQHYeM4+8dtxpNow1kkgKlGJJU8rJ1CykSU6LkSgH6tqdpW1IupJxxvqX4gBCJuZJFsxrj5SWPDS2r9UCpAZkrIQVCCYRQmasCGXNjyXPAL0OPR5u9vG8xVTcd58OKxgjzeGB88kn2Upjmmd6A8UKugKkcLu+yPxzo2pbHH7mBqYl4cUm4c0GdJzrf4V1HXqxsJ/3C+j0/8wZ+7G9/Go991y1uvOX7+HBetfSOd/EJf+wVfM4X/35e/XvezDe8/Ns/as950kknfWzqOGA8kQP/9vAq/ubb38Du+x/l5o9nXvtTF8gTT1O3W2pKutmv9/JzYi1WDNf6juvnZ+QXXef2J72M//Flr+CvvjLzCa+8xRc//tN89uqdvNLf4nEb2RhHKx87m45WPF90/a389Ze/jqFrT4PGSc9IDzxozGGmLkHiOcx6iMuZOQbmkMjVYH2DtQ0iDoxFjEOsA4oOGimTY6KkAoWldwrdYBSoqWiN6DKMZCosEDXnDI1AWf6qi2Uml3TVviSi9bJ2yV1gDMY6teWUujQbadtRjokwTcwxUQ4HdvNIsx/xTaPQugpt2+GsJ+RMOUzEGIkxcq1tNAwtMB4O5KxDTBQh5YSYBudbhAbn9UbdU/HWUFK6YlZINktOQWtwnXM432Fdh3MdTdsjzjHPgcM4EnPBeiWVqxVLh5kQMvuLHdu7d0njgUbQ1yFV8n5iP41aEWusfg4pkTZr0u5wdfBPOTOVTELACJuzM1bDmr4dMM4q++I4ABjNbORcmefEPM+EMFOSBs/btmE1DOz7kXmOIKJAPtAtUs7UUqhVaeLGOvquv9piKOdjARwuID+F81nELHY0wDqHWKuk8lopc2GOEbIe9tXKpCyNzrdcv3aONYannnqKuD/QGUPbD/i+MsUINYMVDvs9077nfN1B46lppmkdsVZGRDcXJTFtL9nevcOcCzSeUApVDMlFpFSKcaxAixLmiXnec5gOzCnQOIu3ljkmpF0xh0RC6G/cxOfMvNsy3r6g7CdcLticsTbqIC0f2MR10s/Vn3nqNTzxlS/m5k98eAPG/co/9XZu/tTbufu9r+aXv+gr+eN/6+/zpUN8Vp/zudDf/TV/i//rD/4+zv/h9z/sRznppOeFYs0cauC9qfJd46v422//Qg7f9SiP/+DMo299F+X2Hco0qy/557ETHSthcwyw3SLvez+bn2g426zh5jXGl97gW1/+hXzTy7+Q5lWXfP5L3sUXnP80n9r+LC92B24Yx9o8XJusQfjU9j0cXlIxq4Fysk+d9Az0wIPGbi5UCjHCFCohFlIu5GyYEurfnzMwa7ZALM43NG0LcGVnyssQwTH4i+DEINVQreYaLB67QPCKQRulGs8R711FqEZ0w5HLPeCcKCDvaKvxzqmNJestcBbI1lDaoof7cqbU8ZSYw8wUglboimABZw0l6+FRjGEKE5fbO6w3A+vNhvW6xUpGgXhxoWA35NaQU0OM+j6stWAqmUw2kEwh5ESxBaRQivIgrBi8dfiuA9uo7z/MyoHAkUuihEJpNYuSa2IeJ+7cvsNTt26xu3uHNE14I/RNo7kR5/BdT0na0uTdkicYD2wnrW0Vq1Twaj0hw5QiOWoVcdcPDG2LbzwhBLW2YYk5kmvEtx0r39EYQ5GGpnHMow4dm77FSSUjZBanV87UVKmlYKvBVlEAoXeLpUoQyXror2iew+pGyIhZIH9LYe6SEfJO6Ach1JFpnMELjevBVWpNkBPeWzpjcUCcZ3bbHclYVk2rFHZr6BpH23vCYU8WHT5asVjfY8UpdRzwNVFbswy4GSkZKWBKJS0WNVJmQtiRyc5BCtQUcSlSU6LFMIjHxIxpDFILnWvZdC0lBrZ37nI4zNjqdatTLSGL3pKZB/6x/bjUtx083/MrX05+37MTgM4/+VbcT8LXfsmX8pe6hn/5nf/0WXm/z5W+pC/8wz/zF/i9t/4I/tt+6GE/zkknfcwq1syuzPxk7Phnd7+Af/bmz6B/48Bjb5x49C1vJ9++Qwrhwz9s10pNSYePcUSevk33zob+TStedP2M8OJzfvyTXs/3v+TTGV+SGV684ze84t/zNTe/n5umf2jbDSuGF9sd6RNm6vkGnnjyoTzHSc9vPfCJZR91Y1AQsunIYkg1UqSACIVwdfNcqUs7lB5MpXIFeGu7RrMeRzr1wnRAFBxnjELeql6ZLwA7s2wZCnVpcjqSn/MyaCAKnMu5IEabl2xvGKxHvFCsJRd7xWkotRJTglpppGNgTV3qW0tSi1cqiVSrDigUwmHk6acqjTd0jWWzGug85BiJIZBMofEWZww1W8JUEQq1tVSvTVNYoTaOKhmyKLE7ZUqqUIUkEXzSIL1YcoUiFtd6XCsY0dcxTDN5aeuiFrxA4x0xwiHOhJporMUbizeCbzxtdRgRSuu0/UkU2odRy4+xHV31+CngmxYxVnkcgBOD857lS4VBKKnQiNLDQ7ZEk/CNxYshjgem3pPDxCEF3W6JULSTF2ccrgoezTPEXClLeN6gg6Q2XXG16RB1m1GuQuHaNFZqwVkHbcs8z6RaiCTEVJyDNEfKVDhcXtCsNwxNQ2g84zgRY2I3zxRTub45Z7i+YXPec9Z4bNBiApEGrHJjxIAzCboOEUvTOFKM1Jyxy2aNsgzBQCqJORfSPGFyxAq01tNVhxwygzRIdcQ04zqh85b9YcfFuCcjYFtCFebl54VSkHyCJ/2H9KVD5Jv+2Zb3/Ccb6jQ/a+v+9J6fBeDLXv555M9/Hf/wH/xVBrEPfOt4Jx+IVB6zq2fleT4cvdKvKV5+4Tc86aSPM8WamWvkVk68aX4xf+vdX8S7vuelPPrDhU9561148mcpl5fPbMD4UPqgoYOnb+Pe5bjxxoabbYN0HXXV8x2v+wL+5e95HX/9076BT28Cg2k+8o/9DPSodfySV/8073r1a+nf/jMn+9RJH7YeeNDIdYHdLZsJaw2lWmrUYDelkHOiVrB2qZ5dAtxGNDkh3uOWbcORyRBj1MDwcvN/rDPVm3ODIVNrUZ99LZQKVRQUF0teeBW65UhHDgPabpWmid3SX63Z73rvn1ErjncO6z3e+3tE6pTJJSs/omRCaNRitFP2xO2nn2Y1DLRtg/dOIXS10LXNVRZCkKXRqGATGClLE1dFrMFUB1L04r4UqEUZH2ViHzPVtRjX6GCXdUPUdgNda5nnwDxOmv2wlvVqhVm2Fbb1zGnWAS4X0kLfLgtvg7K0SdVlC2QF4zSobcRTs6UzLb7v8H6p101Ja3+zfi0sQoqRkgo5earXIS/EQFG+udYGL1ayeZ4orgFvSaL5Bh0cjYbxqaSSWZpe9WtUdW+hHBJzX25DjTCayTFX2wSM4PsegHmcmaYRbyxnZxtMhTAFDrstDhiGgbPzMy5KJYwzkjOFSk4aaM9hRBrHqkCbi1bUikGsxXmhEUdxHmMb+n7DPBfCsqSrIotdMGO9w63PdDNmPcSgPJIQAYMzBuM8sVaCMXSrFdK37Mcd+5z062kcUis5aYuaOIP1J+vUL6Svf+n3wFvg5d/ye/mP/thbyJeXz9r7rvOM+Y4f5r946Rfy3v/LF/D//r3/I1/Q3eKRn2eA+Ikw8rZ4k7/+Fb+D+iM/ybe854fwD8H+tnuRo3PuRPk96XmtWPNHlGE4NkdNNfHeVPnR+SV8y9Ofwff85Ku4+X2eR950ySve/Vbqbq9W55w/enahWqFm6pyVybRFb9SA1TvfzfqnXs7v+q3/Fb/l1343X3Pz+x/KJUUvDX/8E/53ft0vex2v/ZHHSO9+z3P+DCc9v/XAg0YtSfMQVTACxgjOCNWAM1CcQcSqLaoWyAljLNZZWKpnj9Yb5xzGmPtuquWKjQBchYKbpkFSvLq1Tilp8NfYJXOhN8xL35QOJsZ8AAAuLjatcpXkYGmnUutRMoHZ2Hu5DuoVVwEBY/V9dm0LJRNDYJ5nnnjiCYwxPPboIzRNQz6C87xX25hzOKOYnlwyKVcQJYaLLM+gD7OwITJZKrkkLvd7Ao6uX9E0nTZwGbUbiRiQQtu1WIBSMVTs2Rmb8zMeNYW5Zq0RjlGp6TlBqVjQAYFEKoVck1bsOofzDRan1qwMvm0Y1gPr9YBvG3IpSgiPhZIT4+HA/nLHnVu3MEYINRFNouREHAPz/sBhd2CaZspSTZsFqr2Xn5Fq1CqlXjtY3u4Y/j4Gvo+Dxv11t0eehhHBOns1SHZdR82VMM8LSNIxrFZ415BCImYFDnZDz3iYSCEiRun0BkOcZy5v32aqhQHhzDmGBYbY9C3Ot7QWsrNYaeiaFc4EYtH/GFURMJ4qlf7snPXNm0qan0dynClBvyaugsTKbjwwU3Bna/yNM0JjGaWSvNHsktOMkamVRoSm9fjOf0Q/9B9Pesev+XpeuftqXvOn3/JRodu++M99L3/tz72aP/x3fjtf/uk//iHf5gf/1mdy8+u/D/iJq0PEw9AP/em/wefw+7n5P/zgCb510vNWd8qER/CiV5FWRItlWDbt1GVLsYBPl585Axxq5d1p4Cfml/Hdd1/Fd//Uq9i8seOxN4287u3vpdy5S5mUFfXQsgjHC9F5pv7kT/HKv3yDf/XWX8K//y9fwl9/+f/CJ7r1c/o4Vgyv8o7f9MU/wL/7159D9773ny4rTvqw9MCDRtMosfpYPZrzcnddC94Z2nag5EIIgTmEK5K0E9S3vmQyjvmJIxchJW2NOlaWHutM+76n73vaviUmJYaHGMglI1WZAkqQNlf/8ZaFrcBC51YPv4LnZIHGHQPo6szKpFKWZivNKZjlprxQySV/ADBOn7sQpomLiwuaxnO2WdP319QutRyCnV02JdYiUrGmYk3RbYYA6MBQS75q3bLWLLYkS0+PrZa2aRjWa3zTUqooQ8EaQkyEECBn1FGWWWq8qEawtqFZrbDGUHNiniam3YEQZtbXz+m6lqZtMFbIVYcwqYIpIHMlhUitlabv6HyDNZY5ZXrfMqbCbjxw+dRtnnjf+5kOBwCKLdRGmRCmGKRUaq54oy1a4xI4L0C1YJfzVkWwRrDYKzvdcdC4H9h3tNillMg5X/2eft2URH5srnLOkXMmhqiDmBjarsMYtcrlWrDW47sWO07kpIOYVMFiqFltdVOtmJCIxtA4R28tXVuJRQcuby2taRiaAesKcy6EWsF7rBGGs+u06zNSDOzTfvn/ONy6pfUNxMq6nLNqDW7VY/uGIJXhxg0whjrNeMDWiqkVMYLxFtzJAvPh6G2/7et4pXw1m3cYHv+rP/BROWS/+it/iJ+PznGT73vWP94z1Q/96b/Bl//jN5zgWyc9b/VvD5/IYGY6iXQm0knEotZVI5X3pw0/Ob+EH92+lJ/ZXae1ibWf2biZn7p4lHe/6xFWb/dcf2vmtT/xNLzvpymHA+mjubl4piqZfOsWN755z+3D6/kDX/Ob+duv+ObnfLPRiuerb34X/+sv/nxe+f1n5KdvP6cf/6Tntx540HDeXR3sSs6EGJdgboUFuFaMHuSNCNEIOeoG4DAmQtb/uDvnaNv2antxHFxSSld/WWvpuo62a+n6npADmC0hBUqqWKs8BlPqYlcBxGCWIQaEkvXgLdZoBWzOlFKvns+I3NtwiKidyRhtNTKGXLQpC1gC7InGO5rG683I4cDl5Za7d++yWg2suu7eLbzTWlsRtZF5r5wOaysiGREN0ee0BOORq2EDDA2GNGdCmGlioGlbrAgpxWVjJFhnMM5gqORYKSz1vs5inL2ycJWs8LrgIyZnrG9puoHVasA6u9jDClIqEjNSlWm+3++5fPIpLm89jbVGszA5M40TKUZ22y3h4pI8B20FayzijN78W49zSn4PxzarELV5qmpjVZVlwMEg6JbsuME4vuZwj51x3GZ8qKpbHTjvbce8V7bKWLR2t4q+f452K2vxTcPZ+RlWDONuxzxN6n0qlZoKMaYlaO6X7E6mhEg8zIwpMM+RzrW47GiBtusItRIRbNdSvGezXuGdYxz3XFxectjvMFQab+nbAScNq/MzbN/i+g7fe1IKWJeIKbG/vMDEhC0FZwRjRQsRTvqw9bbf+nUAvOI1XwXp3qD24u+srL75OaSA18prvvkP8Pbf/Defu4/5QXrLn3kdn/KHnt/k85M+fvVn3/wr6ZpI5xK9izhTCNmSqyFmy8+87wbNOzs276z0dzKTF57uDamD/unCa37mgH3y/dSLS8pu/9G1Rj1LKocDm2/7Sd539mn85T/8+fzfH3njc57Z+ETX8gmf+z545AacBo2TPgw9OEcjJtp+oS5bp21ACMZYUkyUlKAqK8IZixPLmEfCNBNCIBVlF4AeDM/Pz+m6eyHK40Fynuerw6S1ar1qXUvKmZgzPultduFosTIL50EtOcZYMKI39GKh6mBUkq5Cl4v/q4+5+Jg4dhmJ1W2GKQUn7up5qQWzcESaxfqVc+bi8oKzsw2rrrvKnqgFKIHU5eBs1Z5jdPDQ3IHyHWLVgc2Y4+FHICYOhwPb3YFbt56iH9ZUMUxTAGNZ9SuGYeB8s8Y7SyppeS5P37akUpj2e0peGrWmCSuWG9eu431D51oacZhqkFxJU2Tcj0iINEUgJ/J+5HD7Npd3LwgxICJqxcpFD/Ii9FVwGEoqetseC4QEFMQ4ylJnjIGV9xjRTrKk/QFqwRMdNepxoKBesTSOG46jjgPF8feP3zMUtfJZY4GqgXnn9Gu9fH8aDNY5rdVdAIKlVGzjOb9xg5oyjRVKCnjndduVI2PN2Cp4o8yXHBMxVWLMlHFLm3ULZaXiNYRDzQFrweRAiZCmAyXO1BRIJZPnQpgCpTgupwlpPe26o18PDH3L4WLHtD1QQybPEaGCt4goDNO6U+vUM9Xbf+MHHvD/u1/+Cv6n3/m5PP6nLPWNP/GcPMNr/9RPw29+Tj7Uh9S//41fy3/6hz7/4T3ASSd9BKr/5gZ7B1sPxYMUsBO4sWJn+OT3RLqffRq5fUGdZrAGcQ6co86BejgsluL8vLIQlt2Ox77tXfyTT3wDX/S73vycV207LL/9pT/IN770y/E/ZZ9Xr91JD1cPfGIZY8IPgms7ainElEnLRgExsBC3j4fGWgTvCqU14FoqcBhHDocDMao1x3u/bCDubTa898zzDLC0UhWMFaz1tG2H92UB4+ht+HHYsNYpm2IJiNWj73+5M69oxoBcqLmQY1LmhegtcSp6WBbnSDmTyVr5egWWYwlu3WvQijFy+/ZtvHNsVis267VuZ3LCiEEKlCpUlONRjMGyDBqiVqyyBLbFCHbJbnhnF1//xOXugHF3KBhCzDjvaVoFEK6HntUwYPQD4Z2lbVvNRCTdLsWY2O13lFRY9Su6pmU19KyGFX3T4q3FpozdzYTDgWkclS8yjoz7A/N2S1i2FnlpAdNQtMMesxc5UYqQoqHkRC6GKIYaMzEXincMN2/SeMdYM5FKMQKag1tC/pl6X8MUcLXduPe9oH+wHfM8x+8Z3Ygs26jFHFdrpWlbxBgO+1EHJKdDX6qFMc7EGLkc9zTGcb5a4Y1S4s/OrpHmkZRmYk6EFElGn60parsSk4nTiK9ZqfIJrHiyyGLZijC3lJLI4x7ChNfkP7VkTM6I8ewut2QDsjW0Q8uLHn2U8XLP4WKHmQONQOudWtBEcNbTd/0z/HE/6YP1R2+8nT964+38lb//Mt453eQn39BRFjvgSSed9LGnF33XhbY3OkM1gqSCOURkmpEpUHc7yjhRl0ZGljOBGLnKdn6sbzA+pGolP/Ekn/yPer7qFb+TN3/p19HKc5fXs2L4kuGn+Ouv+w286LscdT4NGic9mB540Liz21OsRYwnpcRTTz3Nxd0LvHWsVgONb5YwtVBKRoyGmduV4HxDoXK53XLr1i1CCIzjyDAMtG17dXttjKFpmqsMxzwHmq4nlsw0zcxzJMW83GobmsbR+IYYM/MU1Bq1bDdqqRRZ6nazVuVKqdooFRMlpquNRhYdJ1zX4PsOYy2lGm2uyulqS2FE27VKuXfg3e/1c3rs5k26tr03MDkH2HvU8mVhsVzca7ZEPV/6vyU8YgDvLF3jsMZobe48U0UbmjREn7m8vOTy4g7r1YD3lpJ0q2SNoW0bGteoDWh5FmcN4+UFT9y9YGhavLGYohsJizaEkRPzNLLb7YhzwBrNmzgx2Fzpm45cyzLkQaZegfzEGJq2geIpYyCOM6ayQAITZZwXaKCuMkrVatq8NHxVswSp77NQ2YXKfsxtHHM9x9zG/QTxuvTwVqoOoss2pFa1z4V5IpdK3ysYcDeOOOuRxnHnYss4jay9pxHBUmiHFavmjDHO7MY9U0zEkumzY2gdpepWzbeOWjJj2BOjIYsjWwvOMR4a3Y5MEzZlXBWMODAG13aYfsN2mgklUazQOo/USomRmjJOLK3zNM5rY5gB71uadvgIf+xP+mD9oevvAt7Fv/kxy/ftP4Xv+vSHC8o66aSTPrTMO9/L4rXVX8iFGoK6KnL+uVaoqv+9vg/a/bxVTYnyjnfzin9wjZ/+pYlPbZ7bYpDHreHiMwIvHgbyciF80km/kB7cOlXg7nbPOCfCPPHE+5/g8u5d+q7n0Uducm1zTrWizURJb76dcTRtQ9f3YAS7hHTv3Lmjlp55pu/7q9vpY5DXObf8fqBcbIklXx0a27bn/Pwam82GnArjOLLfHYhzopaKdRbv2sVeVUg5Mme9vS5zpMZEiVr9egx+S6Nh4W61wrYNVcAscDwpx8NsXW7blw2HMRr4Xmjbx03NsSaX5c/BewOGMjWoskDpNI9hjQGrlhhlkBgsFu88jfd45zAVxDpK1fd7OBzwjWfoO/quIefEGCbG6cCq72lbT62F7e4SKjxy4xH6rmcXI0Pb0FoHITNd7gn7kTonDbLbSjEQ88IXscq+oGamnGlq0UpcZzHeU43FtBZHxTaObsmSzHZkKhUvlrbtOIRAiJEyQ7SWmaIltSLUohuND75gutpWLEOH9/7q369qiq/+XpYKYLl6re8NJ8ecTHM1gOjwoq1om2vXsL5lvLjgYr/DpoIlsd5sON9c5/qj11mVzDjPTLsRCQWxDU0HIUxMddbq32rANwzDGtcNuuGzHuc8N23D2XBGs2y0aimI9wTv2FBJolXNxmr9cAgBYx3OWagoY8SAs55iPeML4D+YH6v65X3ml/dv5r9502fyY5/nX5Cd8WvT8TU//Wb+8qte+7Af5aSTPmyV3f4Df6GW5/em4sNUjYH2x9/Nf/3238y/eM3/9pzC/AZp+IxXvZu4XsFHocXvpBemHnjQuP7Io4zTyGGeGceJKSZCKuRxotmNeN/hTMKgNaXWKJTNWE8qGSuWpmnYbDZM08Q4jprdWFqn0lKXdgyGhxCQnJlCZk4RqizNVQeoBooQYqLmgrcNj958nGHo6LoB5zwpJy52l1xc3NEMiXXYBpqmpTEOJ7qxmGMkowOONWrFSlUbtbxzVzfqQr36q2Stj63eMwwDOSc9SC+DkizE6uNwoofbxcQlxz8LF761CMYIpQjHIcZZS9e1rNcrDuNErIBx5FyIpZDmyOZsw2rVU3NWTkWFtm8RL0x5hloptuCdx7SWIplYolrI0LyJEyjLgb5QSKWSTMU0TjcWFSoFYw3VOvZ51lYraWiaFtO4q41GlEqogQZLcRXpG9qmp+t6mCOHkknekoAYA1PKS62svUf6XqxpwAc0T3nvaZoGY8wVd+V+i5XyW+6xO+7feCic0dAPgwa6l+Yx471a1qisr51ztlphQiTvD0yHLYnKbp6wssZuVqzXK2xzYLyzJUfo2h5//SatK7jGUcSA8YhrmXNhv59IhwONa7BiIelmK5VMCoHiI2nw9Nc3DENHyAkEpt2eputoraMXh12I8a71SKPMjX2cPoIf+ZMeRH/+RT/Ml/3vvxr7+zRwWd/zPsr0LL3uufD9U+bzu4fHQ3mRvcS99BNPnfgnPe9U04fIJnwcDBj3q9y+y5Pf9Nm87/92eE7rbg3Cr3j0J/mWG78E3iMfd6/7Sc9MDzxoGNvgWwBLKbA5LxjjmMeJcQ7cvdhfDRet92ojEmVoaKYi6q0DAKL1uIsd5v7b61IKIUTGcaRiyEW42O3xvmUYBlJKXNzdsuo33Di/wWq1RpClsSoTpsQ2HIgxUCTTdq0W3HqPq4bBNwxtR2M94zRy5+5dLraXhGlWarV3mMZjjSWVjKD2IW2rOmYCuOI7jM5yeXnJHIKyKxZrj3cGY4RaMyVX3ZwIONxVta5mWZbz9TJ83J9VGfoO6yz73V4J4Vis95ydndF1HaVkxvFACEHffrWmX6lN7TAecKal8y3FFOaUwVS6ocMVUabDwn64qpc1FdMI5riOLUrc9t5TDLRGiFSqt9B4kjVEClk0M5NCoBVH4w29X9P3A41rqV3UOl5rSVJgHynHkLdBvy9yQe7/fjP3qpTv/3e4t7m4f8O0LJGWjQdXljVrnVYAV7DWMU8TISXatiVLZT+OVDHcXK/xuTLXSs6BMU5c7nccbhVc39EPA+TCYZ7ZXk6sxOEtjLnQGINY3U556ylVh67tQWsXHQZiVnZGypSYyC3kKMjGQ7Xspj2CMIcZ1zV0Xb8E9tE2LGeQttEB8lQ89ZzoW1/7L+A79Z/f8Ae/iuGfPjtNTfnOHf5fv+V38q3/2z98Vt7fM9Fntw2//tvexD/57b+U+sPPTQj+pJOeFZ0Ot9QYeOwHL/nap97A//fxNz5nWw0rhl/Uv51v+sQvo/0xc2VLO+mk/5AeeNAI+xnnHa4ZsFga1zEMZxz2B+ZpZD/r4dEYQ990rIoFW/GNo288Mc2kHMhZEHFY22BtixiPEY/39ooGbUyhZGEKM1Us8xRxrmXVr0gh0lrPtfUZj167wX5/YLvdc3l5yW6/I6WMazzd0LG5dsZqM1BLJhxG4jjjjNpoBJBs8UPLYDcUA+IdsWY00pEgZZTKoafYexWrxyyAgvhiTNy5e8nldq/WGWewVrBG7VK1FEoVBEdZBo6cE8cdRqmQl9v8UgupBqp4ms7SrxrGOEOGpulo2p6cC9M0kXOgLrW7XdvQekspiZBnSkm0rQ58ZnnWznka01AOWs8aQ6TmisUiBprO0G4a3LBYz/KyiREdukKMuqcRpYTnkhZuh8NbQ9NULEJnPEPT4V1DqcopqTmTq3JDnEFhj2jrVDVqodLX4z6s4tIiVlmavxarm1saoHSY0A0TJVGXIHgBPZBXu7zWmgUxUslGIYHNsp/KOZLGkX0p2FQYd1sO2z0xB6oRQijYNiDrTGMbTCzs9wdSgbYxYBJ21IHauYZ+dUbbdvRNQ+o65mkm5qhFBAX9fnIOER2sLBD2By5uPUWYZ8Kk2ZbWOAX2LbwY8Z7h7IxuvaZbPfd02I93/eyXCK/99nPy3Ytn5f3Z2zt+57u+iL//su98Vt7fM9HvO38vf+//M7L+sof2CCeddNIzlHnn+/hn/+rz+aP/2XfxCc/hVuOldubWp3te+q9PgfCTHkwPPGj01UES5hgJc6SIsBrOOTu/SUyR7XbPbqsh4ilVwnYkJkFsy/n1a7RmRa2Zdpyo4vDNnmHo6fuN3kIvIV7NTTTMoeCazBQTqxXcOL/G2bAiyIS3lnCx5b0XW+7cvsO4VOiGFJVU3jTMo2ca94T5Guv1mlogpEwkE1IixUBMkVgTyVRiXSp6rcE4S4vHuxaWWt45RUKMxJwWDoQOHtZ5umHD5cUl73/iKW5cu7k0QSWk3rulL8vGIpm63MjrloNqqaWQi9qnCoVKokrGtZXz62uywHYfyEXJ3jEmask4axiGgaHzGAopzaSYcQbatsGKgxjJoSCpYqpjvNwR9iPTdqTEirMNGAcGbGewvcO2jlKLvj4hKhyxVlIqYIQaloB2LVjn6Lqerm8QcaQUlDshlTFNurkyOjwyJ5wYNo3HlMockg4M1l1B6I6E7+NGQrdCx9/Rf3fOLk1jVrdMKVBiIB0BjABmYaWUqk1ZRsgh4HKh8x5fIIRIXzXjUUNArMM3jVYcz0WHoiyYuZCmQr/ecK1fYc4y++2WkCMmR2oyODHkKXAYZ1hvWJ+d01wbuHV7Zr+fcOZe3a4zlhADZAcBwjxSthOEiXapUa4hkCpUMWAN3jjEVpxThspJz63e/lu+ji//O78NnqVBI73jXbztv/98+EsPb9A46aSTnr8qF5e8+Lszf+vLPpc/8ciPP2dbjXPT0Hz+bczZGfnWrefkY570/NYDDxrzYSTlQMhFadLGABVMT9d1eN8wdD1pjuSYCPMMFcZxZHs4cHa+ZtWvKGKod+6SqRjnGTYbGu+JWW+7K5Wnbt1iCjOPPfoYFdhd7uibFkmFMgfGmHlyP5FjIicNgddalk9GsKkgJHId2abMfHer9afHzyUnpnlknEZiTmQpVCu4tqEZOhrvaa3DZWFeiORTCMScdRA4chwAYxzDsCLHzDxHdruRs80aK4VqtHr3aPUR0efUZq5yRbk+ggr1gF2VlYClM4bcNISmI46ZcU6UGhl8g2taGmdpG4s3AiViMXhAqtKtU4zEORJDglSoReGFYoT2bI01Dmc0tGxMJZlIYGYOI2FWK1ilUnIlhEBlgRqyHOAr1FyYS4WSsE6IcdYq4JLxTm1EOS8bHQHfNhjfUNDWqXIkt4uhAtaYD7BG3c/SONbaHgGHdaGaG3Qzcqy1TSUv2Rd77PRaoIsFg2BFX4cUI6ZxnD9yg81mzTxO7O7AmblOt+oI44xUmKeJeZ5wjaO3Pe2mZy6R8bCjsY2+HqJ++1RgmhMyB/x6DW1DGmdSqcocEahVyGKxYgkhMY8zpKyh/+VzEW+1gsw4jHc0fUvXe8QUQhw/gh/5k066pz/+ym/lT37V7+KRv/mxQy8/6aSTfmHVlFj/yHv5e9/1Bv7zX/uDvNI/N1uNVhy/61Xfz7d+8hvgqadOVraTfkE98KDRNBZfWs7aBt91pFoJOSlTofEaRjaG3GZyyoSp0YOcCE/dfpr9vGPoBmKKzHEm1coYZvbjAdecY5wlp8xhHLm7veRit6VfDay6FQZhv92xi4kwTpgKwXooVdkdIlgRxFikGkwBSRUpkXCYOSyBc7vU71apVCmkGCgCrnVY3+C8hyqEaSabiKvCNM/KXCgZsYI1fmnQ0gM3tdKIJ8eeFCPb7SXp0XO61mOdvTo4H/MEpejfU4qklJdhI92XK6jYItjl8N2L48y3SFeZJFOqMkW8MRiplJiIhwNxHokxaN7BaL1vStrUZbzD+UY/hnNYq//uvYa6m7ZV4rlkUlLy9zRNhFnD+tM8a+VtUGucXexMR5eTWTIKVSrijG5AFkuUINSkoW7d3GStP17apK4GiXLPNHU/J0Pbxu5lV448DWPM8ixgjr2FVzVfRuGM6LOKq6SYNHxuLYKSznGW1fVzHnnJ42w2a/bbLblmigPTWppVrzamEJZ3bYhSaPuea53H7VqkyFITLFBEIYXGMGIpWOhWmDWQKw6nFbdZaKXFrSwYi1hLt14vVruKtYKxUJb9VhXBth7xEGtgfh43If3iP/bVfN9f+LqH/Rgftl73N/4AL3vbjz6r7/P8O97Oy7/l9/KOX/P1z+r7/XD061YH/vBnZB55aE9w0kknPVPl9z/JJ/7rF/NXfvGX8Bdf9IPPyVbDiuGXrd7M3/+cL+exH7bUpcjnpJN+Pj3woPH6T3sdpSSMdRjniFktSLLA7g6HkXkKzPNMnCOzQDCQcqFIZXc4sNvt9ZDuHetmgxHDxX7HfjrQNC0pZQ7jgVQyrmsY54k4J/IUKTHBUk0qQExRD7BHYJvRG2yOtiTgeMNtRLDOUhBiSgrjcwbbOGVMNB7TNBjnyEaUv0ElG8E0lsa0OA0FXFl7nHdYMeRlmBr6jkPO5ByvOB/W3GtA0grWsmw0lKehh+yysDV0QyC1MKdIMZam6fBYeuuIxhJzJMdMlUwSoZZMDDPztGea9qQYyanifEPfD7RtR9v3dJsB4xwhJ1bnG2VyHO1qArNUIoHGQN/0rMzAJm+Y55lpnpnGCd945jlgjMWIJZei26QFYOgah3NG4Xs5YwSt/7X6tiKGuh+Zg74+udSrDU9KGWMdlXs8lXv8EbmvtrZ8ADXee0etZtksGQ3tF4skLRk4cjjSrLYqfekLMQVyrviuZXPjnO5soBioVjjkwJO3b2kWyDV45zg727A525BiYn844PuGTXvO6vp1pBiIBScWuxQfZKBaR3WOVmD9SMFU6E2LzSCh4CxkEyhE5qHDacsxOQe1wdVAiLOSxGvB+Irx9SrX8XzV2Tf+O37VD/+Wn/PrX/FPv4PfffbkQ3iiX1iv+R9+P6/4iz/yrIP88hNPMrzjVc/q+zzppJM+flRjYPNDP8u/eMun8d8+/t2s5bnh/7zMVeKXXmD+l+sn+9RJv6AenKMxj/jWK13ZLE0/1ZByxtSifAbnqEN/ZVepVQnikcx2OnBxccF+vyeWjHMOs3jNc61kKpmC9Y7zG9cZwkqdWQVM2xDnSI4RK4KtghQ9vOWYWdLZVzC9ugD2rFis8zhjQVhgdi2+9ZjGMqVAqFltPDmpN/544qOSSwQj+NZTBQpH5oPSv2NSOJAVQ9N4GDqMQFkI2rWaBcYnejNdoeTl3l6EkpXgnYu+fc6JkhMNYJqFYroQyVOKzOOB/X5iPExXG5Ja9P9TclSKuuiGybcDw2bN+vyM9bUNYg2HacJ2Olj5vsV3LdXAHGamw4Hdnbtc3t4tYWuh1LKQ04V26MFYuq6jbTulal9uubzQxi3n3VK5Oyz5kKUBKmfmMGuWJWctCBYtCsBksJYqCcQs9iq52lYcrVMfzM+4Z0Vb3q7oEGidx9RKqUHD49xr9BJjwGo72RQiBuFsvWJzfqYbuZRJJTOFkcvtJdNhxFtL61tWqwFqZZwndocdu3FH1/W07aA08JiwCE4sFIi1kk3ESku/WtMuLJTeOCQWbIK+bxnjgcO0x5SEcZByYLu/ZJoPNJ3Dtx5xOrBaZ7FeEGuxV2yX56FKJv+fP/Vzfvkffdar+Ef2NR/1D//1P/H/45p5sD/2fsWP/Q6ufcWTvHz8d5rfOumkk076GFO+9RTuzS/jLb/Y8Nntc/Mx19LyB1/zHfyjz/pymn91G8opFH7Sz68HJ4PfeYp+6HG+wVhL27Z0TUsVr4c86xCxiLFXVGeAOSXGHHmRVevM5XbLk08+wVNPPc3+cEBEaJuGsFC4jbUY67DL4dIZi7eGrijh2xm1p6QQkVJpSqWmQq0K4SupUJfq2BwLqRSqLPwKA+KEJJBjpFrR+lUvJKOka/XyJyoVJ4K1ZhksMnNKOhSgfdJmOUjXmrEIKUUuLy946qlb9N2LaJuVblkAa6CaugxgdeFBqHUqxqhMj3km50TrLbEUQgVrG4oxdEPPdeu5dgO6bqXZjhiJKZBi0H/OmSoW3/b4psVYQ3aOUEFKYc6Ju++7xRwnclX+Q9e1uMarBS1nrDWkmBjH6YpxYkRv6lerDcNqwDl31SYl1tB2SoWfQ8Q1OvDEqCyP1jsNdKcEIrRti3EOlyouZ3wB6xPjrA1Y5j6r2RHqeGRkwL1aYd1WoDR1Z7HO0LhWn8kYzZRUAMH7VjcquRDmiMmFtms5u3mDfljpkOCUrWKr4K0liUEqrLuOVdeR5sDh8pJwGHUTlDLkSpwT425PjRlbteEqpEQ2hnYzcH7jBsY6cky06LalxXLt+nX6szUX20ve+/53U3LANWqZ6ntPs2rphkaD79ZgrME6iyyslxeanu1twc+nr/ykX/LAb3vG23jhvdI/VzJkzGZD2W4f9qOcdNJJH6ZqCLzoByPf/Bs/h//4sR95Du1Tb+XPf/mv5TU/eEY+wftO+g/ogQeNi90lY5hYbzZcv3adzWqF955clXuR4kIzFq2DLbUiYnHecbYZ1A5UK2fWMIWZi+0WE2aMMWQqMSmDgpQwJi6NQqINSKBkbylMuYBUqtWchSx5i5or1hl87zXsWypxjqSQiKUum44Ic0QCiBHEGVrb4Ywn5UysCbEOMaI5XICsNqpaqlaT3vdDnJLauazzpKIH6VIrt+/c4WzTsxr6q7c7ZhFyzh8Qdj7+c4yRECJIZc6QwsRUK95lwJJyIeRESoV9mGm7Htc4jGsQK7iuwVuH7waaYUXTdjSLNUykEKaJmBPzYWKe9lAL0njmw8xcK84ZlrO8Vsg6fQUUapjIuTDPM7tdQ9d1WGtpGs96PRBCoFTBtw3OtaQQuLzckkOg7zuaRmnpmgtpSbVSUiKFwDRHppgpok1SdalzjVGhTPcTwY9Dxv1gPhEhl0yeMzEur+0yYIhoFqMWcK4lm4LBsO56zs7OWJ2da14FixVojMPjdNFSDH3bcj6c4avVTdwh0Fh9HpMNm7alOke8uMM0HpalWtXsUOOQLJS4Y385s7u4xJaKzTC4lu3FUzz6SS/FWHDOsA8BaxpW5ys25yvW6w7rLUjFGh00jp9bPt0evWDU36oPHd739i/9O7z+q/4AL/4L3/vQnuGkk056hqqV4c1P8L23XsH86A8xSPOcfNgXW8vrP/MdTK98Cbzp8rTVOOnn1QMPGjcfeRTnLM45YozcuXP3vttnTUWIdViXsE5zHMZasIYyZvbTyOV2y8Xdu1xcXDCPEwah5kKu5dhrioi27jhjsU4bhkpVW0vK8Z4lhgpGB4aS1DLljAHvuDoxO8F0XhHXuVCzHphLTkDF1qX6tEBjrFLNjdHGIqqC2EQrZ5MRUlYLFMdDbt+pnUf7XynWEuaZ/WHPU0/f5tr5GU3TUKuQkg4ZpWRqlWWDEUkpLuRwg3Neb8utkI0eKHNJSiyXwlyCVvnOAXtosNZpjeuyYfLekr0hWbC2ki04C9Yolb12PS969FFqPCdMI2GcSCFArdSQqA5whrwEn521ONPhXSaGiIil8e4qeyE1kYxcWeWsOP16xoxUwYq9IsVP44T3Eel1GEtzIEyBnDQ7EUsG4662YWa5uT82TsH9HJNy9e/WWsSI5r+XX6Pogb+UBAhNoxuXVCvVGKoRTOOo1uq2C6PgxKKfgzMOi8Vbz9CvmMbAndsXzCHSttqY1Xct635FDHsaJ0SK1tfWZfAtFS8djakEIqYGJFdKSKQcmUjcebpluHbGZjMgNtGtPOfXNpzdOMM3BjE6tFcKJWlrlgIkH/jH9qSPcd3829/HV63+EF/7NV/Hl/QfD/uTk0466VlXTDy1u85cEwPPzaDhxfKZ197Nt7765Vz7cU+ZToPGSR9aD3xi8W2r9qOK5i5K0hD2MmAYa6EkUq6QMtiIGKEaA0aIOROnmcP+QJgD3jka76/qXYHFTC9452jbdqF6Q0oRUwtTLcSq9bo6ZCwsBa+2GPSMSTZqsSlAICv4zRlMsbhSoHjImRwjeY7kWvDW0hiDsdooZQVkaYKqYkgiJPT9YwSsuTrkak5FQ+pihcPllt1ux253YBhWS5bAknMhhHstSsqFsFjraJpOD9ZkdmHiME+UEvE20be6qrTG0DaO880G4zzWNdjG432Db1ps4zWT0jR4v9ihOEZqDL7A6tHHIWUu797mqfEJUsjIQjuvdbGXGcGI1sbqdsdiW8EaRwXiPDMVDX2XUmmsJVchBeVuhGkmx7RshIoSMFKhkAl1JKZMiAmp0Do91JdYyPexwY9WqeNgcT89/vj7peqGQkPk9erzMBh9zfULqFR2o1Yo8ZVcC2OMsN+Sa+F8WNE1DWI8MVdiFnw3cH79JsP6nDu3b7OfNPdRiJQK642jH1Y0ztB3A9NuJMel3Uws1Rjaxi/WOx2EpVYMVYPy1lDKTNsIsumxTaZfd5xd27Ba9RhvYIE95oXqXpfiA6nP44zGST9HL/ra7+UP89V8/R/5Wj639Q/lGc7+k/dj/8WnfMj8zEknnfSxrRoi+6cHbpfC9edoOWowfObwTr7hdV/MjW+/Rnn/E6eq25M+pB683rbv9fa/slTKGqTIcrusIdUqQqkQSyHlRCo6FOSStH0o61FSRKhFD6C13A+1q9RSCEu7lBXBlEpNEUkZkzIma+WnWIuzTnMj1iGw3PrmxXPvCblgo3I2yIUaC5IyEhNCxRShzoE0KtBNjAGxantprELkrA5KInpI1MS4Pn8RllGrLhRrWejpnpwLF5eXOOdZr9fLZiMyz3pg9d5f5TfuHzpyrpRcCHMgzDPOWCRVhrajtQbnPdYYnHV0fa9h465DrLsibXvjMAWFEoagr0uK+s9BKdXzYabkSqkCuVKqDkCytIKxULPL0qBljNVtxTIY5lKWti97xbDIaWnWShky1JoJJWv18PHrXhOmVFrrwDrEWOYqJClMecnILF//e68NV1apY5OUiCyFAo4qhZKLNlktDWSy8DmWZZOSwtGtRy51odlPHMaJaQ6s+gFEOH/kEbIYbIH1agXWkq3D9cPVsGOM0KzX+H5N27aszrbsdzNj2pOLclawFtv2GN9SxJAWErmhgnW4tqHrPN4UaISmX7O+tqHf9FqSYNCK4qLEeG/UflaKfn+c9MLSi772e/n2//J1fG77cA763/Pp/4Q3vParGP7Ph/LhTzrppI9EKdG+1/O2eJ1PdvNzktMwCJ/in8K+dkt8+eOYp25Tn8fV6yd99PTAg0bbr4ClWrOAFJbr/YXibNTGU0RwS/CYlKgpst1ekFMizJFpGqkpYY3VOtLO32fBKkxzYJ4mxt2eebfH54q7YiwUhIK1uktxhaWBSnkajW9wncWKHup8haai9pyQEJcxMWN8RmImpMp8CNQUFtQ3Spa2ltQYsgPxBuMd1QrZGsRbjPf4ocM2Xg+W6O36HLRG1XmPKYXLi0ulSy8bGrXzaMVtjBHnHLXCPIcrXkRKiTnNlDmSxplcwaaKCRlnNB8QxwAcmHYHxuGA77QRquRM7xyDbyArk2S/3xPmWQe/GBGEeZ6Z55mUMlCx1izPkkjjhAmab5CrEVCWFigdLGXJP4jVDu1YKrkK4LDGYtuWxlhqjggFZxSY5zB469UaVjWkX6t+TzXOk9BBsdwX/r6/beo4aBx/D7Q2WO1uBi2WBRawIEtDWKlLu1cthFqIJRMXivgUE7tppnGe9WpNv9nw2LCipowpGvoerl/HrVZaeZwLrvGcnV+j+AYpluH8Ec6mCuaCFCMa+HC4boO4FtyAaSO+ACYhvsU2LV3XUEk0jdVNxrU1WdQmGBeII6Viqg72RiymQjGnQeOFqG/7I1/Eb/y7P8Kr/eqhfPxf+Se/g+/70deS3v7Oh/LxTzrppGemOs/c/PHMNz39ufyiF/8rrtvho/4xrRhu2spnvfg9/PTLX8v1H2tPg8ZJH1IPPGgc/fAGrXiNOVLLwlAwhkLR8LdzOGPwdYGz5cLj166xv7jgyfc/SZ121MNIzQunwns9mPYtvuvojWdfDYe8Jx5GmAImF9SwruyFaLSGtoRIzppFyM7TD8qNcN4SY8Ibx8p4Uk6UORDGiZgSIcykcaLEQBG9BbfWYquOMmZpXvVHgneYiVIJAsmAtJ4bbcNqWDMHZYfkEJn2IzFE3FJju9uOEDKbYUXbtkvAWWtpY5x1Y1O5IlfHlDTwHRM5FkrWgW4eA2UuGgo2Fu+8DgnTyGE80HaDErcRUiyMSyA5hMAUZtKSDTkeXkOMGGvouk7D+CUvzyUYHOSyIKoNFqObgbjkZ45gQZZtU9VtkWB1yyUOK/q1DXGx/Yi2ZznjlV2eCykWSs2IsXjnKM5RrMF6oYgOFRVt+0pZrXXW6veXWbYdLPEYivJU9DPQucNatZodtxox6abEVRCj36O5KM+jxEhMicsYOYhRZ5xY3SYJuL7B9c1V45hvW6oV7o4HHajalu7mDWrfkWKiLk0CxRrmUsA1dOsNHiHPAXEeGVqKF/CGfj2wOlvjnSXOgZwCOSZqyTq4idHBfoE4evdw7DUnfXTl/s0b2ZaH97X9E4+8mS9f/8cP7eOfdNJJz0w1BM5//Dbf/l2v59/+uh/jN6zuPidbjVYMn3f+Dt70ya/j5npF2e1O9qmTfo4eeNCQmikLWM15PYDNc2COM+NcSYud46radrl9bpznzLY0ridWT9gnyu0DJWYN8TpDaRvkfE3/SIttOtrO0Ffh7naiiZUuFXJJZApZBO+EJBqsNQh2aLF6uiemiWyc5iZixOQJayxd2zI4R/ANoW3YW2GSgnjBlAbKYs0pIDnjcsWXSpo1mZGN5kJMY3C2wbuO9eqMvsvcefpphEKRljhOpCkgBXKKjKlyub7ALUyEIpkQZuI8M+52GuwVSwiR3TQxhUAthRgSJYMRwxQy+zhhjKHtWuwccM7RtC25ROZ5hzE9xlhiyIRYFjhd1cA4MIbAdDgo56Kxi9XLAGoJyzkv+Zh2AR9WcsrkmK5ajqQeD/AVal7o5lGtPKbBuIqIu8IlOnFUoxXABkc8VOY8LyHzRj/PVEgSoANvBanmuFwis9DcRTkmZvmD01w1Sy1WJlk2Mo6FoVJIaaaUhd+IBsslZ5wYvCj2rkilUPR5nNPCgaRtVyFN7GKkSsU5LRgotVARbBzVZgdQBHJGqLDy1GLJKRJiJE6jDrVJywemGEgpEGxR8KV1rNYD7dmaRCVOEzVnJEO75EpKrlclCQhUCjGfmA4vVE314Qb9/+63/G2+8rN+PeXuhVpOT00yJ530Ma9aKrzvST75Wzb8setfwRd/6dfyiP3ob0Y7cby+ezfjJ0fKo9fgiVtQT39mnPSBevD/qh09+XZphPJLWNepnaRZLEK1VK34BGqujOOei/fdYrrcsX/qDnE/IUc7VDkOKJWS1QOfYiRMEzVXhm5A5oyke61USMVWi/Ue07Z0/YB4TxGhVIXclcXrn0OhzmrHqUv7kW8azs7WXLt2jcNuRxgnakykKZDGiThHSsq4mMmpYJYr8pIzuRRs37LZnLNebUhBD3zXz68z2QN1zkRplDyeM7VobmE8jGy3W6SxhHkizjNxmpnHWRuzxJBqIaIfy4pRu1FVpsUcJsIclHJdEuthhdhK23mc1xawcdwzVTDJIJmrQUME3ZbEoIFkEV0OSdWb86XVyVqrli8jetOfFp5IKVrxu9C4yVV/vWp7l5SCFa1fNU6zHlI1s6I5iQXImAPG6OCg71c3DkImxUySSpCq+RxnMH6xWJV8NbQ6Y3RrcvyerAtxPSYw+v0nVpvK8sI30e/FepURoVZyCBzrb0tKxJQ0qC2CWw741ii3IuWktbXHDV2tpKx1xPoxdOiRBQh5JKPnlIhhVtva0iyWYkQEetfiuoZ26HFtA8trXnPRUoP7OBl6KyUU0ArmmAjxNGi8UPWnXvnZ/Mm3/dBDq7v9BLfmX/77fwPAn336U/i3r384Nq6TTjrpw1AtlP1I8+Pv4pX/4GX8yy98Gb9j8+RHfathMLzYbXn8JXeYHzun8Y46nwaNkz5QDzxoWLGaH8jTUnVqFhuHo3EG6xxt25FTYZ4nUsocDiN37txlf7kl7A/E6UClIM4uh7eqLUeNxw89bd8z5chcMhhohp5wODAHqMZoJMRaXN/gVwNN32HahuqEbARxFu86xFnIUCTrjXrRm+45KKvCGsvQdVjv6cVCygQzMeWqB3+TF07H8jGN8hxM4+jO12yunWGsYbfbYY1h1fUYYN0PdDcth7tb8qjcimQrh3mC3Z62b/Qguth8UkyMhwNz1Of0w4ph3dFYiyxtQ8EKxhSMFMZxYrebWQ0dXb/i/NqGtu24vLzL7XGPEwelkmcNwKt1LRNTpFLx3iJS9Q+lBTrunNUthbVYY1HXVYKqA4S1sgT6ddgAvVVnIbNb6zWg3jhwdqkqFtySpai5EEMlhYhzHiOGFDJGoGkcuViImdz01JiZxsNCgAfB6gE/Z8iJYh3OWrx1C1tCNxO56nbMHWt3xVwxS47DgNrT1E6WUlp4JksOxMjStKUNUSyDkg4desjPtSBVq4+PlcYl36vazVmLD0rRgSTnRJgmwjSRc9TXTqDvOtarFWerNV3bajtahVqy5jFAP0ZZhiNjNANUKjEmxnFmDicf7AtWtfInP+NL+PU/8Ha++trPPtRHedxfYD/1s8g/8ZaH+hwnnXTSL6BaFR58GGnec5dveO/n8Zte/c2spfuof2hLxZlCtac2xJM+tB540HjiiVsLeK5eBXS1gcfirNc6VeuIUXMA3ntACDHhh14bd8SCD+RxJs0BKwp585uBs5s3WV2/Th33yDiqHccCbauZgaXwyTaeZuhohx7TeCV/L+9bECQLmurWW/0KWO+xcO8gWCshZ2oqWISuaenajqEfGLd7DtsdNQTscoOMt2zON3TXNzSrAdM1pLpkJiqM+wN5nOnbDuMa0mFmP84URA+H2z3JCteaa3Rdi7eOah2m6us4xy0hRFzX07YNQ+OR4814aYAVYZ558sknuXPnDsZUzs42nJ9vaJqGGEeaxtH5DolwiJpHoGRyCtSS6fue8/MzvHeEEIgxaHbCaDtTSoEqRi09UmmcXQLIQsluIfrUYpAAAAx7SURBVJHrzX8pOiSWojmLXCtVNG+BVOWoWMFZwIP1FrPSQdRZT05J0yDOEVJCpkz2G9IUOMSZeYrEUJBsKFXfn7ces7RNKf17qa3lyJq4n7HxgUDEUu61gt373l3ebtn4pJwxpl4NIZjFjnXV+6vtT7oZMThjScZqIYKgtItlGyG1YNB2NmcNBrUSOu/YrDes+wG/DF21VkrOCn4EfQ2r6DZmqSVWDkshxEJIhVBOHtgXssp2yz//bW/gq7/1Gx/qc/zusyf5if/prfzoH/wM5Pt+9KE+y0knnfQLqBZqCMjtu/z0G1/Du15Rea0vz8FWA7zNR5/ySSf9HD3woHH37gUioswG38DSnJRTJOc90xSuboubpuXGjZvcuH6DRx97nClF5n6EVaRMgXm7J44Tvm3YXL/O5tEbDDfO6dYDfrslWaMZjlzYVyG0DZSKazz9MND2ndaa1kqmYrwFMVfhYuMsndfWhVKXqlxrCEFtMMPQ450jTrMC66LC1lrrMdZhvWfeHwjTiLSOZuhZ37hOd76mWkMomRAjORdliowTDZZIZNrtOexHUq4Y5zEIpUZyqVjn6boeSgJn6dse7zzjNLMdR+w8kVPEdo7GOQxaWeudI5WBed6z31/StZ7NZoW1AlLoupZh1dP7jt52dK5jv90Ro8G3OiQ03mOsIeVETIGQIsaAsX7hgWiAvZaMLHR3a5Rp4voe5xzT4aCWrKXJK6VIzmlpdlJWhG8dTdvgrL/alDjr6fueru112DB6Q384HHj69h3yFHXASIkMZFE7npTCsW/M3LdJUDebUc6HiBYF1HLfBuPekKFDhUIlZWmjcs4tORRDSknD5ilpTiNnYggYazFWbUvanaz1ybVWpXSjNqsqy5q4snBFstrMqFSjtc/F6IZnGHo2Gx0Oc06AoxbIFEwtun2rWp/MUodbqpAyhFSIuVJwGPfwKNInfXzpz7/oh/k9//2a7/u2X8wr/uenTpyNk076WNVxq7E/8Pi/q/zjL/0c/pubb/yobjUMghVwphBPc8bHh57BQPnAg8bTT99FBLxvaNt2CebqrbLWntb/f3tnD2NZWcbx3/t1zr13ZnaGBXaJCIY1aLAwIVZ+YEyM0lBZEG2Jmlja2tlZ2NhoJ42VibGxocBCtCRgTEwwEhHwC3bZj/m457xfj8X73ru7iGaMAyvk+SXTTHZmzt17zs3zf5/n//yZ59Q3GwFyjXlOjDtL1nkmxhlXBJMLcb0mTZGBQp4G1jcsvswMRyNzjEwxEkxbf2sX4/YBKtYyGcMcE+Vk3YL8XPNrGGMopZ2Uh8HjfEBsW6PqvceHQBWwzrbirUIxFnGB4NsJdZ0zMVcyhuody/MHDGNgsVox7CzBu9bJqBabCy1QrWCNY/ADaY4cH580UREGhtUCZyqS12AscyyEOeFMJVjLznKJwXD5ylukFLHzxDytkWUgjM2TgGkn4SOe8/vnODo8ZLkcGYIn5UQqGUEYxqEV3dZg+vpYnGVntWyvuRaKVKZp3TsR3YchlWEcGEJguWoCAaCUTE6tsC5SkVKaUV1aToexjjA4fKvgqU5gMITFwHKxYhhHQggE30IEg28dr8UwMgwDMSZunCSO58KN9cz1FJkqLWHbWUwfSTJ9ta7t3QsR2fpKSs6ts2Havb9JEq99G9bNtbjuNvP4ZpVyKYlcaxuNqhXJmZgTcxcapvs0oIuInvGBtDGz4Fz7YK9dfUlFuh9DgJozpWScsyzGgd3VitVyQfABQ725PYub+R5NsQjGuiZSKqSSmXOliMEPrSOmKO8VTz/4HHz9OR7/7BO8/PdHefibf6AeH9/py1IU5e2IUGNi/8U3+ckvH+PRJ/7Ml5dvMRr/rnQ2MoVr1XPleMX5qfTQKuUDyaZeufU+ktOt2j91xXK8nrYJ3sZakFYADsOAc56cm6m3lMocJ45OJty1a9jBE01mzhGbKoGeEp0L5sRij69jLgfEW3CtqDNV8BicGGouzRAsrTisvdAsKVNLxXvXTp+tay+6dg+BtJNx6z2hF+FVKsZawjBs16Q6DKthQXCOo+uHxGlqYy/WMJrKbCrHNcN0jFiLcxbr3Dal2XlPXE9cObxKTaUVl7WN5ngx4DxiLMfrmfU/3uDc3opzOytGZ1n4sXlbFiOl5LY2OM6UHDFthRLOeqxUjDWsVkuG4G8JvxNiSszTRK1CrJlc1sSU25pe71ns7LDaWVJyZppnwjjig6PWJjpSijjn8cPAYmfF7u4eIbST9pxze19jZr1e47sHJxWh5Lz1J4ix4KAUg0wzQygslpnFuASTWhJ4bEGFzvrt/XJ0dMzR8TEnJTMZR8K0w3xrbzNEw83gvk1K+EZsYFqHw7kmRlpXo26zNjaCQ8xmoOqmICldEGAg19LG1fq/FVr+hu/G8pILiLR4xtI8LkJFShsV3Iw/Udv3zCaVHRh9YHe1YhyG5muxBud8G/mq3UkupoUjQs8pcbeNTFWxLJY77B0csLO7e9rHVnm/8qe/8PEff4uXnvrRnb6SLc888gt4BJ585otc/5wKDUX5v6QW5PW/celne3x752t89/M/57HlK1x0w5kKjiKVwxr5/fxhrv51n4tXj/pIsvKBo0+OmF6jbwSG1NPdS6c/GnVuG+BmTBt9qSLk2rPurMMFh/E9lK42/4bxLfvBW4OxzRNhfTMWiwFxm9Rk2ny7aQF8JWcobf1p7fkBRtqmqk3h1+bbDVbaqbZF+sFyS6iuRrAVqrH9xLhgnSVVwbnScycS1zjCGcP6xiEiwnIYgUo+TBgH1rlmEDHNHGydwwCDc4w+EE9m0jQ187QYiphmK5kTJQtTzhzGE1KZqVJYjAOShENzxBgCy8WCxdh9Il1MOANWpJ3s23aKbgRSjFy5fJm7773AOC4QgZgy0xTJqeAImGoR7zHeQxiwYcQOA+IDcZ776tqEOL9dR1yt5ThGTq5fa+9vqS1JvG9DijExT5GcMjkWUkzk3E/yjQPnqM5ui3fnmqCoVUjd95D75jLnfPsb0peJeUsOIM50/4PZdi+gtWf7dtfW3dre/NzSqej3v9zezWDzkz2hPuebyePOe6QWYk4I4H3ABc/Qk+ur1Ca2UmoeDmO2I1ybr5oLJbURspozOUZyyduxs8F7FsPAchwZvCc4y+hd69psfk/vZEhPL7emCYxShVwEP44cnLuLixfv574P3c/B+btO/dgq70/q4SEXnq/w1J2+kn/lp5ee5TsvfJLnH3339/QrivLfU9dr/G9f5uGnL/G9V5/kh595g2889Gu+sPojF51nNKGPPZ3uGS7vICDWEnk9e5699glWr3rsjROydjQ+eNwiMswQ2kFwSkipmFOGB59aaPhhJGBwPuCd7yfHGYzrK2Xb5p92utwMrc45TLAYJ7jqcb1TQWmjUFiDCR7xriVub8ZjcqFMkRITtlRK3wBk+3rSWlpHBBGC9/0EuBWBrhtsS61UU5sxOfjtilJrbV/jakGEOUYClnEYWC1XSC6YWoklEsyIH9rYFfZmR0VE+kpViwsD47J1d7yxmCIUXzE9+8FYYTFaZhNJU2JcLNjd22W6cYOTkxPG/X3O7e1xbm+PYbXDXfsHLAaDM3057C2n3CJCnGaODtfcc+EqBwcHfWysqcwYc+sUiSOXiomJOWeuHx21DkitpDxTamGeJ1KMuP7/gZHtGFoumRgTOaZugG7vyzz3Qj1XpAhGDM46rA2IdVRpYXutAIdUBLAYuyQMFlMKKRVymzLafniJbX4E62xLi+8fgKWUnt3htunx0C0M24eg5Wi0bVPtW7cLjUatzfex6YhY2zpTVEuStqHL2CY+al+znFJiDC3vw/SfMd2Qbq3tgnqzzjZRciGlRC0JrGXsW7CC9wQfGLzbbs3CWXJNmGqbIO7XXXrqYAXEGBbLJefvucgDH3mI+x94kLvvuY/Vzruf+qoo/44khRe/dC9w5U5fiqIo74QI9egI98JLPPTa3cTnLvCDT32F73/6kK9+7Hke3/sdl8KafTvgcf9RcCQpJCnMkrfjvg7DmyXzm/Uj/OqVj3LwmsDJ+r16dcp7RX+/jTWYIWB2d1otOU0QU6vjT/Nr5O0VmaIoiqIoiqIoyv+I9r4VRVEURVEURTlzVGgoiqIoiqIoinLmqNBQFEVRFEVRFOXMUaGhKIqiKIqiKMqZo0JDURRFURRFUZQzR4WGoiiKoiiKoihnjgoNRVEURVEURVHOHBUaiqIoiqIoiqKcOSo0FEVRFEVRFEU5c/4JvZtpqa7EFgUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAEOCAYAAAAOmGH2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5wkV3m2fZ1QVZ0mbdQGabVKq0AQiGCCUEAgKyATRTQghMkZjN8PB4Ix2NivLTIYDNgvkrFxAIMJJogswKAcNmpznDzTqcI5z/dHdc/ObJC00u7O7Kou/Vo7U11ddbq6uubc9YRbiYhQUFBQUFBQUFBQUFBwGNGzPYCCgoKCgoKCgoKCguOPQmgUFBQUFBQUFBQUFBx2CqFRUFBQUFBQUFBQUHDYKYRGQUFBQUFBQUFBQcFhpxAaBQUFBQUFBQUFBQWHnUJoFBQUFBQUFBQUFBQcdgqhUVBQUFBQUFBQUFBw2CmERkFBQUFBQUFBQUHBYacQGgUFBQUFBQUFBQUFh51CaBQUFBQUPCSUUrzvfe+b7WEclJNPPpkrr7xytodRUPCw4eSTT+aVr3zl1O8/+tGPUErxox/96LDtY65fdwpyCqExx/jSl76EUorf/OY3sz2UgoKCw8jGjRt505vexBlnnEGlUqFSqXD22Wfzxje+kdtvv322h3fE2bFjB+973/u49dZbj8j27777bt73vvexadOmI7L9goJjie5covsolUqcccYZvOlNb2L37t2zPbwHzLe+9a1CTBzj2NkeQEFBQcHxzje/+U1e+MIXYq3lpS99KY9+9KPRWrN69Wr+4z/+g09/+tNs3LiRFStWzPZQjxg7duzg/e9/PyeffDLnnnvuYd/+3Xffzfvf/34uvPBCTj755MO+/YKCY5EPfOADrFy5kna7zc9+9jM+/elP861vfYs777yTSqVy1MbxtKc9jVarRRiGh/S6b33rW3zyk588oNhotVpYW0xj5zrFJ1RQUFBwBNmwYQMvetGLWLFiBT/4wQ9YsmTJjOf/6q/+ik996lNofd8B5kajQbVaPZJDnVM0m82jOhEqKDgeueyyy3jc4x4HwKtf/Wrmz5/P3/7t3/L1r3+dF7/4xfutf6SuM1prSqXSYd3m4d5ewZGhSJ2a47zyla+kVquxZcsWrrzySmq1GsuWLeOTn/wkAHfccQcXX3wx1WqVFStWcMMNN8x4/cjICO9617t45CMfSa1Wo7e3l8suu4zbbrttv31t3ryZq666imq1yqJFi3j729/Od7/73QPmVf7qV7/id3/3d+nr66NSqXDBBRfw85///Igdh4KCY5WPfOQjNBoNvvjFL+4nMgCstbzlLW/hxBNPnFrW/d5v2LCByy+/nJ6eHl760pcC+UTgne98JyeeeCJRFLFq1Sr+5m/+BhGZev2mTZtQSvGlL31pv/3tm9f8vve9D6UU69ev55WvfCX9/f309fVxzTXX0Gw2Z7w2jmPe/va3s3DhQnp6erjqqqvYtm3b/R6DH/3oRzz+8Y8H4JprrplK5+iO78ILL+QRj3gEv/3tb3na055GpVLhPe95zwHH22V6DviXvvQlXvCCFwBw0UUXTW1/3+vWz372M57whCdQKpU45ZRT+Kd/+qf7HXtBwfHExRdfDOSpnPd1nfHec91113HOOedQKpVYvHgxr33taxkdHZ2xPRHhgx/8IMuXL6dSqXDRRRdx11137bffg9Vo/OpXv+Lyyy9nYGCAarXKox71KD760Y8C+XWwO9eZngbW5UDXhltuuYXLLruM3t5earUaT3/60/nlL385Y51uWtnPf/5z3vGOd7Bw4UKq1SrPec5zGBwcPPSDWnCfFBGNYwDnHJdddhlPe9rT+MhHPsL111/Pm970JqrVKn/8x3/MS1/6Up773Ofymc98hpe//OU86UlPYuXKlQDce++9fO1rX+MFL3gBK1euZPfu3Xz2s5/lggsu4O6772bp0qVAPnm5+OKL2blzJ29961s54YQTuOGGG7jxxhv3G88Pf/hDLrvsMs477zze+973orXmi1/8IhdffDE//elPecITnnBUj09BwVzmm9/8JqeddhpPfOITD+l1WZZx6aWX8tSnPpW/+Zu/oVKpICJcddVV3HjjjVx77bWce+65fPe73+UP//AP2b59O3/3d3/3oMd59dVXs3LlSj784Q9z88038/nPf55FixbxV3/1V1PrvPrVr+bLX/4yL3nJS3jyk5/MD3/4Q6644or73fZZZ53FBz7wAf7sz/6M17zmNZx//vkAPPnJT55aZ3h4mMsuu4wXvehFvOxlL2Px4sUPeOxPe9rTeMtb3sLHPvYx3vOe93DWWWdN7bfL+vXref7zn8+1117LK17xCr7whS/wyle+kvPOO49zzjnnAe+roOBYZsOGDQDMnz8fOPB1BuC1r30tX/rSl7jmmmt4y1vewsaNG/nEJz7BLbfcws9//nOCIADgz/7sz/jgBz/I5ZdfzuWXX87NN9/MM5/5TJIkud+xfO973+PKK69kyZIlU/OOe+65h29+85u89a1v5bWvfS07duzge9/7Hv/v//2/+93eXXfdxfnnn09vby/vfve7CYKAz372s1x44YX8+Mc/3u8a/OY3v5mBgQHe+973smnTJq677jre9KY38S//8i+HdEwL7gcpmFN88YtfFED+93//V0REXvGKVwggH/rQh6bWGR0dlXK5LEop+cpXvjK1fPXq1QLIe9/73qll7XZbnHMz9rFx40aJokg+8IEPTC37v//3/wogX/va16aWtVotOfPMMwWQG2+8UUREvPdy+umny6WXXire+6l1m82mrFy5Up7xjGccluNQUHA8MD4+LoA8+9nP3u+50dFRGRwcnHo0m82p57rf+//zf/7PjNd87WtfE0A++MEPzlj+/Oc/X5RSsn79ehHJv+OAfPGLX9xvv/teI9773vcKIK961atmrPec5zxH5s+fP/X7rbfeKoC84Q1vmLHeS17ykv22eSD+93//96BjuuCCCwSQz3zmM/c73i4rVqyQV7ziFVO/f/WrX51xrdp3XUB+8pOfTC3bs2ePRFEk73znO+9z3AUFxyLducT3v/99GRwclK1bt8pXvvIVmT9/vpTLZdm2bdtBrzM//elPBZDrr79+xvLvfOc7M5bv2bNHwjCUK664YsZ84D3veY8AM76fN95444zvZ5ZlsnLlSlmxYoWMjo7O2M/0bb3xjW+Ug01V9702PPvZz5YwDGXDhg1Ty3bs2CE9PT3ytKc9bb9jc8kll8zY19vf/nYxxsjY2NgB91fw4ChSp44RXv3qV0/93N/fz6pVq6hWq1x99dVTy1etWkV/fz/33nvv1LIoiqZyv51zDA8PU6vVWLVqFTfffPPUet/5zndYtmwZV1111dSyUqnEH/zBH8wYx6233sq6det4yUtewvDwMENDQwwNDdFoNHj605/OT37yE7z3h/39FxQci0xMTABQq9X2e+7CCy9k4cKFU49uisB0Xv/618/4/Vvf+hbGGN7ylrfMWP7Od74TEeHb3/72gx7r6173uhm/n3/++QwPD0+9h29961sA++37bW9724Pe53SiKOKaa645LNs6EGefffZUJAVg4cKFrFq1asb1sqDgeOOSSy5h4cKFnHjiibzoRS+iVqvxn//5nyxbtmxqnX2vM1/96lfp6+vjGc94xtTf+KGhIc477zxqtdpUpsP3v/99kiThzW9+84yUpgdyTbjlllvYuHEjb3vb2+jv75/x3PRtPVCcc/zP//wPz372sznllFOmli9ZsoSXvOQl/OxnP5u6lnV5zWteM2Nf559/Ps45Nm/efMj7Lzg4RerUMUCpVGLhwoUzlvX19bF8+fL9vpB9fX0zcii993z0ox/lU5/6FBs3bsQ5N/VcN3QKeX3Gqaeeut/2TjvttBm/r1u3DoBXvOIVBx3v+Pg4AwMDD/DdFRQcv/T09ABQr9f3e+6zn/0sk5OT7N69m5e97GX7PW+tZfny5TOWbd68maVLl05tt0s3Reih/IE86aSTZvze/Q6Pjo7S29vL5s2b0Vpz6qmnzlhv1apVD3qf01m2bNkhd6Q5FPZ9f5C/x31zzgsKjic++clPcsYZZ2CtZfHixaxatWpG44kDXWfWrVvH+Pg4ixYtOuA29+zZA+y93px++ukznl+4cOH9zgG6KVyPeMQjDu0NHYTBwUGazeYBr0dnnXUW3nu2bt06I03yvq55BYePQmgcAxhjDmm5TCsK/dCHPsSf/umf8qpXvYo///M/Z968eWitedvb3vagIg/d1/z1X//1QVtUHujubUHBw5G+vj6WLFnCnXfeud9z3Xzhg/k+TI9GHioHuyM4/UbDvjyQ68mRpFwuH9L69/VeDsRsv7+CgtngCU94wlTXqQNxoOuM955FixZx/fXXH/A1+974PFYprglHh0JoHOf827/9GxdddBH/8A//MGP52NgYCxYsmPp9xYoV3H333YjIjEnK+vXrZ7yuezezt7eXSy655AiOvKDg+OCKK67g85//PL/+9a8fcqOEFStW8P3vf5/JyckZUY3Vq1dPPQ9778yNjY3NeP1DiXisWLEC7z0bNmyYcddwzZo1D+j1DyYdAvL3su/7SJKEnTt3HpbtFxQUzOTUU0/l+9//Pk95ylPu8wZA93qzbt26GelKg4OD9xsV6M4l7rzzzvucSzzQ7/XChQupVCoHvB6tXr0arfWMzn4FR4+iRuM4xxiznzr/6le/yvbt22csu/TSS9m+fTv/9V//NbWs3W7zuc99bsZ65513Hqeeeip/8zd/c8B0kKI1XEHBTN797ndTqVR41atedUBH3kO5e3b55ZfjnOMTn/jEjOV/93d/h1KKyy67DMhvBCxYsICf/OQnM9b71Kc+9SDeQU532x/72MdmLL/uuuse0Ou7vfn3FQ33x6mnnrrf+/j7v//7/SIaD3b7BQUFM7n66qtxzvHnf/7n+z2XZdnUd+ySSy4hCAI+/vGPz7iOPZBrwmMf+1hWrlzJddddt993dvq2Huj32hjDM5/5TL7+9a/PiBLv3r2bG264gac+9an09vbe77gKDj9FROM458orr+QDH/gA11xzDU9+8pO54447uP7662fcfYC8ld0nPvEJXvziF/PWt76VJUuWcP31108Z4nTvKmit+fznP89ll13GOeecwzXXXMOyZcvYvn07N954I729vXzjG9846u+zoGCucvrpp3PDDTfw4he/mFWrVk05g4sIGzdu5IYbbkBrvV+e9IF41rOexUUXXcQf//Efs2nTJh796EfzP//zP3z961/nbW9724z6iVe/+tX85V/+Ja9+9at53OMex09+8hPWrl37oN/Hueeey4tf/GI+9alPMT4+zpOf/GR+8IMf7Bf1PBinnnoq/f39fOYzn6Gnp4dqtcoTn/jEqVbcB+PVr341r3vd63je857HM57xDG677Ta++93vzojIdsdnjOGv/uqvGB8fJ4oiLr744oPmmRcUFByYCy64gNe+9rV8+MMf5tZbb+WZz3wmQRCwbt06vvrVr/LRj36U5z//+SxcuJB3vetdfPjDH+bKK6/k8ssv55ZbbuHb3/72ft/PfdFa8+lPf5pnPetZnHvuuVxzzTUsWbKE1atXc9ddd/Hd734XyG9uQt6E4tJLL8UYw4te9KIDbvODH/wg3/ve93jqU5/KG97wBqy1fPaznyWOYz7ykY8c3oNU8MCZpW5XBQfhQO1tq9XqfutdcMEFcs455+y3fMWKFXLFFVdM/d5ut+Wd73ynLFmyRMrlsjzlKU+Rm266SS644AK54IILZrz23nvvlSuuuELK5bIsXLhQ3vnOd8q///u/CyC//OUvZ6x7yy23yHOf+1yZP3++RFEkK1askKuvvlp+8IMfHIajUFBw/LF+/Xp5/etfL6eddpqUSiUpl8ty5plnyute9zq59dZbZ6x7sO+9iMjk5KS8/e1vl6VLl0oQBHL66afLX//1X89o0yiSt5y+9tprpa+vT3p6euTqq6+WPXv2HLS97eDg4IzXd69FGzdunFrWarXkLW95i8yfP1+q1ao861nPkq1btz6g9rYiIl//+tfl7LPPFmvtjFa3B7ueiYg45+SP/uiPZMGCBVKpVOTSSy+V9evX79feVkTkc5/7nJxyyilijJnRSnPf62KXA10HCwqOB/adSxyI+7rOiIj8/d//vZx33nlSLpelp6dHHvnIR8q73/1u2bFjx9Q6zjl5//vfPzXHuPDCC+XOO+/c7/u5b3vbLj/72c/kGc94hvT09Ei1WpVHPepR8vGPf3zq+SzL5M1vfrMsXLhQlFIzWt0e6Lpz8803y6WXXiq1Wk0qlYpcdNFF8otf/OIBHZuDjbHgoaFEiqqXgoNz3XXX8fa3v51t27bNaIdXUFBQUFBQUFBQcF8UQqNgilarNaPwq91u85jHPAbn3ENKuSgoKCgoKCgoKHj4UdRoFEzx3Oc+l5NOOolzzz2X8fFxvvzlL7N69eqDtrgrKCgoKCgoKCgoOBiF0CiY4tJLL+Xzn/88119/Pc45zj77bL7yla/wwhe+cLaHVlBQUFBQUFBQcIxRpE4VFBQUFBQUFBQUFBx2Ch+NgoKCgoKCgoKCgoLDTiE0CgoKCgoKCgoKCgoOO4XQKCgoKCgoKCgoKCg47DzgYnDn3GHbabcsZMa/ClBqv+e6jtT7byR/yYHQen/9JCIz3sO+pSlKqalH9zmt9cH3fxAOdf2Cw4uIBlTn3BAUHvCgPN1PXJRCUAigxaD8zPNFlOBV/nqUIMoDLt+eaLRo1CxrdGPMrO7/wfIM/YLZHkJBQUGH7/mvzvYQDpniGlJQMHd4INeQOdV16oAChMM3eZ8uIg72fMHxheQKFtAIAh2B0ZGSMLVkxovQXZGBR4nPX6vkoOK2oKCgoKCgoOCI0J2fHoP9m+aM0Ji627yPyOj+vK8IUEo9qElfV2xMFx3dSEb354Jjl/0+PdUVGxqP5FEzQFT+PyOgZfq6fkqKCN3zUBAldBVKcYYUFBQUFBQUHFaUQhkDxqCMQVkLxoDR+b9ekGYTiWPEuWNGdMwZoYF0p3b7LJ4mCqYLggOs+oCZvr19l09/vuBYZZpI7ciCXD5MExkcQDBIZ20l+fnR3ZZSILqzXXWgVxYUFBQUFBQUHDpKoaMIPX8ebsk8knkl4j5D3KfJKgofgAvBxDCwNqN29x787kF8qw3+8JU1HCnmjtBgZgRjerRhX1EwJQgOcQ/7RjEOFtHYT9QUHBsIaFznR41Mq9TIBUYnSaqrFyC/IzAtosHUj92EqpnnWpE8VVBQUFBQUPCQ0QZdraCWLmb80QvYc54iPG2C5f27WFkd46TyCPNsg0inlFTCuKvytZ2PZs2tS1n0vycw8KsduG07kCyb7Xdyn8wZobE3TWWf5Qep01CKBxXV2Fdg7PvcvusUHEsI4Kd+FqXxHcEhap/TJS+5YEpCqE79htqrQvJMKQWSR0PoFIjvV9NRUFBQUFBQUPAAUNaia1XcGSex7YIe3BMnuOKUX/Gs/ls43dYpKU2gNBqN6cxLNRqP54W9d3PHyl6+fuFj+eavHsvp/9iHvn0dvt2e5Xd1cI6q0DhYsXe369TBIg7T130gEYcDiYQDRUT23e7B1j8UDiZQiujIUUDRyVkU8kLv7s970+0UYFReAO6dRzyIyovCvXd45fOOThq8z5P5tMrFhnPC3oZmMtXdzHu/dwjF51xQUFBQUFCwL0qhKxXkzJPZ9Lt9nPbMe/mLpf/OY6M9zNMhkbIYVbuPDRgWmYALSylPPOGnvOSyX/LaZS9j3mceSemnd+MbjaP2Vg6Fox7ROOhEnM6UsDNRO1ANxfTXT193v20d5HUHWv5gohf3Na6CWUbJNLExHcGQf04+jVE+FxRKWboKRGuP9yniM0S654XGicZ7hTZmKtbhvcd7P3VeHailckFBwXHMPn8H1n3sCXzjWdc94Je/68yL8HF8zBR0FhQUPASUwvT3M3rZKvTL9/Cp0/+Zx0QNaiq6H3GxP0ZpaqrE4yPPfzzmc1z7jpfR0mdT/uEdczKyMWdSp5jWRWrfrlD50w/tTvF9RT+Ku9DHE1M5UTmddCdxHq0VWgliFEqD8gkoD6KRJMFLgnhHJikiCmUNOiihVYjRFiWC+LwDlTFmSmg8GL+VgoKCYw/T2wthAErzb7f8N4Ha62ej+S1GlR/wtv5rw8/5drOHz5z3ONzExJEYbkFBwWyjFKanh/TRp7L2GsNnn/YPPLXUoKJD4IFfLw6EUZqTbYUvrvoyL37TK7Gts7E/vX3O1WwcdaFx8IhFngO/b5epfV+7d1kxsSs4ODJdcAgEWqFchktaGO2AjDSJSRotJkdHGdqzk9HxYVrtCdpxC60NQVimXOlh6dIVnLB0BZXe+WBDMBalFMaYKcHhvS8aCBQUHKeYxYvwyxey5JOb+YeTftBZGj6kbQbKcFW1yXd+kLDh8Q99jAUFBXMLXakgZ5/Chuf08Ppnf5tr+u6hT5d5qNeO6RilOclW+OLZ/8TlL30LZ207Cbd+45yKlB5VoXEgkTH1s9qbDnV/aUhK5SsX9RAF94906jEc2qcoUuLxUSZ2bWPXlnvZuX0ro8ODtOMG2ghh2aA0eBEyJ4g37Fl/F0uXrmDFqWcy/+RVRANLAEjTtIhmFBQc59hlS1n9l4vZ8PQvHpHtn1HZxfonXYC66bYjsv2CgoKjjFKYRQsZvPxUlr3yXn608jMsMpVDingeCkZpzghKfPj8f+cvb3sxS/9xaE5FSY+g0DhAz9DukoOIiYNFMqY/r1R328Xk7uHJvufNzPPAdxZ1K3lUp17Du4TJ8RGGt21iZOsGRnZuYXJkN5I0CFVKJYSobLGhw/mE1DmUsWhTIk1GGdpUJ5scodGOWbjK0juwAN2JYGitixqdgoLjlJELTmLD0z9zxLb/toFN/MO7n8zS5xyxXRQcCKWg0whEaYV4Ie8OUlzLCx4C2mBOOYmNL1vCn7z4X3h+bRfRIdZgPBiM0lxZ3clfXTKC3LgU7pqcM+fyERIa0vkvR7G3UDaPRuRdevJjoHM/NPGAoKe8DtTeYzQlLu57knm4OVhHqoKjyV4Hi9xQz0/72FVetL03HIZSJl9PPOBQPiVpNti5aT1b1t7Njk3roN2gEhrKxmNKmtAGGAs20BgreDFkTuEyQZNSDgOyNKU1soONd8FE4jjz0Y+j2r8AEcE5D6iOW710GhvIfsWiBQUFxxb25JMIXrF7todRcDjRBl2KUD01VBjmrstaQ5wgjQbSjpEsO6aclwvmCNpgzjqN1W/o51OX/gNPLzcJVHDUdl9WIb9/6q/5+spLKK82c6ZW45CExr53bQ9aYI3glcOJRxGg995iRnWNlpEpoaE7phhKHHlbUgVoRKlpk8p84pj/K/mdCDE8UA71jnPXNPC+fDcOdXsHohAxB0dkrwt3fkZ4wHeEqgIMCoX3Ct85vE4UQWCQLManDdrjQ+y6dzUb7ryZ0d3b8UmLWqVMT1jF6ABjNGFJ56cTIDgsECiFdx6fepQHg0clMWl9F2Mbb6a+uJdqrYyoEl4FqM55rIV8jKortIvP93BjTz6Jxt/P7PJVflcJf/vqWRpRwfGI6e+j7/pJ/nvljUd8X3/5yP/gz157DQs+e9MR39fDlq778kA/yWlLGHpkmbSXjuuyYJuKym6hujujtKeN3TGMHx7BJ+kx4b5cMMsohVl1Cve8pZcvP+PTPCGSGc0ijgZGaS6p3c0XV/0uy39URiYnj+r+D8YRiGjk0zVR+aRQRHBe0KiOzUGGMh5jcv8CcYJkoLRHKZ+HL9FMRTqmJmoKVG68BqBEOjeMj3xU42AeHAVHA7Xfz2rK3jvvAKU7KkEEsjQjsJosrjO4eS3b1t7O8NZ1pPURegNHUAqwFrSKsSYgqpYIywFaK7x4XLeoGxAnEHmU8/gkIzAJsctIWyNM7N7CvCUrCHpOyE0BD9xRt9AZhxnd08OzvvVbXte/fcbyL/3rIr769MeRbd8xSyMrOK5Qikt+tpV3zLv3qOzuikqbt54uLDgqe3sYohSmrxe/cjk7f6eX+gUNfu+Mm1gSjlPRMSWd0vAR2+MBtrTmsWVygO13n8QJN51E321DyLad+GaziHAUHBilsMuXsfoP5vPFS/6e34nAHGWR0WWFFdqPbaLn9eOPX6EBIOA9phMNyDvyGJTyKO1AUpzLwCmUClHa4rM2RgvaRrmgEPBTBd8KrxRC57az8qiOP/O+87giV/54Y+/n6VGgzN5GAh5URxjozrlWCoX68Fa2rL+HzatvY2THRiJpUwmgWg6oRCFeIPOCDRQ2MtjAdDqe5eJCRDDaYG0eoVBecEYjCGk7AckY3rOHgeEhFvScsI++mKk4Cq1xGFGK9972I36ntP8F/JW9e3jsz/+DVO7bz+RPzrkwnzAUFNwH1665l6tr47M9jILDhLIBsmIpOy/sQ184wrvO+Annl9dT1R4NdK8orgapQFs0a05ZxL898XH8/K7TWfad+fT+cC1ubKwQGwUzUQq7dAn3vuokPnLll3lKKZ01kQFQUSEXnrqOrfNOhi1qTpyvR0ZoSB5x0Lpb3C0YLUBKEk/Qisdpt+p4B1FYIQqqhNZiowCwiPOIS1E6QCmLKEEJeHRHhOSTiYN9lPclNoqIxLGDmubsLQoEjVcaVCfOJR4tglECeJRPmBjezJo7f8nGtXeS1kcJVUI1UlQjTa0SUC6XEJWnWikboK1B2+55pdDkQkN0d+8KpRU4nVuKa0EjNBsTjI8OM7AsRgcBaDOtnKRTil6ca4eVP9vw2wOKjC6PCkv3u42vrfsx32328cnTzzicQys4TtDVKs/5zcZCZBxPKIWuVdnzuH7kglFeddpNPKW8gRMMBMqip9WQmmnX7BPtEE8+8b/ZtdTwj499Mt8/8XdY/u9bcDt3zZnc94LZRVmLPmUFa69dxHXP+wLPLDeOerrUvmgUT++/m88sOZvoNg0y+2l/R0Bo5Hn1iq4BXz4x08oRt+rs2bOF8fFdJEkT5wSNRRNSK1fp7e2nr38BpUoPWocgrpM6ZfIGEZJHNvbeNd7nXnJ3gneQjlYFxxLSsVaRToNajVN0Ilu5IFAojHIgGb7VJJ4YYsPtv2THvXfgmyP0lg0VGxFpTzkyRCWLDRTKWJyoPEKiAZOLCeU1WtvOudIp7BY6RegWJQFWHGSaWBxxu0mWxARBNT8/9zsvi3jG4aSkMh5q//FIBcw3dfSjzkSPN8g2bz08gys4Lqh+p8xr+or0u+MKpeGEBQw/JeUdp/+Ci6urWWqEig5miAzduVabTieqSAWUxTNfw/sX/4Lz37iWt696Cad9ZSHBbffixifmxN3igtlBl0q4x6xi7esM//G063hkGMxqJKOLUZpHRjsYXxmw2BhkDtQX3XeewYNGoZXOv8ReUN7jXUyzMUKzMUKaTgJtjEmANkkywZ7dW7l33Wo2rl/N+MgevE8Ah5IMLQ4tnTJxybd/sAncwaIZRUrVsUgeqQCH4Lul4FMPxINPcY1RRrasZe3NN7Fz/d2o1iR9oaWiFZGC0BiMMrk88Yo0E9LMk3mPR/KHBgKFDg2mZLHlAFMK0JFBRxYTWYJySLlSolSyWAP4FHEJWnVHKwf4w1Ocd3ONp5Q03/7OV+i7oU7zOU/EnnzSbA+pYBaIr9jrkmfOOJXmc57ImT1Fh6njDRVYmiv7ecqZ62eIDItBo6YeRukpkdGlu6ymS1xRGef7l/8tCz+0id1Xn41dvgxlj7rnccEcQEUR7QsfSfO9k/zooo91RMYRmk4/CBYaz+QpHhUevY5X98UR+ZYoRS4yhKk2oz6LiduTpEkd8S208VgToKzGG02mAxqTbXbv3Eq7WWfholH6BhZS7Z2HsSU0Qqf3z9Q+kHxyd6SiFQfa7n35fBQcCTpdxlBoZehO3LUIhoykPsbIlnVsXnMHOzetw8cTVEJNyVosgnJC5jxKQBuL0hpvDKIVxlowJo9odP9VoExeB+LzIiHE5x2kRDzaGXSSERhBfEaapZTwiPhpHi/dSMbhjWgUYvnwcsPKG+GTN7Lqpy/ntD+CbNOW2R5SwVFi19ufzDfe/hGu+Ni7AShfNMivH/PZWR5VwZFAGUPcbzipPEKPdvulSwEPaJIYKMNJtsxfLP8Gf/0HLX4y77Gc+O0e1LrNRd3XwwhlLfKYVUy8cZx/PeufWGYqc0pkAERK4xckqGBuCOFDGsUDnmB3buzmLUkV0Lnz7BJEUpRyGANhoNDK4o1Bq3wCn7QTJsYHGR7cRa3Sx/KVp3PC0pMISr2Aw5ggT6XxHtFHLjHlUMXEfa1fTBAfJNJpEasURgnKu05US1A+pT02xK5772HrPbcwsmsrKmtRNZoQhXXk96uUQpSQZgriPDaiLCijEKVQhtzd2xgwuSs41uSxlE4fda3zdZ1zIA7vUowRkrhFu9WgB0+eiKW6Ibfpb4IifWpus+b8f+KRf/cSTnzNQtzg4GwPp+AIs+mDT+K3r/xbarrGHe/41GwPZ4qLzr+DTU89F/2zW2d7KMcXxpBWFANBgwD2ExmHQqAMy22Z9yz+PstfMsrnTnkay7/9SHp+sg43MlqkUh3vaINeeRL3vLLEfz7ic5xky3NOZEDe+L+nrwVzJOJ2xFKn8updnedHaoVHcOLw4jpZ96CURmuNthYbWcKSpVQJqPWEhNYzNrKLdXfdwo5Na0naE+DbaEnRku3n4Nn1vSg4fugmTqFyy0ftEkzaxqQt4qEd7FxzG5vv/C2TQ9sp64yeSBNqsKIwaLQyHa+MkCAsY8My2uZdzkDjRXAiOBSiNBiLDkJ0GKHDELGWDIUYi4lKmCgiCAOi0CIuJW03iVsNxGXoTo2GmmEYM2uHruAQueOJN8CC/tkeRsERZNv/92Tq3zmFH7z8r6np+28ccLT53Ik/Z/iR5dkexnGHMpq0qphnGgSHIRshUIYlpsIb593KP1/yGea/bRODV63C9Pc/9MEWzF2Uwsyfx6YXnsCHL/oq54R21gu/D4ZGc0LPJCo4jlOnIC8BV1MzrWkW30qjjUEbgzEBRkcoZdBW0BqUcgQmJNKKahQyMdFi49q7iNttlq88nUpvP5gIo02eVLOPtijExnGE6tj0iUeLR+OQrE02OcqetXcxuHE1ychOQhcTWaaiD4HW2NBiggAbWpTV+Z2IQKMDkxd+K4UYTWrAoUg94DxKK6wotDEoq1AY0J3S89ATlhJ05mhOOrKkTbMxQZa0CW047XzP6ZYT7RfkKJiTXPTVm/nhExYXaRDHGY3nPZEL//QXfKjvOs6LQqA220MqOJp4QTtID2Dw+2DvRhul6VNlzoscf3/Kf/DHr3smt7tHMf+/7saNFR3LjkdMXy+7nncaz3reL7isuoNAzd2bAkYpesI2LRPN9lCAIxTR6LYF3evunefAmyCf/BkbYoIQE5TQNkKbEsrYvBA30CgtBKGiWrYsGKjisyb3rr2LTevuYnJ8GFQKqohoHP9oUAYk7z2Fi4mHtrPrrt+y4+6biQe3UXYtSqQol2C8oxRZonJAGAWEkSEIDTbQaCso41Hag85Ap2jtsIHBBCFog/Pg/N42usoGBKUyOgzxxoDNz98oCvICcPEkrRZpmkw7Fw/k3FdwLPCH8zbkNTsFxxXtAc0HF93RERkFDzcky4jGPLvTPtLOdbpb/P1QCZRhkanykaXf48V/9G02vekc7LKlnZtkBccLpreXPS84m4v+4Ff84YKf06fnrsiYixyx1CmlO94H0oluGEsQlgjDiCAIsUGEsRHWRmgb4FB4AyayRKWAUjkgDBVhIJywoJ/eWsCOrRvZcPcdjO7ahovbU+JCptkyC7J3mnfgLrgFc5i9H1l+ofaiUMrg223Gtm9m8+03s/7WX9PYvRXTniTwMdanGHFY00lJ1I5MYpKsTStu0GzXibMWiWuTZC3StEGWtXC+BUowQYgNSwRhCWNDRFuUCTBhRBCVCUoVbFhCmaBzrnmMBms1Ig7vHcXJdnzwj3d/B12tzvYwCh4iulrFnH0G/77tl/z8/R+b7eE8YG76k4+RXnLebA/juEKcozTq2BH30T5Cl+cBU+GN/Rv42h/8NSOfL8PjH4EKCmF7PGB6exl6zjk8/Q038f7Fv2CBOTb+PmTezJmaoUNKndo3YnDfBdMaUeBEYxC0sQRBQBCGOJdgjEVri1YBRgy222LUK1SgsMYhWYbxeWvTWi1CqYSRPVtI4iYrznDMX7ICbYPcMbxr6EaunkRkr5dHx128yJmfffYm0e37BdibZidTHZtAiUPSNhO7trLx5t+wZ91d+PFheiNFqAUtCgKDNxqvoRm3c6mpVMdgT6M0SKzQgcIGFmsVxmqsjlAuyztYGQudbWQA2hAEIVopjDF4k0GakGUZNs1AhDAICLTBqG7Refed5Y+9rZgLjhUWmSofvPNG/uziF5Bt3Dzbwyl4EJjTVvJPN365MyGYe7UY90WkAsQU14zDinME4ynbm/205cgV7gbKcEZQ5QeP/Gfe8+kn89u/OI/a9+7GT04esX0WHFl0Tw+jV5zN+W/5Fe9d+Gsqc7C260A4ETLR4P1sDwU4ghENPzWj1J2WtBrTERvamI4HQt52NLQhpahGaHrQporTIS00SWCQssFHHmxCqZwRmTaNkc1sWf1bBjevIW2OoX0770qk6fgi5CkwijxXzQJGZNamfEqpgz4KoBsJkK4rN3TOnwyVjDC29U423PJzdqy+nXRkiJIXbAo6VYiHOM2YjFuMtxqMN5q0Wglp5vGpIKlHUsE4sM5gvUZ7i3IWyRSSZkjaRrI2SjKMUmjFlFgxJu9RorzHANYa0izBJxmBaMpBiUAH4HNncU/nfBeNEoM6jH/YivPm6HBeFPLcb/0K9fhHzvZQCh4Er/v2d4+Zu44FRx7xQjDaYvPoAJNy5ItjKzrkTxb9mBPfuZbxy8/B9Pcd8X0WHH5UENJ66plUrt3Buxb+hIo+diJUHs+eRg1J09keCnAEi8Ghk/6i8miCIu8wpZTu+BL4vLWoUlhjsSbESYnMlEjSgDStI1qQDLTOvTjwnnJJUJIxObiV9ZMNThgbZukpp1MZWAA6QKm8NanueCGoTjSjmJvNDdS0n6aqGgTE+7yNrAjg8s8rbdLYs5nNd/0vW1ffhR+boOIhsBZxQuI8aeZoG0diBGcUkgmiFYLDKY9WYLTCRGHebMB1og8oXAaSxCAe4zOsAmMMJggQgTTJEKMx4smSmCxOCJzDdwSycp68I7vueLp0vcHVlA3UtCqio3mYCx4i1/bt4gt/3qD2u7M9koKCgoeEeNR4nfruZYy4GgSTR7wl6YAu85ETv8Hb3mTYbs5i4Jt34yYmjug+Cw4j2qDOPpWR19b5l9O+wiJTme0RHRIOYXi0xoJsz2wPBThiEY1phbFq779aW0QUaepwmaCUwZoAowMUFqUijClhbRmtI8AgGFAapTXaaExgCANDZBVJfZTtG1azZe1dNEYG0WRYPKpjniYiePKOQyhDkcYyF+hGL/IJuUfnNTw6F4ZaHFY5rI+JR/ewbe09bF23hub4GKrTIjkVhwSGTEM7y0gzj3gFXmG0QSmTT/yd5A8PWZqSxAlpmpJlDu9zOYAoRMA5T5ZmOOfztrjG5sszj/OC90KapqRZRpY50CbfhuRtmuk+7sO1vuCh8ZIvvxUnRy8U/JKT/pf61b9z1PZX8NAYvvZJrPvo73BOODf+uBbMEUSQVovydsuerAfPkb+GGKVZYip8fMXXGPiDLdQvOhNdOjbSbh72KIVdspg1r+rjn8/9AqcF0Zz0yrgvUvHIcISk2WwPBThiQoMpHwGlBFSeFmNMgFIWl0GWCohGd5aBResIa8pYW8boCK1CEANiEFEdwWGw1lAKNZVIkTRG2LjmTjauuZ325BhGeQIlKHE4L6DzPH1XTP7mAB4truMWnwsNpxRe50ISL2ifobI2raFtbL3rFrbecxfx2Bglo9FGkdERGUYTK0hRiGjwClKh2/O42yBAozB6WuNZnzt9K0ArjbVB3pjAhOStdAFlcu+NIMyfNyHWhGht8aJIUocX8F7Q1qKt7XQZKeqAjiQn/+lNZLijtr839m9lx4VzI8e14L4ZedWTePcf3cC9L/gMpwbHdvvagT/ejD1h8WwP47hCWm16Ngtr20twRym6bJRmia3xyVP+lclXTZA9/qyiQPwYwPT1svWFJ/Oh3/0XzgjCOeuVcV9MeqG8SyPZ8Sw0lKCUA1z+M6BEEdiIKKygVID3+QRR6wCjLVaHGFXC6gqBrhDYKkFYIwwr2KDUaYcb5sW8kSWKFJHJqEYQ0Gb7vWvYvPoO4vFhlKQYnafMAJ2aDSmSV+YYXik8uUaYkh4akokhdtz5W9bffBMT27YQZClGPEnaRgKN7SkzmbYZbTVoZRmpF/AaS4BBY40hMIbAWqy1WGOJwohSGGKNzWswnMdnDu+kI2JNHl0RDWi0thgTYG0uQrTptGW2Ia5Tj5EJEJZQNphKm9p3WtoN6BUcm3zx0s8z9vInzfYwCu6D+tW/w5+/5wtcXTs+/Av+47TvIbVjK1VjriNJQt+GFr8aPpn0KEZFAU6yFW549BcYeXeD7ClFN6o5i1KYgQF2vehsrnr5T7myuvOYFBkAW12Nvo0e3NG7MXdfHBGhoZDc50K5TkSjk7euQ6KwShTkYkMpi9WdyaDOzfu0DtE6IrAVwqBKEFTyCIeJUNaiA4sNDFHJUi0b+nsi5veWCUjYvWUDG1ffyfienUgaoyTPpxcp2lrPHaanTsFUgymXJ1JJ2mDPmjtZd+uvaOzZRpDFlCDvDmUgrIQkytNyKZkC0QatLKEJqUYVKqUK5XKZSqVKpVyhFEUENkDrPK0pd6SfVlQteaOCbrRMOqlcuQi2GBugjUV1mhmEUTnvdGYsThTKBnnK1PSObGrGPwWHkd+78pVHdX8Xlj3NRcUnOVdxFz6WT3/kOn63Es/2UArmMOIcwfYR1m9ezKQ/und+jNKcEZT4+qO/wBl/fTeTz34MulIIyTmFUtjFi9h67Vk86/U/4Z3zf0XtGOkwtS9OPDe3Tqa6rY0cv0Kj8yVWnQLuqXu8BoUhDCuUoipG23xVBUorjLFT9RrWRgRBmSisYmwJVIB0irw9gkPwkqGUQ3yCkpi+SgBpk+0b17B9wxrqw7uRtAU+Q5G7jtPpauS97wgQ2e/xgN7hAV53uAwD72vbx4MhYbfwW3Wn9F7QIijv8O0GwxvWs+aW3zCybQuBS6lYQ6g1obX01GqUKhVaSZtMC7ZUIirl3iyhCQltQDTVclahlUJrjVF5q1kleU1F3lAqf07r/F9rLTYI0cZ02iXn7uDGGpTRoHVuOGktNiyhTYC2AdaGiMDMv137mvcd+5/bXEFv3HbU9/mrt13HV7b+AvW4Rxz1fRccHHPOKr725U/xqPDYnBAUHEVEkLFxyhtCxn1wVGu9IBcby22Nv1v6U97xF//M1jefi1m4sLgDOhfQBnvScja8/lT+8NX/yh/Nv4WBY6z4ezoe4UdDqwiGG3PGR+OQhMYDb6vp8/a13QlWp9UnYghsiUqlB60D4iQmyxK6KVZ0fAgUOi/I1QHWRBgbonSe2pInZAlOhNSlpGkLcSlaMoyL8a0Jdm9Zz6bVdzC2Zwcqa6FJ830gKKWmREZXcHR/LzjCCHjx+O5EXwTlPIHPUGmT4W0bufM3N7FrywZKFkKtwAveecIgoFwuIyK02m2SNM2N8hQYk5/GaZLgM0eaZcRxTJIkeOdQShHYvLWytSaPbvg8dcp5j0dAgzWGMAoJggATWJQxHdPJKXVC6h0mCHMDyqhMuVzuPNX9KqnOaS+FxjhOqOiQAVPhO//1ZfS5Z8/2cArIRca3vvcvx+xdx4Kjj2+16dki7HGzV8MTqYArq8N86NVfYt27TsOuXFGIjdmkU/i99Xkn8vLn/IDn1rYdU21sD0QqjjV7FqHqrdkeyhSHHNF44L3894oMOr4CiEHrgFK5ShRFeJfhJUVpDzqv61Bqr0DxqLyGwwboIMIEAcpYRGm81ogxYCxKgZKMkoGqBdeYYNfGtWy6+1YGt6wja46hJJtqqJq32S38CI42guAElO04VroUKwkqbTKxexsbbr+Z3Vs34pOYrJ0g3pN6T+rBRiVAU59skLRjtCh0JzrispQ0a5MkMe24TdLORUaWpGRpSpZluE5bWsjvLhlj0CbvZIYC5z2iBBtYjMnbMntxeOfyf5XgxOMlrysRbdDWoHS3m1n3XNprPLjX37zgcCHO86GhVbO2///67/9HdnHh3DybuAsfy79+9x9nexgFxxrOUduRsCMbmNVhRCrg0so4H3/eF1j9lhOwJ59UiI1ZwvT3s+vKFTzieffw8v7fUlbHtsgASHG0h8tIksz2UKY4YoZ9dEz6pu7wCiAGhSWKKpRKJZx3xEmLzLVAYkRS6EQf8vvMgjIaY0N092EsGEumNM5YxFoyEZxLsThK2hGRoJM6w9vWc+9dNzO0eT1ZcwKZli5VCI2jjygN2uI9ZEmMkhTt2zSHd7Bt9W1sXnMnE4N7cmd3FHEmtJ3ggwBMQJxkpElKoCwlYwl17nGBOLzPcJKSZglZluKzDO9zceGdI0tSXJrlna1QuZs3IJ1kPKUEtOB9SuoT0iwmSdskaUzqEpzPcN6ReYfzudCwYYS2AWjdSevb93wqQhqHGz85yU9f9phZ23+gDJ//4keZeHHR9nY2qF/9O3z0S58sIhkFh4w4RzjYYH17cR7FnkUiFfD0cpMPX/7P3Pv7y4ouY7OAspbWE0/j3Gvu4M+Xf4PFpnzMtbE9EKl4wmED8dypWzsCR3VfkaFmLu8U2YZhhFJCq12n1Zoky5qIj/E+QSSj06cUlELp/A60sQEmCPNiXBvibIg3AV7n6VD4lABHT6jojRQmbTCyYyP33n0zOzetI+kceGPyTgJFutTRRiPa4ujYTuBojexiy923snn1bcRjQwTk7twOQyPxtDw4a5lotRkaHiVpJWgnBALGe7R3IBmeDE9XWHRS4bwgzuMyR5ZNi2w4h3jfLRjBGEVYCrCBJvNpLjKymDhpEydt0izFS4aIm0r90koThFFe0zEV0NhHaBSWGsclK4Maf/MXn2LotUU3qqPJyKuexJ9+6IucE5ZneygFxyIi6JFJ/nd4xVHx0rg/AmX4veoQL3rej9j5eysxA7MbaXm4YZYtYevvZ3xw6Xc4yZaP2Q5T+9IUIRpRc8ZDA46kj0Y3XaorNro3d5VCoYiiiCA0xHGdRnOCJG2SZS0yH+N8inRrPARQnY4/YUgYlYhKZcJKBVOuYqIKNixjbIBCMN4RKU8oCVUjBL7N0I6NrL/nTrZv20q9Xi8ExiyRN5dSoC3GGJLJMbatvYsNd97M6M7NmKxFpBVZ5ohTIVUWXamSacNEs0m7FUMm6MyjUofOXN6+zecpd/l1omOi183c69TiiHR+dg7nHb7TikxrhbYaGxi01SijQOXpWEkak2a58FUatFbQacmLNthuhK0IXDzseEpJ8xd/+AX2vOHJsz2Uhw3+OcNFd6mCh4Qfn2DdXcuY9HMjrSRSAW+b/1vOu+Z2Bp9zZiE2jhKmt5etzzuRTzzxBhaZynEjMgDGvCUalTnjoQFHUmjIzNu5e381gCEIypSiMi7NSJIGaZYLDe86KVSdmgqtwChFYAOCoEQYVYhKNcJKD2G1RlCpEFQqhKUSSmu8eJzLUCJEVlEONJaMoV1bufu23zC8cxs+bqLFo5WguylU0zO89tFGB+0ddJ9PPhzoOEfIzMLnbnXCvodGELx4tHhcu8HQts1sXbuGycFduMYkaatBlsS045i2cwTVCqVajVYc027HhEFAYC1GGwwKnfvGY7QisIbQGgJrCIK88NsYgzEa3REJWnXHIOT+j3k3qcw74jRGvMNq0AhIBj4/DzVgtcFai1FdUz+NthZl9NS5rYXclZ7px6HgeOV3KzF/9Y7PMfrKIrJxpNnxrifz6UdcP9vDKDjGkVaLBTdrNmfBbA9lij5d5iNLv8flb/0J2195FmbB/Nke0nGN7ulh5KqzufRlN/HU0vhxkS41nV1ZD9HE3PHQALCHsvK+kYCD1zh0U6Y6DWk7rskOMBiQCkZ5KmE/LTtK3JokDoaQKMZKFa1KU5lTkKHJOnefwzwf3oZomcS7BB8ZlIRok6eySJLh2ikuyfAihMpQUilJnDK28S5uG92D+Z0nc9KqszFBCa9M/uhoLt+5I6613vsWOuQT0HxSraam0tOOz5EMEM0iB44A5e9fi9DVq151joqAE0E6IsQanRdXpzGBEkwSs33tXaz535sYXL+OeGQY7VO8y5h0DcrzBqhEEdXeKi5tIe0mQTfU3WlLK0ahjcaaPK1OqY5hnpZ8udaYjsAwRhNEFoxBjIbAYsIAFQboUoQKw1ykuhTnUhKfkYnPpYy2iFFYW8YZS6YM2lpsqURt3gAmDMCozhHxKNkrtHwnfTBvcPBQj3fBXOSZlZRl7/tb3jD0Vkrf/PVsD+e4pXGi5wnR3JkcFhybiHMM3F3n+/VzeFS4es7cyR4wFd6z4FYe9fqt/EnPy1j5ydW4kdE50570eEFXKgxe/Qie8Lpb+MOFP6Omq7M9pMPO1nQ+Qd0jR9kv5r44MjNj6WxaFHnr2iyfdHafEoNSJcrlfsrlKjhH3JogSybBtTFkWKUItMJqRWAsgTUobREf4JzBie50AnIk3tF2jmbmiT15kbjJzdZsEBIaS0V5enVGMrqTtbf+mqHtm3BZmyxpI75TE2I0yhgwCt+NaCg1dcd6ymBuGt00HXWYPtPpXb0O9JhTdLu+dsVX50CJykWAsTY/lh3VGBgIXIvhreu5985b2bFhHY3hYVyckMUpRhmq1R7aSULPQB+iPK2JcSRuI1mCuBQRhxOHdNsFiCCZRxIPic9/dh7vMlyWCwfvM1AeHSpsJSKsldGVEhJYRFuwARgDWqFNHvkIdP6wKpePWmlCGxBGJYwNEG1QgQGr8oZqKpcW+I5fBzp3PldF76nDjb9jDU952+uIJZ3toQBwTlgm6Tk+bzIUHH2e9vrX4NZvnO1hHJ+IYHeP8Z9bHz1nrh9dIhVwVXWUT7zis2x885mYRYXPxuFEWUv2+FUsfflG3rP4+8zXx1+tlxPPtmQetpV1LCbmBkeu69S+E+/O90XoiHSlMWFEVKoionBeEG3ABDg0DkUmClEGZQwmCDqPEGVCtLZobUHnLUa1NiitEYE0TXEuw2cZeIdWEFpDtRwSWsXQru1svOcu6qPD5DfbPeARl3UGp6eygbrTRHWA6eL+MY2HId3g1T7pZgCIoLzkNRQIZAkjWzez9vbb2LR+DaPDQzRbTRKX4RQ4rXCimN8/n3JYpj5eJ27HCHTM90zHZC832AtsXuvRXaaVwqIJRGE67W9N57X5p2dyY8gwRNv83HFKIUqjlMmdwI3B2gCjbcdNPG99m7ksN3lSYIwlCPPzEaXyCIRMHY5px6b4I3FEEKH2r7/kcX/31tkeyRQ3/d/PEF/2+OIzPwLoahWpzp184yONac+dCcLxiEzUGbpnAWM+O+rGffdHoAxPKyV8+vc/w5r/cwp2+bLimnI40AazfCkbr4p46/LvsdBEx13KVJfhtIpK59Z5fcSOtNqv5Y7kk1A/MzKgtUbZEG1CwqhMGJXQ2uIFMpebr2U+n/zbICQql6hWq5QrVUrlMuVKhVK1QqlapVKtUi6X8glo5yQyKMpBSLUUUrKaSmQJLWzdtIENq++iMTmG1mA1iPjcBK5r0Db9sbfQoPNP5w2og8mQhwGdaI8o8J1H97PNa2VSlDisVniXMDE8xJpbb2HrmtXUh4bxaUzqPZlSiLV4ZYhKFRYvPIHmaIPWeCP3vOg0AwisJbQBQRDkqVKdQm/nHS7L8JnHiiLwilAUodJ5NKzr+G0U3iicVog10GmbKxi8yqMb0kl3EgHfOe/EQ5pmtOOEdpIiSlMqVwnDCC/gnM+Ly/elCHs/rPjRP3yO1lWPx58/e+13j0d2XvtoNl7++dkeRsFxgsQxfWsVa9K+WW9zeyACZXhKKeUfrvp71r7pROxJywux8VDQBrtkMduftZznXfxLHhfVidTxm4a5J+5BJ3OnPgOOaNep6ey9z53/X3W6AIEyFmNDMp/XOChlQRmUMqA0zgvOdcSGUtggpFSuUK5UiUoVwrCMDSKMsYjRuWNzGGGDAKM1BgiNphwGVEoBtVJANTT4pMm2e9exee1qmmMj4DKs2lvCrKSbAnOAiu+p7/zeVCF5GF4IpqeWTUUzOnlkSglKebQWFBn18RF2bNrArvXraezeTVqvk8UxThwqsHhjKddqLFt+Eo3JBsO7hgi8xojOIyOSfyYi3Za1GVmakqYpSZKSpRkuzfKWbmmKZBni8poJpRUmDNBhgFgL1qLDiKBSJiiVUDbM6zfQiCi8l47IUFiTRzmUzgWI8+BFYYMgb7MMeXE5MFNY+4er/HxY85NP/z1fvP7jTL6w8Nk4HNhlS5k4rz3bwyg4jpAkoXdTynfGHzXn0qe6dMXG+579r9z7ihOLyMaDpeP8veM5J3Pmi1bzxvk/o6ai2R7VEcMjDLZqqCSbUzc6j2x726kUqu4EXVAqn4wKoEyACSsoE5CkjjTN9k7yVKc1brfI12dkWYb3WZ4PrxSqc/fZo8gEnIdMBNEKbQxaacQLLklxaYLVnshCFCjKoaY9Ocr6u29j3V23Mjk8iPYZgQKLoMSj6U5wD5wkJZ19y7THw4dOAbTKp9SejshAQDwaT6BB42k3Jti5ZRMb77mb+uBuXH0S12ySxQmgEG0o1WrMW7gY0OzZOQipI8CAk7yoyQvSMd9zWYbLHC51ZGnHnM85xDt8kiJJgk9SfCfSICp3ke+KDAkshCEqjNBRCRNGWBt0UqVUvj8nKN+pv1F5QXkUBYRRhGhDknkyLyhtUUrv7bSlZh6hwkrjyLHolpi37XzcbA9jP5bbGn/74U+y8S+fRP0FT5zt4RzTNM5dxr3P+MJsD6PgOEKco7S9zrc3nc3IHEyf6hIow/Nru3jTi77ButefiH70Wajo+J0kH3aUwixayPbnnsxTXvFb/mL5f7HkODHlOxgez67xHlR7bgnoQz7iXWft6Z1xpi+bejAzfUo6rUXzfP58Uq60xQQllAk7kYvccE0QRBzgydPkPc7tdWuO4yatdot2kpI5wUtn0q8UXmtEKZQ1mMCijcZ5T5LGxO0GWdrG4gjI0K7NxOBO1txxCxvuuYPG2Ajapyjv0OLyVqXioZNOpdW090t3YqkQ6bwftf+xOOjxuY/HQ/lM7mv/+/78UJkSWkqD0p3PrXPMXJq3sY2bDO3Yxqa197Bj0waaIyMkjQZZ3O7UToANQxYuWoINQ3bs2EkSJ4TGopzriLzOuL3HOUeWZWRpQpomZElKFqcd5+/84dNs73mkFWI13hi8Njhr8NbijUGMRXcaBmiT12UoAckEn2VIluHSGMnSvM2y0dggr+3wSpMbdyiUNqjj+OI1V7E/+C1f/9VjZ3sYB+R3Soa1L/80O694+NQWFBQcE4igh8dI7+ll3RxNn+oSqYDX9G3iE1d/nt0fcAy/5LGYxYtAz41uWXMWpbAnLGbr75/GM665ifed8MPjypTvYLQlozlUQTXnVhT4Ac+ODjRBPdAE1vtOvnqeR7N3XQRRkncK2kdsBEEZY0wuLpTDGMFaRRAqjBVQGV5SvG+TZk1a7UniuIV4QekAG5QwUYSJInQUQhhAYFBhgIlCdGRQWuG9w7m8Gj8wUAk1ZSs0x4ZYc8fNrLn9ZsYHdyNZGyUZ+AylBK33igjVcYCe6gTVERvTfUP2msQdvkl9l4fSiWr6+oeynQOu2/UekbxY2vtOOzXvp6JBPk0Y27OLLevXsnPzRiZHhmjWJ6mPj3eiUx5jLfPmLaBULjM4OMTY6GguLrzvNIjNc+xEciHqsjyy5VKH70Q7vHMdx2+fRz3IPTKMtejATp0LKgogCBEb5p2mOulP3ehX/iGDT1OkYwbo0xTvUsQluCzBO4cyhqhcJYzKUyK32153fw7dTeOY6Dg2RzjzMxNcu+Wpsz2Mg/KZp/4Tw9cWPhsFD4xTvvo6yr+5d7aHcdzj6w361sJP6meSytzKZ9+XQBmeXo75n8d8gWv/8L9Y+7fLSC8+F9PfN/fTqZRCWTvjcaRFki6VUOeezT1/vII3X/s1/mTRL1hgqse9yABoekcwapH23BIah+SjcSh0p93T4h7dcvApXw1RGqVDgqiMMYosa5NlLQJr8uiB8vmEnwzxCZlzZJmQJvk9CGMClAbp3GF2SiFa4aTbTBfAowkxyuPaGVma4X2KVpbIWigFiKSMD+/m7lt+jRZh1SMeRXVgAaI1iEYZje9EXIwJ0J0vSp7S1Zlgqr0uGtPF19TxOEwXhEMRLt11u4XTkBffd0XQQ6WbvibiEBGszoWXchlKweTYKJvXrWHL+rVMDu2hPTmJb7dox23CShmXORbPW8C8gfkM7t7Dru078ElCX7UCgPd5Yhqy93qq6PiZsPd3pVTelcoYrFHYwBKUQmy5hKmUUZUKqhwhUYQPQ1QY5ilTUZRf+JRC+XRKWJDG4BxKDGiddzNLEpwosizD2JBSuYoJAjKlpyI7BlXkSR1l/O2r2fWik7juv0/mbQObZns4+/HMSsr8P/kobx9+E+WvFT4bBfdN/2qFGx6Z7WEc90g7pmdrwk/2nMab5/2aCuFsD+k+MUqzwFT5g76tXH7+x/mHRzyRf/7W0zjtyyP4tRuRdG44nec3IDUqsOhyCTXQT7a4j6zSKb5WEA41UVt24ScnEddtvnN49m3mz2P0macTvXIXXzn9Szw6hEgdf21sD8aY1wTjConnyPnQ4cgIje55M2PS5fMFU21uFag8daUUlbHGIFkLl9Rz5akCkAyRNiItvGvj0qSTlw/alDE2yGs5lO6k1gT53e3A4LwCLyhRiNcoAixlMmmRJQnep+DzOoCS9qTG45oTrLn9t/ikzapzH0dt4WLEO9I0zVNsrMU5x1RXIshdolFTaUCwv6iYzbvRXUHRFRfdlq2HZ9uAyn1OVCe1TLk8mpNmbfZs2czmtWsZ3LaV1vgoSatJ5lK8NbTTjPkLBli8YDHNiTq7t++kOVkntIY0beMkFxnW5tGoPGik0HkMCYfkAoCO0NAaaw3GGoJyQFApYaolTLXjmVEu4ToCI+jWZQQRyuZCyTvBZynSKST3SUyWKkxg8kINqxDRZM6BKhFG5TwqQu4U3okTdQ4MHWMVoVAeR55s0xZ2Jv2zPYyDcl4U8h8f/ztesvsNqJtum+3hFBQ87BHnCEdarNszj/EzhAXHyM1uozQn2RrvWXArz3nRzbzlsS8i/cfHMu/HW/DDI/g4PvJFwFN3/TQqzylGGYOKIlStih+o0Tqxh+FzApqPavH4lZtZFE2ilWDw3D62jO0/OotlP2oRrN2OHxtHkuTBj1spdBShVixn0wsW8ezn/Yw3zP8Fi83xnyq1L7tdjWhMIJ1bNRpHLKIBTM2z9kmgmnLczu00LEGpRKUS4dM24hIUKRrBuZg4niD1dZxr552FvEITUAoqhFEZpQ3gSQKL0pBpwStBtIBRqCxDAoNKDNrkefXWxrgsJctyEREqT09kaMWOsV3buafdIskyznjM4xk4YRlKCd47rA3w3oPynbqMjvNzN+umU0+gtZ4RRTjo4TnEL9ahrt9NuclTvtQDFhsPVBh1U8S0UjiXYTUYnXcMmxweYfO6dQzt2E5rfIzm6Ahpu5m3swUqYYmTVqwkSx0b1q6n1agTBobQaOKkDSojtLmAMU5PpdrlXa7ySbzvvC9tDBqF1QYThahSiC5H6EqELkeocoQqRUgYImEAYV4UrozG6G6XqQxJEySN0VmKzxJy5WRzMZIqUifELUdgq5gw6pwDdKRPFw2deJqSGdmDBUeQWx8DP7/X85TS3KyVWWCq/M+//yOXXfZi/G33zPZw7he7fNl9r+Ac2c5dR3YQ2tAeeHhNFAqOEuLR4w1kdy+DrszJ1h9TRcKRCjg3gm+ccwPffu9S/vS3v8e876xg/i/3INt3IXH80KIF3ciEniYqjEaVIlSphNQqSLWEq0UkvQHt+YbJEzXNFRmLTxrhkqW/5JKeuzgtmKBfW/S0LP10sWP9KYZ/uOppfPfn57Lkp0LvncOwexDfaHXG3clJOdj4O+PT1Qpq6WKGn7CQ+rMnuO7Rn+PJpUlquvbg3vcxjBPPhuQEwglBsrlVG3hEhcb+6VN78Z3/WWMwNiAIDK12QhJPEtkArwxx3KLVGid1DTLXxLkMo0OiqIbRCo1GKwPaECjB+RCPR/u8kByjIDV4o/Ai+DhP19LWAh7xDmUUoQlop0LSiumrBLi0zfq776SF4RGPDxmYNx8leR2CtQEiGifMMF4UEbIsQ2vydqjTJvmzRVdcOOewHXO7w7ZtuiZ6Oq+NcB5B4VxCfWSYe++5i833rmd8aJj2+ATtiQkSl9IWhbEBC5cvJypX2bhmHcN7hqmWQoLQYjU4OkLR5n4cCJjpCVPdybvkOVVKKay12CAgCANsOSSoROhSlNdlhBZvbe7+rXSeZieQOo8Xj89i0nYL127ikxh8ilWC0QqjBOUdWdombifEbUPUbwnDUv5+RXKhue/HvJ/ILiiAb37rei67+lWon98620PZD/2oM8l6S4jVfPeG++70tDGt85qXvolgtIW7a81hH4s85VzqJ5b45Uc+c9i3XVAAIM0WpUHNlmwe50UjHIuStk+XeUFtmIvP/yTfeMyp/MWvruCEby+kd+0kdtcwfnwCSZJ88g73PXEHlA3yesZaFeb14UshvmxxJUvSb2ku1DSWKuLlCb3zGyzr28NptRFOK+/h7NJ2VthR5huhpgIiZTHqwBP+c0PPR5b8iDc++0b+8+LH8KU7nkTPzxcxb3VMONJCNdqoVpzXGmSdtvXO5dGTMERFITK/n6HHz2P0mS3+z2P+k2fVNjCgSwSqdCQO9THB6tYSSmMur5edQxx2oZFPrvOfu94Ke90zptPtTqVQKshdml2KZB4fNtHG4rMWWdoiTlqkWQuRjMh6TBiCa5OmLazKPTSUURhrEbEgUe6pEQZIluJahlRAsgytPC4BsrxtrVG5D4IW6K1WaaeOejulVZ9gw+q7ETRnP+KRLFi8OK/ZMAFohc8gcx7nBBGVT4N9gjYq94Ez3YjCzHeuVPe7Lvsejb1ud+yNTu5/XZC9y7oqrvPv3m3n63kPrVaLLMsol8uEYTjj+W5fMKbtS+n7cTvfd+zi8veuFeJSBnfuZO2dt7H6tpsZ2raNyaEhssYEPklJvSPWhpOXLGfhCUvYvHUbW7dspaQ1AQbdMUq01uSNA7xDSd7EWOgEGOhmMqlcCJg8ZcoGBhsabCnERlGnCUCAhAE+sEigEasRrcA7xKW5iCHDJy1cq4lrtiFOIMlAstwt3Gu09/gUVCoosZiwhgkref2OdEXGPkXfhcIoOABGab78lU/y3Le/g+q//Wq2hwOAPvdshh/dx4v+8Lu8Y94DK0ReGdT43r9+iSvXXoa78PCMI73kPOrL8lz5n37oY8e1qdaB+MzYMnq2ze3C5OMGEaTZorJLuLWxgisrg8dsmo1RmkWmyst7t3PxRR/lc49+Mv+5/tFw1yn0rfP0bIkJRpqoiQbSbEKa5TdAfSfyXi6hemq4eTXaiyvUl1kmT4JsZZu+3iYDlUkWluucUhninMp2Tg32sNi0qGpFgCJQmkCZ/MYvpQcUGTJKU1Mlzgw8fzj/Dl55/m/4xeOX8bXBx3LP0GLGhudhRizhmCaYhHBSsC3BRYq4XxEPQLKyzZse+12e33s7S0yZQFWP9KGe08SS8avBk6nsaSNzrGXzAxYa3XSabiel6Sk505+HvGwCyVOYAKQziZTuxFt85+6BAq/RuowOe1FhBYmbpMk4oTaQpXiXEadCmmpCawmVYLMGoi1eabSvYHU5X9+rfCIo4JVBGQcmIMOAFrzOULFCtQSvwIhGUqHVivGpUK1VEZVQb6cEOOLRQbbedQslUgL9aPoXLcaYKr7j7wHgM0fczus9lM6wVkPH+E0psNagtZpyRJ+6Ge/zyXlXOIjkbXp193h2PURmpPo7lIIsS/N2qtPStbwIgbU470iSpNMFCiYn6zTrDWo9PfT19qI70RatdZ5Cpcj9SFTePUppvbfeZMa8ea+XyN734RGf4dOUdqPJ2OgQ6+6+mztu/i2D27bQHh+lOT6Z519mgteWRYuWsuLE0xgfHWPDhk2k7ZioUu44iStUBlZplLY4cXgUTnUcUwS0eLR4bCfNKrC5wAgijY0MJrJ5+lQUIVGICy3OGsToPMKFR/kMqxTaxai0hYqbSD1GtRJ8nOIyh1cZHkEZg86ATLBtg5YatrwYFfQBFpOf0FNiI9eK0yrX53DrxILZYZGp8tG//jgvfdRbmX+Hp/bV2RMc6jHnoP52lF+vuuHo7jeK2PTHM1sTX/Oc7/NH89d1fnt4iQyAv/nWszj1G7+c7WE8bJAkobYz41fDJ1NfcNOcLwi/PwJlWBnUeO+i3/KOBTdx7+NCbqyfzf/sPov1Q/1kQ/1EQwYdg0lAd9L4W4uEZHHGvBPGedIJt3NJ/12cHe5moc5FhEZjVCeDpJOncrBIxaFilMagWW4Dnlcd5feq/0O6wtEWR1OEMW8ZdFW2pvPZkQwwz9Y5MRzmBDPBYpOw0EREh2ksxzrjPmHrpgWcvXMH2Rwy64OHENE4mMiYel51izBU54a7mpZeklfPdr0HlI4ISn2osEZrYgwV1/M8e20JrCUIKzgMigRcgmtN4jLBi0FUijIZ1oQwdfe7Y+an87EZgcB6KHl8O8FbjRONeIuIwxkFVjA6oLe3SqYMI6OjiE9oj+xh0+o7KJUCtIHehUvQkUJ3JpmiFQ5oxwkmVPjO7XfxnR5bRjHVAkumTzvzSa/QrSTOM/1VpyOXF/KUpE6Uw3uHSIaQkcRx3nVLm473iEOAcqlMu91mdGyUNEnBQ6PeZHKyTl9fH955yuW8lbDWqpPipQnDANMRRB5Is05Xr06tidrnbr0S8OLwLsUlDRr1CXbv2MmWjRtZd/fdbNywjmRykrTVJGm00SJkiWfxCYt41NmPodVssmHNvYyPTlC2mnaSEBiFF03gFd7rqboXDHnNTX7SoQGDJxBDZDRBaNChwQSgAoVYA2GAKkVQipDA4nS3MxXgco8U6x06TXHNCWg1UW0HLZcLDTKIwBiLMRbtFFnL4RtgqlWi6kKUrSDSEWuSNzro1h4dqXBG0eL2+OG8KGT1qz/Nx0dX8BV+d9bExtB5vfxm1fUP+vWvWfZj3nH9Cw/5dcY61pz/6Qe934KCh4xzlHbWWbN9AbtOM8zXx1adxsGIVEBkAga05zHzVvPGgTtoimPMw6Ar0/ARTYlo+Nz87/RwFyeYmD5tqKgQjcLMQnSgKzoiFdCVDicBTlIo7cKzE6AjdixGHdvC8HCzJu2lsinAj47N9lD248jUaExP6eksOPAUqZuzoymHvTRsL+OJwmcxkdVUaiXKYYhEChMHuFadOG6TZSkSNEHC/M596rBBCRuW0crkk3271zgQY7CUMAJOW7IMVNvjE4U4Q7UaoNopcZoQlcrUqlXGxifIXJvMeybGRtmwZg2tOGHFGTEnLD8ZG+VfBWMVYa1EYAVlDdZqgiDI3aI7ruJ50XL+9RDvOyIrrxvZ24g3n7TmtR4p3gnO5RNYrQ1pmhDHTZKkmXtHeE8QBGRZRrPZxFpLWqsxPj7Orl27iOMYrTTtVkK73SLLUkqlMPcRIY+0RFFEGIYY04msKI33uUN7ZyW07qSFdcz4cqMJoR23aTYnaE2OMT42wpaNm1i/Zi2b7t3A0OAgKstI2zFpO0U5R0+tyulnnk1gQ+5YexsjQ8P5sfC5E3fmsryQ3CjIBK1BacF0hE4mgkUTmLz4WxnAKExoO1GMAAKNCxQuNASRRUchNjSIyWMN2nlU6jCZgGT4OCadrONbTVziidsZmRNMOSAqRZSqZcIgIG050iQmTTTRvArVWi9Km7z97lSErxuFOozfo4JD4v97x+v43ic/eUyl3Lx5YDOVD3yd/37zI2dl/xf0//Ahvf6qapOrLvriYRpNQcHRQ5zDDE8QbOlndbKYVcEQ5tA9jOcs+cQ9j3TUgEUGzgjASQzE09YLmMsRxK74OzYT244OTjzfn3wk/esdEsf3/4KjzJHtOvUAUWgCW6VaXkCzPJ94MiFJhUhAh4oosKhAE0tGnLTIMgNZhnJ1JMnwQUwQVlBVMFEJyDtDOfF4PGgBPCoDrxUYiwosJgS8z++YxylJmqLiFuVKlXnz5zEZt8gShwaGdu1mdHScuBmjneKEE0/G2BARhQlDbBDhRU1FAAQP4nGZ5Hfiu52oOgpMFDjJgNzEUKFRSpMkCfV6o5NqlW8vsJY0TRka2kO9Pk6plBc7GWNI05R6vU4Yhnk0Y3SUwcFBAMIgotlo0mw2iaKIyclJJicn8d4zMDCAMWZKrKRpmte4aAU+yztyxT53xO6kB3mXdVKoFPV6neGhXYyPDjExNsrO7dvYs2snY6NjpJnDeGjFGXGcElnLyaetYtHiZdz861+zY+u2TvpcfkyMNXtTwbopY6pTdNIxgFQieJ0X/murUYHOBUSgCKsRYSXChwGqEkE5RAKDdP5mWKXxTtDiIHaoJMWngm+2yOp1XNwiTTztTCAMKVcrlHvLlGolrLHErTqtdorSVXr7+qnWqmitO62OC+YK5a/9mvQT7pgSGgDX9u3i2r4j3MGpoKBgJiJIvU7fBvjJ+Jk8o3wjkTm2rh0PhuMhalMwk7rEfHfbWSy8c2ROzkvmhNAAhZKQWnkhfv6JjEpCnI6i4pgosASliCAM0c7j2jFxM8G1W6hWHW/buCBCSgnaCyZN8cbgtcKJJ8XhlUeJQ2dp7vdgNSYIkUDh04S0nYBS2MDQbrfwStPb18tC79i2YydJHIOkxCPjbMyEwGsqQcjA4sV4pcmSBNEGpQK8B+eyTi0LOOc6nac6xddKobXC+VwIKZ13VtJolDY06nV27x5EKU0QRhhtCMOQNE3YuXMHk5Pj1Go1jOmmTXmSJCEIAlqtFmNjY9TrdWq1GihoNBokSTI1MZ6YmEBEqNVqZFlGq9XKPwGl6OmtYdGkWUJ9fJw4jgmsQYmQJm2yNEErRRiVaNQn2bNzOyNDexgfG2V4cJD6xARpnOTtYoW8la0oTj5pJaeeeQ4bt25j/YZ7kXabKAzyOy5d80MRvOQ1KaLyNsh5ipZgusfPaJTVqFCjowAValRgsJWQqKeMDwy6vwbVKhJYMvFkqYd0Smui2im0ElySkU3WSeoTZGmbxENqAko9FaKeKuWeMkFkEQ/t1NHOhP6eHvoH5hNFpSNixljw0HnhU17Af9/0jdkeRkFBwTGAb7Xp29Dmx9tOZdfCG+k9TtKnCh5ebMtgdPU8Fm6/+8j7qDwI5obQEAUSYG0v1Z4TiNuTjE+2mWzVkdBQCcM8xadSw7c9rpkhjRa0m4jSEKSQgXOaLEwgCiEM8FbhyHKhQV4cbZQGbRHtcHhSlxFnCWknpSlNEurNJkFPD739fSxIM3Zt34lPEiRxDG3bRqgUlVLIqf4sehYugMCQZQaRAPGQJOlU1X+SpGQujxggkqdVAUma4pVgrEG8oI3BaMP4+AS7d+0AFKVSmVKpRBSVaDQajI2M0Gw3SZOEIAxpNBqEQUClWiVLUyaShInxcVyWUSmXES+0GnWMMVTKEeIyWo062miyNMZnKc24RbvdRmuN0YLR0G61aNXrxHGLtnQjM444bqMVVKoVGpN1xkdHGNqzm8E9uxkbGaPZbJKkKWnm8tQwNL3zF3DaWWcz3or5zS23E7cTQvTUe/BeyFKPVWA0OC3gNFoLuhv/UeTdpYzupE1pbGiJqhFRpYSyBqwmLEdIKUQig9aazOdO35Jl4MB4kFaCr7fxrZh4fJJWcwznU3wYYfrKlKpVStUKQSlC8DQbTRr1GOcN5Z55lHv60caSeZ9HY4w5bE7rBQ8dPzI220MoKCg4RpA0I9w2QnzPUm47exmnBHuOq/SpgocHv2ytZOFvwdUbsz2UA3JYhMZhmWSJBgkxtoegNACtEeJGHdVoElhLyYaEYYSr1HDllHhyEu/q4DKsNwQ6A9/Ki72DIHeELhmsEZzqaBkREI14wTlHkiakaUrqcuM+EUUYBHiE8bFRjHcMzBugMT7J2OAIoVHEzZg927chClLJWHn2KmrzBxAT0mzWUV7TnubOGScJSZKQJilZluVpTwriOAENQRjgfS5AtLZMToxTnxjHOSEutciqVdJSwtjoGC5LwXviOMY5R6NeR9dqRGFIkiTEzSZJHBOEIeVSmTRJpjpfIcLQ0CA7dmyjUq4w0N9HpVxGa02jXieJY9K4hdWdVsRKocXRaNRpNxtkaUa7nZvp1Go1RkdH2b1zB6MjwwwPDjExUSeJk6nOVUpZTCQsP+lkqr393HrLreweGqacpnn7Wi9440nxhCULkne90l6jnHQtMjq1D0x5piidGwfpwBKVywSlEFF5PUugNZn3eOcIlMpzOp3gEwdxhmQemjGu3iKtt4gnJsnaLcSCjsqUy2WqvVXCcu4Cn7TaTE7UaTZjvC6jyzVMqYyQO61P90kpohoFBQUFxxjikbEJ5t29hB88/WwuqWx7WKRPFRw/pOL48dgZDNw2gvNzL20KDoPQmN596sGjEKdQYtC2ii33o+u9hFGTpDVCk3HKyhJEinIQ4Ks1wmqNtD5BErfxaUyznuK1RUURplxCJSm6EmEjgw4MYhRZJ60pSxzKC2FUIhBLaEOSIKHVapM5wVpNJAHjE5OUgojTVp7MulbM5Ng43qdMTrRpbIyZjJvsHNnNwJJF9A4swOoaQacuwgY2bwSnFYODQxhjmJycpFat4fF45wlKIUEY0mq2KZfKOO+YGJ/EuwyfOVqNlCyJCYKQdjtGkUcb6LTDdc7l6UVpxsTYOLt37waE0087ncAYhkZH8C5Fq4BGfYI9u3dRn5wgCgO2bd3CyPAQJ520gjRps2vXTnZud/T1VBDxU1GEVrPJ5MQEPnMoLbg0JQote3btYHhokNGxMerNmNHxCeI4wWWOSqWG0pbli5dw8imnsXb9Bu66ZzUqzYhESLOMUOu8na+2OAeJT7Fe5TUvjtwXIzBopbFaTTmOG2sJwhATBLngMLn4EA9JK0OVHK7Vwktem6EzjzTbpPUWWSvBNWPSepOk0SRttdHWE1ZKBNUy5Z4qYbmMNRYyT1xvMDk8QRpDWCqjq33oSg8A1tqp879gDpGmvGzThXz55B/N9kgKCgrmOiJIq0Xf+iY/vvc0di/+PgNF+lTBMUTdx/x2x4ms2LFttodyUOZG6hTTDOpUgI36KFUXkKZ1gqxJUp9kpLmTvt6EcmUepSjAVMqoSikvZG6lJM2YzIGNUkqOPIThPJIYxBokyAuJvfOQegyKKIjIMo0jQxvVEUwehWC1IlSK4d17KJ2wlNNOPZXNmzazc+dO0szRrk+Q7tFMZDE9Q3tYsGgJvT0LcE5I4gRjDb29vcybNx+8Y2R0mMw5jIZms4kxhlJWJrEWpRXeGSYnJmk2mojPW9s658jSlNTEpFlG5jxpkk65fQdBMFV3UZ+cZHDPHnp6egiCgLGxMXbt3EUct+mp1nBpSqvZxKVZ7nGSOSbGxtmut1KtVGlM1vEuJY3z0JtIXgguImQdX440aVMpl5mcnGRsbDTfb6NNknqMjWhPNFkwfz5JkqGNZenyE5moT7J2/XomGnV6w5Asg0DlBfmiNU48WSYoLWgFXgsahWiP6I6PiA7Q2qA7YkMweK8Rr1CiMVgsBiuKtNnO/VpQKFH4OCWrN8karVxkNFukzTZZ0qnXiQxBuUS5p0apVsFYA86TNts0RyZI6wniQkq1eVTnL0IFEUVrqbmLb7cZufZE+MFsj6SgoOBYQLIMu20Ye+cKbn3sck4LdhXpUwXHDINecHf24etrZnsoB2WOCA0BI4jP8/ptqYdKbSFJawyfNkjjCZqtUVQ7g35PUOrBlkNsfw2rIVUtlFfo2IMH187QKs07N8Uq980IFJnKjfS0z1NxMjxREGCqFUbabbw4nM9I0wTxgnV5W9rB3bvp6enllDNORaxh844d+GaTyVaT5rAn8UKzkTAw0MQGIWEQkqQJrWYdazTlcsTgYDuvW3AprWadUqlMahRxW6hUqyTtNiNDQ2SZwxiL90Ka7i0qT9MMbS2g8J1Ur1JUQmvNxMQEY6OjtFot5s2bRxzHjI+PU69P4rIUl+Uio1lvkKUpLs1o+xZxHNNutejv76fZqDMxPkYQ5p2o8oOXu3TnvnOeJG7T39fH6OgoIyMjjI5N0k48rTjDYVh0wjKWLlnC7t27WbZ0GZVKmTvuuJPRsRFEHJl3pOKxaCye3FN8ry25EjBeoZVCOUAJTnsyPFrnD5M4UBlhGOadoxLB4PEOsixBktzx2zuPOEGStBPNaJO2YuJWiyzNMFoTlkKiaoWwp0rYUyXqCI2k0aQ9Osbk7hGyiQSJImr986nOW5ALpNn7ohQUFBQUHEbEOfz4BAvuyvj28CO5tLKlSJ8qOGbYmvWy8DaHzMFuU13miNCgk4ifN3pVJqJUGaBaXUhzchiXgSQZcTrGeOKoDmTokiWuRuTWchqtA2ik4BRKG8QJLk6RFAgMZBqMmTKFwXsyl4HOqFarLFq8iC1btqIyIYpCfCsm8B7JhNh5djZ24oxm8YoTGc1SWkPDJJkjyzwTY5MoMdTtBMYYqtUaSiviVoPhwV2ceOKJlKMgLxL3KS6NyYzG+4w4SbDGkDnHyPAQxlgUupMa5XHek8QpSZIQVaoEYYkkS0mSlGq5QpqkTIyPMzkxiThPpVSmFJVo6HpuCegccRzjvafVanZ8NxqAotVq4Zyj2WxQLpdpNJtI01MulwisRbybqpHIspTAGIyxjI2NMTY+wej4JEmm0TagXK3S29vDyNg4YVTipJNPZv3atWzZsjkv/DYG7xwOIfUO4yAwCmyI0aAlj2QYFBaF8aAcuExIvUcrwRiPzwQChc/ApYKPOy6IxkOStzL2SZu0HaOy3DfDxQlJq53XymQZSilsNSKqVin11bA9VVQpRFmLyzIao6M0dg/TGhwjaQt2/jzKPX2Ycg2v9dTpWjA3kS07WPWF17PmVYUhXEFBwf0ggrRjqvdO8MuNKxlcqor0qYJjhq3pfGr3TuLncBr3HBEaApLmhnHYPE/fVuipLSAzVZJUoVOHuIRmkuIUqHk9uFCjTBmlLEGQQZhC26G9Qjy4LENU7iat0FgPSgng8Jkny1KamSNut6n19DJ//nyGR4ZptlpYpVEKMpfg0hRRinu3bGbZypUsP2Ulo+2Yxug45aiEd57IRhilaDQa1Ccn6e/vJ4xCRkdGmDdvgGqlTBK3EZdP3pN2CwckSUat2kOr1aLRqGOMJW7HU2Z9IhDHMVnmKTtPqSJYawmDvGBZvCeJ89SmcrlMT08PJyxejELYvm0LaaLyjleQd2LKMur1OgCTk5Md345JVqxYQVQqMTKa92GuVioohDRN8S6l3W6zYN48mu2YoaERmq027SShnRmqQRllQwaHRknabR77mMcwOTHJ2rVr833EMaG1XXcRMgVZx4TPi0dEdcwNFZpOxCm3Akcpg/eKJMmQjtGh0oZyOReBdNKu8gJyT5rEJK1JkkZ+rHXmcWnupu7EI8ZgyxGlcplyb5Wgp4qqlpDAEGcJcavN+OAw8Z5hWqN14tRQWmAplWt4YxGlMVLIjLmMbzRYclMGr5rtkRQUFBwLiHOYwTHCe+ax5gmLOCUYLdKnCuY8Tjw7kgH06OSU9fNcZI4IDXA+RVuLwpI6CLSlXOkjq80j1hGNdoKWFCGj4YdxKsXM66UclrE1i40UlD1pPSFrpmRxRhY7cJ5I561TRQTv3VT9g8vySf/k+ATjYxMsWryI/v4+kiQm8ylGaUJjCMTRdhlehE3btrBo2YmcfMopqM3bIBParTZZ5gjCkB5j2LVrF1maUi6XMdaye9duFi5YQBwnqE7qU73RzH0jgDhuMzExwcjIKCJCq9VGRNA6yD03nEPrAGk2USagUqlQLpepVCpTXhreexYsWMDAwECnQDmfDCdJHg0plUr09PTgnKPVauG9nxIajUaDMAzp6emh0WjSbOaF5tZ0fEWyjHa7ycDAPMYmxhkZGyNNPSIaYwKCsEQcp+zevYczzziDxYsX8/Of/pjBPYM45zBaI+JQOi/2VlajjAGlSZ0jdgJK8ErjXV6nAbnwyJSgvcdiMN6idUAUhIQmxKJRmcN5T+YcWZqQxE3SVoO0Hec1Op26FicCgSYoRZR7qpT7apR6e6AaQhSgraXdipkYGqUxOkE20SCuN0lcgFGWIIgQr1HFH59jgtJ3b+Gcj7+Bu978qdkeSkHB/fL4m6/m9PfeMacnC8c14vH1BgNrHD8cP4sLSj/GalNENQrmPBtbC5A52ta2y9wQGgqUMflFVgSjFEoAMZRrA9hSH5kPCOIE41J0I8U4UKnG9kJUqaArAe0Q2oGlHTlcI8OYiKoIZeeRNMMZD87lBdFZhhaPCERKkfiM3du3MbBgPgvmDbA7GWSy0STzoLVCpR7jPY3xCXZlW1mx8lRWnngiu3cPkqUpzbiNncyN8krlCvV6nXqzTbVWZXh0jN6+foKozNDQMIlLqU828EBPTx9p6hgeHmF0bJw0TYnTDGMMYRChOoZ2USlApSl4h1ZQjkIq5VLu6K1AiSe0BsSze+cOxsbH8D73vojjEK01YRh1ohq52IjjhHa7TZalaK2JogicJ07ajDtHFEWkSQoImQMvimazzcjYBFmakWYZUblEKTTs3jVIX0+NR5xzNhvv3cC2rVtzR2+l0UZ3BJHkqU0iCAqvIUXQSqG1piWCd0KEymWSE3RoqVWq9PfV6K1ERIEmNIqs3SROAGvyIvLM4bIESRIkiSHLP+ckTcnE4wODsQFBtQQ9ZeitQF8Zqpa80Mfjx9u4PQ0YbeObad6CuFqm3FPBZx7jdN5+Fylyp+Y4kmUs//AvOGXJa7n3+Z+d7eEUFByUWFLGJirMa8ztycJxTSd9qmdjgx9uOYM3LfwRNS15i/SCgjlKhuOe0cX0tHbN9lDuk7khNAC6HYZEMGiUgDjBRBWqA4toDM0ja8WodkLoBedaSGbRThHaAFUKSMIQH0RkgeCtx5oEG2fYVpskjTtGeg6f5YUzSlRe9Kwh0irPzx8fpVKr0dvbQ5wK7YkGcZyigbTVIkDRHBllO5tYcuJJnLBoAWma4ESxe3CIerNFFEWUK7XclTvNmJis02i2CcKI0YkJ0jTNje3SjFK5RqPZZnyiTpLkIqPZamFtiPMKpTU2CAkAYw2lUkQYWKw1BB1hEQQWpfLISLNRp60142Njee0CinYnFcsYgwh5p6409/VIkmTKsK+/r59KpUy9PkEcx6SlNE+d8h5rLc45RkcnGJ+YxLk8ilCp9tCYGMOlMeecdQZp0mbN6nuI222M1mhAvGCMQolHyHJzQGsxoUWTd9hqpgneGJRWaAy9PTUG+vuo9vbk78+nJK0JWhN1yNpEBsqBoRwGuXs5+Wep0gxJUjLnSLLcK0UCk0fLSiGqUoJqhC8HuMhgrEIyR9pskg63cMMtkrGYZrNNy2csWDBA1NdD5gXVOS8LkXFsYObPQw0ksz2MgoL75O07zueUl9w628N42CPOYQfHSVYvZ/UjF7LcjBGoQmoUzF1ScWzftIBVyZbZHsp9MneEhkz9L/efUArRGi9CT/8A8fyFDI4MkUhef5HGDpoJRG1MuYE1ClXWRCpEhSEu89DOyNoZbZeQuIQ4y2sZlPcYNLoTSclcRuYyrDHUJyZptlrMW3AC8+cHtNopKYpWq40NAlzmsVYxNjpG6oUTV5zMokUnsHP3bqwNGBoaJooiarUaUalEu91mfHyC8YkJBgYGqDcaTExMoLUhSRKq1Rouy1vUNlttvIBzgjZCkqYYaylX8nqMcrlCb28v1Wp1hiN1uVwmDEOyLKPRuStWr9fJsizvIAVTYqKbZtV9iOR1GCMjI1QrVU44YRHNZpNWq0W1WiXpGA4ODAzgvbBp02YajSbOOaJSCQWMjAyzcOFCli1bxt133cWuXbugY2injYFO2ppVQjUsYVXeWcp5wWuV+5aEFfqrNRb099FXLhEFYf4+Jut5PUvSQtImIY6SBTQQKMgyMmsxxuQiIE7I2nGeSuUFpwQT5AZ/YSmiVClTKpWxUZiPL/VkzZjWWJvGcIvJiTrjE5M00gbhQJX5K5ZDtYyPLGiF756fR/XLUfBg2PHSM9nw9CJ1qmDuMuQafPv2R3AGv5ntoRSIRybqDKyG74+fw++UfkQktkifKpizNMXRu8Yifu4WgsMcExq5A7SAJp80asVEs0ktNFQG+snCgLYXIqVROsjdxFsJjE5i0wxVyTClGpXQ4LSQao9TKV7FOJXhyYuPFWBULmvEOaTjJt3qtLVNs5ShPUPUBhYyf+FCkt2D2CDDeIiswQCW3HBudGycJctPRBnDho2bUUqRZRmjo6OUy+Wp3xuNBosXL6bVajE6OorWeiq6kLkm9XqdNE0IwohqtYrSmjRNCYKQ/v5+giCgVCoRhvkEudVqkSRJbtqnFNVqFa117hAex0xOTpKmKUopgiDIIxRpiuu0QHPOdepAdO4O3mgyODjIvHn9eO9pNBp5Hcv/z96fB8mW5fd92Ods995cquqtvU4vsy8EsYVEiiRIAVDIJBQSaVK2Q6LDlExQf5i2HLJpegnJDoeDVli2I6SggmRIpGiJUthyyEQwFKZoBAWSIEEAwjYDQAAGmBk0BtPTPd39ltoy896z+o/fubfyve6e6ca8mXr1+n4nal51VVbmyZtZ753v+X2X6um4fv06AK+//jq73U6IT7egH3qMNbzwwgscHx/zyiuv0Pc9jbV7pXa5/inPt1t0WG1wWnO0XnPr6IAbh4cctB1WFXanZ3z19dfZnp9TYsJSMCQalXEOlDIoCiVKO3tOoFWSqYZPRJ+IKYkUz0rxoGtb2q6lbURGFgZphXclkzcD2+Mdm9Oe7bBjkwOhtTz34Zc5fP55zo1BLxckA1rPJOMqwH74JfwfOr3sZcyY8XXxk/1tPvHDM8l4LFDL+w5/c8ePffkT/Cs3/zFHTZpN4TMeW7yVNNd/I4gy5zHG40M0qBu4cvEfRSn6GDA2Yw8OaW/c5OxsQ8nQtkuZRoRAOdniBk8zFMxKozoNRUvpW6vIRQMiM8qpoHIhqppUVE/1U86UKOfVWiv63UBf7nF08yluP6MZXv8aSQW2PhJCIhuFc5bNdsudO3d46cMf5s69Y4ZhwBjDdrvl/v37U4HeOGkwxrDZbCilSBdEzvgg8bPL5ZLlak1RmmHw5FxYr9ccHByglKJtxWMxDAObzUamPqVMn4+36/ues7MzSim0bUuqvRvGmCqfKg98aK1RSnF+fs7JyQnr9br2cJxTSsF7T9M0bOo0BmCxWKC15uTklBdfeJEbN27w8z//89y/f18mKdZO95+jkBtr5fFB1vri88/z1I3rpH5gd3bK3Tff5Pz+fbIX34nJBVeQyUuOKJ1wyZBRJCuJU1kptI5oUwv9QiYFyAUwGm0tpmmxrsE6h9KGFDJD2BJjwPiM7iOb856Tsw2nfU9vC+unbvHMJz9JWiwZosEtlmQKWhXmIo3HH5vPPMWv/v6/etnLmDHjXXGee/7Nv/pneY6fvOylzKgoMeLeOMV/4Wk+95kX+Zh7RYJI5qnGjMcMqWS+EG6zfOVEwm4eYzxWRGOcasg0A7JWKGfZ+shBt+DmSx9mCIWw6WnbJcRA2JzQn53jTwLxtKc58JgDT7IOrMa0GrRDpYgKBWKilEQp1A4OaiO4RiuLHwZCTiTr6Ldbzvxr3Lh9mxdffpnf+sqr7OI5ymg25xuGeEqzWHLv+IyUCi+//DLee+7cuQPI6f3x8TGLxQLnHCcnJxwcHOC9r6f9ipwzfT/Qti2r9RpjGwbvSSnTdQtu3rjBer1GKUXnGqy1k7RpJBrn5+cYYyYfxW63Y7vdAhJpO04yVqsVzjmcc7RtO3k0lFJYawleJFRPPXVbejU2G0IQo/hqteLNN9+UFCljaJpmIlW3n7rNW2+9xVe+8hVKviAwQhBEomWNqdOZAz7+kZe5fesWKmXu3nmLN197jX5zRvYBXQpL51AacpbXqeQCMVN0Qdx5ElhcciKWJGV/uqB1oQQp69NGY53Ftg1N12GbFrQheCFdp/2W3XaHDYVOOXyKbHOgrBxPPfc8t19+EXd0nbubgcX127TdEqNNZTBcVNnPeCyx+oWv8OH/35/hlT/y1y57KTNmvCO2JfHc/3UmGY8TSi6osw0HX4afPPkYP7j8Iks7m8JnPH7IFP7eyafhzbuXvZRviMeGaIznBeMAqBSZaLhuwb1TT+Ma1ref5VaA3emGFks4O8VvzujPd6TNKTt1jF2ds7odUOsVetWhV45iFcVqTGMhZ7LW6FSqHyICioKmKIVxsoE+OTtnSyEby9YHbj/zHC++9DLpt1+lv3/CYrXCxML5dksums9//tf5OPChD30I7z3379+fphcpJZbLJXfv3uXw8BAAY6xMKIymlEzTNHRdR6ob2cViweHhIddv3GC5XGKMQVfp0W63m4iG3JdMKU5OTlBKsd1u8d5TSpmIxW63I8bIYrFgvV4Dcl/DMFSi4YgxcnJywvPPP0fbtkI+QpjW9tprr00ko+s6druep556iq7t+NVf/VWGYaCx7oJg1BdSKcVqvealDz3P7/7UJ1El8/prr/H6V7/KsD1HxYQpmcYoTG3ejkU6w3vvsSHjdMZpA8pA0ej6jokxk2IilwRKoWJBKWgWjsZYbNPhugXtYoEyjt1u4M7xMW/cvcvJ6SkL1/H07Vusrh1y/dYRR88/xcuf+STNwTW+eveEs/OB2x+6TqMbTISiiujuZjzWiK9/jaPPfQT+yGWvZMaMGVcGJVO2Ow6+kvjpr77Eb94+4rbZzKbwGY8dtsXzo1/6NB85/43LXso3xDdFNErdRD5qlFLEP6EU7WLJWT/QtppkDOvbz3J4A/zJOWfeM4RMvxtwIeP7ntPjDT4Urr/wAroT2RBaYZzDLArFWmLv8dteJhcpkTKkXBhqGlRS4JYrXCn4XDjf9fSvvsrTzz3H8y++QFRGWrGTZ7lcU9D0Q88XvvAFPvOZz/DMM89wdnZG3/fT1KFtW+7cucMLL7wwTTW6rqNtOxaLSEq1eA8hIU3b0nUdWmustXKdcxZPx94HiLQIIITAdrul7/tJijVOFlQtExzJxn7/xvjRtR0pyvSjbdvp5w8ODsg5s91up69ba0HBzVu32Gw3E7EaU6rGUZ41lps3bvCpT32Kj7z8Em+9/hqv/vaXuffmW6hSaK1G6QxZkQronIlaY5TGGo1pNEoFcg4krSjaULQmFk1JiZgKKcnrV7KkiTmnscqhnMV1LbZpKErjfeT45Iyvvf6WRAknyKvCTlue+9BzvPSJl7j27G30asnZLjIMhcauuba6SaNaSSlT6tKy7stjPh593PDsX/scH/6Of41X/vlZQjXj8cP/+A/9SeDLl72MGfsoheI9i69t8V885Kc+/nE+6X6OVqWZbMx4bJBK5k5K2M+tyT5c9nK+IX5HRGPcPH8roNSDEnhrGtbrIzb9OXqxRLsFTdugisWfn2HbjpLFU5E2G4akMN05q+0Od7Aie43uNF23QKtMIlBiomhFohAopFJIBZJW0HU0zuGsJeeECgl/vuHeyTHZWG7cfoannnmGIUEsG0LKKG3ZVbP1b/3Wb/H8889z7dq12ugtZGA0YeecpYH8rqRTNU0zfYAihkDTNiwWC9quwznxOqSUZN2VFHjvp+K9EALWWnLO0+Ri9GoA0iBeCccwDJycnGCtnbwZWst0IISAVrDZbFgsFtia5rRcLh9IuFqv18QYWa/WNM7x1ptvAdC2LX3eQZL3SNd1PPXUU3z6U5/i2tE1Pv/5z/PKF36D5ANGKzrrKIBSGmUU1ObwrKS7pCglpYYy3iJp8ECfi7R8V5IRo/RvUKCkiHYObR2mcShriCWRQ+B82/PmG/e4f+eM7S5ibEtaO8pixeLmdda3bqBby+n5Gec72G4868NbHKyuoYree9/PE42rgLzdYk4sr8ZznjaLeaMw47HAm2mDL4X06uuXvZQZ74ASI+b1e9z8pTV/81Pfze/5XV/ioDtlTTt7NWY8FhhK5EfOvovn/8EGcrrs5XxDPNa/NQrZJN+4cYvtLtKHRCiGYhboZoluWqzrMM5RCigMXdNCVpzcO2XYeCwNNjtUVnJaQSFTKFqBMWRjSEaj2ga7XmNWS7JzRK0p2mCahoOjIw6vXaP3nle+/GW2u51IhhYLci5stxuMlU3M8fEx9+/f5+bNm5N5W0gEUxrU7du3uXbtGgcHa7q2xTknPo7GoZSiaSV5arlc4pwjpYT3nu1uOyVNjY3eZ2dn0/2++eabnJycYIzh8PAQrTVnZ2fTdGUkKNvtlmEYpP3bWpqmmciIUoqTkxPatp3M46vVaiIv6/VaJF4pcf36dWJK3Ll7Z/J9AGilWCwWfPSjH+V7vud7sNbx8z//8/ziL/4Sm/MtpYDWhlyKSMW0RjuHMlbIX8ryAQSrSa0jtY7oDIOGbQwMKRFywaeCjxkfCyFBUdI6rhuDdhYMxJLpB8/941Pu3jlhczqQBwOpIeeWISt2IbIdes7OTzi5f8LJ3RPCkLl54xkW3QEYSxHV1owrhI/++Z/ih1/8Pv6Z//a/x1Ae/5OfGU8+/uSf+tf54Re/jxLmjpfHESUl8vEJ1379nN3nbvBf3v9e3kiZyOO/oZvxwcAbyfNXfu77sV987bKX8p7w2Gybarcc0zyjGsONsayXByhl8D4TA4SkiFkRUiEpUNaCtSjnME0LaMKQyR5McuhgKZ4prjXlQkaB0ShrUI2DtoG2oTQOr2EgkzUkCsoalgcHHBwd0bQNb7z5FiEmrl2/gXMN1jQoFEqJufvuXTHnHB0dTSbt0dew3W45ODjg+vXrrNcHWGen24wb+7btaCsBKUUIyna75fzsjM1mM0XVjlONvu/ZbDacn59zenrK6ekpMUq7+EhIQgjThGWUUZ2enk4xtzmLgRolHRw5S8Gfc46maaYejsViAYBzjsOjQ7abDdut+EXGaN1useCll17ik5/8JEM/8Nlf+AV+65VXat+3IsZECLFOeRRoTcqZmBOpyq6SgqQhWU1sDKmxRKvxCnY5M5RMLBCzImZpLUcpmq7BtgZlCkUlIolYMufbLcfHZ2w2AyVZdGkhNZRo8LvI5vic07v3OH7zLuf3jjm7f8qqW3Pr9nPopiMbjUfSxspsBL9yWPzhV/j+X/qXSI95DOCMJxv/3v2XscfDZS9jxtdDKZRhwHz1Drd/MfF3Pv8ZfrZ/kW0O898fMy4doSR+fPcRbv9YQz4+uezlvCc8Nmbwd4NWdVN7eI3QB1COlDREGEIg5EwxBowhlEIePFoF1octJSr8ecB1FqWlHyN4TwhePk+JojUoTSiFmDPZaGidmJhjwRlFTIWh71Ha0XVLzrc7jk9OOLp2g6eeeopXv/o6frdBKU0phb7vefPNN7l+/bq0g1c/xpjk5JxjuVzSNA1Gm8kjoZSiaRpc7Z/IKRGi5/z8nL7v6TdbbDV+hyCt3ftSqa7rMMZMEbTXrl0DmKYZo9zNOUff94QQWC6XxBjJOaGVIsYASKTtfhzumDC1WCw4OzuTBCvrODk9nb6/2+1wzvHyyy/zu77jOzg5OeHzv/Z53njzTXQlIhbAaFzR4ncoBe8D5IQmS6yt0WhjUNaQjCGrQslQoianJNKqXHClUEomZaAo6eZoNa4BdCHkSA7SGH5ytuHk7AzvM0Yt0LmFYEl9wZ/1bO+fs7njyCpw3mdUc5Nnn32R9bWbZG0JWtHnTKcLNlNJ04yrhMMf+hKf/s//VX7jD/2Ny17KjA8o/rN/94e4+dmfuuxlzPgGKCmRT045+Px91j93i//3i/8k3/vSV1jrOYFqxuXiPA/8pS9+P7d/4R4pXo0p/WNDNMoDnxUUta+gKLSy3Lx+m3t3j3HNAq0dCYgxkXNBW4duGrLakAGtLTFmzo7PAcu6LMEECglShlKTmpQhFEkuCkCxGpzIl0wBZQpGG2wWD0dMhTAE+sGz7QMxwfUbN7l+8zr37t/BVvnQdrvl7t27HBwccPv2bY6Pj7HWsl6v2W63EymwVW41GrtVlVkpDTGKqbofPKenpwzDgO97nJGXbCQa292OYZD27ps3bnDr1i1OTk85O9+gtEErTT94zjfyuEopjNZQCrkUStkChRgSpWRi8DRtO/k+xvWNMbht23J6espyuSTEwPn5GVordtsdxhief/Y5vuM7voPz83N+5Vd+hePjY5qmIaWEsxpdCq2zlUwVYkooMhowtTxQGUkASyASN6UkiljL+0EVzZAKOct7JJeCQZrklVZgClkh7eC+kIbA7nyH7wOqaKx2UCxgICnC1rM73bI56cBkMo7bTz/FMx96GdsuiEYRFGRjiBTsTDKuLD76p78IX7zsVcz4IOK/+4U/zK3Pnc01PFcB1RSu3rjD7V9c88uffJFffvZZXrJvzV6vGZeGVDK/Hlq2//gWvPZrEs96BfC+icaYMvXo06Y0kjWlgFxlVAqKAVpWq5sotcQoR4mJlCIqeZwp5MYSrMF1S5xegF4Sth7yFqM0qgSWS4M1hegTOSa0sbSLDqM1OWV8SCQFWEdGkVPBWEUpipwjbbfG5sIQzlHaMOx64vE9eu956eWXOTs74fj4mK4T43SMkfPzc1588UWcc1hrOTg44Pj4WArtnKvxsj3DsCOEWJOmWppGmrz7YWDXD9y/d4wPHklWVaA0MUZCJSJn5xuRg90/IRRF23Yo23L/bMuiXWDdis3uGO8HSsmoUsvztMYPoZboQSkiXcqpsN3s6LoOiiL4QN/39XYSH3twIKQpeGlTB/jQh57nO37XdzAMnl/79V9ns+sxriHFSFEa7Rp0TmAMSUHJGZUTRimUMSSK/N5kJUlhtS8jl72mb+ewTuN9oKSC0xZtHDoVklH0KmOdTGJSVtDD0HuGkwHrpS/FakBnsopknYlJ0wfNLixx7ZLm4Bov/+7fy/rWsyhn0UrhSsFo0GW2gl9l5H7gd/97f5Zf/jf+8mUvZcYHDL/6Ux/hwz83TzOuCkpK5PMN7Zfe5OZnX+DH/onP8P2L/5olzWUvbcYHFJHEf37/9/HUZwP57Oyyl/Oe8b6IxjuRi0eXPiX6/bcVoRWLwmCNY71aiL4/bUjek/stJQZKSeQCyjiMcqSYaYyjNQaVPGcnW87uD+iSsW1LaSzZFgoGsz5gcbCgxGouLkq8DCFidAOlMHgx7WljadsF3SJirANtODk54c6dt/jYxz7Gl7/8ZTm5d44QZKSVc57M1NZanJOeibFcDxWIKcikwej69AsxBc5OTznfbNlsN+x2O4wyNepWE2NitxsYQmQ3eLQxnO96dv4O6/UhxhrCENhuI23T4NoVg0/0/YBSGhsyxmiMBuckgarUgrwQIsPgJalLm6nwb7lcsNmcY4ymbR0nJwPGKHbR89RTt/n0pz+Naxy//uu/wa4fUMZI87rS2MahtCamQA5SsmeNprHS6F2K+GaUVhRtSUpRciF7j2us9JYAhoJCs77W0hZF2fX4sw1pN5BJeA1BG8igQ4YAwzaQNxmHo3GWYhRZFwqRqBQxGrZeEe0RbnmLg+de4ui5j6E6iS7WCtpSGL2AF36iby++FVHSHzjkxAs/8jr8G5e9kBkfJPzAr/wxPv4fvEa87IXMeO8ohRIi+d59bvzKTX7iKx/h7lOKmzrP6VMzLgUn2fNf/sp38qkv3pmSTK8CHhPp1LttoFSV+0gEqtYilylASpkQCzEXYhGpTMqZkCOLpuPw8Bpu2RFV4N7ZKbvtGa11tEqLl2GxInct2VpygUW3YOUaQlGcn2+43x9zenbKarGaUpZiyuRcZGKgA0prbt26Td/3OOf4xCc+wcnJCScnYtAJIUwdGlprUkporR/owQhVlmSNIyeJp/UhsBt6Tk5P2Gx2ks6UEkMYaFyD1qMc6pxh8CjAew/aYG3h7OwMZTQqK4KPaK24du0I17TstltCGCjGEGPBGlM3sOLToFzE547rTTnT1l6Pe/fucv369Slyt2kaFsvEhz/8Mjdu3ODzn/88p6cnNI0lBI+vhMsYKxKonOm6Fq00IQyEGDFOY5QixUgIiaB9jRjWGKNYth3Xrh3RNg0GRaM1frsl7QZCTAwhAiLJwmR8yATvwWdKyMQ+klG0XYdtWzywi0nkWNaAscSiMc0Stzrg+Zc/jOtWD5De/Xfo1RhWzpgx43HBa/eOePmVX7rsZcx4v8iJvOuxX3od9TMf4xe+4wU+4r5Wp+0zZnz7MJTAj5x9ghs/3lJee+PKyKbgsSEa7479icnoMShARk6+M4ZYy95iTtgSWS47rh2tiSWz22wJuy0lJmLRnN+9zzLD9cWarl0QtGEXRSbVNh1L13KwPOD6wXW251t22x1nZ2eykVdaTv+txTUNg/esVktSSnzta1/jwx/+MNeuXSOEMKU+KaUm6RQwEY4xocoHT9/3dK26KN7re07PTtlutvgQKaWgtUYrPSVnxSglfzIVUfJnAWcbBj+AUlg1Gscz9+/fZ32wwjlL3+/QqqCKeGFSMtJbkTOlJELIeB+mqQwonKueihhpmqamX/U0jeX27Re5cfMGb731JsfHxzjnOD8XEzzI2nPJhCgJV5vNlsY5FosWXaTbwyrNsmtZLY9Yr5Ysl0sWjWPRNZSS2W433HvrDr7vKSlhCuKV8IEcPaYUnNLEWEixR0XIMaMilASu7XDLJbprKT4S4havCspamsUSt+gwTYOxDTdu3EIb8wChEFFfnbrNuNJQuXA/bblulpe9lBkfAISSSHHW9V9Z5ES+d8yzP7nj//VDv4d/7qN/k9a4y17VjA8QUsl8MUT+nZ/+IT79E2+RdrvLXtL7wpUgGvsN5CPxyNqQtMNnxZAyEUhISlOKnuB7tv2O4/tvMYQtIWfO/I6oNQOaXVEchIQ7WNOnQtr1mM0O2yxo2hZnHYcHB3StpEX1fc/5ZsvZ+YZcYLlc0naLKfZ1JBtHR0esVqupTG+EMWaSVZ2dnU0+juAlptbZBm002lqS96Qk8bImZ7bb3VSwJ9dDuirGoj2ZtiRU4SLBSmtSTuSUUQp8GDg7zXSNY7VaEv0gbpicyTmilJGyxMLU0zEMQy3LK1hr8d5Psbvey/NeLpc8/fRTKAVvvvUGY2LVdrellIJzFqUkWSvFQGMt1mhKLRc8WC740PPPc3hwSOssRitp/A6Bk9Mz7r65pd9txdfSSEywsQ6VsySDGQPOkmJkFxOpeFTy6ASqKFTWaG1oXEOxjqA0uxzZ5kQ0CgM01tIuVyjrWK7XNO0Cqj9kIha1SfLqnCHMeDfE3/wt/sSf+Z/z9/8ff+2ylzLjA4Af/u0f4KP/w89e9jJmfBMoMdB84TV+7Rc+zFde1qz13BQ+49uH8zLwF9/8QZ79UUv58qtXapoBV4BojBgJhlIKYy1Nu8Qu1hTXErOWZu8MfRg4Ob2PVpqYI8H3aF1YLDq0Nai2w3QtPiZOTs84dC1usSCnTL8bKLtI0/TiwZDaarQ2In8yjrZbcL7dkXLGOQeo6l9YstsJITg6OpqK9kZ/wxhJOzZ4n52dVYIQH7jN2Nbdti0lQz7foLVs+FNOaKUxRhOTqqQjkyqhKaXUqFshIBmRN2mjqtxqh9WwWHRSUgik6OXaqiIekVSJSxQDuFIKbWQqMwyR9XpN27YoJaV7XbdgsVhwcnLCbrcj5chme06pPRxay1usZNBGy2tX432PDtYcrFcsmoYUItvths35GbvNRno8AFsyOUaUhlIMKSYiGVsL/xSgnUUbib4NqcBQMGiM1ig0SluyNuxSxueBU+/ZlQLGgmtQXUd3cEizXPHM8x/C1te17BGNUinGZfkzZjxaNCee/+jkGX746GuXvZQZTzDupy0/8Rsf4+P8wmUvZcY3g1LIxyc889Pwj/7Ix/nI4RdmojHj2wJJmrL83Z/+Tj79k68Sh6vXw/OeicajM32/P+xPMlQ9xXeuZXlwjfW12xzfeYNiHUlpYs6EvidsA8Enlqsl1lkwBtMuKdYw5IKzDYuuJRoxVTttaLWDnEmpUFKhKJkKhBCJsRe5k7a4puX6jU6kRTHV9u1zUkq0bctms+Ho6Ii2badujHE6MMbaAmy323qfIoka5VVKCYFYdB0K8WIsFgsp6Os9yl4UA4YgEbhUgiIJTQVnpKOilIyxmlLktsYoUooEP7BcLjBKEbwm54g2GmsMCZF1xShTDa01qDJ5SkYT++jZODq6RkqR4+P7tVhwQ4oBravMrcjkRmvD4cEBt27c4GC9Zr1aQcmcn51w984dtmfn5BQgZxQFrVSNsi1oFEppcirEEkErtJKSQUWhMUaM50qRooasAVOnNJqsLEMBPwzscmKTAl4j8q31iu7wGuubt7h++2luPf8hlGlqwPJDUil1tU4RZnwd/PQv8Zf+4h/nh//3f+WyVzLjCcaPbp/n4//KTDKeBGQfOPrlu/yHv/F9/JHv+TVaNU81ZnzrMZTIf3H/9/LsP4L05ltXbpoBj1Ez+NeD2pMJGWNomoZ2ucYtD9DtgmwcEU0oCp8Sm2Hg7vEx909P5YRbW7ANbrnGdkuKkijcplsKOQkRlKaxDa2TScZoOjdGT16LnBPeDwTvsdayWCymkryxdXt/Iy7N3qXG2A7T5+Okw3svZKEaxtumRaHkvpdL2radWsVHCRkw/bwU7eXah1GmCcckN0OhtUIiaaWfJOXI4Ht2VY7UtI7FcoGr/SFay/PNWXwg0tcROTs7myYvY5nf4eEB1mq22w1QyDnS9zuZPlAY/IBScHh4wPPPP8cnPvUpnv/Qh2iahjt37vDKb73CV179Cvfv32PX74R4GX0hE1OIZEnukJQKMWVSLqScKSjp3NCaCPicCVmRtCMqi8fIn8qwDYXj7Y7jbS/N4iiitbjVmsOnnub28x/ihY9+jOXBEWhbScYon5I/rt6v94yvh1uf2/InX/mBy17GjCcU57nn//Sf/suXvYwZjwo5wetvUv7hdX5s+wmGcjXK0mZcbbyRPD/yK9/NtZ/7GqUmoF41XBnpFOx1eGiNbTu69RGL9TVst6IYiURNWlPIlJQpO09fCl1uWDawODzAacOQJco2G0VRhqxMTV+SlnBq/OpovM65iF9CiUE45cz27AxjLV235OjoiFw9B23bTmlNXdfR9z3eizxpt9tNhGTcsCutiVHibV3jxOTcOEpBpFy1ddt7P/kvSimkSjJG7E+cSil7h+8XkyCl5PNc77Oxhq6ThvIQPEM/QKH+d5gmMjlnNpsNWsNisajXJGOtoe93eO9pmgatIeeEMY6cA7dv3eTmzdtcv36dpmkY+oHffvUrnJ2e0G+2lJInU7qpUi6RJknS2L4nIqvasFIK5EwBnNYohFyqKtXCNpRiiClLHUsuUBIpZs59oFeZYhq0MdjlktWNGzzz0ku88NGPcf2pp9GmFvnB6ABnn2JMX5px5aF+6hf5mZ/6p+DDf/+ylzLjCcRxjrzwF37yspcx4xEib3Y881Mb/uoPfh//7O/+DRZqjrqd8a1DKImf7F/i+o935NevVtLUPq4U0biAwrqG9eE1Dm/cYnl4xOZeR9KGgCKlglUKox1KWc6HzO5sy+GiZ3V4hMJwvtsy7HZo11Bcg2laXGOkWVp5YoqkkMkFnHM0TUNMhX4YKDXyNfQ9IITimWee4d69eyil2O12OOe4du3a1KHR9z2b6j0opUzSJ6311K+xWCxAaXrvpQwvRkL1SuScJb0pS8RuzmW6FnLwP0p9BA9uiMeJBiglbefOynPVWtG2DU3jMNrgB1/zmS9M+EqNvo3RJN7T95IsVcgsFgs2mw2lFFarFTnD008/w0c/+lGMsZwcn/Laa69x5623hOA4h6vkJkUvjeDGkFKkpIQ1Bl0nSNLfJ2WOpRb6lRgp1mKUIoPIq5TCGkuyipQjKUdyylNcbyywS4nktLS9tx2rgyOObt3mmRde5NZzz2HalpSlmO/i6hVAi8lEzW7wGTNmzPigosSA/eJr9P/g4/z4xz7C/2D9Kks1F/jN+NbgJPf85Vf+aZ76x3dIV9CbMeJqEg0FSlmabsXBtescXrvB6WrNuWtI2kJjyTjO+oAKieu3buJWh+xixhVQTYOKiVwGMhByIqQMKVOymK5jSlMcq5m6JsaJAlhj6GPi9PQU7z3r9Zpnn30W7z337t2bomHFMC5TBu/9nhxJPtquZbVasVwuaJqGXEDHQMqJtBdhq7VGG5EQee8nc/K48xU/hNCOcaIhG/Ms/RiA1lCKroV7DV3t9ygUnDMYvaJruxpLCynFaugeiwQ1p6ene8+rsFguWK9XuEakV9euHfH8889zcHDEa6+9zv17xzVxKxPrhOis9o4crlcs2yNyivi+J4RMKoWcxbsykoyxzyIDucj11ykTqjfFaYNRWh6jKBKahCaTxVAPhJLJaLRtsK7FNR2L9ZqnnnuOZ158keXBNTGHY0WyNREKVSmOfD6fXc2YMWPGBxTVFP7sT2749//p7+cHv+uv87yy81RjxiNHKIn/ZrjJ9v/7DIdf/tyVnWbAVSUaFcY1rA+vc/Opp9kef43+3j3CxuNLwHtIRaOx7JKiazqWh4fSOF0ypm1Ydi22cXSrJQXFeTVopxBwzuGcZRiGycitjUw2hhCrlCnRNG7yYoyTiVEWtdlsHkieGqcYo5QKwLmGw4NDnHPiuaixRs7Kxp06VShFJhEXXgzxXJSajDXebkQuIhnS7N22ntKnHMnF0S061us1xhpyluK8xjVTLG0pIs2KIaKNQqlC3wfatqXve/m+KpydnXJ+ds4zzzzDrVu3SCnz+uuvc3Z2hnVjytYpfd9PiVOr5ZJl10mPRr8TUlFERhVjBGOFNCkoWhrjVSmoXChkQp04FW1QtgGViSFSlCUpTVKajCYrxLeiNNoadNNgm4Zu0XF07TrPv/Qyt595Du0achbzd8nI9dRj4hQPkJ0958aMGTNmvCPu5Sv9z+uMd0GJAful1xn+8cf46U8+zx9b3ZkL/GY8cgwl8O986Yd49u++eeV6Mx7G1f2bsIgxfLU64OatpxlOn2dz5z7DuSf4M/wuoIzDdUuCcviiWDUtPkVySAQy1JNwdJ1YaEVJhZgS2tiaBHURHTv6Hay1aGNQOVdTeEfbih+j6zoWi44YgyQwpYyvZCV4Kefr+x6tFIuuY71acHCwRqGIMVJQIikai/lSBCCnTETkQCEmMUOXWmI4XZOLKYeqreqMt1FSFqi1bJJLypSccc6yWLTy2Flu75yj6xYopapXoxBjQimw1hBjZLPZSoJVEO/Icrni6aefJuXMV7/6VXKWGN1h8JwcnxJT4tatG2hVo4KVYrfbsttISpWSJyNkLEaZshhHHqVhMo6p8iVNjiIOS1kK/7KWvgzlHCUWSagiXRjltfhvnHV0iyU3bz3NRz7yMV740Iu0i4UQM6XrVEimPyNUvbRFMXlHZsyYMePr4X/9se8D4mUvY8ajRp1q3P6s52+89vv5wY/+f7DjXmLGjEeEr8TM6d9+ltWXf+FKTzPgfRCNhwvzLhV1CQqFazuW6xusDm/SHl7DrE/QQ0KlHbutp99mnj46pFms8CWBUeJ9SAmtC0Pfo42h61q6xjHkLB0Taky4aqd+i5RE2oNSOGtrClXPbqdxjcEYRSGgdKZpDDkrYkj4YSD0O/yupz/bsut3KAqrZcd6tWTROhpn0Eo29HEY6Lcb+u2GEiO6FHxKxJirpCtT6q63jJejiH+glCqTUrq+ZjUmVhUpBFTUfgmIPpAGj25bGm3BSMKT1tC2jsE3bLc7gg/TdMM1TSUgBWugax23b93g+vVrbLZb7t65S9suUGhOT88YBs9qdciRdahS2Gw2nFW5mUZhlEJTJK4WoUgomRxEClYDuk5sKKAM6ExRmYIhFTVNLLqmRSkLRBKFpCFl8XFkMtZYlHO0ixVP3XqKj7z0EZ669TROW3neY6Tu9DYbBVNlXNmccDtjxoxviH/rzd9NyfNfFk8qSoh0r5/zq19+lrdeVhzpwhx0O+NRIZXMj28/ztM/c072Vz/d7H0RjceCZFTUfTVaO5rugHZ1E7e6jlndQ2122JzpnCUFSBT64EkBXOMogLUWay0FiH1PUqBdAzljjcFZh9aGUlTtkBDfRkwJHwNFKZRWKC1SpBg9i2VLypLW1LSWkh2bs3NiGChRkrBiCOSYaFrHatFxeLBk0Tm0UoQYiD4Q+p7N6Rm77RZygVQIgyekjI95SmPKRRKwxLwN8o0MRaGVmL0LRXzMiOTHKOnt0ChyTAy7nl1NpdLOohuD0gXXGLTpyCnLR9YYYytpMTS2ZdEtuX7tOteOjhj6gc3ZlsZ1WNsw9B6rHb4kdpse709kMuIHMcArU1m6Aq1rLG8CLYWMIJMlZTSMxYNKYbQhFzH8C4GQSQ3GYrVGZfm5kBJJFYrVpAyJLIWN1kqQwPqQ2zdvs14dUJQRGlEm2ga8gzyqvMvXZ1xZXP9Vxd88P+RfXJ9e9lJmPCH4o1/4I8Q/4SHfu+ylzPhWoWT0vTPcb1/nN+MNPuLOYKYaMx4RIon/9Ld/L9d+6w1iTt/4Bx5zXE3plKicoChKUbhuwfroOsuDQ5rlkm69BmVYLDVGOdbrI7rVCq8iffB03UIIRylQxOeQUsa6gnV2kho9ECc7dl/EiA9e/ARGT70TY5LU+LNjhC21EdwHL5G0KaIVNFa8HYtuQde2bLa9NGsnKfPbbndEH0khEkM1kMdMiLnGv14Qv/HzfY9GKRk1/sW3F6BUChddGSmx2+5Q1ZOhggavMdZgrZuM6MPgq0FcEWPGGknU6hYtZ2dnwHiNcu3c2LA533J+vqHvh8mjopXC2jppqb4Sub4KjTwvXb8nL00mJZGIlZxRxkx9FkUrIUAly/QmZ2IpJO+JKZAoZFU9HijQhqI1GUVGSApGo7SpErRv+Jab8QTixl//Kf6P/8I/z7/4e/+fl72UGU8Idv/mM+i7n7vsZcz4VqIUyvk561fhs9uX+b7us7TKXfaqZjwhOMueOz/3NIfHn73spTwSXE2iQd1sUtAKtNEY53CdJAmlGIipMOy8TB2coelalDJs+y0xJRZ2ibVGok9jmuJbjTEYq1DasFdTIY9ZCilFUor4ECmKahp3teAuiYk6F/wwsN3upEdj8ATvp76Mtm1ZLpc0roFSGAbPZrNlt+vJCXbbrXg6QsB7aeSWDgkhPqrG3MYYJ4LxcI+GQE1pWdXRXDfwcvuUCz5ElBrq9ECB0VhncU42+DkXtFa1z8MzDF6ec2PRphC8I4QBa201uyd2u56zM5FN5TxG5Kqp/0MmE5ImNXby5Vwk5nY0YNfnkHOiVMKnlEI7h2katFLEEMnVz1GAVAqxZCkGR1cSmSlGo61GGU0k00fP2XbDZrclxYgyV/bXYMaMGY8RPvx3/gyf/sJvc/XPIGd8I5R+YPlm5pdOn2e4/vOXvZwZTxDeSJobv1qeCNkUXFGiMSYUgciXUs74nFDG4LoFtu3Rbovf9OzClqQNg0osD5Ysl2tANrbOtSgFu12P99KADWovzrZMk4pSSk1yghCjnKTXFKjdbodScHR0iNFS/FcK+ODrdGLLZruZGsWXyyUHB2uazhJToj89Z7PZ0vcDQ+8522zFND4M7HZ9bQ/PqOqfKDCtayztm8oMH/LSqNqqLVMHxP+QMylrtBX/wvh8lKmb8RQJIaKVfiDeN6UISLlezokQPG1jKkmL1ctiWXQdJRec82KG935K6RpTsMZpkkDt/T/T+sVh8iCJkuJEPRGXPDahI7HERZgn5ExOiZShKLldjJ7sDXa34/7ZCSdnZ4TgadruUb9FZ8yY8QHE7X/oSG+8ednLmPFtQEmZ7p7nleObbF4oJD2X9814NPhSuMnqdS9S+CcAV5JowHRALzKYXMgotG2xTYtyDW65ZCHuYox1DDFStjtuLle0bSuynJoapY1IhZSuJ/4otNJAemCTq5WaZFIjxjK+vu/rJl/Tti3WNiilCTFUw/iOFCLL5VJkSlqSlLwPbDdbtrteJgGnG7a7Hh8Tvk4QvB9IgLJumgKMRAO+vlFfFVX382NUqyIX6odsznMGnTUqKZGDKYXWtbtjL1I351yTpgaGQaEoNE6M9Frr6VpIwlasCV0S0ytSsoixZmonL2M/yCilGiNka/P3eL1HUuGcEz9GYUrlSnXSkRSQE+MkI5aMT5FUCVTOpVbvZQKZPgaG4ElPyC/yjBkzZsz49qGkhD0ZuHd/xbbM/owZjwapZH5p9yLu7rYeqF99XFmiobQYfEsWp7NxLc1iyWJ9QIiJIUaUtTjXALpKmzxnZ2csFguca6s8qXoplEIpafzOIQAKrQ1a573OC4fSmrZp2e627LzE0I4dGvfu3a9ThwvvBggRyPXUXzwP0kHRhIZcMtvtliFEdtuBzeacXR/EU1AlTjElYi7ooik1aWrs5fjGBn01/TlZncco3wI+JgoZq6WNm8hU0icfF9KykQuMMibXWJSCYRhknTEyDJ7tZscwyDRDazNdB610bTTPtVSwXHhcMuxPkDRgrMUYg7XyNh3/DFEM99oYnBLzuLV28tuUAiZpTH3W2kkJX1HQLDtc2wjhMVrMPlfEgPE4hTHMmDFjxgcaJaPOd5R7h9zNCzJptoPP+KaRKfzM/ZfRZzuelGPQ90w0HsdNjkwdMso0XLt1G5UiJUZSTPgQ8M1QuynAastCL1gul6A1p5sNKUWccyIFqg3a2sj2NOWEc2Zq9k41cSqlVO9DofpeyuWQTbAxjuP7J/S7gcViSU5CQOT0PYpJOUdyifiQOd9t8F4K/HyQkr8QhPTEkPA+VI+DEB6lROo0nuaPJ/37RvDRDwEIq1CglGFytRSIKZNLwE6eiEJMHqulZ0JM4Hl6XhL1K43iIUhzdymFnNJEMkYJ2XbbE3yQTosqvbrwkoAz4i8pOeMqkWiaBqUkvrZkIWT7udEjoSql0LYtxjlCShjrcFqjKilKKUpULQpTCjY3laRliipo52ialqZrWR8ecHDtiKZpv/Vv1BkzZsyY8cRBpYzKkIsoIGbM+GaRyXzpzk1e7u9e9lIeGd73RGM/2QgukYCMhgOQk3GlsabBNh3GtrTtggIMVSKjCjhtaFyDNhKnOnopQowTYWitpWlarDE1RlbIQimFNEqIKBhjp6+PxuwYxtQpg9aenMT83TQN1lliDIwb/hADwUe8D/SDr4RDvBFjupQPkZSqN0Ma92Bv0/31oSYzt0wiNJQs5mhkGbkU1CSpgpAzKiUaJ9G++5daKYXWCmN0nVJotNHVu5HqNGMgxiBToVzqREimI2OxoCLLfxsjhnCESBhdg6jGFY3ECWgbkWb5IF6PiTwaja7TF1WbCLW2WGPJFIZhIBXpz7BtI6lWRtMtFqwPDrCNm7oyZsyYMWPGjPeDYjTFFLR6Us6eZ1w2+hLZ3llSwtcueymPDFdWOgVMp96lQBw8m82OzfmOvveEmIkpTySiazrWqwMWi1UlA7YWKok0qetaGufq6fpFaVuu0qgxMSmEINMMRGIUYxTvQsx7y9qRUqRxjq5bslgsaBpHv9uQs7RpS+RtYvCRfucZvCeESIwZH8dyvmrgRmJYx1hbVXsvRgnTu1ycqc18LO8riDRMITXXSVzldU+vIVcyZZR0Tijqc5fHMVbjihAs66oxvRRJ1vJeNvaVGDXOyX2yt+b6sf85QMpJ6IWu64aaRqXk65XIhSgJDMpo2qahqeRBzOBUs7m8Ls6KZKvJSXo6tMKHgNWG5WLB4eEhi8VyknXNmDFjxowZ7wtKgQHzxIhcZlw2hpJxdy08IYlTcIWJhlZMKVBGWWLybGp/Q4qZFCVuNpdC07YcrA9YLdZY66QYr/oORo9A1y1o2xatlZisi8St5npiP3U/AM5ZjLOYJNKfvu8JOpGidEn0/YD3nq5taKp/oGmauqmVjXuMkVDlUSEMeC9rirFIGV0e/QowTkG04WI6sPfxrtON6cvVoLDnYVDT9Rs3/WXqr0gpo2J6YIIBoLWhacSgbaoEKqSIH4aaKjUmY+nqzxBCNJYjGmPI0b9tvaUWD5YinopRCqYqSRlTq5Q1dIsOYy1t2+LaRqRZOZNyQueMRq5P4xrW6zVKaXyOnG3OheBUc/ko3xrTrWbMmDFjxoz3BWcpTcapGkQyY8Y3iU0utMeKkp4cKd6VJBrjxlBTppK3nIrEtKaCRsuJfaxegK6l7Vq0MRIn2w8M3l8kGaGIKZH7Hmut9ERYU0/+y+QjyIghXArf5BRdNt2GlAoYqidDZFK7Xc+gZHPfNI2YyWvvh9aalEfCczGZkSnL+CzHgFclpXNKy2cP+TG+noxKSWPddOo/3ncp0qot3eGKokQKZYpMIcSjobBWSAUUchH/ipnauiPBy5RnjME1xqGmn99bxx4xmjCuu8bUovY2/cI66qciX2sWHd2iI5ciazWGohW6PjdrHSoUrNY0zrJerrCNow8BbQyLGOpr2xB9oN/tiCHS2NmnMWPGjBkz3geUJi8cdhXoZqIx4xGhLxrT84BP9arjShINAApoagu395ydnjH0Q914jxtbGHsxnHNopcVDEGtSlDG4Gm8LdTOeJQnJOjt1MYwn4Y1rMNbS+4FSDdlSqufxQ6AUPZmnJZ1Jvq/Ik8chJTE6a63qiXquJ/capcZcqAuyobV4PjAX3RGj9KjUj7fjgqCAtGpDoVwMZapPQyYmSheKUmg01li0qo+hqVMJRc418lddNJHnlGt3hqmeFTGAiy9E/pQSPyEi4+RkSrRiP6Y3M0aQlyLrGRvZtdFYPRJARxnJmhFvxpikpZUmxAGKPHutFU3jaBYt3aKl917IopXuj912i/cDzWL1yN+eM2bMmDHjyYXSirRsOFhvK9GYm8FnfHNIJTMUgw6FtzVGX2G8b6LxeKRPVXmNFl9Bv9txenbC2W6Djx60EAPnGpYKOteiMqQiTdJagbMWawympi6pnDHO0jiL1RqVCzFEUvVg+BDJRUlkbqNQKVFqP4TRGmsUg/f0fU9OaWq0TjESg5+M4N77muJkcE7hfSHqjE5cEI7pGmeUVhir0NaK5McnVE6oGg9rZERSuycKpaiJbBWV5fuM1KVgEBUVpYiDoih0LmgKxhaMKRgtpmmjtUjUcqKUjLUGrS0yzUgopbHWYK2YzY3W5AwlR3KRn5E4W1UnHlquLbVED6FEYzfGOMNBZWlCT5msMs44rNWg5RdxJI6Ns6ja3+GjGOp3/Y7GNdjUEHOk5MRy0XF4sGbb94RcWKyWHB5eo2mWKGWndK4H3mG/g/f5u/tl3h8ej9+xGTNmzJjxrjCGsLbcXm3oVEHPItwZjwB9sWh/2at4tHjPROMbSXQuAzknUgjshg1DHEg5EnIgRo+PktikUeSQ2J1vq3cgkZOYhskQvZS+aaVwyaFLIaeIBlL1ckQUg49kpeX7JTMMnuA9fvCkSl5iHgjDQAySYKWAHBP9difN21phtJATrTWNM8RGk5IihpG9jtMIZMKhClpTN/MQPaRKElKRiQNKX8xAlAY0JSMCL0OVOl30X9RBT/2LsaCKwiiN0wpnRRplK7EZrzPVbzG9D7SCksmjLKvG3e5H7wpkQpNzRmHQxsk0QjENbsbJ07jjvyggFGt4VmIAL0qRSpLXLQV0BGMNhYQqGWsV3bLDGAdGUXQhk9AG1usl3WoB2uLajsVyhTbjc5z/gZgxY8aMGe8dSilSpzlqd0jQfpl7NGZ809iUBju8l2TRq4MrKp1SkzRpu9tydn5GP/TS7K0Uu75n6HuC78k5YbXCGoPVF70OMY7N1XYyLOecp14IRaGkDFqjbUPKhd3Q0w8Dp2enteshk1IghZ6SM6fbsymlyqCrVCoTUiIGT4oJYxtKzgy9B1WwjaPJSvo1cjX/JKnu1gUw44l/jfC1GkoDJZBIlFwmmZh6YMNc6oRjTK6CUmSGMKZQMaZOaYUzFucsrrXVBC6xsaVIUaCYp6uXApkmGaUh5il5S2RQhVTElC1Ruhfm7lQjghsj04hSMiEIUaNe81EWpnT1r4P4b0KqvESaxrfbLduteGya1uGcpTENrtF1DYUQIoP2hBgoBdbrA1zbMQQJChh8eJuXZMaMGTNmzPiG0JpsoTNPTjrQjMtFpnCWF9he9oBPCq4o0WA6iU4pirl7GNjttgQ/1O/LxjunGiFbk6SUUoQQCCGgtZaNatNcTDvGU3+l0IBrWrTN9CFy5949zrcb+mHAaE3TOGIcOD2+x+b8HLSSbopC9SNI/4VE0SpSLmhlyKUQkzRkK62x1uGc9Fy4YjBRYm7zaDlXMrkoJU9JUONHrBvl/UjeC4wpU6PZfM8Ovu/30FpauCvpGtOi9m+rtZb1xNFTcZEWFSrR2J96yeb+wV8URWaoBnNrjPg9agdGGaVf1YBfciUbRVK4Ykz1OhisNbXxHZwzdG1H0ziK0mxPNww+QklQMjEGtNEsVwcs1mshUAnabsHBwSFN0zyS9+OMGTNmzPgAQSmyU7T6yUkHmnH5OE5LTF+gPDmHoFeWaOyX1skmvBBCoB/EqF1KIVUzdhh6YgikOsXYl/eM8bajaRkkIaptGxrrON9s6UNk0w8cn55zcHTIzVu3OTk55vjkmPPzU07u32O73dC0C7nvEMlZ4nFb51h0Hc45rG1x2pJzQikjxmWlMEZhnaoKHo3yGqUjKUchPyUTU5ned4UM1eeRKUJuqvJIVEf7hOLdr+Foyh7jZ611GMNENB4mKGMxoa+dHyllYkhT8/e+tGo/GeviNYMQxbcRQsRY8XUYpVHSRVjTsbKUMKKnVC+tNVqZ+no51usVTeNo24auk1hiKTpUxHRGvxvozYBWSpK9sng7usWSg2sLbtx+mmeffZZ20T2Kt+OMGTNmzPggQWuyVbQ6XvZKZjwhyGRe9Tewu7SXQHr1cSWJhkh0En4Y6PuBEMIk3Ykh4vtd9VfEujEOpBgmD8Ek5akTjJFk5JxrPG0ihsBpSty/f8rZdst2CDSLjk9+5jO4puHO3Tt87Y032Zyf1gZwzWazY+gHttstIQQa2wjJsIblYsnh4QFqYbHG0WiLtpqQIjnJybyUkSs55Q/QD1Lcl1Oq5EKatnNNkdJaoYuu8bDV0zFeI0Ypkn5bHO54DUeSJSTDYKyRro6pM6R2fqRECJ5h8PS7XW3nHk9xVE2ZUrU0L0/TDa0lyQrFNFnJUaYsPgSM0SJ5clZawuvPosTkbpCJh9yHpShLwZALDF4iazttQRm5bkazPjwkoaRXoyZSpSqJ8zGhjWF9cMDNWzfpFgtJKJtTCWfMmDFjxvuAUoqimVvBZzwy9CXyk3c/gjvuq9T9ycCVJBrA5KfYbM45OzubNvepnrqXKu8ZN9OKQqmn9Psn9WMZnKRBqUlKMyhFDIHjkxOOz845Pd+wPDjEGEcpIoPK9b7kpD6RsyKExG434IeBsgDrnKQhbQc2my3r9VpaqbsFSjtULhSVcc6IhEhpXMqYQVNyIqeIIlOKwVgHVeIFZYrRVUWhVJmmF2Mj+D7eqeBvnOjIJEJLt0au5msKqaZm9X3PdrulH4TUUQq6ThooEo87EpiUMqlkrLQLTm3mF3IoRQZSjJSQ0YNE0LaNm3pLtNbyWpHJIZGL9IjYgpQKyrPHuqb6PhBiYgw6J5q25fDwCKOl9CamJA3xKRHqdENrizaW2Qg+Y8aMGTN+JxCi8eScPM+4PKSSOcmJX/utZ/nMvTvE2Qx++bhIRJIT92FMe6qTjVRP4aUHQzb8ppq/U0oTsRi9CKPvQE7rY22kjuyGgZOzM842W7IybLZbXOPQpk4XCiht2PUbKIaYCzEXUpaoWdSFB2G76+l7z673XD86YnmwBCVxuVopcskYrXCuQSsIgyZFTTZOpi1NQ0hRujdqWJIutXKvAKpMPpSRbIzPa3yu4/cu+it4YMoRa3V4TgkfAn4Y2Gy39H0/dWEordHGUKoJXSsjiVgxEXMipgha4VS9jZbY3hIKRQtpyEXa2xXSUJ5zwVolBKUmf4VYMNqS6vW0KRNzxgdNLtC0LSlNsxtJwFJKXmtjScEzxC0oTUyFYfBsdz1dP+BDIMuTf2TvyXdLiXhUsbczZsyYMeMxgZaJhuHJOXmecbn4SlzSvdJSTs8ueymPFFeSaKhaGqe0nk7LQwjsdjt88FBP5il1otE00hmB+BrGlKSRUKh6Gi73fRGtmksh5kzfD+z6AdsMHJ+eslwuAF03sElSk5QiRdlkl1LQxuKaBmsduVbJpwwhRs7OzgghsPZr1gdrDg7XGKMIPqB0LbVTMhAwRmOVljZsa1BWJg/DYBi8h5RkI18UukDmwsiu9qJnH97sPrwpFk8LqCKG7BgSQz+w63v6fiClapI3ZorUVVBJRC3wKyJ9SilhbX1r1eQorRSiQKxFfEUSFqTrXD7PGUJJkCXxq+SCUQmto5jfrcVUM7wPQchKLix3PU3jMM7hmgUxFkoW3ay1Dq0NBeiHgfPNlm4tMqoyvd5vJwjvlxw8SVF0M2bMmDHj60ApsJa4UFx3W5r5MGnGN4lI4kv+WZZvFEo/XPZyHimuJNG4kLuI+3mU8ZQip9bDdlMlRwVbfQDOmLrZpZqZLyLpHpYViU9Ay06/KGLOhBA53+544403efa550T37z1KG5TOGGMZ/DB5QIw1uMZVeVE1bBclvQ85c77ZsPU9sWSW6xVd1zB6IlQpaF2wRpGMRmtp3E5TQZ70P4QYZZqhqnRKC9moT2q6Uu+0ad6fYoy+Cvl6qcb6KNOX7Y4Q4iSvUowfY/N6eeB+xuc/fm0kOaX6SHL9M0lJhkTYatGApSIEI5dYmR5ECkrVtK2JGELvA4P37AbParVitVyyWC5oY2E7DKiSaRuHNrZ6OjybzQ7tNhx6T4pZpiHlQnI244OHV/7t38cv/JP/LjCHAsyYMeO9Q3Udww34cPsWrdJzYd+MbwqpFF71N3HnBdKTlWR2JYnGxUYW6XaoZu6+79lszhk2O3KOOKspzuKMxnYdrqZLpZQe6M6IMU7JU+N/a21IGSEy9UR8u9vxlVdfZX14hHOuJkY5nDWceY/SoIxCW43VBqULhSR9GjmDzmilIWtSCPT9wPHxMeuDNctlS7toiN5TcsY5jXOGlDJGmbrJVyhbE5hMLw3j+qKsbzTEj1V8Y8Tuvgn8na7lNN3Rakrw8iEw+IHey4RImeq3qHG0Qjwkene8bjnnSiQKo0uksFfoVzIpi8RJpGVFuk2UIoFMMnKaJFraaHQxY30hOWu0KhQFw+Drc1XyHkiFEBOuC6Cga1q0NTIZqu8VgLZtWa/XdF1XDeyqzlRmfNCg2pZ4lFnrmWTMmDHjfUBpysGS4anEC+4ubq7qm/FNIpP5cn+D5jxLh9sThCtJNGCMWg34IA3dMcYpOUpp2XyOXo1SfQcPRuJqmqZ5IO52vF+oUqKYL2JbtSGFyOuvf4314SEvvvgC3WLJ+dkpqkiXhLUGpcRfoZQQDhQoAyqpah5Pddcr05jNtuf4+D43bhyybjuiku9NfRlayILRYhbHWmIco3lBG+nlUMSpnE8IgELVcj54+1Rjf4ozki9VTdc5Z3zwDN4/0Cui9EMfe7KjInf6NlJTSpkUrKM8KpcLUlRfjYkIyH0YkbNpgy4GSr3PalJnDMVCEUJku93hfcBtHa5t6NarOr0qGI2UNbYK2zhW6wMODo5ou07M4+8inZrx5OPNP/29/OYf/yuXvYwZM2ZcMShjiNeWuFs7buodRlkpsJ0x43eIUDJf2VzHbtIT1aEBV5hoxBjZ7fopbnWMfKVIolEMAbKBokkpT/GqFylL7+xTKAWZAmhDQTosCtItoZTi9OyUL//2b6OUYrfr2e52mFrUp5WiaRu01WJ0VopCniJUtdXkGqmLBqMcg/dstzv6oWfRWVISQ/vYfq6VwmiNdU6mKNbgfaBtG/reEUavgZZywExBKWkRV+gHNv37iVMPPucyEY1cIFVzfQhjP8Z4WvNgTO54DfdJy77Bfrz91MNRCrmoOv0oIzvZIxHCyoTu1O9pU5/LXrKWKtPrISRRJlIhRpZK46I0f2ulMI1FG1PXKqlY3gd2/Y4QAm3rHtVbcsYVgrl9m/vf9WSNp2fMmPHtgXKWcOi4fXSPpUpo5uLXGd8cAoVz39KGJ4tkwBUiGvuRrKUU6cgIntAP9JsN27NThu0Gv9sx1B4NrEPhxOSsDU3bQIGYEtpoUo6E6KukR4zF1N6HVIp4BVTBGFVlSIoYEvfv3CP5SOMMwWeUs2jj0AZc26CiphRfpUYWkLK9ggKthK0mMXCrYuh3ns3ZluWirRMYKWtJJJRVNfYWnDWYxmEUDL0YoxUilDJa5Fo5F5E3VR/FeM2+3nWdphb19oOP+BBr67jC1EQnVT0Wsu7xPnWVXIGx4NCkFFHayvOtvEZETtIOrnJGlYRSGqNAI+V8SishZYxES2EMMtXRQjpUnWqMnR0lj3cs1ynnQuwD27Ijdw22TnxSzsQU8cHjh4EUE/qBOOBvL2bz+OVi970v8cof/Q8vexkzZsy4glDW4g8Nz65OcbM14z0jlTxPft4FqRRC1rRPHs94/InGfoxtKQVjjHQ77HYM2x3DbsvufEN/fkbyPSoFVIqoIh0Q4rWQDX/bLck5kkpiWZbEHPExUKrUqCBpSgVFCDtiDmhbaDuDsxo/ZFQu+F3PeVG0bYuxhkDGOMvB0QptNP2uJ6aCcw1duyCnTIwbUgoUxPuRI+SoKNGwDQNnp1uuXT+QhuxSiCnKdMJZitLElGkVNEahi8EooGTJ8C7SMZGVJmtkfFKqQktdXMd3m2ZcfF2RYsGHSIhZ/AtKk1GQpQQQJc3dhYtWdUWhqCLTB6OnOFqZPIyRupI3bkjkEtFFCJzRMmrQ0+ucxPuiNdpolMloA9ZadCV8Y9+HyuP9qouJT9GUrCi1Sd0Yi3ONJIA1jcjRjDS2KyBHSe163Hx8cyTujBkzZjyGUAoax3CkeW5xMidOvUekKgeaycY7IwEp6wtD6ROEx55o7GOU+MQkreC73Zah74l+oJSM1ZpoFLpOJKhSG6UlHjbGhNZgncEl2ZhqLSfwMUZSGv0Z+691wVrLYtERYib3nhjBD56SC7ZxWGvQRRFjwZQxzUhmDRRdE44gFdmwpwA5SYFdzmMxXiKGSNNJfKyxBtCkJNMJ21i6tsVqRSoiC7JGzM4pF6mrL6McSbwQ73YN9+NuJ0+FUsSYGHxgGKT5W/weF9ej1L4LibrVaH3RSyLXS+OcnsiFcxZjbDWXe8IgLefUpKf9/f04WbmQWWXpxUAJYTEKY2TqUh4oKFR77eYWpxucbTDWTATHWEvbdTT19dZGggBM9YLM+GDBPv8cn/w//+JlL2PGjBlXFKptCQcSbTtvmb8x0kOeg5lsvB0ZiEnzJPY/PvZEY5T1jJvjyV+RMzGIATymSE6JkqWRerlaEGJCa4t1DcbqWgqXsVajkmyqQwiE4BmGAe89KRWMAYVEyupiAEmd6tqOmBRg2e4GISY505RCzhoV4I03PItFK8qolAhDYktPThk/SJyuKpoUEjlTjdoKrUTeMwwDxrYYa3FOYXTBDwnZwDvatkWR6XspG5TNtIYSL1KfqC3c9c36sDH7nf4cISWH4R0jah8u9xs/L0WidseN/mKxEJN1bWGPtVk89+KN2G9sHwnJO01bGAv49nwcMj1R5Mxkei/lwZhe01iMNpSS8T6x2WwwjUEZjXXN9PxApmNKv9Njz3iSURYtf/G5n73sZcyYMeMqQmmwhmzBqdnnNePRIWYtaTlPGB57ovFwUtT4USjEGIRoRPkYhoEUfT3tt7i2q4VtWiQ5VGOzgpQiqRqzx3hX2QNXIoNsZkOdNAA442gb8OHi50IM5KKBQglQUg1MzaWSAJle5BArsRCCRIGsCjknmtZijMH7hHWRlVtgjCWrTEoKhaVpGpqmIadKWKCmSqkHiMCI/Qbwh6/l/tf3iUROuYZhqTrpSRdG8T0ycPHzpU4W5HvjhMgYQwgB7z273Y7dbldfm4jTZiIN1to94/iDSVjiGeFi+jHJtMSEHmOafmb8nkQUS3kjSSRXY2fKKLsbCxu3my273Y6lXkh074wZM2bMmPFeoBTloUTb+ZR+xu8UqWRSQRQsT1i0LVwBogF78h6YolhTkkQopQrGalzj8Ebjh8gQI8Y4jLXgRLqTazpRSpaUMjEKWRg3qVqr6etQiCnQ+wHfB0JIxMB0+8ZJwkQIgZTFvC1xspqhryfmBZx1WG2rpwAKkraUQqzPJ6O1YbFY0DYdfT9QShLvhxHplbMOaxoWiw7rLKGkSQqWS67ao4ejay++tl+YN/73w5/LdEaSmnK5mFyM0bf797E/0Qghi/G7fm+ciAA1tSpMkcNAvc5mamg3xjxAiPZfZ4m+vTCZTNMs1ERySqHGAJuJgA5+oKSMbQ0L2+IaR9s0LFdLlssli8WC1WrNar3COTsVG86YMWPGjBnvCVpTKqfISAeCnrs03jNmQvZ2ZCrRqP1wTxIee6IxymvGzepYzuf9QAieXJIkLlmLdQZjTTUU59qaLV4AIRQWaw0h6mmDaq1MC4wZGIZEzoGcIESPj0GmHEUMOiXLHMFaV83jhewr4SmKmDLFMMmDVE5EMrpGxgL1fi5O19u2YblYorXhfHPOMPQsV0usbeSxnKNrF1WSpIn1pL880OZdN+h7yVzwILnY92SMX9sv2ktJiEaqpXsPY/JO7E1Oxocc79PXPpMYZQIkvpd08Tpqjamv5zjNeKepy0V0bk2rmiRzYk5XOde2dCEb42MqpShJIm9b1bBaLWmaBuvc5M9QSrFYdBwcHNC07WNnAh/xbnKu2VMyY8aMGZcHpRVllk7NeMRIKFI0kMNlL+WR47EnGg9vli9SjC66p3PJlJKwVtN1DVaYBU1j5dRaX5TWKSVFfYvFEu89fd9PJ+I5Z7yPxChlgH3w+JiYqi1qXKvWGqsshQZUIaUok4qYxShd94gpy2QjyxMACkbp6hewONfSLbrayTGglaVxRjbLMeNcS+Na2rbDNQ26yF9qMSVCjOQkE5JxKhOreaFUudG7lfQBk2xsJAUpy5Qo7W38x+u9TwZGOdXF63Fx//tkcH+Ksi9vctY9OLV4iGSMtxdvjBjejRFpmXNOpkOpTK9lKRdTrpwzJaqaNCaN7G3bYq2p/hxbr/WOzWbLen2Itu//FOqdNvuzz2PGjBkzPiCwhtwUWh1mM/h7gFH6bYbw94Ov97NPynSkL4YUNCrmJ65C+EoQjX2PBkhkqRS2iQTHGoNzFpVbrFFEa8mAbSzGaGllqLd1jcOhiTGw220ngiH3azCmiPzKB2LMhJCJcSz808RUQI8G8QVN0xBTIKWI94mcZNpQSkEjHRcjIdJK0Tgnj6MNStf1FUly6rqOxaLFmAalzLS5btsGaw3Jx4uErCp3yjmJcd0YTM6U9HaJ1MPYl0VN1zk/SDD2pUwPezv2Jylfb4M93sd+KpQx5h3X9yDJqGuspNIYMcM750gpE4h78qkLj4rIvLT0jVQviNYaax3ONazXaw4PD9FaXv+U0u+IaMy4wtCGL/6ZZy57FTNmzLiqUJriDNnNE433g98J2Rhv//DWW+9JEcbbPArC8Sjv6/0iFE3xBhVnj8alY/JqlCKRtkaK+HJu0CXiSyJrOXVXiERHGYcdTch70atN0+Dqxv/CfAylSNysH4vrYt28I2bjnBXWGpzTGG0xVpOywRlJShJDhkwXapcclIzRmq5rMcZQMsQkHRC6Sr/k5L7BaEdOcnI/nuYrJe3jKaZJmlWybLC1Mpg6MSgUcu2ZeNhTsY+H42TFa1Lb7/YmH+M1f9jXId9/ZzKzTwxHciFG7oupx9dLwJpISCn1dS4PkIn92+Sa8DVONMjyumtzMfmy1rJcLjg8POT27VusD66xXh9g7ZV7+8/4JqG7lt/4U3/lspcxY8aMqwqthGi0hZUeMJJTedmreuKQSp4IRiaTSsFM+xJd///thAPeP1H4ZqYtjwKZQl8symvZGD5huBI7rXHDOEpyUoporVksFpQUIEdUifQpkFMgRS1xt2RKLbVTem+TrGUq0rYt6/W6bmAV3meGIdaY1iWFgZQHOf2OmVziNNHIOQlRMAqlx4mJptEWa8wUwVtKqgRGonVb50BJt4bSCqVETiSeBYM10jIOGWMsXdfRda08bz9A9ZvYyXOgRyZzIWXa6734etcUHpQ7vS1gdm+6MEqo4OH0qrf/UjycBDVOonLOxId+oR+Wxu1PU0aykVLCe18fr5b1vcOkpZSCNZZCqSSsMPQDZ2enLJYLvPcYY1mtViwWXU0vmzFjxowZM94blFLEhSOvEge6n8pmZ3xjvFcCcDHJGEv+Chnp1tJoUOM+4sH7G4nHZROH3wn64lBejTr9JwqPPdF4uAdiNC1rrWi7hhxbUmiIwREHS3YORaH3gYIQghwDuk4xpHuiPLAZXiwWXLumiEF8FjK10DhXMCGhVSLtleCpGo8bYwJdy+S0lPN1TmGcmM5LNZBrRZ2AWJyVyNuUCoOXKUnbtsjvn0JrK/eFomlaurbFGItSBWvNRJAWXVdlWxmKIZLEoyFX6gE/xjtd01Ey9uBGnSmF6WGSMU199pKoShGC9k4Ybz8SlJyzTGLSQwb2h9Y1Sq0u4nOFUIz9F0pptBrXolEqP/DzzokPAyUej1xTtXa7LScnJ5yfn3P9+i1ACAt6NljPmDFjxoz3CGOIK4tbew70DvO4JopccYxHnyPJSNOx4AXhSKS9KQfsEw99xV6Xvji0V6iYRBHzBOGxJxoPQ6mL7oiUkkwuRoO2s6RkySlW46/BOAdTOZyucinR5Q9DXyckCa1E1tR1HbudJ8SBvu9rS3ZkbKA2KCJRYlZRIrNKiZw1ZFAlQ0k0TiRD2ojMarloaVsnaVEpo/Xo3HBCGGIi51hjWg2oQtO42vsgHpCpBdu5SfZlQ8TZVnwkQCmhvkfHX8qLiNjx+sFFmtfeld37mYvb7hOCfSIgk5AxHeqd5VP78qzxQ7/DbR/uz5imIVqLP6NOfKD+/u0t+8KbIfcbY8RosE6M4o1zXL92jes3buCcm5KxxmtZ1BijO2PGjBkzZnx9KGMIa83BesdKD2g0GvXEmJIfJ4wkI5QLopFrf1hC1BS5lva+nXh849fjncjIZb2OfW7QgXmicRnYl9SMp/DSpwA5ZjnRB4yzLJYLnFEMRmEGT8rSswBgtMIY8WyIFAlC8FOhm/fnaF1oWkPbGXpvcLHBRpkUjJ6HXORzVPUAIGWAJWW0Ah8CJRdScTjrcEVjtCJliLmQvHRLyM8L6ZHm8kgKkshtrME5w2K5pGlbQhiIsaC0wjqFNTIlcUazaKQxPIQkBvEUZT1kJJGrgDK14G/PCF6ypHHlWtKHkJtCeduv3j5R2CcdEm1btVpctJHDGOf7sIdDkZUUDRYZOqBr67fSlWCMfxqwVk8m8qZpKAVSypCp8qi3T2RiCaAKMSn6YWAInqIMi8WKxWKJNk5ew5IoJCpdevRv3Ieu3+N4XzNmzJgx433CWfxac2u5ZaXCTDC+Rcj1f/IvdSHUf/uy4oEDy1z//dY17jMXNZEO4KGJh2D01IxTk8dh+mHUk0cwRjz2ROOiP+EiEjXGSPCRfrfj7OyMFD1GSzN14yzWWSin7LY7KIXFYoFrLSl5tttzYhym3oXlckmMsUbd7mhag2sVxhWUVWinUFlR4qj7R8xgiPG7ZE0utm7Sg/xqKA1Kkyn4mACNMoFUzeEYN6VOWWcwRiRT1kE/bHG9pm0PaZsGay0h+Gpkh+VqSb/bkZNn2ToO2g6UYpMHgtVErYm5dohoIBWUymhVG9W1Bi3PSaksREkVigbpW3/QQL6fDvWwf0K+PvpnHkyjkujZMYKYi5+nkoRSZPpjTPXMqEoywBhwVtO1UrbnbIMzDUopApGYIymKzK2kXP/SUKRSfS9GYaz4QxbdCq0MISYWywNu3r7F6vAA21hSSVAUyrxz8tQsqZoxY8aMGROUAmvxh4rbi3OWOgLNZa/qiYRMispEGEYkOeGc/nsiC6VgUGTKRDpM3aeN9zehbuofJxP/DXNOuJYpyw4xFT85pvDHnmg8fIKbUsIHz3a7YXO+wQ8DxlQjtjNoXVBkBmfRKFKMhGGoG28jt2vkL4axQ2JMRxqjZFfLJT5kfOrxafQ+iBG8qEIKo9hG5gRjyzdFigCVNoCWYUHJGJ3JqcjVVrIGMX/b+rnBuoYYPbvdlmHosfY6xmhSijUedgkk/JAxRrNcdjhtSTETQ0aXgpoidamRvgqMFOWpcZ1qb+tf+0ZKGhvG372/bj/WFnhArvRwItQ4fdrHJI3S1eSd5S+DadLC2PKtaa2lbRratq1EQ+KMZaqUxXdTP4T4iMRKa41xGrMfpasUKI3RDl3/WyRt8jrMA4IZM2bMmPFeoZoGfwBPt6d0qjxWm9UnEQbFWGGXAEMlG3sYvz5aRseJR97b0YzkA4Bi3nHScVnTKY3imu5RR5687lDGUPJMNL5teCCBiFrOFsWXYaylaVqc07SNlnjZ6Ikpym5ayyQixEhRiqajtnG3k88gxkhTN7WjTMc5S+MczgWcNYRq7EZlVMrEyLRblzQrACU6TW3Q2sjEI0nEbTbjRlxO7vWYNOWaaT3WaYah4L2p8i5JRUox1dN5XTs6arqSa3C6IfrEJu3IdaowGbqnDXj9ZSo10akKhVRNr9K6vC2h6v14Lva/924/v08y1GhOUQWlinCdet2skQlPUz0o4rMRslYDqGSyY80kzaq+7/oeUTWVKk+v7TAM1ZchkrVSyiS9k3Ur5sHFjBkzHgXu/ODA7R99mvi1Ny57KTO+RSitIx4UnmrOcPVrs3zqWwOjZCIhZKOawx+6TQZSgQAYygO0z+wpKiSGuEIBxaAfo3/7D1TkxvUN/uiA1llK8Je9pEeGx55owDtvXMdo2sYZ0fObAknkSSVnjDEyuci1STsEgvcMw8BisXjAdOzqxrZpGoZhqBMEg7MGZzWN1VAkslYBzuZqbZCN7TjdUNlIEtI4zcgXG2CJnBVJkTYGaxs5rW+kjC+mQM6Zpmk4ODioa5RNs8FUqZd4RFIusjG3DqMTm82OGBMhpurJqDOCB4zcIi8aI10VBa2ZiMbDJXzvVPj3QMFfeVBiNf7su31tksAxxgGLoUtVsnCRynUxjbDGiB9Fj2tHygm1nlrRL9Yk6zX6ohAwpcQwDAx9jw8XROOB4sB38KTMmDFjxu8Ev/nP/nU+2f0pwp2X+fj/7GfGU6gZTxjK/I/GtxwaRaZKqJTIosbfp5FsjCRj3AXUIMkJ04QDxpNKNEI6xonG6M+4TLJolOaa1vzep7/MT7/8vTz1iyvY7Z6Yvz8ee6LxsF9Aa41rHItFRw6rWpoHEEm+ULKl7ToxGYu3muI9RUGMgc3mnLZtWC6XOGcJQUhF17Ws10tyTqQscikfs5iPS0arQIhSsFdyIdXpQcpjeeDFpnqcEChAK13/VpI0KWMsbbOg6zpsTabyPrDdnZNSnNZmrZWNdLlIVVK6UNBoa6WUDiPSqZRlIx2DGNWr07ogLGjfwM3YucF+zO3bidz+Nd//2sOTiwfu+6Gf3b8/+WD6sLrKzAClikjIjKZxlsaK18Y5i9EXfR8PmNL1w90eMMbhosT037YtTdOwWCw4WK9ZLBbT1y56On4n78oZVxV3/4vnL3sJM55w/Pof/BsAfN9H/wSvv3XEx/5Hn73kFc14lFApY3rFvbiiL2OZ3Jw69SgxtoiPnRm5KBwSgiOhmuVBsoGqr0GpMqr6D/voz9gjHGPB4pgWNj7eZWOpHT90/Rf5r77zu7n9s7dQp6eUYbjsZT0SXBmiMZb1jZMKa109Fdeoqr0rNXK1aRpKSPgaj9o0DUVBUaVG1vYsl0vatplSmkaJzii7ybmQkqqTiTyG2cpkwmpJkEqS7EQqZEaSMU4EpAlcaTPFp2qtpRtj0bFcLMlkvPdsNuecb85QSqJwH54q5JxxzhHiQKZgjCEliDGx2/UM3hOi9IukIoZr1IMt3uOmXr5VSQEPRsuOw5B3kz7tf/3rTT4ebhXf+w5SoKjrdEKjFZOEamw3b1pL2zY0jUNNcq2L+9PvMO8UK8bFmsaSv6Hv6YeBlDMxBJlueE/btjJleZxmpzO+5fjR7/xPgOVlL2PGBwA/8Z0/wkne8X/73O952/c++0PPE1//2iWsasY3jZwxPdzzK/py+RvUJxlCBMQUrtV4MDhtVKZJRqivgyROFRJCOqhSqgw0SmFQOKUf8Gc8DiQDwGL4jLvDJ77jVU4+/QLXXl2RvH8iphrvmWi804by24F3kujEGNluNwTvUdVArCiopiXnSNyNp/tCPErOxJLAKJrWkUsiZY91LcvVQlJeS8RYhTZgrKJtHMtFSwyRkiIyGhECoXCoECXrqCRKSSKPUraSHllvSiJ3cs6xXC45OFhXP0hD0zbEFDk7O+Ps7JzzzTnSBi4n9W3bAoV+iJOPRCmNcy3WDJz3W/ptT7/p2fWeXApaGyE/SouXo8qSSpWTlToBmFKftEbV2aKU5OXJYL1v9oYLorcfN7w/5diffDx8u1GiprV4MdQoVypV4mYd1mjaxmGMkm6UlFA4KT5EY7Ii+ESMsb6uWSJ8Van3beS1FjpISomzszP6YUBbw/WbN7h+4waD9/R9z2KxoGmaqV9lmhrtGdlHwgKjn0Vf2u/BjBkzrh6O9IK/8NQvv+3rP/OTv8D/4RN/4InSYX9gkAsqw5ANGUUqBaukjfpx2bQ+CRinGvK5kr6Mqe5LyMa+KTyhMMihr35IqjCG5Gj14DTjcXq9jNLcNpZ/6bmf5S/8Ey9w9GtPo843lCeAbLwvonGZ2D9BHxuirbX4MBC8p5SAzhE/eDabDf1my7AbiCFWMzgYJ+V33vf0fTNNSIw1U1dD13XTcw0+0jWW0DlidMTgiVHe6TFmiioYAzkrrNIUZcQjAZQsiU6LRcut69e5ceMaXduilKZtG5SG0Af6vp8+SkmsVss6dRlQCrwfRC7mHNrIRne769lstvjeE0IkxEBMhVykq2M0hqP2YmmpHgulq7KqTj5q4KzIpy5e431Z0uiDeCfS906v04iHb19KpmQhBsaMZXwWZwx2TN+yFlNTpIxRoAo5CcEIIU6RuVqPkw0hALYmSkkbfKnlhUIMY0oSCZzzJJ0afRopZeKUXiVrHdPIhMAICZFSxvyOPpQZM2bMeD/4Pa3jr3zx7/FnP/OHyZvNZS9nxnuF0pSDJbtnMp9avcGBThj12AtDrjTGqYar/RlZZfTUEQYytbiwiBs1SqSEoIxyKac0TpkHJFOPG1rl+P2LV/jef+oLfOkLn+CZe7dJb7515cnGlfoNGU/aU0qEIMbuwffk6EEFTEnS8l2N0tllkQkpTa6n3zlHYgzEGMg54pyU47WtI0aZiJQi7d0qKxpnaVtH1za0zrDZygRBlSIleVlhtQJjiVkTxshco2kax+HhAYfXDmjbBmvHaFUIfmCzOafv+7qJTXVzbQghsNv1OGfIWdKZQgy0tqX3nvPtlj54cs74GAhRnnesm+Esai4U5WJEWActuUqXUBry2H9RHkhxGo3b4/V+JynUw1Kq/dfonSD3K10ZTSOkrjFCLJy1WCOvg9GaUjLWaNSelEvWl+vEwdQEL41SUuCoja7+ExmcjoRGUskcxojJ3NbHVEpNBEqmORcTmLE9PKUkBK+SjZlgzJgx41Hhw27N/+Rzn+UvffwTl72UGe8RSivi9SX2uS0f677Gsp6Qw+MjwXmScOHVkH/bURKOs084NJlGSeTtSCygejGqXEqj6/ceL1/Gw9AonjaaP/3MT/Dn/jvPcHzvea79rCa/dZe86+GKRt5eKaIB+zIdhbEWVyyRRIzS8p2qzMhpTesahr62fydPHCvr92RB46n1/rQkhECKAVVajFZYo3HGYLTCNQ636VHA4AM+RGJKMs1IYGqMrLOG1WrJwcGKprGTJKtpJL1q2PX0/U4eKyWMsaxWC9brNdZa5NRe1820bOp9iAxeZFLOOXz0eD8SDUmjynv+5otIWBhTmUo1mCsDKe97UrL4Surj7U80xuv+9Tba72QGnyZGdXOvNSwaK+TOGJy1tI2jaRzOOazWkrSVJD84p4jW5kLOZCXeN0YhZjBKmuT5jalaKhf0WOBYpxcg/pzTszM2m82UPCaJW2kqcBwJSEqJvu+n+GGRsj3oe5kxY8aMbwY3zTnlD3w36h9/7rKXMuO9QGn62w0ffepVXrT36JR57CQ4TxreRjZACvdKdV8oLXuimmQJF4Zv+fnHn2CMMEqzpOG7mrv8Lz/zY/zbf/SHiIvnufG5JeYrb5DPN5QYrtx048oRDWAyTSeliCHS9ztSHCgxUEpC70WW5iKbxpQSiYTSihBEsjSebFtrKXXzvlgsyClByqhcKCmRkiUlR4wdQE2bSiLfUYo+SKyaUxpjHMYaGmdZLNv60dDVGFtrDX7w9MMOHwZylhP55WLBwcEBy+Vy2uTnLFIjtJCj6D0xCimxJrGNO4bBEytZGdOvshq1jGoiZaUuPOVUN8nSrL0fWTti34cwTjcejrbdxxgVu/+zxlwQhFEqZY1IwIxm6rEYX0+NECKjNc64iQymGOukJk3XPURPThdRt+Pjan1BbvYnFBJhLH6McVIxPreqxKKUQghh+vqIGGNNALt4/jPJmDFjxqPAH+g0f/I/+q/4j//cH6P92z972cuZ8Q2gnGXzlOH7rr3KbbPDqfax3rg+KZiucRn/HdY1gUpJOZ/av+0YW3vxulwFkjHCKcMN0/KDyy9y73v+If+B+YP4gxs89fMN5pWvkY9PrpyU6koRjXHjqrWm7weOj4/Zbs7wfosi4Yzo83LJ5Bjxex0KqII2Y4JVqmlPG1KKNE07afa7roNS0KgawVq1/7mInEpJgUwuWQrmrMf0A7FkXC3qc9ZhrciujFFyYt9YtBKD+DDs6IcdJRfpjnCWtmtYr1dVppPqpleM21YZauAVSol5uR8CZ2cb+n4gRonjTSkjAihNpky/gPulh6WMcbwSi1vKhWE7p9GvIWla8ljqoQnHhdldyYsipwijMTznB2xY+5MO6c0QQ5bRGlNfSz3qLCspsEaITUyR4APej4TMTPel1OjT0NN6dCVQ2lwoMEvJQmCsYblccHR4yGKxAMQwLteDaYIxTjHGpniRXT1IXGbMmDHjUeFfPXyTN/4v/4C/7X6Axd/6mctezoyvA2Utu6cVn1q8xoFWD2xmZ3zr8TDh0JgHG78rHvZgXAWCsQ+L4bax/ODq17jz6QN+hO8muzVPtc/TfNGS7x+T++HKSKneN9F4Jw3+t3rzte8HGE/IAVJMU+O21oWYMrlkjIYQAj56YpbkJ2U0yoKq/Q1aASWTU6Rki9Hiw0DtSaWMEVKRpUE65YwPkbZ1lNxhlGySrYFYJFINLVMLBVLMZxTOavFbpCz+kOoj6ToFRUrsVqsF7ULkOTmP1eOqerUNpRgpu8uG4BPbTc92O+BjImZIRZEREjRunlFK/OBFxrtFSfpUylnifmsql64lelpJRc7DXRVjT07JNX0KUFWTNRIHpRVjmNzDkwqhAmOvSMYaQ+NM3ciP5YhCuKwRiVWJhRxH/4hMdrRW9bVXRJWmmN6RcCglWRO5jIHCBaWFZPhhYLPZiLyuelnGtCoFIkXzHqVUJSAPJm6FEKb2+H3p1NeL9p0xY8aM94L/zc0v8Fe/75/ho3/rslcy4+uicfTPJF5u7rCssqkZ3348QBzK21UZb7vNFYNRmhbHS7bnjx79Asvf5fmby+/iqwfXuX3wIVa/scC8eadKqeJlL/cb4j0TjYfNvw8XuX07MBb2jZOH1fpgMhnnPFCyJ8VAClE26zrjGoPCksmE6CGBIpOtIWtFTpqcIil6YqhFb43DaGn3DiERUyGmgnUymUCVmusMSmWsEZJTlME20u9RMihj6NoGZw3WWHzyxCiawm6xAFc9EzmxXDhsU0/sa4qSc46UCkpZSjFSFDiA32XCUEhZkYuuWdJCcshZpgpFxopkTRnN36pQyFMbttHSawFFpgtKU7IWsqJKJWgy2Sg1yUkBar/gT8K1ak+HoujqE8l5SobSFHQBo2TWIo9tsVZImLUKY7VMnLTEBPooTd6ShqWn0LpaiCKGdmr5nxVSWECKFFOaTO/GarquoVu05JQ432zo+57VajX5R0aMcbcj0SilMAwDIQTGNvqu68QDVE3il53GNmPGjBkzvg1QCtW22Js7buodTtkrvZl9UvCkvgZOGQ50w8fdjtXhZ3n6Eyf8rcPv5jee/hDXn3uKG79+iPv8V0lv3X3sJxtXTjoFowHYgNLih2ga8SrU5CSR70hhnm1s3TxGcomkJIlSfT8QQsT7oaYMiZymlDHNSLNYrshZkZIYkIdhYLlc4r2vcbiO5bKTYrjBE1LB1dbpnAGtadoGVzX+3gdSyTRNS+tackjkGKFk2q6VPo+cadp2SqCS/gyDVobtZkvoPb4XE3gMiRhGE3ipPR+j4bueuuuCqnIpxSibEvJgTJ01lJrmVEsHsyokGT8ATN0aWiuscehaYlhKoahxmnAhrzJAqhG0qhbyifYrI0PN8b70RBJkLSItCyEwDCIJS7GQU5V8VZP3Psm11lazN5Opner1GM30xhiuXTvi9lO3uXHjBovFYkqSyiWQUp5M+ftRtuP1b9tWpFwx1tjhC1/PLKmaMWPGo8CP/vf/7/zL/+2f5/p//FOXvZQZ74acSdF849vNmPEIYDGsleNDNvAHl1/k2vNb/u7yd/GPbn6U7TMrntcfovn5nnR29lh7Nq4E0Xh4emK0IefMyekpu+0pWoMfevywo7EKVQolS0KRqpG3Siuapp02kfvJU1pHjo+POT09rcV6B3TtkpzkNovFAuccXddxenrK+fk52+0WkFPwxWKB94HeB0xtLM9ZWiuNEe9HTGL6dtaJJKnUdGdnUQoWXUfKsZqPDbZKitq2wxhHvxs4PT3l+PgeJycn7DabB03gyPMtuW7EyzjV0PW6qSl9Sp6zmqRDE5FAJgW6FKQQ7yHDttYiF9MyKWHsPFfjfcv9iqrKPJRAVeoGXU9pUG3bTh4IuJAoXWz60/S7s18SOEYAj+8N6VVRk7F+jOiV6VRTiYxltVrJa9t10+PG+hqPZGlMHRuLAcfv5ZwZhotOk4eTp94t7nfGjBkz3gs+6tb4QzW1Hs94zFDkEDOfO/oyk40Z33oYpXEYlsBzJtJ1X+HGrXM+sXqDH3/m43ypfYmP3Hse/YUvk3e7x/bvjStFNODiFLvtJAFq1w80VjbBjWsAKe1LKVJiqmRDpDnGXcTYTqV8IbDb7ei6jsViQYyRu3fvojhhvT6k62TScX4unRdKqSkZKoQwpRWVUliuD2pvxxgdizRVTyZ2Rd97tv2OEjML19I2Hdoo2rbBB9m6XxASXTfSmTt37/LG177GnTff5P79YwYvXo9c9rwcUyNmTZqSEQaZJOFuWlVNac2V1lKKl5VMOgwKVWRTrZFc6rFBfDRyl5xRytRUqfGhH/IpIGRwXH/e81eMRuvRfD8arcfN/RQvnOS1Gwv5Hn7dnHMT6RjldK0xUs7n/QXp0JoYA2dnp2y322laInG7IgnzXiKQR1IBTBOLYRiAC2/QPinabxOfScaMGTO+WXzuf/uX+YFf/zM0P/pzl72UGe+EGDFnhr5Y4PGWq8x4MqBRtMpKTK+KLNV9nrenfNfit/nPfuD38ct3PsPzfUB/+VXyMDyWZOOxJxrjSfW++VYbw8HBIddv3GS7Ocf7DYpETomSk1TVF4VSovvXNT2JMp54azFCK4VzslvOuXB+fi5JUtWkPPhBjNO5djK0LbkUUs5CTJZLAIKX8kBlLDlJ+pMaT+OVbHZDTIQY2G63nJ6eYo1h4caG6kqEsgYs1hm0uWjH7oeBzfk5m805m/NzttuNeBGq4bvs0Yv9ZCg1dmqMiVXTJKVOCOr/tJYphi6VOWiFynK9cqnmb62n+yslQ/V0KC2Oj9H8rveSwaZOivr62RoHvF8GOJK0fQP2lIJFqVnZQjDinulpnEiMRMM5h3UOHeMFQVKjXXwvWas+pvdevlN7OsY29n1SM8qotNZ0XUfXdRIQkPNETEbiMXdrzJgx41Hg7nc0PPcPWko95JjxGCFE2nuKt9Ihqdx7IFZ1xoxvBS6StmCpNE4nljpx29xj+cw/4H/3h2/w5unTPO0D5dXXKcFf7oLfAVfSRWOM4fDoiA996EPcfvpplLH03rPrBwbvpV/BWLS29XP5MKbBmgZnG6yVPxWGnArWOFbLNYvFCmcbSpFCvvPNlj4EbNuyWq9ZrVfiw6in5957MtB0HV3jpNFaihnQChprWXYdisL52Slvvfk1Tk7uU2oPx36ZnmyGFTEG7t27y3azoZRM3+8wRtG1LbZu5qs2jJxGgpUpSVrNS8lQxqbvaav9gPxIHvZBv8NIPsYJSSkS6RvriX9MScqJ6hrGJCmrNY2zdE3DarlkvV6z6Dq6tqVtGlrnaKzFNWaaZOhpWpMe6LUYP4AH/BIX10ckUTGKzOzB6N7CYrHk5s2b3Lp1S2RSC4m0PTo6YrlcYowh1ddtt9ux226JMU4BA8aY6Xvj18fpyThx8d7T9/1ENmZcHXz/z//wZS9hxoyvi1/6c38Z/cJzl72MGe+APAzc/NXI3zv5NEN5/NN+Zjw5MErjlKFVlqVqONINn3Ib/rWXf4L7399z+j3PoK8dSSjQY4b3PdEYN3XfztPbhx9LKfFbrA+OWB8c4JqWYbAYaykpk0qeNsgpxCqrkvjU8WQ8xlQTl6jafIl6bRo9afpd0+Eah1L6osHbOhbLBdvtjl3fs9vJRlWV6rOIiX4YiCnTVlO3AnJKhEFSsVw1sGutiSlCyqQS0RqMUaRcuHf/LuebLdY1kqClyl66k0TKFmSjnsnTybzKtQdjjLfV1a9gDKY2aJaaClWyREYpHvRA5CKxtOLfTsQop/rGKYyr10dplMpoI23p1hhpaq/dE1PhXtLkVI3ZVmPNaLa/eE3Hzfo+8bggGGoiSSMJebjXYryvXDszxnQouR24pqFp2knuNv6MtRYfohjr67RkNHyPREJM/+LDGT0l1lq6rntgyjZPM64GnvuTX4YvXvYqZsz4+vi1P3+LT/5Pv3Ilois/SCghsvrSKf/1b32S/9VTf5/Dkp/Y1KMZjyeM0hK4UxRHuuGfXvwmX/7O/4b/5N4f4qNvPo/97Ja83T5WEqr3RTT2y9dGfDtOdN9pE1eApm05vHaNGzdvYg344Zzgt+QYJslO76WuPSU36f9HTf646Rw3kmMZHjWm1SD+hKZtaBctXewkqWoY6JZLbOMo9wqnZ6eEwbM7P0drzeA9ISSGtmUYPK5xlJxYr1bcunmDlAtdK3Gr26GnlMTqYMVytcY5i4+JxaLj7t375AxHR9enEr3GGdqmQQWZMFgrm+lq0aAoZKqiNErbyZRt9AXhyTGijanFhEyFe2PvzVSqp7R4OVQlZKKbqh4M8ZzYxtB1QqhQSqJqzRg/WzBGUYqpRMSgSBNh2PddjFKlh70PSumpL2PE2NK9/zMg3Rvee3yddDzzzDNY11R500XR4DgpaZoGawybsKXv+8nwPQzDtKaxd2PfMD62yKeUiDHWZLCZaMyYMePR4JV/4a/yQ/+L3z8TjccNJaPeukf6tY/y2vcueP7xOzye8QGBURoKPG0a/vjRL/Dbv/cGP/PV7+SFrz2F+vJXHysJ1WPv0Xg3lFJo2pbnnnue9XLB2dk9hv6Mod+wOz+T2NpdT7/bEXykpEhOYdoYDoPE2o7+jxgjm82GGCOucbi2I5VCLJk2yc8Ya+mc4+DwEGM0u77n7p0j7ty9S7/ZsD0+QSmN63u22101Hnuss6zWa64dHaCA882GkhPe94QQaBrLctlxcLAW4qYCR4cHHB+f8cYbb7DbeYyxKKTL4cb1a/gQODvf0A8DKIngTUXata01IhszDqXEU1Ao5BjJSaYdI1mQgjxp1JYY2TL5LZyCgiMqMbhbrSdJVSm5OjxEpjXG6oacKDnWSN4x3hYgS7qtKm8zUe8TB2BvQw+UC0Kyf5vx85TSNOEoWf7bD8Nk8H/hhRe59dTTHB4eTY81GsGVUpgajTsaxUcSMt5WUsBE7jUMw+QNkfjdOMmx5ojbGTNmPErc/jHLG7/vslcx4wGUQjnfcP3XCz/fv8z3tL+JuZoK9BlPAKTYz/IxG/nXn/4x/q1/7oDXTl/m2b8TSV99/bE5qLiSRGPcBGqtWC7XaF1ARayGrnUs2v9/e/8dblmWnnWCv2W2Oeb68JHeVJZXqVQqZBAt1LSEoBmcZgbTWCGMgKdphqHttIHu4ekemmkaBiN6GjMY0WIQjRPCSAzIlRwlVC69z7DXHbfNcvPH2mvfc6OypExVVt2IjP3Wc/PeuOecfdbe+0TU967ve9+3wFmDtxZnLNbYaAVrmv7165kJafY+fQ+d4Hu5XCE6p6mkG5BSMplMeovUyXQKQtBOJuhz53DWcTybcXR0xGKxYlXVURwuBErFPI/5fIa1liIvKfKC0XjEeDJG62jbqrRCZxmT6Zj5fMErr7yEkhmmqnFVQzmKNq1ZlnN0fERrLEL4LkgvVvY+eLw1CJGK9M6qVQhE5/p0opcQnZtUOAnqi/NUqLXiP1MKLTX4gHUGi0PZgPcGJSW2c4qSSnai+nj8fjRLxtyTpLNYz9+Ak/Gtkw5HwLvTDk/rZGRddB5HvqJL1GgywTnH4eEh040NHnjoIS5cuIDWGVJGsialjAJ+qXrysFqtqKqqH5NLQvXNzU2yLGO5XDKfz9na2kIpxWQyYTKZ9J+jRDgGDBgw4IvFn37gn/Ab+LqzXsaAOxCahs0Xa77/1gf4DzafoRDZWS9pwH0MJSRjkfO+3PB/f+R7+S9+46/hNR7l8j/02Deu3xVhfvck0YCYTyGlxAfDcrnixo0bHN6+iXcN3rVYY3FtzGSwxhCc67yZTgrafldbxbyK6TTqC5TWBAE2hF4HkUau1sXAWZYxGo3Y3NyEyRhpHE1Tr7kVRcJgrUNJyWq14ujokMODfYy1TMZTtra24vNtJD55nqE8uHFgc2OD2fGCxSKKllfHc5rlimyx5KK8yMbmJgCHx8eorkNgrKdumhgO6EGIk4JeK4nOdK8zUDq6WpGywgW9wPtOJMtdrRTBeWzTYl2DDgElIXTZFknYnWUZI0ZknZhaSolUkqwoejF4Ihjp+HBCAq21UdAuIXkWpM5HvP8nwvLkbgXQtobN7YzJZEIIgeVyxcHBIRcvXWE8mTAeT/oOiPMe07QYY3uy4ZxjPp8jhCDLsr7TJaVkOp0ipWQ2mwGc6nDkeRrRGjBgwIAvHjtqzO94+mX+ygefvKvGIO53BOfQN4752ecf4OARx9bQ0BhwF6AQGU9l8N8//Hf5H377t/BJ+SEu/+0Kd3B45nqNe5JoCCEI0AubVSdEFjomaAuRYY2lamoWszmmNWgp0JKYNt11LdbFxClELs9zdEc28lGJzrNew5GKYediSrj3vn+dDBnWV+R5zng8JgBlOWJcVVR1Q9VEclLXNSEEtNIoKSEErDHUTc1oXFKWBTIENvIM6zzGeLa395jPF+y/cYPjg0OODo/6nfVyVKAXCoRAKkUIDcHb2NEJMf8CBFLFjkpZFhR5gdYKHzwhOLyPLlnOWlxro4WtEichgKkDpDwoFfUeWYZSHqkdRZF1zl4C09nGjsYl02nc8c/zPL5GSkTnAgYnnan1e7Getn3nXw3RjXCl8a1EoBLBkUp25CISg62tLUZlTG4/2N9nPJ4w3eTESjcEqqpiNpszm82Yz+dxJC/Pe0vjyWTSB//leR4dtUYjnHOnnKcGkjFgwIB3Gr9h45Cf+DHLp77qrFcyoEcIcDRj/OxlXv53NnlI20EQPuCuQCEynsgkf/zK9/E//M6an77xUTb+yafwy+WZruttE427y84zjk+Vo5LNzU2aekm9BOM9OtMUZY6zBWWZgfOYpoljQXiEPLFpDQRCcBjT4J1BNBKhFKpede5TGVmWx26D1mRZzmQy6QTPXUHsLDJTaBkoxyVSa/LWoPMc5BxjLVIIRmUJ29topSjzgqIoKDKNQuCdp20tSmuU0pRF1G3ovEUIsFUFzrJcLLAmdlckIga5dAnkLQ10gXs6U2RZHkeGlCTLNaOyIC9ypIhjXMa43ubWe0frmqgo96LLzgjgPd47rBBoIdBZRj4qAIVUjtG4QCmNtQaTxTbyeDxmNB5RliVaa05CBE/C7eJIVOgseU8+V2msDbosC++irkRGVUjwMd8jPSdZ3QovCUTiEUfcppTlqHexSt2pOLalWC6WOOMi8ZKKXMfOi3M2uootlpisjQ5TgTgWd3zMzvYOFy9dZDwa9V0Qa+1p++BhhGrAgAHvAK4WR3zmgx/Hf+pzZ72UAR1CVTN9LfCJ1eN8bfmZQacx4K5BJhQX1Yj/6PwP8mt+yxOMrz+J+qnP4ev6zNb0lonG3ZR+HCPpPAGHCKCzjO3tbeazQ+ZHh3jn0EoyHY/IRGC1XFC1Dc42eB9tbYMnjuakMR4hkcJ3WRI+htc5hwdcCxKJlxoZzZTIdI5ScSzKOANInBA0zrEyLc46goxrK8sSay3nz51ja2OT1WqFNaazkA1xBAiBN46gPMiA9TY6SOUZ0lmyImNjc8Ly6IiyLAhesFqs0DrviEGIFrhAJgRoicwVxShjNB5TFkXXSehE1fiopRAaDOAgK3OkljR1JDEieJQUMW88hI5SeYSErMjIixF5HlPNldaxK9IFFaaxJqQiXjQRXa6k+jxnKSl1N57W0jRtr42AgDEtxhq0VkzGU4SQtK0lBDC2QSnd6z4CIJRmVI4xrcO0lnPnNihGI5qmZTFfUhQTBIqiUDgX2L99G9sahBToFOjXtHgTM0naqsaZqPcpu67W4cEBbduwtbXN7u5utA12ntbFwD+dxREzIUQMHRwwYMCAXyD+8O4L/I0/8THO/aqzXsmAhNAapq+3/OCt9/Dt25+kUINOY8Ddg0woHtAj/syH/xa/7T/43Ty1ehzxmefOLAT0nhydOkHsRgghyYsR08km9cYSZ2pMW2G8j+ngXXK0JKZ4t8ZEskGIFq1aI1UcM5Ld7L8Qqkv1Vl0xqztdiAJkDP/TGcbWrKqWtl7hXU3bVBwdHLFYLtBSU+YFhGg5W+QaZwxKgNQago8ibMDarpMiZCQ3gLM2np8U6CzayBajgizPWC1rFsslRe66rkDoRqa63BApyMcl5WRMWY763I7opBTdlYQUqM7+VrpuRybPUUrjnO11LKnDkOc5ZVGS5zlZnqG0IMsleVGcOn4aJTpxilrPzjixSE6OX4nESqn65O043kTXRYoBgt47pKTrkMTXxPNV0ZZYgO5+TqNuh4eHTK1lY3OLLMspigLnYmfCGMdkPOWo3mf/9gHz+RylFUVedGGFUeCdKY2Wcc8qdGtr6oamqKk6v+qke4mfnWgnHBGS7daAuwChbXnsn/9OXvhl/+tZL2XAgLeMX//wz/D9v+rfofwHP37WSxlA1GkUNxZ89qXL3HhMsiOHPI0BdxcyofhY3vJf/dK/x393/Ot54q8/Ck+/cCZ6r3uWaMRcagXE8ZksK9nc2MYaQ7WcsXCeJjQgNCor0UHiPaAC3jiMd+AcLgiyANJp8lyTS43UOVmWo3SOFCqmi2uFyjKElLTG0R7NaI3leD5jNpvR1ivGRcycqKoly8UcEaDJcpSMQYFNU3F8eMh8MSfXGVplnU2vQHejOVVVoZxFKEXoCtZMaYL2FKOSza0tlquGxjhq02B8tKWVMnYbkJJiPCIvMvLRiKwo4rko2V+5PM9IhXrSX0Csh1VX7DvnPm8ESOsomk/C5xjYF3qd0XqYXu/e1Y0tJdJSlqNTYvyE5ESV53lPbLx3QPzuXBqVEl3WCRjjug6KQMqo2SG4XrCfksKn0ykAx7MZWVEyHo+p65rlsiJXiq2tLeq65vj4mNVsxbE/xjlHlmWn0sSjI9iJmF4I0b9PnkcSc6fOZC2+Y8BdgGAt7/1jh/DLznolAwa8dfxn557G/LeKH7RfT/F9P3HWyxkQPOLgmNHze3zy6x/gUX2NscjPelUDBpzCWOb86slLvPYrfpC/UX0Tj363xb/wypedbNyTRCPqgbsgtyBABJSSjMZTytUqCsBtwFpBQCNVgdQClQVypZG6wNhOQCwkRZEzGo+ZTqaMyhKVaaSQBGJuBMlCVcUuR17E9G6UZUNIytGE4FpKacFbxuWIQmdUqyVt2/Yhd97GzkdTrRBFgVeegCAvS8qyxCNiqnjw6KJA5zmZ1J3Nq8NpzXhjynZrqZqW+XxF3TZ4T7SOVYK8yBmPSsbjEpXnCNVZwJISrLsLiIjhfQECAuHoMjZSaJ7tHblSwra1prsDgSzTCBHwxiIEGJNTluWp8Lp18bwxpnvjk2OuE42U1F10rlQiTloRggMSIYqaDiFSZ8ZFdy0b8y5aY6LTV6fBkFKR5xlFUbCzs8t0uoFzjtu3b8eORmsJ3qHX3McWi8UpEpRIjzEGYy2raoULgXPnzlEURRf0GM0EUnL4emK4DwER3jx0csCAAQPeKv6r85/he5/8Ri5+31mvZAAh4BdLtp/z/KPbH+Zbxq8wZiAaA+4+bMqSb9/+SY5/9Yh/3H4tD3+Pw7/06pc1Y+OeJBoRnTAY2RXyAqULimLMaLyB94GyGAOxCHW2gS6VWsg4JpVGejIdi3nrY6BdcrMSSFAyipBTariQZHmB1JpNFS+f8x7hWmjntNUSJQR4T5Fn1HUFPo74BJcznpSE4MizHJkVCJmxsbnBdGODxhhsiFP9Skq0VAQkTutofysdusyZbEwZb25QG0dtlrTWoqRCZjnFqGSyvcl0PEJlJ+5OJynaSbzsCHiEiBIKIQLOGVrr8N51qekyjkllundZAijLstu9j3ka3ru+G5HsZouiWCMNMX1d9+NnJ3a1bdueiLk7spEsY6MFLn3hH0lE/H1ZlOgsj/cI0ed0GOMIIjqRjUYl1rpevL+xuYmQqj+HEGq8hbZpGI1GPPDAA1RVxfXr18my7MQGuLPoDSGwrFaEzukqjYml8wD63yfyIeXnu2cNGDBgwC8Ef+EP/Rn+80/9bvQP/NRZL+W+R6gbNl5c8uMvPcIbV9UwPjXgroQSkgtqzB8+968x36b4F+bjPPQ9FvvqG1+2jI17l2j0Iynd7rEXCDRZVjKdbpNlBQSPxNO0NdY0IGxfZHsfd6qtMSxXc+qmxdgWQexwZDqmaisFSujOnjWKm10IEOINlEojBQincHZJluW901GeZ0zGY4K11HWNVhIlJc3GBlJpdF6is5JyPALiqJRQCuf9SZpFCCgEeZYRQiRBxSgwmkwY1S2NsVgfkEpTjEqmmxud7W1OTPtOY0ge7wUhSLRWKGUxhq5YjuNnobO7dc52Gg0J6K674HHOEkLAmNhxELLTlnSFfRobWk/YljIKybNOFK911nc0IOot2ralqqp+ndbaTuchcS4W78YYrHXdJQkQBFkWx8LisUdMphvs7e2xe26v7zaU5Qid5wgBRVGgsxxrLaPRmLY1LOdzJPQk6qmnnuLy5cvcvHmzTwVPo1jWWpCiDwRcLBZRt1KWSClPntOdVxolizr403Rj6HCcLUxwZGKwJB5wb+FrSsXf/qv/M7/1l/023NPPnfVy7msE59DXDsmeeYjPfOwy78tuM/yLMuBuRCIb//H5f0n2mxz/rP1arvzNFe72/pfl/e9dogFRZwtEvQEIodA6R0iN9zEzQwhwTmCsI2AjYRACYyxtGx2Omqbpd9WNMRwfH+O9R0nNeDxhPBnH3XqdIZUmKwqwDiEsqhu5iUW5RCDJ8zir79wI76JAO18tyTLNqCxx1saRJaEJQiO1InhBlmcIp2jatsu2oLOejcLwlKytM911FUryvKapDUWeM51uMN2YkveheCCyrB/9SV0D4FRXIZGBEAKuuz7r2RZSSoqiAOjtYbMs6w2lUlr6xsYGWus+XyS9l7W2t7Ktqqo/ZsotSUnrp52oUuo3cXQspbgbS9saFssVZrXC+yVNk7I7JozHY7Z3dxiPx+ztneOhhx5ie28XayzHR0fovOjC9yYIBKZpuHn9OrPZDO894/GYixcv8vjjj3N4eMj169f7927ahsl0Gq17RyPquub27dsYY/pzSKNUiaQg4ljb+jgVDETjLOGee5Ff/lt+N//LX/7TPJpNz3o5Awa8LZxTE5DDvx9njuAJxzO2n/H8i6P3862Tf86WGJ31qgYMeFMksvF/Pf9D8NvhR9/4OBv/uMKvVl/y975niYZY+29EDHDLixHlKM7TxzGZONMfZABf42xM+F4ul33gWhL0phC4JOqVxBGrRETyPO2IO7L0HCnxUYDBclnR1hWmbTphtYyCchnHlXwISCVpm5q6bmlMg3F1pztQyG6Eq9/VxwESYwzVqqIxLZ5A09jOpjf0moQoRs4RQnauUgYpBVk3+qO17s4xCapFL2gWQjAej3HWYTvitapWWGP7wj/t3CfhuNaqs5Wl11aMRqP+fZIDU3KtSrv9Sum+Q7Guh0jjSUnnsE5+hEjvGYmfFJrzgV73EY+1QkjRdxeSUPvg8BChFQHBjVu3cc5HQX/bMp1usLmxgequxf7+PgcH0X3q3Llz7O3tcfnyZW7dutV3L7TW1HXNeDzm3LlzKKWw1rJYLGjbticl6XxH4zF5kZ8iGgPJOHvoH/gpftN/8kf4k//dn+Pry2HcYcC9haOv2GPjc8+deeLvfY0Q8FXN5vNLfuS1R7h9aUgJH3B3QwnJnhzxH5//If6Pv+ch7PX3oD7xmS+5OPyeJRpvhiBAKhXtVtsiJm1Yg3Eeaz3BW3w32lKWJUpFy1jn4ox909Rdp6OJs/c27qA779FZxmS6wWQypShHaK0IIWZyeNdpMITCB4mxoRs9AiXj5lNjHHVraJuWalWxWtW0LoranXNYF9A6uhyljosxLuZOdFarq9UKhCD4+K+ZkNFBKkzG5FnR2cs6rAGEx3VjTWVZRLIVkp0sSCkAiZQi2vd2rlSh0xuM6oKmORkFOhl9Svazvk8aL8vyVAcDTsTdyfI2EZr4uhPrW2ttLxav65rFYsF4PI6p3qNRT7qM6UTfPorDk6uV1rGTs7tzjryMzk8q04xGY7a3t9nc3CQrCwKCtm24dfuAqqqieLwxlEXBuIykcWdnhytXrvR6lFu3bjGdTrl06RLWWparZUeWVN/NOHfuXJ8U7r2naRqapukJV9R66BNDgYFw3DXY/Fs/xm/7qu/kud/0F856KQMGvC38yJ/6C3zrP/oG/Hx+1ku5rxGcQ79xgHnmIT73Fed4SC+HkcwBdzWUkOzIEf/Le/4G3/L7/iBPzh+HTz/7JRWH3+NEI3z+z5JY2XeJ30Iq8tGIPANvHW0TUyqCl1gTaJuGpm3wzmNNS9u0NE2DdxYBZEozLkvK0YTRuCTPNIrQOUiBcxapFDJAOZrGfI28xLQt1rXgHd5HslO1LU1rsC4QOkG60jkhBNrGoFTc0TfWQljFcSkt0EqR6YxRUeLweCso84JxOcbbAD4KjzOlyVKWA54YjRGw3fhWCMSUcx2DB533tK1DiLbrAsQ0wuADRVH040zeR1JRFAVaZ8TE7phB8nn5EZ1WYx0nwmjZ29SuF9ypSE/kIf08Ho/Z2NigKEqyLMeaaHMrhOy0EwHTGmbHc+r6FkIKxpMx5y6cZ2Njg7IsmW5ssLm9hXWeohghVdZ3KKyreOP12zR1RVmWnD9/nvPn42t3dnYQXTeraRrG4zHjyZi6aQhrI2FpFCydYxr/SlqV1hhUq8ig16UMyeEDBgz4YvHCf/JBHvnPf/Ssl3F/wzv84RG7n3qQ7//3PsQvLv/VMD414K6HEpJH9Ji/+XXfxf/59/5+nvqupxCfevZL1tm4d4mG8ERWEUgkQxCLuLzIKccjPJ6qqqjrmtCuwK5om6ofa/HOIkVAS4ELIDJNkWXIrQ0ypWJIm4iOU0EInPfU1TIKl0PsnhTliPFkwqgcMxlvUI4LitEEa1qMabAmhvgVzuFFIC/bGBrYtDHDI8u7MR8DQZDnBcoY2tEIQSr+Y2r1qCxpjKExBi0VZZ7T6hYjbGyh+4CWmiIvUBKQBYhYyMduTXSI8kH2nQ0fPM46pIwuXt6djCnFYDw6MXg4pfOIj6le26K17rtE6/qP1LEAThXkycVpvaORjpUK+NVyxe3bB0wn067DMSbPVSe8Nn1Oxrlz55FScTw7ZrlacnBwQNM0LJdLWmOwznHuwkWyrKAcT7hw4QIHB4fcvr3P60Lyxmuv9gL01WpFVVVIKdnZ2WF7e7vvYuR5DkJg10Tr8/kcY0yvzZBreoy6rntyEeCUC9eAuwMP/2PD/+WXfpT/8fJPn/VSBgx4W/jUb/+zvGfv9/Ge3zuE+J0lQtOw87NH/KPPfpDfde5f84FscJ8acPdDCclX5oG/+i3fxW/LfxdP/fn3ID75uS9JZ+PeJRoBYlgfnVQjpWMHvI+OT4ERNljqBowzYFoUkClFcA4XAmWesTEZU+Qx3doTsMbETkdV0zY1rbHdVyzyjTH9zvp4MoXgUVKxMd1B6gwhAqFL+A4CMsALUHmG8zYeu2lwLo7PBCDPu+6BC5016wglNd56jIndFa1UdF5ycawrOB/NXX3A2pZKRO2EVoqszGKyuSLmhJRlnx0CdF2Kk3A+KWNmSNs0fdG/7gKVdBSpkE5/TvavEDUTSWsBJ8LndcIRszFCF77HKX1GOpb3nrquqeuapjEsl0sOD48IAabTKTs7e1y4cIHNjU2uXbvB008/w2g0YmNzk0cfe5Sd3R2yLKOua1arFbPZMUezGSCxztO0LVmWcfnyZR564Cr16sNcu3aN69evc/v27f66zGYzDg4O2Nvbo6oqylHJ7t4eddPQGsPFixcBqKoKoHM0sxRdUno6F9u5dQ24+6B/4Kf4p6+8HwaiMeAeQyYUf/2b/wJ/jI+e9VLuawTnkK/eYOuH38s//Iqv4LHdn2EqyrNe1oABPy8yofjawvGXv/F/5Xe0v4v3/T8fxj37wjuu/bp3iQYpuA9SV0OIbkxHZt3j8X9KZuT5KO7umwZ8Q1YIptMpo1FBnsU06qqqWMzmzOcz6qqOu+vGHTBBvwAAV0VJREFU9u8WvO9IhUCrjLwomEzGbEwnTMbj2DEIIFWXgj0aI8QIY2rkUlNVEpyl1Dm6GOFMFKY765Ba4l2g9RbrAaFQmQQcOEBonDVYGzDWsliuWC4rmrrFh1jI26UBQteFmVKOC8oipoJ770EItIrXK2kEUnJ3IhC2KNayICTOR4E4CMoyjk7Fcad4XfI8j6Soc966k2gkQpO6SMZE4rBYLAkhMB6Pu0yL0HczUgbGxsYGe7vx/vgQmM8WLJYr9vf3uX7tGnlW8N73vo+Pf/zjvPDCi9y6eZMbN2+wd36P9zz1FI89+hhFWbJcrjg4PuJzn3uaa9euU5Qlk8mEne1dzp/bQyvFhQsXeOKJJ3j++ed5+eWXadu2J2HHx8dIKRmNRhwcHvLgQw9x6dIlZrMZRVFw9epV2rZlsVj0Y19aa0ajEbLToyRiBZzSrAw4ezz0h5f8V3/vA/w35z991ksZMOBt4WOFo/r+Rxl9y4tnvZT7F11434VPzPjLv+Rr+dVf90neO3Q1BtwjyITi60vDn/im7+GPv/Ibefi7DnH7B+/oe7xlopFmz9dx1oXSHauJvwtxrVG7AFpoynyEDRDIILNMpp6AxZmGqqk4ns9wpsW0sfAP3qO0iha0xmG9ixalUqDznOl0yng0YjQexyLSeUxbY4XHdR2JclRSjAqEVCgKspHHAMGZqL0QLSoIShReO7z1tMGhlERICFLEoD8haYOlslDXLdWqYb6oWSwrVqsVbRu1F6G7IKu6JYglrfNMTImxJWVZRMG3zJE6CsDj/QStw1rRG2A06ov+VBCvO3LleY6U8iRkr7v2UqpTjlGpi5EcvYqiZGMjo+26CXmeU1UVTVNT11Wn/4ii9LZtqKpVRxMleRYdr8pyzMXz52M2SQDnAsvFnLapefDqFR595BFmqwXz5Yo3rt1gsayYTqPeYnd7j4999GM8+9xz3LhxncVsTlvViI6kHR0dUZYlV65c4WMf+xhKKQ4ODjg4OOgF8bYjo9euXcN5z4ULF9Bas1qtkFKyubmJ60T76e+L1hrrXa/lmEwmGGN6cjXg7GFffJmf+IY9/slPF/zycXPWyxkw4C2jEBn/4oN/h49+72/hyq/9zFkv575FsAb1xi1GP/UEP/HRh3lUv8ZYDEnhA+4NZELxrZM3+Ju//AXmP/0YxQ8s3lG9xr3b0RBf6A8nOQxaZxR5QAqF15pQFJi2pqmXNE1D3Sxo2wqCQ8qA0poiuSPVDR6HLgtUOBlnGo/HfchcssgFGI0MwevOwUnRmobCFBSdbkHrnPFYYp3FWIuzLbJ04BymNdRNg6PFBQfCYq3DtA7rPNY6bGtZLqpYnNdNl3bucM4QvDgpWgPUocZbT12tWCxyxuMRo9E4kp+iABQEEa3Y1/zYoysVKHUi3l4fZ0qibSll747lu47Iul1uEniXZUme5ywWi87Klt5RajKZsFgsOrLUUtd1P6KV7l/wgbZtOT46RusMgaRpWqbTCaPRmK2tbS5evMTGdAM6O9v3PPkUuiw5OjpiPp/TNC0vv/wKGxsbPProo3zg/e/n8cce4/bt29y8eRNjDPP5nNUqdkqOjo64ceMG58+f5+LFi1y4cIG2beMI1nzOqlphDg6w3XmfP3+era2tPsAvZYqILj1cSNETr/XU8HVB/ICzh5vNaMPgFjPg3kMmFJuj+qyXcX8jBMJ8we5nDH//5lfw709eZMxANAbcO9iSI/7YQ/87v/5b/0Oeev4q7oVX3rHk8HuXaHwBJCFyKnYhzs47azFNE7+MIUB0UAqxWI+6igDdGNF4NKIcTaK1bZcTkexLZ7NZf9y6jiLr5WKJykZopZFKobRm4qbIGElNXhR9B8Rahw8OrMW0DfWqiuNSjcOHqAGpqop6FTM22tZQ10ts24LziOCRBEQI4DzenWRj+OAwviE4izGR2FjrMMZhjMWOXKcfiN0DwWmi4X3M7lgXLSfCkQrm1N3QSoEQuF5/EfpRLN/Z5Mbsi3G387/k8PCw74yMx+N+h7+ua6oqEqkUpGiNxduA8wHfmF47sVrVzGZLXn31dZ7+3DNsbW1z4eIlHnjwQV56+WUefeIJHnzwwW5Ea8HNmzd5/fXXuXXrFlevXqUoCiaTCQ8//DBHR0e9SDvd5/l8zrVr19jY2ODJJ5/kypUrMTNDa5x3NN169/f3qaqK3d1ddnd32djYYDab8fLLL5PnOTs7OzFLYzIGoGma/poM9rZ3H/7mza/hVz7yz4eRhwH3HC6O5zQPP4h9+dWzXsp9i9C2jF845N987hFee1CzI4fxqQH3Ft6XS779m36Qv/O5b+LS9xy/YyNU7zqikcZ8gL54zLIMnMMKEQXSUqFkhlRdGJzx3c58TOzOspwsL9B5TMO21vbC4qZp+tn9tEOtlEJJhRAeIRxKSrQSgKNuatpuDGkkxp07U44UMT9D6RrnJbKxCNkCUXAdE8wDUniU8GjhyaQgqFjgaynRSmKFxOOJzYn1RG3Rk662NV3hHwlMnhd9JkaW5V3XIo4pSQVKnRCNtPsO9ILtRCpCiHqQ5FCVfp/E5IkwpeMIEQmGMYbZbM7R0RFaZ33KeVmO2NkJGBPdnGbHx1RVi0JQr2owlrzTkAQPUmkcsKwrbu/fZr5cMZpOuLW/z87uLpubm+zs7PDoo4+yt7fHSy+9xAsvvNDnXiSNyMbGBtPplMPDQ5bLZR+AGELgtddeo6oq9vb2GI1HXLx4kaquWa5WLBaL/rosFoveIvfy5cscHBzwxhtvIKVka2e7TxNv25aNjQ02Njb6+zPg7sDh1x/wzf/81/Av3v/3z3opAwa8LfzdJ/4ZX/Pnvw3x17+G3R98CXvt+lkv6b5DcA72D9n+mQv8+Dc8ynuyl4bxqQH3FAqR8bt2fpp/8mvfT/PMo2T/+p0ZoXpXEY1EMNZn31ORK1Usqp2zWCdi+JszeOdj1obSXRgdZDpDSkXTpYZHlynXW7Mm7UFyGxqPx+R5hgSU1sjOFrZtapq6JStKXNdVGI/HjMYZuihRGSAzjBMUraM1joBIQhMUYEyDxGNyTVsLrAElREyzloo8031XQgoZuylSIaUCJWPYn/dd4njsjkhZk+erLoRvxHg8ita0WnZjU7ofnbrTjjXtxKcRKetczAPpSF0asUoaj7470dnHKhm7PVmW91qQ4+MZ3nsyrRmNx4zHYy5cuMj58xepq4bZbM7xbMZyEcesghD4bkROK02el+RliVSK+XzO4eyYGzdvMp1OmU6nXLhwgStXrvCRj3ykd5JaLBZcv36dl156idFoxIULF/qRrpQY33Tdr+Pj45gkvrHB5tYmeZ6T5Xnf3Tk4OKBt2z45/fz581y4cIHVasV8Pqeu656YAr1YPInmB9w90N/8Ok/9rd/K09/w1856KQMGvC382Ef+DnwEHvun3857/4jB3d4/6yXdXwiBsFiy9+ma73njq/gVTz5DIfTQ1RhwT2FPjvif3/Pd/Npv+4O8/8XL2Jde+aJdqN5VRGMdd7r6CCGRKkMpjZAyOjWZmOyd55qyLAjB01Q1ddN040am1x7EkZ2YsZAKZ+dcH2xXFBlagBeBum6p64YQJEUxIjhNtXI0jcE70LokzwVSZehMkxWeYmyx1qOEQiaJtfBUC4dt4qhUnmmCA9eaE7KhJCJ04YShI1WAkpIgJQgIIiA78hEdkEJMSg8WIRqU0lHMLTUxLfzEyjYRCKDvAqQuR+h0BolYrD8njTlB7Ag1TYM1FmNsJxzPKUcj8jwnzwqss1SriuNrNxBCsLW1yfbOLts72+ydu0BV1RwfHzOfz1kuVxwdHVNXdSR2nePVxsYGVVOzf3TIwcEBs9kMKSWvv/46169f54knnmA8jonhk8mELMvY3Nzk5s2bPP/882xvb3Pp0iV2dnYYj8e9biM5Zi2XC1bVKo7dda/d2NgghMBsNuu7N9Zadnd3yTvjAOtdL4oHaDsCO+AuhHc8/h0v8ej/4zt48Vf9pbNezYABbxsvfPP/m2+98htgIBpfdvjWULy8z9OfvMrTj2xxUUVL/QED7hUoIXlfLvkvfunf589+6tdx+W8e4ZcVwZpfMOF4y0Qj7WAnMXD6c3rsbkBaR/q+vlahFCqAUrqzaC2QEoRwSBFi96Kuu+C8k7GrJFROCdEpWyJ1M6bTaXRb0gprVqyqiuWywtpAXozw3rGYz/FBEIKgqVqkkOisIJcZQWqyYkxpHd46lJAIAVKCxOFtS1NrslxiWoVTDq1lzAkJoIzEStdpIzyCmNitpEBoTdBxNyXpLE6E8inJWyK7BPHoHiVPfa2PTq3/2XuPDwHZXeck5k6PpzyJ9cC+alVR17FTEDUaTX/Mzc1Ndnd32draYn9/n1u3bnNwcERRlmxt7XLlylUeffRR5vNlRwItBweHHB4cYIyNeRuriryIo1h1XffuWDdu3ODg4IDbt29z6dIl5vM5Ozs7PPTQQ5Rlyblz57DWcnBwwKuvvsr+/j4XL15kd3eXRx99lIODA46Pj6lWFa3t0r617kfqNjY2ePDBB3udya1bt1gul0wmk6j/yHSvQymKoh+Zaprm1HUeLG/vDrjZjMe/28GvOuuVDBjwC8P5v/gGt37ZBL9cnvVS7i8ET9g/ZO+TV/gH3/iVfPTCv2JHjc96VQMGvC0UIuPbNl7k+37jMxx+7gnKz76OOzgktO0viGy8rY7GvWLHKaXsBctpVz4EcCKgspxSOPJC4l2O9y2mrWhXhqY1KKn6lOfj42Nmx8f9GFDazZdSsru7y3Q6pSxLmqbh5q2b1KsZs9kcgWRzaxuC5+jokLZ1CKmRQmOtY7oxoTUNuhgTREz/LooSETxKShAOgsWbBjMeY22LD4G2mWNaS5ZpvC8QUqK0pBEtwQR8iCneUkl0phGZIqhoZxsJ1slX7FiIjmxETUKea7Js/fETYf16lyJ1MbxzmDXhdyJiicjM53OEEJRlDC+abkzRukUIwWKx6BPFl8slN27cYG9vj3PnzrG3t8fGxkYUwTeGF154kRdeeJEHH3yQJ554grIco3XGqBxz+dJlmqbl2rVr1E3DbDlHKslqtWI0GuG9J89z2rblxRdfZH8/7vI988wz3Lp1i/e85z0oFRPOr169yiOPPMIrr7zCK6+8wq1bt9ja2uLSpUtsbW1x48YN3Moju9Gn1LFZLpc459jb2+PBBx/k+PiYW7du0bYtW1tbTLONvoMS+lG2SM7uvCfrxO7NMBCRLw+yH3+a933Xd/LZ3/3nznopAwa8bfy1h/8Vf+oTj/H9H9w866XcXwgBX9XsfG7BP3r6g/zOvR9iKh2ZGPoaA+4tTEXBH3/w7/Mrf+sf5PI/foTtT2S46zcJxkLwb4twvOtGp5LzUSIZKffBtIYmtEhZ4DOBcwpjAtViQbWqmE6nnDt3Du88i87u1He6jHSstDOf5zmbm5uUZUlVVdy+fZvDg9toARLJeDxhPBrTGst8dkzTWkKQZFkOElbLObOjQ4LIybISKWOityxLBAGBBWdxpu1tUKXKMAZQCrlSCN0gG4nQCo9AKInKPIToppXnOTLXoCVSSJTW5Jkmywq0jjqJSDQkWivyvCDPFVrHP6eid51crudpALTGsFpGq+Bk51rXdcwR6fQKzrk+xG97axs76Vy3PFhrqKqGoigxxrC/f0jTGPb29jrdi2Q03mBrZ5dXXn6Fn/3UZ/js557hwQcf5P3v/wAPPPgQR8fHVFXF1zzyKIeHh/zUz/wUN27coGka5vM5o9GI4+NjjDFsbm7GDIyOKHzqU59iPp/z/ve/n9FoxDPPPINzjq/4iq/gwx/+MM8//zw3b96kbVsuXrzI448/zu2Dfa5dv47znsViEYXpIVBVVU8itre32draYjabsVytsEdH/WjZaDRiY2Oj/wylaxNzQsqevPxcn+8BX3r45ZLJa8O1HnDv4vfvPM3389VnvYz7DsEa9Bv7FD/zCD/ykcd5bPP5gWgMuOeghOSJrOB/+vq/xX+68WsJ4io7P+Si9su5aH7wFvGuIxpw2nmqJxtCIVAYE12Ygg846yjyEUWe09QVR8fH0VLV+X4Hf5wSv/3p36VRm8PDQ2azWR/+tr29TaYLDvYPmC+WGONASpz3hOBxpma+OMYLQetge+c8GxuT6ELlG6QQlMUkhvUFj1AKtMZLjXOSvChZ5SuyuqJa1cg6aiycjza30Y1JkeUZOtcgAUHXtcjIsrz7niGl6LQbsnOfikRj3bEqnXcSbietQRLH13XNfD7vheCr1QqlFHVd9+5OVVV13ZCox3jggYc4ONhnPp/3Y2hCxPeu64br12+wsbHB9s4OjalYLJecv3CBvb3zLJZLXn3tNV544SUeffQxvvrjH2dv7xwHBwdsbGzw637dt/HpT/8sr776Ki+//DLGGM6fP99b0QohervdEALXrl3j1q1bPProozz11FPcuHGD7//+72dnZ4cPf/jDPPbYYxweHvLcc8/xwgsv8J73PsUjjzzCSy+/zO3bt7HW9iTh+PiYo6Mjzp8/z7lz57hy5QrlaMTh4SFN25BlWT9qlz5DibyuJ6qnUao3+1wPGDBgwIC7GCHgj47Z+7Tlu1/7an7Fe59mJAar2wH3HjKh+KbRAX/iw9/LH1r8Bsr9y5Q/awmLJbTmLZONdyXReLOdeCklOs/wwSCsAiWQWuONpWlaVlVM2nbG4JzHGkNwts+OACiKok+wTvP4qfCWUlFmIySKum5YLSvausUDtutMKCWomwrZjc0qWbA52SITG1hrMG0LAnSuyRkxDh6pFUEpghBIociLPNrMrjRKa1SuKKyHIAg+Cq8D0aJXyIALDiGjk1QsiEdkWUaWaaSS0dK2G62S8oRgpOu2LvZOHQtjTMzV6ITyIYQo9u5E30k8vlwumU6nhBA4OjpCCs10ukWeO86du8B0GoXYzoXelSqEaMN7eHhEVTdsbm+TlyXXbtygaVqyLOfy1QfY3z/kc88+y6tvXOOJJ57k4YceRhctr732KltbW70G4+mnn+47HEqpfu1ZluHXMlJef/11FosFH/7wh7l69So3b97klVdeYTab8cADD/C1X/u1vPTyy7z44ovs7u3x6KOPcv78eW7dutWPgKVzNsZwcHDArVu3uHjpIptbWxRFQV3XHBwcMJlM2NraOqWXKcuyd/oaCMWAAQPeCciveB/+Zz571su47xCahsnzhzzzs5f45KMXuDg+RjEQjQH3Hqay5BvK2/yej/5r/vLLv4yHqitkr+0TDo/x1VsLCn3XEY20E7ze1Ui/V0qidNzVDxiCtzTNiqqKYm/vor1s3OHP4lhSt6PfZyt4z62bN6Or0XyGc548y5hsbpIrzWqxYlVXtKalaRuqqsJ6140ixXTo5VKz4wJaj1nMj5AydAV8SzkqGU/GFOUoEok6R+gMnecUeUFZxvC/cjViPKmp6hprHCAIPoranYsFNMJhvUWImPUwGpWMRhOybM0Ct3PTlVIihehscKOYO6aPW4yNIYJta1h2o1JSSopuLC3Lsnie3Q596nYkcrK1tcV0OuX2rQOWy4qtrZ2YKzKKuRSz2Yzj42MWi0UkBFoTbMzSuLm/z+7eOa5cucpqVXPz5g1eeuklvI95G1VV8cLzL3D92nWuXr3KlauX+q7MeDzm4x//ONeuXeOll17ijTfe6DssxhjKsuzXnLo0n/jEJ7h8+TKXL19mY2OD1WrFM888w+7uLnvnzrG7t8tiueyD/i5evEjTNEAkGcvlsiej8/mcqq7Z3dtlZ2eHLMswxvShhZPJhDzP+7Wmz+2b4c2smwd8aTG54fhrs3P81s3bZ72UAQPeNgqR8d/+vb/Kf/box896KfcdgnNw/TYXfmKPv/LVX8/XPPr3uKAGO/MB9yY2Zclv3vo3fO6bL/HD2Qe58FNX2Px0ibz+1v6/8W0RjTs7BXc71l2o0rJll+OAUTgHIUi0KtA6djKUFl0gnsAbS1VXfbq1FILFfM5iNqOtK4K14D1egCGwXDUsFkvquoribWtomjbqL5TEdzv+QghyXaBkgTGOW7fL6BglBFvbW+gsY7qxQZaXSJ0jdUFRNDS6oChyitGIpqlpm5amaWmbOArmg6dpWmxrkEohtcAHS/C+02hkZHnROU3Jfvc8+O7ihADe4rzFmoamOcnAMMbQNDVN58BlrEFJzWhUxLA/EYXomda0Xe5I8J6264JsbW1x/vwFDg+POTg8pOmC68bjMZtbW5FUac3+/j7Hs1kMIJQSbz2vv36N4+M5Dz/8CI8++hiz2YwbN25SVw1t0yCIpKaqap5/4VkuXbrIhQvnKcuSyWTC+fPnmUymXLp0iTfeeIODg4O+G5U6GqlzU1UVr7zyCoeHhzzwwAPs7e1hreX27dvMF3MudG5UpvudtZbxeHxKo3LcGQhsbMROVXreuXPn2JhOaU0kbFVVRS2LPRGXp65Gwp2duQFfPpT/4Mf5C5NvY/Vf/gN+7/brZ72cAQPeNi6qltu/+2s5910/etZLub8QAn4+Z/tn9vmZn3ycn76yy787Wg1ajQH3JJSQXFQj/uil7+f/88uP+VuXvhozPsfeT7y1179tovHWycbbdcd5Z4uoz59xj4V4CB7vBSFIAgohcrKss3ZVCtNWGNdgWo9wAS0V0+mETGfMZsesFgsknlGRk8tYXLZNS1Ut+x35ZPMqAuRaoLVEBo+pKox1CCk53t9nuWpQ+T6T6QZ5UaBV1E2U5Qidl0wmU4oiA1EixQpCiMLxPKe0Y1xrek2JtZFQOOdo6yYSKyWwzuBCTC8XRPF3b6kqk1Wtw1mHNS3ONBgTrX6buqY1LSF1ONoGERwSS7Atra/Bx3GmItfgHa13KEGfsaF0hm1aquWScrTBuQsXODw6ZrVaUjUNGxsbbG1tkZclU0BlGSrLODw6wnTzf87HnIpnn32WixcvcvHixS5pu+TatetY2wKB1tQIIXjuued46aWX2d3d4fLlK1y4EInGI488xs7OLoeHh1y7dp1r196gqiq899GiuBNlJ73JzZs3qaqKnZ0dzp8/TyCOgC2WSza3ttjd3WWxWNC2LXmec+7cOXZ3d9nf32e5XDKbzciyjMlkgmkNB7f3MU0M/suUZlVVtE0biYZSaKmYTKfkRX7Kohk4RT4G56kvHza++8f4a+FXsfHHvoffvDHkEgy4t/CAnvJd/+mf5ndM/xCX/9SPnPVy7isE5wivXefiJ/b4a7/o6/jYQ/+Qc2py1ssaMOAXhEwonsgKvmP3R7jw8Rl/mn+XfLH7ll77tkenEtFI8/s/z7Pf4lG/XDu1IaZFCIGUGqUy8qxEBmjbCmss1hpaU2PblpEu2d7cxnvPG6+/wfHRId5Htb0WAp1nSBGwbYO3Bq3Be4mUMUAuBLA27uzH0aMWYzoRddWgyorp9g5KQdtU5HmBFBLrPIHY9cjyAi01PiuQcowUDqRA5zmh8Dhr8dYRrMOHgAgh2s62Fhc8NrjeGSmuycckcSHizwFEELSNoV4tcW3daS1i56Jtmj6jw3uHIN5VLQVBKpyzQGA0GqOV7NKvT6yFE7ExrcX6BePpNtt7u7QujkbNlwtuH+xz/vx58qLAEbh89QrnL13k9u3b7N8+xLro2FRVVT8C9fjjj/PYY48xHo954YUXmC9mXacm6i8WiyOWyyXXr99gd3eX9773vezt7bG9vcP29g47O7tMJhNee+2VfnxKKXVK9O+95/bt231mSl7kVHUNQrDs7HPPnTvHhQsXepcr7z3nzp1je3ub+Xzeh/1ZYyjynNVqhTEmCtKVig5Y3XvNZjN88Gyp7d59KpH6ZIm77uI14MuDjb/9Y3z/H/oAv3njX531UgYMeNv4qiLnz/6BP8cf4DsHsvHlRAiEqmL7U4f86Gcf5+UrGTtyEIUPuHeRCcUDesSv2/gUt79yg//t2i9+S69712k0viBE3BVW0uNT4rXKCNLihEBpTVGU6AxkA20QMbHaWm7dvMWtmzfx3lEUOZnO8M70+RpCCrI8R+cKrU1XFIbOUUjEIjulY9uon1AZFFqjCJimQuoMvGe/amibmlFRUGQZRTFC63hsVFyndnHHXSQLWqmQuSCspXWnXAtNtLp1NuZdNE1Da2KWheueb51jtViwWMwJJnYHrLWY1tA2kSClAlcqiXceiONSdNoGaw15XjCdTGnqpk9Vj25WeRee5zk8OqToLF5nsxmL5ZKwWLBcrbh48SJXr17l1VdfJYTA1asPcOXyg7z44kvcvHmzz0Rp25bnn3+eg4MDnnrqKUajEZ/+9KdZrVbkue5Tt9P53rx5k9ls1gfwPfXUU1y+fJnJZMLOzjaf/exnmM1mlGXJcrns9CwjyrJkOp32GpS6qVlVFUjJeDzuSURyktre3kZ341+r1SoK5qVksVhQ1zUhhF4Xkka6km1yIh/rNsrJiCB1NdL5QLTJHfDlw63fc4V/+nczvnlsznopAwa8bfySEv7yH/yf+N2L/3AYo/oyIjgHN26z+ek9fuRrn+R92bOMRX7Wyxow4BeMTCguqoL/0/ZP8KMff/Qtveb+IRpdYRyL1ej047TGGoVUmlE5RiloGo9tDaNSkUvF8dExR8dHZHnOqCwI3iHw1KbpC3AtFWpUYp3tRMoG8NG9ysYuSbLIzTLNdLrBdGOTrBzRGIP1jtwHlrbCu0CmBAe3rrOYHaGznNFowmhUUowzilFBnud9Ia91RrAO2WkMTBtj4pXWyG6nXhAfa5rmRHDdBfIlArRYLFjOZ7i1It0YgzGRsDjnyLKcLIuhg9Z2Y00EAoH6eMF4HNBZTjEaUzUtdVXDqiHLIrEx1tE4j84Lzu3tcW7vPMdHM4yxGLNkuXwJ01qeePIJnnnmWZ5/7nkuXLjERz/6UW7cuMEzzzxD27asVqveRveZZ57h8ccf56u/+qv55Cc/ycHBIVpH+95kv5vOdTab8elPf5qXXnqJ9773vbznPe/hypXLXL16hZ/92WiJ27YtSimqqqKqqv7cleq0PQHm8znXr1+PFrzb2ywWi97B6tFHH+XJJ59kNpvxyiuv9ESkbduYq7FcopTqOxvnz5/vncuUiuJ8HwKj0agXiq+nsQ86jbOB/7ef48BNgcOzXsqAAb8gfFWRU+8NY5dfVoSAny/Y/UzL9938AN+28WnGciAaA+5tFCLjMe34LQ/82Ft6/n1ENE4Qx3oUSmaxq6Et4MBIpNCMxxOCc1SLJW3bkukM1e2mW+9omhrXOUlprQne452l7Wxs0yiOtQbnLCHQpT9njMcTNjc3KcqSxXJBNV+g8xxT1azqmrIcs5xJmnqFkAoCSJUhlODC5UtcvnqZ0WiEMYY8yxiVI1yApo42Y8ntKYXSee9ZLZfM5nOOuuC4VLBmWYazlqquWS4WrJYrTF0ROxoujomF0I99ZZntnZPatgUZuyLWeaRSLFdVp0mYkmUFq1XTjR1F7URAInXG4dEt6qrm6tWrXLhwkWvXruG9Z7lY8vzzL7C9vcMH3v8BfvInf5LPfOazvPzyK3zkIx/hG7/xG3n22Wc5ODjg6OioL9xnsxlPPPEEX/3VX81zz73AK6+80hOMjY2NfuTo+PiYPM85ODjgxo0bLBYLPvKRGM73xBNP8MM//MM8++yzLJfLnnDM53PqumaxWDDdmDLd2GB7a4utrS2apom2vV1Wi/eeg4MDXnzxRc6fP8+FCxdQSrFYLPpRqDyP9sS2c9UKIXThhDnLZfQ9FqnjpnXfnUqkVghBURRn8xfnPsdf+cDjPPLMJ/iachB0Drg38ck/8Gf4xue+k+n3fOKsl3LfIBjL6Pl9Pvv0A7zw8JhzakgKH3DvYyRyvm704lt67n1ENALgSXqQtFMslUJajRCKIi8pc03A0VRL5kfH+BDI8yy6OnkX3ZtCQaYzhIjHcsbStDXa6P64MR1bkeclwSddiETruEs9Oz7m4GCfqlp1xWcBApqlZTE7oChHlOUI62Ih77zHuBZjorWsMYbRaMRkMqEoChbzOVqpvgCeHc8ILlCtVhwfHzObzdjf30cIQTka4brsB+9975TUVBUihE5LYpFSkGUZbdv2O/Gj0ah/jXEOLyB2i0R0gJKa1niE0qgsRzSuS8UOKAXegxCS2WyBta+yt7dLlhXM53O2t3epqoof//Gf5CMf+Qjvec97USrj8PCQH/uxH+P8+fO8//3v54Mf/CA3b97k2Wef7UeSnn32Wd7znvfw0Y9+FOcc+/v7NE3D8fFxryVK4YvJbeuHf/iH+OxnP8NXfuVH+IZv+Aa++Zu/Ge89zz//POPxmCzLGI/H1HXN0dERh4eHtMagutGq3d1dfJcQnohNCuJ7/vnnee6557h06VKvJamqqu8ohRDY3NzsxeipS2WsoTFtTwTTPTJrTlUAu7tvTYQ14J1DsJb/+j2/iH/yyk+e9VIGDPgFIRMq2gMO+PIheNg/YvvfXuaHvv4pviL/2YFoDLjnoYTkinprn+P7iGh0iMKC/mclNbLIURqCVxhTsVhUVKsKKaPVbbR9DQgR8zTINc5G0XMIASskPrg+a6MnMVLhfcCakxl7Y2y3C39EtVp0Tk8F5W6O1hkHh0csVysmkw3MqOqF4R6YHe5jTENTNTSmZVSOyIucPC+4fesWeZ5z+fJlnLMc7B9gW4ttDXUVQ/YOjg6xxrC5sUlRFr0lrjGG1XxBtaoQItDUbTf+FUMKEdA2Fu9bnI0OVqZ1VG1DEJDlGW3b2QMrwcHBERsbm2S6oCjiObetAWFBGMaTaT/+tFqtkFJSlmXv0pTnOZ/+9Kd58skn2dvbYz6fY4zh9ddf57XXXmNnZ4ePfOQjfP3Xfz23bt3i1q1b1HXN888/z82bt/nwhz/MrVu3eOmll5jNZv1YkjEGpRShI1N5XrBcLvnhH/5hXn75Zb7xG7+Rb/qmb+LSpUt87nOf6zs30+mU6XSKj4yR5WoVMzKqqhe9l2XJeDwmhMD+/n6v75jP53zqU59id3eXPM97RzKtNcvlks3NTcqyJM/zXr+RCOFkMmF7e7t3nEpEJXU+BgwYMODt4vaHBJvft4Gfz896KfcHQsCvVux9puYfvP4hfuPWvxmSwge8K1CIt2ZKc18RjZTNEDwIPFJIUApk1o0cBbxbYY3HuYBSmtFoRFM30d3JR1F3cAZB6PMofAzk6EdoTtKdRex6BLkWgmf6pG1rLME5spEkkwJjGrw3EBxtu8KYGkQ8ZtNaVvNjmrqmWlUYa5krhZCSPM84ODxESMlyMSMvCqrlisV8STC+H7nBeepVhTO2L2BT0nciR6a1OBfwnm7sS5DnOVprVqua5bIiz/P+ijrvwXiEUMjeLhcO9g8ZjcbkecloFDBmEcXnAhaLxSntQex4nKSMQxw1u3XrFlevXu27NHH8LBboP/qjP8rOzg6XL1/m4sWLSCk756cFr732Gnt7e7z//e/n1VdfZX9/n7Zt+/dLhXscL4uC+tdee43v/d7v5UMf+hDve9/7+Kqv+iquXbvGzZs3WS6X/evK0YiiLAnQj5Wl78aYfqyprmvquu4JQ7K5LYqi18Ykp6k8z8k7RyofAkpHDcd8Pu87K6m7sr293Yf7DRgwYMDbxdPf/ud5Mv99PP5f/vRZL+W+QTCW4qXbvPSzV/ncEztcHtUMPY0B9zreamfuPiIaUbQsAKUkEMlFcArvZCfYtngvYlCeCASjMZ1zUFPVGBPwndVq2slO8/8B+iIzFc/JfSqEk1Z1sgf2zkdyIqIOo65jlyJ4j5QCY1qcd11XxFBVLd4HtC6pO+eoJGyXMmpH6qbB1DXj6QRnLG1t8DZ2XVJxLaXsx282Nzex1nJ0dNQRJIWUccTM+4AQGhBdmKBC66wTj8dujguBIGPORUwmF3T0CucDh0fH3fhPTlGUNG1LYx2poxTCSRc/rlF0lrjxPReLJfP5nNFoFEMO85yqijoQ5xwHBwcsFgsmkwnT6ZTRaMR0utkX55PJhAsXLnDz5k1eeumlvjOyngaexqqccxwdHfFv/+2/5datWzz44IM8/vjjPPLII1y7do3Dw0NW1Yr5Yo7vrmMIgel0Gl29nOtHnKLbVta7Sa1Wq1OkYjQa9d2vtm05Pj7Ge09ZlggpKYqCpml49dVXcc7xwAMP9K+rqqp3pRowYMCAXwie/S1/nkd3v+Osl3H/IHjCwRG7n77Kj3/L43xd+clhfGrAfYP7hGiEky8hkCIWs0pIgvRYAUKoLj1coZQGpzGBXjidikjnDJJA8GBMl49RNxjb4ryNhKFputfFYtq5gDW22/Xuci264hwBQio84JwnADrTGGvBg5TgvKVpK7yDTMWE7qqu+0wQnWXoPKNeVdi2pW0alJBkusA7v+aapHqSs1oukUKQFwVt5xC1sbFFUZSApG3jTj1B4lwsyLXSXTaIjbkaAjwizqAGepIhCAQhsM7TtDVKGcqiZGNzizBfdOTMA757URpn68iKiMTDOcPx8TFXrlxhPB737k5wQtiinsRwdHRECIE8L9jbO8fGxgbT6ZSrV6/yxBNPcP78eWazWe9adfv2bfb39zEmumzleY5SiqZpeP3116mqCiEEH/rQh3jiiSe4ffs2h4eHvHHtGrPFvNPbnGhyyrIkhEDTNP1jye0qCboTqZFSnhJ3LxYLZrNZH/gnpWQ0GrFYLHj99dfRWvdWuOtdnwFffgTn+PCf/E7+7R/5c2e9lAEDvii8+Cv/EvBHz3oZ9wdCILQt09daPjW/gtkZukkD7h/cJ0TjNEQnYEZKgotjUjGEMJGCGHhn2pa2NZguLyEVyM7bmJ7dxLEjZ+JYVd3W3Y656zUaIYA1jqqqu+Kys78VAiEVgmgJm+UFjbFIPKorUl2eozPV7ZIHZAgI5wmtw7cWH6JInDKA96gQwHlmh0dopdnY2I6J311oYKY1WipawFnHcrHsR3sW8wWz4xmTySaZjm5Wxtiuu2Bx3qOUREmNl4HgA0HEixlL/4CQkhAE3kPTtDgPQmmCEDTG4AKA7O+BEOnnFALZnU/3O4Rg0Tl/bW5ucnR01AfprXeT4KTDVNeRKBRFtAF+5ZVX2N7eZmNjg83NTXZ3d9nY2MA5R1VVrFYBa03fMbHWEkJgsVjwmc98hsViwYc+9CG2t7cpyoLRZMzrb7zBvOukJBF3SoRXSvUdjtlsRl3XjMfjfmQqdTzS+hNJqeua5TKmy083N8iyDO+jHubVV1+lrms2Nzdxzp1KCR/wZUYIPPi/vQx/5KwXMmDAgHsJwVryw5rnD89RP+jPejkDBnzZcH8Rja6JEEKIlrQerPOYNpID76KzlLMO520/h5/2j+OuvqK1LW3b9PoGZx3OGhpTdzvuJyNACXfuxEspUTqLKdtZEQt271EqoyxLfHD9iA6yIi8KSlEgrMQgKJTGhUDrW4QP4AJlUWCspVlVtEISgkQQA+CS2DjpFCCOC81nczY3N9FKceP6bWZ2xng8QesMuvwNEF2HpjsHRNRkiBB9vELs3qjQ5YaLaNFqmhYpA1pl2OAxpkZ03aT0RXeN43U5EepHR7Bo1btYLHpNScqTUEr1X6njFM+zoK5jLkgaTVosFr17UyIC3vsu2C/0x01heCk0b7FY8Pzzz9M0De9///sZjUaEEHjs8ccB+mC+mES+4PDwEK01Ozs7QMzb2N/fx3vfk5zt7e2uM+bY3d2lLMt+hG0+n3Pt+nXK4yOm0ynb29sdGYrhf1mWURQF0+n0S/CXY8BbhX39Db7hD/we/vWf/YtnvZQBAwbcIwg+oI5X7N/eZRXAhUEQPuD+wNsgGmtuTWHtj2u//uIgQHypRkIEBEH6X+hGolw3VuQD/TiKkAqpM3TIEd5gVYsQEqkkGk0IghAyjImFn5SSlhZnTVecB4SQXW6CwLtAyEQ/mhND/Ay+G2fSSndp13HkajKdUuQlLsTxJAQoqSmLEQVFp9sQ0XJXQMDjvUMLzagoMWaOklGRUi0XKBW1AgSPMSOcczhnybK8H+mpm4ZROWJjY5Pj2YL5fE5RFicdB6lA+D50UEgJIuoxrLPYTqMSZLzWobueWkeNh/ex66B0/LjFHXkR3Ti8w4c02gZCgkAipOgICCyXS3Z2dijLsi/m7wyvS10C56LGBWTfnUjEIqGuY3fJd3qYLNPdWiNShgXQu0A9++yzPPLIIzjvuHHzJg8//DAf/MAHeOWVV3jxxRfRSpFlGUeH0dlr0iWKb21u4qzFGsOtmzepViu2trbI8pz5bBbDFZXi3LlznNvbYzafc/3GDaqq4oEHHuDcuXPcvn2b1WpFVVWMRqMhR+OsEQLlzeasVzFgwIB7CcHD8YLixcu8/kumPKTdIAgfcF/gLRMNEUSsJFNRGLrxlvT9i0CUaAN8ccf5uSAQEBRSiDi9EzzOWhAeqQVSa2SekckAIiBlQAqoW4PMHGWmIThM2+CtifP5RYk1Bm89VmUQZFcEhq7QznrxtTUtQgaEDCgt0E71u/Or5Yq6rvE2IIKM19QJtNAgIJc5lAItM47qQ4w8cZIqJyWmNQQRaEwTLXm1pG0MPoCzBoGkDZ7lXJPnMZtBSHpdxXK5ioJuKVBZJAd120Yti4xdDdu5KgFkWdanZBMEwYVIYILtR56C98ius4NMHYxOQB5OxOAQovB+TawPvheKhxBYrVY0TcP29nafi2Gt7btGaQQpz/PumLI7RiAE17l5pc5F1uknTlyv6rruHcPKsuyPm2xnlVIcHx/z3HPP8fDDj7A53eS5p5/l9Vff4MqVy3zkwx/h+PiY69evU2ZlDEg8PKZtW6RS7O3uUa4Rtzxpaqoa2xqcMbi2ZXdnl+nGlK2tLV595RV+4hM/zuOPP87m5iZKSlaLJUVe4Iz9kv09GTBgwIABXwKEQJjPOf8zln9w9JV89MKPDoLwAfcF7pvRqRC3/7txotCJsWMxK6VAdn/fnfdYH7DWY4xHypzRWCGFJ3iDluC70SnfOReFAEppVHeQmAA+7q1YQwjoTCNkLKOzLO7ICxO1Em3b9laoAggudCF/kcQpFJkMKK3xIrZcgwSlFZnO4thV8AQ8UkXHIwI46zGtRWUSIcC0FXmekWcZtnNJEkLgQ4gBfTojy3LqpomjT9biWtddv06DAVjvo1WwVmSIqNfoMjkg0kUh17UYHWnghCClDkR83olN7GmIfixqtVqxsbHRkYnQHyNlZJzoPBKRCf31g+g0FsejaoyRvVVucp9KmoiqqiiKok/yBmiaBuccdV1jreOp976P3d09nn76aa698QYXL13i6pUrfOiDHyKEwOHhIa+//jrXrl1jsZhHt6u2Jc9ziqIg6wL/xmVMeG+bloP9A0xr2LGG7c1Nssce4/j4mBdeeIHt7W3OnTuHFFGHYieTd/hvx4C3Cz1v+H8dPcjv3371rJcyYMCAewTBWqbPHPH3PvcVfMfeD/H4kKcx4D7AfUM0EsLamE76c7QmXdMGyDj6JLKMIpMgPN61mMYhpERpFYtRIcAHmqbtRrFsP0ef5vlT1yKN4oQQGI1GOOsIgT5/wRjT51Ok16W1AP0ue1EUfVHdW7N6F8nJWpZHlmWY1uJdRZblKKW7HA+LVDFI0BiD85FAGGNRPjpY5d01Sc5JKfdDdJkh3nuENWiRx+vR6SRSGN26/uL0xefU4/Fe+DsIwp33Ko65zedzdnd3GY/HrFarngik67RuU5vu4/r3Ex3IyXulRO50fslyNiHpOBKRWS6X1HVLVdU8+eSTPPnkk7zwwgs89+yzvPH662xvb3Pp0iXOnz/P+973Ph5//HGWywWLxTw6Vr3xBjdu3GBzc5OrV6+yt7fHZDLpR9KqqmL52muMxmP2zp1jb2+vd9W6fv16/1mazWZ8+CNf8Qv7CzDgHYH/mc/yV//7f5/f/yf+/FkvZcCAAfcIgnNwc5/RT53jRz76KA9MX2Ms8p//hQMG3MO474gG0GsI1ovRJCz2XgGBTEnIFN61WNvgo2USUkb726LIUQhM2/ZkJYhY6Pfaje6xVCAmwiE6fUMSVwN9UZ+K4HUxeRI6G+v6fAhjDHVd91a664nTSimUVCiRYVuPzmJ6eNO0cZxHKnyIzlDWOqTWKKVpW4vOij7HIRGddOz1YD/nHM43SKliEN9aZ2Ed61qKAD1BWC/434xkpOckYXbSVWxubtI0TX//EhG6042pzyvx/tQ1TV/r4X3rXRK6NQoh+syKyWRCWZZorbH2JG/j8ccf5+GHH+bWrVtRyH3tGi+++GL/mosXL7K1tRl1KB0hMsYwn8+5ffs2Ukq2trb6kEdrLcfzGQeHhxzPZuzu7lIURa8vSeNidV1/8X8JBnzR2P3UjP/Ds7+cv//kPznrpQwYMOBeQAiExZJzP9vyN17/RXzTky9wVeihqzHgXY37h2jcIVqXUnQz81nvcBSTv9suCSIF7zlcJ4DO8wxJwLuWtq6om7ovRuNoFLRtS1VVaK1pmoaqqk5C/bpi11rbi4CVOinEE9EAekJire13tQMCuea0lELhUgGaimUpJVJItO6SypVG64zgBVVd0RrTdTU81npkcAQvQEicb/oCPAmmsyzrbWWBNaIRO0HrFGGdiLwZIrk63W1IP99JNu507ZrP50w7kXXKpUivS9c3vkf4vGOvk7Z0fsluNnU20jVP411aa8qyJMuyfrRtPJ6S5wXHx8c8/fTTPPzww+zs7PQdDyll70B1fHxMlun+g5d0H+k5RVHgnGM8Hkcik2W9ULzq7G7Xz++NN95ASsnVq1ffyid+wJcY4ac+zTP/v6+FJ896JQMGDLhX4FtD+cI+z3zyKp95eI+LowWKgWgMePfiviEaMTojFaapiJVIGQt+H9zJjvxacZcsUQXQmIa6rvq8g9VySdtEV6qyzGlNnOVPSdB1XZ/afU4752kcJ89zrDnRLKxb32ZZ1he9xhiqqkIqjetsWNPr0yhVIgLpe/ABgkDrPBIIG3fUszzH1A3eg1IZSqVQQY/SkazUdd0Hw6VrkLoF6/a48RqeHk1KP/fXfd3GFrosjTe5P1/AUCAV/Om6bm5uUhRF7yi1/rz17gXQj8CtB+cBp563PkZVlmXv6JTSw6WUlGW5do4n75XcoKbTaU9S8jxna2uLtm07MhQ1OevXMX1Za5nNZjRN0yd/Tzdj0KDtcjiapmFjI+ZqGGN4/vnnOTg44Fu+9Ze/pc/9gC8tHv/Lb/BLftGv5V996HvPeikDBgy4FxA87B+x98lL/H9/8cf46JV/ygWVnfWqBgz4kuG+IRqQgvrWAvs40QD09ra9UFl0BEMDlqZpmc/nzI+OWC5ntHVzQkJEtENtTdNrMZbLZZ/LkEiDlJL5fN7voFvjPy9vI9nCrluypsLWhViYGmOYTqfs7e31pAToXaFOksw9xnpA9sdVUqFlzODIshwpFa2xsTPRWT0l29tUpKeiu+9kJEF3Z+G7jvWuyud1KADZEZj1cbL16/5m5CH9nELxUodlvUt055hU+lonGr32pjuP1LERa+ecCMdoNOqv6dHREUCXZRGdrZJD1WKxYLlcopSiLEu2trb6hPHU1Wnb5pQ+JB0/yzKstT1xzfOcum3Y29vj3LlzeO85PDzkxo0bvYBcSsn+/v7b++AP+JLBvvgyb9z+yrNexoABA+4VhIBfrdh+dskPPvce3rjwA+xINzhQDXjX4r4iGpAsU090GqlQxXHS6UhFK+CDp1qtWMwPWcyPaeoa5xxZphE+EFzUXUgpyXTWF7ypyMzznPF43AuLm6bpiIGA5YmtakoeT2tad2YqyzKmTxvbO1Ql0XIacUq/X08wb2uLNdGtqixHUSNgfRS+C4FSEqk0gUQKBG7tvddHiNI5redREAJBfP4YVEIiAOmaAEh1ct3f7HVvNkIVr3ccl1oul91bn+5GfKEuSiIUqZuURN93XvfeBasbV0tdnXQOJyNslqKIHY6Ut5HI3jrBSC5a0WEshv9Za3sCmbQXd17buqq5vb+Pv32bzc1NyrJkuVxydHTEarXq9SID7h488ds/zW/4l9/Edz/6A2e9lAEDBtwDCMaibxyjn7/C5z52ifflN2FI1RjwLsV9RzTuxLqrE3QuVN7jfMBbR7WqWK2WtMYQa/HOPtYHnEguU2UkJTiUVrRt2xfp6za3aed7NBqxWlUAfeG5TjBScZyK39ThMO5k9z12LMxJt6PTaiTRdNO0eAsiaHQeKIoRQkShu3Me6x1KaqTS3fsohBQxZbxDKuJTJyAV5HCHe9Ta9VzfuV/vUnjv8SHg1rou69/vHLu6szOSiv00ZrQ+1rVONtJ6112+koYFTgTV6yQiPS+RztTNqKp4j8bjMdPplLojmanzYYzpyUNyG0sp44mY1HXMD0nOYsvlktlsxvHxMdPptB+L6olK22B9DECsqqq/7ql7s267O+DuQDAt1g8z1gMGDHiLCJ4wm7PxEvzY4nG+dfIGhRjGpwa8O3HfE42+SPWnR6cEUbjsg0eq2FXIFJhMYU3DYjaLNrf5CCWjG9FkMun1E2lnPLkXRWvUem1kZo7WmiLX/WhSCCcp1m3b9sVwHNnJUM3JznwIoXdfSmM7p87JeRyC4GWvF4np6woEUVsiHVp7YoMjjoG5zgkrrWfd3SkduycRUoKQPdF4M+eo0xebftJqnVh8IVvbda1Fen4anVoXgK93TO7M1EhIz73ThSqtJRGE5AyVZRllWZ4iFEIIsizvEuDptSPGmN6lqyiK/n7FTlMKUdT9NXTO0TRN/7rU9ZpOp2gXc1HGk8mpz1CWxWyWzc3NflRuwN2Dn37+YW4/suScGjJOBgwY8PMgBMJyxfR1w0/ceojj847pkKkx4F2KgWj0Y1InO+haa0Tw4DLKoiDLBMFbbKNoJNR4Mp2hcokIsfgdjcZYZ/qRKaUUVVXRNA2LxaInIGmMKoSYp6FVRtM0fQcjOUmlYjdZn6Yd77RrntYOsRBPIXNpnKfIC9rGY00aExNUVYPOMryLblMhpO+BEARKK4Q6ndGxbhmb1pEeD303Q5y+liGc6mT03QklEFL1Yvs3s7a9k2Ssd1TWA/bu1IGsj1ytj52tdzrWCVM6drpX60RmsVj0YvuyLFFKxcwR52LeiDK9CL+3K+6IX+pwTCYTptMpIXiMaXtB//p9TiQm6V6stWRFzngywXvPZDIhhBCT5a3l4ODgVN7KgLsHT/72n+J//+zjfPvW9bNeyoABA+4BBGspbla8fGObg6cyrg7N6gHvUtz3RGMdqaAlBCQBGSxSjLBOYk2FMyez/+WoxLWWuqnRSjMalRzNosNUKlxTIay1ZjQa9aLk2WyGFILRaITo9BFlWfYOVWnH21p7an2BcBLG19myWmsJPkSSsFbASqmQwtGKgO/0F8GD61K8o+uRWxNlBzwe4U+cr9L40boYfJ14+BA6vcfp3IpUwH+efmJt3CqRgPVxrP4834RspJ39FDr4Zk5dqcuR7sGpsMGOZKyTj3VdRjrf5Aq2XvxvbGwwmUw64fYKY8ypwMD1LklKHD95zPWfrWRnm7JPyrIkz/N+bdZaGtNiXbRUzrKMjY0NnLWsVivquma1WjEej7/IT/qALwX+5Hf/Or7tO/5HtuTorJcyYMCAuxzBB9R8hby1wXW3yQdYDSqNAe9K3GdEI9zxfS0JPCiclEip8TIgpAOpkFojvI0ZFlKR5TltqzFNy2K1IFM6FoPO0baWWGMLXKenSJapcTe8pVqtODw8YDrdQGcKbwNZpiiKPO582xYho2g9ahJqfPB4F/DOoVS05U3WuVLEsamiLNFaIRBdoSuQhcbbllVdI6WiLEf4AHUD2q/lXAgJIirkE/lY7xbYrouQ5Rm5jGGEviMR9g7dSCrQYW3kqdOdeO/RUiKEPFXg39nVSOQhPZ70DkmvkMjU+vPT9/WRrESOUoDiugUu8HnEoyea0K+3qupTOo/Y1cnZ3NxASsVsNmOxWADh87oa8Tg2ksIQzQWsMRjTQksMOhSwMZmysbnJeDTCeUfbWfe+9tprlEXBxsYGIgSauqZumiGw7y7FQ//Nj3D7dzq2humHAQMG/HwIHrGsKPYlL7XnMOWLg/PUgHcl7hKi0YW+dbXmnYLg9QJy7SVv+z1Ojn0yYnMypw/eB5x0WBxBKESWE4THWYkXEpFptCoIS0HrDEor8jzDOkPbWLwJgAQCSmhG5RgBeO9oTYtpa46ODrGmRSuQMiC1IASBkAEhA5LoBmWtpG0amsZinaVtDa2NGg1CLL7rqsF7gXOSPBsThOisdgXWOoQEnUmou+BBp9B5RhYUQWRQFlF/4GLwnnWe4DuXJecIAgQCHzwIMM4ilERLiSdgvcc7d6qzEFI3QwqCSGRD4kV02jDG9uNG60Tjzs7Guv4i6RvW8zzSyFEiEHd2NtbJw3oHZd2eN75HvO/eW0KA8XjC5uZWL9z23lLXLSAoirI7hsW5UZeZsUGWKeq6wVrThTQuWS4X5HlGluUgJaa1tE2LdSbqgQSYVUXrHK1xBKmQKgM8pmlQSmPqhsPb++xnGaPxiLZpaU1LtVy93Q//gC8Tvv07/yP+5V/6S2e9jAEDBtwDCHXD6Fbgc9VlzOZzZ72cAQO+JLhLiMYJ7hyb+bnw5hFvP+fRT17bZWmcjPqkwlejVRSBu2DxIe7IS6XxweJcG9O5tYIuddtZ248yKZWR57rb9XdY29K2UWwevCcEhxBxPMe0bReoF9ejteqLZOcsPji00sggAI9pa6QEJfOugFYQoG0sbWuBjCyXyETOJF23JKOuG4xpUVqilcAHGc8/SJAB7zuttji5DwKBkAIZJEHEx633ELoU7kQUfOg1Lmn0TKiuUwEEogYmdWbuFGPH+3HSlUiPrZOFdT3Kna8BTmk3ElIHYl0cfspdrCMa8XMQaFuD1m2XeyLROovk0zmapqVtDVLG/BVjok4jJYefO7eHUicdjrquqeqaqm7IyxKlNeMuN6Oua5omZq4YY5m7BdY5lqsVwTtMXTOdTinLkvFoRF3XHB0exfRyddf9lR2whuL7fhoXBlHngAEDfh6EQGgaJjccnz26xPz80A0d8O7EULVw2mJVKYXzCukV2K7glgKtM4xr+l31LMuQARQSY1OORcNkovuRHNcF4Z0UujG8T+voSFTVNWVxQnbWd92NaftAwDS/H4lAsrvNMK3HO4u1hrqu8N4hZIFSoh9Z0lqSFzlNG3fbVabRWd6NEYVO0JzhrCcoAeokGV1KiZACH0IkGiF0AnKLFBIpACmx4WRUqrugILtxqeA7MXq8jsGeZEbcmdj9ZuLw9d+nn9e7H3fa06ZuRdLJpOetB/+d7np4hDgJ9UsJ5HBCXpRS/fgUHXVKeonRaMRkMsE5x2g04sKFCzzwwAPM53Nef+N19vcPok1tZ1GcxP1pRCvd8+RCFbzHNvHYW1tbbG1t9W5mEJ2uUnr5gLsTi9CwJQadxoABA35uBGMpb9W8eGuXg8c1l4dNigHvQgxEg5Ngud65KJzkhsffS0TaGe80GFJqUIFgHda6PpVbykgcmrbBmKbPqEi762VRRtcnF0XNRppedLxu1ZoK4zRmpJRiPBoxGo9RssCaQKMdRjqEAGNNHMvBkWWKEDxKapAnXQZjDHXdUArRjwxFN6jYlVBKIqSK3Qfv+sdEZ0vrvO+6Eg5kQIqOKKwV8QBSiNjDWBOLSyljhySTn3eOb2Z1u07+kuYj/S4RlTtTxZMG406h+J3HTtczisVjN2s9V+NOW911oXkkMiePGWOYz+cnaemdyF8pxeXLl9nY2GT/8IhFZ2/ctu2prkxKjV8X3Gd5Tts0zGYzsixje3ubsix7C9230u0bcEbwjt/0sV/DP/rp7z/rlQwYMOAuR3AOdbDEXT/PG3aL92WDIHzAuw/3PdFIRd96zoL3Huc9ohOAe+8IITozhXCSIC6EOHFegt61qKpWLJYLvHeUZYnWUbeh+4RuSVVVCCFPBcAl+1alVC94Tu+jtWYymVKUYwiSJmvJ8qxb94m9qhAQQrTCzbQk+NOFadu2cVRLps6LQirVPS9qHpwQSCGQOj4m+8JbYF1X6DuHk13R3pGTNE4lgNATgY6oiW4MK1NrTlf+1L24s6Nx52hU+nMq+O8MEFx3ygJOHX89ayNd0zzPUUp3pMv3blLJKrht296x6uTYofs8nOhA1onPuujceY/Smt3dXZTWzGYzqqo65VKVUs9Tx0QAitDbGadRq7Ise2vk1N0YMGDAgAH3MJIg/LbkdbODHy0YEsIHvNtw3xONO0PcoCtQA507ksa5KJh2zq9ZtEaNhBAeJWPGg/eeuqmoqhXL5RIIWGtip6DrbJTlCBA0TYtzHudMP6+f53kvcs7z/NROvpQSJTRKKqyNBXaRZ0gRhd9N07Iuck96Ex88YS0t2/por5rlXaGtdXSd6ggUkRsQva0EKukjhEBxYukaOiG4lxLVESznXKfPUP11Wr/OwZ90QdI613UVdwr+14v2ddF36g7d2a1Y70rdmanxZqTGWovWWT8yleyE122CE9lIHQ8pU7r6CdGRUvZuU2mEKnUpAiCU/jyxe7LebZrm9H0WghB875TlnKOu6zXtzkn3bMDdiVDX/Lrn/j3+7hP/7KyXMmDAgLscwVpUAytf4EL4hYhPBwy4q3HXEI00qnTnuMvP9fx36m/kegGYxmo8HokiAN5FETPInlQ4IwkiWbXGcDdrLVW16jsU4Fmtll34W9G5Jwna1iKEIoRYNLZt2xe+iVSkkZo0OhQ1F5Kulo/EJo8C8qpqaNvQh9ppnXejQRqC7bQamrIUVE1N2xqUPhFCh856NQrYPUoKlBQIAhLwUhC6MSslJUpJQvDg4+6+CvpUQR+c67M1QCRPMQB8iJ2iN7vuSa9wZxDfnQLwdetb+LkNBO4cofp84iE68kCvxVitVqfITeqgxPc7EZQnspHWY61lPp+zWq1OgvwA6wPG2l6HkdaQ3u8UwRUCKU46OKm75ZxjsVj0KeUD7l64o2OWf/TD8HfPeiUDBgy462EtqoaVH4JYB7w7cZcQjVRwfuGE6P6ZfdEoEO8Az0hF43pytHMOLFjraFNxSOwIeJGBz2nrGiUlQmd47boMCkMSCwsRuk5D04mAC7wPSBm7IVmW98LqVKRWVdWLklMRelJ8K4TUOOc7UXmOEArnYmhgfM90HhKt8lMFrdIaKRXWO0y38940TXTX8gGCQAqJIKB1FMR77xEEFILW275wliLqMHr7W++RKnYZnPfxOsgT16lEOqSWdLrxz9MarBfsyco2FdSpg5E+D3dqO9YJy/q42fpx11PA122T15+TZRkATdP09219XCsK2CVSfj5JSM9LmR/Q6S+UwhiL7d4jvS4lhK+TqNQVkloh1joY6ZxSl2XQaAwYMGDAuwAhgHPoOjB3JR7/879mwIB7DHcJ0TjBmwmC4fPHarr+xzv+/qnAbZqWqq5oW4NAoFSGlOCEw7WyE4hrpPZ4nWOt64gBKAVSxvyMOPcfA/SapkEgkUKRZzkQdQHR5tRQ1zWj0eiUKHl9tCi6VTU4ZyjLEqUUTZOck+h1GiBgLBDkfXGrtcK7WExn1uJ8wHQp1IGAkrqz0g1IAVpCLPM7AibABRdzMkJAigBSIjjdVQA6u1vfEw0hU//pdBdifcwpkYH0eHJlSl2e9Od10vBmuJN0rBMYOOkUpGR0cH2HqF//mlYnyzKKoug7T97bfgwtuT/d+T6p6+CcQ0iJ63yDkxPWFxKzK6UIQuCshTWimToqIQSKomAymbzNT/WAAQMGDLgbEZxHtmDCoM0Y8O7EXUM01sdrvtxY3922XSaG8w4hJHleooRHSU+wAe9UJAp5iQstzrVRDN6RjCzT/aiLlHGW3hjLcrGkNS1axRA3KTV5XvZjU1FEXp1yOUojPidFbNRSOBc6ciEBj5SCvMg6kXnLcrEieIGYCrIsjlMFD1Y4suApAzRtizEOZxt8gCKXZOokR0NKEcPCu25KlmlIo12A1BqEIjgRMzjW9RJ3XN/+sa7r8nm/v2OHft3Wd10/s/7z5xPPz7+Xd45MpWOcpH/b3nVqveORjmGt7cXh0ZZYs1pF96g4ilb2CeDr3YlIAJtOoxH646fxqzQal8ao7hwTE6i+u9E0Tf/83d1dpIxGAgMGDBgw4F0A75E20Pi7phwbMOAdxV3yyf58Ue/PV1C+Y+8cTge5pWJWSU1ZagSOECzB1rTO42w3ry/iTrVds0cVBmSQ6Ewh25QPIVitVsyO5wghKYqCEALj8YS8UGid9QX1uk1qdKvSWGv7cajgQUqFVrrb5W5p2wYhAmWZU+SKEFYs5hVVVXdi7xIpY5aGlA4fVe5Re+LbPksiXmtQorNyDSA6NyYpJUKJU/2jeGaCIARerLlFpWspu8J+TdwWOhF1uu7r39c1C35tzGh9jGrdQvYLYf05b9YRu/P1Kbm8H1uSshflt23bdxOSM1TMwRA9CUhBjVLGe7sudO9OOpKXOz7XwKnxq153IgR5NyKVyE9ynqrrms3NTXZ3d9/ux3zAlxuf+Fk+9n/7ffzkH//zZ72SAQMG3M0IAWnB+qGjMeDdibuDaIT4n1PjN1/mOfRU2CUrWaFCnJf0sai0ProSWedoG4OzLW3Tgg/oTGM5yZ2Iu9ZJyKtjCrg1EGLxaYzr8ioyhOBUzkbaRU/i8KThSNa5KbAP4XDOxOMSx6qkyGhbT10ZnEt2twGlFUVRIoTqiIbEOk+W+WjP2xXLyV3KeR9zNAiojjAE5/DeQWftGlLBHlR0oOruV7TK9fF97ryXoRuruoNkvJlmYt1hav3+0BXjX4hs3NnBSF9KnbRr1kevYvfoxIUqYV2EncT9SRyexqzWyc+67iJ1xay18bpIF9297nhNIi+nxsgAJ06I1/q9r6qqNx0YcJcjBLJq0NIMGDDg54H3KBM7Gu4MJzsGDPhS4e4gGh1616I7CtAv8Ox37H3fbKdZhID1AS9Ev3svZNxhF1LStoa2bciURhLJSF4UBO86C1JL6QPWetrWMioFq1XV2dAKmrpG4MhyjZTxHeLMv0BKseZGBaPRKArJxUmehZBR3J1WFxXXoJQkyzQh2ChCdpYsz9BZQaY0Tmts72gk0UrirIjrtg6pA87Z6A6Vwv66sD6RRN2is8INJ7ki62QhCtg7QhLWtBoirfXNx6XSvV53YfIhEHxciwyyk9qfununPhNSSjrBSjxGd19tGlsSoksrj1a7Yq2oT+/tnENr3Tt/3ZmRIaXqiUHq0MDp4MB14hR86DtT6flSyn506lRgJPS6nUiyTkIIky4nJZcPGDBgwIB7G8F5soXj9dUWTRjE4APefbg7iIaI/xHQuyzdWYiujze90+NUaVxnfXyHtIPuXS8GVzrD2wwpMwLR3tYLAE8QAq1LAJrWI5VFa9CZI8sKQhCopo0z9wicknivscYhlaIoRjSNIQTZibrr7s8BpTK8A60loQuBC8EjUORZiRQWQZfuLQVFmUHwGBewbcB4g84bxiMR80C8RYqAkqCVwHVp5tYZhMowIeADZCq6Jrmu4Peh64ggEFICEtu6GGTICdFQ8iQZHH9iWxyL8xMicee42ptlXUCIjSAhQMk4gtQdr+M6KUGxe484tkXqFMQjdONg8XmJcERrX/rP3TrRWScBp/UdmjzP+sdS7kkiEGncq3fQAnzoUtXvCBh8M9cq0Z2OtQ4hfNfVgLY1LBbLtSyWAQMGDBjwboBeGG4spsx9YE96lJA//4sGDLhHcHcQjY5kJBnxOpG4cxTmS63ZOCl+HQSPD76rZmUcEwoxqE9neT9eFLxD6M4WV4ALEiE0UoPWhnIUC8M8z/FpFEpFYXdVN5RFwXS6QZ1FVyrnHNY4tIquVd4FbHBIeULAnI3ZHpkuUFJjbSp2A5kSuExifMA4j7cGIRY47wBP8A6tBHiBl3EtrhN+Gw9BSIKkI1Iy3hchCXSkIkQL3L47wWn9gRSyJ4zdE75gA+p0F+SkGA+JAaR/cKWM+RyAkF1noyMOvcJcRIKTAgcDcVotrI1gueBxLrpMZVohO4K2jnUBfrIbBrpQP0MInvF43IvBk4YikY5TuhMRSY2CfhQrjU/BSQdlndRITghZCK67eJa6boA5eT4kgw8YMGDAuwLBo1aGo+MJt9yIh3QYssEHvKtwlxCNL4y3Nkb1xeHUmEsqmOMj0AmiYwHpQaYRqmgH632cw48dAXfiLqQUGoHWGVq73jlITSbxvYSIIW51Q6YzsizrcxtSIZrOOY3RrI/qJFejlCB9In7uugsyjlL5EHUBq8qDCJRFhtYq7ugHcNahpUIogemOr7RGhpNdfNF1AGQ3KuV997ykR+m6BUlDsW4tlVZ0MuF0ItReJxXryd8n9zz+J72/cw4f4j/Cd1rDrou5e5Kx1jHouyqcWBhH21/Z2+/eGcCXOhtZlq1lWNCLwEejEaPRqM9e8d739yXdN6Xj+FN6j/XP2HoH50RMH8nR+ucxaTKS9mPAgAEDBryLYD1+kXHTbWDCEZkYqMaAdw/ueqKxjlMuQp0m4UuFNK0D4JzHddaucee5C5VTihBOZu+jNiPuagtOk6TkSqTHYwihL0hTsXky/y97IXL6c/q5aUxf0FZV1f+cdsqB3qmqH0/quwWxYHWZIpNxNx8fsMYRMoEU8Rw9p4v3k3OW/RrjmgVSdgTBB+iChoKPY2T9xVsr9gFEOK3DuHN06M4MkTT+dCcZXB9DuvN4b2YkcKe1LEQtRHCeIiv6x9a1Jnd+pWRw76NAPIXzpc5GTIDPqaqKpmlojUGFEIX/7mRE7E7x+2mELthRniJf6dxOEsoHDBgwYMA9D6VAgqwkt+wmTbhNEfQwPjXgXYN7gmisF2drv+WdYBqpaF3fIZdSIroCOlqyWoy1UZTcuQURCkQ3hmTFHW5DzoFfs8KVkjwvyLMcJQR1XXdjVqIfzfHe965FcDLrv+4+ZIzt7V7TCM66gF5rHXfRlYrjQCEV/ALwnYOSQSlBrmNXRqmo73A4lA94TkbU1sd61tcULV0dznmUjAntvbaGTtitVX+X1keqQid2OzVq1b32zqI6JYqvazruvF93FuN3HrvXjaxdt/Q65xzeOiQn5COd57oDVro3SXuRuk3GmP5r3SEqy7JI6tqWtmlAxmT2dMz0+uQmdUqbIkQka2vnnK57Ih8D0bg3sPMPP8NjX/N7eOHb/uJZL2XAgAF3I4RAdAm/qha81u6yDM8xZRifGvDuwT1BNBJ6spFm89+hY97pOtVrBoLrAvLibj8EMi1iWF3I8N5gWhlHlLynruvekjZ4jzNx5EUphexIke8eTyQhuR01TUNd130w3HpX4WS3X5Fl6pSlaiqEkytSOh4CpJIoBcZG9yfn0viNIJRFdJXSCinjddCZBiStNX1RD/E1icSkMS6X7G55ExvaEFD9P5Mn3QUfPMHxeYVyIkvrhEGIGBgIyfHq5Fqt27um190p2r6zq5EK9DQ2JWXUyITQdTbWnp/yMNJnInWeYhp4jnOW1WrVdzLaNor814MG03qdNZGgvkkH5s7P3cn1ODm3dKz1TtdoNIjB7wW42Yzy1lAuDBgw4AtASFCKoCWqErxS7XK8pdiVbhifGvCugQhvNmcyYMCAAQMGDBgwYMCAAV8EhhmMAQMGDBgwYMCAAQMGvOMYiMaAAQMGDBgwYMCAAQPecQxEY8CAAQMGDBgwYMCAAe84BqIxYMCAAQMGDBgwYMCAdxwD0RgwYMCAAQMGDBgwYMA7joFoDBgwYMCAAQMGDBgw4B3HQDQGDBgwYMCAAQMGDBjwjmMgGgMGDBgwYMCAAQMGDHjHMRCNAQMGDBgwYMCAAQMGvOP4/wMMRZGLEkohGQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "batch = next(iter(test_dataloader))\n", + "with torch.inference_mode():\n", + " model.eval()\n", + " logits = model(batch[\"image\"])\n", + "pr_masks = logits.sigmoid()\n", + "for idx, (image, gt_mask, pr_mask) in enumerate(\n", + " zip(batch[\"image\"], batch[\"mask\"], pr_masks)\n", + "):\n", + " if idx <= 4:\n", + " plt.figure(figsize=(10, 5))\n", + " plt.subplot(1, 3, 1)\n", + " plt.imshow(image.numpy().transpose(1, 2, 0))\n", + " plt.title(\"Image\")\n", + " plt.axis(\"off\")\n", + "\n", + " plt.subplot(1, 3, 2)\n", + " plt.imshow(gt_mask.numpy().squeeze())\n", + " plt.title(\"Ground truth\")\n", + " plt.axis(\"off\")\n", + "\n", + " plt.subplot(1, 3, 3)\n", + " plt.imshow(pr_mask.numpy().squeeze())\n", + " plt.title(\"Prediction\")\n", + " plt.axis(\"off\")\n", + " plt.show()\n", + " else:\n", + " break" ] - }, - "metadata": {}, - "output_type": "display_data" } - ], - "source": [ - "batch = next(iter(test_dataloader))\n", - "with torch.no_grad():\n", - " model.eval()\n", - " logits = model(batch[\"image\"])\n", - "pr_masks = logits.sigmoid()\n", - "for idx, (image, gt_mask, pr_mask) in enumerate(\n", - " zip(batch[\"image\"], batch[\"mask\"], pr_masks)\n", - "):\n", - " if idx <= 4:\n", - " plt.figure(figsize=(10, 5))\n", - " plt.subplot(1, 3, 1)\n", - " plt.imshow(image.numpy().transpose(1, 2, 0))\n", - " plt.title(\"Image\")\n", - " plt.axis(\"off\")\n", - "\n", - " plt.subplot(1, 3, 2)\n", - " plt.imshow(gt_mask.numpy().squeeze())\n", - " plt.title(\"Ground truth\")\n", - " plt.axis(\"off\")\n", - "\n", - " plt.subplot(1, 3, 3)\n", - " plt.imshow(pr_mask.numpy().squeeze())\n", - " plt.title(\"Prediction\")\n", - " plt.axis(\"off\")\n", - " plt.show()\n", - " else:\n", - " break" - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "collapsed_sections": [], - "name": "Binary segmentation intro", - "provenance": [] - }, - "kaggle": { - "accelerator": "gpu", - "dataSources": [], - "dockerImageVersionId": 30746, - "isGpuEnabled": true, - "isInternetEnabled": true, - "language": "python", - "sourceType": "notebook" - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.10.13" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "015ac678fbc34d0487adcf4a13141093": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_ac83a24e8c344d3e8db540fb3ba7df91", - "max": 23, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c1e8a552913947f9af8c689780a12040", - "value": 23 - } - }, - "04597b801c0448aa82932cc9e1de8497": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0755cdb5cd1c407d884776041d2bde53": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0d6bbbc2572444389843bbb8be8c7514": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "10d34c13a61c4c78b9a44a47c1b458be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_568b42891603442393c2ef2c9a3f6379", - "IPY_MODEL_5e5af621d68a4ae0ba12ba88f55b2ce2", - "IPY_MODEL_a839585db49b4830ab2451c0fd2283ac" - ], - "layout": "IPY_MODEL_1db747a94eb24978b2cb6b6d9eb47b1e" - } - }, - "113c6804d48948de91db8dccaee5f3c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "123a2da1ab854cedb55041b51bcfb49d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1637acf05f804458b9f050bd26ad9d95": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "16dc0ce977b54cd89a5e2040e01b87e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_833a609ae2314f01b9ccd119185668cd", - "placeholder": "​", - "style": "IPY_MODEL_1637acf05f804458b9f050bd26ad9d95", - "value": "Validating: 100%" - } - }, - "1a406ddab2d4411988daedc8cab1e48e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c73170a12ebe438eace13632025620d7", - "placeholder": "​", - "style": "IPY_MODEL_42a2be9503214c348ccbacee61002374", - "value": " 23/23 [00:05<00:00, 4.52it/s]" - } - }, - "1af93e16f75841cd9f7fd704ad246105": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "1b901ffa931a4f5ba5ad260bfaf800b8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": "inline-flex", - "flex": null, - "flex_flow": "row wrap", - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "100%" - } - }, - "1db747a94eb24978b2cb6b6d9eb47b1e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": "inline-flex", - "flex": null, - "flex_flow": "row wrap", - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "100%" - } - }, - "1ef229e03da74f58b3286d99f6b7c7b4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "23a697fd741841dbb4ec9bf18b03dad8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16dc0ce977b54cd89a5e2040e01b87e1", - "IPY_MODEL_5d6e7a667bf84c93bb29c999a581c215", - "IPY_MODEL_f589cc5dee8d4bd482d66b5816809b23" - ], - "layout": "IPY_MODEL_b42ad7fa1b924406b4bdccebed1a361e" - } - }, - "2403608729434acb9c58cf6475e86e1d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": "inline-flex", - "flex": null, - "flex_flow": "row wrap", - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "100%" - } - }, - "26d5ff0e2b0b419a94eb5a399914f836": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "27d19f60c6034141864d42a34806943e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2a6738195b75400fa216f071568f4fec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "2c9620e76ec9495cb35c2389022c0e79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_c0d16c48fbd0443ca387dfbb06d10c8c", - "max": 23, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_b0c7136f295f4b91b8469c8ee7a8eb0f", - "value": 23 - } - }, - "2d81babd2b1f4e3cb46bb25e94e79364": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ea66192d0bef4e11961c3c597c2db280", - "IPY_MODEL_d6627fd6b67c4d4887fd3d8f5ad0e7b1", - "IPY_MODEL_7d3f59c4ec1c4dc4a7c6f3a71880c6bf" - ], - "layout": "IPY_MODEL_33d6bb24f226488aa7387cb4f8e21bb3" - } - }, - "2e2e7e754cbe4496aeb28b6c558a85bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bddac70004bb456ab0b0a5dffde6b5d8", - "IPY_MODEL_8cda8a2b77594fcab3ba2656e78b7bea", - "IPY_MODEL_930cd76dd9994130b45313df72f4b47d" - ], - "layout": "IPY_MODEL_30df5a4ab0ab47b19f6fdd40c237dd7d" - } - }, - "2fa4f3b6d5e54cc6965de2eb7918a458": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_af2e22dbd1cd4204884909388972aeff", - "IPY_MODEL_8feace7bbe2b4677bda991f85751e773", - "IPY_MODEL_c7a428bf4c9e4e1ea7eb150b7ced9992" - ], - "layout": "IPY_MODEL_9df0c060726d4c12945b546531611e3f" - } - }, - "30df5a4ab0ab47b19f6fdd40c237dd7d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": "inline-flex", - "flex": null, - "flex_flow": "row wrap", - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "100%" - } - }, - "31e14426a8714110bfdaad0ed8ddd5ec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "33d6bb24f226488aa7387cb4f8e21bb3": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": "inline-flex", - "flex": null, - "flex_flow": "row wrap", - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "100%" - } - }, - "3a0dc64e7fcf4c6fa2bc61e8cf9b786a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8a92efa8552149db9ec07c0fc4cdda00", - "IPY_MODEL_015ac678fbc34d0487adcf4a13141093", - "IPY_MODEL_56dcf0116eee463ea469d195bd91412f" - ], - "layout": "IPY_MODEL_1b901ffa931a4f5ba5ad260bfaf800b8" - } - }, - "42a2be9503214c348ccbacee61002374": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4344d4e80c644fe29b167b1e496fe2ca": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4a11b2a0e4fa41a6b107f30765c9325e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": "2", - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4e8040bbfa61420582f59d387f6c8699": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": "2", - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "52c66a402c804246bfd2f02e117309b7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "53383c759b4d4f08acd7eebbe17bed6e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5390e098d68e4968bdc44ede178566f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9985158b22b64e1f81a53f7aef3f34f5", - "placeholder": "​", - "style": "IPY_MODEL_1af93e16f75841cd9f7fd704ad246105", - "value": " 0/2 [00:01<?, ?it/s]" - } - }, - "544303839c8048f9855c875e99a9d3e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "568b42891603442393c2ef2c9a3f6379": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9edbe35dbcfd485aa1cfae318fe45cb9", - "placeholder": "​", - "style": "IPY_MODEL_b7a45966adfe448381fdba89bfdc7a04", - "value": "Testing: 100%" - } - }, - "56dcf0116eee463ea469d195bd91412f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_88e345abab924c45aa19361198aee3ad", - "placeholder": "​", - "style": "IPY_MODEL_af06f7a39cef4fd385de9d35ae6bb833", - "value": " 23/23 [00:06<00:00, 3.81it/s]" - } - }, - "5a125db1e3634166a6dc45f88bb580c1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5d6e7a667bf84c93bb29c999a581c215": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4e8040bbfa61420582f59d387f6c8699", - "max": 23, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_bcf949866d084b16b0c1866238f2043d", - "value": 23 - } - }, - "5e5af621d68a4ae0ba12ba88f55b2ce2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a63d84f6c0814bd3bf4d4d34341cae75", - "max": 1, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_26d5ff0e2b0b419a94eb5a399914f836", - "value": 1 - } - }, - "60d8da9ec46941e7b55e976912eb303e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "630a0923ff1442368ac2fc0a6cad0f4c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6b6b31f13c7f40c792d4ff20aa39fd3e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_1ef229e03da74f58b3286d99f6b7c7b4", - "placeholder": "​", - "style": "IPY_MODEL_71cb4d064cea4c9dbc0f69cd45d75af1", - "value": "Validating: 100%" - } - }, - "71cb4d064cea4c9dbc0f69cd45d75af1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "74e95c20748e43918023da38ccf2e219": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": "2", - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "767f49ccefd34ff1a0271fab7340faf6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6b6b31f13c7f40c792d4ff20aa39fd3e", - "IPY_MODEL_efde83db1fe0482980595ff9bd0da263", - "IPY_MODEL_fdf017e37123438dafd2e6055cef4e4a" - ], - "layout": "IPY_MODEL_989a4037b7b5497084c4b53d366bc0ae" - } - }, - "798d27d1fb704846afda65b4c2e08fbd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "7d3f59c4ec1c4dc4a7c6f3a71880c6bf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_db78c99923404561afda480f1b25ea8b", - "placeholder": "​", - "style": "IPY_MODEL_92553b92e8a64d098489b6847c8a001a", - "value": " 23/23 [00:06<00:00, 3.43it/s]" - } - }, - "80c8770faae54861bfd42f482a3ef2f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_5a125db1e3634166a6dc45f88bb580c1", - "placeholder": "​", - "style": "IPY_MODEL_bebe4a99c11e48e59de8322f409525a8", - "value": "Validating: 100%" - } - }, - "833a609ae2314f01b9ccd119185668cd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "88e345abab924c45aa19361198aee3ad": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "8a92efa8552149db9ec07c0fc4cdda00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_31e14426a8714110bfdaad0ed8ddd5ec", - "placeholder": "​", - "style": "IPY_MODEL_123a2da1ab854cedb55041b51bcfb49d", - "value": "Validating: 100%" - } - }, - "8c970db37f114f5b8675a229da815578": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8cda8a2b77594fcab3ba2656e78b7bea": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_74e95c20748e43918023da38ccf2e219", - "max": 23, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_27d19f60c6034141864d42a34806943e", - "value": 23 - } - }, - "8feace7bbe2b4677bda991f85751e773": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bd87b52db68c4757b73557c6de2e5b32", - "max": 230, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d6bbbc2572444389843bbb8be8c7514", - "value": 230 - } - }, - "913b6ebf13a44fc7841112fd0df3b89e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "92553b92e8a64d098489b6847c8a001a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "930cd76dd9994130b45313df72f4b47d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d015f7dc25414cd8bc8ea547ea8d4e2b", - "placeholder": "​", - "style": "IPY_MODEL_913b6ebf13a44fc7841112fd0df3b89e", - "value": " 23/23 [00:06<00:00, 3.62it/s]" - } - }, - "988ccaf3620e48e084d7033f6d52e9b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_80c8770faae54861bfd42f482a3ef2f0", - "IPY_MODEL_2c9620e76ec9495cb35c2389022c0e79", - "IPY_MODEL_1a406ddab2d4411988daedc8cab1e48e" - ], - "layout": "IPY_MODEL_9b4c74e210814a1cb41673ec7c51b3ec" - } - }, - "989a4037b7b5497084c4b53d366bc0ae": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": "inline-flex", - "flex": null, - "flex_flow": "row wrap", - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "100%" - } - }, - "9985158b22b64e1f81a53f7aef3f34f5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "9b4c74e210814a1cb41673ec7c51b3ec": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": "inline-flex", - "flex": null, - "flex_flow": "row wrap", - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "100%" - } - }, - "9df0c060726d4c12945b546531611e3f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": "inline-flex", - "flex": null, - "flex_flow": "row wrap", - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "100%" - } - }, - "9edbe35dbcfd485aa1cfae318fe45cb9": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a63d84f6c0814bd3bf4d4d34341cae75": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": "2", - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a839585db49b4830ab2451c0fd2283ac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_630a0923ff1442368ac2fc0a6cad0f4c", - "placeholder": "​", - "style": "IPY_MODEL_2a6738195b75400fa216f071568f4fec", - "value": " 230/230 [00:48<00:00, 4.81it/s]" - } - }, - "ab999a80bae240a384a06aff5eabf96a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ac83a24e8c344d3e8db540fb3ba7df91": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": "2", - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "ae12199263564121a200a304ec47f22b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "af06f7a39cef4fd385de9d35ae6bb833": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "af2e22dbd1cd4204884909388972aeff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_798d27d1fb704846afda65b4c2e08fbd", - "placeholder": "​", - "style": "IPY_MODEL_df61cb61b4024508ae71c535aa0d85ab", - "value": "Epoch 4: 100%" - } - }, - "b0c7136f295f4b91b8469c8ee7a8eb0f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b42ad7fa1b924406b4bdccebed1a361e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": "inline-flex", - "flex": null, - "flex_flow": "row wrap", - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "100%" - } - }, - "b445e9b8567443ea9842cef27a7eb710": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "danger", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b4fc672cc58847318f86f23884685caf", - "max": 2, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_04597b801c0448aa82932cc9e1de8497", - "value": 0 - } - }, - "b4fc672cc58847318f86f23884685caf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": "2", - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b7a45966adfe448381fdba89bfdc7a04": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bbed360239d24f0f89ba4151461b9dc4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bcf949866d084b16b0c1866238f2043d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bd87b52db68c4757b73557c6de2e5b32": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": "2", - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bddac70004bb456ab0b0a5dffde6b5d8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bbed360239d24f0f89ba4151461b9dc4", - "placeholder": "​", - "style": "IPY_MODEL_113c6804d48948de91db8dccaee5f3c4", - "value": "Validating: 100%" - } - }, - "bebe4a99c11e48e59de8322f409525a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "c0d16c48fbd0443ca387dfbb06d10c8c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": "2", - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c1e8a552913947f9af8c689780a12040": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c6ede5d8eae14f2d8b97215ed06bc0d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d6d1162fba7d4b0192a58ab92b55084c", - "IPY_MODEL_b445e9b8567443ea9842cef27a7eb710", - "IPY_MODEL_5390e098d68e4968bdc44ede178566f6" - ], - "layout": "IPY_MODEL_2403608729434acb9c58cf6475e86e1d" - } - }, - "c73170a12ebe438eace13632025620d7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c7a428bf4c9e4e1ea7eb150b7ced9992": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_cf0ded613ab44541b98baec5df5b95f7", - "placeholder": "​", - "style": "IPY_MODEL_4344d4e80c644fe29b167b1e496fe2ca", - "value": " 230/230 [02:28<00:00, 1.55it/s, loss=0.0364, v_num=4, valid_per_image_iou=0.901, valid_dataset_iou=0.909, train_per_image_iou=0.920, train_dataset_iou=0.929]" - } - }, - "cf0ded613ab44541b98baec5df5b95f7": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d015f7dc25414cd8bc8ea547ea8d4e2b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d12b8b8ba86646f6a6937ace78447153": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": "2", - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d6627fd6b67c4d4887fd3d8f5ad0e7b1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_4a11b2a0e4fa41a6b107f30765c9325e", - "max": 23, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_544303839c8048f9855c875e99a9d3e4", - "value": 23 - } - }, - "d6d1162fba7d4b0192a58ab92b55084c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0755cdb5cd1c407d884776041d2bde53", - "placeholder": "​", - "style": "IPY_MODEL_e65aba7b01204055aebcacfaf43a297d", - "value": "Validation sanity check: 0%" - } - }, - "db78c99923404561afda480f1b25ea8b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "deceb83b61e445528e3a46bf4fd2890c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "df61cb61b4024508ae71c535aa0d85ab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e65aba7b01204055aebcacfaf43a297d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "ea66192d0bef4e11961c3c597c2db280": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_53383c759b4d4f08acd7eebbe17bed6e", - "placeholder": "​", - "style": "IPY_MODEL_ae12199263564121a200a304ec47f22b", - "value": "Validating: 100%" - } - }, - "efde83db1fe0482980595ff9bd0da263": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_d12b8b8ba86646f6a6937ace78447153", - "max": 23, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_8c970db37f114f5b8675a229da815578", - "value": 23 - } - }, - "f589cc5dee8d4bd482d66b5816809b23": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_52c66a402c804246bfd2f02e117309b7", - "placeholder": "​", - "style": "IPY_MODEL_60d8da9ec46941e7b55e976912eb303e", - "value": " 23/23 [00:05<00:00, 4.44it/s]" - } - }, - "fdf017e37123438dafd2e6055cef4e4a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_deceb83b61e445528e3a46bf4fd2890c", - "placeholder": "​", - "style": "IPY_MODEL_ab999a80bae240a384a06aff5eabf96a", - "value": " 23/23 [00:06<00:00, 3.47it/s]" - } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Binary segmentation intro", + "provenance": [] + }, + "kaggle": { + "accelerator": "gpu", + "dataSources": [], + "dockerImageVersionId": 30746, + "isGpuEnabled": true, + "isInternetEnabled": true, + "language": "python", + "sourceType": "notebook" + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" } - } - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/examples/camvid_segmentation_multiclass.ipynb b/examples/camvid_segmentation_multiclass.ipynb index c918167b..43763df8 100644 --- a/examples/camvid_segmentation_multiclass.ipynb +++ b/examples/camvid_segmentation_multiclass.ipynb @@ -1683,7 +1683,7 @@ "images, masks = next(iter(test_loader))\n", "\n", "# Switch the model to evaluation mode\n", - "with torch.no_grad():\n", + "with torch.inference_mode():\n", " model.eval()\n", " logits = model(images) # Get raw logits from the model\n", "\n", diff --git a/examples/cars segmentation (camvid).ipynb b/examples/cars segmentation (camvid).ipynb index 00c22b31..a9b41a68 100644 --- a/examples/cars segmentation (camvid).ipynb +++ b/examples/cars segmentation (camvid).ipynb @@ -1209,7 +1209,7 @@ ], "source": [ "images, masks = next(iter(test_loader))\n", - "with torch.no_grad():\n", + "with torch.inference_mode():\n", " model.eval()\n", " logits = model(images)\n", "pr_masks = logits.sigmoid()\n", diff --git a/examples/convert_to_onnx.ipynb b/examples/convert_to_onnx.ipynb index abd063a0..fc34d9b5 100644 --- a/examples/convert_to_onnx.ipynb +++ b/examples/convert_to_onnx.ipynb @@ -189,7 +189,7 @@ ], "source": [ "# compute PyTorch output prediction\n", - "with torch.no_grad():\n", + "with torch.inference_mode():\n", " torch_out = model(sample)\n", "\n", "# compare ONNX Runtime and PyTorch results\n", diff --git a/examples/dpt_inference_pretrained.ipynb b/examples/dpt_inference_pretrained.ipynb new file mode 100644 index 00000000..e7365f3b --- /dev/null +++ b/examples/dpt_inference_pretrained.ipynb @@ -0,0 +1,138 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/dpt_inference_pretrained.ipynb)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# make sure you have the latest version of the libraries\n", + "!pip install -U segmentation-models-pytorch\n", + "!pip install albumentations matplotlib requests pillow" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import requests\n", + "import numpy as np\n", + "import albumentations as A\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import torch\n", + "import segmentation_models_pytorch as smp\n", + "\n", + "from PIL import Image" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading weights from local directory\n" + ] + } + ], + "source": [ + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "# More checkpoints can be found here:\n", + "checkpoint = \"smp-hub/dpt-large-ade20k\"\n", + "\n", + "# Load pretrained model and preprocessing function\n", + "model = smp.from_pretrained(checkpoint).eval().to(device)\n", + "preprocessing = A.Compose.from_pretrained(checkpoint)\n", + "\n", + "# Load image\n", + "url = \"https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg\"\n", + "image = Image.open(requests.get(url, stream=True).raw)\n", + "\n", + "# Preprocess image\n", + "image = np.array(image)\n", + "normalized_image = preprocessing(image=image)[\"image\"]\n", + "input_tensor = torch.as_tensor(normalized_image)\n", + "input_tensor = input_tensor.permute(2, 0, 1).unsqueeze(0) # HWC -> BCHW\n", + "input_tensor = input_tensor.to(device)\n", + "\n", + "# Perform inference\n", + "with torch.inference_mode():\n", + " output_mask = model(input_tensor)\n", + "\n", + "# Postprocess mask\n", + "mask = torch.nn.functional.interpolate(\n", + " output_mask, size=image.shape[:2], mode=\"bilinear\", align_corners=False\n", + ")\n", + "mask = mask[0].argmax(0).cpu().numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAFnCAYAAACSB9U7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Xm4LMld3wl/InKr7Wx36Xu7W63e1VpZJAEetLQsxiPbCJAwjwDZjGQL24yxzTNjaTx+PTaSbTBYFug13gBjgxFgPwiZ1wsDxmMYbMAYm0EbEupd3X33s9aeS8T7R1ZW5RJZlXXOub3G53nuPaeyIiMiIyPz/L7x+0WE0FprLBaLxWKxWCwWi8VieZ4in+0KWCwWi8VisVgsFovFchKssLVYLBaLxWKxWCwWy/MaK2wtFovFYrFYLBaLxfK8xgpbi8VisVgsFovFYrE8r7HC1mKxWCwWi8VisVgsz2ussLVYLBaLxWKxWCwWy/MaK2wtFovFYrFYLBaLxfK8xgpbi8VisVgsFovFYrE8r7HC1mKxWCwWi8VisVgsz2ussLVYLBaLxWKxWF7kfPCDH0QIwY0bN57tqlgsx8IKW8vzih//8R9HCMF/+2//7dmuCgCj0YgPfvCD/Oqv/mqj9L/6q7+KEIKPf/zjN7diFovFYrE8T/nsZz/Ln/gTf4Lbb7+dIAi47bbb+ON//I/z2c9+9kT5fu/3fi8///M/fzqVXMFv/MZv8MEPfpCDg4NG6d/73vcihGBzc5PxeFz5/qGHHkIIgRCCv/t3/+4p19ZieWFgha3FcgJGoxEf+tCHGgtbi8VisVgs9XziE5/gta99Lf/3//1/8yf/5J/kH/7Df8j73vc+fuVXfoXXvva1/Kt/9a+OnfczLWw/9KEPNRa2AK7rMhqN+Df/5t9Uvvupn/opWq3WKdbQYnnh4T7bFbBYLBaLxWKxWB555BG+7du+jXvuuYdf+7Vf4/z58/Pvvuu7vos3velNfNu3fRuf+tSnuOeee57Fmt4cgiDgDW94Az/zMz/Du971rsJ3P/3TP83Xfu3X8nM/93PPUu0sluc+1mNred7z3ve+l16vx9NPP8073vEOer0e58+f5/3vfz9JkszTPf744/MQnh/8wR/kzjvvpN1u8+CDD/KZz3ymkOdb3vIW3vKWtxjLuuuuu+b5ZX90P/ShD81DhD74wQ+uVf9sTssXvvAF/sSf+BNsbW1x/vx5/tpf+2torXnyySf5hm/4BjY3N7l48SIf+chHCueHYchf/+t/nde97nVsbW3R7XZ505vexK/8yq9Uytrd3eXbvu3b2NzcZHt7m/e85z188pOfRAjBj//4jxfSfv7zn+ebvumbOHPmDK1Wi9e//vX863/9r9e6NovFYrFYmvLhD3+Y0WjEj/zIjxRELcC5c+f44R/+YYbDIX/n7/yd+fH83+U82d/WDCEEw+GQn/iJn5j/vX7ve99bSPv5z3+ed73rXWxubnL27Fm+67u+i8lkMs8jsyPKfy+z/LO//x/84Af5wAc+AMDdd989L+/xxx9f2Qbvfve7+b/+r/+r4On97d/+bR566CHe/e53V9Lv7e3x/ve/n9e85jX0ej02Nzf5I3/kj/DJT36ykvaHfuiHeNWrXkWn02FnZ4fXv/71/PRP//TS+jzxxBPcd999vPrVr+bq1asr62+xPJtYYWt5QZAkCW9729s4e/Ysf/fv/l0efPBBPvKRj/AjP/IjlbT//J//c/7e3/t7fOd3fid/5a/8FT7zmc/w1re+de0X9vnz5/lH/+gfAfDOd76Tn/zJn+Qnf/In+cZv/MZjXcM3f/M3o5Ti+77v+/iqr/oq/tbf+lt89KMf5Q/9oT/E7bffzvd///dz33338f73v59f+7Vfm593dHTEP/kn/4S3vOUtfP/3fz8f/OAHuX79Om9729v43d/93Xk6pRRf93Vfx8/8zM/wnve8h+/5nu/h8uXLvOc976nU5bOf/Sx/4A/8AT73uc/xf/wf/wcf+chH6Ha7vOMd7zhRGJjFYrFYLHX8m3/zb7jrrrt405veZPz+zW9+M3fddRf/7t/9u7Xz/smf/EmCIOBNb3rT/O/1n/2zf7aQ5l3veheTyYS//bf/Nn/0j/5R/t7f+3v8mT/zZ9Yu6xu/8Rv51m/9VgB+8Ad/cF5eWazXnSuE4BOf+MT82E//9E/z8pe/nNe+9rWV9I8++ig///M/z9vf/nZ+4Ad+gA984AN8+tOf5sEHH+TSpUvzdD/6oz/KX/yLf5FXvvKVfPSjH+VDH/oQX/ZlX8Zv/dZv1dblkUce4c1vfjMbGxv86q/+KhcuXFinGSyWZx5tsTyP+Gf/7J9pQP/2b//2/Nh73vMeDei/8Tf+RiHtl3/5l+vXve5188+PPfaYBnS73dZPPfXU/Phv/dZvaUD/r//r/zo/9uCDD+oHH3ywUv573vMefeedd84/X79+XQP6u7/7uxvV/1d+5Vc0oH/2Z392fuy7v/u7NaD/zJ/5M/NjcRzrl7zkJVoIob/v+75vfnx/f1+32239nve8p5B2Op0Wytnf39cXLlzQf+pP/an5sZ/7uZ/TgP7oRz86P5YkiX7rW9+qAf3P/tk/mx//mq/5Gv2a17xGTyaT+TGllP7qr/5qff/99ze6VovFYrFYmnJwcKAB/Q3f8A1L033913+9BvTR0ZHWuvp3OSP725qn2+0W/n6W037913994fif+3N/TgP6k5/8pNZ6YUfk/15mlG2BD3/4wxrQjz322NLryXjPe96ju92u1lrrb/qmb9Jf8zVfo7VO/05fvHhRf+hDH5qX/+EPf3h+3mQy0UmSFPJ67LHHdBAEBbvoG77hG/SrXvWqpXXI2uH69ev6c5/7nL7tttv0V3zFV+i9vb1G12CxPNtYj63lBcN3fMd3FD6/6U1v4tFHH62ke8c73sHtt98+//yVX/mVfNVXfRW/8Au/cNPruIxv//Zvn//uOA6vf/3r0Vrzvve9b358e3ubBx54oHBdjuPg+z6QemX39vaI45jXv/71/M7v/M483S/+4i/ieR5/+k//6fkxKSXf+Z3fWajH3t4e//E//kfe9a530e/3uXHjBjdu3GB3d5e3ve1tPPTQQzz99NOnfv0Wi8ViefHS7/cB2NjYWJou+/7o6OjU61D+e/gX/sJfAHjG7YN3v/vd/Oqv/ipXrlzhP/7H/8iVK1eMYciQzsuVMjXnkyRhd3eXXq/HAw88ULABtre3eeqpp/jt3/7tleV/5jOf4cEHH+Suu+7iP/yH/8DOzs7pXJjFcpOxwtbygqDValVCfHZ2dtjf36+kvf/++yvHXvaylzWa+3IzeelLX1r4vLW1RavV4ty5c5Xj5ev6iZ/4Cb7kS76EVqvF2bNnOX/+PP/u3/07Dg8P52meeOIJbr31VjqdTuHc++67r/D54YcfRmvNX/trf43z588X/n33d383ANeuXTvx9VosFovFkpEJ1kzg1tFUAB+Hsn1w7733IqV8xu2DP/pH/ygbGxv8y3/5L/mpn/opvuIrvqLytzpDKcUP/uAPcv/99xMEAefOneP8+fN86lOfKtgAf/kv/2V6vR5f+ZVfyf333893fud38uu//uvGPL/u676OjY0NfumXfonNzc2bco0Wy83AClvLCwLHcU41v/yCE3nyi1GdNqZrqLsurfX894997GO8973v5d577+XHfuzH+MVf/EV++Zd/mbe+9a0opdauR3bO+9//fn75l3/Z+K/uD6zFYrFYLMdha2uLW2+9lU996lNL033qU5/i9ttvnwuum/n3upz3M2UbBEHAN37jN/ITP/ET/Kt/9a9qvbWQbmH0v/1v/xtvfvOb+djHPsYv/dIv8cu//Mu86lWvKtgAr3jFK/j93/99/sW/+Be88Y1v5Od+7ud44xvfOB+wzvPH/tgf45FHHuGnfuqnTvW6LJabjd3ux/Ki46GHHqoc+8IXvlBYVXFnZ8cYxvzEE08UPtf9kXsm+fjHP84999zDJz7xiUJ9yn+s7rzzTn7lV36F0WhU8No+/PDDhXTZFgqe5/E//o//402sucVisVgsC97+9rfzoz/6o/zn//yfeeMb31j5/j/9p//E448/Xlj0aWdnx7hXbPnvNaz+m/3QQw9x9913zz8//PDDKKXm9kEWklsu7zhlreLd7343//Sf/lOklHzLt3xLbbqPf/zj/ME/+Af5sR/7scLxg4ODSsRXt9vlm7/5m/nmb/5mwjDkG7/xG/me7/ke/spf+SuFPXI//OEP47ouf+7P/Tk2NjaWCmuL5bmE9dhaXnT8/M//fGGO6H/9r/+V3/qt3+KP/JE/Mj9277338vnPf57r16/Pj33yk5+shO1kAnGdDdhPm8yrm/fi/tZv/Ra/+Zu/WUj3tre9jSiK+NEf/dH5MaUU/+Af/INCultuuYW3vOUt/PAP/zCXL1+ulJdvE4vFYrFYTosPfOADtNtt/uyf/bPs7u4Wvtvb2+M7vuM76HQ68610IP17fXh4WPD0Xr582biCf7fbXfr3uvz38Id+6IcA5vbB5uYm586dK+xMAPAP/+E/NJYFx7cP/uAf/IP8zb/5N/n7f//vc/Hixdp0juMU/v4D/OzP/mxlLYxye/q+zytf+Uq01kRRVPhOCMGP/MiP8E3f9E285z3vsVv9WZ43WI+t5UXHfffdxxvf+Eb+l//lf2E6nfLRj36Us2fP8r//7//7PM2f+lN/ih/4gR/gbW97G+973/u4du0a//gf/2Ne9apXFRasaLfbvPKVr+Rf/st/ycte9jLOnDnDq1/9al796lc/Y9fz9re/nU984hO8853v5Gu/9mt57LHH+Mf/+B/zyle+ksFgME/3jne8g6/8yq/kL/2lv8TDDz/My1/+cv71v/7X7O3tAcXR5X/wD/4Bb3zjG3nNa17Dn/7Tf5p77rmHq1ev8pu/+Zs89dRTxv3xLBaLxWI5Cffffz8/8RM/wR//43+c17zmNbzvfe/j7rvv5vHHH+fHfuzHuHHjBj/zMz/DvffeOz/nW77lW/jLf/kv8853vpO/+Bf/IqPRiH/0j/4RL3vZywqLJwG87nWv4z/8h//AD/zAD3Dbbbdx991381Vf9VXz7x977DG+/uu/nj/8h/8wv/mbv8nHPvYx3v3ud/OlX/ql8zTf/u3fzvd93/fx7d/+7bz+9a/n137t1/jCF75QuZbXve51APzVv/pX+ZZv+RY8z+Prvu7r5oJ3FVJK/s//8/9cme7tb387f+Nv/A3+5J/8k3z1V381n/70p/mpn/qpefRVxv/0P/1PXLx4kTe84Q1cuHCBz33uc/z9v//3+dqv/VrjfGUpJR/72Md4xzvewbve9S5+4Rd+gbe+9a2N6m6xPGs8m0syWyzrUrfdT7ZEfp7yUv/5ZfI/8pGP6DvuuEMHQaDf9KY3zZfyz/Oxj31M33PPPdr3ff1lX/Zl+pd+6ZeM2wr8xm/8hn7d616nfd9fufXPsu1+rl+/Xkhbd10PPvhgYcl+pZT+3u/9Xn3nnXfqIAj0l3/5l+t/+2//rbGu169f1+9+97v1xsaG3tra0u9973v1r//6r2tA/4t/8S8KaR955BH9P//P/7O+ePGi9jxP33777frtb3+7/vjHP157fRaLxWKxnJRPfepT+lu/9Vv1rbfeqj3P0xcvXtTf+q3fqj/96U8b0//7f//v9atf/Wrt+75+4IEH9Mc+9jHjdj+f//zn9Zvf/Gbdbrc1MN/6J0v7e7/3e/qbvumb9MbGht7Z2dF//s//eT0ejwt5jEYj/b73vU9vbW3pjY0N/a53vUtfu3bN+Pf/b/7Nv6lvv/12LaVcufVP3d/8PHXb/fylv/SX9K233qrb7bZ+wxveoH/zN3+zsm3hD//wD+s3v/nN+uzZszoIAn3vvffqD3zgA/rw8HCexmSPjEYj/eCDD+per6f/y3/5L0vrZ7E82witS/ELFssLlMcff5y7776bD3/4w7z//e9/tqvznOHnf/7neec738l//s//mTe84Q3PdnUsFovFYnlG+eAHP8iHPvQhrl+/XpmXarFYnj/YObYWy4uI8Xhc+JwkCT/0Qz/E5uYmr33ta5+lWlksFovFYrFYLCfDzrG1WF5E/IW/8BcYj8f8D//D/8B0OuUTn/gEv/Ebv8H3fu/30m63n+3qWSwWi8VisVgsx8IKW4vlRcRb3/pWPvKRj/Bv/+2/ZTKZcN999/FDP/RD/Pk//+ef7apZLBaLxWKxWCzHxs6xtVgsFovFYrFYLBbL8xo7x9ZisVgsFovFYrFYLM9rrLC1WCwWi8VisVgsFsvzGitsLRaLxWKxWCwWi8XyvKbx4lHv+jv/Hq3F7JNAINFaI4QEBEoplFYIKRFCVM4vHxMa8tN7hRCVNFqDpppXPj+t9fyflBIp67V6mm5Rbr687Fh6TdW61NEknWkasxACrTVKKYQQSClJkzXJL1lZTpZ/kzoL4czT59syawsArTRay0r98vdhGULM+sjserNrrqv/4qC5RZq2e/YvS1/+mf+urg75/pKvf10/ytovf49NZZvOzeeffV/ftuZ7Uaq98cysnhnLnptFPhqEqs1n0S4CdDW/fB9L81PpQ45e2e6r+oqUEqEVsHh+TW2ngURpdKkPlu9r+T6U63PcY3XXmEeI9N9Sljzb5X5ffa9W21trXdNTzGXkyfp3vs/n36fl/lEoF1VJW/f+rWvP/99f/0MNa25pwh8+8+3PdhUsFovFYinwi3v/pFG6U10VWQpptMhWiZB1hOSqPNZdC6ssII6TxyqW5Vesd7UN1qlL/hrq2nSZyDYZ5KWUlSN5AVDOp0w28PBMrVe2TIDm26r8uVy//HeZEJJSzg16U5mwaOv8Na/q543EfppT5UidSKrjNPv6Os+vEIK0twtSUWuui2kg4DSQUqJneZYHHUz37DSou4bqgIJG62q/asIqEXmzKA8yZteUr0sTYb/ugKJd99BisVgsFkueEwnbvBEipVyM+Iv6dDVJTkSdZ8WQsnLEJMRO2yCsy69qyAnKdTRfizAKlrL3EUTFsVMndvPeEqNRLzIhUiRLm/dMmsRZXnA3FXm5oqvHjukpL+dRJ27ryjN9b/qslFransvEPzA/P8vPfL1NPIJmcbvsWuup9s8sr8VPMf9pzCFLm8svX5d8u60tzkp9tK5NlEFMmco+TeG0bEDptCgPLuVFuintaZYLi0ECU+RIbXka9Aove12drbC1WCwWi8WS58Qe29S2yEIvi0Yj1IvaZUJh/ToUPQX1xlHVK9rMU3nzKNbVLBqqwtucDxRDqQ0ORWMZzbw85uNJkszPK3tq8nXLezeXhRoar7WBOK+jTlCUvbdZ2mWew/zxZX2mHE6Z7+OrjPHj3ou6Pr9K1DYXB9mNWCFYhQAtVoa1punTd0a+LuVBgLWeTbGoY135mlnIrS6K2mUhsDeL+ndUg1Dkmvyy5zE/LaPRPU5vxPqFFrKovoNW9TMhRaPBiGfj3WyxWCwWi+X5xamGIgshEZjD6CqGiS4eP6n3wjQ/Kz93y1iHUvn5ejT14japc524yv9MQ3qracwewvqyyl70amXKH4tzQuvqW847S5cvIx/WWc7LcZyCB6ksdk3lZOHZ+WJXCZ2yMDypVyd/n/LXle8n5WiBfHtmnmyTV9dUt3IfNvXHOg1ibpPlczHXFgwVR76Ya925p9YwGGGqpxAatDn6AFaH8Fe84DAPMTaeM/tf5jzK+ftjmhddV/e6eqwrzKrpRdouK9LVDnkYnr1ngvzzVn4PLOtnUshsqMH4DrdYLBaLxWJpSmNhuzBORBo+potzDoUwBaouJ28U1ofqNcunLC7qrqH8Oe9RWGZM1X1fFh15YZUZynVewPzxunRlD1ZaB1XbXrlPswW+IJvHODtMOZXjmENrC/WrlFb1ZOY/Z3NQy3NwM0zCoc7jKDieQC2HYtaJFdNxk9A3iYZlnmdTu+TTlI+Z8lvnupuWc3zBYw6Hnj/5hWxNi0qln9P21gihkcLcj8wDOicUbVm/zoVAZ3mVw3ez5zcfnpwfnCmzbBBtmaitfrc8/3l6kQn0Ypq6cOByOuOgSulzftANli8wtqy8MoV2p9g/kqS6MJ714losFovFYmlCY2GbGvqzVXE1aJ03DHPG0pIw2eJB5uGAaR5VI0/rZkZSndHeJBQub6zVGXymvLP8y+WUj5fTLruOdViZvlBVMfPyaeM82TQ/Qxa5a1oEoVYHEMqDCssEySqqafMe7VRc5MtelVd2brmeq+p2XKN52Xn5flJX7rIBi2N5WE+AWWQ3q3OZ/ODB4plTaJ0Y708TD+fx2qIoapflZRqYWCayTHU7bh3zp5XrUSfum4p9U9+rCzI/Tp+ra9sm79ZTfw9aLBaLxWJ50dBY2KbGkMw+gMqMuUXcYWoEyYqFVDE+9CKb2jSLbxrVb9Wo/jLvb9lzvK4QWyVWnh2qBry5appl4aqVpE1KLgmUddqyUjut0NrsQV12rkmMLBOTy/pPXf3XvddlkXBcI/6kfew0RXsWEVBKWXm2y4MfCJAiTVt+fuoGkPJeVbM4q9+yRqSPQ5ZwJU0HbZZ9t8yDvi6mQbPj9gJjHbSurI8wL2dFnU8a8pw/37TQ2nPnnWqxWCwWi+W5zJpzbGfj+jPPjdEAWSVqSbPITyOrEyzLxOjKMmrSGEPwSobnup60/HnLvMfPDsu9PI1ymJ/bLO1xha0pfT6cWAhBkiTzUOdldV11bBVNQ9Sb1qGc77Iogrr8jnPu6VMWb9V+kdZ3uYjPwlClEA0WfVv9fJXi6yvo+q9OhXJfOcnztqyM7KfpOpr2iyZhyKZyb2afe270bYvFYrFYLM9n1phjawpLhIV3ZmaUGM4th7Dmzajlxq/Ja1hy9+bmaZXTzWuYGYKL/+ZVULM9IwUlj2vVCWVGz87NbVtiFPwmy1rnDsx/iIrfaeETz85rYp6LWbg4hfDjWh+X0ZactYcW1TqY6pUdz4zT2ThIXbqVVyAEQsr5HNtlIcWFcme/Z/Mjy3NsTZ41k/Cqy3uZd7/O05fPZ/k1132R9dHl+dSF3pfbZhUmAbkQVrMK5fagrV5DVYTm20tKgVIJSi3EoFJZObKU3+IdI6WYD3AUow2y50YbO1tFDOrqINzsi1luM8+hkLn+rNC12x2V270mnSb3fJffNRpE+gYwTSWY/bY4pSwAdfFZTw8tCf/N1UIgENL8DFSFranhqnVp9tSv92YoP1dWBFssFovFYsloHoqMs/igQcqy4Z4tUCQL1rmom7xVot5AqRExi6rMfy8YYAZXUmbApeelJp8jVq8cDKnHMFEKpTXSTReREckiPzGbeyxxDFVW83qm6bNwu/T3+fI7QqNRi8WS5iI+l6UCtKHOFbEiQIF0ZvvMzkWdnmVmCkHOXQupoM0nqZQqxHxgYJGDmBnY4My9qjNjvZSuKuAX585F1Cw0sW7QIE9hTrBBdC5b/KYpZXELZm9iE4yCcHZviiG+s7nR8+R61kfWyTsfHly974txouXtmwq4RTuao1rNeZTDyQUSSnmtDntl8Z4pX8W8fszba96OBQ3sMH8aZ+2ilSq0yrwPzs4TgBTObL/u2f2ZD57lB9FyFS3l5wiJ0gqtsiiEnEidvSHSp0KRv0eVgcFsMC33TCxEaKVVqo1YrmOtR1YUki3avJhOSidXh+y9Vl2QbV5sfoGrWZ/P7nu2eFTdwFD2nZTSuNCUxWKxWCyWFy9rzbFdfKgeW+oN0mWDy+wtMRlWVb2WeY2KZZs8Z9W6FLefqDehdeXTwgbMCRiRXVtOEBqvq3pYCGeeeWqsa0wae55voWZzBVSo5DJj0FCreU7l0tL/83OlReGcfBmmVpwb4uV7Xii9fiGr8rzY/Ly70wwLzpdnOq8sHOpWSi7XN++dzB9bHSadV19lYz5f3+q5qzzFpVJrjlfrVfYAl72264RTNw1Lb3qPi8l0GqGQ61eLOIPysyJmA1+F3IytUj6aeZXT8uVMwqlCqsWgFaXjsxxzz1Xm7dXl98ixWSJkcx/XDYNPfy9eW+PyDXllaMPWRjSo33HfBxaLxWKxWF64nMo+tsvCidfJwyREK4KoRoQ0OYZBEDRFi9meizr1p2SenrkRvSTPothIKyJl0amzTOgV8kozZLlxuR6L+uXynddteTknud9l1vF4rgodPmldTPnXpSuH2S4LVV5G2jVqxI0u/76+QKwXA7pWLJtE+epw6tX3Nh0UOV1hInLPxbJ2X6+n6NJvmfdckP0oOydXhYnX9aPi8dUDFKc9h//070URU2h6mrg+XTnP8rNlQ5EtFovFYrFknEjYlr06J2GZMWP63MRjW80Mo7itpE1dE5XTRBoriVbJwntn8MwtLZiFYZa36NZrv5vlpRCln7DweN18A3I9j/PNxRRqXP7OJCzK3tv89yuvqRALe7r3+DjtmRe1VY/teveqnNdpvDOWlbX6mVyVSd2h7IusDxyvfmXyocT5leaz9Muu4fkk8EzPzknysB5bi8VisVgsGafisc1TDtVc5zyzkbK+x7beY1JfdiVhXZhnQcim/zUNr8wvvpIumjO77iwkUahKHSt5C1OQo3ke2uL33CXlwiDn4cgGj/Iiu3w6c92Oa6Q29mQars0UEnycvMrnZr9n++bmy8uL1uynUmo+yLFqDvAyMVj9nLV3dVAhP+6yqu1N4nQdmnpsTcK3HJ6dtdOzJcQWfab4uTa9YTAnDYuH9BmZ/avJq3y/ywNwdR7X0rhaI07apqcRQVFIn4tmMZUzbzvRTJwu84JbLBaLxWKxwAmE7TJDqmz8mzxeq8I6F8ealbvKYMxCH5uYQRUBIgTztbJEugiMzqVdJfCkLIuDVGHOBZES6PIiTDWG3HxhJwOOk87bra7+O9tSRUBxHmedQUuprvNvjOUuzku/N82JNYXFNhWBTWhyH9bJt2m47Tohus3KlbnnJ+v/hoWSRM3q2w3qWm2f9TzypnLrnvX89/lnQGudDhIdc0Gvun6br9+yd1R5sCK/sFh6jia/CnWulFwe6b9EFetkKlfA/FqXtd+ijbThWDPWeecJsdhu6aTC2HGc0nO9un8KUVxErq6Pltu0fiDUYrFYLBbLi5XjLR7FsnlfC4G2zPAwnV/1vtWL2CZlmFjlWQHSFVJz3pXM+JrVbnYORovRlH8qNHXOiJSk15YuRpNutSFJJ+s1FF4N5uAVPX65CovFsaInSabGeq6Uxc9i6HT5mpcZ3+t4W5aFkZo8qPm8mobErqqHSZg09Qw39ZwtF5n59jaJq3oP/ar6me9T/b1tkmc5TX6AAxYDLfnvgFpR26S8Zfd76flCIJEobQ4ZLyVdeVwjFqsbGwb0yic1ebqVKq4MvI43tfxMpPOApTHNSSMu8pQHN5q4nLP3qulvixWtFovFYrFY1uVEHluziFt8l32fN2zrMBmDxwnJW0pNeFwlWcn7lxmItZau4fwy+dDe9PuiUSmFKAjnpdy06LuZwBFi7TKqHq+UZcbzsu13mgq1VTQdkFl2Xl3I6LJjx8c0iGASoouyj+PNK+Smi3kuS1s9t+qJzeqUjxwoR2Nk4qci6xteS/U+6txAjnnwI/s2m8JaDg2ullHcdifLoZhcFLzsWd2att08l3n7VWZCNB4saUpTQXui6Iaad+1xB58sFovFYrFYVnEqi0flcRyzd+A4eaXnnrZoaFSZoqLWGi2abcJhFj4SIYqGb1YXKSXoLByvSUjo6Rt9C+M+M3gV6f66yymHfNaJ0XUMVVM+6xr1z6Rh/GwY4YWpjKJZCPYyTls4magVwMfMr1rnRf8VYlmUAIvYi1JdqmVkURRL0Nm+s8ePIimWudgCaFFE83tT3pKqOnSwKOc4oc6NIxKegQXn7Pxai8VisVgseRoLW5MJYQ4lrYbkmSiGx+UFUvo5O9VocBmiNxd7V6b/lw26dcysfCgys/BhnZOeWR3miz5Vrq0oNPLemMW1aaRceJXSxaSK8/dSz03+3OxKqsLRHNJaqVlacQ1pOPRi65KsfbRKr1MWsjCH5ZavsS60s2mY8CrqvKjl75cb6abvDPNVsz6ki8dKp82yE4WDeaG/WjDke6Yg8zzmvXZpXoYzC9ENwhgZ0VxkldpTCGNTCVZ4WnP3Ws6eH6XUfDGuguhKwzuOWV9T2vL9z34W57en7Vlc8KvSZ8kPQC3ru4t3VlZ22Tudr5Muu2Nz5WVH0zn5MwGu6xenqtREiEoUhNbZf4u2yMrPX1k2Hze7puyDmEdvaMilbzSYUq5z00FOk6d3Xt/FtdRFGlgsFovFYnlxsoawrRobClEx5OSKsM3FcTE34PUsLDATegWDs2S3mMwYMbPVtMoWo1mcNzfndCp3jQqhVF8FlYVe8l6UggFI0WNpFnX58zNPbXo1Wie5MjJvKWQLBgnhkC1mk8ZQ1rdpVoeCcVtpMJkT/TMTUi9EiWgUrL24tnx56wjYeo9adeXhpkY9VL2XZTElyh0KgHRusVJqca9mbZHfX1iUWmcufAvVW8xVNlydod6gtWnBpey3rD8UxXOZunD/9LmSc+FbFXGLgRYKnk5tKCfX//TiWSgL7MKVzASTky0oljtvLrCO4XE2R3hk/V7Mr0sIp3IJMndl82c+twp2mhkgFqs4p22X9Y9ihtliafl/tf2bxZ3MD2fkP6cvNJ29tArCMn8d8+c2dy3ZeyBJkvT3+YBC7sRUKRcGF4th4lnK/EDSIl2+n9TO9YXKe0Rnmecasc6zaxyYFAKhBdlA5rMQLGGxWCwWi+U5THNhu8LonBt1hu/qhUkmbovbkRSMrLJ3ckn5ZeO+LDTr6mZaiMdkuFUkX85bZ0yfMzTztc9EVN7DmP663DOUF2558qK6IOJKdVwcr/eSLRWTpXT561vlLV3m2S6XXU6zzIheP+xz9cBGMfX61nP9ddW1TX1eyx1izeq2fI67QAhN0zXDTakK9ai5z2Wxt55X+zjkBqLK7wBRvRP5/lu/uFJzMVUOc14awrsi07qvy32zLKyzVdIrnvL5u6H+uc8P5hRXLc57s49JfvBDVyVwfjAp/Tw7jUVSG4ZssVgsFoulzInn2FYMU4O9UTX0i9+Vt4cpeGzXEBb5fTKNYZmzsNumNAttLWIy4OvSlctaGrqdJlqZLl9m01rXCQ9DwqXpTkOgVD2XxWuu94wfv0yTkKl4Hjm+Md20D5yUJgMF5nSZkElVy1IZfooa9OYI2uNT97yvEzlQl+eaZ7EQ5jVl6/q8Vz2Tq44tf+8tBiPr01gsFovFYrE885xoVeTyz6YetSwazZSm8HtDK9rkZcl+X+WxXZZnOb91zpuXWSMu8mJ+kc6UNoupTsNgpZQkSWIsN3+9tT7y0n0q37/a661JVxiEaCi818XkBb/ZvBDMdZOn27QSdXrPDF7xZ6Kdy8/os+SJMz3v5b5dc+LS/Mp5NawN1eGFcn5UXhem6IZymasE6cr33gvhwbBYLBaLxfKC5Fj72OaNp/IelVLUb+GSy82YfzYvLG8ElvOrW5Al+7cs7DLz2OaNu3J+Jo/kOkZpXrCa5nmaKM9tK36XXWcqbBuH4xoEbhOjtvY6q5MLa2kq7ledVz53uaepGNJYdy11/cckCk6bmynglt1TVdqX2Rxqmyklg2LKsU696zzh5d/XzfckmK5ulZhb9v16Uy9m5ywTyoU+nL83dQOE9ZEf+fu+vMxivZelK4cm56+p6T0sTu8oHjM+49n3NdEcFovFYrFYLHAMj+0q0WIyUCrztwRI6cxXS828SBVBuWT+ava54KVc4iXJxOEqQzS/EEyxzuawPFgulJdRzNtk2OXmIZKtnqxqDbqTGHl1nvcmIv24BmbTc8qCyHxuta+U61X3XfYza1spZWXRMmOZYr0ogDJ1+/g273/ri+W6gZFMQKXZ1ZSZiyowteuqcurSNEl7Gv1rnYELIcR8NeIm563yPK96dxW+I121Oc13sahZ9Zqq7ZcNDuaP5/tZ3YDPUjGbq6eazX/Np2+yT3m+7OaDVRSuIz8w00SoWywWi8VieXFxolBko2GhzPuQLjtWznf+s0ZcZF6oLJ+6+lUPYgzfM3mPmhl/pykuzZ6yeXuRCY/T91IsE6p5I/K4Im6pJzhHXZvn77csrVZ9HMoDKeVVnbXWOELWGtjzutV4r5ryTHgpm8+FbBJp0ay+2b0y9aEXsxhZNuiy6rzqO3QxGdrUT5/J9m76fGfk10LItlbL8qnNyzCw9WyFrVssFovFYnlucmxhW2dUSIOHqSxqM+9p/phJ/Aqz1punWWfkfyEQzXnlf5bnvy5nuecK1lvEp/h96Xx9svC7Jl6/RV105aeo8TCuoql3pe4emsItTXU1DTSYKG/tYhQG6S8r69j0TqzjJVvV95Z5tMrHTW1f9Sw26VOzdND4opt6OpscW6e8POt6J58JVnuBZZYw7YM6a/n8WsUKqN7bsqhteq0nFYnVcpa/87LICNWkXCEW4ci5fKywtVgsFovFkufEi0dV0EXjxXxeVdSW852fWzNPssl8UbOHdbXBVYd5Ptvqc09mXGfemeIc0uLk2covS/JqVo8mAwdNOYkRagqnNH1/3LxN1ymEwKmZK37aXtuTsko01oXAFs8t9S1jQYs8KV1x3ZzVhed28dyvHBjIvR/yJeS7ePWc5VUv5y/0s3PHlg0w5JnPq9VQGDjLyVoKES2LlYq1XuxbnCupVK55EO10hWL9uzY/B3hR/uIdWn3GjjeX2WKxWCwWy4uLtfaxnY2bG4WcmP9f9p5lx4rz98qhcnWhc+Wy8uGiawtKwdK5k1kuhVDkVLkWvi+emzNE60QzZSmQHc95zgyf0YJUX4nZ3o4aKQVQXBVZ19h3QudFQjY/0rQXp7ndyyHZJu/KssGJRQUXbcgKUVHnnTWGRpd+Flpw7u5f3Bs9E0UiVVrzLZS0zgzsRR/VWlUFG8KkuUqrd+vFvczGJDDPmV0Wem1qCxPVJy7fh2bevvk16cI5hXMN16WLvyBRSOKsJ6KFBETaL7ROozW0TvuqFGiVIHSMABwxe39oMctSznSbzNVZombFaZGWgRBoVDo7XmuE1kgBIoskEFm/bOidzLVB7lLrk6/OcWk55YbN3/e6KQ8myuHIKJHb7bUkYoUsPG+U0ujc//P38bzfUviW8sJVWqExbKVmjCIw3Y/FtSulcWRuqsGS+5d/Hz1TIdYWi8VisVieXzQXtonKXC8IOd/1cmGYiZnXgPyqwNkpRQ9C2eNqErkZpoVPjHvU1oRnFg8uhENBiBVPXBjprDBsdbaQ04qUQhtMvEx0LeqQttNivqfSCgkIuTAu0zDZpOByyQRaxRcmZMFWTE8pt50AnPqq54SYKm0zlLVlwfOCwZzNuYjy5q7ROC3fxyX1qQ6s5Dy8M2962rey26pm/TQn6bQumvzpiELNxkulfZXn3sN8387uJQtvbsU7Zp7Xnf++LORNjZKVLXLHC82nZ1MDZtc0l/66eq5hrGPxHM/6qiBBEM1EqYtCooScDQJoPCFmAjRGOoCeINQEFQ7ptnwC10VFmkQJHOkTakgQCCTgoLSDFi6JdIm0JBEChUQLcKRAKgUqQSJBJQihUWi0TsCRCOEY23oV9fKrnLCa0tR+81B2in29nOdJohjS/iPneerMuzvv99n7pFqO1oZBFSFyD68kC4EuP9FNfd3CEPGQvidEWm89e/9lbZp/9xvaedV0BIvFYrFYLJbGwtZxnLkxkYnNbC5qtq1EamzVi6Q8jebf1ZznOE7FA2YOE66YkvPQ4WWLEOW/z+ZjmgTGsjDeVenM1736vFR8Scqmd3XP36bmenPj2hQObBRkhvDX8gIx5XNvFgXx+wwYw/lry69gLcViwap8yGiWdq1wbYEx8uA0qdZFoISDxp95bB3AgQQcIfAcF60ipEqQTHDjCaP+Ho8/8jnaruKOV7+CQDtEScRkHOFIj8BxUUKmHkbtoIWHwiUWLon0iYVDDGjponBApcJNCYmWctbFs0GV4vug/joaN0Dtk9FILK8YoFmVTzmSpSbVynrUvQcKeZY8+sUvysNlJ1tErjqwqObvdKjOf8/IL0hmRa3FYrFYLBYTawnbDFNY6MJ717zwusVAVhku+fPqQtNMBmHZGbAshDkfLrgsralckwBuFiZZzK9O/JryqhXBK9Nk6UxGbfbdciGaH/DI+UJr0z7ThumqcPebUV6lb+dEbvkemzy4pvoXjq1Rl+NSGTzCRQl3Xr4AXAGSBKYTAqnxpGZ0dIWnn/4c4/4ebtjH98AfbLCzuYF2EvpJH6lc4lAxiSK0FqA9kD7CbRFLFxl00E5AIh20bDFNHGJ8EtEmFi7KcVAzb3tav6R2IGyday0drI0YWEbdQJYufV8XilwejLkZA0CFPDXNR0qEaRCt4am5vr8Y4EkrUF6p3PQeLJ9vsVgsFovFkqexsDWF/5bFbiHEcwkmw96YbkkeTQRn2SCUUhSciY3mMDbwqhTLMHs1m3l7V3tsU4eoLKQVonpueh8SVpPds2XCuL6t8+1cF0Z4Ei9asx5Vc67Bc36zDWLTPMDys1MW2svErakfz2/3ioY5dVEk01m26ezXBKkTpJoSyATXDZkODrh05Wn2rjxEMr7CdHhEONglbkkONhVT10HoBFdKgqCFJyWeFEjh4bktXL/LaHLI3mCCDtrgBnh+QLCxTSBaTOgQegItHBIkSqdhzK7UoOKVInFdTtJyjSJSau5POarhZonb47O689WK+0ofT8Vtfv/dLK0pz9PY7stisVgsFssLk8bC1iTYslDk/L/Mo7hsDiEsNzjnxhz14cimY+V5u+Xv82FwZY+aKW2hLmuI4HWNrsV5zcJm0++WC8jF4i3LvaxpWmrT5UVvk0EErU3ziY/fNqvIz/E2hUCbPDzHFTvVeYlQXrnLFHmQhR2bIh3K55qoHM9dcm3dcsdWRwGs9sYjRLpQk9AIHeOKGCceEzgh06PrPPXFhxkf7RKO+xztXqK/dwkdjdkIBC956d3cd+dtJOMB/YM9UIp4OODocJ84ipHSod3aJGh1Ubgk04Sgu4nX6eF7XfwowdUu0t0EoZmSIN1NHOmnURhoxGzhqXQ+ejUaZBnPpkhaFjVSfmbKYbxN6m2KPDGWufIdt3iXlAfSVvadmrpk+WaLt2XPieneld/fFovFYrFYLGUaC1uTMWRexAnqwmWX5Vld4KRovTf18tblXTbymxpJq0Lf6owwU5rlXmZRMRhNYjCts0nYmsKJm2IWRYt6ZmGUxaGGpgZmnchoZJjXHF927/LGcb7Nl+1PfHzP3qIeUkqUUpXtVqSUVNdYrvdKmdqrIHQMC1LVkfce1z03y9pkUSbparhS4AiFjsYINeDKpUc4uPQoh9e+SDjcZ9w/JJyMECqm5Tk4UpKECbvXdtHJhMDz6LYChNCc2e5BkjAeTwinisHRPnGiSbTkcHiI9AKCToegFeC0ujgbF+huOCQIhrECp4MmQCBxpESrxbXm52QelxN5eyuDINUA3mWDDMsG51Z5gZscK5VIceGxrPz0UzqombZpbtnAlfmX37v1A5Kykr6u/vlBIStwLRaLxWKx5Dn2Prb1nF6o57o5lcPUqkJzuac3T9N5snnhkV8sqK6M5eGwy/PPey3KKFWur9mzm1+cZR3DPTVlV4fJGs8tecCbCKkMrbVxm6FyHdIxAbMYaFK/41IWjLVe15zXuxyqnKepsV4+s04IrUqz6vg8j/lAgcKRoJMpIpnw5MO/hxreYHxwlcHeFbSKcKWL7we4aDzHRynB5uYZJuM+STwh1AJHOkCC1ArH8em0Bb70kI5Lr7dJpBSTOGYwGnHlyS8yjhKcjfPc+sCXs3POwdWKCRACSeIRaQnyuLM/q5y2cGoQOd6I8rstW7ivundtTT3WiZyYVbow0CKF8b3S5B26rE6rxGo2aJSFLC8bpLJYLBaLxfLi5NSF7XFFwloiq0HIZmbw5Y3zOo9omXWMtHyI9jqeFGN4aal+9eeWvNuGY6ZzTQIstVEbGIjzkNsGxnNNPZZ7rKv1hfrZv/k8RariwSAYV7b7iuMr0cUBFGMfmEfzFtOdxDBvUt9mgynNIyCkcJAaknBC12nx5MO/x97Va4z3noLJIb3Aw3NcommEqxWOgsBxQWmSGITwEVIzDmN8X9JyAxwcUBE6StKFqFRC/8ZV/FaLzU6Ldtdj867bmSSKQQTu5Ab6wMH1tvG8GOFB5Gzi4BHPpGNe7J2kPU8ikk39uBwq37TPlcWoqU8v8+Zm7bFOmTAbjCk8t+mxch75/NdnNmTWQNxWzjzBgJTFYrFYTh9dWVNEnuyPqcWyJjfBY3uK4takEVYY6BnZlkD5f1JKo7G7jkgon2cqsy5dXthUPCczUWvyOZXP1SjKjVO8hHTHVQz7VZpEX6Prh0rdtC6XiyGVORS8tpwVoYjltOVrKIfx1h1vWsZqqve2eg1i3k7Huf7akmsGLZqes04ZWmuEdpBa4qgERyQ42kdPoe20cdsaHQ1J4gSpQcQRm70NOp7HZqeL6zg4MiBo9ZjGE0bjAQnQcj084RAnYybRFN/36XR8XFeAmqKiKa0gYOfsOYTf4trhgGm4R9tx0UmAlm0i3SbGRTvyWCv21nnOTdEDx85XN9s+aN0yVg2s5Y+tLW4rbub0wKl6smfvPdOc4jz5cP/8ZytuLRaL5VlEg04Ssi1RdFJatFQ6phAzhDuTH/YVbjllTiRszQIB6oLuUlsklUjS6J00nbfaw5p9V55XlxlL5YV7FvU0G1J115VPln0ue8W0zrwXVc/haoNQUzZ/s/1P9VxFZqK2PIev+lGp6gJeRjGra9pV5H8VaBLQmSFdcy2G6Z/5eXF1YrOcvlJHU/XybboiVNuUfz6fVdTfu8xjnGVm8KgtCsqtQb2kTEHVu0fpFpefM8M52dYsJuHUJCS10i4yfb4SYKoE97/iS3j8936H/vAGOomQOsF1NL4bsNHtsrW1QTgZMZoMuH71Eo7W9Da6OL5LEsZEjsM0AR1r4ljgtDZwAh/Xk0ynY1Sc4Ld7hFoxnU6ZHg156vEnCZ0W7fNjpv4Q/5YOTmsbKVyUnj0f2SXp2XxkFu2ejsYcT0yK8ktgBQVRSW46QenzunmaBqdWzR2fl5Odu0RoZzWWQoDQJEn6vhFitn925X2Rvc/zZx/PS5ylNwndvFfazrO1WCyWZwmt0YkCpapCtpxUmb/XcQyQCtxZ1J1wmkdZWSx1nGjxKLOnw7SgVJZuYXEKpMHbVz5x/l8jsVI2Vst7Iy7qUzSSmhhe6RzWsjDMewGZf84LrFRwVw28TIhnhlmtt3dmSzIfFMjM9ObirWwAVq/XnFdefKULFmlSYZ19b/CsIIDiy8kkNteZS2oc7qgxak8aalwO6SyHDVcEkch7rRezkIvpKIxFiPz55fKhGAKanSMML/z8Jc3qUvh6SRx3E29vJWRaRER6iuv7hBEM45hIK5Ikoi1ier2Aza0OWkmmk4jLN24wGh1x+UrEwfVLtEh7Rndri9b2BkILNtsbONJBCuh22yB9JkqjnBZe24fAQ0+GhFFCOInZ7m6jHB8kxEm6d64CXOkT6mT2/kkjH7TOabmZoFRaG9875fubCVBDoxjPKx8rH8/mgYusjNyAzOoX4eJ+5O9TflX6ZSJPLsIFCtexqGf6lAmyl80sSfa+k8yOJ5S3GmP+qTxgpefv2XwbNLnG/M9l12+9tRaLxfLMoZWGKEqF7SkNKmYCFwTzEVLXRUgbwmw5Hify2K4jLFZ990xw0jmNdWGv+e/KK/IuDEdznuXPq+rY1EuR1qlqKJ4kDNckiKveT7MDKt9mq1asFSUDfJlHa35dVA3fdfvnKkz3qxmmAYDlZZjEymIghqqINfULQcW7Vs5/1XXM06MRWuMoECLBEQr0lFYgoO1ypr1JyxeEUcxw0GfQH6BEjCDk9lsv8OWvfDkbjsN4MODy9WuMD3ZJEsXe5BKO4+A6Lr7vs729hR94tFotfN/jSCVIV9DtdNna2iJobTCaxkw9j+3eNonrkKiERKb7oZbbpTz1QEpJeU75M/Feyg+YZAu4mRZAqhvIOXa5hnpA8d21iKaoNmA6QJgOEqTPraY8cFVfcpMraZbuOO9Ki8VisZwCOhWgOknWijBatxCdLYIahiAlOA7CdW5SeZYXKify2J5MODwzxmTGzTCC6kRj5o3Nyq0Lj20SNltOm897FalNv9ozvSqMcVk6s/f3uEK5WM78+wYCWGA2fuvyblqX46QzllEWooZjaf7MxetcxELhZ+rkO53nbJWoXYTLAkrQdnzCcELgKVpeQq8Dog2T6ZDBUUR/OAat8T2HoNVCJ5pO2+fWc2fZcAS9l1zg7pdeYBhOOHf+Fo4O++zv7TMaTtg/2Odo9yrj0RjP9/FcDyElwpP0Nnpsb5zF89to6YEG1/PQjpPO/XUdSHSjObY3W8guG7AxheTf7HLz35ue6UX0yfFEpvm9QO1zW6TZ3xCTp3adxcEsFovFcjy0VjnP6jNUpkpDnYljhO9Tme9isdRwbGFbJ5QazfWC03VLLClvWZ3Woel1lY0u03zbujouE8D535uJq2r6unDa4xrYZkP5lL32Yvn+n8f3oq5P87Y/mUfQNBCxuIdm77vxPs4dcObndFmfM9VFKoGjBEJIovER1y79PuHkCJWMOdy7gY4FwmnT7XZIkhGO43DHS+/kwtYG0XSEcgR+y+GWrQ77gwSiMbed36EXOITTiNtu2WF374BwGuJ5PpPxlP2DfYajEQdhyOhwjHR82ts7bNzaI5ktZJSohEQlxsGN7DrL11rXdqe7MFKxjHwdasPbOdmQX7UPVKdHZPVZpNVoLWZh3NVnK19307vM3GaLBdOW0XRwNN9mpja0WCwWy00iXj6P9maitYYwRAR+w8FSy4udY4ci1xmGy8Ru4Ts9W9YlZ6QYSqnNc11Mc3CPYxSVr7Ocb1Nvau2cTcN3xxXpUi68p3VtWLcfZFNxVj23oRe2Jg+jYW4Q5/m0InNjNmDZddSJZCFEZTXWZfmZjPBcSYUy6+tZfzwbLCk/d8tCkcvtVidol83NlkKiowTPc9m9ccinfvd32Hvs9+jER3Ql+N0OQrbxPBchHW655Sx/4Ku+kq5QyP4hviMQcchoNKIVeHRaHoPDXaLxlDiKkQpecuEso9EER7roLbhw9gzKBccP6B+NGU8i3N4mWmhUHOP7Dl4sici296pt0ptC/burmk4pZQyNzofmN/OZmutg7NulZ0PX/L44tZpHoX4Nr7ecf33d6wdrqmmrAz032/tusVgsL2o0oNa3lU+1ClpDomxYsqURJ14VuclcPdPxTFDlvzOHlhWPrRtKukzA1omtOi+C6TpPw7Ba5i0q55/Nz8uOZ8ayaa4rhu2DTPNbm7RprYfJIPTyxu+qvrHq3pg8tkZRVkp3HC/psjIyYVJbzxV5kVsl9jiL6DQ5t85jmwkHk7jN94dy3pXPpIucCa3Z3Njm/vtfzuduPEpXSdo6IpzEOEKTJCEbGx3e8uCbePn9dzG8fpn++IjhYICv2kzCMdPBEUEQ4EpBPB3jewE4gvFggBSSwEu9uEk0BS1odVr4mz321IAnn34KuTUi2dY4zg5Ru4NsbWMaUy63ozD0p1XturSNDcfqBmrqRGH5eVln8GpdQZjVr0m/NaXLBlWWnScEldXd6xGzAbhyGVSOlT3OFovFYrm5aKUwLQr7jBPH4Bi2DrJYSpzqdj/reC+kkAWhsMxju6zMdeqZNx6XGUnL5m4dT8g2O6fpQEGWZqnY0dmP5cLxOEZ0/vdqHU/nrVPIPyfAng/z6sqiPvMklr1TdefWDaDk50OavFx1HtvMy1t+PtcVB0prHMdlGkV0N3Z41atfx8Hjv8fhk58lTiZ4rsAN0nSv/bIv5daLF+j3jxj2jzhz5gxTpZCOxHV9wkhzsH/EnS95KS+//xX89//+34njGM+ReK6H5zjETHClwvVcfBSO73FjMuThz38Gd+cch86TyFuOuPPLdgj8W1Iv71pXtD7rDqw1ZX4P1zynUWTFyvuc9anV15aWubJms5G1070bJw3xt1gsFsvzk9Rrm1ivrWUlJ1o8yvR9U2Mj2+pGSjnfZ9Z87ur8mnqxTF6ruhC+VeKjLl3Ta1hmRDYRHOW5g5Xv00Qr88nKPG46k7A9qTOlcs+anGOsy+myKnS3Pq2e/1tdxSxd9jwtyskLVEoh5vXXLgqits6jvvoaQEmIBCjXYxqDmkqks0kUOgSug+PE3HbbGe5/2QOcObODUjG///nPct/tF9na2OBoMGLU7xMlChwfIQKuXtnFcwMCv0MUDtIVeNGE0RjHFXQ6AegYR4XoOGFno8NrHriPqLPBEwNF3G2x0fWJiVE4IJpFeKy61jrW8baXz6nrP+UIiHWfx5NMqViUW5+uafRFLjcW4nYVzebYNp2La7FYLBaL5cXLGsK2ciRnWKw2kqtnZ/muCutdnecqMbgqDLZJCN5a13bC68gbkMvC8uo+51JWyi1vR2Sq8yojcj2vX1aHddLlvOmzMspzXI2hyKdo6KblmMK7y6wWhot9jIvHV7FIVva6Zt+tELea+Tx2Ux/JH8v1hHRrn1J+elacdiRSOugYpNOh1zvLUbvH2Y02L7vvIi+96yVsb58hTuDxxx/jZS+7n7PdNj3X5co0JI4TpOuRoBkMx4yVpt/v4zgOfhAQRdPctWqESFdjHB2NabV6dAKX+++9i6EbsEEXeeEVhN0Oh0oTaz3TtatDW4vt3FzUrtvHlr1Hls1nblKOKS/js7vkvNnZs1RNBi9Xp5vn2eAalgnqRZr6drfi1mKxWG4eQkqQMl2l+NnGTkGxNGA9YauZG72I1ARG5EWAzEztFZmRzv6cG/6LrXGq5TZZ5Gn1Sp2rvq8amflzQcw9QbP9MskMyUUaUzm1NTYIsXx7LPNaNPW4ZfWtFp5WfFFn0Kj5l0IY7oUAgXmhqSqJwWNZX7e0vPReL45nPUmmW77MvlFgfrmZDmlNYVXg+ecqdR7WRcam65HG9i/fv/R3Ofud3M/FwFC5v5WvI+1/WX1Erj8WPXfV+5bLLOszUqaLQQgxq4JEMdvfVWvQ1dmq6eMvQAt0EhKIiJaXcO5slzOvehn339aBeJ+eG3N04xKt3jab3Tbnz+5w4cwO491d8D2mwwQZpSHJjoDA95BSIKRgGk3RWpMoRRLFxNMJruuy0evSH/SJhWKqI8ZacjSOSVptpJQMpxFJ4IE2hKkLEHLewRoHyjcdKKube55PW/aUZ5/L6wwUohMWoxfGYaE6sVruA7URD1oXe7ZI721TD2od878FIv256j1Vu1xW/hqy+tWWZ7FYLJabQjrK/WzXAgAdxwjXbTa2annR0ljYSqHT+ZpzI232hc6JT60R0ln5DCyEYY2nqZiavIFkTq/RJqO2Um5Tj0i6oEl5Tm5W90yIlfOq85yZjK/yXFGT5/o4xnXpMirMzVlRSjc/fyYAahzAzT3Zyw3ORdtS+pnrWLOfQsiFIMgnLl2CyVOXlzLlQYjlaECVPpdJAKdQbr033NSmpmstpksfK4UQMjfgUD8oUz5WHLxY/C4cOS959uim9REKKQQCTV4SaQGOcBBS4KHwkwF6co2LZz1ip83B/mXObfjEoz5xlHAYJ7zs/vs5t7PDZDQiUgnBRofxuI+IYkgi2q0WaM1g1EcLged7eIFPEkZIIel1NkiiiGF/SJTERNJhpDUTLfBam4h2By1cXK/NSEv0rI3KYxT50O0moeOnEdqbP1aOwMjeJ6bBLZkrv/BNeSCO5aJ61btO59PMBH9xsKWOqsfW/O4RpAumqUo75M8pDhqm1K0sf9J7ZLFYLBaL5YVNY2GbN6JM3s3m868yYdh8yKXOs1msX7Nzm1InFk0ekbLhehyjy+TJSZKkcA3l+ZHPKEbbtX6V1+NQF069MHRN3tNiWlN+hXzFzW+7+vD6unpnXithSLcIw14Vop7/rnzt+Xm2hfQzoeyRbb6eiap8W89UsU7QSQR6hKfGxMNd+teeRI+uc+fFM2x2A6RImE4OOHtmi4P9feJwwlavw2a7jUYzmU7Z8H063Q4qilBasXPuLNJxODw6YjQe0wlaeI6DCmOElLTdABlBZ3ObrobdwYgw1jhaopE4scbzJFEWVvIMkw+Tz9rXtMhZk1Dmsmc3O8+ErvmuPFWgWRjv8YfATe9DTTIPg7dYLBaLxWJ5JlhrVeQ6o3lhvDSc55haPOsUvUQsUBDWdec28YLmK1hOVmdkrvpcV+dnglOdcwrF8MAV7V04t6H4Nbed+Zi5/NIxUU438+A2aJa8l28Z1cjfZm1eNzhirod5QKUu33Koev6Y6TypFQ5Rev5M0mpk6rOeJ9dIFK4OSYa7PP3k7xHuPoI/2eX2Wzb40i/9Uh7/4hM8feUqd915D7fdeguDw0OUiomimMRPUEqxsbFB1/MgitN3gOsQq4QwnKIEdHpdAtcjDiMSoUGm98uTHiQarRS+kMSxQoURIlK4nsbVqf981SygdaYK1LVvk7TP1vNuuv/L0i7S5AdWlpbSqC66tHJ30/6+rM4Wi8ViefEinge7YliefZqHIue8EnXGyjwgdIVhkgtCXp6uxpCvGpenayhl2a8SwXmxu0w4NCHvqanb2qYu9PCk197UA9w0DLmpaG2Wrnid9ddjEBfz/lhM00R419WveF5NTdYaRFnuVcv3sXwYax2mfriqbwqh0+m1IhW2ijSsd7Eneyp8HD2B8S6j608w2f0irfCQ85s+9915G/2jQw4GY7zuNhfvuItuIPGkxPdcWp5k//p12u02ajIhDiN8KXE7bSZRiPQ8XCFIlKLdbpPEMWEcsb29Tdv3CYcDHCEYxwnhJERKies5REKgUQgHEp2kUSAnEK6r+mit53RJBEc+jdba6N2tm1aQz6cSniuq+zabvL11VN4fWSj6MTDVX8/m2WbTCLLvKoOjK/KDZ8MHb7FYLJbnHHYfW0sDjrXdT11o8DKhkxlmQgikEDmj+XhlllKuPH9ZHlXBVp/nKuoExDJR2HzeapF10pmM3ebtW59mXRG3LJy2HDabN9QXZWTDIuXypOFYml++7xkFcO21N/HGm+9jue71558OdeWY+lnheoVAI4mFgxaCBInS6bY56UJdMZ6UoBNcNWVy8CTh/hdpqT7nei6vvO927rzjVh598hL9wYiXvea1jKcxThLjCoiiEFe4+L7PVGtarTZxogjDKa6YzalNFEEQ4HseZ3Z28F2PS5cuEScxo6li+8wZxuMRRAkd1+NgMGA8mhLJKULHxFITS40q6VpTH6trr5N6CeuepXw52bZmqzB5XY3nNXgnl+uQ/67YD0hHNlbUK/9MlPNZ1Ht2TBRD6Juw9BmxnlyLxWKxWCxLWCsUGcwG3OJYc89hndesbJCZ5qpVz62WXee9KOeXX8HWZAAuM7RWec+OS134qSnNKmFZFlgmgzlJkqWGcJp2/tvKOpu+k1JWvE7LBhry935R58WK1NVzTaGUutSG2WrCTcRtNb+6a1tuix9vKyrT+XXewFV5Lh1UQc+CjCVKCBItZ+HHAleCowVCTfCEQg2us/f4pxjtPc3ZFtz78vu55+47UVpxdHTEbbfeikTjew7RdISWgnY7QGuQQhDHMYOjQ9R4AklM13XQCQwHQ9q+TxAE7O/u4bkevucBMBqPSVDsHhyihCCMEsI4Ieht43S6RIGHdgW4Ep0svID5gZFl7WoSteu0bV05qwZultE0oqAuX5PHd1UZddNDTFMt6gYPFuWRilqhjOmq+RXfd6b2rGuBmzlYZLFYLC960sUcnu1aWCyNWVvY5qmGO4JJNCil5t6KNNS2uFptPq/y6H+zepjLNdHEEEo9DuUyTlfA5gV1Zshlx+rm85br0kQUmfLJC8ayYb48LLbe8F0mJEze17r65uuRtUf6D5jvsbrevbgZgw/l/MtettPOf9nnjDrhna+fIff5XFqFnLWuwiHBI0FEA7quRk0GXH7k/0UOLnPrpstt53fY3tpgEidcuXIZgSBwBYGImQymeDJBxYpOO0BKQRhF83vqei5KK5RSTEYThNb4jstGu8N4NGZweEi73UE6kiSOGU00rY0uSkEyHOELh3arzdTziNBoFEpXV6hu0p7r3LNlIrkpq57txqzh+W2MIeAhey+lRTYdyFujPaBgNGUDWlXhrQvVu1nPmsVisVgWaKWeG3vY3iREADigR0sSFf743OQKWU7MsUKR647VCczjzK+8GYZL8/wWC5/cbFFUKdkwP7KMybtal27VvNw6L7Xxuld4spa1VX7ecBMvc75IIXNb/cyWNjJ6nEqUvUsnpVYY6hXtVnvuemWvEirL+sDy50nPJO3sp05wdUhbRLTkEHdyxN7TjzO98jm2OOK2s7dz+63nka7LE09d4mB/n7vvuYe93RuER5pEJfQ2N1BoptOQ7lYP13Xn9ZFCEivFdDLB9T2CVhtPOITDCePBkM2NHlI6PH31Mm4Q4LkeUaiI4wSpJL7jMDw4ZOIJhHcbfiBouz6TqNk+y/lnIvtpigxpStN7Wy6z7tltnN8p1au+gMwDnraNnO2lrKm+M8o1Mwbtm975SqFZtH/2fqi840R1OOuZfjdbLBbLi44XsqjtQe8DAnkWpr+UHpv+Pxp9NEugQScJOo5Ba4SUCN+34vY5zqkI21XzR7Pta/JG5CJocJGuqeewTBaeuqq+61KuQ1OB3oS8IT1fcKUkQJaJVhPLPHnZd2XveV27NxW2pvo2FQmmkMt8HgthmrnQF97aipmbxj9W8suXs5gjaJqLu1oQmQdjUm9yE4/tqr607Lz8PRRCoLJrW1K3/PdZpKmuvJFTQSt0knrDdYKrInw9JUiGqKMr7F9/nPHuZc66E9ToiAtnX0632yJWiv3+gJe/6tVMhgMCT+LpGKViWq0Wt5w7x0avi45DRkeHaCAMI0AT+D5apPc5nEzx/IDJeETgeQwHQ1zPY3Njk0gl6ZZEYYzUGjWZol2fjaBLu7NB5Hn0w4hET0EG6RU3eFxE2hgg8v1kWQs2yC/fqjX3t2k0xirKns7s3HJo8LLpDCvLyEdjyNxg0+x5Wbx3y3s0i9qnySTi8++b2r8p6ZeVulksFovl5qCjOBV1zxXi+FQXkPJ3NPd99TDN7+XpseSdsDcK6CsP2U/Q3z9i72o6NUorBWGICPzTqYDlptBc2JqOzWyLgpFYTmP0RojKdqKZtBClz/nzjN5HXTSsFiKRuRgqZVQoV+dD3PJZGjdurR4yUfY8F+prSLvMSFs177eJ9zZfh7yozcjEbj4fs7A1G5s6UQsPtzRfp0kAr0IIka7UO7uNiz6S3SiZE26abLOXrO5ZVTIzex5JLcrbOTUTuqbw8fR6Zr/P2k3pUp8zrNqdhXjmxUhdu5vmOZaOIHRZsorUA6uTdKVjASon+rTKUum01RwHR4cEekpbDVBHlxntPcXR5UfpejFqeJ0kGnHHnS/l9pfewWAccunpp7l48SI7O1tcnY7obW6ytdEljBI6nQ7TKGSyO0bohNF0gnAdNrc3aWmBmk6JoxBXOkx0gvBc0JqxSghRtFyHyTQmjmOcWJEkCRubmwStFkmimCaaWCUkGoRwEcIxPtvm9kyvHJEOlGRdX4j8wIcgXZBMFESkEKKwf+y8/xnu0Tz97PdsMKIsSItdcXbebPBvWb/I8q87XiuSta7Ugdkqxtnh7NQ0n9mgiFak0RLMnves9oYBr/J1ZXktqf/i10w4l+K/1Owrkc7ZNvuFLRaLxXJSnnOiFnKRe6fDxdaYv3XbfyuaDrfB5ybbfDHs0ZIJly9LfvzDL8lX4hRrYLkZNN/uZ8WiQZmgiWvuecGLlxlPxYwqn/PGZPYzMypFKZ3If19Kk3ValfqmCgXPjSeRr9HiIvLGU5Pw12WisnBqA0/KqpDkVdSFIC/zmuTFZzWdsZRUI8z+SVFdTKlu0RgTBaFO5pmaCcj56EV++CM1grM7LzLPrlh4jeZe4JlQznIvDmDkL67eU16cAzgbpMnOzTyr5WsyXdsJPLtln3N5UChNMxMH8zm0Yi5slVJIIXCFQKJRWpGoCF+N0YeXefqxzxBefwQnPKDlxPibLfZHu9xx50vZuXgb/UnI/uEBQmhuOX+Wy5efot/v43ke/fGYzd4GO0EAUtBqdwk8yeHBHtJ1CFotpodHRMMBnpa40qPbajMYjtCuQ4hGtnxky2d0dAQaOoGHBBSaRChG4ZhRpElED1SClg5C+qRvKbV6AErP7tu8r8xarCBsmd1PMW/f7Fi+g5tkXVmMVjz5S57lLJUs9YHqu6d6zPROyd6L5TKq/Sq77izsTCBl/n0wE7PS5N02Pd+qehsqAzLFc+eDY8UmTttPZc9aek4qksXsnlksFovltNCJes6J2pvB+97/iPHP8StaB7yidQDAr99zhnY3YTx00i9nC1tanrucePGoinA7xmjGqpDm8vfLQpaXekhrhOgqr2hdfnNPdelYPnR0WXhqPl0Tr4ypHdbFJGrzodDHwXGcRT7K7MEx1WNV+KZg5iTOD0QwM6p1KtIyU1nkw5RLgqLSfvM6LIzpJtSny1vh1UNN81vnflZErBAk8/bLRL2LlnK2P20qWhyhcB1Q0RSBwtUCR0yIR9e4+vjnObr0KNGNJ+noIdsdh812m/HhHlvtgFe8/GV4nR43buxy5coVbrnlFrROvf1RFJEkCVJKjo6OaAUBSqRi8eyZLQCSJEHHEdPplMDz2Wx36R8NGIyHSN+ju72JCkMOru+StCe0pIMjZtuDzRagmkzHxElCp7OBs7lF1OlwpAFUYTAj3zrVds8WT0v/K3oKZz/XEEynGRZreq+dvH82SVccHlmUnT8vl3RVGTRbI8H07i5H5kgpUVnkjSjX3wpbi8ViOTU0acjvc5ZmNmYT2t1kZZqvftseZz98B0896iAcB3GC9TgszwwnmmN7onQ5A2rZOaaw2/KxVaG5i+/MutsksJqIDqFF5flap53KonbZucs8v3Vl14rxGtaZ15wvu2CQGmZxnrTvVDxiAEIXt92cOZxM7VT2ls39Pg3a3VS/qmFdbndDpZfkV81zBfMw0IVZr2cFawToWQg3DrH0SWMVYhwSpA5x9JSOjAlQhMMBh1ce5srD/4XB9ac50/a463yL4d4+XekSDkOUSviS176WC+dvIRIOjz/+BL1ejyAI6Pf7TCYTPM+j3W7T7XZxpMNgMCDoBJw7f5Zut8uwdcBwL6HbbtM5IxkdHDAYjfCCgACNG/gILfCFZKvbw3NdVBKjkgStBJ1ul7NnzzINJxzs73M0iognI3QUIV2N44jUX6uLC12Y58Xrhbid/43SLPZCTu/p6QY9Nb/HTUL2G/cXsRjmKJVSSSiEND/T+WPCdG6zOpqeNaUSo3e7/KyJ2eBMUXBbUWuxWCynhgYdhs/pVZB1FCP8Z8hrquHzn9xkMAgQrotw3dPS1JabyLGFbXnBo3m6LC41l25VvnVGmmlho/I5dfNZK3PeaCZqV9W1coxqu+Trvso4rfM4Lyt/Vb5N88l/Lm6tIyp7zi6jvE1RkzKbLp4jdNbGi/RKzAS0KKUzCM/q72Lm9V0+CGAWRMW8cg7SxfHygRrKwmGVd79w7mxObeap1fMQ+1m5Qs1CdxWSJBW1eoqvJwR6ghcPmOxfY3i4y96Vpzm68gh++DQXfYEb9Un6Dltth2kYEirNS+6+hzvve4D+OOTKtWskScLdd9/Nzs4OAP1+n93d3YXXVgi2d7bxWwHj8QTPkTiOQxiGRNOQnnDwPA98F6SDVjFHoyE7O9v4QUCiEjzPYzQMCeMp7VbAYf+Iw6NDhNa4jsR3fGJAaYUjQSUxWjb1gov5zIPF96Lw/TpOWFMZx10cyvTeWBXJUZdPXbq6aQblsusiRJrMbV32Tq9Lm/3Mpq2UBX7Vi1wOyrdYLBbLsXgeiNrT5p/8nXv5/3z0s5y/OC0c10rwhc9s8PF/egef+e0tjvoewkYgP29YKxR5lbGUGtkU5n8ZjXVRFISrjPlyuXUGV6P8btJoi8lYbOIBrRMzTc9rYkA2NYCXHaurQ+WzITS74vVh9YBGpaz5nNHZrFGt034kiyIkK69sHOdy5ySdoFrnonGdFScy5TSfy1t/vWt5a0lnkmaLPi0iv9N2cCTpKsI6xhUCnYyROsRTYwI9gvEu15/4AtHhdaaHu0SjAefckI4vGRzsIaWD394iihO047Gxs819r/4yWtu3cHD1Etdv3KDVChiNRnQ6HXzfZ2NjgzhOF3q68847GQ4GhNMwDTkOPNCaJEmIoggZR4QkTPp93HaHiUoYDAdIIZjqhMAPiKeQqBjR9pGuIELhBQFSCEScXlesJUorJtMxsqWRcnEfFm2/eAaz/pAOwuTvXTawY4gEUVUJVw7ZT/v8crGWvRtN78RV7w3TAF4+XT5NufzFOasFYBaSXx5MzNpu3XDrpmJfzLYQWj24ZxK1zUS2xWKxWJbwIhS1AL//qQ2+57texV/9/36W3kYafn3jasDP/pOX8v/8wnmi0IYdPx858RzbPHr+/wqvSTZX6pgCI29c1nl1zUYUWcGFvKrpGtZriUY6qSe4SR614bZrlFMXuruu2JqfO/+v3sO8jtifme6LTOf+ydl8XqVmSzhJpJMOqSVJUlnBuFC/BvU47vUvSijWua6jrLqH5nro1EOt0+BZJdJ5qEJqVDzFFQmOUIh4TEtPaDkx8XiXwY0vcnjlcdywTzscMrj2Rba6HbquS7fdhrCD7wUE3R5HuweIIOBLv/R1dM7cwrX+kM89/ChSa3Z2doiiiOvXr3P27FmUUnieRxRFXL58GUdKRoMhbuDiupLReIzjuCilSKIYr9MldhwUCZ3tHhMVouOEBE2iFZ2NDaZhyHA0JEoSPOnQbbXotgKIYpLJmGgcIVwFKkaQ4EiBg5gvMJa1m1IaKUVBEGXeSVM4bno88+zXe12XPW+mQRxynvlV89lN22U1HbyrhPWSrmRcSlVTsnnwpXjs+O+Gdd9zJq9yVgfQdq6TxWKxnBCdKIjjF52ozfjCpzf4jq/7ivnfF6UEk5H92/J85kTCtsxNcoZWy1khSIzhfNB4zlxjT2IulDFvzJ7mYjInxSTubn555ZDd9Y3heTtKke7yocV8gSitFI7QoBVaJ7iOQwKV7XOM+dbMODwt0uvUld+bPB3NQ5HFbJVygRKzOcNakYRT2j6IeIqIJnTllCDcY/fyo1x/6lHceEBLhojpgGQ85JbtFtPRkEi4RLJNu71BrDQH/RHa9bnz3vvYOn+OiYp46PHHkJ7Lma2zjEYjoiii1+sxmUyI43TfWtd1GY/HbG9tcf78eQ4HR4zHYzZ6HSbTCWfOnKEjJV6U0HIcROCgfMnoSBJGIUQRB0cDwjgC6RIlCi1m3lvGhOMx8WiIkyRIN6DlesSexxiN0hFCunP1k3U3KbOBLD2fA062crLO35fsDSFmLSxmfaV4P8r92XTPVnlb88dNUQ/lMPX8OeU8TPUq5G/qP8d4R+U9z8edY1s/2NiUogf6mXqnWSwWywsKNfvb8iIWtHnmKx5bXhCcqscWONUpT3Xeg3IoX9kArDV4DHU7qWe1LnyvUGxDT1wTY/M4c/eWhoWvmddqisJ2nfxMIedKCLSQs3BPgdAaKQSOSEcaBSCTOA1NnW05lW3HU1/u6vo0M/y10TBP+wM5z+DpDiykOm0hvgCkBN9x0NM+LSdG6AnDa09y7cnPEA33kONDfCdCEuKJBAIXgWAwGLLV6SEFxHGMEA6DQZ+dWy5w1113EkUTrl5/mjNnetx27m5uPP00R4eHtNttwjDkkUce4cyZM4zHY5Ikod1uozc35+HgjiPwPJcJMJlMUErRky6tICBRIdcvX0WOJmy4HjKKaeMQT0NioUBIwjiin4yRZyS9zQ2EI2kJyXA4IY4idJIghEYKEEKDUMXA20zUzv4Xmat7vvKYAhyyMHo9v1fpDVwmDJcNGpnue9YnV3ltV3tNV7NIn22JUyqrXLZe/j6aP08Nq2F6/kzX3PyyMuMrH/afPKcGES0Wi+U5iaawfc+LYSsfy4uXE3ts1w2HPUn+5XLWWUApCzA0ndLMAKvfnmaVV7KJAXvcea2n8d1pnjNTBumvhvDjtfqIECBk6pUU4Ogs6BikTsVcN/DQKmGkBLHjEkVx6tkVpHNNBZAFL4uFN27lZRxzACBzamXiKKcvyKuCmd4qnjur6fxzJfv8CZIsql6gkTqGeEzbSXCTEVefepjrj32WXnidcf8GLVdDIJlOB2jPRSUa32+xc/4icRQRh2MEEu0Itra2+Kqv/Ap6W112+wcMjq7z0jsvggrp9boIIAgCkiQhSdKFnsIwJAgCoiiajUEIOp0OWidcu3adcT/13o4nE7TrEwpBMh3iJzEtP8B3A5JEMEUh/DYRklBDyw2IHUUwWwVRIJhMJkwmExIxImxPZjvzzAa4SqKxLCzT+aL5tsyFHM2FrGSh4czvn6Ko1aXvs/fFPNvCnTXO0635zhSWbKpPPp+KN3dRiUr958fm/y2nnFeTehXON4r2dfNJn2uraS0Wi8WMVjp9SWZ/k18g6xEI91QDTS0vQE7UQzIjLG+sOCINCWVu3MnUXzI3PiHzhjQt4zjfldPMjT+TqCmLWG3wOuaN58wbNTOEtdapeVwT0mEK3itffmb8NuWknuYmHGv+cabY5qIydzx/TItZm+bFXul3DYkW4LioJMKXDjJStLTASSZ0vSl33bKJ0FN658/zu1/YY5ho4gRarqTrC8LpCOX6HCQusbsBicZRCq0VINJQVV29P9nGL6UGWXjcIA3hEXImtdPrXnj8im0YpwHVqRDVs7B4DULPztcSgUKKGFAkMm0FJUALjZAgUaATEiXQYgOtEhwVEogpjhrg6wEHlx/j6PpTDA+uIfpXaTkRO9sdDg73ODoYs721QTid4jseahoTTsY4aDypCToBietx3wMPEHsee8MhDz32KOfOn+HGlUsEboAvA1xHoJKYwPM4u7ON53u0fI9Wu4XvB4zGIw6PjnBch04nmO395tBudwiCFqMb+2gErhYEbhfXcel2e7iOz3gSMRyPORqOcYVESEmopySjMYeDMUJrRDTFdVxavoNyJKEQCOmjtZPbRzlVPvPdjTMvrM7ubt77mN5PpVU67CE0SuvZ59n9rAnvTcNzSyG/Ir9g2EJwS+EYB8xWzT+vi7RIjxfFdZpOZZc165OGDp7rm4syS++vQlU0ZXFcV995+hWs917KrnFx34SQs/ttsVgsFiD9uxfF6GT1Hq3PS+wUFMsK1hK2qwwRMRN6YraKZua10HpmXs2NQk26N8ex612ozzpzOBslEzUCuJAkHwi6nJwTs7YuWouaNCdrpFVz80yc3POui7qhfCwbPdRyaf00ILTClwlJHCLiiEBoznXbjPf69Hef4My9L+POO3oEGx1uXLrKk4MjYiW5pbfBA3deJA5bDHD5r49eZZR4OHi4+dVz5wMeJUT17maiVWSdWghEFsY6y0prhRCydJaeidnMd5wellmYaHqhaToStEhTKiFQQqbimxgVx7hC4XsB0/GIllC05Bg9us7oxhNcv/ooo/1L9Hzw+7u09ZQtv82NG1fQStHyfXZv7COU5sLZc4z6fVQY47d8NBCphKCzQefMNrEjGU/H3H7HHdx3710Mjw4ZHA5AKzzXxfd9er0ew+EQ13WJoogoDInCEI0kUdAfDohVlySckIQRahoRjccQxwjXQ+EwDhXT6YDBJCJotRlPpoRRjHAlYraCsQwjtFJ4rU46l1coVBwxFYBO51XHClRu3mXFszjr0qnXvtjv8qPZ2V6pWmsc6czDyZVSKKVSD2oh39l8XZF7ZvQs9Fdk2zDNBnpyfaXJ3FzTd6WjpXdILjRe5FYPb4AQVKSowVd9akbFqpDsoqe9XCMxr47FYrFYUnQU2zBjy4ueU/Xp14WeVhdWMou4m0E5TPgktlBxyxBRCCddFmprMhpPm2diIZVTK2PmnV6E7Na3m0tIQIx2RjjJhLaT8KoHHuDG0y3+00MP8/ijISRn2Nk+ohXtc9aPefjRJ9mIztK9s4fwE4giAjWi63VJlEPqqa3bDqhQyaXXn5/HmFIeYFmIWk/PvITMVnQWCiES5mGV6HShJAAkGonAwdUCRwlEonGUj0uCE03oqj7jwxsM+te59sUv0L/+RVpMCAiJZUx0dEC310PHaajv7t4eXcfh/JmzeK5LIF2crmaY9EFItAMbOzvsXLyVXq/HOArZ3d3ltlsvEE9izp89T8drs7u7T7/fnwuTKIoYj8ez+bROuu1PkiAdj8D3aXk+0yQCmXpfHekyjRVKJ4RxRIxCug5ToRmNBkymIX6rBUCoYjzHxW/5eEoTC0EUxcQ6RMcxoeMStaKF19IwT7SC2XlZup/ZfdRzXVieitBokC834JFFduS/WyZu1yOrJFTnolbjRU7jOS6L8OpzVF/uqoX2qvVb3BeLxfIiQ8/eGVFUfAUIwPPSt4N8EXvx9Cx6LIpnkWgWy4ubUw9Wz2+zUj9PdR1DZfULa5mhll8hublBl6/jIp+srLLBWjZ4TasnryxRmBOaDL8m8+5OwjMR5gwgJKnHEhae01J2bZHQ0n26XUU02md4eI1k0sVjn4Mbj9LyXsLORodkeIMzzpR7X3EXn/ud/8RhdJ3LO4okjhG9s/QcwVSNSBKJEK0G9V4tXNJ6564BPQ9xXpAO5LhaIrRAi3SlX41AaY0WCemCRwlaSBLRSiMBtMDR4CqFqxROHNGWAhFFTI6ucHDt/2X36uPIZILu73GGEBEO8aXGFbC93WM0GjMKI8aTCa2ZyOx1OiRRTDybExt6E7xWi0E05o5778FptRmPx+wdHdHyAzqtNpPhCF9IxuN0BeRsfm0YhnS7XZJZyFO320VKyaVLV+gfHOJ5Lsl0CiRsdTsMBgMEAt91icMILUE7kv54hJ5AELRQUhCqhPF4DNJF+i5xrBBKEWuN44LvSJAOrusihSBO4rWiDExb/WTTC/LTK9Kw5Oqc3aIorQo4Uz+ZDecV8iiXv/4c/UKqXD1yvzeJPjnG875akGdtY85j/fUA6vOzWCwvXPRskcDqF8B0mk43cZ00gsp9ca1uq+MEksSubGyx5Lgps7Dzhp+qfeCaGqJNQ4zNojAvasvzH5eXWTU8C57feVh11XNhWpilqe1Ynp9ZV99lC87UpVsX01zRU8u/5vYX8tOaeHQE6gYvvf02nhoc8NAjv8Nj3ZDhfh+iIS+/917ufsnt6OmQK/Iyw+EN9OSA7nbAl7ziLsbjCdcngkeP+jgCXNdBq+LWQPWY+1R5Feza+ucvViagBVowCzF2ZmGxLggFJKTb+DgIrXFQeCrGVzF+MkFGQ46uX+HKE48x3PsiHS7hqBEXzp5hOB4TT0Z0Wi6B57K/t884dIhixcZWjyiK2NjcACHptTpc2b+cCn7AC3wSAa/4si/jwkvuYP/oiCs3rrF9ZoednTNpOi3oH/a5fuM6WsBwOExDdR0Hx3FQStFqtej3+4xGIybjKS0/AAlhOEWQoPwAlSjCyQQVhnSki+NJ4iRCRTGJ1niejxAO0/GEIAiYTiOGgwEdKXCFg99u0+l08R3F4OiIyWTC1A/nq2A3d+gVRVJ5vuj8uSsJ2vJq29kgnWlLINNPKRZRAsvCkNf34urSP8g3RhPvclOOM7VhWV7NniOzqK3z+FoslhcAeomoLSWch99qjXCcF64HV+t0XYEkSfeftVEsFkuFUxe2pnCzahowCce82KiGeVbLyJ+7KqQtL27Lacrn1q0gp7Wee6eyFGWPrYmThiLn2yMbKFh2vaZFvdYpK5+H6bs81bbT858rPTNpylz+kCQRzDxlvucyONgn6j9JdHub0f41PCK6nmB3cMTFc+fZ7m6hY4kjHISERx99iDCecObcFt1uC8/3EFsdvMsTUBKlsq14qmGlxbrLSt8w/Z525fzv6XWoJN12Rsz+wCYqQkmBRqKEg8JBSg+VaKRSSKkRKkEmU1quwNVTPDXBDftce+Lz7F95jKi/Szg8pO3GdNwxkohosIurp7RbHq1WwMHBEY4bMJ5GhJHCmW2xMxwM03orRRSG9AcDzp0/z1G/z13338fLX/UaIq0YTydEcUyv18PzXDzHoeX6xFGM47iEUYhSCs/z0FozHA5RSqWCdjKh2+2yubmB4/jEcYQXuLgyLdfzXEQQMBoMUEIjlKbrB3TOpB5gLQSJ0rS7AUIIkmmMStJ5rXESMz46YjKZ4rsaR0O70yP0POJ5N9K5xZSoiNK0T6tslvO8nwmR3js13z4m6/v57ZQW0xCKfV43diSanpWmz2i+Lxberbm5vdlAm1JpiLsQAnmMd0D5Gc6H7R/3vVJXznHzWjaYZ7FYnv/oeP0FkHQcQ5IgguCFE+CRBbXFMSTZwpcWi6WOxsJ2HQNs1XmpPWJ6OMtCKpuXmD+3atAs8yYW5nMZjpnq2Nhemilbo8FpqEuTOpvOM4mwunRN8q3zxDa5x6u8uOW61oUupoZ3/ryFAHEcSZIkTKcTbly/yuiJ3+MlF3wOr9/glu0zqEjx5GNPcn7nFhzps9HZZDpO2Nw5yyR6CIVASwfhuhzuH6JabVyvhQhdhHRm4cPVQY+8d7+pBy237i75BbMyL17a7zSxVCiR9nqNg9akW+5IiYwVTGJ8EdPzIlw1JpkccHjlMS499lmS4TU2goQNf0KsB3QCn2QaM5lMwJWp59UP6A/HHA4mbG2fIQpHJFKQaOhtbnKwv5+Ku8GAaRiitCZMYrbPneVLXvs6pknCeDLmxu4uL3npS4ijiP29Pc7snCFKFInSnD13gaP+PhubGwRBgFKK6XRKq9Wi0+lw7dq1xXMmJdM4otUOOH92Bz2dcn00IBHgtQIkIjVaktQz6iDIVsoWCMajMUQJnXYLT2qiOMaVqYdY6wg1Cx2eCzdhXsrN/FwUQ4gXYeUzj6dI758UspBn7XumulKaIU2+3FxNat5lyyIyFn0zCzdeeGsXC0iJ+aBKZRG0mjLK+Zd/zwYHysfX4bRE8WnlY7FYnoPMvJLHQev03BdCWLJOFMSxDTW2WNbgRML2uCPmJpskM8iyf8WwutV1O51FWBb1q0yTrRGNZa9Dnaht4ikun5s3JFfXuSrST9P4O+7AxtJ0BqM+SRIcx8+OEIYjLtyyQ6vlIaXk3NmzXHrqGqNhiN4Cz5FAjHRdpjH8zu9+ijBJ6PZ6KJXgCsE4inCFRCcaKQRqibgoivFGl0JdP53nQ7rdSzbfUcxWP3ZUSBArAh3hiCluPEYfPMXu9ae49tTDBHLCeTcmdge0SAh8RSIVk8kR0VTiuR5CC6ZhTBT2mUwjeptbRIlGOC6bG5voZEIYR+m8Xq1xPA9PCrx2QHujyyte/Sqclk8YKx5//AkuXryVMzs7BL7H5StXODo6otvdZDAaEU0noGPCMCGOY3zfp9PpMJ1OiaKIc+fOcWN3l/EkxPUjtNCEUUR/NEDGCeMwBBUTBD5SaWKlFqtFy3RhqMlkSqvTod3t4gUqFZg6xnM9pHTx/QBXuIwGA8LJhNCJFvv1iWK7Q/oM5b2sWeh0UWTmhW52L5s+OwuBfByaLZ5kiIAQUFwoaiFyRbYS85rzUvNlmKI/sn/100sKV8FJ2qVJflbcWiwvQDToMDxZREaSwPNV2GpSr2xoF4OyWI5DY2Hb1ABrismDmV94arHkcNE4e6aMmUbey+zfCjGpRdWXZArDkzLdl9I0569JvZqEgdeds045TdMsyy9rO1OemRARQtDuuJztbDIO+whH0Gp32N89wvcDOp0Wna5HGPaRUjAZTZhOQyTgolDhhG7gkkQJXc+jJdL9ZLU4XgS++XqLf3gWbb8YqNFKI4ULWqIBqTUuES0nQg93CZIRarjHjUuPMLz2MB1Xsa1G+DpmuLuLUCGjJCJ0XYQzWzFZC9pBi9GwjxQS13VpIfEDn+E4ZGOjR6xilIAgCOhKwc7mFuPxhEDA7uE+9952K+dvu5VWr8ujn/0Ck8mUaDJlPBiyddtF/CDg+o09htMIx0m3BOq22yRxPBe2SZIghGA0GuH7fiowpUQ7ktF4SH8UITxoSUmsE3zXRYoEEkVUGGJQxBJkOyAWMBgPQEt63S4iUYSTMeNogutN8R2NKwXS83BdF+U6CClTj68wh+1m96+4cNR8MgGLd03+u6phZHy+n4F5TuV3jC7Uc/FTQLpNb9ayhqqt+w5tGjVSZD1RvboOVPJrJrAtFsvzCZ0kJxO1z2c0sz1o7ZY9FstxaWzhy0aT8ZsZMhqNphRmIiBdW0XnZWz13JuwSJI5r6rwNokzWePdMGTaoFxZGKGr85o0q3/193X/WBxX3GYCYqlQNraTQEiQMhUUWik2Njt47hFPPv0EgZfelzvvvJNLX3yare0en/7Mf6fXc+gEXXx/mztvu8jVa9fpBC5CRcTTCYHX4myvxVMHYzzZRmUe1PzCX7m5lWlbp9sCpSMNqZAQohpyqnXZkzQbnGBxfUKD1N7MW5vg6BiPMU64x+jGo1x69NNE/StsBYrbOprR4S7xZMzFixfQrR0O9g4Jpy6O28JvdxlNp6hwTByGqDghisYEm5t4rmQaDomTmOlgAlKihMb10p17D/p90AotBLe+5HbO33oRv9Nid28P3/O57957SZKIVivg8OCAw4MDBsMhfqLxfMV4cMTISReNSpJ05WLP89jZ2ZlHF7RaLWIEsdB4gY+Hw3A4ZKwSpOcidcxwOMBHIAIPLQXTcIpKIGi1EVozmYYMZiP2yhW0lML1HLZ7mwStAOIpw36faDIhcqcolaBVMnuBFCMX8vNE54NGjTVX2UNYl2Kd5yqXdt6dSp5jUUy3eO5TOZvOE9aLUOTs7HnUSyrwU+FnvlDTlJH8YED+nZMtmnXSObbHN1aze3oaeVkslucsmmOHID+f0YkCrdFRzOlGulgsLz7WCEU2PGw572IWZml6JDPhkJptqfdSUd2yJvVuKZROhXRqTFUNsDoywyu/HU5h7mS+oCXMzMfZ9ejiuTOkkAgpZr4eNRcziPnsyrmXwTQmoLMYzPy1aYVDzm8084Y55Ly+DYV9lj5vpKI10nFy9yJti8JCSPMMdKGsLK1B2RXrkf2nNUJryOpR8a6k91ZqNRshcEiESzJzc0o1xdOKnuMQKMEwAoHDaBDyxWtPMugfcnC4y3//nX10PMJRgmScEI9H3LHV5tIXPk9ytI/X3mD7IqgkoEWfSAsUm0QyQDk+cTwLdZ0NqCghUEiUdubXmm1LpGbtpnOh5ZL0PurZ3rNZyLEUmjiJ8WTaFkqAKxReMiaIj1CHT/Hk7/8OB5cexo0HdFxNMokYHI1IJmNuOXcOESdMJxOUShASJuGYoNNGELO50SUMQ/phlC68hCScrS7c7XTp94dIBChwkPSHYzq9LmGc4LUD7nzZy/A6ba7cuMGN67tcvOUCrbaP73cQjoPScP78BQbDKTsbm7TabdRGl2gyQQD9/hGB3yYIfAb9IUJItrY32NraItKKVrfL1auXGfXHuAKESggcyWQ6ZjwZo30fEoV0XIJWm2mYMA4TlBJ0O1t02hsMj46QcUKUhHidNpNwjNdyUUlEnEyQXguHBKUjPKGICyH/eU+sQGuZPVWz53LWH/WsD8/6aTG2ouSNN/R3M7lnO3tu04eAxfOjc89UPk9VnbYwq1dadPpcivl1ZMjFZ6VnwtfJ5VCtoulAXjDWLRq1bBGs8tz0zKta3qJsno7quzWv8wvvJr24B9mgosVieeGglTqV+aTpysEK4dzcrRFPRGaXRXYOrcVymjQXtoZjqfE0M2xmRqRxz8Sc9y7zZAmDsJ2vRDq3BPO/11P2aC4bzW8aYjzPO5u/Vzo3vW6Vs1+z+Wd547n6c1FG1fuXGW6F+afZda2qdN6Tkk9fCsmcG9MrPC8n8oDnRHGWS9Vjm3nXNFJrlE5FpZYOGo3jaGQYMjja4/xZFz9osbe7x0NfeAiJYrPts9lpQzRBKBc9DTm4cYNoMiY5EIxveHzxkcdobZ9lEH8S1dpk59Y7ET0BgY8WEiUDtBRolYoGmfU1LUhmgxVypjsyA1wASudWy83ELsy9wOnfqIW4cQQ4jHFViB5c4+rjn2Hvsc/gh/tc8BLiaErPDdjsbbAZ9Lhx7TIqUSSx4uhowDicohW0O12ETBCkgncyndLt9ojimChOcD2feDLFlR4tPyCKY1p+gEDQ7XaZxjFeu8W9D7yMi7fdyo2Dfa5eu8Ztt92G4wqClp/GUijFeDwhDEM67RbbW5tEUUwUxSRxguM4nD17DoCNjQ2m0zGDQZ/xeEy73cZ1JO3A5dbz57gahThak0zG6Chio9PBF4J4GiKUwHUcUILxcEp/NMHzfFzhQhKhowTXS8OaVTp8xP7hIU48JfA9ZOARBx64DiqJ0U4CciHm8u+R9F7I2dCbeYCm6JHXgCq9DLTxmRWl/PKvn3n/N3hiF+XkizAIvVzahd8W4zt0Ub55Ma3lmLzERSFbF6GxKLvs5V7+jjEK23kC86H5oJIVthbLCwatFDqMTiu3hoOQzwJao+NksUWRxWI5VU603c/cE1oYpa+my4elztPU2CSm8NRV1M1JPekc4PK2F03PM/2+brmnPZc4CxU137OmxmiDQYEVhu/ioESomcE/CwOWQgMxKp7gOjE6HjCcHvHI5T2uXbmECmM6rQA3iVGTkPHuAZ6K2GwH+EGH7oVbUSpGqBjHcwkTxVQJ2kHAUThFHe3h924nksxWKNY40oFSVABCI6QiW9lIAFKDUOnPWRIEIg1rRqMyj64QOAJ0EiF0jFTgENGLjrj88O9x7fHPEe49zZYz4WxL4OkpXkfguwmemoJykNJhOp3i+z6u69JxHcajKa7rMRyO0i2nhEvg+YwnE6R0Uo9eoojjhKPDQ6IoAumghES4DqPJBKTgjosXeeCBB9IQ4OmU22+/HSkl+/v7czHT7fYYj8eAoN3uEIYhQkhcx0E5Du12GyFgb28XpRI6nRae7xKGIb7vcXbnLGjY2dpiOhgw2N9D6rTttFK4UuK4LlJDFEdEcYwj4fy5M7iOhyMl0VQhAw/PST3Rw/EUr73BHbfdyrS/TzydMMVhPAlRiUYEDrO5DOY+K0Q2apTzfi7ro1Uhahw0E1T6j+kZa8qy5/FmvRvSzIve6nXrDBTel+vmsU4ZN7UdLBbLs0OcblP2gkXpdP7wC/06LZZnmRMLW1gYG3WGRt4YSc/L/qvPd505VKY5nVm5dXVehmklUNN55VC9upC8dTltg60uTHD9OlZHJFada/aiz3xcUiJUMnOgKSAGFC1PocYHHN54nP7hdR658vuc29lGoYmiCBHHMB1zcP0Gm64gDNuM0QjXwfccfNfB91xagcM0ToilQ9t3cdsuo2TKKJkihY9KQhQuchaKWvxjkwBx6k/SgkQLnJlwkkqnYb5az8OPpdY4JKAThI5wRILnJIyODjjcv8rTD/2/DC8/iq8mvKQjaYuQDUcxOTrg7NltJpMh4SRGii2klPh+gFbgeR6doM1wcI3BYMhwNMT3AoKgk9ZFOGz0NtL9XVsBWgv6gwFKaaQUxElCf3eXRGu+9Mu/jHtedj+u7/H0pUsMh0Mu3nor7VaLs9tbTCYTxuMxjz76KI7jEs32rtVa4zouSZKwubkBwGg0otPp4HkumnRu7dHREf1+H6ViojBke2uLUf+I6WiMLwTJdIrjSFqOh9IQhWG6hU8gQSYIoUmiKdJxEbNoiCRJSBRI16M/HLF/0IcoIgkjEtdDOw5KSxK92M6rvn+mYjW93Q36sVgyAldMWP/NCd4D5XzK79GT5lemvAiWqawmZc/nAy8JX16XslfYilqL5YVDumDSC3RurQYdRek8WitoLZabzomEbUY5RLcYlqcr+x/mQ2bz6bK0xYVKmpdfnmN7XGOqnE9dfvlVOU3id9V84CoLn8k6htuq0Oty268StaZBgnn9ys7NBsLWUOPFd5knjXQLHFcq4skBD3/yNxhef4w2A852u6jxhOlozGQacnTtKmfaLW7b3mA8iZEqJtKKUCWoJMJ3JYHnoIFWu4MbdHBbXTw9JRkfoMQWTreFK1rE5KoAZLM0JRK0O4uqFmgksRAkIp0/K2cho0q5gMDRIQ4Rnh7jJiOGe5fZv/E01y4/wXDvKhvjXc44isBRnPF8RDyBMGKz56OTEJWEBJ6P4zjsbJ9JvagHB0gn9YRGUYTSoJVASpfBYECSJPitFoPBkE63y3g8pd8fMhyO8IOAhIijwYhur8ct589z/sIttLttrl+7xpNPPcn5ixeQQjAaDlFJzB133MF0OuXixVsRQjKZTJDSRSnF4eERjk4F7XQ6JQg8fN9DSIjjiCSJAEW/P2DQP8IRgsmgT8vz8KTElxLh+7RcF1cIDscjomlIu9MhUQpHJ6mDXKs0PHkWSeZ5PhEJwvHoBQHTKEHECZ7jIrwWrt8iFhKkCzWhuSLnrV0s6rUqsmAmanOHjIJqrn3rhdc64naZaDtNT2VlTj7NPLZ174vy96YomtOouxW0FssLDJ3Ohz31bKMY4TjNxiZvBnMPrQ05tlieSU4kbKsGTf2crEJo7yKDwvenEUpcNijrwpSb5FMWgCbhuiq/43pYjuttrqvDOuQHIore66pwyMT9KuO90nbZHFWRzrITQiElKBWSTAf0dy/hR32iwR7TwRGT8TgVc+GUbuBx510vZef8OQhHtHwXoikt3yOJQkhi0Amj4ZBJHKEHQ8bTp1GOx3TjHs696gJSKEKR7qUqHQeUmi8VJLTAURKQJDgkQqKEIBF6vpCU1hEohafBR+CqhEBPcKZ7XHvs03zx8/8dZ3rATtdhR0zodTUySVDRFBUmbG92cdCE4RTtugRdPw2rDSOm4RDP8wmnEWE8QbouFy5cZDxO59WGYYRwHFpBK93uBogTxWg0YRKGBJ0uSimGozGtjS7tXo+Xv+qV3HXvPRz1U6/qzpkznNk5w2g4TD11SvHEE08QxzEgSGaGRre7QbfbpdVqEYUhKk5XTd7c3GBzc4NpOEHrhDAMeclLbgcgDiOGgyP6Bwe4gBv4BI6DTBwII7RWSK3wXAdHCKI4xhXQCjwGozHjwREISdDpEEUxUkoSNK7r0Ol0SMYJ0XhIf3zAvtuifUv2rOhciHFxrnsTqmHGmlUD7Dr3X/kZyA8QlRdPMpa3BmUPZvaz6bNe3iqnRus3HiysCvnqu3KVKM7I3j/5hadO831osVieO+hEcXP2a9VZeM5NyHtVsWr2t856aC2WZ5o1VkUujfCvWFDkOJiNo2ZejptVj2XHV3lX1i5jyTvwNEVt2SjO9g/OvOVCFPeSXXZu3XfNvNc691OgkxhHaG5cv0o0PEINdon3rjE96hNFEVIIzp05y7mz21y8eIGz58+iojZCJ7TpooVmOpmgVUIchgSzENqg1WJTQX80QUnFZsthEIfgRCBSj6Sc+2pT0S2VRCiJlhIlU++vdCFOpgiR4LqQxFNaEvwowomOuPHFz/H0534bdfQ054KIjjdiy3GY6COSyEErcEQaHjwaR7ieQxjDZrdLHCdMVERbpwMIN27sMp2GtDtdut0eSaKYTEMOD49QGjZ3dkiUQjtp2LJwXA6HA86eP08YRty4sUt3q8f2hXOcPXeWe+6/D78VcO3R6+wfHtLb3CCOIlzPI/A92q2AMAzTFZY1+L6PUorxeEwYhjiOi+u6SFcynoyQEuIk4ujokO3tLbrdLufOnWNzc5PxaMjB7i533/ESuq0Ww8MDrj39NOFohJQSFYVpSLBSTMdjWkGA1glxOMYXCV7LQzsuSMFkFr7c6XY4HAzTuboq3RJhe3MT/E0Sx0Gr1Kub3cG690Y54LwebYq8b5TfOpEbtfnWPGemAbrTKE/P5rnXDUoWo2iaiFZzS69btzpBvKizxWJ5PpNucXOT8o5jhO+tTngqhaXloXS6/ZzFYnlWOJVQ5AXLLcG5FzQnIuZn3iQj5dkY1a+b09rgxIotWOeBLqc5SfvlvUnVhb5We4GWGZ/1ZN77nCGNZHTU5/c++Sk4OiS8dgU56eMJh3Nnz9Lr9RgM+zz68ENcu/QEG22PlgMXzp9ha6sHQhD4Pr4f4Hoem70ttFJ4jk/QaRG4HdrBNvFkgGh1cD1QjkzXrMjVKf1NoLMIVq1wBKgwoiUiHD3FCae0HY04uszBU49z+bHPc+3xz3Gurbilrbl9pwvTEBWO6AigHTCN0u1eXNdFOy7X9w7pdLv0RxH9wYCd7S10PGUymdJut7nt9pcwHk8ZjyfEiWJ7e5sgaJFoxSRJGE0iNlotDgZ9buzu0W53wHE4Gh2AK4mShOFoyFfc91X0hwO++NSTDAYDtre2COOIyWSCHo8BcN20DyilcBwXKZN0T9o4IgxDNje3CAIfgSKKpxwcHhBenzIcDkiSmO3tLb74xSfwfZ9bbjlPfzggnDpondDutEEKXN9FTRPCOCKMQ5Ioph20GQ+OcF2HdhAwjNOFquIkJkkUrXYLoRP6Rwd4fgffkyTThMB18AKPqe8zccARmkSQW7t6HtSfddKli0cZejXmVYzLyYqrD5+2qF1G+dmUUlY8sc0LLb6D6wYL67ynlexm4dmrBh3FkqGG8rZtFovlBYZ6fg9OZfNmdRTnw3csFsuzyLGF7SqPQp7q/Fpz2PJJOOn8tdMusyxqG5Wri3P6TGWctoGXeWozz212PxzHMS/6ZTh/nTmERXR6yRpAIIXEkQ7hZEL/6nW8wYCtrofXapG4kievXmbUP0LEEbed3ealF84TDw8ZXLnO9ccexfFdHNdjOo2Qjke71UFrjSNdNjY2aHd6THsT+nuKW172evDPoIRCiHRv3wUKJdVsw5d0WyJP6dSbGE9o6ynJYI8bTz/C1S/8V9TgOiIacUEOuNju4hOhRjGuBOkECL+dbmekIuJEEUXp3FfpuIwnU4ajycxLnnoxhRA4jst4NOHwqI+WgnAapcIVGI7HTBHgSvrjEQcHhziBT6vbYxKGxFrjt9t4LZ83vOlNnD1/jqOjI65cvcq9995Lv99nd3+PoNVia2uLXq/HeDzk6OiI6XSK47iEYUSr1SII2mitOTw85PAgoddp4XoucZyGCG9sbBCGU65fv46Qmk6nw+HhPp7rIDoddvf2SCZjdvd32QgCtIrxfJfNrS1EnO7d29nYQAiNShIcAQiNAsbTKZMwIfAkvXYL4XpsbfQIZcJkcMR0PGQc9dEqIptKVe89FfMfpsWjjDRdPMowIJWVvWzQ6bTnm57o/SZACGkUolkExzp55z28prrmEhpbuElZpvBui8Xy/CFdMOrmiUGtFELpbC+/U8o088yezp67FovldFlD2FZMxlOtSG2ZWi+KWsSKFmtinBuW/syMn/Jc0Gr65QbYcYzT4wu+eQ5LBhDydcvKmH2/empggfIiWPnfl4dbU0hb/S6tU37eY/b7fHxDL8SDRtMKWrSDNv1EccvZcwxGN9jr7xOHEclkSstx6Hout549xwMvfSm+inFVQn90gPRd4jhBaUnQ6rC/d8g0TFcjHPWH7O9f5TCY0rrnDEGrxUSI+crBMhts0RotZtv3oBHEuErj65iOivAnfQ6efIQrD3+O4Y0n6ahLnO1pOls+ruiRRCHT8QQVw7WjIa1OD40iGh2hkgjp+uycOUdvY4PBcITn+8RRTLvdJvBdOpvnuZGkqz9Pp1Na7TatTpurV69zNBgAgvE0RAf+fBsehKTT6XLU76NI5w1HoeLL/8BXcO6WWzg8POTKlSvceuutJErR3ejx0uBOojiae/mCIKDb7c5DkR3HIQxDBoMhW1vbSCmJ44ThaITjSDzPpdNpo5RiMBjg+z5nz+2wvbXFjb0btFsBFy7cwvDwkKeuX8V1JJPJGE8Iep0OvucTCBcdRniuRKAYj4a0Oz7SCxiFMcKd4jgRrlR4jmAwHPD0oA9JSLfl4UiBRJPEEcJNAMViAan8S0MUDpnmgFapLh5Vm2y+2vJiriswD+2HFe+f/KHaUf9q2H9ZPKZlikXqmksov0Z1Kb8s/0zMVt4JuVya7pVbG22CuU3K7z3Te8iGIlsslmWIJu/wpswErV0MymJ5btN8jq2czYPUeiacNFrljURtnKdvCm8DDcJJ811eKmlwYc5YazLxjbQeaSShymZw1jlW1mLZHNMyy8Ryfq5c4ftClrpwoO6qi3Zxeo4ApOMVDGohRLoHak1dVhmYZQoiNbs7M6FaNIYpiNvF/xKBm85pFRrNFNdRnL9li6B/K6PLj3B40GcqIAh8fL9Fx5XIaMpkMqDTCxjuHzEOx3Q22mxubc22iFFMJiHBLTuoKKblBjgKwmlM0rsNdc9XsN89z77fQekIX2hcAhICYjXFFSFCOhBrujLCjw/xJnv0Lz/CYw9/jsGNp/F0zJm2Q1cIOj6QTMFxiWOF6wdEscJ1PVzHZTgaEmuFFwQEQYvBeDjfe9Z3JCrS6dzbacQjl3cJAp/xOF1kyXEFoUrobm8xnIYMpyFjpTnXChglCSQa1w9wFbjtDpMkJkLzwCtfyX0PPECsIq7tXgOhaAc+YThFSsFkNEILGE8kURzSbbfxHAcJ+K2AcBqiVILwJI7QbPQ6M4GRpKsx+z5CSIIg4MaNXZRSHOz3SWLoj8apaEaRjEfoaIKMIrpBG6klh3sDAi+g1QbP12giglaL9sYZwjBGafDHIZ6GiYCQGM/zaTstRlFEP4ao5TEJQxxPoaMY2Z311fmeslmHS8hHiKScfJR9LtTELL+8fhb5ZyJNIx1TLnWrj5cLM5U/WzF+9j5O33c5gZ0XyOVF32bzaUW2IJTS8+d2kaQa5jyvi0jPSbMWs9Wsi62sAaRAitSVrrOGKV+WYXE/c5RKcasMbcP+LJbnN0rP9nS9iUhRee8cBx3FkCR2MM1ieR6wpsc25wLIPd+pcFkcbCT+MgOmgXAq1qH5ANzc+NR6XuU68bZqBc5yuPW6YX+mtFmZ81WHqW6nU8xk+XGdu85ynVfOdTvmy998fzNxWxS/mWc5vzq20Onqw5CG9fyX//IbXHn0ISZPfRF5tI9A0G23kQgc0j8u3SDAcx0m0xHC0fS2urTaLW6/8w4m4RQhBE89eYmjg0M86RDFY5SSOELQa/mEnst1pcH10HEq9FQCSgg810XGA5woZst1mO5d4uDaowwvf4HJtce5pedy7oxgMpqCium2AjwHhsMhV69cY2trm15vI13p1w/Y3z/EdSVnzp3DcSX9/gCBpNvroiJFu91GJYrJeMJgNCbSLsk0IooTOu0A13PwWy0uX79GLBwcv0XQBs910UlCNI3w/RZozcbGBpODPW6/43Ze95Wvx/Ecrt3YIwxDzu2cIY4jVByjAMeR6YJYUuL7HtPJBM/zOHfuXLp3bBzjOBLXdQnDCdevj9jY2KDVatHpdLhx4wYAnU6HTqdLt9ul0+nQarUYjAZIKZlOJoSDAb7jIF1wtCCJYob9IboNvkho9Vz8VocoSRDSwW97TMdTfM+nteMz7A+4NtgH0r2DHengtlokUqFl+sw4QoAUMw+7qR8XB4iaUXrJ5b8pTTPIkpdLzh4pkfu/UCtT9iscuub6LOoyF5xCzIVrzVmL946oqcu8nrn3SK7QfL2ygBGRP0cXTzK971e+8+pqv6LOFovl+cBz+yHWSkP8At5j12J5AbL2HNuFQEk/ZB7b+ilUphC04xkzNwuzV/nmkxfI4hTcyfn8Uj2fLlaUcdrXVvb0rrOVEqK6gNhkOuVgf5+nn3ySYDBgx3VpB93UW9k/wtEOrtC0/ADfdQm8gKOjPRztEGvNF69c4tz582xtb5Ncusytd97Bdm+TK09fYrB3hHQcXD3FJcKTGkdrNAKVJHgO6CRCRCM6jAiiA658/nM8+rnfxZ3sc0tXsM2AM16P6XCIJ2M6vTY6UUzHEwLP5/z582gN02nIJJziBy1a3Q6OFLTbbZIkIgpDXMcjnE5p+W2uXbuG7wfs7JxhMBozmowRUuJIcDwPv+Wzf3jI4dERt73kpSgcwumUg6M+XrvNOIyIpmNanS4HwyPcVsArXvUqOr0uR4MjDg72ue222zh/5gyT0YTxaMTR0RF+u0WiEuI4JgolQmv29/cJgoB2u83Zs2fZ39/HdV2iKCKOYy5cuIDneYRhyHQ6RUo5XzVZSjn/2et16PUCXBRHozFhNMaJE7TrouKEXquN5zpp2YmDo2AaxYgEpCORrocrQcUxm2fOkrR9dvcO6LVaRFHCdDJBeoJetwfeFodIEk06On+aXVzUi9tnm1XRFcdZfXgV+RDm+bM/+28+HXkmbmXmPc7SlETu/NxG5ecyX7POFovluckzMj81G2Bb91WhSfegjdIV+C0Wy/OHxsK2ugDUIuov7417Phob5XlqTa/hJNeatVVhHtsJhGfZS57XyeW5c6eJ6Z43mY+sDUK+3W7z1q/5GkbXHyW6NMSbHqGiEeFwSDKdIrQm8H06QYCLg4OkFbTxHGhv9kAKnrr0NJcuXyKMQkbTCZ1uF7/TwQ8TBv0hyXhIT8VIIRBK42qNS4wTj/A0uPERgyd+lytPfoaDS49ye8fl3C0+yXAfR4Z0tEu34xGGiqODXRIt8byAJIoJWgFb2zscHvUJOm1G4wndjR6e59I/OkQCZ7Z3cJx0i6H9g33arTYbG5vESUysEpQAxxFMoym7Bwd0ex2UVvS6PaJpiJAu0WQKrmASjXACH4Qg1AmT8ZivfvBBbr3jNoajEU88+SSe53Pu/DkC18OVLr7nMRqN6PW6CClRs9DVeBrOvLMhYRjOVmAOZnNuNXEcMxqNCIIAKSUXLlwgSRKiKOLMmTMAhOEsj+mU0IVpFDLsD/ARtFodiNP07ZaP0GnEwsHBEfHePo4f0Op0cFwXrRSB18L3WwwHQ/x2Gy2PmIQx/fGEcRzScgNu7B2A18HZnAXf64YCrWZl8erBqkV02vupnvZidvlBprpnfp0F6QrvxeyYEMjZ+2oegpwTt4J0f+piISUvbpaXFHOPs6nM7GTRdCEvi8Xy/OBmhyEzE8+NF+8kfadFUSpsb8reuhaL5WZzgu1+RG7kPgtnqxc0xe9EZT7uaa9YvA4n8XQsy6vOE5xf9KWyF2xN+jJ13y8M2zS3bAGbbNXj43KcxbNWiYBqpLkmCHw2NnpcjWM6QtBuBUzDkJbnIeIYz3EY9occeC5PPfUUWz2fc2fOEsYxR8MDut0uo9GYzY1NhJAc7u0zHo0RjmRjZ4vE32IsXMJY4/kCqRP8ZIybTLn+5BOMnv59nN0vEB88ya0thw3XpxWPwIlQScTgYJ8wDJmEIb7fptfrMRyO0vm9AnZ3d+n0Njg8OmIwGKCAg8MpyWRCt52uQnz9xi7j8Ri/1SFMYnYP9tPnwZFID4bjEZ6TeqGvXLtOu9ViOg1JEk2326PX7TDRiuFoiOtK+sMh0pHc+7L7ue/l9+P5HjeuXmM0HHDL+bM8/dTT9NodAs/D93y01ulPAX67ReAHHOztobUmDEPiOCYMQ7ROF7HKjj/66KN0u112dnZwXRfHcdjc3ERKyWg0Ynt7G9/3GA2OuHjLLfRaLR5TCfFwhIMgmkaMhkMS1yVw3fm8/cBvgety1O8zDSPQgsALCDwfrdOFsKR0SRI9D1nuD4dsBGdwOz0ix0E6LgI58xgWIwiazosv9uWcSlvz3GVTGU5zKkC5nPI7If+eMb0j8tMv6uparpfSav7eF4j0c2l+beqh1bPVznPXSNHrW9ea5tWOrZFpsViOQZKkm9DXoUkXhNLahhxbLC8Ami8eVTG8NIvtIfKr3VYNvLyBlQqtZs7JhWg+LcFbH75Xt2pnRmZsZcbeqvR58sZlnVdbaz3zghSPNb32qlELShfLOw3PkinsuCLOG4hd02xpKR20SlfkBWi1WrjJmCSJUFGMS9pGYRSBFGxubIGecu36Lp1OC18L9GhK1/FgHOJ6PtMwxOX/z95/fcmSnVme2O9IE65CXJEKmUAiIapQWnQ3p5tcQ3IWFx/5wr+NL3zkA1/mgWu6Z1ZPT/d0l67qEqguhQIKyAQyrwzhwtzkUXwwj7hx48aVyIQq37luRpi72TFzczsnzne+/e0t+PJXvkLvI9951OIBpTXG99hhzebed/jB3/8lbvWYd3THV4oW+/aU+48eETA4JQnOo6RiMpmRRAe6xNqcwXsG5zg7P8dmlsEHXIhs6xrvHU3dQIrcOjoixcDpySlSSI6Pj3EhUW23KKXJshylNb6rODhYsN1ucTEwWxzQ9z3TxQIlBME7pFLUdUPVtky0QlrN7Tt3+PXf+i1653h8dkpVVXzrW7/E0HejSEeIbDYVMQT6fvShFVLSn58xm80QOwEhpRTT6XTnXTunaRr6vifLMoZhuMzYXiyUXGRt+77f1XhPyLKMH37yQ44WC4wpyBc569PHABwcHSC8JzqHlhJtDb13tNuaKAVaKbSxaGWomxYBRBVx3mNEzq1bx0xM4NHpQ6QUGGNoQyDEQBLpFepRX6MPXKMiv0n/eZ1x4k1wU/b1eUH29X3fxC5HsGP3hZ0o3/Xg9UmB/2UN903Z44sxKuzu71Wrsedd18Xlv27pwx577PHPFykEhFbXMim7bG6MYzC7H0v22OMXBq9NRb6KZ+hmz9n/eoD2vDHkWUrrq+73irWd48Gvtu9L9nudCev1ieZVT8inxJTi9eD0xw/oLyaMbzopv8BNwevnTcu8eh4lJcPQ0Hc1yISWgiIvkFIRYqBuWx48PkHEnunE0ncNRkiklGit8C6SEiyODokp8d1//C7FfE7rLIURRN+wPPmMe9//S5Y//Guk23C31NzVgbesJ2YZ29kUYwxaKpbnK3SW0wyRrDxAxUTX9Uit8IxZq8IYrFRsNhWDG5gvDgg+opSkazusHbOcUilijHgfWK1WlJMJUmvmixmtdzjXI4Xk4PiIuu4YQkTvbHrqbcV2u6Fpetqhx+QZtsj4pV/9Fj566mbLerVkMplAiHjnUVKSYuTu3TsoqXj46CF10zBdzJExslqtEDFRFAVa652glKXve7wfrYistRRFgVKK09NTuq4jyzLSTrTq4OCAqqpouw4lIjbP6N1Anuf025rWeaR35EWOMYo+eVKMRO/RCIxWBAHOB9zQE1UgxTFgVUazmM8QTtHGgBCR46NDlg83JLUlFD1KpjFLyMsXnV7tGRW8SpbweUHW9QWlm9gZr3pdb8KWuDhOCPFKAezrBIkXNbNPZWmvbScxZrvDRUArxZNyN/F02duLMs9XXv2xrnmPPfb4Z4qUSL0DJS+3SWnvQbvHHr+geGMq8gXd70Ko6DoV+abJ5c96/e0XlV25Pvl9Hi3xJsrg62SFnz7mCd3wdSa4P01cZK211oQYGQaHToHgAxHIk6UZegbvcGGsRz06PqLMDZPMMCty2rrZZb4FdduNQWYKqDxndX5CQ0b72d/z4OxvefjJp0yHhxylJXmpyFWG225YdwNMF2MAmsDFRBSa3kVmsxlN2yOQo02RVtiyQElJZFy0sHYUknLdQOcGZExMJyVCgnMNJMagMcJ0NsXHhNSKum2wSo31upnF+0gUMJ0viMkzxDB69daBPC+wk5KsyPnlX/8Vvva1r9MPPZ/+6IfMJhN+6RvfoChL6q7l5PEJg/PUdc1sOuNgcUDv3GXWzFpLGBxNMyofp5QuM7EhBKSUrNdrUkoYY8iyDGst3o9taq1JKbHZbMYMXXRkVjGdTLj91lusz85YzGeErmZ79piubrG5QriAQhDSuHAhgGI2QUg1WtDkY/DfhQ4/9BSqJPYd266mmBZoJXB9S1lkLIND6vIyFv1cxpprZZ2vMza8iiDdRV/9IrUJLvr9qwTWr4zdeC+f0ntOyKvNS0FgV6cmQAo51tmSSE8dd0PzNy7EXfXD/tn/W7LHHnv87CClCH4fyO6xxz8HvAEVWXB1bf5JsMZT2zdN1p5kLn6sa/5ccVNd2heB60HqjRTBa6d+04m02FEor9PDvygBqVfBzfTra9uMVHWlRsXclCLSaLzzJMQoViZAWcO2bai7llvmAFuWKCNxJEyZY42h6waMhElRsNxWDIDKLEXf88N/+BO2W8WXtGWmK3LVk7KMaCRWLtAy0sQASlJOJrTNgJCCW7dv4/qBSZ4hIlTbDauhx4vEtCwZ3JiFzPMc1/UUWY4IYzBISmyrLetNxcHxMdZY5pMpDx8/Iklo2nZUTu4dMgm8D7T9FmUztnVNUWa0fc8wtGzrGpPPkcrw1ltv89WvfsRquaZ3HSlGbh0dcn56gtSaIUa6riO3lu22xjuP96N4VrgMTA1aCCaTCVVV0XUdUkryPL8Uj9JaY4zBe0+Mkb7v2W63aK3pum4Mjnf7KpVAKJKUoBTZZMKtgwX0LZ+6lk3fIBCk5Ineg5RYJUErEgkfHN6H0R81RqwRhMHj+5bMag7tDBRM3rrNsi7xMsFOECy9gIr7omfxOU/tzhf65cfdNI5cr3N9Web1RdnfV8VN2c/PM6h9kpndfb4b3kfsXGcFl1mSJ1PKpz/jTUttL/q8N2XC99hjjz322GOPPeCNqMiJcToyzmCuB7bPrR+9ImL0tIQIV7bfHE9R23gmRvzc8XSt6BM8m2fgmQjueRO3qx66T4m+XF8guNL2888nnrnvMUaEfL5sy5NvRTzhG36hEJdZHAAhJAJJSmLMgA6BJAJ5btFSj9YzwZFIGGt490vvUU4yHjx8wMG85NbhAdZauq4jIshnU2rX443kq9/4Bo/PTvnRX/wJeZ/I1JQjGzjKIcTEYARVijg0vbSE1LNZryGNjIQiLwhugBgYun68Pj/QDS1t9FhjUIwq113XspjO8c7h+oHcWobgKSdTBh+JabQEOlndH313lSLEyPlyyeHsgEk5ZbVtMFZzslySFwUmK3Cuo+17hNYgxqDrl7/1LTKbcXp2Stc1/Oav/Qq3jo4QKdJ2HVXXo5Vkfb6ibWqkFEgh2VQbjLU459DKwO7ex5jIshzvHaQ0+uXustBlURB3dbiz2QyApm1IKVEWBQLo+g6bKeaLKd557t2/T/SO00cPaZZnuO0aMbR4AXObgQigFBHovScIgVIavWMXWKtxYSBET5ZblJQEFTCFJVNTgsr53uNPmX10h03oiUKRkFee5VEVcwy2BAmJesXB4UIg6SpelxacdrS33dP+9HtXXnvq+OvnuGnB7YbruGksiikRvL9sQ4zUmmfafy6eSpM+274QArGrpxVX9rkIbKW48KhOl+8/O3aKS6fhxJPs7uW7u2Ba7i5VXCxysaM877HHHj9/eP5UZI899tjjjfEaGdurW+M0RuzEWlISl6IhQjyf7nqVYjbaN1zNcsDTVVoX494rZhvElYu8mGhdvJZ4bsHu1SzJ69aiPv0JRsQLXva1/Z7JbFytrd2dN6Sr1j+7mlvx7LGRi4nhlQmlfHbaPH7+XRsClHjWO/apq0wXrTIqzD51vXA9v/I8uvn1e3rx+7WrAwRJJJ4ozii8VwQnCC6g8ZRKYXVG3/fEMGClwgvBJMtIw4DKFKlpEZmmXa/okGhtEUoRe0E5m/HRr/463ho+/c4/0gfLzChkihRTQdMLQrJYadBdRwySKkjqpqEdHEWR6LqWw6Nj6qHHDWOdaACIGUd5RoiRrunIJlNOzk84OjomSUGMCV0YmqHDzko6H+iQCJmxqtb0LuGSRMTxHhzcvUO19ZwsK7Q2hMETEPQhsaoatvUW5yIJTTYt+K3f+k0WRws21ZIYOt575w6r1Sn373/Ch1/+AJtlHB5M8K6j6xuSjGzbLQJBlo92OtZEhDJjsO0SWmUURUbwjrt3bqGk4OHDB6jk0SLROc9quQI5fne379xmUpYUeYaKUBiNUIHFrGRTbRD0iOS5fXTIyg9UXU+77fFK8aDaYqwmLxRaG5LSeDeMwbsQWGuRaBSCzBiqpgOtCUowm8/xwiBLgT/5GHvPc/zW77CVhhZFkBaSwxLQOCIwqIxBZBAdCv/cnnDlaX4m+3vT+DB+f+LJPG23X4pP+qcUo4LwZT8QT3qY2B1z0yIYgEg3i2Jd31Pu2g0xjnZWu3PEK8dfvcZx9yeB7jNnTk/y1eNQKhEyjbS+3ej3pG5WEMWuvydISEQCmQKSgCKR4pjRv1hgGBchIAoBQo7PFBJ/MbKJ3WcXkEWJjmkMgcUoOSWUBP1jCPvvsccePz0YA33/076KPX7OkJxDWPPTvow9fobxYwa2uxoxnp4UvWwy+CSIvXzlSbNXttMLwrCnG7z55aeOFuL5O15v7lWD2xuoeNffHy/k9SjAz1CGn5fqSc/SGK81xMVdELug9nlX8KRO+spJbprE8+Lv9vJcz9T8PvsR0u4/uau7SzHu6KegpKK0OdL3qAi5sQDIFAlpnPAmH2nrLUZJMqnARVz0DL3HFCVSGcq8ZHF4xH/4vd/j7OScspiRRRjaiqZvSM5jpKbvHEZIgkyE6NHGcjSdMZlMCCGMNjghEFKkd46271BCoqJECUVuR9quVJr5YoEbHBLwIZDnOZHE45PHtH3AJ0UUit73TOYzIh5lJEIbtl1D0/T4UDFfLMjzks4NtOvNWL+bFWRFxq/82q/yrV/9FdbrFcvzM+azCb/+a7/G+dkJ9+/3nJ2f7hL3CqUN1hqG4Um/1UqT5zlSSBISFxJ912FsRp4XpGgwRtN3LSmNdbZd1xKTYjab4kPAp0A/9BijmRQ5bVsjYqSc5pyfnXPnzm026zVKSoQEYzRFWaBTojAWV+YIJVBKYa1FCEHbtnR9N1KmncMojRQKpCTPQRiDynPefftd2iTw52s+fP8u//jJJ9w6+oi8OKAPEiENLiTsLj0rEIh0sRj3ZmmC5/cxng0cr2zf1Dduev1yQe6Gc78OpVpc20cp9Qwl+cZ+++Sgqye+9nu6OcF75YMncZHtHnOxIiVS2imPXowzu7MFGYkyXVSsjz/jmAWWu0ytSIkoDYMUCCJj9e5OO2DvNbnHHj+X2Cds99hjjy8Cb7jcfa3O6RnC3suPf5aO/MVRyl5Ui3VTHfArt8vnOzC/6rmvis68znGv0+YXiouMdEqIXZZnF9qOwk8xYrRmNp2h+jF7HFPCe88uFwQpMSkLjAw4Y8fJcBQIOebifAzkWvHeB19mdbakOjlHd6NXXUiR4B0DEYIjK3Ki82R5xrZpScBkNgMETdOglEIIcWl303YdSquxrRhwg0cZjdKGw6Pj0eNWG4hxl52C87NTyjwjhA5ERAiYTmacnJ6RT3JKNeHkbIVSBpuBwZKAYlIie8Xj7Zaj42OEEBwdH/Lhh1/B7wSeqm3Nt375m5yentG1DUJoQojECJuqYjqbobXG+4D3HmMss9kcpTTOjXWuVlt0mUNKxOCZzyYsl0uqasN0UtLUW4wVGGNRRiO1JrmepqnHgCUEVBwXHoZeg5b84Ac/IgRHYQ1D07B6fIqOgYk2+DCQ5ZoYPFpDCgNCSqZlhkgeLxmVnROQBKt1hXMDVknOTh7RugE9WzA9OKacLThZVWxPfsTigzs0KZKExSuBl3qXOUxoxmfrpzWZel6/fVmN7ed17qu/X6/9fW6Q/IZ1rIodTThx0bOBBFISkUQhd7TjgMQjkkAmdv8EMorLwDYhqZXCSYUkjJRkIhAQce87uccee+yxxx57jHhDH9txLf7ytfT8AO/lFhZX0o83BLc/TqD1rJDVs1nbH0eA5IuYIL/Id/L66y9TVH0dO6KLtr7oSfWVFy/z8mK3LYUkDh5SxCiJTH6XVVR0XQdKjlo0QRFDwAdHHIYxgxR2vqpK4tRoXfPlr35ESInf+99/j+Z8jQ5hPF4GMmOYT0uSc0TncIOnKCRZnqOUJqRE1/fEnSVA1/dINdrgOO8QStG1Hb4PaKkwWY7JLakfGJxDSkVbN4TBYYzh3bfe5nR5Tn58xKbu6PselEFIRVZM6YbA4MANLWU5Zb6Ys6k2SKVY7iyBrLVMphN+/Td/Eykl1WbD6ekJX/3wQ/p+oKoqSJGmabl96zY2s/SDJ4YdZTSNdNIQIpvNhsPDA7QWLM9XGJPtvGtntIMjRsekLMiyWzjXU5QTtDY4H/F9j9T6cjkrxIgxBoNEkpBSMbhAWcyYTApOHz+gXq0xWoIL6ExDCHRdg5GQZCT4cPmsZEaTW0vXbgHI8wlSJAbX07mevCzJckvbt+ihJ8jIR19+n+/8cEV3/jGT+ZdIKSPqKSEpgpCIGJApYYkEkQg/hdrMF/Xb6yyHzwvPE8d7kcjf845PKTGWv774+sbRPF1hjAiSGGv9nwS141hsY0TFeKUMYswIJwFOAkkSpSDIka4vUkDg0GlAi0AK7o3uyx577LHHHj+HuKx/+WlfyB4/q3jtwPbJhOipN69Vxr4cTyZMT4Ja8cx7z07yXiXwel7t5/Ou73kTzJci3UyWftNJ6tUsytWsyov2f1Vcr+d93rmf2+ZrDCQvo01eX8q4EKtSYvxZlgVuMkH4HhEjPkViHP1gRRq5ytYaFvM57eYcqRRaKgSSPo62OO+/9TYHt475L//591ifnzMzBQIPwuNCT4oRmSAkgTUZRDAmQ5rEerPGZAVFUTAMA9vtlpgSRliqqhqDyqqCBJnNKcsJLgb6wV1SleumYVqWSATaGKrtlhgCKTm0VpRlTtuHXVZSorVGyICxitl8hskssYKzszPEzld2cI7f/MY3+ODLH+DDwF//9V9ydHTEO++8g3cDSkmKLMc7j5R6VIbWFqXHDK6U8tKLtu971usV1lqy3KCEJHjwbqCut1h7iJCSED2TyWRUUpYaPQR8SvgYiClycHCAkpL5fM7RfEFTVTx6fMrJ+ZIvf+UDVqsN1mYQPKVRtOs1m21FrhRH8ymh7wjBo9QYcKcYkVKPdGk9ElS7vmOz3eBDQBpNIuH6DmFyrFZMj445Od/w7nHJ3/7g73jnWwt6r/HaEEVJRBMRGBwyeeJLgrnr/eXq83vjs/1q3eLGvnB1+0ULVG+i7nxTJvh6hvZlQe0zY9BzxoFnauhjuCx/4CKoTU9q6y/+yWjQUZFSJBJA7BYelCQIQRCSKAQ2Dugw1kub1KNTj4o9w27xY4899thjj198pBghxlFjYY89bsBrBbZXs6wxxqcyti+b3l2fID4baO4mO+nFBN/nBmUvvN6fHK7Ws11cx41KpM/BTfTE659DSkmM8env4AVtve59uE5VhN189vNeJRMjiV3INFbXpYCUguAcQ9cR4oAXjigEwQ+gFCIlssyilWC1PEeGgVwrlFZ4l9DG8M7tu7z91l2+/Zd/weP795hmFuU8Q9sgdSTLJb4PrJcrlFBMywllOVKPz5djICl3wWTf96OyNOCDH+tBM0ueRp9dpQ3a2LE+NbO02y3K2N3rOVLD2fkSoUArRT84pLbEFJFSEH1kaFp0VpCZgiEM3Htwn+lstqvZVSzKEoTg137j1/no619HSMlnn37KweEBH3744UgnDhEhFMvlmpTADaNdUpYV+OA5Pj7Ge0/btvR9j3MOSDg3kCIQ+3HhgMh0WpJSZFtXjPY9M3yI+K4hBsZs9tDjgiPLLDFGHj9+TFfVLKZTiqLg9rGiyAuqakORa5TSdENPFDCfz8AHmm7A98OYlVeKrDC0XUeShqZt6bthrL1VinxSMJ3P2dZbdFagipw+KUIItE2L0ZrDieUwi3zyN3/CB7/5fwZaksgua5pJ/im95Nd+XK8FiGMd6fPHq+eNVW+Cm7Ktz2tbKfXUa1fV0S/GjAtP65ctnF0ce4mrAljXcHXMG8XXR6EoYAxqd1nZkUY8jved1AzaEIYOIxRaCIiOTAlC2NXrEpj4LXnsUMmhQkto1mxXj2jXS+D/+dL7t8cee+yxxy8IYry0kttjj+t45cD2gpL5JOAaK53GDfmM8NNV3LTy/yy1+WLflwelz2RxuZZBvnLOV8UbTTjFs6S866JJF0IxN2WeX0Y1ft72yyjIzzvuebje3k0iM0LApcfGlfbfJKMsLv/3ZFswqq0qIbBao4TAKMUkU7TDQD047EQhEXRtR8gUeWZQUeC7hsrXLA6OyYzml3/5lzjfrDi7fx8dA1pKikwzVROqdoUfAseHhyQPfdNjlMEaSxCJSTklMHq/brf1SI3NMhLggscYQwiR1WqFMRYtIxGJVBqpLZPpnMENuGGgbhoIibZ3ZEXGtm5BCOIQMFkGArrB4/uARJOk3NXvavphIIRACIFiUnJ86xZf/egjfPDc/8FnLDdLfvu3fos8y+i7HikUTdshpUYpixAKxCj4hBCsVhuOjg7x3rNcLum6lqIoicmT24wyK0CK0bs2Rpq2JTP5aBcTI1meQ+pJAg7mUwbv6foWIQX1dosClt2SoW1Hgasso21ahqHHmpHibWXOoA1GKoQKiBAIg6ePgqrriLHBaI1JEp8kMisIUqK1QtmcwQdQhiAg+EBS42csJ1OUCxAjH753hwd/9V3C6h7Z3OJFTmTc74mU2stxU3+4HuQ9WQC6eRHq6ef/zVeFbmKAvIh5cRVXx95XGTNe3t7rHDyyMS6ytFICMUAKI2VdK9Yy4ZREy4BJDhscyveUg0AFkEiIHlfdQ8Utvq2pq3MYGpaP7uGG5rU+zx577LHHHj/fSD7sbA9/2leyx88iXsvH9mqW9UnNKjz9dD2fTvd8+tvFZE08NQm7ed8vHq96zhft9XkFnS/CVd/bzxvXJ85Pf99ce/0122YXKAtGavF4wnEV7kIl2QdCcrTB4UjkueXCi7fILLPZlBQjm82aTAsCgq1r+fD9r0KK/Nc//CPyomCRWaLziAjKKA6yGZHA0HUQBN55ejEAgj64UQRKjc9ijGMwMwwD2hiUUjjnmEwnHB4eUhQlde1w3rNtG2LbIIRgW9fEEMisZT6ZElOiajqm8wVNW7OpNuTegVCkELFKYZVk8AGlBFmR07QtKSWmsyl3797lX/8f/w2LgwM+/uQTTk5P+cYvfZW+62ibBmsMrh+wNruspzUmR0pBUUyothUpRcJObEprdUn1dV0gxsB0WpLlOZvNhq7v8d5xerodM8cp0nQtvveUWcl2u0UqhZQSpRVZlqEA4SNKKWIKhMEhhGGxmDOblHjX024rUoAArFcVmTF4FJk02NmEzWbN2aoihkhRFsxmM6SQNF07Zm6lHLeHnjAk5kdzEpJNtaVqOvqmITjPL33lHX74yT/wpd94B58aHJYgLEGOAmO8YoB3Ux3qdXVhdr3i5ePVlQWia+0/tdcNxz+vJvdNMsLXA+PXZXW8yn0TVxb8dpyM8bcUUYRRMCp6cIHCKkyMZKmjdA0T1zKJjsw53LahbzvqakPfrwmhwbU167NHtNWa0Lf0bftK173HHnvssccvChJpGBDW7oPbPZ7BG4pHXVDxnmy/6Ol6djJ1deX/arD8pNr2J6bQ+2PgRaTpi2uPMZJuyOz+2Oe+cm+uZ9M/7/Zhl0l/hf3GfV88Sb4IBKQAIdLIU2T0+pRCoLWmKHImqSBThsYNtG2LMRkAfddCSpRlCa5DRkeUYBcT3n7/Xf70D/8IGQOy7zExoozCh8C62hAZMEoRhsTt47cYtMcNAe8j3jtC9ESZ8P6irleR5znbumbb1KSUODw6okiJEAKQGIJncI4QI0IrhJLk1mK0Biloug6UoWoH2nZA21FZOc8L8sxgVE5KkmpdkXLFerO5zBTbLON3fvd3eevtt1mv13z88ce89fYdDhYL2PWRarMZBayMwadAEIoQIs4FjDUURYkPA3Vdc3h4wGIxZ71Zk+cZXdeihOD4+AitFfPFnB/96Ed47zm+dQvnHN0FdTkk/ODJy4Lj27fRRtEPPfV2i5QS5xyua8myDJ3bUfnYFvRDT4qB87Ml9z/9jIm1EBJ5UZCVBQf5lE3VgDAc3nmXlBLbesu6dUwmJflsgdWS7XaLkIqDo9tEqelCQiHGGt7WoU3OvNTMp5Hz5cfc+8dvM/voX6H1hIAhiJFi/gy94zX6w1P0/PRE+OxinxeJsF0/7auWS7zqIt9zyzReQB1+UcnDq+KmjPLFYH6RsZUklAThAzJ06OSwMjFvWmK7RvRrRLvC+IoYavo40HQNy9WKz+4/YLsdGHqHkQIlAmWWIXTCp+GNrnmPPfbYY4+fX6QYYR/c/vwjXtMQSQm8/7GafOXA9mp2MCV2tLzdxOgV50NPZ3yfeueyXSHSFfugdAPHmMt9rxz6U6mnvQnPC8ifqQF+URvX3n/esTdOKK9cx1PHXL1fYqxJTrsTSZ4OXCVjVivtuJtxdxVKPGlid9JnqdhPXctzJtSXlyEg7Wr9uHiWRrsZSAQiddOQpKAockKI+BBAjvTk5aZChoCRAp1bvvmtb3K+Omd9fkroOmQuaOt6/IBKgRIUpsD1HVpptFa0dU/X9QglEFoSwhjkGmM5PDzmfLlivamxWU5eqPG+qIzed8xmC4J09C4QpUYqgTSa3tcczGaj8JX3aGPIyzm98xhrqOsNCEXbDRSZoiwMEkOeNVTRo3dU5MJafvt3/wVvv/cuy9U5P/jB97h9e8F7791hGGq6rscPETc4JuWE7bYhzzJiDDRNv3PKSfR9T4ielAJ13eCDJ8ZInhccHx+TvGcYBn7w8T20MWw2G0yW0zYN09mM0kw5OTlh8I4kIDYt8fHjnXhDJIXIZDajDpHeDZRGo9WYaVXWoJWkyAum8wVFcUZTVWxXawYfCCQWiwV9P1CWJUVRMplMGIZh9xxJglcMWiCUJssLXIgorXH9QL/dUvWB3gUmxQRTZMyU5le/+TX+/R/9DcWdL2MOCrySRCxeaISIV2ptn302L965pB1fBLO7vn0xFl7U2IqnAsSri3ZvRj++GiyPp39WCO9VF/4umBbxgg1xrbb2gj2RUuRpKTyxGzPE1VcQSSIIpIsBRewEocRo53PZnhjvpEgOTUInjxg6MuHJ8Ph2Q7s+Q61PEZsToq8JviLqnm3YsqmXnGxOaV3Ptu0RbopVBbNJiUiR+XRC03Voc/ha93aPPfbYY49fDOyD258zXMRvIewYmowWjJ9z/PZGPrZj1vVFhdtPK4peHHP57nPrw9JlcHsZsJKu1HYKkGMgnVLa+SDu/BFf6ca82pP/PCXUm2p7X3T85TE3fNZw7R4888VenPsF7T+PKnn1CgVjUCsB0k62Zef16ggkQCMYNYV33pFpPG8UkiQUQgogkuJwZdJ9c75awJXJ8xPBmOv7pDTSQiOaKAWSCKlDiIiSkbpv0cIzM4boOurOE9kFN+WM+d13KQ9v0dcrmqbil77+NYRSfPuvvz2SmeMooKSEpulaynlOpg2KyMHRgrpuWW82+BiZHUwxWc62baiqLeVkwnQ2pe0HhqiQ+QFeWlwKVG1DfdoidEZVB3wwtAP03pDlGSJGzjcdx7dyhq6m3lZj4OZGVeeu70FqstKSItRdR7de03Y9Ukis0UwXh9SD48NvfIP3P/oaXXD80yf/SNee82/+1W9RVStMXhJcQGcGrTQgqeuWersl4pjOxjrX8/MlzY6uWZYlQ1Xj/WhBdL5c03aOaVky9I754TFd12LzErETKJtOZwghaIsJopwx9J48H7OwZZYz9B1JgNUWOZvhBocLnm7bg1LEJLBFycHBguB67FfeJyOCG0gJ6rbDWMvJ6SlVVRN9S7vpCTFS1zWP74/ZY+cHbt+5SzGdElBMF4e89e6XWNcNi1lO063ohWNSzGhd5OD4gK++d8jH3/tD3vmWR0w+YCvvMqgDTGiwuF3AGseAVSsSgpDGMSimhJHycsi4Spl/qo7+UsDtSZ988sw/CXafn8V9+Zgkn5eJfemRO9Em5JVr3AWcEsZQNu6uN+z+MY4ESQIKGYEkEIw08LGfepIYmQ0CiU8CITNiSkThETIADhkHbOyYxpaiX6GbNbJZ062WhPUaGz39sGG1PuVkec75Zo3NLBApCkPfRGQUHKgJREHyHZmRHB4uyDJFv6qYFvkr3IU99thjjz1+EZFiJHUdQmuEeaOQZo8vEKOK9W62EiLpJ+A9/1pPwfNqY5/e59kY80LF96INKZ+t17zJRihdGOSKp8+VYAy2XjKzu3nS+OrLOm9K7X0iKpOuvvj0Tq8QiL+O0M3V35+iie/ogBc/pRCjW+Tu/HJnoSMuFgcuJuZSIEUiikTaTYrFlXO96q0Ru+/umXuZEmMOKbGrvENKPdIWlUIIGIYBr0ePSyUVvQtYazi8fRdlc7yQDDFx5513OTo84u//9u9oqhoT02izow1aGzyJwXuavsMISD5gbY6IEESkDZ7BDUSh0cWUPglWyzUYjV0c8Mvf+g0mswOGmGgGh4seacZgQWcznIsomRjaGqLnk+//Iw8+/SG3D2esqiWr7YbVuqYsZ6N/LQKhYBhGWyCbF0hjmE4muGHAecd8PuOjj76K1pLNZs1yecr/4Xd/naPDBUUmkFlJZnu2VY8UGW07MJvOiMnTdhVtOwawgx+QUl7aFmmt0VqT5wVaa4bB0coeazQIQV6U9IO7VINerVZIKWnbkWJsrSHPLfPFFEHCKEFVVWy3FbPZ6FsbgicvCpJUeB/wIVDVNc715HmGq9bgBjJrOZqP9+RoMeP9996la3uSEEitCTtvYiHh/v37VHVDVVWsqoZjn3j/w69yezJhudzQ1Fvq0BFTwCZNYTK+8sE73Dv7a1YPP+H2N9+j8z0+eqSQu+43+qtelfsWO/KsvHzmxdUHeffoXmRrn2YoXB3Dri/8vc6K5KtQ/m/KBb/IiujpcVXs1grFRY4VESUymfGV3fCcSAQVSMTLxUyZckSagBhAOEgRFRMy+Z2pkoPYIYMjS56wPaM6+ZRt/Rg7bEltxfLkIU21pa1r2mZFlivqwSOVJAoQKLTKWBwVFFohvKeuW2yWQRotoUiJ27dvjb/vsccee+zxzxrJ+5FFqNXLd97ji8OODppiBB9285KfLKP2DWts4cqU6cq/J/veJAD1tD/rm1/02Jy8nKz9uPW4L6PxPm+/l53xp1sjPH4nT5Kr4nI2nHYKxFIK1GW2d6QDxBQRIiEFRPkkSB/nweNk/WU1fzdluJ8R2yGhiCQknpHuLJJAJYHzAWs0WRC0bUuR5QglMWh8TDw6OaXvG6aTjLvHU7780Vd58OAhZw8foYVkvTxjnpekGAkpEknkZYmdFLSbDW3XYfOSIQSClAw+EsIA0iBsjo+JRkkGIajXG8zpCe9kJTYvEHmBIWEzi5Ag9BQjJG/dPuKdu7fAd5z8fx+THn7GpmtQRY4fHOVkymw6o9puQcDd47epqi2rzWZHp1Y475FaoYzmd/7F77JYLPjss0/57N4n3L19i6PDI7quY6TnRiaTCV3rUWoMAr2PGG2YTI5purHudTo/JIbEdrul3WVu4476MQxj7XIMATEpGK19xj8KdV3T9z1t23JwcEBZljjn2GzOMFZx6/Yh3nm0FoQ42ujU9YaYPPP5HCkV622NUJKyKMfAf3CIvic6RyYlIXhCjCitUF4y9D0pRfreIZVmcXiItRZjNEeHR2ybhm3bUTUts4NjmqYBpZBKcHR4wKbfUlcrsukhs0lBlhf88te/xn/+y39g9s43yIoCqaY4nwhizMaOMe1FmDguCF2Q45/bs648/88KrI24YC3EKzSbp2xzePVx5lXxvONEemKvky5rYJ+wKZIAKRLqIilN3C1oQdyNF8hEkiCCRIYMJQVGJlR0qBTQKSDjgBEdKdb05ys2jx6yXT6Cdolvzhm2Z/TNhqpaI5UixcDxYopVghC3VG2LVpKjo0O++sH7CDdAcJw/ekRVVRxlGUVZIgSsN1uatmFSFm90r/bYY4899vjFQnIOYB/c/pSQwi6Y/QlkZV+EN8zbXwtmL4RCbggQL167Wpf2eeDpLMnNtNgft+2XirXccNabjv1p1f8+kzUSibj7DpQUuzh3lxUfK2sRUoK4oCRGEGMACnLMX73ivXkREiCJo6yMCIDe1YOKXUZRkaJHy4Q0in4IoCUmywnes61rIGCLnN/4rd9ivXzMx9//PtInZEoczOZYpem7HmMNIipCHCfrxaRExEgAhhgJQiHykiQUIY2ZY68Ey77lrKnJbMGPVlsetx+TEPgQCDEy9P1I15WWvh+IQ8vBtED6ltCO/q8np+ckP+C6HiU052dLpFYcHh4yDMNOcCqAgBACdVPz1jtv8bv/6l/x7gdfYr2tODs7ocgtX3r3XZbn5xB68syQtEeIgaZpUCpSFlOkVEBEacF6s0JpxWSWE3zg1q1bl6wJa0eF6bquybKM+WxGip6mafDek2UZH374IcYYmqYhpYT3o9XR4dEBTVtz/8E9rNbMZlOEGGt3tVYQA851TKYLbGbx3lNtKzKt0FojQkBkGf22wiiFVHocRVLCGoOZWEJMxAhuGIgxMPSCtuto+57JfIHJcqSxuF2tcEJSTieUi5ymbiispshHSuud4zm3FiXf+5v/yjd/94jUa5KZ45O8SK0yLuuMfWGsl03PHVFuWrS7vnB3o4/1c9r6onFhypZ22gXp0qYt7QL7ka0hZAA5XPAyALWrqdUILESBSAoRBCr1mDRgQouOHSYERN/RrU/pujOG5pyTjz/h0cefMLQbjhcFB7OMifK0Q03wLVoXzI8WHBQZOgYOD+acbypOl+ekoWN58pA4dBzPF0gBi8Wcw6MjtFKcnJ0SfKTr3eVi2x577LHHHnskN5YZ7WnJPzmMAa3/mWFQ/Vjf/AXN9FIx5Jn3b8rUpivB6KucBK76p14c+3Td2tNKpM9X+Pycg+obWnyRAunrtv86SqU31diKy9zoEzGXmBJKCMYQKCF3QYSUErkLbhGakSgcx2zPFaGYq+e6/vvzPudNk3uZIiIFRIoIAhJBphL3fvAxP/z4e+joCcGNwVCShARucAzB0w891kq+9P6XSCS+851/YJLnNE1H8IFMmzGIk+BTxAdPXztmizllntFUFefrNUEZWu/BSoK0dDFStT1eKGKRM7/1HptNxW/8y3/NbLqg7/qdnU6krRvyskTqDNf33P/R9/ne3/41vlkjhoZcC0xSdH3AKoPNCoZhQ5ZldH1P06zHOk5rybIM5wPGWL76za/z9nvvMLie8/NThr7lg/ffJXpHPQy4vh6z7TZDCI1As16fUekt1uYYq1BK0LYNh0fHBO9pmnZUkAa6rqNpGqbT6S4bOtYGEzVCjLRi7z3ee1JK5HmOEIK6rne2QBNWqyWbzZoiz1AKBtej1EV4OAbBWmmm0ylN22K0IcstMrixz6SI1w1N3WCtZT5fjNnMlPDO4WNAKUOZZZyenbHdVpTTCT5EtpsNQluKvKAwOdIYklQgBSE6JkWGTHDyeMzy9THywTvH3PtvP2Bz/584fu9brOLobyuEYlxiAXYLPEIkZBrpyM9bc3yVgPS6nc71vvy8uv3Lc1xr61XxdHsJdgyMi4UpLoWeQKYEjLReZMCrMI4ZUSKTQEYNQSCjQqKQSAwNhg0qtOArxNDi25bNySmPPv2Y1dlnNNsThtU588xw67BA0dKvl7T1lhg8H77zNuV0Nj5bbsD3LUorvvT2XRSBfmjZnPfkWrMFFrMZ5Vyz2m4RwHqz5vx8xWI+Zzabv/K92WOPPfbY4xcfe5/bnwDSrn72ZyigvcBrBbZPiyI9G9a9jFr3ognaTUHcVRXlqz9jjMR4NWh+/jmvvXojBTre8KW8VGX4JZ/ppknsq+BNM6LPKKXusrDjr7v/dslZLQXRe4xWECImJfTOIkYIDVKNIjriIrhNu4n+yz/H1e/xKVuUG2oER6VZj1Gjsmxz/og//E//M93ZQw5CT0yRJDRoRdf2NG7Ax4D3PR986S2++pUv8/1/+DbR9fQ+0DXNGJSESJZlCCEJMaKVQgmB63oa5+j7MTPVu0DSBX2UnK63JDsBM6VcHLAdHE2bqKoBY0o+eP9Dog9YYxFCIhIobVBSIQn87+enfK/rMD5QKEPoWiSJ2/NjBjdwvlmjtSaEMHrChoRUmrwoEFISwsBHX/8a737pPZKA5eqc09PH/PZv/hplYSE61stTvA8orcizgqbtSXFgGHq892N2cxAcHR8ynx/gncf5GuccwzDgnCOEQFEUeO+RUmKthQR5nl9a9hgzLgwIISjLkpQSVVVhraUoCozRGGPQStF3LUWR09Q1ITjyLKOuWh49ekiSeqSzRo8gUlhLW29JwY+U6eMjQggMQ4dSBuf7y6x4P2wAiQ9jXfV6tcSFiC1KpMkoZnO0kmhjcGFUeN40HffvP8C1ntJOODw8wGiBnSp+9aMv8YN/+jbHB0fYqaVPCaWK8TkfOfe7zPH4P7FjoLxKz33+uPXsPlfHjRgjUsqn9r9uIXRxzPXMcLry3kVbNzJi0i643Z1HAiGNGnyKhBQjc8IJgxfZaMEVAsoHpGvJhcAm0AlUDLjNpwzVJ8TU0Ldr2m3F+aNzqlVFtTqnyATvHRcwPcQ1G4JbMp1OmB7M0XeORvq6UvRNy/p8SZZZZvMpQkmaakMYOg6nE7SSGKUpsgxSotosabuOo8MjvvHRV5lMJrifwT+oe+yxxx57/LSx97n9whB39bMh/Mz+/f2p5upfppQ8TuAupXV3r11M9ODJE/tqaqMXx75s31cJRK9OLl+G67V1N53jx6UlXvfXHKnFYpdDG2m+CFDIUfTHaJJ3iBjI4oAMHQrL4DVRaoSyO2XUJ5k4IV6+APCqnyUmgZCK0HdMjGB98oD//G//R+7941/y7kxCHFWQfUq0rmPTbvEhMpvPmU0P+I1f+xaffvxPVGen3J7P+OwHH4/BbBoDlCF4lNFMi4Jqs8H5cUKdnMf1PVlW0g+w6XqCtdjZIU7ltEHSdxGBQQqB0SUSi7UFwgJJkNlsTHIlyLXkH/7mr/j2n/0xsakpZWRWZPQ7C51604z0b6k4ODrg5OQEYy3T+YSuH0gp0XYdx3du88u/8stkRc5mu+F8ecrdu7cockNbbyF6gvNMyxlRwHq9YTqbU9ctXddizFiLKoWh6/qdcJZm2GVeu667FI/Ksoyu64hxXABIeY41iqZp6Pueoiho2xalFCEEJpMJk8mE7bZieb4ag1ptCSGSZaNYlBAKYxSz6XxUJu4c3eDRRiOUoKlrsulYpytCwGhN19Y477Am2y1EWAbvGPqesijQNqOqtggBejFHKoPQBp9ACUFZ5LgI3jmapsa7wHw+Z+0qTJ7TO4eICQ+8//Yhjx+ecO+7f8Xd37hFLiUxQsRgTIkPF5T8CypuujbG3Px8v4hV8bJ+cHVcuFyYesX+c4GXZX5H7PrvbksRkXEsMTDJIaJHhRLnJwgcGQ6THJkeEN2SoTrBDVtOTx9SPfohReqQ0vHg/o/o+56D6TG3sxwXakLV0QnLYm5ZHBYMnYTo6LvIum4pbE42mTMxBrxHas1n9x8QgsNazcFijut7YpIUk1Flu9pUVM2WvCw4mJdIJTk/fTyWAISfzT+se+yxx4uR3I/nVbnHHi/CaAXkEJn5aV/Kzy/SlVglRXB+t/b/0ymvfFV8roHt514zJp7QaS9f4Gpd7ZPzXj31m0wMX4armZXLyeRzgts3vQ9vagdyfd/xp9wZ0AouxXEukrkpEkOAEJlYmMuOFBPCzqk6jyMjjNqwT65NvHp99E0LBc9kxaXEuYEyswzVGf/1P/87Pvv7P2USK7RTSBFwIbGpK3yKTOYT3v/gA955620Wk4J5bvj0+9/Dxp7tdiB5j7AFbhizhl3bYa2BlMi0xXcDUu6ykFlBlwRGae7cvgPTI07byI9ONwxCIaXi+OAQ33UkKoTSKGvwzo31sFIQfCL6wKeffJf/+L/9z7TVkro6x+SGZVehhCQlgYvjM1JOJlRVxeAcNs+ZzWd0J2f4ECgmJb/zO7/De1/6Epu+5v7D+0Di1q0jBIn5bEoMDtd3pDTSgnvnKctx5cxag1KKYehxbqyFXa/WCKkopyVd15FS2qka28vM7aiKPHB4eECe56xWK6y1NE3DbDbDOcd2uwVGManVao21lslkCknQdT2z2YTpZIZIgrZrAYUxlmEIaK3IsoxyWiBiQAaH94GhrrECCmvI83znUTzSYuf5lBTjJUU7pTT6DXcd/eAhRbIsRxuFUoqmb1BacXBwwOnSYewBkpw7t95CG8XZ+SNkGCgmJb/5K1/lz/7qu6we/oDpu9/Ep4Sxhqrdokwx1qQLdosjTwulPQ+voxtwk7jU9XrdxKv3+efZqV3biydB7W6hMAREChgRsHFAhgETA4UISAZivwG3YrO5R7u5TxqWLB//kPs/+j6haplow2yaIXDkIrE9e0CmCz64vSDGjNnUMi0N1o4mYutNRV23TCYls9kCazKGwSO9pnMeKQ3Hx8doLRAyYpRi6HvquqHetjjnmM8mLBYzlIj0bUdbVwjGRaY99tjj5xA/45PjPX7+MWYWI0LttRheCRcxrPdcuqT8jGZlX4Sfu+rq51F1v2gdludRi1+13u6LxHWxGhgra5+K/8UY4HrvQYLZCTVtlvdYLFajBU7mEREEU6QqCeidiuqTXM+rXs/zru8CPiSEzmjac/70f/t3/M0f/ydMe8bEBOgT9dCjjeb222/z4Ve/zO27b+GGAd8PLM9PcTrx9qJE9C1DW6OFoNllGd1OlMk7wfnpGVpIFpMpTVOT5ZZpMeVs29BGcC5S6BybS5A9OiuJ0pCkQWWQT2bYSUlUipACMSYG11MUU7arFb//J7+H8y3KJlCBozu3if2AtTnnqw0STT94gnPkRUEEsizj8ckJwUf6YeDXfuM3eP/999nWWx4uHzOZTfnwyx/QbNe0Tc2D8zMO5jPeeecdmrpmtliwqZvRDskHptMpWZZR1/WubnQck6r1hrZvmU6nHB8fE0Kg73uEEHjvLy18Pvv000t12WEYUEpR1zVaj8PDarVCKcXdu29RVTVt21NVo0fv40ePmc9nZNbSdT2+d2TZSNdOCZq2JURPnhmOpiXGaKJSlLmlb2rc0BP8dPd8SpTSo3eulGPNa0qs12tSimhrx3L7lPDDQFNv8T7io+PR48f0ricg6LrAydmSySSn7Vpm8wlaJu4eL/jGV97jz3/wHX7j3a8QfSBJg9X2iWh4uloX+3JJutepg7/aN65nay/ee91FsesCfTeVVez2HM9FQpLGoJaAZUCGFjGcMNRLuraiq9d89uk/sT5/SHQ1m/UJ2805VgtmxSHn9UDtBo4WBcfzOU3aUmpFLiPTScF8arBSYoTCJ3DSoErFECNnmzVJKYQ2bJoNQxu4dXQbpS1tt+XwYMbQdYQQSWlkbUhtWMynTCcZIfRIIlomrBmp8XvsscfPF5IPpPTzN2He4+cNiTQ4RJ7tKcnPQ4IUwhjE+vDkxZ9jvEZgKxEiXaHzXtBUr+GiVm2Hy9szHvikhuyGeteb5ocpPdXKtZavTEDTk/0vMrhjQHV5Wbv3042Zk6fP+WwmVkr59ImuNnrT1b1UyOr5FOg3qa996nchEOnCoxLYqbxGIEox+lLKxNBs+Zu/+mOKrxusVuRGUkRLJhM+OIIwRKmIaZwOR2FBjCI0CUncPQNxR+GMYhSkkYQn92qXKB6TYeN3llLCCPD9lj/9vf/It//09ynoKUzCCo9Rivc//DIffPAVbt8+olqf8/jTH0GMaCGwIpEbA95Rna+QyZNnBTJJZrM5jx48IIaILCQHiwXReUJKxCTofaRarugTCFXQdh0mgc5KpNkijCWzOUWekduSttviY0RnGWiFD4EYAjEN/MWf/zH/7S//lIn01MszIHFyesbRwYJlteHh6QmHx7fp4jDqPjuPj4nN2TmT6RSbZdy6e4ff/Ze/S9s2nK3OWW7P+frXv0bb1symU1zfErwjxMj9Bw+YTCZcTAdGP9p8pDO3LSkliiIjeM/du3dYLDrkTvZ+u61omxapFPP5DCnEzqv1SR+w1l5aAsEoNGWMIcsyQhgHvOlkwrbeEkPE2gw3DHRdN9Kut1tCGMW7sjJHGwtS0HUttRKEdrQgspnFDQN5URBCIISAMoYQAl3fURQF23pL1/aE4Im7/tg2DUiFNB6kHOneISFthtUlvXOEJJhMZ/T9QHveAIHzsyWL+RwhNF95/x0+237Cp9/9cz76lf+OZTsglSWIsU+wE8MbM7Y7f+cXYHz0n19T+6Rjchk8X2wLIYjxQtJp11FSuvSYJV3KPY01v7vrSQliGj2mLzktl+PMTixudxItwEQ/ZsyFhBRQwSGGBjls6bZLhu059fKH9Nt7bDZrHj54SL1tEEKgpUQDMztlUuRMJwvskeXoaEKzOUMISTkpSf0AclT27vvAnfkRCYMwGqsyNvWKxntQisEHpBJk0xKtPXmmGfoW1w+cPDplPp1QzCaEGMmMJwQPSeBcwHuHUhqbWertFrVfid9jj9fD5ZzqCYvrJ35+v6ch7/GTQhoZfXsxqSt9f1xcYrcQ/vOYlX0RXjmwTUkihUTKi+zCOKW6qv4Zd8HrDQeTLiZe4mYBpzSmYq69KrluWTPum55a7RuPvd7uk1q5J9tPhKZeFDymaz8RY63qM1HyK+J5wljXa4wvPEQvtp+bCbpBiOmp33cUAoQYxWDYTZalJApDTI6UOlxzQnP2KW5zm/fff49saNDdlhg2CGkRpgCTMcSIx9KLjCgNAY0TmqByorSEJAkoEAohRg8ryc4T9/J6R6opQkCM5Knj23/67/m73/93mGENriWlwOxowf/1//SvETGw2az54d//HTkw1QpFQsvEfFJgiPTrLVYXaK0wRjNsNrSbNUYq8skcKSWDDyAlmc2wxuBDwKWWbV2zaipOB8mX734FyoJsOsPmFqMEfXXCu1/5Cvc+daQgUbIgJY/BUeaCb//ZH/HJt/+EQwaW9+/jnWMxW3CwOMaHSNs7FocL+qEBPD4ZuqZDSoHJckyWYazhf/i//w8c3jpEVIrvf/YD7tw6Bu9IIrFdt1ijUBqcd0htOK+2hBhHlWMhyMoSAazOlwTvEQUUeYYbOvLMoI0hxMBmvcQNA9Zahq6lKArcME4utMkoigKl1CgmtXs+L7K3F89qlmUI4MsfvLdTO9Y8fPSQqqqIKZIVOc45uq7HpgIpJC4EhEhobbA2Y+halFEIoWjqhn7wKJOR2Ry8R6mRYhxjRCqBkBqERCoFJJx3CA0pdMSoSCikzjBWc6d8i23dIoQgn08Yhp66DiQEEY01lhQdv/bRlP/8J39Je/s9itnXSSiSjESxm2ylDJJBJEd6pbhJXKlgvfyzcXkfEeMik5ejqZBIoyL5Tnj8yQIDEkRiNKMaW5Q7ISsSiCggxZ2aMQgtCDEgBCipRx9kpUkpIoRECsiTI4sbdOhJrqNdn+Kbc6qT+9jQ0iwf09drHpw8ZNN3xCQoigm3Dg6p12uE97x1dMDhpKSwGq0Em2rNHZPzyLcYafDCI0vBIHuiTBRZyaNuwAqBHALODQxuXPBYHB6w3m5ohg4hJYe3Jtw9nvPdf/wB1dmWw4Nj+irQtRW37xwyn01wrmNI8Ohkw7becnx8hJISqQ3up+yXt8cePxeIaczKwDgfC2GcW+0Whn6Sk/4UwhfOYttjj6tIflwM/+dISU4+PIld/pn0vVcPbCNE8awC8YWy57hPRCj1bI7jeqbzyRtXz8AXPbI+z1v2mSD3C+A1vy5l+XKx4HkrKVfbu+neChjVe3cBZWKso5VqpFumRF0t0TJwfvaQb3zlberNY0SUEBUxCpIy6KzYTbAVEzMDaXFJEXVGkiWD03g0HkUIYgycsUQhxxiWHUdfCkKMSKWIyfPXf/lH/Pl/+feobk2GQybHh2/f4Z3bC6rTh7TVmumk4FahefvwgOQd1XqFlAkx1PR+QABKCYKTaCXHwAXIdlnMTVWNGU0ELka0Mjs6caBttkhhmc+mY61pSggl2VQVpVUsygJjxtrVFBN+cECgyAyrx/f4qz/7I/pqiYyeg9mUoXccHx3R9QMPHz9GG0VRZMQ0BilSSNzQUxQ50/mUmCIffe1rlJOSqtly/8G9sa7UZnjvmZYFzbYlRUGeFyDAOUfvPIPz1E3D8dERs9mMoR/QWvPWW29xMF9Q1zXbqmKz2TCdzUCM2d2LIFVKyXq9pq7rUWxpvd4JQmm6rrusw83zHGvt5bPYNg3WGgY3UJZjtnU2m9G2LVLKS99brfToW82Y9c2zsV7Wez/W++5qbJVSIARd26G1xmiDluP9TjESnB8XR5Sm6/vR3xhIzjGdTPFCEXxECIWQErWr6Y0x4r1DSsnBwQHDMHD79h1msxnn56cUU8s3vvIlPvn+3/LRb7yDTBqVcpKQiAvLK+IrDUeXTP8ro95TWdmdjVASCROf7CPTxULbLjObgJ31lZDDrh1JEpooFAkNagzkExKRPIoeGBDRkUfHTDqk79CxR0ZPdB1tW7OqNrTbDeuzRwz1Culqzh/8kNBuYOiwGoIQWJMhlMJqg4iR2WTC0WzC7cWUdnWOG2rmhwsm8zmyd0zVuFiwrBvaoaOcFEwmJSkkUkzU/RbX95RlwWI2MhQSia6uSSIxnU+xUtA1W959+y0ytca58W9KUZZsm5pt4zk4mHG0OKCYTqi3W7z3lEXB3dt36K4wDPbYY49rSON4mcKFjOSVt1IEv8vYhDCOZcaMjC/5xczFkg+jz+gee/yk4Two+9O+ii8O6Urm1Xkul9j/GQSy1/HKge3F5Pa66MmFqNJVn9rPC8+nIb8Zros/vUlN249z3qu46T5dv56b/F9ftf3LNuGKjcmYLZUklAj4vmFSGlbrByzXJyTnefv2W9Sbmr7vcG1AxMkYgPhECo9QKgOhwORgS2RUJFMgdA5S4eWEOpTEJNBqtA1CJJByzEoLzT/+4z/wB//L/4+Zq5mWipzE7bt3OSo11tWI1nOrNCjhKXNBFhuESAQdafsWjKEsRqU7ay3aaOq6w2b5JVVYiDHQCjHhgqMbBvK8QIqI6xvK3FIe3uGzygMBiGy3FTazhBhHReaY0NaitUJLiN7Tbip+/z/9B04ffIYMA8eHB5x0DTaznC3PiRGKPEdbjTISgyGE0ZakzHJCiLRNgydSTifUfUcaOs5WK8qi2PUnydD3GG3wfgxyiqIkJvB1g/NhtCxK6TKIvVhgatuW1WrF8vyco+PjnUeuexKkp4TWmjt37hBCuKQee+/p+54QAmdnZxwcHBBCQAgx+tE2DaenpwgBn376KXfu3EEIgTEGYwxt2xJjxBgzBqYpIaVkNpuhtUJKSd+1o9qyc2O9twsYPR4ffEArffks51lO8IF22xJjRzmdEUIc6deTkpQE2ljKzIIpCAHi4C+ZD33fA1xek3OOk5MTlFIUpuRXv/lL/NP/+kc8/Oy/cevD34aogXIMHEUENWZvxSsttolnt66vlaUr2ddLJsmFxdDOiuui/ha1oyPLMYhF7GjHicRo66NiT5kqNA7NgO5b1LDFV2e068f01TlttWLZdDyuepq6RolEdA1xaPHtFhk9i8kEKcazKKVp25bz1Qlv3bnD7VvHpK4luYHSapIP9FWNlZr5wYJ8cUQ/DMSsQJYlBwcLTGapm4aIoDwe2QRaSpptTV1vCSSMEkzLktlsRiah3lRsNi1CWO7cvkMSksePH9INLYvFhC44Hn38fWCsDRcI+rZlu9q8oKZ4jz32SCk+ydS+eMdxijAMgBgzuVIiLlhkP+40KSWS8692LXvs8QUgpV8gIakr4cPPu9DTF4HXEo+6Keh6KkD7CQSJPw4+b4udzxtvYjv0gtau1DOzoyWLXfY1MrRb6tUZ7XZN3y9p+w6VIgmHNYmkPf12RYg12mp0TBgUzbolRVBZSdIZ0UOQGUlbhMrIygOOZrfpezf6tsaEthrvAhH49Aefcv/P/oQPip6jgxmZSgzVklsTQ6kCEyuZFxpJoG8bitmUrt6Q5wXGavqgKWezy4zO2bZiXKqSGA3buh5prVLiU8K5nhAiCInynsyMJkh379ym9jB0PVlmwRiyzOK9Z76Ycnh8jDB6t3Id0DKhreQPfv8P+P7f/zfa1SkqONbVkugdMYIxOcZaQkp478iNZbaYcX52RhwS2lg2dYXONHle8D/9u3+Lzg13336L3/rt3yIvcobBITJNPyRyo5FiDHKMMWTFhGI6p+t7zs5OWa1WOwqxxuqxRvXRg4cMw3DpWzu4Ab+zHjLGXC5EXTxbF5lcgMPDQ46Pj+n7HmvtLvPpOTk5IaXE8fEx3o9Kyd57vPeEECjLEq31mHU1hr7r8T4QYxx9egW0bUupFfP5nFQnuqpCCkGeZ2ilKMqSFOOYoRWKyaQkzzKm0yneB9q2ZzIpEVojjUaYjGRyehfY1hXSZmRFou/G7K/3fsxmDwNVVSGlRO4o6TJldFXFV98/5M//8Q9Y3L6NnX4DEad4YYhyIEk/Bruv0AVvHEUuXkxjODp27eviayOL4WJ/gSAJS6ssY742oJJHR4f2LVZEtIwoEtbXpOVntNUSFwbadktfV6xPH1JvlkTX4fqW1gUGqSmMYZLnVENH3VUoAc4P9MEwKQum5ZT7Dx7gveOD997jaDHHtzVlppjmhnbYkueWRTEl9pHgAkoJrFS8dXwbHz1D36OFJFeGtm/p2wrXO6w2dG1LU9ccHB2i1ITVdkNMARU8ubYczBcgDOfLc0JKTOZTbk9v0/RbrNVkfU/XtmR2XDgpsozMZHu7nz32eBHeyFJnR1sOY3ZVSAm7vxFCv5qA5GVLIY6T7p3t3B57/FThPcifP2/by350sX0lI7vHs3iNGttnaz6ve6de1NC+XFRJXGZCXjTYPZfB/Ia4uMaXZZhvqva92sZ4bZ9/z5C7rObV87z5udIo6iQSo+nGmAmMKaBSYugafL9laLaoCHU1cLiY4fpAvalo1yu2yzPIcyYHczQQ+xYbIplU+Lam7j1SZ/QeosoQpsC2J7iz7zC0HWQ52miysiRXmvW24uSv/5py/RArHKJLbOuKaaY4ni3IpWdaWIyAECKmLFA2I0RJtCWDcCBz4mTOKjgGlVOLHqMkOIdKgnIyxTk/ToLzHKE0MY2ZO6E0bVeTEDx8/Jjp0V2Obh0R02iFk2Jgvphx584tEol+6GnbLSkMlFbx/e/8PX/2h/+F+uwRvqkZhgYlEkmOqkA+eNreMV8smM5nbKo1q2rNpCiJ0SOkJC/Ge9L2Pflswrau+ODLX+b4+Bau7wHBtqopc4vrOuazKUdHx/SDo+962t6x2VZ4P/qJOefQSpHlBdPpFCUlZ6dnI+0Y6LsOqdQl00LrkSZ8cnJCXdccHR1dquk65y5pyFJKhmEgxsh0OiXPc5SSbKvx3JvNmC2bTCZIKS8Vl6WUlGWJ0YbVek1qIc9H8Smd5whr8a1iMp0wPqCJYegZhm5cvDCGrm3wfrQGUkriPWilqeuaIXhsXmInicX0AD3JMUOgmC0wRvH48UOUUpcq0Rf9/SLwlkJSVy3ROW4f5Hz03pxP/uFP+cavv420B6QUSDKSRGAUyFNv3AfFrrY2xUQSkiAvFKvH8gCREmFX3iF3clVBSLzQaBIyeTIGirTFhDV++xhfndJuV9T1Od3pffq+RSlNVVVstzXDzmcuL0Z1by0jM+VIYaBbrbBCMjsas9/eZ9y6c4fl+ZLHjx/h+w4lBN1mg9OS0kh8W7N1DYfzGQro3UBRlDjnESnRB0ffeYahJ3iHC548z8lzy+B6hqElN5pbt445PDygmEw4W61YVxW5zbl7eMjQdoQkcT4hZMJojc0M5WxCVImyyOi6hoP5HKX0WM8+PUAIyXq5eYOxcY89fvGRQvxcMjgpxkuRGfyVjKsUY23u847xF/V8+wn4Hj8buHiWf+aztjvW28XC1L4fvR5eObC9GnTdJHz0Mjy9z4v3f9L208HvdSrxTdd48f7zaMbXr/tV6dMXnz/GeEnBfpHA09VruQnP2hWJy5+fB0U6wZhtFMBOXOuilk/tMra+qwh9ixCa05Mtb99+j6FPaJFzOL+F7jzNeolXZqdqPJCCp663OOcJKLLpgtN7j3BY7GSOOJggRE9b13y2XCK15vD4GKkMJs8p1RbpThEDGF0wP5pRGkWKDk/EhQBaobOS7bZG6wlxrlm6QJ00Q4qcbsbJ+3R2gFzko1JqGjOhfd+jM8s0s5ydL4lJcOfuW1RVxeOzU+azCfl0jmta7j0+4cE28LU7X8F4R1HmBD8Qg8MHT1nkkDxWRpr1Kf/1D38PFQbwu3/BU8wKBu9omoG8yFEh4bynXi7Z1lu0kWR5Tjs0aKOZFIZiNuGdD96nGVq+90/f5e2332I2mdBJBTGSGcPbd29xdvKYBw8estlsKCZTpNI8Pj1n8B7vB6zRSCFQu5rZlBK5HWtMrbWXz2DXdYQQMMZcCkJJKXfZ0NH31lrLcrm8fF43mw3OOQ4ODi4pyl3X7VR50yWtOYSAtZaU0mVmdLPeIBBjsFsPWGs4PDzEJE90PZPplHq9BMb+pPXYl4ahw7kxOB7pxB113aF1jpIaoyVN54i0CJsRd9nQumsZgPlsxq1bt6iqCqXUSIveXasxZuxbIWGtoZgc0p+s+OaX3+GP//ITVve/y90PjvHkhDjWWz/RihNP/byxT19dTd39lPJC0G4Uz3NPjTUJJRLICCnstO4EJvZMwhYrAsN2iew3bFcPWD34Ae3ZZ9jY0W+XdNWaoW1QcgzYY0z4EJgUJSFGcgVRwq07d4mp5/T0lGwyqkXXbYPWmlt3bmGM5swPhL6lUIr5tCTXElevkdOSWwdTjuZzpIC2qWmHQF2P37NzYz221pLNpkFrhZLwaHmKEolpWXB4eEDykc1mg/eRBw8fMz1Y8LWvfYMowPUdddOSpKIopty+c4vlZo22hrbtxtrufmC+OBhFZyK07UBdP6TICoLf/7HfY48b8QVkSJ+y6AnsqcV7/PzB/2zW2qawW0BKkMJeNfzHwRtTkV/3uKsB2+Xk7ipP/Erw+iSwu1lQ6lnK7qtd803B+EUt4FPt3XDWi4D2grb5QtXiV8Tz7uebeFk+28hOPIodhWEnHiVlAu92NXY9mZaIZDg/q+jagM41UlmSjwxDYFbOyGXG/XufYHPBwWJGrg3Ce0KKiKFFRoeWCvzAZh1Z+pph6FnXLbYo6KuGyWxOfb7i/qamMwVFbrBRUOQZxkgaNzCZFDQYhjbw4Ucf8N//P/47bDnFo0BbhMlAWRKC4AcIDt81fO/v/4bv/eWf0HYV1hgSsN5U2Lwky3I2VYWUGqQmnx+yqTb0UVIPiUfLNe/7gEiRvuvIrCYzkqODA0iRWa7ptyv+w//yP/G33/4LfL0htBVqFyh2fYvQCqUlgx/QKkMoDSEwnc3o+pbleo1KioPFnKO7t5jfOgQl2Tzecuv4mDB4Th89HjO7CbSS1HVLnheU5ZgdG1brsV0U1mqUEuTZSBeOMTGZTGiahtX58pISrI2hbhq29fYyi3lRU1sUBfP5nM1mQ9/3GGOYz+fEGFksFlRVRdd1xBip65q+74kxcOf2bfI8B8bsrxCC5XIJjP68AEoqvPMIIZhMJhRFgRCCelszkQLnHMZokgtj1WiMDMNAlmXkWUaIo5r2fDJlVk7Q2lA3Lf3gKHNLVAZtNH3f0bQdbTvQupEKK4iX9Gjn3KUA22XGVkq6bYvNJK4dOL5zh3/xa7/EH/3lX1NOjinufkRIhkSO2/Whi75+le1xpfPBNT/Gi7pZQkKkNOZ8xVgfO0ohB0RwSBxGJrQMEBzBD+S+Zto85PzRfZZnp2xXS7brJZvlKckPzCbFSH3HIvKCYVf3XVjJfFpwMM0pM02mJW29RbmKfLrATSaklMgmOYVRGGNxXcPD+/ewUvJr3/gayXt837GYFCzmJdM8o9psWC6Xo0eykuSTGScnJ1hrOT5a0LYdZ48ekGIkzwwoQTmd0rVbXAysq2qsGQ7Qth0uRFQ30D06GT2djUJIhQ+RYbvBx5F2fu/hAxKJw6PjHaW8xbuBIi8ICEKEhycnKPlzZ8W+xx577LHHTwkp/mzU2qaLMpoYd/6x+0Xazws/pVmBuJHu+6z36xejTvym4lFX9/9Zqhd57mcQYpetHQNbwUis9EOH62qMTBSZRmBxztP2HVZnzPMM73oGNyBi4HG1ITOWaWmZ5Dl98GhrMHmGNgVNO/DZyZJ223JwdIywGfW2xWOJQaGSJpcFy2rLug0EmY8qxDGQlMIJibAFgynYdIFtFxkeVXT/7Qdkk5wgAGlIwhB22WcVPbcP5rx364C+96QIddMwWEOMibbvOTiYIJVC22z0ZM0yfvTwhCgUbddz/2RJ3XuUzVHa4L0jhg4pIlaBUYZvfPgBj+/9iL/6sz/BykRe5LjkMFKSWU3TrelcN9Yhq5ymdQxtj9Iaawz0HUoZbt+6jckttixwMZAVlnboRzGcmHjr+PYoiDMMBJ84H3qOFjOKohxpvymNys9W0/btGGx2oxqxNQajFJPJhEk5YTGf03cdfd+PYkk7Uaq2bS+DzZG6uqXv+0u14rt37wKw3W6x1jKdTjk/Pwd2nrnZ5NLT1lpLnueXtOULFeUx8zpc1udO7Vjn2tYdE6sIwbFerZiXOUpLYogIKShVhhACH9wl7cYYi1YaUkIrINPIKIlKo7UAEdDGUsiCbeto2oaubbDGXFKkgcvPnWXZWE+tA71zvH3nPYRUfPmtY+6/veLeJ3/Oh4s5+eRdGjd+5nhV7fhFZRM39L2nGC7BU0aPIiLxqDAgU49OPb6taKpz2mpN151TrT/m3g8/pqq2kCTOeazSzBYHI1MiRAbnMTZnMikxCkLfkFsLRPwwcPrgMUpCOTskqYzF/BDX9wxDz9HxnNVqyebxY0qrWSymlDKRTwqyxZToe1y9peqa3TOkSVLS9gGsx4eADJ66blien5Ni4tbx8WiqpDRKSEjQ9gNlXqKVxWiLzgt8SDTdQNe1eO/JrOT46AAhxoWJi/KJ6XTCfDanrluq9QaTZSRpycoppVQMfY/UalxQ22OPPfbYY49XxU+j1vYin+f9SDWOzyqV7/H54DUD2zcPNp/KcCae8n28vh/wwozta5z12vbTtONXVR1+cj03Bd8/mxBC4FNCXjFil0iMEnR9jx96JrkhWkm17fAIVuszrF5Q2kQ3NHR9AyliYmSxmHIwK0iuo9tuRmVlLQkhcTyb0PaeB6cb2s2Kr370Fd49PubjH34KWqOlIjQtQ1Xhm5YQIlmZMz04QBqNVAqlLed1ixcGc3iEn9yiUlPuPT5HmYiQmpg0IQI+0G9W/Mn9H5HjOCotB0aRMovWhmFwlOUEISWb7XY3WR4NWWRWsm56Hjw6Z1N3eJmRhMI5jzEaozRKQNdU/N13v8PhbMbJ/XtsN0sm1uC7hraqKGyGIOFSzeJwTgiC8/NzpMrQ2qKNwXmPMRlZnrOuK5S3vDf9Cv/i3/wrvvrRR/zB7/8ejz67hw6R0wePsNqgrGEym1BklsxIhqGn6zqcDxgbMXlOXdfAGHhlWUbf9azXa6SUFHk+Zl0PDkZqsBuYyDGQvQhE33nnHZRSVFXF6enppfrxdrtlGAb6vqcoCg4PDy8D1RACs+n0MqgFyPN8FNuaz8nz/JK+XBYlKUu0XUdVVRRFTpFb5vMJrlojhaDrWmRKuGG0KprP56SUdnW+oxCW945h6MmspSwzlNa4mMZFECTLtubx5pQODcpQWMPx0RFHR0copVitVlg7CoJZa3fiWYJuqEgxEcMU4SWTXPObv/pV/sf/9b9w8ui73P7gDjLN8CGS5M3lF0/1tcth4OIXsZMauLDsSgg3cMSA8D2+qxjqJaHbUG9OOHvwQ+r1CTIMhNhSt0uc69BScXw4x/UDWigUnsZtmRvN4njGZFJQbSp6mTj60vtoY1muNzw4OyfKKXlRcn6+ZtKMFKdJkWO0ZLvekAnFl966g1GC4B2+3tApRRc81kiMVsQIfdsyREFSGqEV3kcOZ3NSimgh+fD9LyNSRCuFdwOkSGYzlBS0Q4dQmt55ut7Ttj3LVYWyOb33FGWByQvO1iu++53vcOfOHT788KuUMaK1YbXajIs2JuN0tSIpQUShlWAxnzFRkrCnbO2xxx577PEaSDtW2E/kXDsf2eT3f6t+Unj1wFZc0O3GejGxC5nG93juwsN1yu5lYHhtn+fjem3u806WSElcCYjH7ctLvAxEd+JV4mqm85paMs8G3hfHX1py7ESyUopX5rPi0urjalh+09W+Vqd6DtX4+gtPf5yISnGntKp2tGRIvqWvTol9hSESY6DramKMbLcb7h6PPqhDW3NwdIAaeiZakhtN9J7oHISEkgLhIyk5tBS8c3yEMTkPHj/m8b1PsUWB1aMycWEM680aNXQcGoEtM0yWkeeWpHOWzUCKCjm5hQ/QBcGsmPOv/y//N4gDgh6hLVFoYpTIFOjPH/PH/+Hf0Z9+RhY6um2NDwllFCE6nE+sq3Oavkdqwztf+hL3Hz2ijY4HDx9Rdz3SWjKT8847b3G+7ZjnlswovvO3f8eizIhtxyf37uG6hjR0xLIA50cP0pio2wZMZNsMGJOjTM626dAKQjtQTqcUs5IffvYpdd/x1rvv8MHXfonBS/70L76NsgV15yiUIcsMXinywqCtRBlJ5wZ657FFAYNHKInNLUf6iJRG30ElBcEHREps1htCiFTbloPDsAuI+514kaDdqR2fna/o+57ZbEY5nWO0RoqEsRZjNM556u0WGOtzy7LEO0/XD2gzBrXrqgIhGLzn/oMH5HmGsZaqqkgJ8rxgcMNOuEoRfGDoB0SC2WxBtTrHaoVQisF76p1dEIDJMqwxOBcIQ4+Pgb4dSAkigqQd0hYYZSizDD841tWKQVuOD47I84LNZo13nulkCnlESUVd16zWK4RNrJZr1qff51/+zr/EeYdMnl/95kd8+3vfYT77CpOjkk1SxKSQ8kn/H0sSnvR3hCQCMiVECujoMCKiYkCTIAb6rsXXa6rVA9LQsFmdsj59hG8rquVjXFthCMzKHGRECo1VOVpBaS1N16DxZEbx9vu36LueWWnoqjOU67izOGYYWu6fnbJpHF1QbDtHqSRDNDSrDVrAraNDcg2lUQxdQ13V6GmJsXonJuUgRZQaPY1DiBwc3aIdAn1IJBewxmC1oNpscL1jPSwhhNEPWkq2dcM2bhlSwpQTOhfIjEFrRZQgthVaS956530G5/GhY1u3/PKv/jrT2ZRucHgfSb2nD5FhcGQJTJGz3KwJIlLmBe3p493i2s+ZvOUee+yxxx4/dSTvEeYLIK3GnXWWc2NA+zOcAPtFxat/q/KqSIAgpsiukPPKz5djnCDyXP/BZ4Wp4gu3x2PGnzGOSqYXAezTIlQCKXfX+qS1m6/hJvfKnXXO1XpcseP3xl2NnRRXOfvpip/l9fM+HzfWAV/bFuLmhYGL8ycSWoBKjoBhkJqARKYBHWvc5j7Kb/BDB1LRux4SbDYV2lji0BMDeOcplSDKSCSSkkCpHKVyUox0bUBoxfn6lKA0i/mCZlbgFGydQ+UTBJLGw/lqQ/KOO/OS4/mEdVWx2ZyTJneJ9pBWlvQuIohkZlRwnk4nEDIkM4IyDELRDR4tIz88+TuWZw+5JXpScwpC0SNYVzXBR2ISuCBph4SSiu/de8Tjs3M2m9VoQ1MWJG1494Mv49oly3sP8E1HOTvgGx98yDy3fO/v/5aq7VHOYYQgNA2CNNZ5hshsOmPTt3SDZAiJdT0QkiIoxRATy/MK/3jJfH7Inbdm9CHw//p//39IBL71y7/EN7/xdT7+7DHBO37nt38LYmBaZtR9w7reQBJIrbnzpS+TYuJ8ec6Dx4+YlBOOD47IjCG3BiEiQ9ex2WxASJCaqnVYm5OCY/ADSmuUthSTGVXd0DQNy01F3/UoLYHIbDrWwxITeie4NJ/O6LqOqmlISJCWLDfYvKQPAakVi9khsKNpR8eDR4+xwbNerVhM58znC3Ilcd2AjtANAdC4ENCZxfUdQQp8AKk0Q4JCZ0givvcEFwkhjjZT2iK8JCnBfDbj8PaEQcCqblhvWgYfOD07Z+h7rDJEF/BDYIgDTdWgkiIGuH3nHe7ehmxqqOotSMM7t97hBz9YcvrxX/D1qaXJvoRH7cpoAykFpAQl5E5ERZCEwKeIFgkbO2zYUoSGVJ/jNud01YpqeUZdnTHUj2m2FavViuBHoSfnRkXhpC2yKDkoM24fFKQwsFqeIl2NsdB7jzSGynuWbctp11NIzfFbX6btHettQ+sS08UBw7pCy0QKPSE6opBkRhJ8NwpVJQjNllyDkYK2G1A2x4tEluUEpXEIVtuambA0nScKNTI7QsOkzBFJYpQkxTFjPwwd51WFzTIOjo6oe0HdOuYHU8qJIYWeJAMuNJSmoKnX1FXPZFaiVcGjx2vO1y1xN8BN5zOSzViu1gzrFVmeEXCsNltimmL0ONaVZvJK4+oee+yxxx57XOLzCjgviKghjPWyMX5+be/xRnij5YonKxA3BICviJtUga9b3VyvgX2VlY+L3a/u+hIHoh8bL79G8bmc/4k6a3rm9ZusmGIIBCGJaawUjMnRd1vqzQpXbcilJ8tzlNZk1uCCZ3COWZ4z1JJIwqfIpm4IWtM6z6woKCcFRgjyLMPFSJKSddexXJ3i+pY+RZLU+KFjvjhiuVqiQ0eZCRa5oFSelGumx0f48i7NcsywJmmYTjKCazBGA4koFFJbQoxjhiY6zh/d43t/91fI0ONDDzHS9h3F4hbbejVm6qZzlpuKYjKhC4Hz5Tlt15Iby+HhAbPDQ6TNODi+zerRQz58/23mswNOH59x77Mf8t2TR4jgMWosx9BaIpGj76iQeAF919OHyGSSc3JyilSaKCRVtUXbnKNbt5HKUG0rPv30Hv3QIUQizzP+6A/+iL/4sz9jOi25dXzE3//9P5DnhkePLFIJjLFMpzNmswmfPVzuaLQFt956n4PFAk0kesfJ+TlKJFzXjlTerkcoy3SuyWyGlon18h4xBrIsR+wsuYa2RmtN39UcHR+N6sI7e5y+bZnP5njnSTGy3W5xzjGbLXBuYBh6tJYgwHmPAMqyRCSotzVSSLq2YzZb8I2vf5Oh61mvzimNQnlPlAonoa5rbBiVi6MbAy4VIZeWPkDXD/QxYZUiRdCZJvg0ikv5gBwcIdUMiLEGWSsgUFUr+q7n8OCQSASZUFKSlxnBR1rnKPOSpt7ywx/9kLpuMNkEaUu+8dX3+fbffpeHnx0y+dotXEwoZYgxoKVEJI8MHiMCBI9MAZsEQ70hNCs25w+4d/Ip9BX1+pTl2SOabYVRMDVgrWaWgZkWaKUJQXLry+8ihBgtd3Q5+sT6nlzv6N5BY32gcYG62XBytsRqyzu37vLZg0ecL1cUkzkhwfnZCTYrmRwdcL5cEYeO0igOpjnTwiKGGtf3WKvRJiMrSgafcDGhs4zNtqKwlqbZorWhqmtOTlcU0znbukFpS0iCC0FnJRVCazI9Id/R/30ahZ2aztGHKeJsQIpxUWBxcECe5ZAks8UMlKLdbDhfrSnKgoPDQ/qhG/2Ijabv29HvWGqMzVi8/TaHR4uR+l5t9uJRe+yxxx57vDbGQFSP7iFvdPwYwKZLr+h9MPuzgleeFVyn4qYkrmQkXx83+sfeEKA9q4D8fMGnq/60FyrGT7//+S6kXM8Mf1GUg+dlqG/a71LBVQBCIaQc7wkJGRNuaFEqsTg+RMWW5cqRxBjAdsOAjxGdWd750pf49p9+inItx/MJPkVc3xJdT24UWEPqHD4mpEpkuWamC+aLKU03ToAbF9DCEbZnHJeWeZmhwoAJHW1VIewUqxXWCjJlcEistQQx1rtKKYlC08XRWka4Fj1U/Ol//Lc8/vg7vDW15MbSD5bl4yUim++OUzRti80M2mqGPmC04t2336IwlsJmmDwjm025dfsWNi+4f+8z/mn5NxCgbRpcu2VbbciMJvoB7+HWrVs0bUdAEqWiqmq64OlWa6JUbJuOw+NbvHV8h7brOTk9o647eteTZZa7t29zdHhAnlvu3fsUoxXJe37wve/x/e/+I0VZkOR4D4y15FlOUU4gJSbllJRGm6k7t29x93jOO2/dJkTo+47DgwWu78gSCKUprCFTEm1ncPct2rbFB4d3PdPplMW8pGkajIqkOCCk4e7du6MtkBoVhIdhoMhyyrJESUnXDxhrMMay3W6pmy1CQFkWNE1DUeSAYFpOOTy+Q4yR5XJNigGhNKtqw9BUzHLLZHFIebBAaUnf9/TdMFKWEzipcRGiyZBCj9nSOOAReATKZEQh6Vxg2/ZEpcgmIzugbzsGN2C0IRLZNjXDMADgQ8A5hxsCtukY+p6hb7FGkWcKW2SE0PP+u7e498Pv8PUPvsUkPybgcD6MQlxaIENNkXpSu4Fuy/lnn42BrWupVo84ffgZSnq21YokIkWmyI3muCggwgd37+LcQF3XFOWEFBpSAjFsicrTyJbZtGRoBqq+I9/5Ap/ff0w9BHKTMZ8tUNpggmC2+/18uaLte5qqZjKdMrGaUhe8d+eIw3nJPFP4NjE0cfSDDYnWeYrpnEIbGjdQn56grSHbKVkPzpME2NxyuyzJixmDc2w3S7RV2KLAxYQbRg/mYRhAKpwLO+p2wmaWItcUmUUgqDYNIXi0trgITTdwfPs2d+/eARJd19I0NdII3nv7LsYY3rv7Hn3TUtUbhm3L2aMTNtWGyWz+hYy5e+zxc43EuCK7xx57PB+vKlJ7YdsXIuwsrj4Pj+g9vhi8tt3PGDjB5706cTVovuobeTVofNXA8WqA+7RFx6tG4Re1uK+y383n/yLwdLsvWwAApBqD29F/BCk86805yQ/oTOAHRwqR+WLB/5+9/3qWZEuzO7Hflq5CnnNSX1FVjW6gewYYNI00Dp9oHJsnGo3/6QyHhA1JDAkjiAHNBsKgptGium7VVSmOCO16Kz74ybyZefPeyqqGGHTFSss8Jzxc7Aj38Iy1v/Wt1fUdTdfQjT1jKClMxoPHj2l2NwhrGIaeeVGQK4EIjrIsIAWMEDAONHV/716reProATYr2R6O3G12mOSxQiP8CGHA5pZHD6+obYEtC1TTYbWFKCBFLi/WxBSRSjCO4JEUSsMw8Iv/+Z+y//rnrFSg0nDa1YyDZ331ECEEZVnSNB3Heo82Gf3phLCGJ48eTWRXSlbzOYGE73tefv0lxliKsmTUsDvukSEQfUeWKVbLOW1bT1J0oxHB0PaOtncEY0lCsj02LFcrnj54TN10/PKrrxlGh9KG2WyO8YbPP33K40cPOR733N1cM3Ytn/3spwgJzX6HzQz14UBAve4Qn0zW0pRPOivnU+8hgqLIsSbxf/4//R/56WfPyJRAJg95hrUG5zzOB7zrsaqiyHLcMKCVJUbPYlZQ5AIpPUZHEoGHD5/yB3/wNwkh8PL5c7p2igUyxuC9J8+y+xilPdZmUx6ulFhrSCER0tRD27cdUhqGbkAISYxTzI3Riq+eP2d3d82yysmNZrWcTKeKoiTpjHK2wAePizAMI/P5AqEDvmsQ2tCPDqQmIXAINBLnE9oalLIoESZpMAKpJP0wOUPHNK0jlMSNASkl4zBO13+MFFWB1gIRB5JrWFeKVy8OXH/xr/n0b/5dksrIjUYyEusTw/6aNOzobr5m2N2we/WStjnhxh6lYWYkViuWVxXKaBJQZQX1zYb1csXMKJrRo3KNNdB3/eTY/GTF2PcUVhLGnhj85AytDXfbPQrN4wcPKGcLQhJ0XU8/jFibEVOizDI+ffqUsizRWuOc4+7mOZUOZMlNLQZuMiNT2lJ3I7ZUZDLj7vaOPozksxlZUWL1lKmMkIw+ghT0Q08zTCQ/uJ7l4hKd5VRFxn63o2k6Bufo+4Z2cCCm2K3f+73PSHHgeKqxxlJWJfPZiru7PS9f3jBfr7FakVIks5r62JMbiUyTrMv3Iy+ev0BJzWxRoYzEeE88HQlnydcZZ3wQ596+M874NXAOVPajq6QYwYdzZvN/QviNdVxvk1spX5NOeN8R9GP28z5+XbX2N3Eifpscfyx+qIr8scf6YM4lH18lfv/1vf34x0jtu8d6y6gLcd/pmyA5iANtvUXgcGOHSJHZrKIeB9q+o207TnXD00ePGENAGkPTj3RNja+PPCwyPn30EGsNPnj6tqaoSqqqxJNwp4a2bXEBQmyo25am7bi8vKJra6RUCDL2dYud59T1iauHUzawiKAUaKt5+vQp+90dmbX0SSJlhhiPHK6f85f/8p+wkA4xNmxfbRldQGqL1YYYIqMbOLUNEVBGM5tVDKOD6CmtIVMGw1S6l1IilMQHjx86drc3+HEkhohS4ILnZnODtWbKWt1uQGccup7b7YGQBLPZjNXVA/b7A3f7EzEmtLV89vlTrh48JMtymvrI3fULToctxEiRW3762adk1rDfbfmv/+v/iqdPH7O529B1I3VdczwdGceeU32ia6ZzE5xjOV8zny/4w7/7R1w9eEjTtFw+fYSIjvqwh5QI3k1xKELgpCPFRJ7lSJXo+3YiYX7AKEnQgpgEeVHw7bffTnmzTct6tZqctUdHURR459BaU95HB11dXjCO01hjjATnud3tqKqKp0+estseOZyOhJhIJK6u1jz95BMWiwotA5uba/7nP/8zpFRYk3E6Hbm8uEJrgxCSPC94+OAhUgri0FFZw+gj5aJCaEvf9qjREQDXjXTD/t6s4d4ESSSkkhhrGL0jRE9VzlitV3zz86/p3Gma9xGJoe+RJGZFiVnP2B9O/OzpJf/mF/+Kpw/X2HLB7d2B7e0tw/4Ot33JzB/x+5dTlVUklBKYTGCtpcgMAjEZaumM/eGAYuAnTx6TZxmvrl+gtOLh5QUxBXKZ4fxIWVq8kWTGsjsckFJRVDOUzpjN16wffIJQltEFPNAMjv2xwbmBi/WKzz//nDwz3N5cc/PqFdZqHlzMKXRiaPYUiwW2LLm72yKCICSJNBlN7+idR2aWaj71r6YQOJ5OZDZDKIEQia5rudsdKKo5jx9c0vYd+90GraaMYm0sPiZG50hC8OzZJ2TZ5DjetR390LOcW65v7vjVL7/BZAUhRu62Wy6Wc4iOQUYII+3QYYxluVhxPNUImeFFYn97i7jv+S9WC5L8j5tFeMYZZ5xxxn+aSCmB8/Ch/0fiVJ3991HIO+PfL37jiu3086/m9PWuqdL39/9Dx/51xPZ7zsUfuFh/6Bjv7vddecKvkzC/lj1LKX+gsix/6yrubxJH9G7OLkQhJ8MfASIFRHKM3ZFKC0I/YGRCKcVqseDm5hatNfvdnmEYyYocqQzGZrTHjiIrSMCxbvjsyWNwA1IqtncbTJGjsozVYsaQNNt6ZBgdN9sjfd8j1lMGbVQZfV8Tg0RLTV5kjG4E0nRfiRNBKMuCrpn6agUJFUdiX/PP/vE/5HTzkpnoEX4gpTj1hI6evp8c6Lz3aKNZVyXD6PDBkRcTWeqajizLcX1HOZ9TDx110yGU5Pr6SN93EKcezsEnUGqS5HqH957gI6ftkUM7gMpQxtAOI8e6YRgGrMn4yc9+ysOHDwHYbLd8+eUv8c4RXce8Klmvljx7+pinT5/wq19+Qem1anwAAQAASURBVFlm/Oxnn/MHf/D77Lc7ZrbAGEXXNwTvePnyBXebDadjw1dfPWdzu+fpw0t++vnnrNdr2uOOzWYzVbikfJNL+9qJWBYSrTNm84px7EkpEpPD2mwit8aC1Nzc3CCFfCM/3m6303WdYBxHvHNIJYkx0LbNmxzbqqowZorn+eSTT7i4uIQEs2pOfpcxm83JqwJtJNGPuOGSWWnpu5/RnGqszZBKcXd3x3y2QErJ4XDi5YuX/PyLv6QsCmLfQQh044jJC5TNcEli84LHT5+hrUYhQEmijyzmc7Iip+169H3F+VSfOOwPLJcrrFYoY8lzi5Tg3IDVlu50Yr1eY0SiOxy40I4Xf/rP8Enx9TfPGZsek0ZUuwd6ZmIk04n84QVohUARXSS4wLyoWM0XjN1AbAaWDxdkSrLf3KKBwhr2m1t8cFPMlNFoQGnD6BwugDIZY5S4znPqHLn0NPWJ/eHIECL14NBKs756QFXm1M2J3aZlt7nl0dUFq+WCKpOoONJ7MU3g+Mip7ZmvKqRUJKmp2xODC5RFhkDQNB0pjHjvcePIMDiOxxOHY40xGdZoSJHNZoMWidmsJMSIFgJjLWNIPHhwhTGTnD1Ex93dlvm8ou0GDocj69UFy9UF/c0tbd0DEWsswntyo0nBsFwsMXmO25+4ub0lr2ZUVcZsWVHOcmxm2Z+Ov9V99Ywz/jrjXF0644yPwzmG568ffqMe29c/P0QY/5eI37QC+26v7Ps9uh8irJO8+e31/ioy5A9Vfj/kHv1jPbZvrxSjIKREJGJlYuxrNreviKplrgOjc2R5jtWaKs9om5a2acizjDLP6fMCIRRSaLwfKWZzhIS7ux3LKqeq5lRlSVKSzjncOHK7O3By6t6sSmBtQdsPVHlBCDCMnqqcM7hINAlrDFKOGGUIITKbzQjRI6UgJU+hNXFs+Uf/6P/FN7/4Mx5VOaLrUSZD4FEpEKLAuZFMa7wQtH2PGEeQEmnUlPXa9VxdrrFJcjqcUHqSqyYCp1PNoa6JMdEPA1U5Y75cUvcdQ9/jk6DtPXU3EJAIaRhjQghFpiRPHj+mLEvquiZ4x9dffcnpdKJtW6qq4uHVFd63EAOjGzC5RUgIyXF1dUFR5iAS3o9T1bPMqGY580XB5cXvsds9wI2B5WzOP/h//0OePX7Azz7/FGs1zc7jQ0AXM06HyfG5H0YWqzXeebphIg1ZzHBuoBtGtJasVku6vkXpESE1o5+uu9lsBjHinGMcR1KIVFVFlueslguEEvT9QIwRKRWZsTjnEUkSXOTu9g4pJN57jBYslpOhkBQJlVtOQ40WkClBzA3G6Kk3N6y4vLyasnmtYVbm/O/+y/8NV1dXZEKhgLrv+eLLL9mdGi4fPeFUt4yDR6qpQupcQGpJZg3BjcgUCGOYHIuFJMYRHSMPHz3msNmhpSISaNuO5nhEAddfP+fFt99yOp5oPPTDFyRAh8hlWWElVLM5OQWP1nP6vqVREbSmbYYpQ9mWCKF48fwVcRhZFiWu66lPO5SSSCVQcopBOm53rFYr5rMSIQTb44EoLZ0DoxW32xMuCbTJGNqB281mkqorg8gLpDYc2p7j6UhuBIbI1dWaq8sl0Y30rUeLiDYZPgputgdO/ciwP9G7iLg7YbKcumsxueGu23DcbVhUBUbA5eUlZTnj+uYWLRUogydwOu7RAorcEr2j71uEUixnc2bLOYv5gi9+8QV1XVPkk9Tr22+vWc4r/sbv/wEPHz7k+vqWzeYObTWLWcGD9ZxZZum7jhevbjjWDaLztEOgGyPzy5LLh1esLhYcjlt+9eWX7Pf73/p+e8YZf21x7v8744wzfkfxW1pKvp+Z+h8O/2H6V9+t1v6QrPn9nNwfHttvF/cDH646w/f/0/q+hFmQXscPJY8kUTdHlouCdNoTQkAxRfoorZlXM6KLjMNAfaxxp5pcW6zJqEMk+UgIsFhfsipzMpmojzsEieZUs6uPJCm5uriivz3S9T1VkZOCR6RE3xzxUpJnFqMVUUqcFNjcIsSIlJKLxeR2enNzS24kWmuSG/nzP/kX/Nm/+J8wyeE6jxg8WZHTj4G2aUnKkFJkdI5+HIgkMmvJioymqZE1lFlOYQ0qwmq5YAiOw/HE3fFA5zymKIlxijtxSJpTxzB6urZnGHtiSPgAYwgU84pFtaCs5jy4WCDu5a8xeg67LVobcqvJzAytNUombFXg/IiRCpMZ2qEjEjGZoShztNVcXF1yiFCUBXlpGYYG4RN5kRFiT14WzJfLqSrWN/ghkRk9xc/EQFVVLFZrun5EKEPftUglaOoT7dCTYiQvChDgoyAmTYiBru1BSmIIGGPu9xcZx5EyLyYZ9jAwn1cYbfDeUZYlKUHbdpBASkWMCYkkyYi1iq4fOR72FEVGCB4jYZZbci2pNycu12uiSAxDhxIe159wSFTylJnmsL1FpcBqvsAoTVnkVLMSJyZ34YcPHzAMjqEbp5ia4Li5ecW3335LjJGyLJnPZlzMl5gkkfMFwzCyu7ulrTv0YDgc9tze3jB0Hc3hgGtbrJL4cZJeXxhDkVkIngcXGfNZRdu0OCfZHBq8nxQBruuJ7YASCmkm8r9YznFdiyDSjy3zxZw8zwnBczydcM5h8wplMvbHbjI+0yUyK9DJcHesebU5MF+tSH5AKoksC1arBb1PtNuGGAMiRQgOrRWXFws+eXxFaRVDL3B9InrJ4CM+RjyKIAy7Y4PUGc63PJzNyVPB0I8UmeHzTz9jUeRIJkWEQrCeL5gVFfumwafIxXqFUXLKqvZuihgzGSE47l5tuHl1A0w92gjJfDbDe8/Vw0dc32z4t3/6F1RlxmpRsb5csSgzXNeyrQ9oZaYJJWHIqzlCB1arkqEb+NUXX3J1WKFVYjw2uEP9UffVM84444wzzjjjrz8+mth+32VY/C9adv7bEOC3c2/TfXeqEOm7mN4PvN4pPeX97N33e4U/rsL9vpz4x4jyD0myX28z9T+riU5HD8lz2G/wbiB0LVJ4ZlWJG0dypblYrqgPJ47bA9vNhvWsYraYURYVtTZTdStC03TkUmFyg9EZbVPjRk+ZV0QpCN7jxo449qQQqMqMWV6w2XR412PsDBEcoxt5cXtL9eT3mJylQapJCrtelLi+wxrD7atv+Uf/w98jdTVVZjhtdliR6LsDPngEkizLSDHRNu0kwzWThXs/9JRVyWq+QAtBigEQHI870IZTc2LwnmxWYYoK3zu885yalu2+JURI0SNSxNocJQIieS4vH3L58DGjD+x3G6IfGIaBrmupqgIlJSkmfEhIEVEiIJUGP/UQN13D6eRYrpcUVQFSIKRAaEW5WCGUpAuOqCbjLykkpjLY2YJkcoSxWKU4nfYENyK0RBcZ89UKF+JkGqYUD588wY0tQk7X6eFwwEeYzWYkAeWsYGk0TdMQomO33RJCICZP27RT1Iz3NE2DVortZgsyIoUihogbHae6hgTW5tN7pDTOdcyXBVlmmM9LINHUNS4F7Hxy0TUSrIa278mNoq9HhjYyny0plhUhJDabDX1zoBMQrKU77u8NhgykSFFknA4nbl69QiuD1IIYw33WNVN/TIiEcUTFSAqB3atrbm52dP1A07ac6prgPVWegwssqjmubVnNllRlztCduKwyjNRIX3N8ecsYBdnikqZLSJGxdAk9JIp8RhcCm9s7rh5ckZcWpafPAySU1bRDjxSSU91SVTOywqCUYfQDIihO/UD0CpcUY9JgcoYk6ccRrTXzWcGYIoempfcBKSJh6KkyzWq9QlvBsT6y7RtmuaWpW0KQhJi4fPCYZxePaUdBmQRKaV69umYYxkkOnRnmVcG8yMiMwigYuo76eOBwOHF5ecXlekmSk8lbCiPKFpgs46eff4bUll9+9Q2H/Z75fMEnn3wKKbFYLPCjQwqB9xFrDX/4h79PStCNHfNFRakVeAFxkqK3bUuQBcl4hLLTnSzFafLoZsusMDycrSnDv8cctzPO+E8RMZ0rtmecccbvLD6a2L5LpN4ltb9xjI4AkvgoXvyhpNwP8b3Xx//uud/sC8+7ZPL+9b0JxZ1Y7Xudt7yuXL8vRf5YUv1+1u53b+rrI324l/n+yG/v6btjCjE995rgioQkIF2Hq/foFDHGkJxj7HsigjEE3OgwxqClZuhHZk+e4LxHSo1UBggEkXFqR9KwpbcSrQW6yFHGULctIQqO+5bDscWPPetZQakl7WFPoRQjIKRF2YrN3YZfvbjj2d8JRCEYXM/D+VOyzJDciNWab375Bf+fv/ffEE8bbBw53J0ojaXe7yjLgsE7opSMPhBDoOlatDWUVYnUBkhURYkbRhCKY3Mgy0oGDPtDQxckqIxujOy7+77FtqFpOkCjpCYvKmazaur/k4J+dMTg+fKXv2AYR0TomVc5WV6gVYUQgiLLaZoaQaIqcqpqIiN5nrNaLdFS4XH4ccQ7T3M6MayW1Mea4GE+q7A2IwTwwSGEJsbAfLlEGoNPibZr0FpSZiVKwnwxo2s7NrsdPgkCkr5foMRkkiWFQimNMYbFbM7xeKTpGqSEvu/ph5Y8y9BaI4WkyAvyPOfp4yf3zsyew2FPXmQ8fvSY+tSQWUteFDR1y+b2jtOpxnmHUgqbZbRNw363Y7GYc3mxIrkeER1D3yGiY3NzQ0iCLLOsV2vyLKdtO1KKHI5HhEiEGNgeN1xeXeKT49HjC0YX6UdPcj1xbFkvKoRQdM6TzxYkFG1dU58aDps9zemEGwaaU01T14yjI4aAQDDPc7KqpMyyKdpp9Ag7yaFVCtjcIpMneU9MEaMnF+joRjSJTEtWc0uTPIf2RO8cjx9eIq3h2DRsD1uM1ayXa1JSDG3L5cUFZVbi+oHgPDGLLNdzRh/Y3l5zDIohJDofyMo5Oi+xJqPpOtpdjZISlMVLhRKQLyuK3KDnc2xhUEbShS3HCId+5NHVI4y1bA5H0slhsoonVw/QSuGdxxhFURZUVUmKAecD27sNm80tVZGzXMxRWjG6nv32wJdfveLqasGTJw+5a2rKoiIKQWQAFBfrKy4u1iwWc+q6ZnvYcnt7xzj0fPbpZ1ysl4xdi3MDSil2+wO344gWAiElSmWUF48Yo8Qz5RNnQmKUZTZbs9vego+gwZgfd7Q844zfNfwmCRJnnHHGGX/d8NHE9vuSWPHWz++MnVL6viwW3l8miR9c/n1CKFG/dmyv82Rfj+dj3JN/nXRYiPePK5FvuOP0mj90jPdzdt/Pun13DG+/fvFm2f2W7z1+Z/H7tlvvPT+dhygjMozkYsQ1O2J9RIWAtTlCJtzQorTGp0heTRmqp+OJY9swek/se1CKJBRRCLqYkEAgMoyegKRzkW0/0kVJwnJ0Hi9zqnmBG2v224ZZkZPnJSqbcVePvLje8+ff3nDdObLlmowWhEXIyTFYasnCVvyP/8//O1/+yb9iZSL7uw3zoiCFiM0KQpIEJIMPuKFByoQXkYvVAqMNzgdSBBEFJMVssaIfArcnhxeGUZYEHTiejnSuZ3c4MHgHSlJVFcuqItOWlKYqq9ZyyghtW5q2JcaEEJJZqVgsZqQEwYv7eCWJsRapBEiBjwGpFJfrCy7WK06HA370CCIiJqKLdMeG0A8oo7A6sZ5XdM3USzmMjryc0beORCAkRyRS5hl9c8Joyel0wNqMy6s1d9sDy+USgWS9XKGV5nQ6ktsMQmLoOggeJRJGSaISnPqeq4sLlFKM40jfdVN/5L0LstaaZ59+xlfffM32cOSw23OxWtPcV3YfXF3ixgGrFdVyhi0s64sLtNZTVrER1IctzaHhk8cPuLt5RdsMiGRwY0LrSPA9bdcjtUIoQwgjg3OENKIHg2Dqic4zw9D1xBh4eLlCSkXfe/at43Z75Oblhu3mjnq3w/c9yTmMFMgEldJcVAaRPCoJZIxkMqGTQzqPKTJQmsENBO+ZLyr6vkdKQ2Ys0jnG/ZFCea4Kg1SJw1hz8g3FoqDdO8axhxBoBkcSOTqfE1I2GUmNkbuXt2ghGQaPLBQuOE59w+awxxmBmS047o+YsuLh06f4JLj56luUydB5NsXx5CULk9O2J/7uf/G3efrkIYXVSALdsabcH3H9SHbVEIPj5rDj5b5lXlY8evgEkVuSSPzt//X/ilcvnmO1ZLfb0LU9gsn0CTOjR0zSf2tRueXZ4hEX6xnOB+rTEWUyTF4xjJ7TsZkyaiMc9keOxx1t34MWDKNDShh8z8tXDSIE5rM5t3c7mmEgJBDa3ld0A7PZjKZpyIxmURn6Y0PbjViTsNaitJyydq39/u37jDPOOOOMM874ncRv2WP7hj/Br6m7vk/0/n3h3/0xPhRH9M6jHx3HrxvP+1E+Hx1lJEB8XKmbieBOcsXmuKc5HqDbczG7r/QUU9zGOIzYLGO5XNK2HcfjEZtn02RGpnj5bWLsGrS16NwyK3PS2JBS4NR0DBGCyGjbdiImUryRjOrIdAzvybJETPCLL37FbhjR1YzPPvuM5pff8Onv/T6/+upbvr15yen2lgezkhe//ALpRnz0zKqcwmaE0aGUpOla2rHHxYhLgaIoyIuKth9xrmW1WmFyS5KGkCJDFOSLFb7f8upuw3a/ox9HfAogJTbLKGcVo/cs5wsyq9FJEkKkaWrquqXtOpIQZHlBUWRTLE0miCSUVGSzEjcG8qLAZpbR9QiREFKwXK0x2nLYH+m7jgeXlwQ/oKTm8uKSFCHGxNh1BD8Q3EjyYTJhMhlZrpgv5iwXC5SSPHz4kKae5Njj4FgtF8DUM62VQjBVWV9dv8QNA/P5nMxaUvIcT3v8OJLnGZ9++lOc8yQSl5eXjOOIMYbVaoXWmpcvX9L3PX/8x39MWVV47/nyq6+IzhN8oCoK7u7uWC6XLJdLdvs9m80WoeUUhbRaYbXleDyhpSYG2O2PhBDxcYrk0dqgtEVqRehHUpIUsxmVlAxuOkcuBNq2RaoO0sDN9RSNFH3i5ctrdrs9m+0B5zzROYySFNZQZIYgEnhPkWVoAUaMKBLLqsRKTXCO9Fra3Nb4MaKVwuYZddugpEQqw+AcSkiU0WRZRp5lDM7ReYPM12AMs5lFScl+v8OPI1Ir2r7F31eAF9WczFiyrCAcLNJanJCcnMebFeuLOU0UHP00AXi926FMxoOnT/BRkJJkcIHD/kC5gBevXvH42WNWlwuEzMiNolouePzsExbVAkeix+Gdo66P9H1Ldm/QddrvePz4Eebbb/jqL34OXiBUjxKKz64ecHfzEjd0HOoj1A0RgRYeLSHPchZLi1QG7wM3N7f0g5tIp9KUuaaqLLd3G643t6wur5jNZhRFCSHSnmpevLyh9wEH7A5H5osls8WKoe85HI4YJRi6mjZ51vM5XR3pmhNFOU027Pf7D7gNnHHG7zic+489gjPOOOOM/2j4rYkt/FAA+McQzPSWdPivTkg/XA39EDH9zTJwf2zbH4sN+tjxfCin96PG91FrgRQghUACp8OBlBxKJKL3xOiIEnwIrFYr6qZB3McSjW4kxshiucASuHzwgDEzyPZEHFuiiTx5eEVQkSw4ZOe42bWcTieMycgLQxgavAuUeYaInpASX3/zLV++2DCbzygezZDrC0SMpKHnn/x//yEvX7yktIZSCr755gu6w45FLlFVNhFY7+iHjqZuWF9eELWgPx4x1iCVpiwrlNKo0WOKGYNz+AQ6K3i53/Py5Ste3G7pxgBSkOUZVZ6R5/kkz06Jum1x/UByI23T0jTdZEaVFSwWc7KipCgrpJR03UD0U/+pMRlaWwQRrQ3jGBBiyuhVUqGkZhhGUggYm5ESOJfoGFFSk2LAmqmiqtTUqywRkzRYSQ6HA7tjPUXv+GnfRZEzthnVaokQgru7Oy6uHkDbs9lssffy2tm8Yn/Y4p3DDQMXF2u0kQxjz/Pn35CSwHnP8+fPMcbQti1XV1eThFlK1us1IQQ2d3eIlCYptYzEGIkpkRcFWmu8m2TIAFlW0PcjXTeQ5wW3dzvW84L5Ys0sU+xHRxKTDD1Jye54wsdIiGmaBBkCi8WSEDXGFnR9z+l05LB7yc31HbfXN7gh4H0kMxlKKuhaCpHIc0tmDAoQMRAV2CzDak1zPFLkgsIKrHBE10/9mwKCa9F45rOSPgS8VBhr2e121KcTi/kcJSRaaZRW9EPP3f5IS0nddiyKgkVVgI/MyxmZ7GjamqY5oVdzQqZwFoJIvLy7YwwCP0RcUnhhMOUFys4YhwZTzsjygrZ3uBC5udtyOE7ksigqlLUwdjz57Cmd7/nFl19QWoMbOpIPlHlJbnKCNeh5SZ4XGKuxWuOF5C9++RWff/YZf3m94eLRJ/zx05/i6xorDcl5ZIz86b/5V5x2d0QguY5ysWI5y1iUOX0/cHe3pRsczvWEEFgtFyxX68npPDpSGOiLjCbPiMOAKCv84Igx0fUj2/0RYSzFbE41m8ynmrrGDQNPnzyib45E76jyOVpEJJ6yKIkpMA79VNEtio+8G55xxu8GziLkM84443cZfyVi+yH8h6jO/thxf520+a9Cbl8v/5jX+DGk9eOMot7fCO6/h3/EihEhE8ENNKcdhdWIKOn7hiKb+iCtEDjnkFJirSWEgOt7ur7ns6dPGdsjymikEghGLtcrVkVOTJ5TXdMLSVFUzJzk+nqHFAJTlvguIARoY+g7hxAJU5Q8+6wkn69htmDrAv/9/+2/Q9uS9cUlD3//Z9TbDfvrlxjXUVUZeaYIwbPf75lVFcMwEgQEKei9wxYFeVUihGb0gtxa8nnFiODl3Z677RYXp57NlKAdHVlRcnl1SZHlk3w+RMJ97p8WgtOpZhh7fAhkNsfkGWU5o6wqpNZIpZFSIoRECE05q0gRQCCUQhmDJtIOHS6MVLMZ6/Ulm7s7uq6nKqde0iKbMkFfvrzms0+egUkYFIJ43++splxebUBA32/oug6tFDElgg/kRc5msyHFQJ7nHPYH9rsDq8tLtLEs5gUXqxWzWck49Hg3klJECUGe5/Rdx25/oChmyHsZclVVOOcoioL5fOqTfPnyJcYYxn6Yur9DpMhztJ5uIYfDgdVqxUxK6rZltVxjjGW721LXzyFFnE8UZYY0Gh8l1WxBkoqm7Wn7HqUMTdfTNB1ZHjieeg7HI8f9jusXL+i7nqZumFVzqqLEoIijY+ynnuyVkaSxw/hIqSF6T5nnIA0SaJsTM6uYlxaRPKTI6AbGwTGfzemGAX3v4tu1Db0IoDRIxWp9QVmWZMaitcYNI03TglTkRYXQGUVm6foO13coEqNzSJOzelASpEDOSsRsjfOJWgWckHQOdDEHkxOMpRsix36kbnvGQ0PbDQipiEJx8eQJ8/mSvKgwmUEYQZEZ/u5/8Z9TWgN+pGtqxr4n+IB3gYTA9yNt3b7JOPbe45xj8+IarQ2/SIm2bZBCUGU5jy8uEG7k62++5tF6zmfPnrDf3ECMtO3AfjdlPo+ju3cNH6YWFCHI8hyIGDwP1iuKPON0PDL6SHKefdO/cdMWUmNsjrYZcnQ0dcN8PscNHV/96gueXF3w7MkjikzjhwFFwLuO2XzJ+uIzXtzcsjuec2zPOOM1Uoi/oeHJGWecccZfL/xGxPZdUviuldKED5O+1wTuOyL3sZXJ3y4i52PxthT4Y4/x25DaXzeG33T8gl9P4IHJBTh5gutwQwPRMfQNaWzJ7GwyP1IKm+XYLENIMX3p9Z6b21s+f/aMPMuZLeY8/+Wfs4wdxqzJiwxFJC8qXAjs+566ronB38fGOKSYDCx8TCQhsUVBYQS5LrDFnBrJ3/mbf0BC8PXXz2mOW9qup9nvEG6EsaWoKvw4EoTgwcPHHI4HNscj1XzGtqlJQnLx4BIfIiTN2DuuNwde3dxQty2ehA+RrCjQ1YzFYsXMj8QEOrMkJYguTq95GOjaDtJktmS0QSlNUZbkZUGel1hr6ccREae817KsQHhi8JOsVghiitRNS5YZrM0oyownz56RUsIYg1kusUrStVP1NXg3OSr3PaRAEp5hmHohZWKKZdIDUmXMZtXUA+vGyXlZKfZ1w8XFBW4cOJ1O6DhdIMfjifXFiq7ruL7vDc6sYb1aTs7R99Ljw35HP/Ss12uU1nRdR4zxzXiXyyXffPMNt7e3WGPwzrNcLpFC8urVK2azGX3f45zDh0DwnizL2G23nOoGpTR5kbFYLJBa0PYjeWZBWdq+Q2qBNhbjE8fjiRfPX/Hq+naq6rUDbhyZZwadInMhWa9WWK0RKTL2HZmQCBLd6UQmIlpCmVvKPAPsRMb6Aa00pdE4NxJShrEFbduxPXRUVUWXFKYskNqy7zqiLpBCsj+dCD5w8ejRNLHS9fgQ2R0OU84vklPznIiAWNE2PVobum5A2wyMopjN8AjGoAiuACERq3LqFxeKQ9ex2d3gQsTYDGMNXucoq3hwOUns86Iky0u0sZMrtUiYQlLmlv/9f/V/4CfPnmAERDdCTAzDSNO1CBdJbUfXNDRty3a3Y7fbE2Nifzyx3++IMbJvcjrX8cuf/5xmMyNPEd/ucMaR5ZbLeQ4psj0cudvusdayWC45nBr8/bhdiPTOgZQIFfj2m6/xPvD5p59g84rRJ67vNnTDyOXVA+qmox36e+M6S1lWlFlGHDtW5QVaCSSBMisxZc6jy0v2pxNj8NzeXrPd7ScH8DPOOGPC2Q35jDPO+B3Hb1WxTfe9tVPF6jVRfdcZ+Lt1v1+VTEwS2e9ZIL1P0NIPuSK/u+xjSN7r5/6qFeVfJ0n+sdifD633Nrn+2B7bj9UaKSlQCU7HPfXpQBl6RHAoJVBKEpnOQ9s0GGsoSsN6vWa/27HZb3HBE7yjnM8oZjNEM/Lty5fEfmA+m7FrTty1LYfRMXrBrCwI40hy4300R6AfhyljNMmp+iUkh9OJYDOuXzznuD+y3+3JtMEIyETCE8iKnMGNJCFoe8e+6aYex7IiZTnZfI73nlM3st3tGMbAZnPAhYCQCpcSxWzGsqyweY7SmghksmQcR5q6JoSAH0bcMKLvM3GKLJ/kw0GijMEYi1LqXpZ7Ly3WBmstUipGNwCCGCPH04EsKyYX5cySiFTVbCIZ9Y6u7Vkt5gQR0VqT5xl5Zlgs5sCUhVvOchbzCiUEY9fTth3SR37y0095pC1lVZFiYhgGxr5DCIG1dopuco7l6oLLhxqpLW3XQvLoe3lxW095tM+ePSW3lufPn9PUNd4HTvUJff+6jscjzjmcc6xWK/b7PeM44saRKi/o2pbj6UQIYYoC0pq8KBBCYKzFe89ytkBrTdePDKNjGEfauqfMNUlIimpGQBAiHA9HTocjXdNx3O6J3YBIgjzBsqyotED4geAcIjhMUEggS5FMa4rSEvKKcezJrEVrQ4yexHSvqrKMYZwibYQSJGm4O7aEkBDlgl5qDs1IkTTWJo7NFPtUzYvJSdpm7I/HqU9YqelzKhXi3lRrWQhciKTYUVYWU86xqwvGJGlDwixWSF0gBoi2xJYZvj4RidR9TR09wUh0Ph0ry5esi5K8rN4QWW0MUiik0ggEgYDJJCbTeBem1w0oa4khYouK5eUVKgZkGCcXuntlgguREDxDO/WNN3XNbr/jT/7nf00+tvj6SLff8WBmyNKAjRGlBC9ePKcZJ1m+D4G27Wi7npgS1aJgdI79qaWK4IUjk6CsYXSezfYlSWqKvCArSpQxvLq9pR9Gni6XnOqa6BLzqwserJdEN+DHBoGg7zoGpgmnYXQcTieEtpRlzuHYfNzN8IwzfhdwrtaeccYZv+P4jYjtd1XX7/JbfxtM3Ow/rmT5NT4Yp/Oxva4/Ilf+mEqsEOJe0vobmEfxLin+wW1fm0fFgOtbNIEiUwyjxA+e0+lIEIIsr5hXJaRE8H6SI8fA6VQzBkeuBUVVUc3nXCwLsjDJG1/cbimWM+arjPFY0+9rlNCT5NU1KC2QwhCBvKoQ0iJcwiWJFgkfPfVhh+t7rEiMzZFxCo5FGc0QA3XfkWclTe9xKZBVFVJJ+ujp65bbzR3Re7quI8TJydoWBf04UC2WXD18MPWzCsnoRsZuoB9ahqGnbVtICRHTZLYkBJmxLJdLtJ6yZo0xaG1BCvI8w2Y5Uvs3125KCSEVx+ORu9sNCMVPf3KFNpZhGHE+orTGWIvzO7QGYyXBOxJTPucwdjTNkcxKHj18wOB6vPcgxEQm3YgIgePxyBjAO0dME7FVUqKV4u7ujuAdMUba7iXlbMFnP/0Zl1dX3F6/mnpDpWJWVdxeX7O523KxXqOUwZiMssrougFp5Ztr6+7uDufcRFaNgQQpBNarNcpo+r5HWEvTtgDEFOnHgTzPcd5xPO5xzjNbLMjygnHskUoh1GTUhYiYrGAYHK9eXNPWLTcvXrJ58ZKHFxeM7YCIiVIIlHdTLzaglCRTEiPBFJrcGCSJzo9oqxm9x48OpTVCaUIMeB+IQgKCIBSji+i8QiLYb3e0Q8swBj6ZrUnC0kXFfLEgKxTKTg7BMUwZyEkIpJLcXV9jjWFmNZmVSBfwEWxmaYaeLjlkuaQbB25evKLuPEovUTZD55o+DAgtQQuy2YLlwwfkWYaSFlSF0gYl1b0/n0CZaSLl9SQKYuqLDh5ubjY8Xq9ZlDlaSpSeeoCTAC8BKQkxICRIa0jRozDMVxVVDDwUkH/xS/6H/8tf0G2vqaTgZz/5hEIK+ubEOPREEiH4Sd4cJW3bEcpIWVa0/UA/BpJQDC7A6FleLric56SYOB6PtF1HVpTc3lzTjMP0+lQiN4Lj7o5hdBRlxWl/IBQZZW6ZzxdUuUGR6LqO8V5NYqxlvlyzVprFsv2oe+YZZ/y1R0yk+5aaM84444zfVXw0sX2brL0mtd8Rtx+WF39QmsxHyozFx633m0p/P2bbfxfk9mPG8V1M0m8gSf7ApML3thVTxZYQ2dzdUNcHxnFHpT1VVRCSYEyCrMiJ3jOMI9oHQog459lsN7x4+ZJHlyuMlnjgODjymCikQmQFm0PNvm04tA0iKea5RhDp6iMheh49fISxOc5HRt9Sdw6VlbgA3TAgjGRsJrMmyVTtS8C+aTi2DUlKUgSPQpmMYzty7Boa1+NiwPkphkTojMV8TlVVzGYzQkw0TUPX99RNyzCM9EM/9edGj9IKrRRaa0RikrYKQZEX6MxOFVyt7iceBMoYYkzEFBFC3FcEI4fDnu3+jhgjFxdXXF09IqXpS7gxhov1BXle0DQ1Xd/w8OoKaxV96BEy4v2AUQrne2Icub5+gTKG5WL+ploaYyQhiTHy4MFDZvMZQojpS39huLsOWK3YbG4nsqsttC0///nPuby8YhwG6lODNZbHD5/SlA3X16+m6vFqSVnOCDFy9eABFxcXnE4nsvs825QSWus34/CjY1Hdx7BYy5OnT5FK0fUd+8OB/fHAUgrm8wo/DhirGMeeJBLaaPI8JwXHoT4R/Uj0grvbHePg0UKRa8uTy0tMTFRGk2mNFhCS4diM+HFkVuZIISfVgQA/DhACWgqcT0ilUVaTELgQaLqekGA+X+JjpG0aYnI0XUcfPGOIVIsVTy8u2Wz3HPZHimyKlTocerJM433AGoNWiqooqeuaLC9QQrJYrDCZ4PnLF4Qg6LoDEQPS0nW3HA5HotQYkxNMQJQSW+Xk2QKb51NPakooobB6qrQ7oRFSfTdhlaZJGyEUMd5fg8ZSzixGJP75P/0X/D/+2/8rD9YLqqIAAeV8znK9JpsXSKu4uJhMneZV+cZcS4hEmeXc3d3yj/7+3+dwfYv2garMOd5tOLgBJcW9e3rAIafPjjaIEubLJeV8zpffPOfU9WRlRec99eFE1x3ZVYb1csW8mvHJ5xVCSJK4QXvL4BwEuFotuFyu8TGx2x/x3tHWI3fXDZmWfPrsMVU5VXlNjEibUTcN292WJASb7fbj7plnnHHGGWecccZfe/zWFdvvcle/kyL/WMHxHeL1Zr23ZLuk70lsPyQd/qGq5sdwwh+qMn9/kfio/X2op/hjZdFvV1vf3u7Xktv0Xf7tj/f9ThVYlSI316+QJPLMMM8tbuxp+h5bLrBZhm+aN5W5YWgIMaLV9KXxweUKgKwoicEjtGIYRjKdYYQg9T1ZXiCTwGiFVROxqaqKlMRkWBMFTTeibYFSis1uP2WVikgY+0lSiyAJEMYwpsQoBcJoWh/puoG639O6kTEFuuAIIjGfzXn89ClKKYySQGQMnmEYqZuapm4ZB/fGgKkoSoTMkGrKZFZKvZGWCqZqG1JOWbb5DGssUmqSmFqXpJTEFDmdTtR1Q9d1rC6WPHjwgNXqYorzOZ6mL/ApMIwD8RSI0VFVJUVhSSkCCaUkUoHUiSw3aKPwzlFmFU3bYISkbVtmsxkxwtAPHI9HhmHEe0ffd2zvXpGCx2o5VZqNYX840XYdwnlCvMVIjTWGajWjbTqG3lEWM4zWKGl49uwp2/tJjHEc31SsU0r3cuvJbVkpxdNHj7FSE/PA40ePefLkCbP5nN1+N1VTjUEbTVEU2HlJQnBze0ccIsMIYlaS/MjxdMS7kb4ZubvZ09Udx9sbhtOJLCVi11EZQ0Ekjo4gDbaYUZZzcmuQaVIhKKumiYHQEZxH6JyUJON9lNCprhHKMDiPb1pcCJRFSWEEVguCUnTeM4TIYb+hPh4RCdbLObnN8DHj1BzZ7/es78n9MBqKsmQYBow27I8nogCTLcmFojm1ZMpgiwIfA5VaUC0WhKJkW64RRYkwliQ0CUWKauo7lxYRBT5EhJHTh1wIpADB5MQsEqToUMpQlAWZVcShox96xm7kl5sv2e+35PlkyDR4D0pNBle55eHlJZcXK7zrWc5nPHnwgL5r+Pmf/xmbr77k+PwFKjge/+wn9GNDbjNiilxvdjTO42VGNc8ptMH5yL4+cWo6doc9wmTk2nCxXCO1wrc76rEhHk44F2iONUZr1pdrdJ5xe3eDMoZKGxTxXsYTaJsGpRTOeYzO6AbP8XRH29YUZUE1m2OynNlySd3UXIqLH79fnnHGGWecccYZvzP4DSq29z9fE1gBIr1NRtP9vx/uiU3vPH69+lskkIncvn4q3R8k8ubA07Hv/7wey5ttU3r70Zs9v172et8fw1g/2trqtdz3nTxa3nIunljoh8i4lAKBQEgBCeJ77+OPDi6JtyYZfni0Smlc0xH6hnWZQ1uToiAkRVEukCZDC8lIJMRw3/eZY7VBCTgdT9PrlJL5as3Xtzcch55VZinLBakbAcXYd8yKnBQ9p+5eSstAQpDuz2GeF6AUTX1Cq4TNDN3gqOse7wM+JITvwATqwbOrB7wY6E8tyU0yVGEUq4srnlQlISWatiHERPAj9TDg+ikCZBj6KfZHCoo8Q8li6uuW07ubWTNFBAmFlFOPqnNuMtC6l5oKKRFqqlCNwRNl5Hg60bYDQmmK+YzPf+9vYGcLtLb4AG3bsz+2SOm4uliSF5Zx9BwPDQ+vFnjnpkqxzYjBk4REyOnxMI5oKWnbBqMVY5o+X8MwkGUl4+h4+cWvOO5PrC8uaLuBiJyif1JEK8nlxSVSKpy/w+Y5AMEP/OHf/iOEkDz/9ltW6ymftj6eEELQdgOnukMqzXa74+7ujvV6PZlHWU1T15PzsUh8/e1XWG35yU9+yma75VdffknXT6ZVIXryssBaQ2YNuVF0/cinzz6lKCu22y3ej7R9wApFvTtxfb0leEnX9HR1RyYUmUyoPMPIBDgQnoBCSo0gMY49Io4UmSYR6dyI8w7nAwJDNzpGH5AmI2VzBuf59uaGx0+e8vjxM+rjgcNhz3o1JynFcDgx9h0ozWqxICVB8I7TMJBZqDKLWV/Q1DVqNiPG6Z5XljOabjLNSt5RlDPqoSch8SFAeyLPLbYwxDBSFpeE5QWjNIw+ofWUAZtQiKSnWColscZA7EFpIlOlFu+JYz+1C8QpCzo0PfvTwKPVjKdPH1OKwL/4Z/8cpKIZHDJMBmciJdzgGFzgL69/wd3lBcvFnJdfXfMr/QUyjoShQwXHLDesqgUxjkglkFoikBzblqgMD598wqooUCHw9fPn1PUJW1bM5hU3dxtm8wojckprWCweU+82BB8IGHbNSNcf+eZuh5CRqrAsFjMuZ3OM0hxODVluebpcEHxkt99htKIfR8auo+87lJH4U+LYtGhrKWdzquXlR92tzzjjrzvSOb/2jDPOOOPjia18y/jpNZVKk/3Qe0vfI7fiA1wy3ZO+7x2DN+ZIiYmephSnSt5rwiq+I7Fvlqcp2ubdY9wLnuXrHb5Lht/G98nhD/XdinfWed1r/Hp98Xq9d3aXfoRLfzcu+bFq6jdv9fervd8bM0xusURKCSovcG4gyxfYomC337HbbMkLhVIS5xy5zSizgq5p6E4dfTtA0NiiQpdzjNUYlQg4xmHKADXaMnQDAUeeZWRZQdcPCCVBSHyM5FZzOJ7wKVKUFW03ULcj3ehBGUYRGQZPe+w4th29cyQhCTGyvlgwqyqyPCfLpoqrc46xbdlv7oghMnYDYfQAU66pnsyeijyb3iMBxhqU1mhj3pw7ay2Zzd5UKIGpyhwC2mh8CrRDy/54mIx7rOXZZz9hPl8TksSJnGZMWGUYg8cnQWklgZ6m6+haR1GWaDm596YEWVay3e8JEYzNQWhsVkJ0CJlwboQYkSRCSIzjibJaslysmC8WpCS5uHrAfnMLIZDnBj+O/OIXXxBCwFiL0VNUUAgDm80rMpuzXM4wRlFVU/W263pgMizqNnf30T5HNps7rJ0MmPLC3Pcaa0JpCR6avqXrB+bzJSFKtBkZmoHoPd4NDG3L9d0dCIVQenLEHUfmsxm5Kdjd7djcbGnqjpQk3akh+kAMnqhAERi9I8qE0KBef/S8gzCgZSTFQCSCFOg843g4EcLAMCaEycjyOX70PN/sSLokScvN3Y72dOByZlDa0o4jznmU0pSzBXXbk2cFQzcQo6c/HamqgodXDziaKeapzKdzVzctQinmZUVs98SxI0ZJ3Y9ICcvSUpQZylpe3h0IY0IyJ1MFRiWQEhcCUgmSTCATQ/QI78kUuBAY/URs09Ajg0OkRBCaqAu8CwgZGYcRgafvT7g0YPIZRTlnvVryk88+4+U3X7Hfbul6T5KCQ9PR+4DVYLOclCJte6S+fcHvP35AaRTRDcTkMFlJ148UZYkpF6QEL15dk0tFRFItFuSzEu0GBtdyuShYzDI+efyIzYsXNJstwpYcGk8XFE1QrJdLrILLVYUi0o2RL15+DVLw7NNPEVLQNA0yM4zDiLGWh08eU+YKYw2HpqNxnl3dsusC5th/5I3zjDPOOOOMM874646PJ7ZSvukFnf6CEO+S2tf/vsfr7nnY29XZH3EufkNGIaZESuLNfhAC8ebY4o0s93v7+AFDpb+qK/IPbfobx/X8QBX3o3J3XzP6X7M/IQRSROrjjsxq/OjATw65Eej7nqoskSIiZCQJT1kUZHbKJpVScTrV3G22rJYzZlWJNJauORBdRxs9Wmqs0QzjSBSRqsgJPtKPAZvPQE1uroP3yCwDO5BnOW3X8Wq3Q2UFXkiatuVUNzT9wOgjOsspy4oQE0oJLlZrZrMZbdNQHybH3rqpaZsWBFhj0UKgjLrP4zUorZBKIqVEqSmjV1mDMgaUIng/VSWzbHLHFfINsX2d61sUBYObsk2NzXj05BOUKUhC47ykbnvsPMeFyGJWIoPHZTnzGRjj6fuOYez5yec/pTvcIUTkbrthvb4ksxlaC7yfnIUvFgu8mzJGx77HDQN1OhFDoqwWFNUC590UMZOmOJ7X0ylKKVRmqaopDighUFlG2zTMVkuOxwN9f0tmM6RUaG3J85yiyLm+fkkislwumc/n9P1kxiOlpOs6nBuoqooYAynBOHrquibEwGKxoCwrmqYhz3OU0syqipTiVDU3FmsMm80d88WSkCIxJo6nZqqsDiP9qabZHwhtTbWco8Wk+1b380OZtcik2B1OiBS4XM5QMtF1DUJIfAJpNAnD8djikqBQGYyO/eGIUhqtNfP5nDyzGCUROG63e+q+p1osCc5N6oGm41R3GGUgJTJlePjwEc5PEybeeza7LdvdYXrnpeJisaBYrUjC0NzuuLi8pCoLhJ+qjGPbom1+P38leS1yUUJO5z95QoikON3vxq6jcz1eaKKwpCTRyTPLDGPf0bmObb3h2Ds+++wZrtRs7ra8evWSi8tLivma9dVD2rYBKciyDGss1WzFPCQG5zFGMS8slRFcf/2c21cveFSWjONApnKSgJu7LbfbPUiNLWa4yH0klST6yLau6f1ItphzqhtmRUUKgd3tLbHrkTGSlxXXuwMqm6G0Zhw91mT87PNn6DAgReJme+R6VyOkpHbf8PDxQ548+YS69+yPr8gqRTME3NBMBmS24PLiklM70DtPZPxNbr1nnHHGGWecccZfY/wGPbZvVUQn7S9CvJ9l+0Zj/D28T9kmUvwdUkrEGJFSvrfeez2sby1789xbh32bvP5WPaw/gg+TUfmBZT/ed/uDubMf7dD8Ma8hQhjpmiMiBdq2IRceEQVZaXEhkCIgJymvNZZh6Ak+UhTFvQup43iqmS/mjCGRlGW+usIOR8Jpz2l/QOkMIwW6zFEy0LQDQVq8jxhlMFlB2x9omj2eSLfd0w09x3HkuNvTdh3D4IgJsrJgUZTk+RR1IqSmPh7oTjXH7Y6u6wDQWhO9n0yfEBATRiu0MvckdqrqJhJSKfKiwFhLBJKUCKURUk+mPdoy+Mn19bVZ0tQfHCb5upQslkuUyVksL1Gm4Pb2yGwxxwZLXswQanKT9lKQFznrdUFZCL766ksyM8WvpJRQSrFaLun6bjI3GnouL1b38mHHOAz0fQcpkmUFp8MeazNIMAxTNXGxWND3PTc3N4gU6LsWNzRYpQgxTBFGIWKBEANSTnFF3jlIcHV1RUowDB1CSLa7HXk+mUVtNnd0XcdsNqOqShCJtlWEEO7zbRMCyenY4FzgYn2F94G2bbHZtF6WZfTNkYePrjjWLaemppzNWF+uGUfHYb+jHUZiEiTn0D6QkTBFjooJ7wcKoyiyHCEiIoEIgVluSSHQtT3aKJQpcDGRkAiTE6WjXGQokxEQ+Bg5Hg8IZSiKySBp6Dtyo7Eq4fwIStN0A8e+px8cWluMMYgkGbqOp88e0A0jTdNOhll5TkgTWXTeT1LutkEaCQrqtsElge87ikyixHQehzHx6uUrtH7A4vIRkUQ3dIQU8TEitKQfBqRSaCJFlnFqHS4FjFUsVytOm1v+5F//K+puJMgcLw2ffPoMIRXKTBNRVmpCjIzeE2Li5uYWPwwoa1muVgwu4Jzj8cMrmuOGF1/+gtPmFuEds2LBrLAslwtevHjOqe0xWY5QidOx5dhuafuRqihoTkfWFxc8fvyEalYilOa426KkYrEoiT4grCHTCtX2SCWpiqkdIDrH/m4DY481knaIOBRudFih+MWvvuYvv/gV1lp+76d/g9ViQa4kvr3D70Z2ux0uSWbVjGVWfuS98Iwz/pojfaf+OuOMM874XcZHE9sUJmIrX0edSPFaEfuGVKY3zaW/5suG+LAsWCk1LX/jBjr1RQL3FarvZL2vt3xduX3j1Hz/582hXo/39Ua/JbH9sNz3XYL9viHU+9u+fu6HKrMfVclNvFP9frPovQkFQSKGga7ZE+OIsRIjJ9kpUiJihJQw1uD7gWEcSAm0MkTiJE0O0PYjymSgMv7wP/9jNt98wXgzUHcD4zgiQ0IbQ5Zl+GEgCYm0BcpmoBQvN3tud1uyWUU7jNztdrR9z3a/v+/BBZRCScWjZ0+mKpybTmhzOnI6HgjB38etTKTWGvNdX7UQKK2oigwlmciBMQghiQmk1uRlOV0fJFRWTPmpQ08IHh0FeVFOlWpjEQi0FkyJKpNTc4wglaWoFlSzS/anRFasOLZbQgJlNNyv64cpouV4PBJCYLlY4YaRLMswRlJWM/bHEwjFYl5htSLGQNf1WK2ZzWYoKcmt5WK1uu/pVEhtqduOvmvJqxKtNUoo+obpPFhLnmd470kp3lfXEkM/kqyhLCuklFP0StvifUApRQiRENxEuldLsuySYRjoup6yLKb4HucoS4P3gaIoECgOh5qXL1++2U+WZdNn9f7jfzodOdYtbT+yvrzi9u6Oru1p6pq2H9ht7mhf3fAgz7moCnAOLSDTJTJ6ur5HktBaEaOEMLl8C3nvqBsFIQmktXR9oHGRoijxCTbbHaMLOO/ItYIUqJuOMi/Q1hL8SEDR1B1DONF7z2KxwoeITtM19vjJEyKe5tRwamouLy4JISBT4nRqsFlGURRURc5hc4NPkrKsEEpTzSpyFenahvbUsO8Dy8c/gaqk7xv60aGtRRqNUpphdGRZQZZn3L54zlcvn7M7doxCc/ngIYs//IOJFMZI8J6oHDGJ+95iT57PWF1c8M03z8mEoe8HUoxTLJDUSAXlbIZoO0Ty5EqwPR4QY8eyyNDZCoJnHKFuO8rZgqtHT/n5F7/E5hWPn33G8kHB85eveHV9jZAQjidGEtl+z6wsyPOC4DxBatq6AS24OxyYry6o5iv63jH0HWWW0RxPuK4huIGTT2hlmM1nrFZL+q6hdyNlZjjtd7SHHQ8v1lwuSprTgaLIkQ6i0pAizp/jTc44I91Pnp5xxhln/K7j4yu291EnwCQJfqvT9m2Ie8ky/FiV9MO9od+PsIG3K8Vvd/FOPabpzXrvk8Y35krvH/dHqqk/Rio/TEbff/yxFdfvr/9jZlDf3+/3jzOR/un1T2QogO/p2wOhbyiNIrgR10WQhizPiWFkaKd80bIsJ1JEoqwK6vpESJHd/oDJZlw+eMDl1RX/5p/+T2y++AWZb5kVOd5FMBAQDCESlcUBOklOdcPhVBOU4Xp34Kvnz+nHEakVWTXDWkOeF2htaE41g3MM/YBzgbEdaNv2PmN26oV9/T5IKSnLEmMMKU09qUKCVIIst+RFyeimvN0oJGPgPq4HtIakJEkZ8qwghoBUBmWmfFAJKCknsyIp6d3I4CIqq8jzCmVypMlRtiArFtjc4P2IkJKQEm3TclAtXbvFak1hc06HAxfriYzebXekJNB2qqIqkcjzgqoqaU5HpBR4IIyOZ0+e0LYdShtClFQzzXK9YBg9SikkkTzPkUkz9h1tO1VMi6IkCEGR58gU2e/35Hk+9d8aQ9PW9++fQnpBShHnBu7ubinKktPpxHw2f5Np3LU9QgqCn2TIMcB+f8KYjMV8gc0m863lcoopiinhSdRNzcPHzxid41SfGHuHEpIUAsF5LuYz9DAQOkeZZ8T7CCdJnEy1tMZ7j0CQWUNI0PYDwlhcBC8kBMHoEyqr2Bxr8mJyAx6GgbLI37hFn44ntDFstltmVclyeQGm4dOHV9zc3hGA8VSz2+346U9+QlEUuKGhmi/Y7g+0/TARxZQmmXqe07bNNNFgMrSyuG7KHd7tBtazKZZG5BVZUZJlJUErtMkpyooX16/Y7Hacmg4fI3/rj/6I+WJJ348ctgdGD04LQghoMxE/rTUpBFLyCGuBKfan7XqapqPteloPv/rmBRfrNc+ePCK7z2KWSvKzn/2E9njgy5//Kb/88z+h3ryiVImfffKE1WxGZgynU8317Q37Y83d7siDRxXHpoG2w3tPUZVTvnVVYrOM6EbapkHGyNh1qKVkdXHBy7sbdJYxOs/m66+JMXF1cUlZZFw9ecT29prn335DnuXTpFfXcrx7xSxX5NKg0sg8g0eXl4x9T33ssMbijw1IzWI+IyYY3ZnYnnHGGWecccYZEz7eFfl1AgXfqV7edNbeuwPD9CX5Ta/tr8tyff3zB2ca05vjTNXY10tfV4vvyWyaCPX7O5+MpXg9mg+KpN+vtv4QOf3w8nfH/yHZ8+v9xhjfLHv9+4+/9g8jfcgo63uIpORpmx34Di3jNAlw78As70lDJBJJGKtQUrJYr+mHgaapGb1HGUvvAnXT8/TTGXmxoppfcCc1xWyBFAJBxCXNcQjEpFBZCSZn33bcbrfcbDbsjkfG4OmdJ8tz1peXFGWJd+N9D6zG2ozD4UjXtgQf0EJhjMLc92kqNeV6Tv2/U+9sUZakOJE77zu6oUFZC0rRNh2jnypW68sl82qG0hadWVRmSTFilOTVi+dEMfU8Oj9ilCL5RCKADNR1SxQKLSczKxfjlDUaEyiNi2G6DoTAGM2TJ09YzhM3L3tSCOh7+XFwHaOcruV+GECqqY9UCEKY+n29n4yMjNK0bUvbdozjSLs/4kLERTHJa6Wi61pyo+n7ntxM/cFTvqkhAVoqjDHIlKiqCu89xmiqqiTE5VTpVgqtIrP5nHEc702iFIv5HCklfT9QFAV5VnB3d8fxeMJmhhjEVDkTmhACRZ6T5Wb67AtB7xz96DAmp246JCPJR/w4MrYNcRgQznHabTFKs1xNEUOn5sQ4Dlitpuozgt47tARhFC5Ggp6uSRfBxUg7TDE+2miyakbXdYSYKMqSi/WS+Xx27+4dcX4kKwuUmirsq+WKcRzxzhFioCwKHj94QN82jG2LD466rnFuRHf9RCxjpChLsjwjBIdzjmq+4FT3GGspjEKmQFlasiyHrOT5ruPLb7/l2dVnGDVNgFxfv2KzO0yfZKl5nQ+emQzivSjjdRVGCFarJUIkMqvpfSLFQIgJf59zLO9N0foQuHr4CCUkd3cbri4uyLKpx/fl8+fMc8Pdy29JQ0NGYG4N3XHP7bdf0/TD5LgcQRrL02efMnrPfruh63rmiyWXqzmjd8xnM6osZ7fZTC0MzpNiIJ9VDCEw+ICyhhACgsSsLEgxcHP9iqFpWM5n/K0/+iOQ0A4dX/zylratefLkEfMHS6wUzHMFQ02pJNJkOGPY7X453ZPqHiHVO/fSM874ncW5WnvGGWecAfwm5lF8J+sV4t64Jr0mk9+ZR4X4unL4uvoo7rM7v0NCTuRU/BpCeU9H36+avpPh+s4Ifhg/RKLf78P9obH8NvhQNfi1+VaM8Z1jhxCQUv4GPcBvj/E7s6zXfyWJ3eYVIo2UhUW4ZnLLzSuS0BitCSIhtCQRGbpJmtsPA8vVklPdUDc9cXAU5ZzF6gE+SbK84uLyEdbXWCnxvcPFRIwCk+fUo+Pb519yu92w35/QRmOKnFlRopSm63u8cwxdjwSG4Dh0+8nleBzRWqNzjVXTl30pFUZbtNHoeyOgREIrPcmfvUcbjZA5opYkpelHTzt4FutLZss1jx5/glAGeU9EB9czuoF+6AlJopXEB0+K0/sRg8PHiSzZLCNJTZRysudVgigTUSSiTCgp0MowDCOkSK41r159i7qXyN/d3nKxuqLrGgpRTGRTabKiwg0tIUT6vqepm8l5OCRsmaOEYLvdYYym6xtsVrG8N0Dycaoa9sMw9b/6gaFr73NnJUobohCMziHjdF0Nw0AIfiLvRqOUpChy1H21XogZSim22x0PHz6iKErubjdk2VT1fPz4CV999SU3t9fkeYZSFnFvhjQMA9pI6vrEcjW/jycKlOWaqppz/eqG4EaSczS7HUNdk4aOQmusnshPIDHGiLA5WE0XExKBqeYoodge9qA1+7qn7j0BwWy5pIsR7z31fouQ074Ka1jNZwgBx/2eEMP0mo1FxUSRZaQ4TVqM0SNFwnnH5WpFDJ7D9o4nj56wHTp8TGRFhc1LgncIIZjP5yg1vadCCF68vKacLymrGd4NBNfT93FSIjQNbTcg7QJj9NT7HeMkqc8sPiSSEJMhXJomeWQS990GYjJQ05rPPv9kigICUnCgpjinsiyJaeoDlkrz7NFj5utLpJS8+PYrrm9v+cM//COq2QzpB774t/+G4/aWSkuy1RwTRsbTga5pEdrSNC3VfMmzTz8jxMRut8UNA6bMSGON0JHSWEoluFrMWOaWm1fXaGMIwO5U091P3BAhM4Z5ORmKHfZHjNYMY8+xgWE30rUn8iLj8cOHeL9kuZwzq3JkcMRhIEbHqe9J2mLLOUM/oG2OAKr76/eMM36nkSDdG9ydccYZZ/yu46OJbYxhMnMRkpQmEiUl9+T2O5Kl7k17UoIU4xuzp3fpWpxiLNK7Vc0Pxe687pD97qn7CKA32woE8kedll9DpPSDtc735dN/VXzMfn6dDPpHtvze49exQ98R58BpvyWFkRhHhqHDCwHKgoQUE4SAVQKEIamElIoHDx7ggiekiLGWlDRN1xMTfP3V1/zpn/0F8ziSYkRYxRDgNCa2xyPXdzfc7TfEe4I+Xy5ZLpfENMXWKKVYr5aTC2yI9/mVB8aunwhWlt/Li6frzGQWpTRCTBVmY8ybqu1rB2NrpgqukJGsrEAqdJbzcL7m6SefI1RGEprBJYLz9GNH2xwp8ozgI1JpRjcydi0iBpRUqHtDsIRAaYPQhiGCUAKhIIlIkhFURGo1RcYwVX33pz1tfWJRTvE+s9lskhwrjZQCJTVD29Ef9lRF/iZHt6wq+vsMW2ssm/0eLafPXVEU2KwgK3KmdKtAnueU2YLaKPzQMq/K++pvIN1XTYWQ0yTU/URKTHHKnA0OrRUXF2u01ux2G6zN6Lph6k2Okaurh3Rdx2azpWm6eylzJITJgEipiUTHOF03u92Osixw48j83mxrHDyvXt1yOpywQnDabEhdT05k8COZ0iAVg/f4AKookNrg71sIhJD0PuL7juvdHlPOaF2gj1DMZzihaMcRQURZi7Y50UdWyznVrGCWZ6TgcN5xc7shUwprDSIEdvst7dChrGG+WHB1eUH0Dq00nz55hFSS4b4/+PHjRwTvOex2RO/uCS33ZneKrCgwNmMYB7qmnrJ4pSUBddPQDREyOU3KiEQiopTCGoNU4CP37u/TJInkuwlDca8EmC+W2MxOLSFJTEZa/UAIic73DONInhesLi/oXWBzc83xeKLIc+bLFTFFDtstX/3qF4zNiXlhePLggkpDoRUvt3v+/MtvmS+WLFZruq4npUimJT959hmKyJe//AKVBp5ePQDANUeGfmC/uaMZBoKUzFZrTJ7RHU6oEKcJhfmc+WzG/JM5Nzc31F0LRnFsWw67I5fqktl6xsPLT6iPe9ohsKwq5tUCGT1Nd81ytqCYLXj86DHaFlw9eoSSmpjOUuQzzjjjjDPOOGPCx0uR3/rznVtUYrLWfbtumt789kal/L198V7F9v4I31t5ivd5f++Ct6rH00D4Ptn7XnftfZX53adeE8HXv79Z/9+Be/KPVWzf3//7btA/svcPHXAy7nor5igGT33cEf1ISp75bIYAXAxIMZ12KUBIgRsdeZkzuHGKNrnvae36DiE1RVnxy199yT/6H/8xbdNilSe4npvNhm9e3nFbd2CmzM6rJ58iTGIYRkSCwY3EmPCjx42O9WoiU3XbcOpHQorkNvtOGqunL6tRTITP2AyhJvKq751/fQoYKe4lyRPRFRJyPRlG+QB5ljNfXtD7xDfPr9Empx8cRWkQSlOUM+rTARcmUpplGQqQUpBSQGuDVIoUE1JrVJze95gCIfn7vwGlM/q2I5eGpu/Y3d5yuch49uwRY9sSHQydBxJ9P5CXmpQSIUS8dxidoZTm2dOnuHHg66+e0zQt3juW6zVCgjGGEAXOjVNPsJS0bctxt0WmyLzKpgoxCec93gdCiFhjsCoD0r3UeJIMv1ZTZPlkwjUMiVevXmFtzqyquL25ZXO3JaXpHNzc3JISrJbzieD6SW0wjuNE7DKL1kz5wn5k6B0uwDffPAcfmZUzDnc3hGFExsDYNsgYyPIcYzLQGiESY0oEoZgvFxhjaU4NLnSoYka59py6AS81qrRgcoboma/WDH1DNZuRF3Pu7u5Q2nCqG8a+IbiRGAMXl5eU5Zy27zluNvR9x3q1whRTf/DYd2glKMuCESZTLK3ZH48goCpLylnF6XCg7Tpya5BSMg4jkUA/RsrZfMoZdi2jGwkxEmJiuVyi1hdoowlCIuI0yWNthgiR6F8bvwiU0igpET5Mrt33ZmjWaD7//HNmxQwhLHs3VY6NNcigKIqSh48f89Pf/wP+9b/9M0IIzBdLZlXF6DyLRcWff/sN0XuWs4qrZUGVW3QcyTPDYj5ntb7AZAWj8/RDyyefPENGTxg7NnfXLEvLfFYxzxTj6MmLDLNcopXm9nBk1zT044gTgqos6XYHbFHy6bNnNG1NO3Qk0qSa8AGTZ1TLC1Q+43ZfUw8jp+Oe1WJGPziWZc48z3j09FOU0vzyyy/p2o6ZzdlsNmRZ9pH3zDPOOOOMM84443cBHy9FVvqdPlUh7jktb5PAe+Mice+d/H4UzuuqIiBEeHvh/dbfJ6PfOQCL6ff0XW+rEN9tH+97e1/Ln787ZnqH0H7nsnw/lree/J7F1Y9E83w39h+utL7bg/tGDP3O8ner1el7PWMfqmKn+zMh4zSpkMTkEJuERImElIG+OyK7AzaOEAP9EFBKTn1/JNzQkOmpb9UHR99DWZUIoRidY728omtv+Ft/+J9Bivzjf/gP6OoDfXviT15+hWuPDGNPTFPcynq9RCpFFBEfHZkydO3A0DSMoyeFgLWG/XZDTAElJwlwlRcTSRrcW72/iqKYXGIDgoCYKsRCoKXGB/9do3eSpPvYlxgACT56fIxomyMTuKixpkQyYMsSpCKiSVEgksAohVaS6Ee6tiEGT1Hm2EyDlJP0VyhAIsT9dghAIlMG9Ogs43QIBCKSjM2rO4wSzGczXBg57TuKsiT4xHy2mCJZ3Ij3gb7v2W63SJFYLGaTQ/TDS3bbzb1EXSGNQUpBZtXkomsNfug4nU6QAvc+ShRFgY8RqzP8MDLGkbIoKIucalZxPB548uQJIbgpGsg7ymJGWiSWiynLVgiJcx4QU29lWdD3Pc4nCJqyyFBKToQ+s/ixnxxqx4CQgq5u6AZHGEeij7SnE9ubLX5wxCGSF2sya4jG0ibJGCFqxRDh1Hb87NOn/PH/9r9kv98x9MN0/XY9Wmc0bcf2cKRtO/quZ7+7Y7Z8xCdPnnD14BGnw4F/+S//+STR7ht2hy0PLy/4o//s7/DVz7/gxTcvcW5k8IksJppjgyCRJ2hCoOkDVxeX+H4gnxWIcWS72+D9SGamfOTgxXStx+neslgupvcmSaTKQMLhdEciUZQL0JaoBEEKUAYZQAmFURqXHEIJPNM5FDKhMsGsrFhWCx48fIAS8OLFc7SS2Mxwc7fj5a4jX12hksToyQyu7XuOpyN5WbJcXZIbxR/+3k9Z5Bn/4O//99x+8yvE0KCMQMbEbrOjtJr99sDtZoeIcNwfaNuRvJrz8qsXHPY7Li9XXF4+oT7t6IJk2NWcmpYQd5isoOl6+tFjswrXdeADqrBECXf7Hf1f/OWbSbOyLNAmI8/ySdqdjVwtM27v7jhsDhhtSR4ciYZA39ZYOxm5yWJOnjTlcsX+cOTQ7M9S5DPOOOOMM8444w0+Pu4HeU8Q05uabHxDsXjzRV/It4nle+VRke4ld5GU3Dv7f+1s/C7EPaF4dz3SByTL4nVF9H48YpInp9cE/H5Yk/lVevOTN8TyO1l05F2X5Y93K35rjO+tJ+XrPt7vTKS+I7k/LIN+/9jp/gAiJUSK96/RgDRTTmsayUSg3r1CjQ06+SnbMkQqUwAQ/YBgklGGELB2MtMZhgGQLJYrBuX5W3/wN7lYLvl7/91/y8vn3xD6E4JEZg2mWnBx+XCqoI4D0Q8M3cjoHD4lgocQElpbtDAIY8isRsiIUpqyzIkhopUiBUEMEZIghkBMCWssUki0MVPmaUr3MT4QwtRvG2JEpMQ4jChjEUnivCNGd/8+S5S2FMUCZTOUSHgkSpcICTYr8KZGREcMnnHoGYd+ktPHQNc1dKMnJEU+v0Cg0SpDSYtWFi0iIimksCAlSUO1KKnKnHVhsBqC8Iy+Y7VaUxQV/Tiy3e7Q1qJEAiYyv91tiN4RQ2K9WnNw/UTO76W5aRiIsSf5ET929EM75YNWFcZmJKOIIiGrkpXJKIUhDB2IqVq83+8J3uOdp21adrsd4r4qriQoBPXhQFfXVPfV/RACp9MJYyySCAGCl9SnjrKwXF6s0FpSFjmvXr4iRdBKMRLoBkffD0Qf6IeRLkSC0Jj5jA5Ji6A99ZyaEwFJ6zynbiQgOeU7DvpP3/QEL2ZzlFQIBoq8ZP3ZQy6FQElJcB6t1HQtScns6hl2/QBU4tAf8Th+/2c/5c//2T9ne2oIQeCEZvFgTSSgleZ0OtL0kwy7nBn+7RdfMp/PGccONw7EFNFaYqymPtZoKTkda2KEsqxIMeB9oOkch6Yl4hj9iLUSqxR+6BnigdD35OV0nco09WDbLJtkzURCGDFG8uzzZ5wGx7ELjMNIcIHj7sif/8VfcH19Qzd4MAuED2RSkVKiyCwoQdPWzKoS1/d89vQJnz15yJ/8k/8fh5dfEdsDNjourx4QYyAlwbfXtyghubi8RJCoTz1dGQgYbDFjubygD54X2xplc56/umUxnzO6hIsR19Z0fU9ZFKxshhQCmRJD2zHGQJSSxjmkslhb8PDxI5rTAWKajMR8zU+f/B4/e3bFX/z8S7786hvSuKYsKihgsZxRDx3bw4lj09A0LZ9+KrFZhlEWc9+ScMYZv6s499eeccYZZ3yHj4/7ucd3QuOJmKU3v712L367Sive2Sql13Jjcb/l21LdDx8vpu93xX6IZL4xT+KtCum9gc8keX7vdfwAiXwz3N9eifw9vJYZvy17/qtInd8vEr8+J0oJko8okTjttgTvphiOccRaQ9/3CCFww0CR54QYMXpy2C3KEiUFXd+z2099lbd3W7795jl13TAOHZUVPHzwAC3l5CR77+SbInRjR99PZjtISYoCYzIymxFjQimJsYqERyqQyhCiw6d7AyI/TTJINe17GAZKXU493STsvezwzTm+vwTH+55HEyErsqmyq7M36wshUVqjtEZGiZSKKCZJ8XRtyKnqk8LUt630JBmNESklmc0IaLzzU29pNk1GCIAY0CSMiATnKDLNavaEuQjkRG6uvyUpKGYVeDH1t8aEtdmbHubJiElNMTneEZynbRvatkUpRZ7n5HnObrdjHEf6vgchWV1csqjmxNHR9z1BCQ59S9NPUuAhKdazitPpiHMj3nu89ywWC7puim7RWk+9ty4ghUTpqb+2a9tJqpxlzOdzhmFg7Ae0LrF5gbEGYyT/f/b+61eWPc/uxD4/Fy7dNsddW1Xd1d1kj3rImZFe5ABBGuhBECDoLxSgJ5l5kyAMBEIYjkj2kD1sNqu6zK2qa4/fJm24n9XDL3KffUxV32pSD9OVC7h3u8zIyMjIPLF+a33XSimw3+84tIfcRawV/WDpraWzns4n+n5kGCwjmnbo2Lx6jneB+WJFEgIfBOWsoZkbZg8KdFFQNDW7tuVstSBGz+GwJcX8el2HQAhZ8ZdCYp3DKAVC0B56FJJCCrp2x//if/U/58//4h/zX/+//p/8/Kd/y5NmwfKjjznYHp88pTak6CF6SmOo6gptFK7UuKHnZn1DU9VcXlxQFBVXV9d0h5bPP/2MspiCi2JAKsFud4OLis56bBz55LPHPHh0yX7b8vzVS0LtuRxGpLYon5g1DeWsZhTQBzeR88A4DHzz7VPGKNjbhNA1ZdlwsWooi5oUQQhFJBG8heSJbqRUgtGN3Lx6zkeffM7louYf/egzfv43f8Vf/9W/ILqOzz5+xNmswrZ7tpstldE8ePyErutYPnyIMpKHRc0wer7+9gW7rmM8OK43a4q6YLGYkaRkeb6k7QbE6NGFYLSWEPJ5K0nIKf+gKKq89KkUyhg+fvIYJQTr9S14y6MH51TGMI4jZak5P1uhdcnh0LPb75ASvvtujXUDl48+ou0H5rMZAvJjSX1KRT7hhFMi8gknnHDCHb6/Yvve/OlR0ZTT7+TENtJbiuXb93vzjXzHpnyf9P0++3L/56PCKqWanKpvtOSjKss9ZfZ3bes/Jr4vif0+t7s/K3wktGlaKJCAFJHkB7p9VujG7gCQLaZEdrsdldF3x6ooDIkSrSVSCawd2K9v+e67Z2x3B5QyzOY1wY+UZUmMkfV+jxSCcRiQgrsLfKU0QiVUUQKSwlQURYX3uRKnqopMZoMjJElUBePosIOnNDXn5+dUZcnLF8/xIQfstO0BphlbeP+1PoZIHeuelNYoRT6/7inuJFBSobUhpKwqJXLIlguO6Cz9MOQjaXS+GNeaiCQlSUiQYiAGn8lQCpAiyfXUCqQWlHVJLRO+bRliTpi2yeMkmKSZzxckoO17lND52MesOAsjUEKwWp2xXC55/PjxHfk8qvbee+bzOZ11/NGP/5ShHXn9/AWri4eI0nBZGYRUfPzgEYfrW15+/SWvXr2ibQ8URcEwDJydnTGbzYgx3iVxa62pCpMTm6XMSb5dR9ttc4KvMfiQMKUkxhFnHVKVtO2ecRypmxnNbM7h0DO4wFfPXrJuB/aHlrbtp/NTglCo+TmNKjBlmcPBjKEo61x5oxRFVbKYz/g//h/+9zy4OCO4ke3tNcPQMfQ93dDjnWe0I+M40vV9/joMPJIF3b7F7w7cvHjK/+P/8n/jX/y/V9zcvMYIuL56jfYRGz1nFyuqwvDq+StKLdEycVjnFOjlfMFgHavFgpRgPp/Tti1VVfHkyRNiyEpqe+iRROrK8MknH/Hi9ZbOB6pqRr1YMkQ4uEQbJa9f3bCazmnXdRwOOwbvaaNnCJ75bI4xl2hVIIQGkReCXEh4F5nNlmhVEGM+t4UQKOGRyTOOB2y/Zxh7inrB4eoFnzx5zP71tzz7zd+S7IHHDxbMC01hQNYGN6/pDm1egLm9ZfHwgq7v6ccrrq/XrNd7EpLRWmKCuqjZHvZoIjc3t0ilp/l3xaPyklldQ/BoAZcXF2hd8M3TZ1xdXxNDpKoEUgiur14xdgeePLxgOa9ZzkuauqFte9w4Er1nu7mhbmY4N3J+vuLQam7Xt/R9jxCC9XrN+fk5fd9jTxf1J5xwwgknnHDChO9NbEPIM7FvLLRviMadXfeo4v6Oa4035O39G33Yivx3E+B375dvk++fH+f7bePu9/8hauoH8O6iwLt9t/f/9tvu9/bt0r3DN4VoTUFeKgX63Zpuv8YOPd5alFJ0XUtTVzloSQiGyT7ovcvJuSIAgropmS8XfPbZZzx7/pJf/vJXjKNlNqtxzrHZ7pEy1zpJmftGtVbZGi1gdA5liqlvNie/FkWuKSmKgtEKQkiMDsaYaGZnPP7kksuLB1ycXeLtgPUBkdy0SCEQRhOP0vuUsO1jJMZIU1UIrSBl5SjiQUFSLtsiJ+JmjMHj38yIS4WQioQg+GxjraoabXIqsnU9MSWcj4SkKOYLjFYoKbIqJaDQgrpQ9G3Lbr8hxR6bAnV0zJcLfvjDH7IbDpSzBtc5lFRIrUlC4mNAaUny/k4dlaSpN9WhlLpbSKiqrA6mlHDO0fcDEcW//+nP+Mt/8S+p6oqzRw+pVnOUMfzv/sv/LRcPHvP0qy959OgR1q6mYykpy3KynOeanmEYkEKwjzlpOcbIdru9q14yxtAPucNVa5lffyXohgMheooyh44VVcO3z5/xs599wW6MWFEQhaIo59TzJaasUCqTZ62mjl2VrfBC5RnKmCApSbNY0MxnXFyeowU8efgASa69yV6MlF+b4LHO5RTvmPJohPdc/+Zr/qv/0/+ZL39xzX4cGNstlgg+8MnDR/jkscPAemj55OMnzOuSm6tXLKqCtu8Z2h3L1TlPPvmMl69es9vt2WzWWb0Pt8QpmMvHiBSJtjtwdbNGFksGa1kuLnhxsyYJwTffvWSz7gnFguVqycX5GTsXSDESg88BboLp5zyjrLRBeoGIihDy+6ypc1WUSCDJAWcqjiR3QISBxkCykdDvqOcldnfFv//ZN4Ruw2efPEDEyMtn33GxWrLfbEghcXH5gMVixYMQefbqVa4+UopuHPDRUZU1lw+esN8dKJTGSElZKJTKQWaHrkNIBTFRSKgKjSTix45vvv6a56+us3sjJby3ECNGwdnZnMVixuNHD/Fu4NdffsV2vcWNnsXynE8/esK+bZktF8zmM3RpeFjUvL66Zr/bkoJje3uDdznd+4QT/mAREymcXAsnnHDCCUd8/1Tke2TsmGYc45tE5OOMrVIfSPcV09/F0bxMvoibtvlbQ5oSd32v7+7Lu+TwfoDVsQrozk88/ZzIdtf7fa+/5dnebfv3VXDfmof9wH3/rs7cv4vcHquUlDguLkzbEInkLFoGtrtbhOsxRtEUS4wxjOOAcy4Tm767d/wLTCGZzRqc9YTgiWTyuVqtmM1mDMOANgUJgR0HKl0gJDR1nS8sU0JJSUoRaQqKqsqzsVMdilaZ5HoXOLQ9VdVw8egh8wcPWa7Omc9WkBTeOfo2q35aRIzKhC9OxOdo2c024Xz++ZCJoTheQAePEBKd3qREH1/7GAJeeGKIKAVJTEpsgiQEush1Km3XEaKlaSrquiag8t+VQkuRZ2ODQ6TI02+/4bDfENLI2aqm0nmfhRD0fc/+sKezI67NZDXmAXCqWQNTLZPSitXZGTJFOtXhvZ9SjM20QHDsoQ13VUdKF4wu0I+WKCTLBKP1zIoqLzoojfP5+M9mM5RSDMOQbcXW8vHHH9P3PcMwYMeRGALzxRLIQXHb7RZjDF3XUVVZdb/drPMCQfCkFHj85Al1M8P7yKtX1ygp+U/+/M95te3ZjiCLGllUoAuS1ChtpoWBNz3XInL32sqUKIoCoQr+2f/nv8VIqAvN+XxJVWRreVFVSK0oymxbVkajjMYUhqIEFR2/+NlP+eqLX7IwmqoqEWGkKAzWDrRDy3675dNPPuJsOWe/vqbb3vKDz3NP7JdffQVCkVImmkeiL6UiAVprylnJMAyowhCcY3W2QpiR2/2ILit653Eh8vL6ilfXW1IsaWYljx8/5nx5xuHq9m6YQ4m87JZioCoLmDf5k1RK/Ojo25boPYVWNMZgBPgUKQrJw4sG3AEZOkoR6WzPvJljouXlN9+iomVeSdp2j1GKy4szFnWFtz2rxRmmqLldbzh0Hc4Huq7Fe0elC3RTZzfBfo9wDiMVF5cXfPTpE9qh44tf/Qp/fO4JZk1Jt9uiZYRKUxvJ+WJORLA/HFApQQjMFwvmD8+ZVYa+7+j7Dik089mcjd1QKMHQ7amKkroq6IeO69s1WpdTurrFTA6DZjnPQXInnPAHiuQDvyvA8oQTTjjhDw2/lxX5TZCRuFOA3gyjCkg5Yfe9B9HqTTLx8db3SIecSMlRFb53q1y3MvWiHvfjXUL49uyqukdqxQfnZd8lxu/OviZ4b3YrV8u8r/z+Lnwva/EHiPBb6vGH7kNeKMjVNAKSzBUhCBSB/e0rcB1VUaBExHtPXdVIOT2vlO5mN6VMWOsIuz3OesqyQpsKISTrF6/yPOOksFXNDFjgnUcrSV2VOGchpRzkBMxmc1RhQAhizNZLow0gsS4wmy35sz/7c4rVEmZz+t5xc7CMg8UOA7iBdnDMy6nmhogNAY79qVpTlmXuaz0eN8A7lwOmtAaVlf5jLpf3HhUMMSWkONYKCYLWWbGNEdt3WfGWAm0MtSkwRiO1QQlDQmG0YhxaYnB89Zsv6HtLXZQs5kuEjhRFQolITAHrHEPfY7Rm37bIIHHOUc9mJARt2yJnmcQ0TYP3juQdUkqWy7wY4b2nLEvquub169c0TcODBw/Yf/eMGBNaG5TUGFMQE5TaUJS5Pij4wHq9RqUWUu7CPR4fM8013t7e4r1HCkFV1fSDRUrBfLFCTxVMUhvKosR5R4hhUug11g10XUvwnrJsGLuOxhSkJNH0nJ+fk1RJlAVJlwQhQUokKc/LkogJpM4z0NlwkJC6wJQNw+h4fvUq21uTQqsi98dKkQPKYkQZnUluUXBxecaDC4N2e37y3/8bHp4tuGjmjHbAhwrrHc6OtH1PaQyb9Q3d7haZAo8fXk4VSYHF6gyE5Opmw9V3T9nvDyyWS+o6v1+eP39BWVWEFFksFtRlwaHvuN7sEMWCcbBsb9dc7W5p7UiiJCJxMdJ1LRfLVa4OqiuSFAgRGYdMaj/77FOkc/z8b/6a/bajP/TUZUGKI8n2GOE5X1QIbTi/PGdRgYodMQ6QApWGptS4ocX2B3S0xOjzYkGMmGmm+mx1RlXWvL66ZbM50A0Di9kCl3LQ1bwuefjxJ6wWS26ub9htd6yW5yAkT7/6GicCTVVSlxUPLy5ompowjiQjKZUkjj2GyLBf08wWLOqSQOLsbM580UAMPH32nMJoFvN5XnxpZnz60UfURckwWlyM7PqeFy+eM7qAlD1GFTx6+JDgLLOmQUoQ6feOiTjhhH84iKce5xNOOOGE+/h7KbYpxTvV9r4qihAftIa9SxLTPSX2XYL79g2zmvMhRfe4zd9FeH8Xsfxd5PZI3P+u5/EhvFvh89v24fdJWX7rfsfZZuLdMZdC4GPEiESyI/3uFkMk+Ny3KqWkrErk9Jp5OyKlpKpK9rstUsHlg4dstztiBGsdShnW66xUzedLClPQlEW2Gw8DSubqEa1VtgY7jxBQViVMyqo42iyJhBDpugEhNIvFGS/WO/wY6ccAooAkUKrKQUC6wMeRECNJJPyknAFUShFTwjp3R7rVVL1yVG5DijmdW+SFkePxVpMtOYY0pdDGnMYsJNoUCHJKc1WVkBwhecZhABmo6gVSQNceGLuOzfqWjz/+DK1rTGkQOmJ0YH/zmm44cD10PHhwTrOY4VJk2awY+hHrHFKru6RskRRN3bBYVBACu80OpdTd+XFMJl4sFjRNM3V35kUDo3VWkZXCKEVVliihIGQCu5jNUWTyBOCcoygKDocD2+0WrTWr1YrtdscwWqpKQgTr27tjVlbZgi6kwjtPJC9mLeYLCqNRQnJzfY0InmVV8fz5S3CRSmkwBi8MQem72VApIMSQM9an89b1AwmJkAq3azlbrHh0+QAtNbbviJ48r20tIBjHAW0Ms9kMXRi00pyfL1gUB26/fY4/7NECYvK8eP2c3g4479BCgPPUs5rVas7leZ7hFSSs8+z2B65u1yA1u0NPjIKL80u0yfPRm+2WfduRpOLBwwcAvHj9itvba4QqwQheb/YMMdB7T0BMs9+KkMBoTV1XfPTkMV9+8QXt0Oc5ZwFnqxWPHz0i9i2FStj+gFGCQgV0svhxz3/2F3/GP/7xZySpOPQt7eEKP0SGwxoZI8vlBfvDju1uz3JW0u9b2sOB3jqUEFycrRhdoDQKECznC26vN5S6QITIvJxx1sxZzGeUUkHwrBYzHl5ckKLg6bMX2LGnWFQEBz4E1ldXvLYjn330hD/90eecz2d4O/DNt8/ZVIaq1ASpmJ2dMVssGcaely9fsNttWS0XjNYxr2uC97TqQCwtVVkx2JFXLzP5TVLSHwZkITFKcb68zCMWInK+Wv2dn5knnPAPESnE73XNcMIJJ5zwh4Tv32M7qap3gUx3s6/3FFtS7rF9xxrzHmGFt/oHj4TUuXfV3lz386H7f3huVbz1/QfulFtg7xHgD5NP8Z6550O3+22q6t838fg+uf+7VFu4P2YrIGWyMHR7/NBRahhEwvvAfD5nGEYKo+7mN2ezGcYYrM3H/HDosTagtMkdpinm/tkoUVLT1DMUIGSkrCoKo7NKikRKQd0USCGwzmMHCyJhCo1Q8q6iqGpqvAWlDde3G1KAol4iVUmhSwolwbYIqem7HbZSFFUm08bk+cwQArvd7k59zImqJVoXOBfx3hFleqOwh3uvn5QIIUnJE3MEMkVVIbQkOYGb7NpSCqSIWfCP5OdiNDEEHj96hFSGYRxpqgpZLlBVxegOBOEQuuDHf/qPGDc3bG5fc/noAl1ovI3M5zOePX/B5cMHSJ2V1uBG1ps1VfkAPw5ZXZvUboCu67Ll2vsclmMtMQYEkUJLIKKlwBiFUZKq1KQUMEry4PICNwog0Pf9nSOiKArOzs6mxY1qsii7u8ey1lJVFWVZ4pxjt9uxXC4ZhhGhNEMKXJozqqLkxbOnrK9vIMDN/hq7O9AUS5KzoAqSzBZwlQQxxdzfa1tScLgQMdWMsmrQRUmKEucDSpVoUyFliTYgS0FdNxhrAdBDVu2N1hSmYDZraMqC3Yvf8LN//a+ZG83Ldkd32LDr9iQlUFqyKBt01fDgckXX7xn7Fq0UPgaGbsAlSTk/w0VBHBKlknfnXFVVLIHbzZrV2So/jxj46JNP+fyP/5ivvnnGi+sdY4AxJaTWiJDnwJVWCK1o2z3OWqqioKoqBIK6rqiLOTEGhr7j4XLOP/1P/xP+i/9Jw5gkWmrwPT/56/+OWga8HTBlze72Bc5tWfsN/rCj0gVpvuLm5obt7oAQK6IPoAznDy7RQhDGATdYlrNLgvd88ctfcmgHUhKcLc4wQjNr5ggpaPuWQ7+fzsGBdt8REhSlwQ0Djy4ukVJxe33DJ598wg8+fkK0A75vWcxqPjpfclMXoBKf/PBz+gDfvnjBrmuZzWecFQajNQ/PL6iNRqfI2XKO7dpJiU08uDjn25cvUWXNRx99xOZ2jUiJ7nAgeseDizPUf9w4hBNO+B8GEnCq+TnhhBNOeA+/t4/rmIQshPyAdZipr/XD6uq9rbyVz3Qkb/fJbv4Dd+nGv22m9m2L9FFBzoFRbx5jCryS8k61fPexj1+llMS78Kl7uxITueH23rOQ75Pdt38+kvzvp86K37Jv722SRIrTau3kt1VSEoPnsM3hKgTPrGnw3kzhLS43D6dEoQ11XeN9oCxL5vMFJHKFiTYonXj96prgI0dRPsSEkFCZkpRGQkg451FSEFOg7YZpxjWgi5KqqZAy23xTTIyDQ4oCISRSGaQuKGZLdNFMPbyaCMSYbc2FMVkJ9j7PX04LK8egJSFEth1Pr+84jvR9SxSBYqr94aiKHj3J039SSmRO7GEcR3w/ddk6S4o5wVmKhCnU3flgrSWRKIuC+XyOVlOKdEjUsiAJjTSSZj6n6wbmdcPLYeDrr79GlhoRFJeXDymrEu88bdcSvaMqdLb2WosElFY0TUOMkWEYSCnSdR11Xd8lJKcE3rrJ5q0pjKE0BUYbCmXQMlcohRgY7Qgp3B2rzWYD5GPX9/10TCVN09wFwKWUsmoMnJ+fs1gsuF2vATC64OGDc5SA6+sbrl9fU0rJdrPm1bMXud4paII8oNEkA5FAQDJ6x9C1iDASvcOGwMPZAkXi+dOnDENgNptzcXbBYr4gJMlscUZMFmkkEolWGm0UUojcYasFKXh+8bdf8PoXf0nc7QgICqN49uI1rRsQSvLJ4yc8XKy4aOYM/Y7D3iKosc7x1ddfM7rI/OwCXc0YAvgkqJTm+uaGpml49vw5MSWEVGx2O3RR8ODBA7px4Nl3T3l9s8VFTZKKru1AT66AKDCaaaHI5iUzAT/+8Y/5+PPPoCqIMi/+vHj+jOe/OfD4wTljBLftSNHRjy3K7olxRGvJbr1naNc0tYRg0RJIifawpyxLPvvsgpQc7dhTlBVCaG5vb6mMZNHMEUkw9iPnZ2cY1VHXM+azJX07cOg6bjYdQiXquqTr+mwZrwrwgaIsMErw7dff8ejhJZdnK65fvuDlN19SGcUff/4pT7/ec9juOJtXPPz4MyyC65evuLm5ISlFe3XLcrWgKA3Xt2tqJSkkjO2Bi9UCozVNU/P182cUZcnq8pL161uC92x3W/74Rz9iNW/oDnt+Z1LhCSf8g0W+BjjhhBNOOOFt/F5W5Kwi5p/fWImPc7biTQ/N9JsjI3vPnpxEVszu66LpAwRYgJDHbd2fqJw2LQRiqhjKaiyk6IjHQCsh7i7UQSCVQk4zuEcSeSQKd3Q8JeQ7eq24+9/bv43TRerxT0cSeKTW+VbigxdfHxZ1E6QwbSsfHyHy7PL9fVEhh0gF6Yki5ttFiQqRsd0h4gjS4mNEyDzbmWdOJc6OFNJgB48Sknm9QCJBJEJKDMNAWc3ohp4IOSAnRHpnKRQgE+M4EKPPYVEBUoqkEJjPZ5RCoo1GFxU2BMZhxEgojKI9HBC6IhqBrEq0MiipciJuDCgpCMERQ0CrbJdMKebF6TvbsUZKjbWOrsvELyUwSjGrS5CCoplTVQ2IhJIeIz0KS4GnUWB9IDmLO2zpdmtUCtSFwitAqkzkU8AIhQ8OnwQ6JiIGGxRC14iyQlYKIxQhWhQRFQKH7RZpBPXlkgcfPeZ2fY1A0LZ7zs5XKCWIRMoyK7MhhkyaY0NV1zk0qsikszCK6mzFrKrwMbFYLFkszknpOf0YSMqA0egmV+fM6yWlrhBokgSbPFIq7Ojy40YAibWWq9c3zGYzBIqyqHDOsl1vkAiM1izKmkiiaRpMUbDZ70guMbqewBmHtuf5y2ukLNnsduy3B86XK3COg3WoRlCXBm8kIThsZxEqW3FfP98wdB0OePx5yWgdv/rbn+Nc5LMf/gj7+aeMbiSkgA+Bpi6RMi9yJKkRpUGkhJGSy/Ml3335K77+5b+D7RVnpaY9dHz99DuiUICh0AXDYWRUI20QtLstdTFnvrhg2/VY3eBVYpCGWVkzbHdoozkMlrKoOVhPow1JQBAa6/Oiyf7VhvVux7brGbwkhIh1HqUV1juSkChtSEKCiNhuj3cDfe8JCZp6DhJ2hx1KQ3KJ/fqaPlp8TEihCcFTKgh42qFHCcGuPZCiRyWV5+frvCgRVGKxbOj7HqNgMZ8xWkfb7lnMKkwMKG8pos5q88UFh6rh/PwB3z57Re8CfecgCc6bFbO6Ynd7QGpNU1d45anqGlLi4mKFVpLdZkNVlpw9fEgMkVfbgfnsjM//+CN2m1v23cCmd9TzFT+YLfEk2sMOJaEuc2e07UZSaehsYPPsJcF7rm/WzM9WfPTgAcM4EseR8bBnXhWMfcuz3RoIaHOasT3hDw85NOqEE0444YR38XuFR71rxz3ajsUxRXj6PnNO8Ya9fYDYyXftwgLke4ptIqa3U//uNkm6I5x3j3fc0PSQbx5+KgmJCefDe8/jTv2d/ielRMs327tPgu92jUyAk3hjGz7uZ+K+dTkh0++2Uh+3eFQWM0FOb23zbl+TQCVJEokoIknmxQCdNIWCsd0T44AbW5yLxAhKSozKHaVlUVIWRU4qFgLvAmVhCDEyjtnqujt0bDZbQkpEBFEIBAnvPSHkio2imFRRIlpkYqy0wVmLUgVSG4iSJDxCgpagVCBpCDIRAO8DUueWU5JHKw0mk9wxWGLVoJVC4HIwlpKTZTMrxvmCPquPi9rg/Ug3OIbeoquIlALvHVp6CCO2PbC/XdMdOmT0pDAyrwxGGKQIeBeQSlKWmrbNPalCy6x6KU1MmkiZFzS0wuFJyVJKjZECnSKFFMTkefbqBU8eXLCMZ+x2Gy7OV2itGIaOq6dPCQk+fvKIi/MVTdNQGMN+vwcl+ebbbymNxltLmFIvTVkTbgU+RHwUIAyPPv6YH/7JHzGb1zx68ISqWBB8zNVBBnbdjtjuSDFmhXPqrZ3NZhils0obI5UxdG3LvG4QMSKSIFjHbLFAy6xaP3j0ECEEzo68vrpiu9nnHtcQ2V5vEKNDiYT0jqKaYZo5Ral59uIZv3n2nNZ7Pv/Bj3lw+RHbbctu2+KNwAtFUWhqUxFtC9GhtECXGiFTrkQKiRASZTHjMOQZZaLj4WrJs+++4qd//Zd0ty8405H1dst6vaN3OXirqQyl1uw3O0Lbs9aSjx5ccn5+yXrf8eunT7na9Swuzrl48gn73ZbNes1iPqOazQk+IKRicJ7d4YApa6rFit5Hnr68ohsdNiW8zxVQyIQROqeES0VAEmLAkPIMtDK83m0INhLDQIoeNxwQwiGEw9suJ0anPEZwfX1FWWicHTFK5yC+FHhwdoYIPUIrZJHDwPp2hxQHREzMF0ucTzk0Siaa0tAIw+V8xmGzQaWIVprWe26uXnO7vqWzibPlkgdnZ1RFQXfY4cbIoirpuw6pc6/tq5cvkSQ+/egJn376ETIJbm82PHt1hfWJsmxZLwxuOLB88JjOBtpuj6oqkoCyqrg8W7CcVeAT16+u2e/3GGNwAc7OLynnS0IIvH7xEoHgs48/pl0uaYeezW5PSJFu6IgnK/IJf4g4qbUnnHDCCR/E32O5+40WCZk83pmAj8zwjfx5/6Z/Jz4w6vp3ksKjKit4Qz6Pym9OU35DyqUUINQ9Uvvh2h8/za5kbi6nr28TcfHmBnfbux+odXyIu999D8fcXR+wOBLz9w+cEALipBQLmatCAEGev9vcXpG8xzmL1nW2DNsRJSSgMUZlS7WMKGPwIbLbbwkxcrvZgtRs9y2InLIcvJ/sjAkZEjBVPKWs1MYY8N5mW/akjlvrqYpECDHbnZW8O5ZTllNWz43JSblKgxCEBEiFLkuECyAUMUUSYnpNBFIe+10TZVlircfakV4Exr4lSUMi2z6tddxu9rx8fUXbtpRliVIlTTPDqERwPfvbnt71iOQJ3iNk7twtp1RkXSpcFNhhIMaAVpLCaLTSGGVIokAKiXOWlCxKacpSMex71us1zuW53YPzhJS7WJfLBUmoqRorp4GPdsR7j7MBO/SIumbse5q6ZhgGhPQ4n6uAhIDb6yv+Z//L/yn/+T/5R6QUiD5BMggks1nFbvcaogdC/juCsjKZqImEUrkLNadaQ1VVaCEJ3jOvG0KM9EPPrjugygJpNLP5nKEb6PYtwTo0gu16jes65lqiUqA0Gms0LnhKmUO9nHcEH0gpUZYVxpi796fWmmQ9TKno3ufvlZIcA9aT0iQkLgRMUVBojUyCbnPD3/71v+Hm+Tec1RolBO2+w1nPR08+ygndQnJ79Zqx3zMzCz7++FPqsuJ6s+ar58/ZjWNOQfeRr7/6isNux2oi/na0lFWF0fm4zJqG+eqcp69e8/z1NfveIpQBLSi0RsnsBiBFSILgA3WzAKnxMbBe7zBFQ0RydXNNCom+3bHf3RBDT1Ur5qWi0XC+WrFczXD9novzc7QSnJ2tcKNlt99SSFhftwgE3aGjqitSTFycn3Pz6orVYsna3rCczbhxntVigT+0d+8/UxSsN3s2uz1F3TDaAZB03ZZvdrcoITk/X1EvZjgiGEVSkqppeHh5ycXZiseXFxRa5VndQ09dluS3ssDFRJSKb54+Z/HgMZ/+4Adcb7aMdqRs5ow+sO96hHMs5hW77Q2b9YbV6gxre6SQaC1o6pLz83NmyzPOPvoI6x39MLLebpFS870+WE844R8Q0jTec8IJJ5xwwvv4/sRWROB+vU+ep5XyDVE8zsO+j/eimL53wNJvI3f3Vdf7HPo4HxjjhxMDs1b4dnqyfK979+2h1hzmEz5glc51Ox+e/72n+H6A2X84FTnebef+zO+7e5akyCmykAlnEmiV2O1u6PsDMwlVUeGDoDQFIkFVV8yaCu8dw9DjtnkmdhwGtFZUdU0zn+F8wrktKWb+bEyFkoaha9EqohXZOpsSSmarcDHVAYEgxmmxILs1J/Ji0CLXqUQRUVpjigKpNBGBT+RZ3JRwo2V0HiXE9EpJhEgYU6CUIvhMlp3zeJ/rhKTI87faGFAlSRmKoqQqK5YrycMhV9s8fPiIhGIxX4C39AdL23eoFDBaYIwhxUTf9Vkl9AHGRIiJ+fljjJBMbmxEyMd9DB4lDUprdAyTeheQSuG8Y71eU9eZzJVlybJq+OTTGV0/cthtMpl1DuqK+XzOoWvRTYMUgtVyeVe1JJUhJEnX99hx4Kf//q9p9zcI6ZAiYseAVjVNNWPWlPjQsl1fs6gMVVVQFAXBezpn84xusFSqoK5Lhn7MFnwlSUrRjQPDMCBVDj2azWaEFOkPLYftDj9a4jDQbXf4Q8uyKilToMAgiQwpoYsKoQymqGjqGcL7rL4LQVkWGGMYiNR1xdnFHG3MXa2XnHptczq0JKCwPtHUM7zPlnjftfzVv/xv6G+eM5ORMjnaXYcSBm9b2v2B+bSAQbR88vFDVvMZQkV+9fVXJGmwIVA1M8a2QyAwSvHRw8f4YcD2A0FIUiwIPlI3NdY7fvHzn7Pet6AL6roiJihKRYyBFDwKj1L5nC+qhtFH6nnNp3/0J1S64r/6v/7fMbpAS8VyvuDhgzN+9NlDyjIxjDtKCR9fnDEOPevbNaUCEUa2mz2b61ds12vOVitInrHtWCzmOPKiYvSBbn/gB59/TvIBozT7Q8vF2RlaaW73e8a2xQ8Di8WCoqpphytuDy0fffSYhw8v2e92fPPV1+iiYr5oOH94zuvrW7zMLpWiKFg+fIxIgS9++UtEzKF/i8WSs/MH+AgvXr1GakMUCV0peuv57//m39NZhzGaH//4R8xnC9Y3r/HtgbHbY0fLD370A5q6oary+6VpGqyz9P3IwcPNbs+3T5+z33f46NkeDriTJfOEPzTcG/k64YQTTjjhbfx+iq24Y49kiiUnMnYkX+9aZwUf/gB+W9X8Xfg+2SDZsft2CNTxAvk+AZZScZ+0Hsnvu4T1zTzxG0VXCPFeuFVMCZHuPcs7ZTa9kbIRk2n6/ZCp94OmjvrrG+L7XjgVvHkdhJiWGiJEx27zitJAGiNSqGyHTCl30FZVVgWDZ7AjKQW0lkgjiST2XYvWJcOYu1RDdChdYoo6Bz9JjeBI7iVS5GcllWIcbZ4NnTpSldR4HxCAVholNSKRO1fLihgTXT/QNIEUQUtFROQE5SSo65qzeo4MNi+opJht7ynhJ2JbVdXdQkpRaqRMGF3RjR4boBYwTjU15xeXmLJisVzS9g5VlNhgSSKrxdFlpVQrcXdMFQqVwBQaFyPJe8RUdhNDJLi870qpvDASJHZwvH79mn/6F3+C6wtKLbi8OKPvOxbNjNF5nPccrq5Qprw3s57JgVECpTXBRpqmoS6zBVQphTYF7e5ADIEYAk1h6PdbBrujMIoYYLXQ7NbX/PqXL5jNNI8fn1NqiR0HIOK9pawKzs5W2MHmBOngCSExm8+w1qGFzqFVMIXDJfpDS5zeJ92+JQwjru0IbUeFwISItyNK52Ox3R3Qy5EiZX2/qitcP2YXwvTZkQRT3dAZf/KDH/HPtMYUWckNMXcWpxTxIWSDgNRY61k2Fcp3/PTf/RXd9XMa6YhxxPeOMCb63rPftcxmiaE9ICuDSIGz1RJBZL/fIgrN2eUj+ldXdKMlJUHXdpyvlszrmtY7iIHRObp2z3K5ZL2+5emzZ/Sjy6m9SpKkpNAaZ1u0hNXZgnnzIFvBpaaZL5ktz9juW/43/+X/muWDj9lsD/zwBz9AxMgwdLix5frqGS9efMPV6++otGL9baQqSzabNWVZsLMtKQTGcaAqJIvGYPtA0prD/oCpCozS7IaRH/z4Tzjs9jx/+ozVfMHZYklR12xubpnN5oiY6NqBzaHP6rIxBO+xXcu4ETw5v+DJP/knjNaB1Fyv1wxdh24aDl3HsigZxiGfC/1ICIHVYokyJTebDQjJ8mzJ6nzFy6tXdP2ebrfjer2laGZ46/j119+ymNXMqoLNdk9VaFaPLxlUwc3tlq5/wWF/oOs62q6jHwJtFCQ5mVWkIkTyf+HkRT7hDwzvtUeccMIJJ5xwxO9BbI+kdSJpYpqN5G37LLxN2u4T07fnWr/HIx5tq/eqhj5EOIUQd6rdu1229xOV3ybZ6c5i/Ka66M19jvuYkrh7jrm/9746ezwex8CsNFXb8CZU6rdw+zil7x63lXtN31T9vL8vb7zNea5W3AVTKSIyOQ67KyQWUiCmTJZijBiTw5Z2+222KBtFYTQu5NoYKbJiu1yds/v6KS5EEIKhH0hJ3nXEZnVUE1MkBo/3nhjzjK4UmfAx1bqkEAgxL36EGEnBIyclPYY4WU4zQVBaI7wHERFKUpQlRSFx/cg4OiI5IKosDVpnKq9UTggOIUxW7wRSIZWmKmqEUEil0EIjfU4FToAyBqnz35LI+0bM54KUGiGhMCVaSMahp2s7hJIslgYp8msuhZgWDTJxl1ISyUStrmu+++47SpUolKAsDNvtFj9aXIistztCTHz8yWd5oUSA1gZrR1JwRAH1FCzVtu0dsQ0xL8Q0sxlGGwgBowRRK85XSwpd0XcOP/bM65KiABEDZVFyc31FVVXMmobdbsdmk5g3M5zzxBAIIc91N01D17bUs4YihMkibRGAH0eur2/ww4hrWw43NwjnmFUVTGqs1hrrA/t+4MIYVFESIzgXkIi8HiMEUqvJ5q0JIWCM4c///M+5urpCVSZbu71HpoTSCp8S2mhkcCwqw7/7y7/m6ulX2MOaupTMKkO0kTFFum6kqmfM5zOcHRmSpa4K2vYA5OMXx8TVdkc7WoRQVGWNtSNnqzNS8FRlQVOX0A0453n9+hVKSVaLJbNZwiYwzZzNviVJwcXygqrUzJqauio5P1uxXJ0xWs/tZs9q0dBurpEx0W0P/NXXv6Q/7Lm5fgU4pPR42zKbFdRFnV0AQjOvS+qqpO87lFZEB/NZTbAD0Vskgq5tebSY88UXv+TRo0dst1t+8fNfUJmCQiqiD1xfXTEOI7Up2e/2tG1LCAmhFd3o6K3ngRQwDPjDgeXijLLSDM5zuTxjt+8YuhHh4ObqlvNZhTYFqqjxdkRUNU5KgszjBle3t3z7+hVBSZxPlMslP/7oU0bneP7iBTebHYN1XBHphp7BjoxffkfwYfqsebM+mMh5DDYJtK4QQmTHhk9IqYnvT6qccMI/aJyCwE844YQTfjt+j1Tk43fTfOdxxvYDwU5v3faY7Hun0P42RvvhT+s84/p20JOU8k5lzTO278/d/vbHeH9/3wtomvbz/n4fLbZvyOj0NymODDirv0eS9c4237VFvzuzmyt5/N3fjs/h/vM87lsWjhWgECkvMPTtmvZwjXMtc6Pp+0QKgZgiw+Apq5LZbMH1zTWJSFmXNIVBK83Z2Rn7fct6c2C3b/E+MpvPKVwkRYGzA1ImvAvEGJByspPWDd5bJFnNy7xcEEJE62yV9t4zxoAREYFEK4MpimneVRKIxJDVuWN/rB0H+gSGhFaKiEaprOiF4HMl0ES8cgVOZBwduki52k96EgKlC4RQCGHROm9DpoSLiSQVUmvKqgatEMFlK7R1BJ9yku5oicKiS0M3tIxuoA5uIsgaMeVnSykRSmOqivPzczQj+/UVQQtiyP2wKUQePnrM2fkF+7ZjHEeIHiEifd9xuVoRg+PhwweMXXc3a3p+fo61lkPbU5Y1s9kM50a8z0nHlSyIMbDbbmjqFavlkhgr+mFL17akGNDaEGNktz9AEjjnWa83+Rg6h/eR0cVcCSQEtVa0fcdiscx25JjYrDeM7QHXd/TbHUUKiBRx7QElFaYoeH27xcZIKs8pZ0tsSIzek6KgrmaURYEkUZQFDx89YhQRrRWvXr3im6+/5vXVFRePH/KJc3jnKI1BKYlCY8eehxcL/u2/+ud8/bO/Yfv6O8o4Mls+QCXPdhh59nKDkBXL1YIYR/q+R1KwWDQslzMAXrx6yWFI2OAQQlEUFbc3ay4vzymLgt22Zd403Nxe431iuVywWMyZNQ379sBgHVEqDoNjOV8QUqDQCTcOBC1JRrLfbTjs90hTUJgKozWvnz/jr//Vv8RojZICQeTyYsWsmWHHA2LWIETk9uY1u84T7Cq7LPoOoySCxGLW5BoqpfCCHKIlBD4GPvv8cz7+6COuXr3OFnYpaWYNxITte0jwzbffsd3uqeo5Dx495PFHT3j1+ortbsNsNufxaoEdLDdX17iQ2OwPdNbTu0DnHLoqefT4CQRHQqAbQRvh5ebAg4cPWT5YURjNbhx5eX2DlxIfEu76ligULnj6Po9AXK03uVZNmzxaEQ1JGHSZg7d8CNPcOjnRXQq0KhFSQvIoMUUVnq7yTzjhhBNOOOGECf9BXQlCJDjW7XAkgffTfd98/z7pfR8fJn/fa0/4jzlz8r4am7++CZHizeOl9BZVz9zujaqbYrxnRX7bBv2G6E9K4LvztJNK+tZxEIkQ84yrSBKRIgLP0O3QMhCERwpBDAmtNaVRhBApTIF1jtn8jOVqSYy52qc5WzBbXDCM8OVXzxjGQFlWubrEDlibldnZrCbaOL2miuAD3rlsV40+z4FOybta5tlIKQVCTuFFk5W1NAUxpClgJ6CVplCCJCWSgBt7Ysw1Kyp4RhsRKhPUGBLOenwIVFVJXdcoJRnHgdaOqBhxHoiSyjlCjAiVL/61KUBIkoggJUlIfPD4EJGT1TiF6TWZLI+qKDBaoUuFT4GQIqYschoyIvd7ikzkUwikkLtujTHUTZOTl1PiyZMnqGMA1r1gM6k0Wmai2cxmuLHP6bZDT7SWqigIU83R+fk5SMPr6zVVVVPXNcvlCqk8RaHpzYAg28CtTSivITq8D2hd5FCvceDJ48cEnxcFuq7NwUNVk/dNgPMepv7hQ3tAJkGwFjeMuL5nffWSQggaqdBGUqiKrh84DCM3+5bdMLIvEmfWoqoarUvUsX835tT0YRjYbPf0weOc5/LiAh8C292WYlYT09RlXJRopUjB8+hsxtV3X/L1L37CsL1mVRU8XJ2jROLq9Q0+QJBZlT/0AwqHH0cuL844u3hA33c8f/GcfnS4ZEhoDm1HWcR8HknF9c3NVM8UOTtboack48VijtGK65srfEwIIwjBM1+scN5RyMByeUFlDClmK3/bDfjBElJLM3c0dc0nHz9i1tRURYEde1K0jP2B3eaG+bzGjQPrm1vK2RlCCIJ3SCkojEYJpt5ihXOWYRxAai4eXDJYy8XlJc9evMCOIyF6LmZnWO/Zrzek6CnLhvPLS6SuKeuG7aFj/asvKQrDxcNHnJ8tePnyBdv1FqMNo3UkoXj8yafs+p5iGKjmM4qmYbVcoEzB81dXvNh1dMOA3ez54rvnbDa3WDvSOU9Shkgi+Dg1gGenhS4NznlCjLgAUmiEyp9xuqwnB4sDlfumtdaIGCFJgk8QmD7j8mfLCSf8oSD5t1siTjjhhBNOeBt/D8X2DbF702HL3e/e3P4NuXt3XvRdu/C797nb2gc+v+/bkO8/7ocCmv6+uG9zfne/372dOKq10w5/KEhKyPf9cm9s21mVzrO+vJV2mD6wPYigBRKFiBqZIioJdrtbci2Ox465ymO+nOG8Y7Pd4X0gJYlzie22xxQV88VDLh88pq5KHj9p+MlPf57n7qTDDj0xRuq6oa7NZJut7lTlmFImms6h5TR/fJeUHLHWEZJEColRBTKOeR7WFMBE7EREiEj0lhgDRaHQMuHtANFQGoWUiqSqKcArTj22OVyo6zrGsb/rt9XagJKoskKonOqstb6zCAspsM6RlIbgsW4iq1ojSEQcSkmk0KQEVdWQtMPGEdu37Nodl8nhU8SGQCmYGHC2yhIlSElMOSRHoRBE+r5nXje5PkhlpdeYHLS0mNcsFgvuz1bPZ3P2fsNqtcqzt8awb3usG9jv94yjZbSWYRyx/oDRihQEhIDWuYZJq4Ios8257wdiiChV4Fyk63qM0syaJURJYQqEUkitiClRVhW6MCQfWF/f4PuR5Dx+7GlKhXQWIyU6JYKzCClJSPqQ6KKkD5CEIsnc7Tr0I0KqvA9aTedSwhjNOI6YicBnK2okxcjQ94jlEoFgViqKMPCzf/uvGXY3VCKgk+frL3+NkIrZYkUUApsOnJ2dQRiJNrA6P2c2X3J1dcvtZsNgA2XZMA4+E0cX0ZXh/PycolRsdxuqusYFy647MKtmFIWmaw/0fQ8p0R4OJKmJUnPY7wkxEAt4WF5wcXGOiIHRDswXK3rrSFLTDZYvfvMbut2G5WLGarnAKIl3I8Hb/P7RCTsmYtIsFkuqKQ27rCpCCMwWC9rDnrJc0G42jNZiGkM5a/AdqELz5ddfkWLi048+4tC1DG3Hoq6nSjKJsw7rHD4NPH91RRKwOluxHzpev3zGg/mMJz/+I85XF3nhyzmWZ+ece08Ugtc31zz97ilffPkVu7bnar3lMFjQGvf0+ZQanv9FCELmxZ+YP9eEzCMHUUhQBq0KwmgxgDYSUv5MkURCDLk6Sqv8eeIcMkoCIY+DpIiQCQ15oeqEE/5QcEpDPuGEE074nfg9iO3RgwtHMvtWkNE9RfJDRPDd3x1rcY4bFR9KShbvktsjmf7Avv1H/Lx/d7/vz/W+2fe7XXxjh2YKlDr+XmY7bhLig7t3DLe6+1kIknz7Me6ruCll+11I2WIsY0TESCTbd4exg5SwowWfsOOIKQusdXR9z2y+4o9//BlMFswQE8MYqWcaXRisDQgEzlrKssSH3CkaQiC6gAg5cTqlCCnPqyqV7YApQYoRlZN18rGICWQ+DoWuOLR9DqYKAREjMgVEkljnaA8ta9sTuh11WUAKDMNIEoYY9WTVzpblHCrkiNG/Sc4NYbpAFjjrqKdgKYHA+cBu37JYrDBmSgiOnhgjIQRcSOhJSdVKZ1XRBnx0RGnRlUJIQT/0HA57oihompqiKDCFoS4rVJS0w56+77ndX/PgfIm1A967KclX58cuaw5tx+b2lqYqqErD+fkZIQSstZmQp4iUElMU6CmQq+tHlst6SkqWaFPkwC2h0cbgSTgXcF1LIqB0wI4jq9mS+WzFZr3OM7DWUxYVKUaEUMyaOQKBT2Ei1TN0YWi7jq5t6doO6SP73Y79Zs3MJEqtEM4hyMTVRUHrEutu4NvrNXv2/Gck6tmMqq7yjPx0/sp79VnWWbxzd6FsWmtCzIqEHUeUUjRVxVwJ/r//7L9mc/WcxoAYPPvtLZvNlqJq2HaZQKJyrU632zOvDRcPHrLvOg5tj1AFSksimqo01M2MGBJFYUgxstkc0Ebx8SefcLu7oes6hBDc3txyOOwJIdc1lWWFqWc4RF4gEYK6UkTg119+yeb2Fu8cSMHNeks3OAICU5QIAU1VcXlxznLREL3jB599yvnZOdvNhqglTz49p6oLvMuujHEcqasKqTVCCF6+fEmMkaqZgVIc2pYnHz1hGEc++vRTLs/OSTFy2OxIUrBvDyTrOew7NoeBJAxni3Mef/Ip6+0GVZWE4LHOMjcFTzdbvnx5Tdt1vHp1xYPHjxhjYNce2Oz3uK7H95akNLKs8SrP4mpj0MZQloYQXH7vC5Nn62WkKAqkyO6R4+eDNgWSQIo5C0AAflp0UNNnbowRYkSLOs9pK5XDuwhAII9knHDCCSeccMIJJ/w+VuRpYfwtVyzwhlEeU33fJqdH4vfWnROQBCJNc7cTWRXpXdU1TSQqp4hIkXfkSFjg3Rnbe/ef5l2FyDNad/Rbirs05PeTid/avbvwp3QXZpLuEe38TUjTnPExEPkYIDXNf90zab+1e0JM82F3ai8wVfjcP1b3906IXPOTXzY1HRCBSIrZ7JxnQ8JERQogYsK6gCoUn/3gj1icXVJUc3wE6xw2Cay1OD/y4hdP8dailKQqayRQGMP+cMC7QIg5MEmkiEzyLrApz2TmVOUUQYrcdZkkU1BUIJFwIeDHkb7vWIaQVekYePHNtxSzFUFmRbgqaoiOkcRofe7elYIUbJ61lhBCnPqI8+J1mqzwwSdiZxFSEwXICCaLqegEyXlEEhNxzQqRmlJtpR9IyaIEpDDgfcAIBTGxXK34+POPqRdLNrsOxh1SVfzg8SUBgYog7AFne+zuFuEs58sly8Wc6A0+WLbrNe3Q82h5hlYl85khRoVIkRQg+UihBUlLjEx5nptAP/akBF3fE1JgXhUEPxLDyDD0pCTQukQrjR1aZk1Bu28hRkQEEcjv2xApdH6rB5et3EIIUog5PCpF0IrlYk4AmGzq65tbxv2B2PUM2x1LVVAlh2s7pJBEY7BEDlHwzc2WL292bJyEKs9Kfvzpx3z93dcoo6cZ9chsVrJaVGzWDi0SWmaSk4wELRAkjEg0WvBwtcAPPX/53/xznv7qJ4yHHfv+QLffEpzlMATOmoJD24LUlNrQbm+xY88nH31OFIKLR4/QVcWLl8+RxaTM28jt1TVSSs5XC3aHA8PQI5wAKXA+cra6pDKa9nCgms8pqppDP+CT4OADu7ZnsIHRWZwbCH5Ea8GTxw8JKXF2fsaIYv/yFfP5koePHiEEPHn8EKNg7PY0izkX53OGYUffb1kuVyxXDUPXoSRoCU1ZUBjNdn1LOFZDASpGEpKyKLl68ZoXL19S1g3P2xcsF0sikiA0SRl2rmUUJcXFis3+wPZ2w3Z/YLSOuN7ivScFzy+/ezX1JOdgNO89X93sUCZX9zgX8nlUKpASISSm1tR6zmw24+HlJVVR8N1337De7xFaIaUgxWkUYZpPT27M87WkrL6miJo+pwFiCHeBgVrKHAqncydyiJ4oUp5uTyEvpJ1wwgknnHDCCSfw+yi2d1/vk8d3bWAJhH6b2n5AvU0wkdo3EVQffEwBSr4JTTrOo97ZfKetpUQmK/d00XQMipr49pFkfrhn98O4r0Xffy5v/faYFfXu79+5/+8cF75nMz4q0u9v5c3PEjGNNqeJeAvm8xWjhWQTTVGhdKTrW5rFGZ989kN6n+htoBstXddjx5HtdkPfHVAy4cd+UkIgxcA4OIIPCKmnfUqTOno8FPkba92dqiylJIbcCSsloBRKgpIRgZpCuGIOgpGSoTtw9uAJqllli7Hv2R1u6Lue5eVZ7oMVEqXkFE4lkElMVTBpqqOBoigp6gopNEVZ40NCZckYvEcmMNoghcb6BCqglZnU7REdHYWEGBwRgVYSUswkP8GiniGFpFYS1+4wlSdGCRHa3Z52v8V7i9aSutAImRXOEEaMlqxWq7s8scOhRZua0jQ42xNdwg4j5cxklbq3NLM5ZVllJbvt7k6RuL4lBEsMDiGywmlHS1Ayq7PzBry5s5BvY+Sw35NStqZ776dE60hV5/onO1qKuqQsS4qyYLPe8PTpU9wwgrWM+z2hPTBTCuUjyTsqXSC04tnra767WvNyb3m2H9mnEqdrtCzQRcHZxTlMs8jaGKSW/JN/+p9yc3PNd0+/xfY9dhjRWvMnf/onzJoqz4QPLbouEGPH3/71X/HlL39C7PY5SMkUoHNHc9KBJA3NfIUxhjCMhGSp6orBOrYvXqKvJCF4khCE5CBJklAMwVOaiiEFKDRNdUbbtQwpUc6WRK15fvOatj1wfbumtx7nI0lofIIkFULleqK6NMzmM5QWmNmCRWn4za9/hbWO+XJBXdWUZcHT599hTOJP/uiHPDxvKLXC9ntS8JRGIIVHyUR0I4vFgrFrGfoOZ0eMMfiUsNbmT4oEs2XNrJmx3e350Q//iBASShc4H/jy6ZcgBE+fv+bV9Sa7K7Rhu9uDkIQ0VeeoTFATkrwipCZnSEIaQ1lXaK3p+x5dRJIEpJjm97NbwSjNOAw8/+4p3rnccy3AT1kAx0VEeXSwRH/3OSZIGK3vPkOOyq2Zeo0BDm2Ldxbu8gYSIuaAOqVPiu0JJ5xwwgknnJDxe4VH/bZZ0/fwDhcT72Q73XFU0lt//OB2j9blmEi8Cd45VrwcufW79xTijVIqRTY7pxQn5fQebXyrDuj+Q37Pmd3/gNHedw7LdEjenh1+o+Yeb5RApqk6Jf9KTupKWRjiGPPcqzZordnvdux2O252Ldt9x74f8D5SFIa6bri8uOD1y+/YtS3ejixmNWVR4Gy2ggqlSD7PzY7eou91+YZJ+Xu7gunt80QKkQNeUpzs2YLFfMHqbMWrm2uqukZWFQKJSBZjDPP5nBgT1lkW1ZI4hTCJKZzKOUdVVTRNc5eOHIIjpoAyiphErggSiSQlqNyTGxBILZFSYccBqRRlVZPGSFUVeNtPaj6EkBjbgdJnq3KKI23b0sznRGfZ3G6mGpsIIjKfN8QUqCvDdntLM1W1tO0BJQVNUzMOlqurG7QpaZqctKtEZLff461Ay4T1jkQ+v611OJft1jEmxsFmiyeCYRwRQlAUBd47RjtyOBwYDi1lWXL1+jXz2TxX3gwDVVXhvLsL+eqHIVuAp7njuTF0h5ZuvyfaEdyI71pst0M6CyoHIwklkVXDthv56tWGZ7d7thZslEitUSRS9PTDiDFFtuMrOdnWNT5EPv/hD5BaE5LmfLXi1dOn/PiHP+SHHz/m9voVhRQM2zX/9l/9t3zxy19w+/Il80IRYmRzfZMXI7RGSIV1nqqqmM8XrK2jsx6pBFebLdYOLJeL7BxIeb53Pl8wuMg4OGyKbG+uCSmx3+/Z7XfTOEE+Bwqj0IVm8DGfO2VJmtTM7BYIee62tygteHh2wfX1FUqAsxajDYU21FXFOAwI8mJE3/WYWUmQMG9m2YIu1aRiCpTOvdPaGJzNKmc/DIzDwHK14tWrV3z84CGb/Z5//i/+BbNmwfnFA169vqbre5wL7A8dVVXRDR6hNG70xGFEKw1SIkn4GBByev/Gt/Lt34xYZCaKmjqmIRHJs/VuHOnbDmIkhZjP0zC9z4/zsTHezcRrrbP9nzA5cARaqLcW/e4H5h3n44dhIAJi+n1KCURCq2zTP+GEE0444YQTToC/x4zt/a8ftPFGeI+uJXKC8vE2SdytvL9d0/POthIQ4vT928z4nmA5XSR9IIxqYn65LCPd7ZWcZl7fVn6nxzzeT9z7xT2y9veBeOfrh/725uf7qjO8/7Te7Nvd8ydxOOwYh55CgFKStj1g/UhIgl9+8UtslOiyYXWWVbRjb64py1wbQl4w8M4TvctW7hiRMqcKCyEwRZGDlkRO+M09tvGO1CqVw57EFBqTUiJEEDFghMwBMlKhjc7zqTpXeySm114IvHfYcaTSFUpmOzNkBUcphff+re+P/2WrbSa4LiR88FjviNrjU8KlRJACF3xOSgaa2YK+mbEfujwnqAyJSPCBNF1Yu5T4yU9/xupswXK5wI09h92WxWzB7e0GoeDm9prV2YqmrgkBzs/PaPcHSGBMRXvo2O8PLJcrzs/PQCiaZkYMDlNohADnXSZRg0WbkuVyiZT5OSppGIaBlGAcHSFEmrrO9nCt8c7T1JnkS6Xo+57gc5ry4uIca2cYYzgcDneLEZBJVlEWKK1x1jL2PYfdhnG/ZVGVvLh9jW9baqUI0VNUJUkIugDfXG15vh3Z+oJDTHgh82NqQUiewQ4UdcXFwwcIraiqitVqxW+++pKiKLh88IAUJcE6rl48x40DyQ/UEmx/4PbqFZubK9rDnhQthy6/pkkIirpGG41JFWVZ5kWA4BGF4fzxY8qqYLvdsr69ZZjUaTuOjHZg/+W39CExTkFWIeZRB6myJVooifeBoihpY0R5iFITUmSY1GWl5OTUyPP0pTY8efyYw35DioF26PPrHAV13eCco+ta6qqiNEWewU0F2/WWNPeUZYlUmvbQoQ4tKQQ2+wP9aHMQW5/TslerFUWVU41niyV/8/MvqJo5sigJQrI+tDx48BClCsZnL2j7AYQmTSFuCInWCuc9Ifqc2J7yTHPIMvQdAdVaZTuyc/jpXIkxkoBCK0gpOzryGzenJEiZU1uluBsBOX6u3P/vSE6lkJRGI+HOfZE/Q970eQshKKuK5EO2yTN1amvzgfDCE0444YQTTjjhDxm/f3jUve8/bOt93zr73tytSKR03zp8Rzl/67aOFzv3Q5zud7t+MEKZoxqba1zEpIjc/fWd7XDcUyHu8dr0hmD+RyC3vxtvHysB7x+SrD3fZXiJidwG79FK4dqRMAyoFJnN6pwEWxT80Q9/zNV6hyobIM/JIqCsa8ZxxIdAaQxaS1LIyccpMaXUMpHUgL534Xmcs40x3vXtQla8iEf7cSbix+onpSfVJWYibIoCL7MKJoGqqhBSEkPuVQ0hTo+TzxcpNVVlcM5lNVRpyrLEaIlUsFwtsT6hCz2FEUUQMFsuqeqKCokSAlMbXj9bMw4DRVnStQfKwgCCJDVK6qzOxWxPPjs7o6w0Kcacqpsc0XW07UDCsd3eACvskG2kRPAuUlUlMXZ0XYeSCoQG8oV/U5cMQ8s4DhRNiZS5V3cYLcVoESIT27JUmLKi7waa2QJlDOvNht1+j5KJqszHILgRrRSCPO/ctgeESBzaw7SdMpN152i7jrLKPxtgGC2vXzynUoKF0Xz7xc/BWhpjKKVEC5FreFTJy/WBr1+vuRmgiwo7eSOqUmO0oCehpKAqCy4vzjlbLe/On/X6lt12yziMuN7RmJqPnzxmViikLhAGfvrrnxPdiA4jqW9RQGcdwzgiZU6NVkpxu17jQrakb3cHdu0BIRXjOOKcBRKd29O/uqIosrIXokAUJZVUWGdROr8X/JTGbFQOCgtJMYwBpdJEwgSFKhEiYqTKLpBpBnReNnk+O0WePHnCzdVrpBDY4Li9ueJPfvynOB9ouz1SCJq6Jk4Ldt3Qg5Ac2jbXFGlDsANXV1dorWmaTIzvOyMuHzzg6bPnFHXD4vwBNzfZKv3p5z8CofjyN19zaMcpBTt3JcfoQUQGm1OHpQStFdooYsqhb1KYu8cRAqQUaF1w31EziaWZVE7mDR89MeV+Xd1MBFiKuzGSI46k9hgWlqbsBCEFxpi78YJj8vpx8S3X+giUzrbpGAMxeHRhMPqk2J5wwgknnHDCCRnfm9geictbs7LvVeJMgUjv4DhHK6aLwTR9f1T17l+0vYXjhc+RwImsDNzZl4+BTSl3ZGYxU7z5ynSzGO9UVzEpLUqIu9nRd0nnMYfqTfDT288lW+HeJCG/S4bfJcAiHXf03WMy/freQsFdvlZisk5/oCro2I2b4t3+F4WhLAtGme22afSsb25pliuWyxV13dDYCNLkAKmQKLQBoabHyvZCmRRSpBysVCh8SBTlZE2eHt9ai3M5ybQsyzsF92gPz0pv7iKtihK8Y+wGQshWcK00SiukUjmISqSs9AqBNobZbEYY+6wQToFiRVFO52AOtynLCinz/bPyqEnRMQw9N+s9F48UzjuSEhSF4Uc/+AxtSkKI+LHHDQNjl4OW9FQhlE80hTGGsbdolYgpsmzm9MOAD4JSa+rS4IaO+awmEhhtxzg6yvIhKQS22y11mclL8J7FfMGDB+fs91uUNrmmxw0IPEZmGzmpzBftSeBjwse8IDMMln075L7fosSGQCJf7HvnECaThWEcaXdb8AFjDHa0zGezO0Vda01VVZPF2VI3Nd57xnEEYL/Zkpwj+cj26hW1ECzOz1FA3/YEIQhJ8utvvuOLr5+z87neJyqT56CloNACER2L2ZJPP35CCo7oLH3f0fc9iWwfLY3i0eVHFMJwsVjx+OEDgh35+je/4je/+iUvnn5L8hYjBXboGWIkSs1sMcday3q3pe97NtsN3k3nnchzr2qyWkuV1TyjC3QSuJhnixESfMzJ4jHmRbYYkUJAEugkkEkSXaRQ5m4bQiQKpZAyIVIgek9VlmijaZo5+92O0hiaqqQtC/q+I/rcX3t9fc1qeUahNX3Xoh6cQ0o466jKBd5Hut6iVMHh0EFwjNajdZF7lpXBGM1yecYwDmw2W9CGarbgN19+zXq94fziAY8ePeGLL37Dbt+CUASfCWf+8MsKtRYKIzTaSB4/fEjbHhjtgEATfJ6D1dPMaz4++f3nrEUdrb8p4bzDhUiYErzLsswhfdPPqnizjfsJ7+/9+zH1NEsp33yGAM45ZrNZHqc4tDlNPVdQT+MO+TNAqVN41AknnHDCCSeckPF7zdgecZ+AvlWBkxJyigR56/bize/FpPzEIyk7eonf2e4R8h7DfJsEZzX1jlzePeREeMUxOfkNqRST0fd4U3lUID4U1XQc/71POu/t17v24uNM2vE48M5tf5uV+Y7gvmeLPirT8e2LQeK0lxFBnI5qZOha7NDjvWNRGExRoHpB08x4/OghZxfn7AaPNCW9DagIUptj2HVWUaZwoRRzWq5UJivWR7Iq0lsXqbk/NhPSpmmyeps8Uoo8TxkjPnhwnnG0d+FFR6I1a2ZIKXGT3XhoW25evkLHQDX1d8aYbcje+7s05vv2Z8iLLv0wYMcB5/e0w8jq8iHejgQc3ejoeot1Ae8d7X7H2B+IdkAQkGR1KaZcKRSmRYUQIrOmZjZvsG6kLKrca3pomc0a6noOCqqmpO97nBsJIXB+fs52vcFZR1EYDu2B23XPfD6b1KdA13fMZ5c0ZcFiMWOxWKClwDQzrPMYU0727gJjCkLIxOzxoyeklDDGUFYVdWXY724JwWUrckq0bUtRlACMU9jQoW2nWc5MXI7zniEEDvsDtutI1rLdrVHeMS9LXNdzGC1lPcMG+NV33/Hzb57Ru4STBqUM83mNdYGz5YKyEBiR+OxP/zEliS9/+XNmpeZy+Si/njFQlbmT+Pb2lqdff8vh+jVf/O3f8PrlS7rDlrJQLFdL+naPG0e6cWQ/juz6kXEYcg9xzGo+gJ7IJQh8igTi9A5J01zycBfchVAc08hlTCgh0VKBzESqMCVaanxwFGVJmCy2ZVGgBBgtIQVEikTvso0+RuazGqVmrNfXtIeW87MzUvA4IZg3DbPZgrI0mACr5QIhcodt08wIIbDZ7kHm4LOb62sqkxXM/eGA3wQWiwXGSIZxZBwdz58/Z99bOi/55ukzjDY8elxxaLv8ess3iuvxM1BKjZksxlLmRHAzWYoleUTAlPrOLnxMnj9+L8tcPSWnaq0YI1FGiAll8kywlHJKnU937/PjZ9d9e/EdwU1gRP5UPv7dOXdnl1fTwpfRmhghxGOtWN43pfSJ2J5wwgknnHDCCXf4vYnt2zOx78zdSok8XkS+uUcmI0fCeQwYUvqtG37Q1pzgrncn3SOvd0Q1c0gpjvuQK36Okutvcw5Pgusb/vn2+O6dWvueq/reY775gbugKhJ88CE/5JL+wHbv31BMpD9v+x2ifLd/Yrr0zlUqQuS04aosUCHRCyiMZrFcspjPKcsdqpwxhh6lE0hFTIEYs0IbZb7onJJxkFKhp8dSSqFlXgy4P199vBA+hjrF5NFCoQtQWr91UOKknIcYGPqBruuYe587SCVZ9ZES5zyF0LmrVyrG0WaFP0TiRIrTlO6b4I01URcorSjqObYf+epXv8bFRN8PjM5jp6oUQSR6i9ESI1KuRyLbTcO0WKKUJHjL+fkjHjy4YLe5RmtF27WUVZk7gO2IVBozuQ9yBQ+07YHlag5pOj5omqbi7GzJbr/F+oGmKXFuxMlM3OumJjqP1AU+CqzzlEXJbN7gnUcpsn3XB0xRsliu+Pzzz9EKhAgEZ1k8ecysrKbQsAM3N9dIpZjXFXKanQwhUNc1AG3b0g8D3eHAcNjh2z2lgFJpbJtnhHVRc7vv+erpC755vSUVNc2sQJsCpQ3z+ZKiKHn48AFlWbBaLvmzf/Kf8/jzH1JWFeL8nJubG779za847A/s9jtub26yyj96tDYcDju+++ZbSAGlBNvNhu1mjbMWqSQRiZtmuMumRk2zxz54PBB9IMRAFBFTFPeeXz/NgcpJwZ1Seb1DkHLVk5QkH6cO1nz+eRJVUeJTJAlQKqezK5k/w7RUJCWmqiTB1esrmlnNarVkuZxx9fo1EFkuFuy2e/pu4OLiksuLM1bzBTE4CmOYNTWHw4F+GFEaAsMUIhXoh5HZbIYxWanXWnF1fU3TNDx99pzF2UN2uxYlNHXVYIxhs15TlgapwIdASh4hwBQFRVlmAqsEWinmTd52U8+IRV7E0aa4ez8fHRlHe3D+vcgzty4ghchjA0KgjJ5mlPOssg8B4v0atjcLYcftHyFjxI3j3WKXUgrnHPP5/I5AS6UghvzODXEKUMsLF+ID2QonnPAPEonfMnJ1wgknnHDCEd+b2B7DPX4bsc1VDgIp5Dvk7u2ZqjCpc9xbzc/k9/3HPK7qiyOpTUf1k4kkTz9P5DalPPaV1/OPasUbHP9deIuE3ifM023EO7/j/v2419Z7jxi/EXd/tzL723BUju9zdzHN9r19TI4PK+7Zn/MFp1KSQFap4jAiJBhTUFcVVVXTNA1e5AvPhMhJwSlbhpXWyBQpjCEGDylijEbEnBAsjSF5my9aJxzt6TmZ1+eAKX08pfK+xRhR0zlw/6LWOou1I/JO9ZUUZcl8PqcdD1PATUDrbBFVSiOIEEL+WRqkeFN/kpDEmJUgXRSMw8g4vAIkcUrDNkKQRMIYyWgdOiqqssDaEZECRhUgBKYswDsCEiUSMgUW8xlaS3zw9GNWb5nIQLfrMabIYU/WUVaGdLwoF5r94cB+3/Lq1Us++/wTPvr4IyBSGM2sKpkv5milCTGhqpp6viDFY2CWnkizxfnA2fnFtO6QcNay7faURYmXsF6vMZeXAAxDT2EKimke2UyqWozxjuBaa/M86jjihp6xa3HjSFCwrGf0o2XfO3a9Q1Qz5g80qplTaEm331LIyKqMrJYFZ4uCwQa22w0//8m/5yc/+SlCSKy19H1PURjGceTq6poXL17kx7Y2W6+9YxhGRF6hymtZ0kCR06yFAp1y2rcfwlufQVJKpDEYXRAzzWUc++k9FYgpQIyEkIcKUkqk6CgKjakMxhiiz/PlMeQZ8qKo38yTSkEiIpXMKnCId59VUSRMWVJpQ4p+mm3OKex1XUNKrJYLzs4u0NpgtGa320HyrBZzuq5jvd5wfX3D448+YRgd682Wy/MZUiuKqpzOZ8Pt7W0mmkIgdV7YeHnTURZ17o+OiaHvSTFkAj7N4SujqWYVZVXjR0f0gRin0KcIddUgkmC0Nj/PiYAeF9rEPYUWEiJptNR5EVPmnmmhZO6ZnV4PPX3eSSHu/t04JprHOL2O3ueQNu/w1t4ptCkl6rq+I7kpJdKU5K60QZkiJzSHMBHcN59HJ5zwDxopkeLpfD/hhBNO+F343sT2mJIJ8S70A4CJrAY/rcy/F+YhCGGabxWTBU0kIgExVT2kySt4fyUfQMTj5dnvooU53immeEcs5d1g7LtsOTEVwHInt/L27cQH7vXW/e/d4miEfitq6l3193viQ+ryh+qV3o6/erM73juM1nglc41GVVLWFUVRUFUVs/kcU5Q4m1OEEQqpJDLJnHRMhSPlXsgUiD6rkDFk4quVIkz2QqPzjGyaLIf3L15jzCsRMeV5RkG2RHrv3qr+kEqhTJHVmLzkkBOZQ54rTjGhpMrJqkogpQDkNJudCfXxwldKSVHUOB9IEWSA6ON0nDzOZkJeFrlLVSpDqRWr5QKlBHboOM5iBx+Q0iNT4PGjhzy4PMdoiRCaTJrsNJM8EvuR1WpBUzc0TcN+vyNN1t4HF+eUZZHnlmXi4YOHPH7yER99/Jh+ONAPLWVhMDKTv81oqYqK/WaHkAops438mPzqfVY3nXXYwXJ9fc31zQ0kD8mTosf5wLPnL6jKnEAslSZGT1Hk5OO260gx4rxns9lw2O9xzrG+XWOcZV43SK0oU6IbBiIaFwWdjwRdUS9nUJSo5JnVJcvKsGwKlk2JCBYlJKasCM5hyhLnLLdXL1mv1+x2O25v11Mncbp7B4WQz5+qKXAh4nwghERI6Y1bw0dEivgYKYriLrDsePpHwI4jCE+MnhDSREgFAkmMkCIIoVBKokqN0IIgQj7HjGAMNu930lOQksSLPH+NAF3kNPD8euaE72gtstAokVVlHwI+BGazhq7viD4yn81JKWLHgYuzJZt1i5JZfe+6Fus8zvuc0BwSVV2xXC6oyoKyrDgcDnRdR1EUnJ+fczgc+Pzzj3FeTM1fAqNzn2xZlITkETIRogeZ+4PLpkRJiRsCUgqqsqZpZrjR5b7pBGVVMtgBIUFriSk0IUzz7LLA2XzeY0R+j01p5iFFrHeEFPE+J5FDXgiNPt6ND4h7lmOl1bTQlUl7U2WlXCo59Varya2SyXBRFpzVJWcXlzSzhhgD29s1u+2G9F6X+gknnHDCCSec8IeK729FTg6jJNGNkz023hHRwbpjzhMheZQ2SKno+4HgE0VRIcWRwOTr1SSzJRDuqZ0hIJS4SxxNSSJk3sU387TTd8c44GkLCXmPdgruNpzeEGdEQsg47WvIpPk9ljiR6fSGUKZjmhTH/UqkJIiTdCuOqvJkv3uXoyYgvvPLtyqFpoOSqdvbe5P5+bHPNj8zqRSOrM4KkdCKbLVMkflsQRj6nK4aIsPQU9cN89mcwhhGnxNrE1ndFjFzo+AcKTrsOKClRqoCKQxKAcrnnlgEYapc0UJgrc2qrsi1M/kiFqqywXuPVInSSMokCarAkclZIGEFjFoxJp/pR4xE5+gPI24IzMoSrTNpGYNnGAaKoshJtion2s5mM6LICxpaG9QUDlVV1Z0/vO96hMp9olVdT8mqCZ8E+0OfVaWks0XaRaLzhDBg6oLZrCHGyOHQoZVEyERVFIyj4+b1FVVZQ/SkFJjXJZ99/ITlYsHrV6/ouo5SG2RMmLqhqRbcXF3z1Vdf8vTZd7Tdgc8+/YRlMyM6S6F0rhtSJc1shjaChw8vefjoIX2fibdzntvbNfW8xKfAs1cvkcmjlUArOdW3JK42B17c7ii0Idox1zrVJaMbsk15v2W/3aIQjF1PcoEKgwoJISqGFGhDIGlDqxJrF7k9dJiyoUTiY+TRo88ojWLfthw2A9a1WBeIQtBai/Wew6G9C6caxpEYA1rpybKercXOOoSUhGnfC2PwMaJSJr2Qf0cSaK3uFL8YJmtqnOauQ0AQcqWUkDifECqnYgshQUaMVtRVgVZiCo3Ks7ZGaUICbQr01MWqpMKnlOd3p7A57zxG5aqqbugRStJbS1QlREFjSgLgpaSzFpCokDjsO5L3aC2ZzxqauubFi+cURcngPM18xvX1FcvlGUok2m6PUgvmyxlpH7i5vuXy4oL+cGBe18yqipvNAakShZKUZUHb9Qipaeo5PjjC2KOMYj5vuDg7IyYoVEFKUJYVwki0Ku6Oj1SaZAuC9yStcl+1n+q2JtXYO4cdRoLz+BAZncMHj5BMCxYRH/LssSlKhNEIk5XqQuupki0hVELqKSvB5X9Hgky46EmAD5G5njNah1Dgk6AscxWX9yMxJoqqoInzHAx4wgknnHDCCSecwO9BbFWyRBsIbkCR6110WeJCAB/xMVHVDaiUyRARKUAVirIwCBRM5DOSSDLPWsYY7shniAmFyCRwIpDxnUTho+35Pu5XSNzHXSDTMQzlTgHlvTCo6R7HO773+6OCcHy8+6T4KAKLydd8tEczfQ0fyDdJbym9+YYivaHF4rijxz+/2btMoKXIiwOTgjmOI0M/sNCS1lq8lFzMGxACpSRNXWG0pNAKLQUhpml2NwF5Q0VZQLQEFxDkxOQYAz7lGUZinkU8pqbmJNOQZxCnEClQKGVIySFloNAK5SPBOUjZ3hlD7on15HNAxQhJUpkccNP7QCoVdrTYmMOcnHM57CtGUJKyKBj6HqXy84tk0mSMyURwer1MaZCTKiqUwnlL37XTDHGeJ06TkiylpNRmSkXuuXr9io8/foLzlqSyNhisy72lDx+xXCxRGiDmOqCyxA8jIka6/Z6vf/0brq+vabsekiKmRFnl3mAfHT/5yd/y8PyChxfnFFpjR0uSJQiBdT3a5Av6alK0jCnwPtA0FTebNS+vXvHk4QVj10GKSCUoigpTlpiyplSaRhukkgQliQiUVFT1HKMLkvfcDLlWKPpE57L9OylJlyTXN7fc7juiKdHNjLbtObQdzlpu1mucc4xjXtwIIdwp94NzuGmW+s56PtlNj4sOx2TyYwhUSommrinrisFaYsqfMSFkVZWUA5Wcc3TW3s19xhhzbZTREPMMJupYK2OIyd+9b2KMCNJkNy4IziNiQhtFXZQ5WT0lvPB5jluqnOQdE6MfCS6wWMxzGvW0UecDldFYbxFaExG0/YCLee7dty129IgYOJ/XzGcN+8OB0TqUNlw+eMB6vT7uIaPt6fshE7kUmc0b2sOB3/z61/zZn/0ZwXtWyyXbQ8d8VjKMnqI0eOeR0hBCwrqEVAWz+ZyqLJBJU9clwcVMFoXMn6tKgwh5UQEQU6hYBNy9+doYQrb/StBGo5VCh4AudF5QE9mVkV/qhFaSiCImgUwgYoIYSTGRUiB4j7WBkAI6KawPdHFAGs1ynq3uPtisjCtJUzeUpsa5EWvzApcpDMoqwsmZecIJJ5xwwgknTPj+iq3dZ8JnBwJZ/XCDY3AeoQx2zIEfQkmCG7PtT+SLuxQdKXqk1JO9FLwALSXpfk0OaYp3maZNE5Nqw71bvD3nm3+Z8B9KVD6mLzFZoe9tQ4opIfkuZfkNqU3HYKTp610gVbqXwjxR9XRPHD7Old1XbYWY5n+/xyE+zhS/97vpOR/3M5Hu6o8mDy12HNhs1swulxTGYIeBcexZnp9TlZqmKSfFJKIkSJ3DXuzUYStEJiIiRVzwhDBSqwKfQg7Q0YroA4LcmYuSaJWrcawdc4+uzq9villFVVIjpQY84+iJEUpTIBJoITlrGuZliYxQKY2MOTwoicjgBkgeIQWlKShM7qW1KSKn4xy8m5JlPVIktIb5omEcD3kGdSJq0UWGvkeIQIqBEOykAuaqofk8K7OFMczqhpgSzikWswYjIcTIoTtwtlwwX8y5uLikLhvs6Bj7PDv75S9+xXa3Zb3ZMI5jXkwhUZYliaz0NvM5ZVVRNSWH7sBmHfmLv/gf8Rd//o85Wyxou47BJqq6RohISA5rexKR9tDRdT3Oerp+5Ge/+oqi0Li+pVCKrt1PCyvHyqBcV1NNM8xj9NlqKgSmMBRK8+D8HBETwgfcMX06CPbtgddXV1xtdhxGS2cjwhRonedRU4q0fZ9JT0r045D7glOaZlHFlJgt7xailFRvbOx5NQBJIqlphEGpqcM4W1RJuUImToRIKzUtHknOVos7S2telMiW9b5r2e12bwYMYpoSdkFJOFbRlGWZ58KVynZeJafwInVXlTTakaRzn3JdlmghoQBrHdZnldmniJkU6OAtMUS8zwtWZVFiTMEwjKQYKIzh7HxFVVW0bcvZ2RnOOQ6HAwBN02Tl0vs8Z972PH/+glkz4+NPPoEI5+fnCPIiQV1WILb0fcfnP/wR3z19gTYlfvSE6KlnJcvlglJrCAlvAzEkrHUMo0VpQ1nXmKJC6GmhDHDSMg4jwzjg3YgUAiUlIeT3tzYakcBgpoCqdOeOiCnivKUbRmLKue0pBAgx/0d+DVzw+BRQWiO8Q2qNl4boItrm5HYlNS4EfITkAymNpBDv+m53u91bn48n/P8JWufX7mT5PuGEE0444X8A+P49tsNtnql0FussXhus86AKTFXjrGXsD0iZUy3LqkZLnYN+kscFD0Fle2AClJhsg2pSQCUpiYkpiqmyIlte7yOlDxDbD4RP5VqYbFd821KccT/V95iQfJzbezu5M5NZMd3uvn84TmnP9xzRdwT6/l5/32svcZwpfOu+b6j0Xc/t9DUT5qy6aqVYLhY4O7LfbdFSkJKkMBKINE2BMRIhIvv9hm7IwU3JByIBKRK9HTAyIqRCISdfdCbbMeW5xeBzSI4x1aQUD3lWTql8YWsD2pBnWZHTPJ6mahqG9QFnHeMwsGoaZnUNKbK+veG67+n2O9rdhqop0SpCUthhAMKkyOfnrZREysR8PrtLTzVFntfVKrGY575W733ujLWWWEiMgeASVaFomgo7jhhtmDUVZVnh7IgdO2azOTJJbN/ybH/LarXgh59+jBKS3W7Hb774JZv1lqvX1/h+Cl/yPodOSQkxn8baGJrZnKIMmVjESN937Ns9u8MWZwf+9b/5S/7tv/nvuDg/g5hTiC8uL6mbEqXAhxy+FENgNl/wp3/yZ1gX+fmvvuJ//J//F3z8+BG/+NlPmTc/4PPPP6OqKsbR8erqGpFg2cyom5rNfsfVzQ3rzWYKGYoYU9O3HbfXa25urmn3e+z/j70/65FsTa80secb92RmPsR0ciKT1aRQGqC+EwQIFAT9FkHQT1P1lSAIDXVBfaErQdCFGlXVaqpIZpJ55ojwyYY9fKMu3m0WcZLJqlNZLBUHe4HIjOPhg5m5mft+v7XWs5YFrRU5C6gI43FNQ0hiya4lAStMToGzTpbYVfVu25aKIqV8UfwAms7LU6nUz9T9T66Fpm0wxq7QJM+8LGtmu1BzwluBGBlv5XueMkqfF2gDKF40HA7Hy2vnDKqrnx0C2c8Wa4FzyWvAWycVNqWQ1z9KmbWnWZwmde11dc6xxEAuBeckk25XcNh4mpHDI4NR4gjwzjL0PVpplmXhdDpdKOL39/dy/5uGDx8+0DQttzd3NK0s3zEE2qbjl7/8JbvdjvEkna7fffctRlm2uw3LNNM4B0byqZ1vaftWaoq0Zgkz+8ORJSbi+keZJL3MLZ++n/rcL16w1qG1wjmL1ZrxdJJs9PpjsdbKNE0cj0dZcBVySKnFLl61HFDVLPA4ZyzWWIGCGTncMt7jlF1/PiaKLri2o6KIBZ73J0zfYayT7P7q4jlDqPJVrv1PM86B94Co+LVkIeWXAvPyN9//uvRe5zrXuc51/p7Mj6cinz6wLAtt09IqiMuROCe2d69wrpJSoaQTSlsaY1BpEtXIecJSSCnjfYOxLRo5BFZYULLQFgxaOXJdIUFojP7cgPtpfntR/F2n9gLd+URjBi71FZ9bij+HV53BWHLh9JmOvNpWP+9iPC+w5qyynpVbdWYyf35jftcjWn/wf/J+5ZMEfLmf9Yd/v9QZfbZQ10qpokaO0wm72o2F1FrxTuOM4rtvv+L5OPH8/IhxnmHTY5Xio7XUHESx8o64pIs6bIzGGEuOBVM0MSdR4sjkFNaO1bw+ZlKd47TFNXbtta3MSyAsEWsdp8OBv/7Vr3k6nVjCsva6VpyzpHCi6yzWaVTNtI1nXyLeiSU0J2kWNRqs0Thn0arw+u1rnp6f6NtGFh09cDwe2fQ91t1QSuHl+VmswjGyhIWb7Q6lNG3T0LUtCtg/vxCM4vZmYLd5y2YYUBS+/Oqv+LP//v/D119/SQgRVdZMrza0znPTb1iiAKpCjoRcQCnmeeZ4OqGtw2E5HI702wH0mTJeubu75b/45R9y3L+wTAtLSLz/7muUKlhnCGFeF4gRax3/5r/714xz5O7dT/mX/82/pLGKMJ1Iy8zNzZbGOaxvGKd5rXXZ0DQN0zLTtJ0cLKXCr371a5b5v2eeZ6pSmNZLpU3bUUpmiTMxJVKOKOupiJVaa3kd+dZjjCwxSiu8E3uoVMAIICrnxLQqu9Z96kc9fxwVurYTorYG31jarkNbgzpwoTmroteMsxC+UYppmmi8wzonYKSYJGdcxeSvlaYoIXbXKi6FHAOlFNquo2k88zwzT5NkxbXBaE27bnq5FPISGQbPeBrpmha/1uHkUlhCou86cX9UeT52XUfOkYqm61oOhwMpSa9x46S+ylnpZD7TqQ+HA5vNhpeXl5Usb1mWyDwHNpue/f7A3e09jXMXEFPbtnjvKEUTU2Y8HdnttoxzkGqvmy0YUFpgV6lUCgbnDG03UKuS5VZpyPI4xxzF3msMqmqs1RjTUGomruAyUdIVqipUzVhraZoGQmBJiVw1xniq1WhT0KZitTg7jLJshi27u3v64QZlHcZ6XNWEuIDXJCLffPUldZ4JcWHY3WC6jiUXSlrk90b+RMX+gdPmOn9no4b+h/9tzPlXKTT+h++cC3Ul01+mFFir1a5znetc5zrX+f/n/PjFdnqghAVjN7Rdy8t8JM8TZdHYTtHZQphmmnZDjWJP65qGtJwI47zm5DzLorDOg7ZMS0QbR9ttMbZZbYuWlNN6Oq9RtfxQ/fxMgf009XfYk9f3PyuypWAUKG3On+izT7ran82nMOwFEvXZf5ecLtncz7tc+cGn+mwhVkrszOc47lnNXW3Q5//5dKEmBNZPi3j9QVXSebQRZTfVijbyOa2RLPM8ZrrGY42mbc1KIlVYJ/UZr16/4jQFWNW1FOL57svCWgtWC0zGOUeioK0WamxaBFZlhbZrjKKUSM4JUPR9j1GaxjQsJWFtQ1wVQKUVr17dk1Lgm69+zZIrfdfTOqGv3mwHdJno+pYYA23b453HqMo8HiFLlrfrh0u/Z9vKEuK9Ybfr5aK/sfSdh5Iu2dQKeHtHzpnnpwmjoGsdXdvhrChJRmte3f6CoR84nk781V/+im+++YZpOhLChFIC3RraFqMNMWYoYguNS7wAwkoRCNG0LMxhwTiLcZrGt1hnSSVhjePt29eEMPFf/pf/c/4P//v/HTksTKeR5+cjX/71X3M87fnJT9/JUjpOPD4+8d/9v/8Vzy8H/vrLr9FUfvLuDX/485/y/tsv+e7r3xCmIyUY7GKlLkkZyJGwNIQQ+Pj+PU/PB0LMWNdgrMO3PXOKnOJaV0PFKYUylpIrVa10auuBjCLK4YG1n6zxa8617WSJpFacldooZwyNcxcys9Yaay3zPJNipJRM03gKdSWvF+Y5oLVaQV9KlqeScdbSeLlvrXc0jf9Ez11jD9ZaUsqS0VUKal6z4AlrDCHIAc45nytEbS+v01JxjadpNcZZwgqRG4YBs6qtTdMwT9MKSpLDCY1k7o97WWSVgvam41iPeOdonKVrG9q2ZTweyTmvlGvLmzdv2Gw2WGt5//49KQl1+XQ6Mo4TXduSU+a0BKx1LIsowtvtltPHFxSVaTrx+s1boSsbjbOGkOUAp67P0aoUXdfRtT2lSE1WLYqwLJQkilyJhbhElFEo5aUKKoZ1ITc0VnLIIQaclVxz39+TcsF1A8p1JAyu7TE6czw+UlKkZHmcf/rTn7Pd3fPnv/oNxzHw7oufsRxP/NWvf4XuDH/0J3+EsQ1ZJ6yTn51Ka8iSn6+/pdCeDxyv859xjEZ17Q/fVisUeVstBeZ5taJfDyH+4+d3H/Zf5zrXuc51ZH70YlvTCzUG0hyYomZ8fpFM2VRJPjJPgXmJuO0roY8ohSuduFnnAwlFLBVtDJvNjphhmSJNN6C9QpEoKmBchzaOwprJKvUHP8Y/i83+1vwtft9LLchvqaiXSG399NHnxXPNm5XPoMlKK+pnHb2X23ReONWnt5dSxKa8/ptGNOj1i6z34ZPVWZZoUHZdLVZFtlZIab39Z5VYg6oCflK1oNbFIqd4AfDshl4yzSXK4lqh9Q33d3dU4/n4sBerJVqW7ipLgaHSWCc2wqwvBwFzGClJFtmu7ai1EkLGt16smXZDqWKH1iga46ihsCwjMUY2ruXm9oau6Rlub5hK5jjNvLq7xRjDPJ/YdA5yw/7wsqpxb7BWc39/y9xYUoyXztvzQrvdDJJvzJHdZsMyTfRty/39Pd5agd5YSy2F5BxLCOw2GxrvxYbsPN5axtPI+4cH5mlmv9/z8vKM0ZZlWdBaKLJai1IeloVlnkSBNh5vPEZbjLUUBbpkOSDRRpRQa1FV0badXITntTqLyps3r7m525HSglaVrpcsZ9/8Fyxhpm0c292WvhsYp5l/9ss/4quvvuP/9H/+v+A2A3/6p/8r/mf//H/Ectrzqz//M776za9RwLt3X1CoaG2JpdI1/dof+555SfzFX/4V337/gaotMWVwlqSl9qlSCClhELXTaEdFk7Jku50XuNbZrixKvfSilgsVu6VrO1FS1z5SpdbKIufYbbcYrTkcDnjvubm9ubyepmWWjtNaLrCpzjn4zFZstKFqOfjRq6tDXmrqswOp1eas1AqoE2vx69dvuL2749vvvmOeJqgVozXWCxG41Ir3YomuSxBLdq6EHIUyPi2gNF3Xg9HUWvBGwwpwA+mwncZZLkHX5Wu321wIzpLntdQqGeyz8vnw8MD9/f36sYb7+9d0bcPz0wuv7m95fn6SxT4W/tk/+2e8+SLw67/6DR8enjkdD1AL8zxiT5pUJGtbUIQc0dqQa2YJE3nNAWul8c4QFkWMBRBInMFIPj1LZZfWctCBEkhbUeC8l+yxtTRdTzPc8NX3Dzzs99y96akx8u3XH9AabrYbdruN/Fyvmpf9iY/PJ4abt5A0IYFJlZIhF3neKlUu/dKlirW7cS3zPF/6mFNKvxMaeJ3/zKMUmNUVZTS4DXWaYQlcl7L/iNEKZQw1p//ct+Q617nOdf7ezo9ebFPaM40HcrR473C2sMwn5v0Eec84B3LRnOKJrunQxnCczlUchXGaVkXFUOcNmJa4ZGzdURyYZos2HaVmlGkBgzaeqvUP7LnAp2Xys/mttfV35mY/5VU//1TrErl+jor0Q14ox+f3K1zUIfnvglbSu7jGUOVzGAWrbbOuN0SVcqGonm9tXTthP5+cMpXzBXz9wf9/ul8KC1RdyIgtsoSFEBZKTqhSOJ2OpBh4te2ggrOyfLW+w/VbuuY9y/nCtVRUKXitcaZh6BvCkphCBjJt36KVp9m0tNZw2O/RWrHdblZrqah156ofcsbozJs3NxQjHaKdsXz85j2v72+5e/OGj4cXfvLTL5hOMzlH7m43aF05Eukaw+32NfevXokdvGbG1f682Q5CwLWO0+nEw8cP6JWaentzw+7nP8caUQPvbm/JSRQ1Yyy+EVVuCYGnh0denp6ljmaaeH56JiwLfdfL0oaWLlRliUlAQjktQEUrhbMe3zip56mKrNWl41cZA1pov955rBeSr7Ve1LTW0XSOQuInP/mCtvV8883XOANOG8bDjFagNOz30nlKhePhxNAPvHvzhqHruH1zz//2f/OnfPHmDlMi/5M/+QXT6cD+5Vmov02D9Z4pSi9s320pRfEv/5v/lr/8i7/EKEXWcuEZcgY0Ril0lb5poxTeWWpVLEsQ26jzKFWoOZNSvby2/EqS9taitSyxyzLjnKPrWowWCu88iz1aOo2FtNt2LX3XkUq+qKm+bQgxCpQsJ6Yk9OJS6wXyJU+1Ih3MWlNyvfQaf/5aQSm0NljjKEk+P1rR9R1KK8hSH1RBHrP1cy9hYVmS5HCtsABaLwcqMSdSztjV2pumk+S55wlnPc769VDEUHPBWo13jsPTI2FeLgv7OSc6TRNff/011lpyrsSQaBoPVWIau5sdWmv6vsdZzWYz8PHhmQ/vv8d7hwY+vP/A3avXqJU6rrTY+zMKX8F5J13UMTGOJ2JIsiz6Fk29VKwZbSQLqxTaapRWKMN6qKQk92s0Beka9saglKYfBow9ksrCkhT3wx1dsyPECaMdWlu0cbi2pe0H6vNEqRqFoVYhKOdyPsxLqBQpWQ7ToOBcIz+TlbpkbD/lq6/z931U10LjqaeRK8r6Ote5znWu859qfrxiW2aszVirWMYjOUe8MeQQyDaiUmZoBlrTkOaZoj5TJnJGxVEu2KsiM6PdBlMUZankxUmOslZCnjE2UpVDN1Bx/E019t9tAYbPhNRPQdQf5Gs/fdznb68/eP/Pl+C/mesFrSr6/F7nfy8ClEKJ/VZrtSqjv72gfrogOyu2rCpuvViUP7MlV6HDKlaIB2svcC2UkokhUqkYo9AUuqZlM2yxrqHvNxjtsNbRtT3WOlKBkqOoiY2XxdZmdkPHyExjDGBRVmNMxdrK0HdsNwPTNDHPsyzTpdD3PdYK1Of+ZkujFY/HPX6zIefKth24GQaOLwe0qbx5c8txnElxpmk9fXcGW92uZGWpGjrsT/R9y9t3b3DO4azjcDigNJe3dV0nD2Kuok47iCFQUub56Wm9nYEQAofDgdPxxOl4wq6U3hTForrdbCUz27Qc9kc+Pj1TKuQccU7TeEPTuBXcZVFG433LuMxIw6/AiIZhAwqa3OHnGaUVzy8vGGPo+w5MxXcO62CzGailMC8TylmMA60rYZkpJaO1YppO7HY7jNakkNaqGktKMw9P7yGfKMvI/uE997c7fvbFG1G4jCGWDFZRqiLMJ8Kc+NVf/jkpBYyTJR/r0Aka63FaU2LGAE5Jt7A2RnpNnUVrULpSi1Cy/QqYyaXQeMmfGmOEnlwFiKS1QJ9UKVijyTly2E/rUiz1L0uYBcKmEattXHuWjUYrRQkZlSGmKHlQEy8EbqstWim0MquyrtG1Uqq6LLalFJYk6t+yLMQQ6QdR+zECiFqWBZS6VBRJDVGSmiVjKUrsuimlT8p102CtQVkDxdL4Bu8ki0utxATWgLOWw36/qqByUS+Lr7zej8cj1tqVeqwJc2C7vcE5Dyhe3b8mLBPeW2pJnE4nnp6feP/hAwrDZuiZl0RKUaj0OWO0PHZVKZrO472n5IJwgDKlRGpKqPXnilGavPpalFJoNMqIxbrWQqkFVQ0pJSgV23pIiZzTavN28iowjlINtVpq1tSoKAmxtef1uaMF9hVjwlYumexahJqd18dFU6lF7tdcpGfaWntRxs8Hatf5BzJao4b+utxe5zrXuc51/pPNj15sx2miloQ1lRBOUBJOCziIBDlEslbEojmdRgEYGQ1FADiUTIgR5yzbTYP3hlQU0zIyHh7RxpIJpOqxvRUYknVoY9f6HXWxG/4uN1P9XW+Ey8XjWV36m9rup/f5ndURKxjqDL45L5paa/Rnn+vS1KNE9z1bkWsul4ztDz5+vegWwXhVjNWqG6vVmqzOi7ZCY1Drd0vlTNWagqaqStXyNcM040xCOSGNnkE351xw27T0/YBzDSlDqAKJur+9oaYJxcxmkJxsihrnemLNpGIJy4laCqfTSAhB8rTDQK2VrusoOdMPPV3TUtPMvEzgDcfjyNA0eG8xRpFzIObMMi3c393Qtg1Pzx/JWVNzRBmD1RrvGmpXKDlitGbbbxj6nr7tAFH/xv2Rv/7LX/Gy37Pb7qAqxnHk6emJpmk5Hg9Mk8CXrDVopeiajpvdLc5aQOyxtRT2Ly9M4wRrdtL7BrT03jqv6Vp3qY6xroGqqNqgrZXMMytkxYq92xpDVfWioC3LzHY3gBEr8t39Tmp4QoCKUIRzxigh0S6LZDCXMPPtd98wT5FlTpSiCGGmLor9/gVHIo4Htn1H4x11tZ+POTLsdugK8/FICvD89MLL8wN6zQu3bccURZW0ClRM1BixjWPTdyijBApXDF3XQC3iXNCyVDhjRdFbAUExRur6fAshXlS1Wit9369KriiWMUZSlEV1nmfyeRmPUVwItTJsNmLlznLoZCryuNcKVVGqVEoJyKugtMVYgy5r7nXN1ivqCmsyPD8/028H6voazTGh1ufC+fBEa02IUdwlpRKrKMbUSohygNRYOZia52X9IXruzVWcxplSEmGZuL3fcnNzw2H/RN916L7nae0ATikRQuB4PF6Ux5wrb9684e7uls1GsuRd1xHDzHa7ZTwdeXh4xDnHu7fv+Iu/+BVgyCgGbTBnyBSFGgtFQzMMsD4PLwd8Wu7v+UDPKENOhVQyZcmgFMYZci1Cl1YV6xxaKVontUgxS+2R/LCRZbXtB9p+AG1QWIFJIYurNpq6kqfPrAHJOytiTsSU0KVilHSdlxRR2goILxfpHs5ZqNTrcvsp0nGdfxBzXm6XcLUmX+c617nOdf7O50cvthEBgkxhJuZKDgG9Eo3nKaNVR46WUAxzqDQUFIWSZ4yBqhaUWmi6DaUuTNNIxaLQOFvJ4USqkZwbllzI1WG1w3bNpQ5I4qYGta6UqlZ0hawLRZdPsup5gVRQzyqokizpb/8eVZdFWf2OX7GfB2c/kZDPbyuf/vqJjFw/faxeRV+9Lp7nNG+tAkap5bzwnu3PksM9ZwN/8OnOqi5VlBQligar3dppzZgzGAFwKQ1jmtjd3FF0QTmFMlLLY41BK4PRUr3knQJjqHhSrbiuYXPTopShYjgcDkxj4Xg84bzj9nZYa04qWokK1zUNYRp5yRHvLW/fvENZy5u71+yfXlCl0nSexll0rtihQ5vKfNoT54nb7WvGUmlsI3TbHHl9t2NZAg8Pj/wPv/kfGMeRw2HPsiwsQUBWzonF8uP7DxjniCFxPJyoRdM4D1XRmJa+77BWY7Wm82Jlfn5+5nQ8kVO6WD1v7u44jSPHKRBrkQWXjG8GQlioFJq+lxqVeaFxDm00xjlqLcSUhL6cM1nJ97M6w5RGljRglaFpB7YbyVze7G7RSgjLJQX8Ci/ybQNKbLK5FmKO+K4hhox2jpQURrUsc2Xb3xKXkS+//A6tCsYIEKkow3GZmaaZmitt67i93dIPLbEYDmPE4lBVQ0pio69FFL11KddWqnxqznRdw9mjoLUmhIBWFlULyxJwXmy8c1hwrqVWiEmsw/MiBO3NtmEcJ5q2w2hFKUkW2ZSJIUjlkbK4tqFxjdh5G+l3rapS1Wp714BShJwxvpEsXwHfdpymp4sN+JwFVgpUqeRcSbFgrKFrOqYykqvi9v5uzXvPhJBYQsZad8nC5pSgKkzjmKYJfwZnVViSIldLQlFTJaQFamIYevphy+F4gqq43e348z//txwOB25ubtntdjjnaJqWp6dnlhBoW8/r+xs2m4ZSAsYYUokoq8kVvv7+PUvMdMMGbUZ++vNf8OVvvuLVm7dsb26JJaG05rhWClnvWJb18G5VRtENxrdy0OgbjDOEJVB0IcYkFWyI0iqUeCFfL3HBaIXFkXMSErISMFo2GuUs8TiL1dwritYUo9fXgaZUViVciMmlBKoWGrf8kihopYgpU2PB2YZcxcVQQPK9NSM0AA3KkMt1MfoHN1p/sibPC6R0YWFc5zrXuc51rvMfMz/eilyNXFwtE6UorGuISaxtrlE0TUvFUdAoLYphypGaZ9rWS3emkkyZ1Abt1pxcIkexJs5RgerpWodTmhKO8stPefn6yoJa+0yrQiNKpPS5fsJD/SCS+zkc6m8ipP4d8zves/7w75/SuZ/edlZY1edvXG2XF6Kz0j8gI9dV0q2fw6p+6//P/1bX/6hkFGa1REOKUainbn1MaxFAV1xIOVGojPNEengQKmuMqCrVOUXLbYipUIG2bcg5UXIixoz3jru7ew6Hl0vHJxm52C8ZBcQY6LoO4yypKow2TMeJ/lXHdrNlmWf2Ly8si7xfrUjfa8m8uX+NrprWtnRtT4yRl+dn/u2f/X/567/6knFcOB4PWGtx3rLbbdn0w0rllSUllUiKgZIr1ji082ikdzeExDw/UWsiLgu7zVY6cIcNVHh8emQ3DLz74gs22w3zV1+jTUJlWRLrqqiWUun6jqZtKKUwbAZSCJfvdlot7W4FVQH4tsG3Dd3QY53Ykd998U4UvXmh5Loe1Gi88cQo1lyloGmcfF9CQBu9qruatu04zIFlSeiqMGQaraXOh4IxSgjXSjMMA1ppDi9HSslYJ7Rr58BZQMv9UzUJIMvL62sJC23byrKXA6DoOqmZuWSqFcQsHa7bYaDpWqZpIoaCMZYQgqizKa0K24m2bdflRizMZbUkeu+ZpgmtNcOwoe8HQk7s9y94a8XNoCu+8aIMV4TQGyLWrrVAK+HYOfcJIlUL1iick3ysNUbgUwVCiNSqVsu0oW071NpVnEqBVVE9g9vOtlfr3UXxXJaFkDI5F7H6lioHbmRev33DPB8xxjN0PYf1OWyMFau1lcdou90BilIrXet598Vb5mkUiFpj+f7776QSaP8i9vth4PvvP1Cy5vWrV3z//XtKzXR9i0mJcZKIgPeemIQGX5WilgpaC+08ZaoqpFwptZBrRRlNa7vL/TxzCc52cu8brFFyYHmG+mmNOjtDFGvdlkDTqpHDu1orMecLg0BphdHyec4VPkUVapVKr5wyNQnwK6tKdZaYROF2zlNKvdyHGK8gnX+wozWq7yBnakxrR+71oOI617nOda7z+8+PXmxbrzgcnjBkXNMQlxFdFSEllM2Yksml4q1nGFoUibQErFkhKMWgjCMsCu8VyUSgSP4xLVjb4puBqmbi/Cg5LTegW0PjdhTsavEtaGWpVctCeM7S8smSdllw628tnee//B5zoax+/ra/pUPxh45mubj+/G3nv3+CWf2Qtfw388Kfg6SEglyVoupPC3uKkbgstFoyzSEt3Aw3OOPWfkyhM3/3/beMxwPLvGCUhpJJOdG1DdYJCCbnzPF4ZLe7JWdZEEoR9aeWzP54oGk8Nzc3xGVhsxkYT0cqsiyU1Zp4GidqfWQYBpS2vH37BS8vLxgr/aOlQDgllhDJOdN1HX/xF3/Jb778ko8fPoBSWGVpm46SKzEGYsgsU2AaZ2oV4FCMEeulOzfGQgwFsOuhh1pptIWu9wxuQ0iJ4zjxk5/c8ObdW/5Y/wnH04mnpyf2xyNLjBhjsaoIgCeLorvZDBc1tNYiVF8loB1jDJtuK9+wdemptQpYyVha77HWEmKECtM0kcLCOI6kLBRiZ816n+V5IYuFJsYZMKKKWk+MgZTT2h+seXra0zcalaPkq/sW37YYK3Tx7W7HPC4c9qPkL43BaIE3pSqLhVVV6pFMA4htV6yqln5QWOPWZfkToXsYNkzLzDiOgNhHz33GsciyeYYjnb/ussjSxZpRV3xGBV9t2KUUURyrLMi5FLSW7uC1/pZcBIqF0uRa0KUwjuPFqnq+jUJwlsysUmvtldaEtUv23FudknTupiSLknMOqzXjOKIQMrZSCmvs5eeB5Fg1kFGqrPZ/0bS99Xz48D1NY/nZT9+iVeXD1x/ZH45SMeQkL/769WvatuF0OrLbbIHKdrtlnkZ2u50Q1lfi8u3tLaUUvvvuO9qmZZoTTdvw85//jPcfHzifrPnGMWzfyiFiiFSE0C0VP5W29zhXBbpVCtY6vHek1R792/ENpQQa5b3HqEKt8Qf/hkKcBr6h1gWl9KpEN1hTUbpeenCVUtze3qJcS9dtud/cC9CrhX5wPH7/zfr9VuiqiSVRcqZtu4u1PYSId+2qpv/OH8HX+Yc0xgjtVymYZq7L7XWuc53rXOf3nR+v2OaZxhmWaSKHLIRUFLoaijKi5NVKzAvOalIIpCj2yZwKCo/RnhTqpU/SGEvJCwpFVhmTC01TSHFGaYfTijC/4FsnECldKNWIerNa20S1kz+fbuw5s6o+q/NRXHDHv+f8jRyv+h0Yq98hCF/2VHVeUMuaDfu8J/fzhbb+1gXbJxvyDxXi1XJdpRP244dAUFkgM/mc5dWUJOqr0YoYZigJoyq1RIauIY8eRbkoXCmdLyBlgZQFQq2q2ohvGrQxHA5HainSz5pE5dltNjRtT98NNL5lmWb5fNrQdAPv+g0vLy989/0HvvzyK77//ntilFqVt28FCBVTwvqGGAIhZjTy8QlNWGZGJlKONI2nbURVPLO4FArvHMY21HpWnSrGGjabFoMWpdpYSoVxngEhsfZDL8tXDIQs8Kam8eRsMEZjncFayziOzPO0XrhbqU3xnt3NDbVWHp4eyWs9kTOGoe8Zp1HgUary9PTEaTxwf3u7doVGVCqQNaVmfOOAQkqy8FvrSLFIF651sjhY6XHtO09SGaulFkXyqZplSczxhSUv7LY3oDTOe7zzOGcxNuG8Ja1gIGuc5OKdptZ8AappDX3frbU/hVoTyxJXArRka89L4/lx1FqW+VLqZZE9L5gAMcrSW2qFmlf3QsV7j1JCFM8pkeqn52RjHVUp5jAT14MHtCzTMQml+DSOKKXY7XYXtdFaUajbtiFGAR3FGAWGtKqkp9OJeZ5xzjL0A945FJBjlBqfIF2sTdMQc1grphLzKM9D1GfLOQJsQinaruUP/+BnLGHm/Xff8ubuFR8/PmCsZdhsOZ0kW6u14u7uhmUJvH33msP+5VKPNAzDpfN2nmfmeeb29pZxXHh6PvDlv/mKX/7yl4SwcH9/z+E0sj8e8N6xLIXNZsM0B6rS0t2LujyHJTMuBz/er8CrGC+5aDk4yRfVdlnmNZ8tBz7nA51zHODu7o7N7RegPbfDgCFR8sxh/0iKCylnYoosMZBigk6cHs/7F8pYWKJnnCTnbrXUjZkC1hmhba+Hl3oFv4UgGe3r/OMY5R11WaRn7zrXuc51rnOd32N+9GKra0SVSC1ysSMEX03BCGlT5bWnc2GZA0aBMwalRGmapsjWbSi5ME8Z1yTaVqFUwWiN0Zk470nLkWVJtG0vQBI9sIwHUrX4dge6uUCkal1zqHWFxJyreNbuSIXYFQGp9uCT+nmuAzr//fcZ/buszZfA7Wfvt1ZWUNfbWssFFCX343yb9G9/Ii5LrTrf9iJgHASeQ10tkFnIyMWCsy2673HOk1OmrDUeqlbm05GaA2EaOR4O/OJnPyGGQDWVelbQw8KrV68wRgjFsshAUYVSpD+07Tx91zH0Hcu8yMFGTnTdwHZ3K3bPqvjpFz/j44ePfPjwnl/95V8xTzMfPn4gRaG7DsNAWCJUxTJHalEcD6MAhXKGDEZJ1nEYRPWptWKMW0FYjrZmNtueVBJPj3tSLHhjQetLTQkaQkykEAnTQtM0oohV6PueYbPjsN/z8vJCyisQqxbu1q7dp+dHQhDYiXMO77e0bYdThr7rmOeZ0+koiqExlNXq3TrH0LQ8TCfGceTmdserV6/44idvCfO0ApeqdBhXoeXOy7QqlJYYA9M0syyJxndYK0v+fDwwTzO9N2y2G1SJTKVgrOVwmgjxhX47gKo8P72QQqJtOrpe4Ftaa5zTFAUmGQyFEANdvyFndbF+e99QSiWliDGaUkWpa5oGVkXUrUTkp5dnlmVhM+w4nU5rz6yopefl9/PXKMjzVimNtpplWagrhKnWSsppXbTOy7YsNZvNBlDr47JclhtrDff3tzRNc+k5tVbyoCEsa+2SpVCx67KmtWZBDlW01qSU2O/36/fR0rbNesAQaZqNwMaqpl0t8xZNyMt6wIS8npXUXOWc+eabb6g1M2w2jNPMsLuhZMlJ3766J+TE8cN73rx9zdt3PyOnhLGfaL9nlXKz2WBWgnNKiaenF7TRNI3n6fmJP/iDX7DfP2O93Pd5nkTVL1VswuR1Wf50kNB2nsZ3LMsiBxJrDdHnkLtLf7ZSkjcvkRCkuk1rvUKpCjkXXvYvPO0T/eYGqxRfffUVIY4YleWwMwuU6ng88uXX3/Oznxua24b3H95TbaXp3kmsgLrGJ0BbTb/dsswRs1rYvYPT6YTWovBf5x/JKPWJmnzN3F7nOte5znV+j/nRVwWGgqoFrQ2laLTpiLnivXROOtvQdZ4UJ7KSrFTbtlLPERPb7Q3WCtWyaTtSTUxLBCqu0YRlotRC4xv6xjDPe9A9nXuDikHETpsxVq1WRNZ6ESt5UfXDxbWUclGIzm+vtcB6gfdDRfT322zFCv0J8fTpNsi/KvVpcS3lU25NK7PeFvXZH6j1UwXC55/rc0pyrazLhV6pyYqUIof9gZvtltbBPE40XUstcDyNvDy/8H/9r/9r/p//j/8Xv/nqG6Z5FjppTLx8/IZ3r2V5q8A854s6ZK0npyqwK2NJMXF7e0uYFzaDwJSmcebtm9e07c/QSpFTZjlNfP31N3z77TecjieO+wOHwwFq5WZ3w3a75ZgOeKsJ80iOgRgD3x0PeO+5vb1Ft54UE0O/hSxZ0VwT1kiuttRM33Xc3uwYNgNVFQ6HPXMb+Hh4pGl6qd7RCm0UxmmUrsynmb4f2Gw2bDYbxnEkpMjh4STPJ+/ojTxvvPc0jedwPKzfT1mC+76jrAc8S5pRS5V8o7YsK6xpux1QWrPMI8s8Yoy55EtTinR9w1Irznusk6qY6XQg50LbtrSdJ+eI1pp5Xri5uRXo0blOpxSmcaRuO+Y5UtIiPaUl0w4DnoGc5fEajyeMFtumtVaUUiWdvFCIYaFq6IdWFhsKKQdCnKm1MgxbrFkzsEYyqULWNZfnTc75cv9KqbRty7JIPrVpmsuidjl0UgqlIKeI0qwKXKBUcK6iV8iZcw5UZZxOGG3Q2opFWRvJ1LaNqPxrFlav9trznxCEnvu58mjWWh9VJXNbrOP58eliYS5ZYFbTHOTArFSss0wnsSXLcz/IwZbRDG1LWnO2WknPstQbWQ77A7vdhlLh4+Mj1hh++pOfMGw3PD080vctL/tntIGb3ZZpHNlttxcl9EySPhwONE3D8/Mz8zzz6v4V3377ZxdV1TpLpZJLYlkmYg6kVFA6UlE0bcuyREIMpJTwTUvbdZRcMFb6qKliwRZFOn+yb1t7+Z6Pp2l9LndUyqW/WRTdhXkOKCM56GmamJcjQ9+wGzZyAGIMTduC1rK8rgclKEVa+4ErYJ0Ta74xlCy/d5qmvdCQnZPXQNu2v9fP7uv8PR1jrsvtda5znetc5/eeH73Y5mWmpoLB4rqWfnvP0/5Ev71BzeO6bCi00aQUqCkSIpRYyEX6bKmi9Cwh4fqOlMKaV6w0Tc84HghzwDuPrlBjRMcZHRes1hAXrOulfmK1lNaUhX5qfljZ86mG54f51fqZQvrDf/80f3t29t+tzv5A5eCH6tQnYHOlkhCs6/mW/vDr/bZi8vntZwVmVapgmRXUXMgpsfENXaOoXi5OY4ikXPgX/8d/wcfHF7GM58p2u6HpW3SttI0sLClrtJbu0PPSVkpAIR9TY6LtWjb9QHQtxiiOL3uO4YVvfvOlLJXTTKmFeZrJKV96ZhtrUENHjAlvNTkuPH58f6lQaqxj23cCjaHireXNq1fM88TxMDJ0A0PfoHXH0DUs8yQ9qs6x3fS0bcNxPNJ6j18tryEEmpRwjQclCrfWim4zCPiqVKZlYQ4BaywxZTabTup7lJLe2Cxq4WYzAJV5nui6Viza00jTCM14CYvQd5MssAq4u73DWsv+5YUSk1CjQ8Au5uIwkC5WeQxeXl6I80RVlaZpaHzLNGeWZQT0CgfbkBOyfJYCVXpVlyT2cm8UsWQqUpOi1+XVWsfQDTgn1m1nLSmeKFUUSaM1JQepXYnhArkKIeCsY54nSplW9VTsp7IAJvJSLsvkPM8Cf+oHSpLnds55jR2YS6b1/Bw3hgsESGnYbDaEkES50VI1U3KiKoFwxZguoKKYMrFk6UTVmkzFVOnCDWFmXpbL1xTF2KwfF1bAlGWZZ8Jpoa5Kt/MWYzRd63l+Hskxrcu6Xq25Ea2U9O4WgXRVpaHmFaglnbDeNVgtdvBaDQ8Pz0AlpIizlpf9HuscTddinaXrO6zR7F9eeP3mFaxqbymS4zbG8PXXX/PHf/zHOOf47rvvuL19xT//H/9z/tW//tco4OX5GeMdm92O+/s7TtOEUol5DrimXR0QKx1aCQNeVHiz0qKF+nxWsc+vzbaVbPHhcJD7rKW2Rw4mhLJ8jnz0XcdpVpefd0WB0lqo4Ssw62xhV1qJNTlGiY1oBVrjm4YcF6k0u/zcZXUzxIvqrpReD/quy88/urkut9e5znWuc53fc370YqtyRmUoGTAOYwfpttSepnXrhdIJTSaEGV0rMUVKTKRUOI17tPZULKFompt7dttbwnJiCSNGV9pmxzJNxCVTi8KahC0n0lhZikU3E75tMLrFrCTfklcqcv1Ux/M7+2gB1l7YTxbk314a+Vv++2+bT/ZDkK5MpdSl2/G8oJaaUFqtNuR6UaskM3ZWbj+7mYrPFoBPt+ecp6VmqjKUVUUvpTB0HaYI9ddZ6QNdFkWhMo8zQ9cxhUzjLc5oSlwwVhNmWSS09tjW0fcbUooXe6JfabLLtBDnwMN3H3j//ntyiizTRClZ+ibXZb7tWjrnGEOgRphiYDyNOCuqpFOKwXtu+oG2bei6Duccxkqmd7/f0zeeL16/EvDQ7YyxjtNpJIYF5y12aJkmWfhqiRyPQtN01tE1LXe3t8TMer80hUqIAXKhcd2lwqWiMNahjaE1siB55/DO8fL8yPPzIylFbm5ucM6SkmFaabVd3zJsBlRVDP3ANJ7YDAPWWnLKWK0pObPre9qf/oTqLF998w2lZFKKjNNEyYnSNngn9Nr+5ga0ZB5P44lSkmQLlWJZAjmfaHwvqn3JxByY5gldC403oBVt05BzZQ6BkAK1WryxOO+pBZq2pW07jDmQs3weZaCxHu8tpRbGUfKm2+0GhVkXiiSHV2vtleRNV4VNqcvSKs+7BaP8Rfk7L5jn18d55mkWm/iqCiqlyGVBa4szZ3JxwjiDa7y4Q0KSJfPsyFCKeZkJMeKNJsawgo1kWRNlLzNFWa6995SUcG3DZhjIOTNOI9LRmxmXeX2tScaZKtbemCRnu9lsqCsJXCsB2JUVKmVtQ46FaVogF25ubpjGkdNxZLPtKQWWmBiXBX84kHPiFz99x3azQVEZNj2n44lX968AAYwNw0DXdYC4Bc6L3el0YJwjv/zlH/L4+ESqhV/84hfMIYj1eJTH2ljJLMv3Lgukh3L5Wfjy8kyMYlM/d+mev0fee+Z55uXlZXXHaLDyGsk5Y6xeM8LyOBgjfcBStfaJIr0i79a/f/rZWoCYpO5JI4u0dZaihdEQY6Zqha4ebzpSSmv+X36uppV4fp1/hHNebpcAQZxd17nOda5znev8++ZHL7bWWJQ21GTRrqdtd2QSBYX3QjgN+1FO/lelqKx/zzkyjgeUcqAsvr9D2xbb9JymCet7jKqoUmhbxzJOpJDwtuD0zBIXxlOiuy3kuAHbUUtLxVKqwpieWs3ltv5NtVMmZ+lBNEavNuXf/cvyd6kAv3NZrgWqQql6uXCXagz5ey0rilmJynG++Heu4UxL/tyKLOrHp693rrP5/D7JBaRBWmw1VHmsQ4yE0wFTZrqmQRvJxO0PB0IMouAB8zyiSqLvPDfbnuPxSNttcM7ivV3zinJ/Yowsc+T5ec+H7z9SQpIKmlLZbgaaYcuyzMw5ExZZHI4vL3Rtw27oOVOBX9/eotf7U3LGG81P3r6i1IzWBu+tWI1zYmg9m83A8fkBULz76U8lMxo01nq6rqXUhG+klqZp3WrVPKGVqHBd1zM/y+JQq1h9RRZaYURwUf6WGDDZSD1JSqSSWWIgV6mm2u/3WGtIKV2yjre3N1RkyemaVnKiVJZ5ZllmVIX9NHE8HIRC27XM43oxnjPff/89Xd9yu9teMtpN29AYw7QIVVZhKCWJfdg4qlVM44Q1DSkmwhIYx4mhbWi90JTjSnuOKVOU1KmEZaaxhmVeCEtcwVcz1jmUNYxLopRKyIlhtSIvYcLaT6rcttlK9vl4ZJ5HDoeDHHq07aUKxjnHTSNRg5zqBWx2XmZ/YAU2hsqn10QpiZjyWoUjr+N5nilKlis0a9WLu3we7x1KGUBov8459PqaEuhXc3m9nW/DWYUsOUOp+NZRjGaeVgo1itZ7jscTKUS8ddI3DUIQV4W0vj6sddQiThHfNEzLArVirKeWzDLPjONMjBXvW3IRdVcbhTZGDgXCgrGW/WHP29evKTkzzxMPD1ys8sfjkRgjd3d3n5bIWjFGE8Oyfi8N+2fJcG9vduwPR9q2YZpm2sZjXCtVXynTtS1VKU6nEdRy/kF2OYRbluVCiQ5rZdV5sbbWYI0CMjknqXUzcnv0SlNPq0vCWos2Bq2sKMBGr0qtHEYoJV3efrUn5zVPnZeArkXqgJSWxVZrpmkmx4LSkJJZs9uOGK+K3j/aMQbVd1SjYfoHUAWkpA3gx02FnP/973ad61znOtf5D5ofb0UulVKrwINiIi5SW+KsxRiYw8RpmugdOOvQKErM1LIqY8YyThPb3Q3aVsZ5AWNxvieGkZAWdC28e/WK0TQs04x1mjAfyBhimOnKQDg9gB2ouiFjUcphBitqcEXUCcRqp5RCVakUgUqKs1gRmwZn3aosCJBG5rwQ14vF7gclQavaytlaXCuqFumTXYO/WomVN4VFsmFGkUqkVrFkUxXdUPC+EVhUvZQTkaJcSBpj5BekOi+wq1CrRCEWGAzSPVkzOSWWeULHSNtIhtJqS8qZaZppmpYQM9YKvVdR5QK9CgArhGVdoixPTw/0fXdRa1KqdH3P23fveP/1t6SY8dawTDPPL8/UnFBUvHO8e/dWMpNVlsB+vSB+fnpmmWdub27E+moNu9295KXXXN80zYQl0HjP/uVlzZIa9vtn0E4gTlZJ/UrVzHMk5URfO5rGo9SO8SSE7a7veHh6JuVILEns1OtSaRSgVsqqgoIsQSEs3N/drR2pBYpb+1ble973HeM48vHjB7bbLd57liUKOCtG9i8vsoDmwv7lhaHr6bqOcy1OmU4oDd47+kFyujGmVaU+0DlHqFLB0rYeaw3TlIhJ8utmVQQV4LxFrRf8TdPinaKUJI9hjFjf0LUd1LJWAMnCMk8zSmkOhwO1GvR6wOO9o0Spgjk7CgQSlmlaR9O20mHqDI8PiXlZUFoLDTvny9/nVeVPsTKNR7pW1PhxHC9UZAFvSfxgSokQ5flZ1+XXGFlojDFw6blVKKNY5oXGeyoCLEp5AbUqiEoRwyI04xzX3lX5mZBzWg+JBOpUaqbWzDSN1FrpOqFNS67cXjKjXdcJJIu6KrsnZC/TaC3U4qoMcRaomlICqxOrtvQOt21HDAtd16LixDD0hCBVaLc3W46HAykmuhVAVkvlq6++pOt6fv7zn3M6nS5gpy/evqNvO37yxRd8//49McpienN7z9PzC/uXF8nALwthkZ8lVYE2QsQ2WuzA53omY5QQ65VAmGIQ2/jnNUjnQwFrJdttTSWnTMoFpQvWSPWStfKcVEpsxRVAy2MuDgOhbyul8c5jrBNugFnp8OvzrpYq3bS14rTBeIdpGlTJFPNJeT67FlK6UpH/sY9qVmDk39ueWyVEM+9Q9kdeUtVKDetzN4ib6O/nfbvOda5znX9Y86MX2wnHfn9kM9xgVSKcPsri5T1zSTw8P5LLwlIiMSha39N0HR/ef6RkqErT9B3dxtEOPdE4tLE0XYf3jm+/+RKj4fFwQGvQgwVlOQaD0Zqu6WCZUG6PKQXbaMYlgVZkvWD6hqqkD6/USi5SE6NqQOWFmiMpzqA1NUes35AzaGWhyoXZfr9nux2oKD4+PXF7d0dVoowui1xUa2CZJ7qmQSGLRy0abRy1CnW0lECJE2E+0vceGye+//47Nts7llhwvKJVN2gjSuIyCUBpPD3Qdy3Fdli/xTVbMpqqDKkWrLekvKwLmVxIS5dmFRtp1FLfkjMmCDVZW0+uYJ0lpkTbduQUmU4L+71kmGocaTYDqiQ2rafmRA6Kxnmct2jbcDzNuFaWFL32HHUbWZ7atmHoeobNBmvAkDmejswrfKgY2L15TQZOKaG6lto4nvbPDMOOEAqPLyMpF1KcuLu7QRtY0kKYZxpfMRpSlkOIcVqwvqUxmtO0SO3HktDKUoBxGYl1wWhLIAKOUMD5jdhytca3LU3Xs1MC9Co5ksJEpaJUpfGO3c0NfS8VQE9Pj8SYZOlv5G3zHOkbh3UNm2HHy/Oeod/SD4rvvv+OrvP4xvN0eME0CqUCTduvmV1NTpHGdXjfS9Y2RbyX+hfJhbpLtYnYOgspR1KeqQqcl/xwKdJtXOpqK24smYyzAhTSStEah/c9NzdHvPPkaigYrKqoXAnjQt+0aDR9tyHlzBxmTtNEyGKJzqlwmifarqMbejlwUWInPbycZMlVCoOja/tLxY4xdrUys1KWhaKL0jTNcAEWWS01RmeL8WG/xzcNVEXJlbREis6XLlNZxhYMcv8BlDYc9wdCCLx69YoYE+M40zQN2kDKGadhnk846yXKoA3edqhimE8JVTyNbbjd3eIby7yMKF1pO8M4T3JfSmWcZ/rNlnkMaKNXV4vY3qvOoA1LWqRAGsUXb77g5fkJpeDV/SuGzvObv/6St6/uoFRiiJfFf7MZeHj4SFgWdpstbduupHlNYwyqZMgLISZ03bFtPYRAnGZUVWhlSRS6fiBlqVtSjdj9xYFQqKXQNhI1KDmjNQxDtwL/It6Lnfxc1yS28TUCoR2pVJy2aGOJJYt6SyWVvGa9NXk92LTOY7XDaDnM87bBO6kNe/X6FUolbtqeKSWiEpp+zInOtsJ1GITevCwL1jhyCjTOrW3V1/nHPqptpEYrRMh/z+zn3qG67j+MQakUqvGXj68xyYKb/p7dt+tc5zrX+Qc2P3qx9f2O4/dPNJ1YhqfxhHWOUiJZFayulFzkQnJaMKqj5kzJilIUOYttVGtN4x39MPDw8ITeDHhnuNlt2T8/8rJ/Yrfd4Kym1ETOEe8aIIo6mA3TdMC2C23/ilwnjB6ATCqFWvMKLKlQMs4qTuPEdHhGGShKQRPJ1uBcizViZSwxs3/6SE0zxnvmeWSZO5p+YFlmDvs97evXTOPIeHihvb/jeHghxYj1Lc511CrwpRQXTscnlmmPKh5LQueRcR/ohhvC/ERuFa0bOOz3nI4HVC3UeCDUE769oQDVGGI2+HaDt3rtCJVcbi0FZawoSEAIC15L1jHXyhISYS6r0qspVbHZ7qSepW3Z9p3UzaRINwiMKKfKzfaGGANoS1WR47SwxIlcCs5bbv0Oby2+cUzjSGOtVJFogU/lnAjLhNGG7WbHvCz4tkcbw7wEai28fvOW/csz25tbliXy8PDM6TgDYjGdY8SumWlrRRmdZulOzVXsn8Yanp4PLCFIDUkVpa/teoqp3NzdMOx2NJstTb8lF7kodyh0KVIlYix1rayZxog2FqPBUNeuW3NR8cqqxE3TzPffv8d7T9s0nPaBmuVxLhnGaWa/3zMvC6fpxN3dDms1uoh10hjDy8sL93ev0V7JgmYtmkLTdxinPoN3iR36rCCeK5Ca1q8HQqJ+ayVLorEGqyxd3xNzIUVR89u+Z9MPnI5Htpst3jecxoAyFuekv9R6h7FWAEFV6nl01FRdaRtRjPcv+0vf6bwsWOdIUfLjZw99CBFVMo3tGMdJFhFrxXKqxTGQUmKe5xVUVjidTqtKXC6gqfP7a6WExK4hG3ksahE7cblUegk8TStZoOV7ZdHa4Jyi6/qVxKyxVmNIYvfWWvpyU6GeRkJMqNXiX0vlZX+gknBO4xtD03imZVpV6QWlLPM4UZWWqi1T1g5YURVLkQq0zWZDrZXHjw/EGHjz+hV3t7d8+81XgGKz2Vys7gC73Y5pmnh8fOSLd19gjeF4OHDcbskxcX97hzGa42lPCHtOhz1xWTBWiOi1SLevcZ6Uyydo0xqXkKiEZNLtRWFSK3ldXazj0zRdyPIpCUhLDu5EtY4pSOd0o9eIhefN2zeELICzL774AkokBaFyG2PIKdO1HT//2c8wrmO32zIdd0CicZq5gqpK8v8xMh5PYjlGnCp6taFnhRzAXe2c/2RGNR6co46T/LCVvrvffi+Bbvxt8zs/5ve+RetS2/6+xQrrp1Eo78BZuW8x/R3exutc5zrX+ac1Px4e5QdMs0H7TvopgXE8YYzh7U/eMI5HDJCrUHpPxyNhfiGnlWxaDM5W5lFh7JGWZ8L4THKZOGVKmKlpgmrIy8R8Cgj2J7PMZ2VSU8sR43rCHJjnF4btK5wZCKXDaIHfqHrOp2ZUrYR55uVlT997jNUoa0jziFOG56cXYgy0bYvThZoXji8n+lZIpapmSgqUHNg/f2SZT6R5oexaxuMjYQn0w46SE1pbSlY4U9FEptMzujh2ncHpwMvhibbV7J8eCPMz9fVrXp4fGY8HnNEs456+71nmkeP4FXevf8bN/RfYaqhFrNMxZaoqKG2BQoqL0IyVIscERJSxhDCDlovXfrOhIpbTaZpICrabnqUk5nnEekPXbZnHE4uV3lfpvtX0fc9pEsXbamicRykkx5szjfcYBct8glrQQJxnyRG6hNEWbx3fff8925sbbna3PD8+Y6xif3jhdJqZ5pl+06+2SECJ6nU87vGmxbsO5zzOO0oITPNCShPH01HqhXxmGWf6rqfb9EzjuFJYFcZaUspY34kdW2usb4hJMoLee7bbDTHOlJBJMRNSYGhbxnHkeDyKYrUuZ7VWARBVuY26ZjSQUiYskZwncs7c3d0xjkc+fvzIu3dvOI0LN3e3KGUx2jMMG/bPT4S48LJ/ovOWbAx2zQ+eq17OF+7nzKMs1HLbxmmkayxOV1RNlxzq8XBgyQVnnIDCSibGhe12w3IvtOYQDqArSdC1KGcIOZFUYY6BsCxsNgN3dzecTicMCu8c8xxYloUQI7vdThZXZ2l9w4IsUE43NFb6UM9QKOCSDz0v6yEEFJLh1FozjuMlQ3te5lPO5BQxXpTMc72NUIjz2rscyDmjtZOuVLg8bufc7jlrG0JEq0zXerE/r28rXlGqlud+zuRS6Izks7vOcxoPKA2Nb7DGSaZbW3IqGOPQK7AtxyTxDKUvtt6SM+PpRI4BpeD9h/dYq3h8fOAnX7xjHCe6uxvG8XSxULdty93dHV+8e8f+5eVyX7/56mtev3pFzJHbmxs2mw277R2/+c1XfP/hgaIMpu0uQC+rtEQW1oyxtQ5rEzmHy8GJ937Nq6bLgcqyLJRSeP369YXafTweOVdGaW2pNUiHbfl04KBWkNYZGJZiJMdICAshBLq+8vj0yF/99Tfcv/4Co+DXv/41tQTeffHqkjs8H+KJxVlTglQVaaVoG0/TNuSoV1DYdf7JjFaoTQ8gYKnfbjDQWpbEv2XqEoS0vEgn+d8+/55NVWtZatvmx93uHzNKSaZ4f7jutde5znWu83vOj15sX06JdnuPcp40T6iSAAEMvf/uW5w17J+PPD19pG16mr5nLnJB49ZlqZZKmBfghVosm0bTu8o8LVQiN9uWHBPzeMBojXWKmE8sy0LXNihjmI4nrO9Rpuc4FqwJtNsdSjU408liXSsaQ0qB0zwyj0dyCozHmRwXDtrhfcfPf/YH/PVf/FtijLx5+4bD4Zlf/tEv2d3fYpqeEDMlBzpv8XdbILPrtozHTJr3GAJ9p/A2E+ORosRG2m86WgdGBXIMBKUoYUSXheX0LBfXNTAfIS8vhOlZFKkY0EVJ9Uop2LxDp55UIyFrus2OVKJknVVE4ylhoaSI0YolBRovNs6+7SBO6LUeyDvHNI9oraglU3Ki9Q56UVNTFJuytY5lkdyjVhVvLGOdyCmybRucsQLoqQVnNWEZadzAbrPaaXOhdgNpPRmf1u/tpt+wzJHGZ54en+iHhnE5oJWmH6TvOJWMUnA8BZzTWOfQ2qGMo6CZl8S8JHKpLCETYkUrg9YOdKAqsREXYNhsUNZxs73lw/Oe7c2A0pEwSg9nSAWjksBpjMZoQ8gZrRUFSDExTxO3Nzc0jafWluPxBFRSUtJZqjUxyMWVMW5dLFvmeSLGyv39PdYZjqeRkAK2aXm3veWLL35KTJnbuzt2m45SolTeVEOIXNRK6SiWhfZztfP9+/eiWOYi6mEJkCObrSiTL/sDsVTc9kYIxVoxjlmU1nmmbRt840E7bJU893E+EXLGG4G+ycJoGU8a8mpzLhWj1pz2WomkQNRSrdcaI4kBJESBPPefSl5bPm9a7XbW2AssbVmWT8tsSpeFVHLyktkUKq7827B2yV4+l7UMmy0pZeZ55uHhgePxSNd1l8VWvs58oZQrncFq+mYjHLhUUEbjjMejiCVRoyLEhYoo5bWI4hhDYp4XlFJ0fctm2PDysud0OgEClqq1YJQiLAtGazKSJ29X4Nhms1ndABKFaNuWr776ir7vL4vo2X5ba+Xh4YHHx0f6rqPqyuvXb9DG8PJyYLMZ6Dc7vvvwgFm/TubTgcLnAC3nJN+aYl6/LwVr06Uj9vx96Pse5yR7LPVG5pIflu+//D0n6ZldlsD3H17QTh6Ph4dHUhjZDu6SsT6r8c5ZOcRAern1SlVPOV/6sM365EgxChDMe7RirUHay2J+zdj+k52Llff3+ZjGU6cZ4m89f4yF5sdkZf89yvDvO0pB08A8/91/7utc5zrX+ScwP3qxfT5O9I0npEwMgfnwQucNkHGmwzm9dKxpAAEAAElEQVSDk+gl0zxhjUepQk6Bru1pnEWpSs6FMI9QBJRjq/RNkoPYPynkmmh9R84zRmV8a/FWQykCpVomjFcMTcNy+sjpeYfdenI8CrBJW2zTUpeZw+MjcV4wNZPmmZwCVSfCNPHgHPPphbZt8aZgVSYvJ2g66VKsCm+dWIUVbPqG4/6Fw9N7StuQw0jTtVAXaspoY7HakkMmxSPeFCiRvFRUyuy6Aa0N7aYl18x0fCGHiRJmsBqnMqfDRxSWtt1yePqaadzjulvGoHn97uco59FKcTpNdMMGVTNhGXFGY7uGzhn2xxPWN9jGk88wo+2OEKQqxFkj9s8SRRGbZpxvaL1HG81ms11Vtcg8nQjLLKTjvsV7B1UuNjtvKVkuWK3WWGsoyrCkyDTJAqm04bA/oLRGacOXv/mS/f7I7nZDyhNaK169eoNzhq5rOBwO5FwwxqO0JmVR/JcwiorWdVjXMoWEa0Tpq1rRtB1QGVf7ZNf3hFLZ7G749uMzvumoyjFPC9a15Gqwqwponcc5z6zWXLFRxHlGOoPFgtx4vy4tihQj87LQtg3WGKZpWutS7MW2PE0nUBVrNcfjgX674/Wrt7z94idMIRDCxK++/YY/+oOf88d/9AvSMqJLpRbFPM8XFfJ4PF5Uz3PFSallpQobqbNJQhae51nstTnjW4FqnZaRaRxRVbpOp2mm1gwrQCzmRLWSv8ZBLrL49BtRV5dppsSz5VMRVtBR1UrU/9VCG2OkcQ5KISyZoqWjdJ7ntXLnU9XP2e4qhyzlAis6L5+fVwMpJe4Bv3Yip5Qu75tzpm0lIypWWOnEPSuewEXhBTkwMMZitKEqIzZ559nueuY5kJP8fBDLsiXXTE2VUhJt13A8TPRdi9aGYegoJVFyJSwzqW2wTuO8AQohLrJEekcIgd12h9ltORz23NzeYLRiu93Rti1hEvLx4+MjXdex2+0uS2XTNLx+/ZrnpyeUUvzJn/wxbdPycnxZ1XK31iZZ2qZD8SiKdql0Q88cxWKfUiZnqWMKS6SUeqkIPau0Z5X0nKl1zl1cAjc3NytYTSzLKX2qKZN+XHM5iNBa1NqzkiufO18OaOxqeT9/36yxsFZF6fU5YlYbekpiG9d81u9dy0qIVpL7vc51/kNHa1FHo5Pl1onKq5y9xCr+c43yTsBS5bds9ue8y3Wuc53rXOdvnR9PRU4F1SpiCNQSiXGEVPDOcjoEDJW+bdhsBpY5ULKoFNtdi1GFmGZqVQxDJ9Uoxz1KK/Z5oe/EWiQ2NoNyivm0x3qxYlpnWcaFFAJKGZpmQNtCZiHNmacPv+FGOULMdG0vwKXSk08LLEfSvFBzZdt1PDwcWOLI7e09YT6xjCe6xvKrP/8z3rx9JYtonPGuIcaFWiIPH77l9as7akwcnr7j9Pwet+sJYcEwoHyCDKUYlGmgaOJ8wBBRKtKYBud7xnlh2AxUpQgpctrvcVbhtSNME9YUrFG8frVjHGf2Tx952v+a11/8Erd5xfff/jWv3/6MfieQpvl0YB6PnF6eCctMqxTLNNI1LVWBUY5SE62zF+poCAFne3IpvLq546uvv8Z0LTkXYspQCsd5YrPZMAwDMe0pOdJ4R0yJGMN60W3FYl7PF8tCrFTK4P3Aq9dvJWd6PNEOG+7u7nn/4QOu6bh71dF0lra9pSK5SiURWDa7AaNFJXp+eWEeM8NwK4tGKdIzqhS5VvrNIE40DY6G8bjHOgfGXHpbnW9ouwGlLdYaqVrSFuPFpiw5XlkgYtMwHp6oOVJTpGscJUecURwPL1gtNTSyyAuv+ryEzWuW9NyhCjBPE23XyEW40YzzxMt+T9N2OKd59+4drvHMYSEtC6ZrscZeMqhKKXa73SVz2bYtIQT+8A//kD//668lC42Af7quY9h0YhvebilKUymSYTwdccay3Qzc3xuck8eiVHDGMK10zq7r2W0HYgg8Pz2x6XuMBm8djXM8Pr9cqMHeOCJJVPp1SZnjxBICVFnuc840TYO1dl1Q1AohMms1liKtH3uu8qm10rZSO3S2yepSpJ5IKfq+JyWphvmcspxzZp5EFR7HkWVZLgrh5x271loq52ouQ0qZ5+c9y1oZ5JwGpJaHaphOJ7mdpwmrFYte1nxtZTt0HI8ncskcVrvweRmrOdO0rajazrF/eV4zrFLr9f7hA11j6btGVNy25f7+HuccwzAIrK5p+O7778gh8urVK56envjpuy/ktp9EOUcpXr265+HhiVqkBzYjhwPjOJJKJeb54jCoBXKu1Mq6ZPp1+cyXA5Rz1rfWyjRN6+tTvncKe6nuklyuou+69fG06+dTWCegKOP92sesLsq5UgpnHXHtFlZKkXJZDzgl/+udIwUhdacU1giAdE6LM0IAU8sy/Uf/ErzOP9G5ZFvdf1xG9u96tAZnYfntxfZT7d91rnOd61znd8+PXmx77yhxIYcRR2Lbe/IyQY4Y7YjLRNN2aAWboaVpPDFElnm+HIBaKypuCoGS5Id223i81YQUWIJkqKqqFJWISZFTJMwBoxRmBZzggZIFLNUojE/E8RvmcaZODUY78qklhkI4BuKc0MaTLdzd3pJSpu/6VVlI1JqlhqVrqTVSa2Q8icp4Or3w/tsvMXXmYzhxenmghImn+YHd7harOowSdWKeTqTF4gwspz3z6ZnT8Zm3t29xtqFpPLvtwDgva9+pwmrHx5cjfedZ5kCz7ckpU1KkcYpN72g9PD9/ZAyaV6/fYlSl85b9UWzWaZnpW09LJZFRxpCqNAY1zjOHRAiZpmspc2CJCSp8eHjEdx3KeYyTi+RzLrLUhM7QeMd2syEuy6p4J7QJWCMduinXSzfomcy7ZA3jxBIixlhu718xh0hB0W9vmOZJyLE1o43i48cH2rbh1at7YswUo4gpk5NUGi0xULXCd+1KAZYDFb0uWUornFH0dWB/OrC9uSEXWbKt87RdD2jQUNAUpcVGpi0xR5YQGNcLeJB/yrVcLvSnaeJ0OknH67rAbrdblFKMYaUyh4RSlpubO7quY1lm6rrg3t3dE2pmWkaenh9xruHmZoemXEjC1vpL5ydwWS5yzhcF97wgxiBVTSEEYowruEsWHbkvM1Ubjscjd7sNTdvitGa32xLDWoODWIarkropqw192wkxOUZUhWma2O4GQJGoDJsNp3G6QJ7OFlJW23SMEWsszrYY7S4dtznnC2X3fJ/yms/WWl/u8zmDuywL3ntCkIVGW3NRsM/q4qfKGlGLxaLsqHCxP5+ty593UMtS1az2aYNWihgTuggdupLlT4pU5AClFsmwl1qZxpntpmMzdJIrLxGzVmuN43ihaDdNw2YYLt+/s+JeVtBV17aY9aDkdivq7JdffuTt27dM08Tt7S3Pz888Pz/jrdjcX79+zWk8kWJimieWMPP23Rc8PjwRQmS728gBQSqk9dCpoNHaYI0nhCg0atS6YOpLzlYWWn05qDlnoM82aGsFzOWslixzWuFYxayVZXrtppXX19lKTz3XI8l/l1wouYBCcr1nBf4zhV5Z6agWWrkcYtT1wMgY6cR1rpOsf9//h/7Ou851fjh/n5badVTbym+Pf28W+DrXuc51rvP5/OjF9unDd9xsWpzJ1DDhVKYSsdqQ44L2DSUn7m42TPNEShNKVbreMI0jS4g4N6C1w2jFPAeaVjK1KUVKSSgKsSS0gWqE6no6nqi5crsTK9zQbyglEmNFG03OE/EUqOMTCsU8FZzxJN1Qi4UAZc6EIlbm4ebN2nGrASXWVmNotgNKVQ6HF1K1VCMU3tPpCCXy/ruvOO0/YolsGkuIk4CWtKXmyrxEjseRWgtdY3n48C1WJVKYeXz6nq4daLqB06kj5kIlYa0GVYkxMNWMsw7vNjS+o7WO98sHusZRS2ToBzZ3N1I/Mh1JGWKYcVbT3+74dVjYtJpQCjFMGN9SjWWcZmKpxAz78RnvPFDovOPm9k56L0vheHghZ41zhhIDyzRL3+uq9J0uuTdDqYrjtAhsapp5++YNTdeiFYzTAsYwDBsGNG3fs9/vOUwz3z8+Yl3Dq1evyNFScmSeZm7vXtO2XiBGWjPNkXEMxCRVIalEvPL0mw5tDEs8g29kKS2lEIxi13eE57CCdiLN0FKrwmip5ElLxLoG61rJDaJgvfA3xog6FCPOyJLVWMewGaT2JCyMpyNtI7ZlraT/lpJRKMISmedzf6qocNM8Mgz3NK2jekW/2TDNC8475kUqo5xraNuBYgK1ZCpClD3bd6dp4vn5+aJ2hRCIKQqQ0zd0XUdJC9M8UZ4SKWf6vidX0Erx8vyMNZq5lBUetgCykLZtK7ChVFhCZDwcmE4HtJLXRQiLZB615nQcsdqtSlu8WIWdtUyLAMCUltdUDCNd+ykTfF4uz0tejBGl1No//CkHaq1lWZZLHvOsDocQsG1DCIGXlxdAltdzT/A4jvI1tFT3WGt/oAADF6VQKUXNlRwS2kjtk1WaXCzWGKwzgCyxp3nBOIczFqcNJQVqkYz3dDoRwonbuxv2h0hjLPMEMSw0bUvXdizzJL3CxghBexwvS/x+v2e7kdu/2WyZpommaUgpsd/vub295Xg84r2nb6XqRlRseU7EGNHG8Pj4iNaGw+FA0w10bcf+8QnlG5y3pAL5UkNWLvVR54vlnNbHSFdC+ETglo7k5lMV0/qYliLdt7XI9zolObSQx1qgs6VK123OGaNlYT7biMVaXogh0g0Gs772UpTnQE4Vaww1x0smuGnkd4sxGqUl222NZgkLy9rle53r/KMahdTiaS1WaWsFrLZcn+/Xuc51rvPvmh+v2FogzehaKHmm6xxeNYR54XSa8LZhmieyrVRVpSLDGYzRGJ3RqmXoe6iVTME5UXXGaUZbA7pQVKLURM0FpWEJC7YxGAT0cne/IywLpVaoCWscKU+EOaKobPoN8zyhXEfFUarHVi9Z3JhxIgQwjhPWNmitub9/Rd+3hDhdLqxSDOhqKbUyTydUzRhVaaxm//SMzZ7Wa5bpRM6Krs9Mc4Si0Boa52gbT4mJuMyk+UAIe8zccpyfiVlRlCHHRE6JcTxSmpbjfqZxPfunZxQBasY0Lbvdhv7uJ0zZk8mUmJmXyLJMNNagClij6duGNDvm+USqkh9UxvP69T3b2/vVUqgxq8LZOKmzeXl5wDkrXbg1YZ0lTCPTMoLSbLY72qbF2YbHh0eeXvaEsAjQpe/pt1tudze87J94tb1lSZl+2OCc53A8seRMVvCzP/gDHh+feTocePfqNU4pSklYp3BOU2tmHCUDWqvBuo6qAtoolC7My4hZ86ApZ+mcNRWzArEkk+ilW3iawHlCjOSyqlRKU5XG+QZtLK6xTONBcsaratU0Hl0LyzxxWhaslXyts5awqk7WaNrGM8/TqmiBsZZaF8ZxZBgGdrsdvrEXGNIcZ169fSX1PNaQSyamxDhN7Pcn+sbTuo7WaVKKF/X4TEc+W2oF4GNXNUsWxdYbttstfd+QcsYYy7cfPuKsVM90XU/NYvnVWtG0LdYZStUsUaqjyIWQhLCNlsW27Tu01QLPUjAdJ1TmkkFTeqU2l7ouwkGynt0GrdwlR9m27cUGD6z5SKGcpxIvap4x5gJOOtf+NE3DOE+XRfdsQe466VudpmklImtRVVc190wkFoKvLJOiKCrIQjeu64KlV+hZKhmw6+3KdF1LypUcs6i3udJ4T5wXljKx27bc7raM4zNKG+7ubokrLTrGCFQaJdm9cz77vIyzwpfu7u5QCjm0GwamacJay7fffrv+fLpnOslCfDqdMEpdVNS4RIbNBq0M7969ZQlpVaozztVVKRU1NdWM1rK0G2Ol6zhnxtNErQXn3SW3fH48z3nm83NvmmaUsiiM8BG0EUqtNuvhkBUrfdU0rVjwU5iI1AvUawkL282Wn/3852x39wx9x89/8XOoCWcrD+9HUknkFNCAruCcpRqpatJalltnDdb1MF7VrOv84x3VePBO3FQpo8xIvVZcXec617nO3zo/erEN45FYI37Xo5X0ploNxijevnlFQTOdJvangywHXQOuXW1jBlUlK5VzxljPZtdxOk7MS6AbenJOFBLKVMRAp4CKUYW2kb7ZWAKpBLRWYBS5RkqNeK+IcyCFEzktsFo2UVUUJ6OxSmOVovM9R6ZVCVrQRlHJPD09cnO7xVrDt99+yzgnfvGLn2N1xTuNt5B0pYSF7GAMGevBV8mV5ZRp+4G+bYlhxBjN/unIPM9sBwMEnGvxjSXOiZITrpELTGqEnGnaLdY1LGlBYRhPR+76DafjkWwOqPYGWwrTPIryZy23255lP+GMpVSFd56uzZyWwDJLx+Y8TRh7wjftWlMTKVnJhbKWC8cYJpKBkhbSMtN4y+AGxnHm4eGR03HCukZuS45Y59lsBn7yky8ARVKaze1rnl/2nOYFbIurGtsPDGj6W2h8y5uf/pxK5eXxmTAtxLDCq6xcrMaUxKbopM6oVE3bOtq2AQXOGryXvG1eybM5ZVLIVIUs4L4FY8hR8tnOe0DRek/tW7wznMJMjpUU4sUe2nhP2zuOzw/E1eYrymDP3d0dee2rlYVqkQMSZzAKDAptDSlHpmkkl8TN7pbTeMB5y7AdaLxDKc3zy4G3b96RU7rUCBktS5tVn9Stui6yzlrpsF1v52G/lwxrKUzzjMZh11zyWWEzWpa4tu/pup4wz0zTRCl1tcFaalYoJaCekmZKLZjGXazGvvWY9faIOpdQWdRSbQzKyEKapdhU1OOVfF5XKvI5c3r+nOdO25wzsXwCOwGXzOy5O1jovdJJm1NGO03XdqQYOR2OzKu623cd0zRL/tlouq6h71seHh4vECSxK8thgq6K7WYDtXIajwBrj650ceeaL/2vYQmULP3OXbOjlkg1lWEY+OLdPbVk3r55zcPTy7p8LpxOx4sL4KxQOufp+mZdlhP3d3dCP9eK5+cX3r19zcuzENNLkWoc5xynCm6FkomDZFz7k0cOxyNVGWJMPD7upXZMaYbdDozBOlnSqYa2NRyPkj02Rh6Tc2ZPDrvkUO9sCWZVV62Vr51zpnGWVKosuHoFTK1Z9pwyqhYMhapA10zfNhQLtUTGcVwztR5jG96+fSOf63TAaMgx8fT4Qi0CNlMKnBUYGSstWWk5QNJGUdfISj9crcjX+Uc+54NEa6hNA2sM4zrXuc51rvM350cvtsvpmb5rSSHQNIYQM27TQM1kFdbsYWXQq72wFrH8Vsg5raf/Bd84Sq0oa9AtNKZBWUcJEELBWEUImRAnvK00jabvPblWwrJQgSVEvNKoXMBotLYoJfUvmJalGmJmpfJayRPGhbbC4fGFrvHEcGQOI9opsD3aieWxb+/ZDJDqnspCCkd0WXj68IChsOl6akmgBAbUbW+Y5gMxFiAydK942T+whIlQC1kpaiqYqiBW5ilScLTDsNqwF9q2Q5WCcR04BUERl0LTbYihEvJCt1XYqiEmak7kZeT1qzt0GQnTAe0M+2kkzhO1JFSJ9MZzmkZiKSRjsFqhrcM1DbVk0pxo25Y4R2xjsAYO44S1BuU8CkOukRAjN7t79o8v1CQZuc3tQLfp2U8TzvccYiSEAsXTb7dUY/lf/On/mpv7O+aw8PHxkZvbG3abLd9/9z3/+l/9G0qu7B8f+O6b36AUbIeBejpCrULMbQohiC1UodkMW6xRlJJRFsnrlQTW8n46or0sUr1rCKkSUyXGzGkeaTYLpMLx8T2duieOJ9xmS980dE3D3HTYYjB54mboifO05jkr87xwd3dHih9ISejAWEPXbVjSwpJkCWk3LY1rMMrw8PDAaRrZDDeUmumbjjgXnGvYDZqh2zCNR6leKgHfWYyyOKUpSapl4qo6piTVQ9ZY2qahXy2pVSk22xtM/WTbnGdR2Q0VqxU5VcaTZLCnNBJDkF7QIq+3ac4UIKzWbt+1dL5lmWeWcabdbQmHmePxILlfpyhKSMEaUekUWhZPbYhzJNeKdZ5CRRkjinAVenBOBuoZGGWlN7YkUmJVZEU1VgpSCpJ/1ZZSYYlCUE+LKPYlFnzrUUWjq0bZTK4LXdevUQe35nsTznmMNsSyUClULZVN80p17vseUqas6unuRsBmT/OENQatK6kkal7t5tny4fGFYejohpZ21Hz4+EDXd5zGI123wfqGXCIpFVKpjMcDUPHO0HQOjNzfXDK5wDgGhn5H1/uLBXteFpQH77ws79NCzYXvvn3P7u4OYzqeXp45zgXVakzTorwotGfbrlZ6zdaCQlMyzFMg54RvnBwqloSmYpT0V1cqOSxkkH5l54TGrSpNtwKfSiWHQiwTX3/5FdpYvFpolObbX/0ZvYHDGLDe0rUD0zzx8PhELoDRlJSI4wlSJMVAqYnGWjloUfLcqGqtiauFVJT0T2fQKdEPPZth+Dv+lXid61znOte5znX+oc6PXmw32y1hmalAQRFzZpoXvLMoDeM0stlsOB4nrPNst9s1Oysn+8syYdbT/3kKxHjC6AZtxHrpvSfGSAyR0+mIMYrNbsum90zLIhfJKFJOoBTOCbAlh4xBU6vkJUNMopioRq6Oa6DtDJXCPO3BWvpuWO2TnqIqMQSsUqiSKWnh1d0O6zXffv0lL48PlBTIceJuO5BSZDod6buGfrtFUxiniWmc8Xf3jIdnKIkwT7y62zF5TT4+o7VDV401DU074LuBx8dHAQGlyG4YOIYFbT05pVWtE7vf82HPsDtSqkbHRKkZZzRxnpiWkWU60TSe/bhnnka8tfKxRjP0HXm1JFor1TghRlIKhJRIuRBjwDtD+czOuyyRp6cHUqwoDPO8yG1Smqo1z8/PbG53WO9xTUvvO8Y5SheomIR5eHzCti1P+xdKqZyOIykkHh+fKFUUzgwM2x1elcuCERah2RrrmOeFZZHKkZwSOQt8TCEqW16XSgWEGOnaDoVUyRhtqIBeO1FrLmgFSlWcdxhryKWitSGXwuH5ibtNg7Hu0pVaSub5+fliLz6dBJ7kvViex2li2A4cDgdijHzxR1/Ic9IYSs60Tcs4j4zTxGa7RSuDtVysxNRCigFjBtKyCL3ZGOZl/lSRs1qD7bmSwhhiyqhVFey8Q1fJqte1GkcPsnTWXKklYp2jrVJVs91usVbTKkcqieN4AlNprCPnuNrrW6nXCQvHw56+b0FJK/JZKQVxPZyXJqpU6igjj6tkOvWlRqZt2wvk6kziPYOKWL+fZ8DS2RabUkabilJCnJY6L4NF4QcvCmuSTtisAxWP9y05V9pWYEPnPOlZgURVxnlCKUW7Wpq1MbRdx4cPHwQ+RV2VV1GsDwfJHmtVKDnTNAYdwS6BulJ6u76j64YLgTinRAxBXm8xrVn8hTdvvqBxmpKFRi33F4Zhw/PTA9psMMaSUuDmZst2s2E7bAhx4c3bV+xfXsSerxSn08g333xLVpbIM5vbW7S1NNahrBw4KM6P8YplppJSkce/Sq62ItZyo+wlM3t+zLQy8m/WCpnYOnKGOWS0cVQUjw/P5Co91KVmqGr9WgJ6yymJDbxWiVgoR4wLJQcsFWcUKIu38ryyVmONEQo/FScvGukHZgVSKf37/+a7znWuc53rXOc6/+jmxy+2ux3HoyJVSNNCyaIIpJRoW6HqGufZDFucs6gK1Mo8jnR9x2bYCBBhJeiGJWNWam/JiaoVWmW6TYNSrWT9qLwcjoTVEppiJEapviipUjPUXIkloVBUIMbKeFowpmIs1KKI+UBMhbZzDI2j8Z40BYz1aGtZlgBK4Z0CFmpxDJ0nzCNhHmmcYbvdsB06glY01tC1QhF+eP8dXdvjrWbovGQ9NXgDYR7xVjMrqRAppZJiQunIOD4Sl4UwL7TWCHilyAVm07aYxhOXUazWRhHGPd57xmmkOiek4GhorBabdgrM00RMib5rMSv51retgGTajiVFqq7MYRHaaIpMy3xZLNJKij3/3WhDyIscTjQd1hm0cTTG88333/L8/MKbt19ILm8JhJBonMdUsQnfDAN//Ed/xF99+RtOp9O6KEVqjDTO4tuOqeuJ8wmS2C+91dzd36+KVcI3cKa4Ou8AUf+MVigUeMlQ2kkOTVTRGIwsf0VAOGfopbEW6x1FKYyXWiBFIQNzCCwp83w4oHIArXBny2xa+Pa7b+n7DW3X8vDwgHGW0zjK4jpOeN/Stb3YNKvYdadxJMbIhw/vSYhroe16XCN1NsMw0LYtm82G02mEknCtfN7D4SCW3xXkcz4UEiupwa/Z2yUESJVaFqxRGAPLMhNCxFhRgc9dxEYrnPMsy8zxeMTYARTUWrBGoxFrMkoItDkFyT56DUjuEmUu1OEYEzEmzg0UWonqqpUmlniBRp3zsuc5L62sHcEXqFApF7DUeaFUKpNikufeSlk+d62eM7fnQ4QlLCgDOU2kmASUdraqx4SznsZ7chX3yPnrmLVCxlp76b89E6e1VusiDiVlTgeJWqSUuL/bcTzu2b19w+HwQOMsu+2Gpml4enrh8ekBaz1N28o+V4QF4KxlXiaMKlALtzc7FBVrNCknljCvtObI/pC4u90xjkdqzdzc7FjmkT/5kz/m+eWEa3tub2745v1HDuNErrC9vyXnildO+mFTRkTzitFmzRxXnPPEFIREvjoDKtIvXoscKlhryVRSKRglOXW0gNZKTRilsM6TC+QYQFWM0hIBcEJzFmjYeAFTxZRQ00wthRwTSgkjwFqD955pPIkl2Ynd/vy7RHLi8lzRQFwW5lX9v851rnOd61znOtf50YttReGblsP+BaUqqhZ8YySLVg1DvyPFDBW00izzQq3loqi0TUfO0oOqMTSuoe96jDUr8CTQtQ7nNTkZnLfUCuOUefj4RN/1dG2LVo44Z9KUV4CJplBQRuyKCovWhWWJ2KLRylFVWinIEyU/kqJYfR03aOPRRXE8nahRkRb45uvfsL15xdB63N0tP/niNdPxwOOH70lRoE5hHqlVlLnTfuHu9p4SJ3JKK2E4Yp1iXmaWZcYowzJO6KSxCZqux7YNcTzKRVpY0MqjjUEDNSXCspBioO8HVFnQdUKXTAwWq6BzDm81z+9fZAFvPV0jS0+OkaKk47TMC7odwBjQmlzl4tV6J6rpqpTVWnDOME2y+CxzWkmpimQslUyuGYoAY6ZpQRtHSJmCqM0xBSiVeZm52Wz4n/7zf84v//AP+a/+q3/B//3/9t/y/PTE8+MTWM//8k//lLZtOaw05LZtMKoyL0FqQNBSpRMjpWSOxyNd19A2Av5R68q6hIW8XjSjBapjVlKYXUFFFyqu/f+x959PtmXpeSf2W3a7YzPz2rrlutrCEQQwoMSZiRA5oVDoo2L0pypCoQ8ccihhSIIAwQGBBtpUl70+3THbLjcf1s5T1QRAFUgQ3QTy7ajourfSnDwu97ue5/k9ChcjUUjcnA0NQBAQRe5VXTUN6+WCrmvZ7/eU5OWmKEpurm8x1rLf7+mHgclPmKJgtcodslVZYbXOdU5ScHV1mZevMl+013VDUVW5+ibmvtoQAn4a2a7XEDMwant2llXoufImhECcK2xOAKKUMjF26uY+2WylhZx7nfoeoyxKZXuncxNSShaLRbagh4SAnFkmIYkYo5FSEOLE6LKToG4qjscjUht8EESXM5NKaaqqyh3I7g5c5JmGIROuv9Zbe9eJ+vV6HyHA2rz8wFcdjSe41KlGKHfe5nqaMB/AzJZ0kd+duq4DFVFS5Uyr1ihlGMcJJQXe38GzEkoZlJKM43iiDedFVrFaLRmGYb4dcs74SqRQuAR1XSOlYBwHnPeMw8iLFy+pqor1+ozb2x2JbAk3Rs2k9uH0M9d1jbGawtQokUF1pmlyBVBVcn62Rdt82LDZrqiKkqHvkEJgrOby6i1te6AoazabFUJoDoc9bnL4mFVZozNxfBonur7DjQ4hFClKlCqwSs21OQIfZmMLMM4OG2sNSQqSzG6BCEzBIYLEREX0nphy8XSE2fWgkUoTo0dpRUwJN/fPOp9fvzHkAy8/v6ZJeTmOWkEyWT2OMavVKdcOCTIYTiJPVGQhssXaDRPunhJ7P/dzP/dzP/dzP/N848X2TpkJMVFYjZ9GvM9QmcOxQytFCB6lBFqBVJLjscVoxZBGgo/5Amq2DI+DI8UB7yfqpkQpyeQGjC2pmxpjdK6VSIab6wPOJcpCobWFqHJfosu03byoOEJIMKuj3k8gAqREqQwpBaZpD7IHPF2vqJNGJJmJsN2RYd9hreB2f6TveoJz7Ha3HG/eoARMY4/RAi1lrnlJHud6jC5oKouMAR+ywhoAYsANXb5qFIppdGgmbOFRyRO9p7IakSJjP1FvlizqGj+09NOI0pKxa5Ei0SwkY3tDUdakmABJ8gM+CqIfIOXu23Eac22JNXTjwKJe4JPIF4RKEckqnxAJrRVSSfquw2s5Pz6G/X5H34+5XWDKPcXGaqaYlaRxmtDG5MdqsaS7vqUbBhIDV2/ecL5YsNvtKKuKqiwpioL22PIHv//79Mc2K5qL5VfOSJgvikFqSbVYYkNinKZZYezZ7/f4mQIcQqAqC3Rhs3Kfci5wHEcqaWmHDotCfq025o58i5D4lHIH61x/EoVAGcOha2kM6FEQwg0phFlplPTDwOHQMvRjXkRnx4LzgZhGbkNAaUXXdbQhL15Xl5c0dZMzyyJbTvf7PXWMLJdL1FwZpJRGGEvXdZSmOFl4+yEvRJNzpwqcBDArjWVZst1s2N848nGIJMa8+BZlxX53yDAnN2bb/7wMWqsxVuGHDFazhWaYHEbr2SkR8qFUFKSUbbJCwOQmpini54qYEPxMH86LtxQ6d+PGiCksMcbT42WM+epxSGlWZkFrdaInf71q5g44JYTIixaCELLSCjNQyOcM9B1R2ZYFyOzciDFlmz/M/bmOaRrpuhZtNcZopmmalVpFUVis1QxDP9PDxdeU42zTLYoCkQJSilOnsVSKGFImMgdPURjGybFeL9nvW8J8sDf6QGktWkrcOFFXhuBHREpcX19jtWW9WlMYw/Z8Sde3CCG43d2yXa14+/YtdV1jleb65ooPPtjQLJdcXt6yXq24ud2zaBY0TY2bRpBQ1bnr1Wmfs+K9z1Zzn1/3fgpM04SUoI2hEpDIryctBNrE0+tHzPVQQipcCKQkQWRnR0wCKbO1XKr891JmtgIxYZQkBMHgJoLzWK2pmzqD4mSBnqMTKWXCdkqRaRxRSs6Wd2YYmkTOyn6IeTG+dyPfz/3cz/3cz/3cz918c8V2hpc+efiE/e4WVEKiGYdM9pRWIoWlb1v8FLKtTFe0xwNN00CKuTYkBiq74LjbMfYH6qZk7EdsoTFGzupuQXAeKS1WGR4/fIdpytAUoyx+ivjgT+pMSImkNTFEJp/VWa0sAolUislluNVyocF5grIUesV2VWNMyc3NDZURDD4wtB2KxNju0EoRXc9Nt6O0BqMlLiSSUug53ylEYrNeQPTsD93c/TlhrSLEieAdQpi5TiZRFAo3tkxjziTvr9+w2aypS0sKY6bTBsc0jhCmDNZxA90xcNgnlpstyjb0oyOVZS6OTAHvRvquzWqVNQx9Dynl/GnM8JkxxJPqp42c7Zg582i0pG0PIBL7/YG6bui7luAjpiyY3ERZWXb7HcrkBaUoa6wt0dqwP1xRVs2cV8wGX2sz2VgrkMRMD5YQpmxhNDpnREMMbNZLtIT1aknfD/gQ8Ung5i5VpRRlXZGCn1XwnuViyWazYpgm1ps1UmmST6fO1KRzTcKdjTdGR1lVaGvoh4mUYJp8tv62Hdc3N6h1hZUwDW5WEwNamUySjiB0VpYPhwPeB/p+pKpKIB/8eO1J0eOH/NgtFjVtd6Cq6xOJO91RLhGnXOli0SBSxEjDfr+f+00X2YI9d9re2W/vbKN3RGIlJWnu+bR2ttKeLMslXiticJRlzi+u1kukhMWypusDOE+BRcyKbUrxBPBiXiTy9ww4l07fX2tzUmm11pDyz1JVNWmmIRdFcbIuj+P4czlaa80M6IongnDXdZkSPf/57rE01p5ytlKqUz2T1vLUhauVwXk3Z3Pz+4BVen5/MkTnsWVBmBXeu4XYOXdS9DMEL78txihOy/miWVIUBQ/Ot4xjT0r5tb9sam7fXhFCft+CmPPLIUPHunZCS4VQAm00wU+Mfc+DsyXjENBKctgfON9s8S5nyWOKjGM+QFk0zWmpPB6PPHv6zumAoOtazs+3vLm6nsnF/pSDt1YjSFircVO2dwuZoxtSiZmyLIgxZ46lAKWzXfzuPr/jI9w9HkVR4JzDaIXUhugFEcU0ecahBSmw0iCSyo6RmKvbgg+ZbhwDRolMx3cTCHAhS8Zaybykxq8y1nJ+boXJzblpD6j5MGyOJ+hv/Cvsfu7nv/kRhc1Vdnf5j/u5n/u5n/v5ufnmiu0wEWNg6kYEiVWzxjuHTBojFYUu8N5R2GZWYQJaFUg5AZquHSDlDlJrFEYXkCaGYWS5rDHaYkwmqPa9w9qCaUgEF9HSoK1mHAbcGFBSgZA4ny/AhbaAYhp7fEpAYBwnyqoERLYqS9Ayl5zLmFA6MnY3vD284urqBu8GBAEpsmIRk8A5QXRj7hgtLCkEqqIkRJ8X9KqaFS4Yx5wRdT7n8iDl7C4JW1icH/OFvx/R2uCCZ2g9SniSH1BWMY4tYTBcX77FapXripKnVIZ+OOYLuU5RAP2xQ8aaY9uRQibg2sKSUqRtW4ZhoCpLiBGtLEpKCmUICFaLRb5dRiPnxQ8iPgR819L3HVpnpeQuc9gPHYW1LFcLju1IiJGiKJFK4yPElOnFUud8qzYZzpSAYXKE2W6qhCSKnOU81YkonZe5FFmv19SLJa/eXFI12Q4M5MMRkRfdpV5QVxXeew6HA9fX16zPz1iUFUZJejnMFStZlZvGkb7vmbqem5trTGHwERAaISWkiNWGd995xqJQiDDSt+OcDRyoSvm1xS5gjM2Z73mhG8cp17j4rGAaJVitVmzWK7abNcPYUy2bnJ02kYePHufP61uqaov3HjeRc40yILXicDhSNU22YWpFDNmeKpTCWIvSiuPxmL+ftUQXKQqN9yPj6DI1eCbrGqWIZIBT09SMziMk+fXsBmIUICQxpJzNNAV9n90WbnKzKirnxzCdsr9hzjzeVfmYuRvae4+ca31+XqHNudG7yp/8GslW0qIoTgv0XYb2zpocYsD3/Qk6dfe8+XpV0ClvnP9ESsz2ZXH6POemXP0lBTHp+esYiqJgmkaOx0OuP5rBTHeHCM45hmHATRPXl29ompq6ztRepTVlWWG1wY0DTV2xPxzy8iihrirevL1huVjmZa5Qp+dlSolhGCisRQoYxh7vJ5IqUcoghMK7QF029N2INQVaGd599t5cSzShF4rzsy3L5YJ92+efWUIMHqXm70NESk1RWEiKoihJKeJ9tlkn8nJpv3ZQEV3I8CshEQmiUighM8grBYILxCAIUSKiQBIyqTuCtgptLW5MuBCyehsjWgmM1oQg58iKQMVEJGUwl8zvDxmqH2YAnESUFS4kbFXRdy16PqzwbsqL8f3cz9+TEYU9HQ7ez/3cz/3cz1+cb7zYighNUXN5ecliUeMGR4qRZbUCIsKDCLkPUQlDWWqqumIaAqvFBrHMmbVXr14ydh3eRRCJqq7YrrcImbI9zsW8ECqDH0aUUGgh8dEjkjqpRCEGhNQQc6WLiAohDMSA1pJoBCnlC2mf4twVanF9zxAHdCFxk+dw7OnbAwLBslngJodVCqvy566aKneoxsjoRmJUpJCXNKlkvnBse5omL+3eB8rSEmalBwHKe0JISAnT1LGu15iY+2ULK/FhYBwSMSp2bwfGriUVNtuzpxFfGHzwxBQ5HHd0/UhpS4buQLc/oLWh6w6EkIEwIYZsyY6J6APWKiRZnRpDQsTEOA1oWeaakbZlvVpycX7O5198NucKFdPUcn6+oT122aJIRBuLNjovw0KiTXFafDKBWJEUJCXo3Uggq8SRrABKJU+5SCUEUmRLq0iJuiwwtgCpOByPNKs101zHYouCm5sbuvZIU1f5/hciA8mkYJxGpmvHulygtaIbPOpO+ZltynVV07VHUkyZviotUknqssZET+dHou8opWI/5TqREGI+jCkKQhoRIVFVFcba2SLsGYYx51iVOC1lWeUrqeqKBw8v6MaRoixxx/ZEXN7dXGGMoaoqFnVB37a0bUdd11w8uODYHk9KnVKKpmlOal0I8bT8KSmRRs9drZ7z8zNiTLx+/ZaqrKjKAolHykRZFWzWawqr6YZclySExqi87KcIUiqk0FhbIgV4N2ZjwJz1da472VPjrLABJxDTf7xs3H2sUuqkRAKZxm3NiZYcY6QsS6y1p4/zPlf71E2DVIKqKr6CT4lskw3zx2QXQK6lEcZQlVUGS6VsAR/7HlsUpLl/906JTDOASKl8++8U5DslN6Vsw9ZS0jQNITiOxxGlwI0DtS4IPtD3HZMfMNagTZEVaR8ojCWFvJAvFwumcWDoJdZIyqKgNIYYsr27KApSTDz/8kWG5CnFfnfAGMv5+TkpCbbbc66vb7Ba8eMf/xhb1Ax97raUCJQUBBHz//v8nFguGqQ09P04k6wD3jsymSmeFmFjDEhFFB5pbFabE0igMAZbKEY3MAwjbvTEmIFiIiUUAk1ExInoE3GcECmhZwv9OI2Q4onCbLTJXcgxk6ZjTKQ5Ry3m94uoFFoqkAIXPEhJN45oLec+83sv8v3cz/3cz/3cz/3k+eY9tv1ACpFVs2AcRqTJ2TWVZLZj1iXrRZMvOoxFSkF7GIlBst91NHVFVAmjK1KcCKFntVpwdr5BCDgejnOmzZKiwo2C5DMp008+V+D4RI7EJlyISJWzdOOUl1mAEHLWK8GsWOTlUgqBnyJjG3NtTOyRaiKFie26RgpNdxjxk8dUJsNOvEeKfPFqtKIs8tKY1Y7A5CbqRUNIibdXV4SQFZBprihJIucXJz9lUqzzkDzToLBG411LUZZZkfI9YUqkKFg2Dce2Yzfmipi2axnGASGyglokQVSS3e5APwysN2csmprd/sDt7S1VXSPImdLkA1oq/DQho4AkmIZ8YRsmT92Uc23IkarOdTBlWTIMuW7GO48xGeql9KyeBc84Tux2O4yxIHIWTogZDDRDZ/btkX4cMsBJq3wRK3Pe907p08ZgtMH7Eak0UmumyeN8JCYwtsAPB5zPOdPJTdAnyrLIqmT0GGupm4ahz7c5hEjbdXhjSDGyPTtjHD3LeoGfRoa+R2oL0jAFT/SBRd3g2x1j7wkyQ6eUUjSLBX0/zDTuM4Y+54vvFOuumyjLDDZKKR/KpNlCHkLFZrNmu90wXV3RHo84n23Vbpow88I3DAMEh5aCxXKZFyuteOfZM4ahJ8SZBitlhu/EvJQ45zjsD+x9j8TT1JkmvtvtCCEiZH7OaSVRIhCjQyoyuVbPDoGY4WDKmEwVnzwxdLMVtac0udrFuYAQCikSPrpTx+/dY35nBwbQSoFUJyjUnbU1zMsb5CV5tVrNsKq8ULZte1JXgZOCq5TKeXApTjbhvu/zgYhghhMlpMh52DjXD03TdPqeYVbXp2kiKYnUCm00MQT6fsifLwVdN+ZKosJ+DXQlGPpx7jQekJJsRUaxPNtiosAYxXJZcXu4Zrlscj597NntOxbNFmtKimoGamnDcrFAEGnqkuAcJEFVVsQQePv2CikN0xSo1wuUEJSFpKmXDH1PU1WURc9iueCLL19gC81yseB6v889xgp0kW3nTV0h1TR3iWfScYpZmU8pkmJASFBSzpVniejzQRMJJjdmdVRIREysNzVaJpKf6NsjoKmbFYXNkDBtdH5t+4Drew7H3EutC5vrgopstfYhII1kGibiDLDKrOa7nHWGRo3jyJhSPuiMkaIwaGFQKh+Y5O93P/dzP/dzP/dzP/fz11hsw+QyeRjQUhFcAA3ehUyuDDAOE9poUgj5wm4YscpgbZEvDEPAGos1lvVyjZTgp8Chb0/fx1pQ0jAODhESQiu8mxUxkXCTR2qFEhrvEzEltDK50zAlSmuRMqsDSnA67Zcp0bc90+ByXQWOJEYioITC+zBXcch8oakjRguCD1lNIM05wry8Bu9xfmJyOceZRCJERxISEQJy7un0npw7FZlau2hWQGLse6ZhyH28k2ecJiQzfXUUpJirb0qjOXYTeq4kGbqepANj3+ND4njYz2paVrOlcmhjmYaJznfYsqQRKVt/pUDNtBUtJWM/UGhJVVW07R45wma94upyIoTIdrthHEcWyzUpeQY3kCKMk6fvHf3oSVKTlAQlkCp3xN7V04QQaLs2A5LmxTZ9zYIspcjPCasprMIWJnelCoEtK2KWY1HWUtU1kFW1OOcrrbXs9wN9P2CLiqmfGKMk+EhRWaqmBpHJvylloJEtSibvsnKsFMlNQKQsSgT5AERrRVFauq7FGIvWiuvra6ScKeBDXmC9m/DeYYydF7JICI62D0DkeOx58+YtZ+db+q6nHyZ8Sjx/8ZztZosUuddUK4lIuU9ZzLngmBLjNM506ERZlFk1jznDKslqqZAiq9wohtEhZYLkkUqhlMkdpLPN1bkeIRMhZhqUn22/Ltxx1gQ+BMYxPy9jDBiVbf8xJoRSKA2LomAYRoa+zQq+1gghc690jEilMVoSQyTKyNAPhBgw2qCVxsWJOKux+XBK0nYZlqSVPlGJpVRYK9Em04210oQQ58oalaFVPgACawxKmfwakJKYIsPQ5y5jAcpoCp2/diAfHGSYFhkkJtWpame5XKKUgJiXdCkkXs2ArhSYhpGqNpRFgZsmqjozBPaHA92xp7QlCYmfEkRJP4yEJAgp4bRgs14QY+TsbMPN9RVuHFg2S8qi4O3lJfWiwYfAZrOmsAVXb99SlSXaGIoYGaeRm9tbqqZmsVjQtx3bzZpD31OUBdro3HmcBNYU8yGRQKIwJmeHtRYkDOMwICS5Pgp5UtOLOYLgZnCZnxx91xHTgFLgXUTOOfC6WWTSupC56k2Ai1BVZb6fhUSXFjOTxfuhZ3884mPMtnrUbK/0xBDn+p8cZ7nL0kpdUsx1X7XJ/cuFtZRV8V/w6+9+7ue/sREC0dSkw/EXfUvu537u535+KecbL7Z1UaKEnKtX4gloM7pxrg4J9GOPsYr1ekXbtmiZCcp9d0SQazz8OFFVFVoXjEPPoevws9UTQKVEUWsmn611PniKqmQYcq5TKU3f9jnraAuUVCgjsUW2Do7jgC4spVYoMqAnhkhpLEMKuBhIw8RCN0Sf7ZPGWrzwyFz7SB8Ck3e5czdGSAJinEFQKlfLpHwxnXAEH+YLswElLWnujDQ6IUVEFZoUE1rli8UYEvtdR2FLVLI4nyhkSVEb3DQRw4RVUDVL3DSBc2ghkTHnFacw5OV1nE4Mif1hj/MJhGIcPEprhEhgIQiPMAaXPLaosyIiJCmAVprDNGbljKyEbdcbbm52uGlekmfa6zD2hCEy9TAMEVstcUoRjOI4dpzZBknCGoubHNvtGeMwMQ5DhvnIbHuUOis03vu5sCfi44QViiQiQiuKuqaol5hyjxKamDLwqqkriIHgJoQyHPcHunbAyhZCxDRLbKVRKSFtbjeOIdOxk1A4EqIoch5YRhAeazOR2/mJmBLHrpuVYMk0jvNjKTnu9zgf0EpT1zUDCaInecHTpx+y27e8uXxLsz7P/bh+YPIik2vPtnT9W4SQ7PYHYkqcbdc5F5oSEujaDt00JHL2cxodq+UKLXXOfYeItopl1WCUweq8uE7BUZUFItmsAiMIMTEOPaQJayuW6xUx1vR9fu2ApK5X+CgZpkjbDqQUcOEr+JfRikgkJUG1WGCNPfW7KuGxtsAUJT7EbMu2Wf0P3ufbkRIyzfnKHOolASlkCJYxiqou0VpzZrd0Xcfbt5en5XRyebHxPiKFIoRsW48KIFGVDZCYJsc0eWKcKMtMrL6zywspCSlSFHW+n0MghGxlDSGgpMaa7FRgGlmv10gpGIYOjUIj8gGL80ShWNQlyVqqylJYhVIwTD2FLXjz6pIH5w8YDuT8eaxw04RPI0JrNtslbupJwOQjl5fXmSBtyxy1UAXdeGRZrzFKsDvc8OTxY6pFgUyJV6++ZOh71usV5bLk89df0o89x12LNTVVVSOUJqm85ONDBknJbC+2psDHxDBMWaVGkMgHBC5AElnVXi6bDOYLMR/c6GyVjiFQWIlzA8ZAWQvKqkGZgq4fIAmkLpBScTj2tNPAolmwWKzmPPfd4yQgCqIPQCCkCWMySOyu83hM04mKrbQhJEn0AALnJoSEEEbyK+d+7ufv0XytE/x+7ud+7ud+fn6+uRV5HDOxc4ap3NkMc94vUJYlITikEFkpURI/Zrqvmj/mDnowDAPaZ+DMOGYSaF7SEkqqDPqZppnQOsNMYprtgrmHMsastEohiT4wiZwvzTUf+eS/qitSkogkiB5CiEwzDEfKVbbRQq6Y+BqsxmhNTHGuMokz1XRWdUXIUJkQSNlRm22fIqvHkO3RId31bcqZbFsgtckE0eRIQqCLgikGksx9s/3oGaaRqqyQMtOc+2HEx0BdFmBE7hNVgqHvSEiqsmDo+6w2JuZ6mkSYRjwj2lygtcanhDaZJquNzv2/Qc6dkxFJprjuDwesMVhj2O1bhA74NLA93xIj+BDY7w8z7EXkupOUlRejNU1dZ/KqyAcQx+OR1WqVyafSALk0M8722rsaG+di7gj+GvHUh8DoJvywR0RP8lO2PGKpyxIhVIaMTQGjNMZKFk1N5yYOhz3roqAoLCFpxtEjhcRYA7OFPdtcs/ouibniJuXFXMq8TEsRcN4Tg5ifq7k2p+8HQoholVWqruuzck+uSKqrEu/G+b4WtG1Wf/ftkeVqlf9e6691tmaA0h30qe8iZrlks1mzbBqurq7yab2UlNbO+dZIiB7vHf3gcwZS3L1msl1YJIFziWlosVYTgyBGgcDSdx1TlGSRTpzUuboukCJbQZVQc+WSY99nWnPf9/n+m6FQMTFDrHI+Nnqfs+o2L8L5NZEtxcaYnFONWRlGZMt0SofT6+3udWitnd9rwql25m6kzCrfXS3Q13O+eqYpK6WIJMIUTtZ65x1FYRFCziqwRUozf8+c/1ZSYnT+OcJ8e2LKSnEGrWUrt1QSpQSJxPF4zF3HtuSLz16wPXuAUoaqqmnHXInkvKOpax49fsKb1y9ZNdVcsSTZbja8fPmCw/7I2YMHeB+wRjEOE8M4kWKiNIlqscQUFWjPoe84Oz9DJcWxd7Rty4hg8+hRfjzIVV5BgFARJwSJDJdSSuXDtplZICT5cSDXbCkx56W9p2szQbowhoREW4uQao6EeEbf4XyOhozjRCS/Tzjn2O13uTJMKZzzJ2CX0ZYYMohwcgNaK8qyOJHaU4qnzPOdIwaZD6mCd6QU8EKQ7uFR9/O3NMl70lwhdjdCa4Q1f+u3437u537u537+8vnmdT/zgvn1f7/reWyaZu5DVAgp8T4vLeM4zcvmXaWHni9IJd4Fum4gBlBS0/cjRmuOh/ZEUw0i4oSbezJzn2YICec83gVSnDKFNQZM1PkiVdisWIWRvndzVjJ3pA7deLrdl5eXLJdLjDGM43hSDIQQSK0RSLQyhBTmepJEiBEBCJW/ZwgePdv3ciesxoVIigkpFYlEiIIUI96NSGHQSpGIKCNRNoNvhJG5+FGCMgakZN+2uU9SW0xhCSScn/AETJTZkhvBx8DUDyhd4JOnMMXcCSuRKgN07hYdoy390OeFaO5VzQp8pueKFHNlyuRZLmvKKvD6zTXL9YZpGKjqgv6Ql+jVaomQAq0UIuXngdEmV+wgs11WaCSKwpaURYWS+d89kmEYs617rvzJGUpJXVa4mJendHPD8diiUiD5CRk9y7rkeHuLEmSbsMrVJlKKvPynyNh3WKVIPiBSRM52ZJlDfKQYIIEbp1NOM87ds01TI6PHuYnDvqeuK/q+Zb8/0jQNKcLk/Kygwt0Snmnew0wFdqd+3kznlez3t6y2ZyirmdxEaCPn2w1CZqutme/LwWUVXmkFMXL55jVumhiHTA9e1A0xepwbUUpQNxXeQUyeGDzTlJ+nJEFVVflAx0eCj2idmKZcmbLdXvDmskUmcv5RTfT9cQYuaaZxQBAz/EzlpdG5vCxLmZd5WxQ5nnA6qMjvDYhsSc+q/DS//jIdN1dfOZzzBAJJZFBZCHcAp2y5z2q+mpcuMff35oUppXSieSutMTC/78zLvMw2bcivj6/nekkwDg5jgZS7f3PHtkJKjbzrVZYaTG7Mdc6TlMSWBUIrgnf048AwRazVlDYvbVpbXr1+k/Pg1uRFjEhVFSyWC5RKRMidzD4QhZgp8QW2LKmbBd/61kcIobi6uubRo0coadGqwEVH249EoaiaJW3fopRit9+zWCy4vn3N0PfUVZ0PEIFhHFBSZvCcByEUCZGzxzESI3M3cq7aETo7U/LhQjzlou8OX5x3+OOINLlGLb/H5eiAKSwgmbzDeYdSkrquSIk5e+5Ph6AZTqfnQyX3tSwzJ3DYXdVTzuFrkAkhA1HEXPEWYnbs6HvF9n6+wdy97wPp2JJmGvtf60t4D//RYst/vNhKidxuvvrzfBj5NzUpRlLb/419vfu5n/u5n79r840XW601bftVFnaY7aXee5xzFEXBYlFDEsSUT+unydF1/ak24+5isywrSAI3/5Jo245xGCnXJV13OKm4Sko6soKlZM7xaQ2JDJDy0Z0UJKnyQv11UI33iWTzRWqGCoX5AttirWEY+kxQlSIvErM9NvmACKCFzkts8F9RaElMgyfM2VCjdFY39HxxnsAnn6nEQqGkJpGVNa0tQsA09BijcTGgbb6YVliur69xzlEhud7n++HBgwfoUjGFSJICW5WZ9hsSx+MBEJSlZRgmjrs9xGzRvMui9m2LkAZTNFhr0aai6wbatsNaTVU3LFYblEgc9zui9zT1Aq0Nh/1r9F3XrPdMY6I79hitKasq27PDlD9GSDbrM3YuUdiKFI4sF0uePnkH5ya0NCiZF+2gNPu2J8WcQ3bOQfqKrluWJVVRUhUVR2MppGRRbvj804+Rs4I2DH2+gJ8t4imabL2VYJWkbhqSUqiUITlyrhDx05CtjEIwjgMp+BlA43PuNkX6bsBN+eLaTT5by+PdIpsQwqC1Yr2umIaaq+sruq4D5Ol5dgdHSsnz5s0V1irGvqObJlyInF1cnNRpITU+ehSCpqro+h4FaCXp2hY/K6nBe/q+oz1mVV2qbBkwNlfOECLTOLCql4BkHBxJJmLwGF0QwkRMd4dMkn5ocUEiVcBYw2q1Zho7hqFj0dT5sXIZlHZ36JMPIXSuookh9yXLu4xkrsoa50OSELMai4CiLPLr6O7iUqRZsZanz73rnp3vGIQAcwe18j7bmOfvYcvyRFu+I2PfdZpKpeblNpLCnd2dr1VkCLyLTJOf7cTmdFARQyAR8MFRlhZblkidldNuHAgpoKTAaAjeEVNApNw9XJU1KQqE1rRDz/54YBgnirJiHHuOx5ZHjy7ohoEE3N7smMaeD99/j2EYSQnc6IjBsV5s2Cy37A57VssNn3z6KVVVc3W9Y5gCdVPw8NEjuuKI8ILlcknTNFQzOZuQ36NSjEid64+8dwiZs8VVVRKTIISU72+ZMlRMmqyC+3ByVYjZnVHYkkAgygRSorTNWWIfZweCxcdELWpEikRXIIQ8/R6wtphrl/JhkrEmVyapgmL+b1pXrNer0+sozAeIITmUlggp5xhMZjcIcb/Y3s9/YlIiHo/gA3G/n//ub/Dre/8XFNTwteskYQtEU3/1H4VALhf/Wd8qxUi62WV0/f3cz/3cz/38pfONF9tpmmjbDAKy1p4ytnVdUxQFVVXhnOd4PJDLHDLo5rA/5CWIdOqW1NpkpXbOimSroaJtO0KIhOBPKkFMEHxAzVTNyfn548LJjjhOWeXS2sxqsJsvgCTT5GfVIDE5hw8e5x0hZuWpqkv8XNVxBz6RQiCRiJnTiVAkmXLPLonJjYgkSH4iTikrvDHX6BRllZd670lRoEyugXFkEJXzDmUNgcSh6zA21wSFGBHK0u57hunI5HMmdJg8SfR54Z6VwUrm+h4xZzGV0niZ7zfvHKnIS0hli5yxm+FLUSqEshRlwTgNGTBkDHWzpD/u0dpQ1QuCmzgej7hpYnI5WyetwY2eFBJVVVIWlqoqMVpn8IwU1HXNtX8LNlvKx3HM8B1ZsFgsONueMXYtbhwR0uQalORJMaKVyn2rISJ9fl4Za7NCOXUYW9BUNSJ6FnXNOAwUxlCVlhA8Z9sNU99RmJx/HX3AAziHUAKrJUqC0YqUFFIoovFgchZUz/ZrP04gEnXTMM7LRgjppOgNw0BR5EVSa8Plfk9ZlrOqH04HPUopjDXcXu3y86wssEZzOB7RZYF3Dje5WeGUGcIkwU3jichMmvPB5IVLK50zmXPmUetclRNjhosJFSEZnj59hxThs88+Z/IdRksKqxjHwHJVMgyOmAac7/BR48aBwleE6DFaIaXFWJNtxTJbdN3kZidEmH8+QYoZfiWVPlnu73pojTE5E6zyoiR0rteKKWalF4HS8vR5d1TlbFfOkYdp9Hg/ZhDS7A6RKj/zpZrz5tM0v5bVV7ntTErDOXfK/98dmmR6d07f59auu5hEXqgzTCrXCSXBTKAOM+07W3W1tZSFwbmeGP2cg85RhWFwoBW3hz1httpnq3oLMrtUMkxOsKzL/LhJxeXV9dxlO+E6x9n2jOurWx4/eYKPnqqsuby65vb2lqfP3mG9XeMmx2a75bOffArAZrNliDFHIFKuThrHgbKqkErlGjUhqGyFMQUxQd/n53hWl0NWwmeYWaawF6g7NVUbMBJMft+VQjFNHjFNGDtHCqa8PBupSMrOvbR3cQw7v09/9XgI8uNmZ6py/n2QIV5SSqqqZBh6UpjQCrRRpKRJkQy6uq/zvJ+vTYoR3Ows8554uwPn/v981t/0jfjav47jX1CH4/7A6bTtayM3G8RfkZ9N00Tqejgt0bl54H7u537u535+fr7xYtt1eZns+34GjCzpuu50cZl7TydSyheBw1wpI2W29UopsaZgHEe6tqeqGpTKJNmUQs67zXTVoqgQIkNNjLEcDy0xMterZBuOtQVa52yjQGWKa0jE6CB/R7zLtTRivljruo6YPNbqOafrub6+oiiKWfkNrNcb6qrORFMB0zQSU8DPvxy10SzrTENNwWUKsFI4nxcQP42Zpopg8p4pRBZVncmyztN3HdIppNbowmZ7IYn94UgYE4f9MVty6xqtC3wQ6CgYRk/btigp6VOiMDYDdZKgMAU+9idLryDhhhFr8yIkETTNgjEkQlIUZYkdh/x7UQhCgMkFhDTZ7hcTl5eXaK1ZLNeUVX0ix0opMUqhJCwXNctFgxCC9WLFomq4uLjAaJUvqAtLjJ6r62tWiwX/z//5/4ESgv3tLZ98+sUp15xiRNsM2PLO4YPIuWzvCT5idaayTpPHdQeWjx/gZFaKl8vFnNusWFYFwTnClPuPhSSr2zIiZju4lpI4K6uFNVk1FABzTjr63LsbM+DIO08InqZpqOv65zKgkK2c6/UaZQv6wXPsO2IM3N7eEkOVO29lwmjB+XbD7nDIVmGRLcO2KAgxoWyB9yODmzL1V4gM5AHKoqDveoTwnG232LJEKJkPSiaPDxNdOxKcQ5D44vMvZ6Wsp24MKXoQjphG2vaYs9m1oqo0URi6PltP+74j2gx1MtpQ2AJZ5Pyzm/xJLb1zRURy7+o0Zyed96QUWa2XWJsdHuM4IqRgciPaZLU3G3QjYs4Dd103v76LU+79Th2+Wyh98MQMKs5VMEJgbLbo+ykyTCNayJmOrBhdzuz3Q14kV+s1xuTHW2tL23YMwzQ/imKOWczZ2ZSIUZ56bIWQWJvz8cMw5jqxoGcCdWLoBpwLOOfZt0digLpZ0DQNN7e3mGSyNXeZa7xWywVS50O7s7MziqrixRdvqaqShw8f8tM//5if/PSnfPTtj3jz5g11U7NYLHn5+vVMUz4nxcgXXz7nnQdPKKuKF6++JKV8IKOUwkiNjIlF0xAlXy3v83vhHfU5VxeJXMUFxHmJt6VhGIY562pyZ2wifw2VlfK8zMdT9y8IRAxZQVd5YUWAVPOCPFOt07w0A9kimuIcB9EnZ0xZlhRFcfognSClr2zoScI4Oqy9B+n8vZ6USMNI7DJsEu9J8/vmL+38FYt2fPP2r/d1pDotyEL9R5dyX995f9GHP/f79/3cz/38Lc43XmwzVKZmmibKsqTrurnT8Sv75d0FjhApd2MqAwRCyLbD3DELWuelNV8o577Zcs6CTtOU85nzxWwSUFQl3kcKKanqmsPhmK2/cVY4polVsUDMEKamaTJUKkUS+aJpGjzD0M8n/ul0m+/sjErl/lalclYvIZACtCLDpyZHmBwpCFyfKMuSZtkQU2ScHEbn5dbHgJA5d1hojZYavCeOA8paCp1zaYdDS0WuXElCcLs7cvv2QPRwfn5OSobb2wzU0Vqx2WyoqyVt22ZrtlEEH/F9x+QSo/P4mLBFlet/yBepbszVKkVZEKeAQmOMoajKeTkBoRXalEx9y+FwpG+PPHrwkKvLK4auY9EsCEkyThOr5YpCFXTDgJQJQaSwmu3TdwBBWRS0hx1VZfN/KwzX12/5N//m92j3e26vbiAGPv/yFb/7j/8H1utlzubGmNV8pWiWKz797DllXdAejkzCs142WGMRtsAai24E3k0slysWywVpckgSZgYOxeDRSiOiR0ZN9J6yMBz2AasVwzjl3PBmhdaK2+trAJrFAiUS+Ig0s+psFHVd5T5YlZ8rRZHt7dlunA8ClClPWcGUErvdjnceP6IuDEZHysJQlQXTrAiK2ZEgpKQfR6a+IwmB1IokFFFIlFRMPuYsY4LL61s+/uQzvE94nyBJRFIURc3Fky1919G1PUWRM+eHwy11lbPITdPg3EhR1pyfnwMZphR8zoRXVY2SKS878/+GYaRte8Z5CczODEffj5y6iLUmfS1nm4FR8ZSV//o/d8qsniFMcVZEp8nNIDEx51U1VVXkzzOaY9ed4FJFUbBerwkhnJYfIQRpfr477xFenEBqX3993z0+MXqqqsRNHiEUxij8nA3VukAqcG5AkS3Nkx+RKEpjZneBZhw7jFYcDi3eO0bnGYaJJKCSAh8czbJBiVxds9vtci72cODpk0fEBIfDgaqwGGPxPtD2PYMb2Z6fYcuCy8srUIJmsaAssvNh6FoWizP6rmecJrq2pW5qumPLbr9naQx6VlCVEiAiSeVcayYhx1NfrJqheBnalNA6Q7qUlCRMPmjyUyZV3x0AzBfKyeTDqBRiVuBz3xfBOQY3nB5n53KHblFUhBBxbpx/D2gECWv112IiYn4+RKZpPC3B1qoZMpadmAKB1TbXud3P37tJkyM5RzoeSTOv4e/dxK/AaT8HURPi55TfFCPEX5B9Wamf6zj/KycDGP7r3577uZ/7+Ts/f612e+/9SanVWlMUxUnB8d6fFJGvE0qVUielR0o5f06+CJ6m6ZTdg6/Iy3d5u2EcKMoVi8WSabZtep8X6LvvmYnEYs5uuXmB9rTDQDOrF9YarDVoLYnkC6hxvKM6C6ZpQAh5ssQZo+m7nmkKEBxNWVAuaoiBqjAUNi9tkYSxBuc97TASk2DygSlEnE80ZYFRGte1aCMRSnC2ueDqcGCYJpQ0GGt5+fo1h92AGyFFyeEwcDwOWS2e85ApKYrC4tyEdy532xqDkZqYJphV3YDAKA3kqpQQAsF7tFRImW2Utigoo2ccB5TW9MPIze2O5B1xzj5XZ1W2NArJ8XBEGcPx2LGqF9RNxXDwKCk5P9/i3MQnz1/RSIsBYhqRSrLf31AWmmVTslzWvHr+OS9efM7Di4tcnUReAKMPuDBQlAUSMVfWZJBMflwUVVHx4OyCq7cTQz/Q1CUhCvwdfEYkvJvQtkCmmC3NKdIdjtiVhugJziFFXvhJESUl0zRC8pRlQe86Ugxoo/AxP7e8n2ia6mS9zwcjkWHscJOjLnNP6InCOytXUkguLh7i3MTlYcc7j8+5OL/gk8+/JIaIC8OJGhxipCoLVoslLnnquibFSHfMILVxGCkr6LsuQ7VQxJittCmJ+fsrDvsOUv73oZ+o64amLtBK4P0IyeGdIwRPXa2pqjXKC8pCEwL0fQspv776riPcZaPn11BeUPzXbL2WJOblXAjqppnzuI5umObXkmGaJqY+H4hJJeefX2bI2qwg3sHD8jKscvfxnPfsxjG7Qcj52ck5jm2LlHLunM1uEaE4vTfcUc3TfFvvoFfjOOaFidkybWc7bRIksqpZVZbFssJNA8SsVJKyC2Qce7xzdG4EPMu6pj90SKlJ5IO4KOD2sOfB+TmH/YHt2RofKm73e6ZpZLPZME2O0hqaxRJtLRePHvHjP/8zyrJkuVmyWC64vLmkHTtWcYkxkkcX56zWK45ty9tXr9hsNqT5cGW5sbz54Z/RdR3Ves1IIgmJlImo5kysFEwu4ENEK0dIieDzwYoScu58zu+rvXO5eixmx4RSaq51EhR1huV0bYeWKsPxfCBOjruDBO89LmQGgnM+w/uGcQZ43YGhAiRPjOYElmrb9vS75O71lHkJmbxfluV8/ZvlYPe3bTO9n/+qc5dXTW33F5VXIRBNRTp2+ePu6cB/+aT0y0NODuGbCcZC/IXFVsxE9L/OpLna76/6Hn+51Vvcq8r3cz9/h+avlbEtiuIEkMrwpLyEtm3Ler3+OeXWWjtXPOQLjzuCcr7o+YpUmi9a/ClfdQfe2e121HXNsW0pqypTiH0k+EBMMIwjznmk0ixXC6RM7Pd7lsvlnKFLaK1YLJqvQW0GpBKn5fuuk/cuI9m2LdYapAJbGPa7DpUCpW1wQ887jx6xakq0FBilQEvaoWOYF5wkNTEJdseOfpwwRYmbHOtSoYVEaE1RL7O6GqAoG4p6weXVjsI2jOSM8dCFmfDqsoqhmC3KOcfauzuKcyR6T101vPPkCUXTgJB52SBQVxVC5V7T+UE45RRDCBzbNncKmyJbbGNCz5Tbu0OKqspf08VI9Pl2aaUoi4KqLPj+97/H81dveF4+53h5i+9b6soSibx88QWHw46ytKzXDUWhaZoSJROLpkTrnCOVQuBiOlWfjMNIOeeDjTZUcyWQD4HZPZ3hQD5QVSv6vqcqLKUSuGFECUFRVfgkCW6i3e+Jtsj5VKUZJ48kOwfGYUBEw2a9ILqOsd1jjMGPAz5MaCMpbEGcq1HquqbrerquQ85K2uvXbxjHCakLirliqK4qmqZgd3NFUVj6rmUcBsqyQCZB2w/EkDtXpcrLVfAeW1WMbj680RYXwZZVthb7SKUMDx49RkrDbncgBoFWFu8dR9djZvuuMZam2SKiz2oXgeMxg0emMaBkjdVLhnHM8Co/5EiBhNVqkQ9u5jwt5Pt+HMfTa1hKkbuPtWacHIvFgrpZztnUQNvtORwOjOP4FQioC1RVNVe+5Gqo3JUaEGKcVbt4qvcyOttSx3HM99Ocx72r7lFKcTgc0FrnpTkmgvv5AzYp9LxcuRlOpPJjqgzGFCeIVH4/y89RRAZubZYrYsiLWAr58e9ayTQN9N2BwhY5i5oEZVUxxYBQIwLQxnB1fY0kW6ynw4EQYlaJnUOgsbZBa0PTLHj98gXvPHsX7ybeefcdAPyN50FzzoMHF0zDwPG4Y7e7ZrVYMnQd9eIsdwRLzQ9/9CP2+wNK67mOzBNl5gWklOYu6QjI/Hi7QEgJgcxKbgIffX5fIx8yepdz1UoIhiEfFgWhMgk7ZOu6SAktcxQkhYCZ4xBaS5D65MzJFv6chS6sRalsQx96R9/3hBCyk6TIEZNxHE9Z9RgTRVFnAJrPKr82elZ3f0ku4O/nP2visf1qQU0pA57+E5tQ6u+JwH8nJ4NQfv6v/iuozH9pPdhfoRZn8OHX4HT3y+/93M9/E/PXVGzD6aQ9W8wcXZehS+M4UFUV1hrGKasiVVVRFEXuRZw7EadxygAlrXPlw7zM3C3K69UKa/NiME4Dx77F+5zlkkqhpaE9drkuxMcM/SkL3NQjpcg5yZSrRUL0dH2LAOqmYVWu8ZkYwziOs9rLKQdYVgUxel6/fsVhf8ToTNX144CIgbPNNl+4B0+zrOnHARc81WLBy5eX9NPEtz76DibAzaHDpZGyKJDkC8Gz9TlJa+p6we7YI3wkThOV1uAmmqrkZjgwuAkpQYmEktl7VxWasip58OCCelFyeXnFmzdvsVqRXEvyHcvaUFkByTPhcNGhpUCIQGHu+ksDhYhYmbACKqMIRrFa1rixgxAxBoSO1I2hqQusLTi0HTEWxDDhfE8IPTJNPD3f8GjdwMWKn759xeRbiCVVaekPO/r9LY3V1EZjJFSlYXd7jXORFMLJPpwIeB8Z+h4fEtZKSis4W9dYla2I2+2K7nBF17U8enhBL0EJQVWWKEmmMaeIFLmbVSCwpeb11SV6sWBqG7SQqFLgvWQY85JeFwUyJSpbEoYBaxQ9LSmJuS6JfKFOtuJ67xnH7EZ48eo5h8ORR4+f8OjJOwzjxOF4wFrD1dvXLFZrtquG4/4tLnkePnlM7zzfObtguVpxcX7OarFEi0RwgRglY+9YLks26xo35Yoq7yaUltR1yaPHjyirip9+/DG/8qvf48nTBxidFbmyKPAuZ9sBpK7mAwGJkDWLpSECk7+hbpZcXrdEPMfuSPCeMToWi4amydTr7njM961WiLpAyLxoeO+JxAyCmymdN7dX+SBnu84EcKnwzpOSwJhiPlgxOO+wSaKUYegP81KTq8By3cvEze1NBnzFRJSgrUWZvBTVTU1wnqquvyIqT1O29ceITAqlFbWucSFQ1fWpE1spiRQNbo48dN2Ame24PjjGIR8wIBJjNyBTtr+Ow8BysSB4l5e3pqGwmn4YuN3tYe5pjT4itcEozXK9QST49JNPWSwWrFZLhqFj6Ae0rEEI1us1h8ORxWLBzc01ZVEwDCPDMND3HYMQlDeWly9eMnR9znNrQ4i5uqnrO4zIanokgsxVS3eXhEKqnDs2lmEY8SG/jypl5os5mRcKEnKu7YohZEDXbPMNKUFMc72TOf25qRtEiqfcayShjJ5z+wFlNKU2aJPjAWK21iPyNax3AalEVrtTyrb/u98LSqN1tscHH/E+ZkJ2SkwuMg45kxt/URbL+/kLk6bpP2l5jfvDX+iB5T+lsN3P/fxtzF/xnE0h/PzCK+Yss5D3S+793M8v8XzjxXa1ypk2yLURWuuslFWZiJwpsJqYPMZqjDUUhWWacq9htqNl2IzQim7oiG4khkBdlnPmK6sDKQS0FKiyYLmuZ6BIou9HxnFiUVfsdntCCgQX2e92NIuC1WaZL3REzqBuzzY453j9+jVIwYMHj4jdQN/3nF9cIAS8ePEc7z2LZU0InkQgEUEImmZJqTMtd71aUZ+dY63l6vaGy5tjtjRPAx89epfv/fYHfP78JTcTbB48pcdw2N8iipKyalgvVtRVTb1ouD0MXJyfI2W+GF5oQREmnAIhR5ZNyfnZhqvLN2ip+e3f/gc8ffqYpq6oSsv5ZsnrVy/59//+33N7u8caw4OLdSb1GpOzd1YhbaRqDGUh8N0NsZ/oh4noAt96+IjxfE1MidTDaCPVTIW2Zku9kPyDf/h9vv+9HyBQdN3Azz79DOcd7zx9hxAC5xfnfPwnf0A8vMb6Pe8+qkkPKwpjaNuO82XJq89/xsMHD6iUoJCwbipu376msA0xDAhREKNDa8XLly94+PABSyMYuyuePFiyMw43juhqiZCSzXaNdyVlXRKiQ5It78PYUW83MI30k2PyjrpZcHu4oVlYEhO7159SNhUoRYoS4QWFKtAxEHrPcOyRQqOkJgbB0Hu22yXOuZMDIdcfad57730OhwPISNkYnjy9wBaCECJNbanrmsOhZH9suby6oqoiHxSGJw8eIqRmvdkgheLD997L6pqYlwdVEf3E7u0ObQRKCYSIODfM2fXI06cX/MY//A0+/fQzbFWgC0sIE0JIXPRzz7KHKBFzP2zXH1FK4rynH3pMVfDoyUN+9tkn+JBAgbUVKRiEVGhl0RooQ+4BTmBQoE3OcKe5JgYQI0DAjcN8YNQQEUyzRdpYy3q9xtrsDNjtduyPI27yEKcM/1osCCEvzLYw1LGmbhpA4oKnXNS5iicElNLcbW5aKrQ2jEqxP+zwwZE8yJgBcaSclQ/eE4IDo0gBRIj07pBt0VM+aPP9eKr80lozutwfXFc1Skti8lnZHj0PH1ww9n2GwVnL6CMhCoKLlNbguhG9WLM/7JEy26fLRZUdKm6iqs6oqyoDu9zEer1kGHoKYxFohn5gv9uzPVsTkiPJyO1xTzdORGkQuuD6ek+hNEjJs/fe5fWf/gnKKrRVoBRG6NndoFAktIok8sVaTJEUIcavHTKimCbHMEyz0podNJPzKKkQ2mD1/B4tEykFitntcjgcmMZ8mCnnrm6dMl05CTLBVYA0mckQQ8BHN9uRM3FeSjm7aObMdBJMo58VZccwZkBQtq3nX13qP4bm3M/f7sz9sPFmR+rzwej93M/fmfn6oUuCFF22Myt9v9zez/38ks43vioIs9LpvacsS4BZkc05uJyNE4zDgDEWpXKeresGQogURck4TEyTY/QjIeWMm9YaHzNoxsfAvj2yWixZLZdILTh0h9muHPE+g0yESVSVJYS8EBmbF44MWtKzHVnw4MGDbBmds75aa4SEyY0sFs0p31uWJVIoNmcbvvXRRzgfGadAf2zZ39zyD37t13ny5AnbszNuD3v+xb/8X6lXGz784D3++I//GB8FT569x5P3vgUi5/6eP/+S3e0NX372KYf2yNDn3tbVaonWkm99+AHaaHa3tyiZ+PKLz2iqBkTAas3Txxe8+/QBv/arv0LwEykEDjc3fHF7xaMHZwgiv/qD7+V+SFPwO7/zu2ituby8ynTWw4HL/RUk2KwqLCObbcMPf/gFb29ueXyx4n/8H/8HAvDv//2foL7zHi+ff4bWAqMF+92Oqii5unyDNQVlUfHd73wLNwOb6qZm6Hs+/9lP2V29zfAkJXnw4MGcp05cXr7i9/5//4LbmxuGYWS9alAqIT54l6JeUFUJUkddQYiRb3/7HaoqIeXAu8/O2G4tY7+mKhqGvmMcB2IK1HVJXddIAVVVcHtzQ1laEFBWJeM0UlYVCVhv1jnTnbLiNIUJkTLka1ktMSYTh30INFVBWVq6rqUsLKSa5XKBtVkpur295fZ2z3K5ouuOQMBNPf3Qs9/dYEy2BxdlxWEaaaoCBfixZ7lc41xgGEaUiuxvd4zDgCbx0fvv4ceeRV1zc9zhpgDi7mJfIGS+P1OK3O56fLyGlAgxcLO7ZbmumYYOKVK2MCeBkhqtDMd9n6FRfmQYWrruOEOCLNvNCqMEIea8cV1WWK0oy7yABmK21SpNSgE/TIyT+1qs4CsQG2TLrdLZHpzkvMvc1U1VNd7n3Pd2e5bz8ERSnE5q3bHtabuecj4o8yGRnbGJ5DwpZir72A8I5EwGz7n9GANKSmKShOCZRgdMNE0zu9yyxblt9+ASYXafGGPR2nA8HhEiq5W5GzkgRaZTS5n7gvu+xyjBarlk0Szo2zZnPjUgFTKEudJMzlU7I33fs1qtuN3tKMesvh+PLX2f7dQ+eKZhYL1eYm3O0LdtzziOrNcbzs62TNOA1hpj7YkxsD0/4/rqLU3ZoFHYqqKsKjo3EVOkMAVTNyKVQKl8cSaEnCnI+Z8TeVqI+TFVFIU85aJztdVdrlXMRGnDXba17/tTh7kxhr7vmZyjsRZrS2IMRB/QMtdZeZ+7muWc562Kgs7nKqPMW5jm9/pxvi0l+/aQD9uKbD3Oi3R22mitZ1DZ/fwiJk0Tqe1yfc296no/f0/mzs4s9P2h2v3czy/j/LWoyM65XJ2xWgHMmbhcyTMMU64JMXa2Kyf6fmAYepQyTOOE945Xr75EW02zbJico56tncH6uT7Cz/nPI1VdIZQgpZzx9d5R15merLTE2CVaa9brDcdjS13bfIF8bDk7O+fq6mauIMo1Lt47drsblstFtgQOI48ePUIpPdOYlxhdMkw9q9WG99/7gH/xz/45/6//9/+HZ++8w6/9xq8zjAPXu31WOgU8fucZCMX//sd/QrVYUla51zeEwH/4kz/FTwOFkry6uuL29hZjDN/97nep6iL3/rYHzi+2/NP/6Z/w4PFjjl3HzdUVZ2fnPHxwgRSCn/30pwgim9USQb5YVFpwe7tjs97y9OlTvvzyS8Zx4vLyaoZmSUzKVTW3Vy8Y9iUhJJpKo+SC//BH/5q6knz0ve+zrA3jOPD+s6d89vnP+OLTF3z04QdYW/D2zSV1WbG7uaFsGqwtGLojpMDr169JM+HXaMlms6GwJi8Rbpwf9w5jJN7DxcU5D+KWaXqEKSw+JYah5wfff3dejhJlVbDb7bi+umK5kDx9csab1zc8fnLByxcvePLkgq7tkArqRYkUUNYF59sttze3VFXFarXCh4Qpi/n5mJVKpRVFma2sbgqkJIkBxmGaacoTbXdk9eCMhxcbAC5mZf/q6pplU1LMF/m721uquuLysskgIiERUvLuO0+zxXaYWCyXfOtbH+Gnicn1PH76mKpp2G7PuLq64u3bN0zjwGa7xI8GNw4YC8aqk8U2W/TNDNKC0pcMU16IisLSVBVnmw1dp+m7A4u6oigqrCkgSfwUgIhWgu12zcXFhsurS/quZ7Va0NQVsRtRZKv14XhkmrI9l+ipCpvrrOYOWin1CfYWY5iJ5oa2bTP1POTqIFuUX2W2vePm+oroYybbxlylZY0k+pl8K3XuoJW5NmjyAR3SnI+dGPuRw37PYrGgNCVXV1dMOmevU9OgtcYWBhGy0metpLCzBZl4qhXruoCWmlwTnA8LQnBUVZGXXZkPwA6HI9M09xEbTfCOKARVVXF2dp6XOp9zqs55QnIn+FVRFCe2gNa59kiIXLmljcG7KWfE58f3cNijlKCuaqQQVJXm9jbM9TbgXGC5XCGE5uZ6R0qJ6+srlNas1kvamwPOTfPPMueU8XRdy3LR4CeXe7KlQis13+ZAmp9jQghkTF9bgEU+aPT+1J+dq9U6IB8GjOPIOI4nOCBk2NsdVDAfNGYaa5z/ufs45xzDMMy/V/LjY2x+/JumIoR0qmmzVhNioKhKlFanqikhJf000vfdf9EvwPv5i5O+BuRKkyPt93/5x4UA/i/JLN7P/fxdnxmKJe6V2/u5n1+6+caLbYwB56ashkwjSulZYci9sSklnA8Yq2jbjqqqZigTOOezHdlPJCKr9QqkIAzDCTBVFAUpJoZxoKprkpQMzhHGDIMx1qKNpqwK+r5FKgUo1us13/vu93n5/DWfffY5fd/PdSzZIr2ffymHEKibkidPHtEP/dzHa7O6uW9RSnM4vGa/63j0zlOkCblrVSievfs+T58+RSrDYlXx27/zu8SU2O9v2KxX2KLm9eU14xRAOG5vD1RVyfn5AxZVxWpRoE6LYOThw0fUdcnhsMe5kaqyPHp4AThWtWFZPUIpxac//RFFUVAaxdnZA5bLZe797A9A4vr6muvrG5rFkvfOH1DXDf/qX/0r/vRPf8iv/uoP+OKLzxn6jmax5Hd+63coipKXr96gS8v7H33AP/o//Q7Glrx8/hwtIikGHp1fYKUkeMejd57R2JLrmxua7RqUorAFw9hzc3OJmxwXDy6YpontJh8y/Omf/gnNoma73aK1PoF+vB+5ubkE4PZ2x253w7e+8xHvPH08V/1oYgq0xxv82PHsnQuG/siuH1ktl7z/3jtYLXj58gXf/vaH9F2LMZrd7Y6lWlIUFms1fT/w9OkTyrpBzkrcl18+R1tLY2q69kD0I9aWFLZEWYMiME4dy7pmtcgLclkYlNYcj7fEEFAKVuuGFCPn5+d8+MEzhnHkyeMLfvrTH2OLAiUlq+Waru2Z+h7XtcSxozCWP/vhT3j96iVl3fDk6VOGcURKqArDOPYQHEJEpLqjhUe0zs6HuwgASKwtQSSWzYIvpi+4unzLYlEgRaKp83N+uViRYqLvBorCEENgmLIiCpEYA0VhCN6jFGglSEFAzITqpBXM8EgfIl3foZSkKEtGH0+5eBBMk5/VTnGikEcSkxvpWofReraOCgY3kiKZ+pxSjhP4kbquqapiznBqhsnNP/NcEZQkCklVVMgk6NsOmUAC09Ajqoqz7YaoEqPPmV7n/OzIyJEoKcXJIZLc3Mk837dd3xFjwpoZaOUdTV2cDt2qsmSaBPvbHc3DC7ohW5C1Lbh8/RqkYRwnVqvVqVLI+9zte/cepLTm+voaW2SF2FpLipG+67HG8vz5c955+oR6saAoSoTIsK6U4HBoSSlyfv6AqszwMlsWpJiX4sJadsesxD979xmmyNVem+0GN03kK6+cg4WcPVdzJtiHMFenuRmQpk/L7N3P4Zw71TXdLezGaIrCzmCw7NhpmnpeXmfAk5KZQp5ynVQMgRhy17G1ZlbYI+P8HpGXWYn3Yc73Jqq6yhGRlKvJdrc7hBAURZEdAPcXlX/jE56//EXfhPu5n1/+uV9u7+d+finnm1OR3ZhtwCJfJKYUT/mm9tixXK3m6hVNXTe5liRB0ywoy5Lj8YDWhmfPnnFsj4zOUZYlRmuOxyNt37PdbDh/cMH27IxhGGbrYDtXPVh8yNUoyhikTCwWDdYaPvn0Ez5879sURcnv/d7vsVqt+Oyzz9ls1ojZGvz06VPOzjdICcdji1aGsqx4+vQZ4+B4/foNbZuhVJvtOZuLc96+eo0Qkrpp2J6dIaRifzwipMQUWaUyWuM8bLfndMPEy9eviTHw4sVzlk3NbrfnuJvYrho+/PADPvvsM/7oj/4dZZl7ZEMIdF3L559/Rl1ZrDHYouDy7VuePXuPwig++/RzCquxRvHw4SPOLjb823/7b1FK430kIVitN/T9wMNHj3n56g2TC5w/eII2Geb14u019WLBm92e65sdP6gbfvijH/PF519wuLllu9ny4Ycf0hvNxdkZZVHwD37jH3A8Hvn9f/v7fOe73+Vmt2e/3/O4ekSMkdvbW7TWPHz48KTc/PjHP2K/32GtoWlqdrtbHjx4wK/92q+ilCKEwIvnL7jd3fKbv/mbbDbrk3I2uZH2eORwzMpcVstKrK359NPPmKaRx48fYozm+rrDmCUhBUxhGNzIYrmg63Kn6Pn5GRG4urrCecexy1ZmEQP7mGurzs7OqVeWFAVd29PGESlAyYgxksVySfCet5dv6fuBd589Y5xGfvzjP+fs7AxjLU2d6c772xuevfMM70a+/OIz/OT49V//dRZ1CSnxG7/yA/ph4k//7IdsV2u252cs10usFgTvUCJhjEYIT94qNTHOkDOf1S5jivk+FBTWoqWkqWuqskCKiFaa9njEjRNGG7wLjEMH5Dyk0VkltEZzbFu8H9Ba4t2ID3pepBUxRIYwUMzVRqNzSAnSGJT+qo4rhHRS87z3p45rrRXjlO3NSkqk1CilaOoa7zONXM9/7geIiVlR1CChLDNNN/+dxGqDiIm6rJimCSkl9dw5TcrLq5tGks626hghhghzZnSuVyUEjzGWkCJWWxbLhkSi77q5JiIT0tvjPtuQtaCuFmijGfqWorAM/ZB7cuelz9iSullyOBwyTdt7uq470ZzvLLwhBkBhjKEsCsqiIMT8nD9fr+mHDmMMr1+/pqpK+n6gLEussWw2Ww4zLTYrnYnNZsXV5dVcebTg1du3PH36FLtese97lM69vlIIytnlIoRmchPTMFIUJXVVMzlHP/Q5xlHnip2+73+OZn1Xw9Y0DU3T5PqmaTx1gGdoH0zTeCJnq/l3xNdt6rm/PKAkp4ysFgqjNYfDgWZRZ0cAmf7etj1FUdIsGtrugNCCYWgp5j5fKdWpl/h+7ud+7udvfeboitCZdXA/93M/v/j5xoutUpka3B672ZIG3mcqasrgXpTUgMwXw2O28b1+/ZrlcklRGB4/fsAwjDx8+ABls0pxc3ODsZYnT56w2W5yno9Es1iQYmK93vD8+XNiSpRlTVWXWKs5HvdEJEJpjruW6+tbDocWIRT7/XG2S0uc8/zoRz/OF3J1jdaSy7dXlGVFSjv2+5ary2vG0bFcrtjvD1zv93wgBTc3N3jv+fTTTzkcDrPq7JlCYLFaUBjF0HVoU3L24BFVs0QJwbHtONtsePP6FZ/+7GMeP9zyWiZ+9rOfzXVGnBSu3Avcc3X5hg/ff5+qLDkcD2zXK1arNdvtGdZo/uAP/xCE4J/+k3/Ky9evePnyFd/+9nf4rd/+HXa3e/7ZP/tfMkF0rk96/8MPqRe/ji3LrJhojVSKJzfX/K//8v/Lzz5/wfr8EV88f4l0I+3hwMMHD9hstnRdR1lULJcb2q7ncDzy5z/+8am6Y7/f8+6771KWJX/+53+eVeWyxFrLe+++x9n5luPhwLFt+cH3v49Siuurq5OK/t3vfIeuGxhaz8/efknftzRNg7Gafsj9sJKJwhaQAjF0LJqaLz7/jN1uB4L5gndBiJEwjjy6uCB5z6PHj6iqiqurtyQhGaeBxaLhvCw5Oztj7DqmoePBgwu8dwx9VhtXy+pkt1w0C0xVIURiuVlhreby8pKbmysOhwNlafnyy88xxvAbv/Eb/Oqv/Br/5vf/NSEEVqsV//Sf/F8IznF7c4sfeiBx8/YNh0OLSolx6JnGgdvriWVTs1xUiOiZxoEkQBuN0ZYQMqAp6gxudM7TtQMojVQCN40En7tpx6FFKYnVmlQEgg7ZCqzFTAIPCJno9of5z4Jh7JAyYrREiHygkoJHypyrLSuLUoIUdT548J445yABhMgHFUVRZsvtMVdxNIsGKSQpRsahZ7lcZStwzMRh7wKqLHN2NYE2maDsfMj9rmWJNvq0GIYQ557VbPUNQWGUIAZPVReslyucd0whomyBlNCNI6CoqpJh7Of3pB4hoS6ypV4oiXc54rBZrVASYvAcYmC5aBhHlxfaWCAFFIXJP3P0ma6sDbYoaZr6pG6erPkmV0PdVdhcXV/9XK2Zcy5D+CRM88/Z9wM++Jkqn/PBx2NLSrBabYBs940x5P92OLBYNLTtka47YvSSy6u3qLLM93EUJB/xY16sfcwVOs4HyqIi+nAiIJM43d9lWZ4IxHf1a3dzp9zeWYLvFstMnFZzj3g4HVZBwjs/K+bZlZNzvVmtzS6gwDTlXG1ZCtxd3ZUg54tHRYyeZbXkbJvJ9FVZzqTr/+zfffdzP/dzP//lkxLJO4Q298vt/dzPL8F848U2pXwxu1jWDP2IcyGrHyHAbB8TQqAjSKFYNEsePnpIURguL9+yWCyw1vLHf/wf6IeB5XqTCZoyw0p+8zd/k8lnMM2xbfns889JIWC1ZbPZzB2zJYtmxTSNfP75Cz54/31ur1vGYWSxWGJNwXq1YbPd8P577xFCzHVE2uImz+FwpCxLNptz3ORZrpYslyu8C7x9+5bj8UDbHXh6/gw/9ux21zx9/JDSFjx79g7DNHI4Htm1B169es356gwlBNM0kpyjqQrqssDqLcf9jugmfvUH3+fJowu0zF6V6+srQLBerxiGgZub27ysIXn+/BVGSY7HI1VTc3l5RVm/QgjB03ffwXlHtah4+8NLJuf50Y9/wtvLa66vr6mqhu9//wH73Z6Hjx5DEkxTYvITX758wZcvX5Ak/Nqv/xr/1//b/53PPvmUf/dH/zvvP33KtrZMw8D/9nu/x2Z7waOHj/nZJ1/w0599TiLy+ZcvePbsGUkIpnFCac3L129pmpqnz97j7dUNbprYHw7cXF3y4vmXPH3yhOQjh9sdblbn/ThhlaY7tlxe7fjk0y958OAhy+WSySXee/+9XPF0PNIPLR//7HOePHkE5IXx7OyMqqr4+OOf8Ru/8Q9pFguW6w1t26MkPH7yJNNWvefq+ob1dstqtWC/P+DcyIsXLxARHj9+yM3tnnpR8vL1C6qqoChKUClTW0VkuVzy6aef8fHHH7Ner6mqitevX/Ps2bOTmmVtwbEbCCFxdv6Q9facLz//gv3tnu1qhZsm2vZA09S8/9479F3PR+pDBh9pyqzYFdaSYs5RkrI11qdA37UoqSmrBj0r8103Mk0eVMqnxCLX0Lgx9xpLUu7+lBKtFCTo2yPOj0iZiHFCioiSYLTGbtds10tubo65jzUm1AxKAmYYm5yVt4DSGuJXnqs7xUwpRdd19H1PjJGitAxjj9ISN/kM/YopZ53nbtLDYYexhno+nNgfuxnuJrm53eVowpx3VQhiygRkhKSwhsJqpjErzlPIFWLCmtm+KzDWoGTOV4/jSFlmwBEiH/Ksz7Ynq+zZZo2fJt6+eYV3E0ZLone0x+NcZQN+cmhrGKaRtmuJCazNFUYx5gVwGIbTz1dVFQC73Y6PPvqIECPD1FEUBbfBc3N7y8X5GUVhKKuStjvi3ERVlgiZqJtqrvwZ8T7wwQcfYK2hH9oZnCTZnm0Yu5H97paLBxf86PPPaYPn2YcforQmTbnubJwmkAIf4nw4UCBFVrdFgrooKcuKwFdAqbusrpk7pO/+/k79tzar8Hf25BAcUhqqqsgZ7JQ7o4EME0sJP2VLcwqJKWRLc0yBpqkpy3LO3o44P6Fcrki7U4yVTlSlIbgx91wbzdCG+7qf+7mf+/nFT4LkPcLaX/QtuZ/7+Xs/fy0q8nK5ZBgmqqqiaTRdN3I8dtRVgxB3J/dfWdBurq9xs33ZuZG+b/nBr3yPly9fIqXFx0hRFDx79oyu7/AhgBSUTc16u+HVi5fUdcP17Q1937M9O8OHxG7fUhRLEAXj5Li5OXB5ecXZdsv7778/59wU1hb0fc9v/dZvcXNzw2azyR93fsajRxu0krP1sOXL51/w3nvv8V7xjHqRs4IPtlt+9vHHrOoFt1dvc+Zy6NienbFa1LT7HevlknefPGF9fsHF+Tnnmw3DOHJ9dcWL55bueKA7tiwWDa9evSZn3SS///t/yK/+6q/wnW9/l91uh9GGFBzHw57JRepqwWK9REgY3cjnL79Eacn/8i//OVPvCB5+9KOPefr0Cd/61kdst1s+++xzBIJnz55hjGVR1RhrCe6C42HH46dPOd9s+P73vsd3P/iAi+USSWK7qum7nouHT7m+OfDo0ROObZt7KbXiweOnLNZbdrsd73/4EZ999hnD6FitCx4/ecpdwGQcR/q2ZVFZgg8nS6M15aw+HfEuMvR7Jud5/OTpXPPiEMCPfvJjEpEYPPv9nkN75Lee/iZWSfbHI9/64ENev33L9fWO65sdr95cIaXiy+dfogncPjxjmtxMUz1y7Fpudzu6bmCz3bJY1Ay9Q2nL7f4VL9+8YLe/pqoKpnHk+z/4FR4+fsx+d+TTTz7FaMN2veH1m9e8//77LJsF3bElhMCTx48zXOtmT1UvePz0Gbc31yQhuNntaduWpqq4uLjg6vINn37y47mDeA3K8ubNa6QyVHXFs6dPefjgAlJknEa6rkPrAqU0+93xZPmf5g5IkaCwFgHzYilJwYGS1FXJNE60IbJcLClKg3QRrSFEgQnqa0pcps3G4BEiW+NTTAiZYXFCRnwMGKsRUcy9z/qk0t2pdiHkjORymcm+kJAIrDZIJEZrYkrEkG3QZVlBTAitWC5XjM6D6Elk225C4mdSs5SSlBLD5HAhsFw2FKUhxYDUCmRi8CNmdiR0Y4+SGikztOnu8w+HA3WdlWDnHfvDAe8nmqpiWVes1kuq0jANPePQ0R6PWclGIhEZcGQMQhmqCDe3t/gQsSbnTO/AeneKZVZge9q25fb2du7+NtmhYszJan9+ds6r51+y39/y7Y8+Yre75vx8y+HQEmKcwXxHbm5u+Pa3v4W1muubS8ZpYBwHvHe8//57/Icf/jAfQoRI27WoJKm0QQo5x0ISUhuElAwhzo+lJAFSKTJijBMAS8yk5AzvyrCnqqqoqvL02N8ptMbkAwXnHCnNlW5J4Pw0H1wqur6DIKjrKn+uNiglmZybYy0Sa3OE5S5TeweLyl974soNFGXBoi4Z+zZfTN5LtvdzP/fzyzC5H40Z5X8/93M/v6D5xotttry1QO53HQd3UmtytiwglZztdhKlsvqSLcAlUsKzZ8+o64r33nuPRbMmzUqAD4Gf/vSnKKPZnG1zncXZGQC1LWeL3x0dtGazUVTVihgiZ9uH/He//bu0+xvKsuRXfuVXKIqCuq7x3lMUBS9fvuSzzz5juz0nJUHfT1xd3lAUluvrK6zVc11FR11XDDMshxSY+o4esCbDhB6cbVmsl5yfb+mPex6dX2T7I5Hzsw0vXrzETyP7m2sWZckHz96ZM2mO7333+9R1zX6/Z7Xa8OGHH84k0Axe6g4HrCloFkuGaWCxXNINHS++eMnrt69pu5YHFxf8d7/9j1nUK77z3e/x7N1nWFtyc32DLUrevr3kh3/+50Qf2NYLlqsV5w8v2DQ1Onlu377mn3/2CVpIbi4vuTg7YyoUwzjx/PlrXr++xtgapS3OO2pboEzBm7d5ifzpx58gpeDL5y95/uIVy+USpdRMn45YpXGrBW2bL8Yz1deyXA4zUEfy9u1b6uWaxXrDYtUQgufP/uxPObYtTVOj1HzRbBR/+Ad/QGkMMSYWqxWL5Yrf/d1/xG5/5MWr14zTxG534PHFBikVfb/n9nZHNwxcXefv3yxyzvvx48fc3hw4HjuKsmK9XdIsKg7HWyY30fU9L1++IkV4+eIFi8WawlquLm8QZJrvBx98QIiBvh14+eINyVh02RBGx25/RFvLi+cv+OKzT/lHv/M7XN/cIKTi/feeUVUFUln2vWN3e0Oz3PDo0WPKssa7RNM0IDQ3Nwf63rFcrDCmOGUdjTYstyuU0rx5e3VaLqqqIvi84FpjCC4wTRNdewQiUmZlTEoxA3pybRfIk+VzHEaykypXsUBCkPtOvc9W0mEYKMtmtpmmEzioKLJ1Nc6Mq2maWCwauq6nLPOiV1U5HyuwSKAsCwbviCmxWCxYrVa8ePkSyFAiFTOMbhwnSGLOGGukkvTjiJsGIGCURGvF4EeUyFbd4CNd16OVJQR/ojhDJgB3fc/+0FKVlsLmj+n7wLLJlvCxzz2r69Uqd6k6R4oxK5kpYQtLXTf44On6jovzsznzKU/VRXc0diEE+/0eWxSMbpifg9fc3NygZbaJ3yndk5tm6JrKmfWYDwmHub87524NZZmp6+M0sihz7Za1NhO8uyNVWXDcHUmTxxhNJefDjDg/7hJSiNiqQN6primRTrTreLKb33EAgBOxPtOXM5k7pZTVcKsxRuNnW7GW2SpOzIo/KWWEVYhM3kEC5x3dcPe+kGuglMzxEeccTW1RNh9iuHHMZPay5MGDByzrfFAWvf8v+w14P/dzP/fzNzX352z3cz+/8PnmVmTyhchiscR7h5CCvu9QWqJN1jSUEggRWa6WjN4xuZHJTYyHiXeePKbreySCqq6IIjCO2X64PxxYrRseP3lCiJGrm2uGrqUylqntGA9Z/bJa01Qlq+WSl69eIwrN1eU1/+pf/298/9vfYrl6QlEUuXKjKpmORzbnZ6y3G773g+9jiwqpLM+/fM6f/dkPs8o1dyIG73jz8gXvvvcuq/WWqlmwP7ScPXjIB+++R9M0CBI+Bj77/HPGaeTh+TmffPoZ+2NLvVjyh//u32FMwaNHD7l8/TKToqeBfhgZ+gFjzUkBKcuCy8vXTNPE8+dfst8fKIqaZ+8+4+3bN9hCo/cGoWC53DAOHj+BFAVDN9DuW/b7PUVZoJXmk09+xjhOeOf5gz/4I773nY/4tf/zt1iv1/iU0MUC5zyr1Yr+cOQnH/+E3/6tf5ipxUIRhOLi0WM+/M73ef36LVbCartCKsV0OfGd736HV69e0bYtddPQDwNffvkFby/fUtW5YkdJSdce0SqxWi5Zbzf85Cc/4Yvnz3n69Al1XfPli+cAvPfwnKJqsKVGSstqs+LLF19yOO7ZbFZcXFxkWE838tNPPme1XiGsJSLpXr/h5vaG3e2es/Nzvvftb2G1oO2OhJRolksuHj2mWSzmLGPONjZNw5PH76CUpm0PvHz1nOVyweGwpO8HjCrY7Q6sVxu+853vZhvtNLJaLTkeD5yfn3Hx4Ixje2SxqHn0+CE3h5Hlesv11SXr9SrTrWPgdnfNm6srbnY7PvzgfR5dbBDAy9eXTC6DhYbpiqIoUUpxM3fQIvJpb1lVuOhRUtIsaqZxnPOoYu71LElC4mLERYFUlslNuGnAKk1R54UgipBrcND4MIKYM49kqFNpimzfDrnHVGqJd25eWAuYbcC2tFiTsLY4WW+FiHj/VQYzxDBXu/i5WzZiTME09bkGKAIpEYOnMIYYA8E7xi5gC4sfB+S8MCsp82tTSrTNt0OqvAjKWT0ty4auPbLb7THWAJ4QPVIqqrLI1tuYb1tZZsKx87mGihSpygYhFId2YL1YcHV94Pb6Mt+/1TJndqVk8p5j11KUJYvlirYfSSlQVTVCSm5vbynLYlYeFYlcZ7Q926Ktpu1auqGnqGveXt0wDUO2la8Dh2PH6AObswu++OI5Dx5eYEwmTjvv8D5wbA88eecx+/0OWKKVgZTQUqK0YhhGTGnY7XcYJbAKtmcLRIT20KNsPhhyoyeQKIzFFAXGFqfbGkY394kXkL7K0iIE2uT+Wucc/dAh5Jz1DZng7UOYKfUi9xYXBgmkoOds85RvMzNsTKp8+CkFSipCiIzTRHSRpmqQSEbv2O12xJjwzmGVYLM5y1VbuwNffvEiq/RCcD/3cz/38wsfIe7V2vu5n1+C+caL7e0u1+aMU+6eFVFQVLnuZ3/coZRmuVywXK7xeAbXM7qJyTsKY3lzdcWD7TnLaoFWimE68sM/+zO897zzzjsYbXj54osMEnGe46GlKSqmQ0uBZNgfsFJxaxSr7YazsyWmsFw83LK/uaVZNLy9fEsS5LzWDHK5vLzkeDxiraWsFtiiYbVa8p3vfReip29b3rx6SdU0hEXDdrFGm5K3lzdMHoLQXO0P9M5hlGIYB3a3OxIJv0mMPvLg0WNWq9XJirhoauoPP+A4Z/SqquaNe8PN9RXPnj3DG4XSghBG3n//KUUB/TDy9N2PsGXJz774FH8ceef9pzR1xbvvvIcbIrc3e37zN/8hKY303ZEvv7iBGPjZzz7m2bNnvP/uOyyXCworWa1WVEsLOhFdZJoCQmiGzvHBh98GoVidX/CgLJkmz/Zh7qbc7XZE4dkfO1bbBeM4UBWWN29f4cPI7e6as7M1Dx+dURQ5i7c9O+Pm5oa+79jvb1g0Je+evccwDHzw0bfYnp/Rdh3HvkNby8NHD9Fa8/HPfspiuWSz2bBcrvjWh99isVjw4OGcu51GQPLBt77L69evWK+XLKqaBwKePn3Exz/5CdYojBaMk2O52rBYrnMtVFmxWCwQQpyyj0PXsVosubm64er6KtePxMQ0RIiKFATPv3jBJ9OnNHXDo0ePWK9XaC14990P+dGPf0T1ccHjJ49mFTAQJ8fzTz7n9ZsXaCsgTtzurlhv1nz86ScUpkLbkq4vKUtLvVijJs/m/BG3t3tu97c8ffYEHxxvL98Qo6SqSppQU1c1TVMzugHvJxbNAucGkBppNEkIbNmwOX9AZQ3tYY8fe5J3qJSoliVF3SAkpJi4vHxLVZQkDSlkMu16sUFLkyFRIs1ui3KmXEeiz9UuImmsyYtLCI5xnE4ZyzsS7mKxOPXZHtuOhIIkkCL34IqUMEphrWUaJwQQ3YgLgeAMD7YrSlvQ9T3BOZIUkBJSQxR5oU9zbY1SCiXyYqRUVos9IdtghTx1ad/tPTEllLb4GFDCIA0oXaBUyTC2XF0faNtjrrxRinaYEDJRFAJpDZvtJudhi1wh5aaRNEOX2jZX7eTaG4OQgEjs2z3jNOKiJwmJjJFl3YCQOVMtNNqWJKlwIaFsyWpzhpCJFAPj5FisFqw2DecXGySCtm2pqhJBrnwqq5J6UXPbZz5A0VQoHKP3eSnNUV+GdiSQEFoTSPiY0DH3+yLIXcnkRXaaJsZpJKY0268lk3dIJedDjIiQAoFCzMtvBolFEuBDyoptTHgf6MZp7rPNbh6jNELkzmORFFZotFXZBh8T6+UKHwNt1+WatvocUmSxWOSaJa2wRcXQ96cIzP3cz/3czy9spEQodV/7cz/380sw31yxjQJrLUpqQoDFYgFkguU0Tuz3e8qi4Ngds71NZftgWZRst1vMfLE5TROHY8TWmu9/97sYY3j32bu8ePESpQzTNLLfHTne7vHTlNUbq2kKw8XFOcoa3r55Q1lVbMyW1XKBTInFcklVVbx69QopJT/4/veZnOM73/kOb968QSnF5dUNDx494dnTd5jGgWkc2N/ccLHdsFosaOpcP6SKijc3N9lWOAx0xyObzZrDfp9JuYuGpsnq6p/+6Q9ZrVYsl8sTJXSa8kX/ZrOZFVrP06dPMEZzfn6G947d/gatFWVZ8uTJE16/fstPP/4pUmtevnzBxUVWJ6y1vHr5iqZq+LVf+Q2klFxftzx8+JDD4ch2u+HJk8eUZUmMke12y3//3/9jXr16xXqzxrtIIvL67StihGqxZH/c8fkXnzNMfc4lHju2m0wbPRyPp+7K//BHf0izWPwf7P3pkiRrft6J/d7F99hzq+1U1dnQDXQ3QQIiyCEBjjQjo81Qwy8yXYJuQHcx1yOT2cg0YxyThqQIggSxdDe6+/RZa8s9Nt/fTR/eyDzdAho8WAiARP7NyqwqK9LdI9wjwp/32Tg+PiJTCp3lPD49ZbVYUNc1mU548+YNfdOwnM1IlUIdfG9N03wtlS3LyPyO4yEwa80wjCRKY4cRnEcLycvnL9hsNmxv11xfXMb0XiH55NPPOFquyPOUoWvx1mKtYRxHmrYm1QlVNYmsYAjs2z3eepp9fV9Dc3V1xYsXL9isN+x2O0II9wsP3h9CxpKEqqx4/Ogx3sH3//CHnJ6dsFotEULy6OwxHM7nZrNBCMXx0TPmc8nx8YIvX33Oj370I9I04cmTpzR1x3azo+s6ssdL9m3NR9/6FW6uNsznS46Oz3jz9nWUy0rBMA68995LptMZxoz0XccyW5IozXVzgbXRw4gCM7Z4N9D3NUNX462kH2pM36GCx3kQGIwT9EPsr73rFA5BUBUTsqxktpiT5TmWWN91F8aTJCnDYCOISBNC8EgpsDYm/kKUpkaGNv7OnTUhyyTWOPIsA6AqS9zhsVJKpFIkWYoJDmMcgYAfDXmagZAkOmExjx2sm/WGoR9A6XtPpxAhWh2ERKmELIv+bu88EoGSEhc4SGWjnJaDlFgJeZBWx/7s3X5P19TgPVkaWeRhGGPirvCs1xvKMufo5IRmu8U5R9PUWOcwbccwGrTiPlCsaRuSNGEYx+gXPVQWueBInUdrTb3foxNFmqWHPm19eK9oEp3Qj22UEJcFeZpxdHREmqbsDqFaV1fXvPfsCf3gEFJinMUFj0o0s8Wc2XzGrqm5Xa9JdA7Bo4TAOIsUEvA4RjpnyfKMLE1j2FSQ0ddbFBR5tIAIFft+Y3KzpJyUeB+93kiJGQbGrgcHkbEVOA+OKOdO05TJZBJDzkYfrSc2Jm8HH9AonHc47wgHX/IwjtH3ewiCs9YydG1M1Lb2vl5KJ7EL92Ee5mEe5q9lBAidRrb2AdQ+zMP8jZhvDGzju1aSpvmh2sLjHOy2O4SQFMWEoqwwtmda5aRZRjWpWK9v2dxc8+zJUx6dnbJbbyiKKZOypG0btBDst1vcaMirnCA12/WasesZGZAi4ermhuOTE6rphLOzM1arFQH4/g9/wCdv3vDxxx9TVRVFUUSJZ99TVRVKa9IkocjzQ5duy+V59MAG7yAELt6+RRDiDZ5P6PYdZrslryZorWj3O/qu4bPrC6QUFHnOfBq3LYiMxk9/+lNWq9V9QmhVRR/ieADmfd/fs4b7/Z5h6NBa8fzFcz777It7/6KU8cZuOpvy/PlzvA+8fXPO+mbNOBh+8smPkUIicFGGnOWcn19QVbGaZDab0TQdq1X0/P3+H/4hs9mcspwxnUxYHZ3y7vKSIs/46KMPUUpirWFWliQ6pvkt5lPyPKOpG25vbgkEUq0I1tIPAyEE1re3nF9cELzn+OgIay23NzesViuOj47uPXqbzQZrLUURZaAXFxdorRnHkd1uz35Xc3Z2hhnG+0AjYy3pATgdnxzTDyPP33tGVVXstzuCjx6/aVVx9vgRwTlub29pmpYXz1/gnL9PaHbWcnV1xWKxwBkbAbExFEVBlsWU3NgLCmdnZ2RZFtmqYeD4+IzV8QmTyYS+75jNJjx+8oxh7BnHAaUTjLGUVUlAEWKmLN/7zvf4vd//D/zk6o948iQmWQ+m53q9ZRgG/uD3f0jb9RwfnRxYwIwsT7m9vcZZy3q95quvvkJrzdMnT2LN1AH8b7f7Q91NT/AWvKPerlnfXkUZrIhMWao1BIsxI23vCMFh3Yh1hiTVpFlGN/Ts6oam6w71Mp405dBLm5AkCcaMB2/7iDEmrkhLSXaQqTofgYpUKoKPcTwk7QaCM2iRIaRAKokZXQy5ktD2bVz80hop7zz6lqZt6YYRCZhDxU+Wl0jncSHgrCNNErIkxzqLsx6JItMSNzqkiuD6DrxrKRkPntAQxH0NjY+Wz/vFF3mQ50olMX2HlorJZMK2jkqQ2XRCmqSMSYpW+iCPtSgda66CM4BEJzpK2pEMg8H6WIkmJSRpSgg+7lMKmrpmnE1ZzKacnZ1xc3VJnmW0bYtxPUMfF4fGNKOqKqy1h2qwlnEYGI2haTuk1mx2O4z15EWJdZ7b7Y71ZkNRVRRZTrvtELEsGCFjN5s91DYFa3HpiPWeobeHVOuM9LAoEQSoJMEZi9KavuvY11u01vfZAAKBUhIh1M+kJ3vM4fooioI8TWnamEI9dH1MVk4S8HERxPuAJ4ZwOe/xISCUPEiPt9hxvF98Kori3sv8EB71MA/zMH8dI5QGFRUrD/MwD/M3Z74xsI0sRkZdN8xmc9q2w4yGLCsOskWwxpDksR6iKkvSLMP0A+/eveVKamZlxcXFOavFDDsYhId2X/Pqi69I0xw7WOq6xo2WRGn2bUuSSabzOSrR1G1D/9VXtG1L8J4PX7zPs8dPMNay3+/ph4HHT57gvefq6ordLqbTKilx1pHkGdvtjq59jDXm/s9uu+X66vre36fTBA6Sub7vWcynFHnG0dHyECIjUVLS9x3XN9f89m//Wx49esx/+9/+NyyPVodexpHj+YyjoyOSJKGuGwBC8OzrPWVREPCxLzTPQQqCjM9RKclkUiGlZjabc3p8FnsplSJNUoaxQ4rAZ59/jnWeLC948vgxUkr0oZ7j+OSUV29esd5sOTt7SlFMmM0W+OCp2wZjR9brG8ZxoG8asjS/7948OjqKklI7IqUg2JG67di3sVbJGssHL19yc3OLsw5nLEWeo5Xi/N07kjRlOp0C0Pf9PZP9rW99i6ZpuLy8xBgbJZ/7muPVUXxuaUrd1Ox2e+bzOVVRUZYV/vYGSaDIM4ahZz5f4qzl4uIcrTVXNzfcXFzz6OSMR2ePIhPrPLP5jKqsSNOU05OTyKY7y9X1NUdHR/fgdjqdslqtaJqGm5sblosl0+mcx0+eEXzgxz/+Eft9i3MHqa5M0DolTQuUVoCkLHO8tSipWM6XaKX4yU9+jLGObmi5vrnk/fc/4OjkhMdpTnCHMCSZoQ8LMM+ePSXNol/5u9/5Duv1mvN3F5jRMC3Lw/vQMPQjbd3RNh2b9Y6uG0m0QqcJSiqMsdghAgcpdQQzQsRjFR7nDDpN8Qh0liC0pCjTeKx9TNC13tynHocQIhuLRB484v4O1GqNPbCV4xjBkhaSIsuxh5qnCH4F3RAD0YQQdH1PUU3QSRZZ/Txnt91GgNwP7PZ7go/BUmmeReauGzFmxLuvGXZ9SNeVUiMOLKExloDAeod3HiUVPkSvJoDS+dfVRFmKdY4yy3E2hkTlZXXwx1tkFr2ku92OREoCgjTJud3UpCiKssILcD7KcCNr28bwKCnw4RDEJSUq0Ugp0FoxmVTkeXqwZUn2+x2r5XOatma+mMWOYufY7/ccrVZUVYUz9hA8N8Nah05ib2I39PeMbT8MeCDNc6azKW505FmKtz1ZkgASIST+0JFsRoMZB8T9zy1miNdmkkTmmUNImLcGpQsSreHweQ/E9Gohv+6v9YEkUffHL6WkzHPMOJLnGVJK+r5HBIjkr8D7mMAtREzGHg8p0/Eca7IkQUtJUZYs5nMWqyWvX7/m9vb2L+WL8GEe5mEe5hdNkCJ21AqB//AJKIVQ30AtMhjUq+tfsNEQC+r/YyPEX6wf95vu52Ee5r+Q+cbA9m6VXOvoMVMqysGSJGU89BNKrVFa0Pcd8/mMREqePDoDZxn7AWcN7z1/L0oEfcJ8NgOgLCrmszl9P97fNNX7PQD9ODKdTA435pq6bthvdzx5/JhxGFjM5zhCDKsaR+wh9KaaTKiqCq0UWmnGvmcwhuPjY54/f07b1EwnE25vbvn9//D7pGmKPngGpZbs93u0UjG9te9wdiR4w8XFBeAJPpCWU56/fMGHH38Ug6OylNl8jpTx99frWwZjUFodunYnaK3p+oFhjCzYMAxMJhUIxc36Fk9kLp2xXF5cIoD9dkdTNzx+/Jhnz57iQ/SrBSDLC6zz/O7v/R5nZ4+4vLzg+OSEsiiYzub84Ps/5PGTZ+SHRQUEpInG2Z5EC56/94KxHajrmrOzR2RZxn6/58mjU7oD07xaLijynKK0ZHlB0zRsN1vyw2O990yqCQJBVU2YL+YkSYJzsfLn+fMYvuVcBOfHx8cs5gvqXWTMyrIkSRK+/PJLnj19xoW+oG1bvHMgQAnY77ZUB3A3jiOvvvqKTz/9lOPjYx4/fsxqfsR2u6PIC66ur/He0/Ud1jp2uy1aaZarJUoqXrx4QZqm7Pf7Q2L1yMXFxT27vN/XCJmy2ewoygIhJfu6RipJmiZYa7i+usUFR288fdcTnOPm5oaqKLh4d041rVBa8ezFe9yu1+gk4XZzw6s3r3jvvRfIAMbAyemK/X5LliVcXF7QtAO/8Rv/gJvbW5yxaJ0gUVgbAcMnn/yU7XbHzfWWejdyfbXnqy8uyLKUqixjKNM4EpyjyDKcG0lSxepkRpqBMR2jHXDO4HyIwUBpQj+E+OUpJePQI7ouLrgIAUKQ5lnMSRYCrWMQ0DCM9/22/TDQ9T1pkpBmKYmQNG0b3+s2hgZVVcU4juRFTjWpaNpYWSOEoCqL+Nrvdjx+9Iirq0u6tiMEjxkHkjShqsqYhOs9fT8SfB59mncMsjUMzhxAZlxFlyKGFAUhMQcp9zgO9yoCay1Vkd9LZJMkJcsyrDV4H6KSApCE2FE4jAQCSZqSJClVNWGzvo7p31lKmmf4YYiJ71KgiIx1TF5uwfsIwG38zBzGns4ajk+OkTIGI+lEMp1MODo6Yn1I9l6v13z200/J8/wg987gkHJdFhW7umEcDe3Qk2Qp89WK5XLF0PaIzCOpaehxNlayKa3whwRsKTUEQV23tH0E/JvthulsRpImMYwvjanwRZ6jdQSmzsa05DuftSBWBcXKI3vfUX5nqcjynCxL0VJizIA7hFUJIiiWIQavxPMX7lUc+EDX9+RZihlHLi8uyMtYpSX/Ijd8D/MwD/Mwf8r4RytQkrCYEk4XAIRvAmh/dhtPj/7En4tdh7za/Md/fzEhHE3/TPv8uf3sO+Tlz+zHB+TllocI54f5L3W+MbBdLhf3gTHDMKCUiJU3/UDT1Djn2exuOX60ZLGY0+x3JELw5PFjFLDdbFBS0LYN46hi8qcAQjh4/wJXl9cYYxjHGHwSQsA7x/m7d0xnswislaJrWowZSbMM5x0y0QzORj/XdIoZImg0w0CqE370ox9xfHTEdDZlvduQJgrvHV989hn1vo434llKojRt1+GNIy0yEh07KpXQPHp8xtFizrPnz0lTTZamyKQgSI3Smn/9b/4Nl9dXSK148+YNWmvKssQTePPqFVmWst3vePLkCU3XstlsGceBqprw0cffwnnPyaMTsjwn0QnOOoZhIEtTuqala1uqqmS5XGB9DHy5ubllGHrKsuTF+x8wjgOzxYLnz1+QJBpjB45Pzqibln4ccMEdmlwceZYQQoG3hrOzUxbzCEYJgfl0SpZlOGdp6tgzKaSI/cBKMZvPcDYmoa6SJNa4HCSIZVVxeXUZU1MPLN7FxQWz2ewe6E4mE16/fk3X9JHdGoafk5HneX5fhaQTyXReMQwj+/3+HggvVyt+fbliuVxGz6aUBHtI5SVECelh4QQhuL66IisKJtMJwziyXq9Zr9e0bYu1lrIsvwYMxBt/5wPVtEIowcLE/ua2rTm/OGe2mCKUZLFa0LU952/eUhYlb1694fmz9xhsXHSpJhWPnz2hrHLapmW/r2m6HWM3cHlxwenpCZOqJNGK7WaDdYFXr1+T6IQ0SRFIVosjqrzkyy+/4t/8m3/LV1++YRwlHsF2/0N++Eefk+UpZVmSJyn20CccvCPRgfmi4v/8f/k/cXwyid7QQ9VP3xu6tmPsR9rOImTsm0VIVJKQl+V9hU3X9SitkCImEwshYoDaobM1y6N01XrHaAxpWSIkGGeYTWOwWpIm0cOpNEVRUJYV3dDTdR3j0MbEZG9wbmC5mKFFZIq1VjRdjZSKskzxLpCnCdZ6BAFnR3SaHXpaA9baCHwPaefWefKiuAevzot7m4A/+DiNiJ2qZXFXLxbzAcqiYLtbMymKuKi3r+nanjTJCIEDyI/+VeEUqUpxAZzzsRgWQZomIDh4jAVjPzKbTdjttnz4wfvstxtUqplMSoKPUnytNVmW0TUtANvt9r5WyxrDZrthuVrS7BuElKRJShEC1nnG0eKtZ7fdE4xlOZkxFCP7fRODq8YBrbP7HITon45VSjpReC/px4HRDLFeqe9w3lGoMr5u8Ynd+9dDAO8CWZYfzlc8dilj1VGUe0cAfHl5ybSaREm9iX7ZoR9BQFmWhBDiAmYTk6SVUuADZVmggkBKSVEUTCdTJpMJRycnfznfhA/zMA/zt3pCERcLw2KCf3IcfzYr/8JS4/ALFt/CosIvqr/Qtr/R/ucVfv4z+wkgnxzFv/wibCuA0aG+OP/6R8aBeahXe5i/+fONge3N7SXWOpaLJeBin2KRst7c0vUNSmmQUJQFTV0zn04pspz9ekuV5ZjszptrUVrS9B29GZEySuDevHvHdrej73q8jzeBfdeR5xWPzx5xfX1NnqT8V7/1W5ydnXFxccFkNiMQ+PTzz7jdbjg5PaVoMhazOUdHR+y3W06Ojjk7OUUi6MeW6ayMHYrG896zZ/GmS0rW6xjMYqzBAzqJTMVut6Xe7Ritp5jOMdstQSjKyZxuNPfyw3/+z/85JycnhBA4OTm5B0paax49Oj3c1Cr0IeiIEAO49vs9xjh0ogjC0w8tgpLgiWE+LrLkeZ6x328xZsD6gA+QZRnz+fIQqJKw3mz59re/zWq55PWbV7Tdnl29o2sHFvMFaZ6z36xRUlBVOVUZwWfdtDHtdvxaYrpvWzabDcMwUFQThtHS9Ia8KKN/ORH3qbjd0EcQJiVplt57jfu+ZzabkaYp8/mcEALT6ZQkSbi4uKQfh8hqJZp9E4OcXr99w6NHj+Dw8zRTTCYl9b5hu7lFJylNGxcG5vMFXgguL6/Z3lzjneX4+Ijdbk9RlbRjBMmXlxexhiTPQAiGYeDy8pJnz54dGNqoDtjtdhhj+OKLLzh99IQnT59FRlIJhsHyxRefcXt7w3a3wXvLYrnk/OqS4AVD3TKtJmAdUirqfU1ZlqRZAsrj5ciuuyYvS7wwjG5Ap4qb22uaJmPse1ar5UGm2WJVwn63p8grqmICXvDll6+o9y3GegYLQij6wdGbBtn2TEaPRBKcw1tLsJbAyLrZ8+rdBdNlAXisNWiZgPNkKqEqJ3RDE5UEQ5TAEnoIEaRIKenanrIqETrcS8u1jh8fdV1Hdpd4Te7rPUWVk00Kxn4ABZlOwUeJq7cOrGU6myKEIzhDkSXMpjM0nuAMk2rC6WrB69ev6IY9aRJ9m5PJhP2uBqnou5aqmpLojOPjE/I8jbVB1nF1c8v19TWN6VAyej8TIQkqdrB2XRcBeZYdgHt3CMqKCzoAQgjevH3LpCpI0+ygxIgA21gPh8TtJM1ou/6QdOwIHvKijAt2hyRiCCRSUVUFs2lJ29QkKsVawzD2zKcTAoGub5nMTjk/P4/ecB+Bd5qmB8tHoChLqqJgMZnT7hvevHlDOa2w/ci8mnFxc4UdRpLJlHps+fyrL8izEp1qnBOE0TLa4T75OiYjW5IiQyQxzKmaRZVMkkapdjcOB/ldTKdWUoESpGXCOBqcjNJ3Zy373e5QAxcBrtaa3WZDmiU0dcOkrKLMuetRInbjWucY78KhkgRz+HtcYMhwXbwu87JgUsY8BSklV5eXf3nfhg/zMA/z55v/zGymIUvx7/3sopggPD0m6L8FdT0C/LT4Rg/1P8MUi6ZHrmsIAfX6GqzngfV9mL+J842BrU4kWguyQtP1DXWzoygzyjIDZiRJSpInaC0JTpBlKePQsTo5ZblY0vctzhnSLGEynaCzhJPjY5RSvHr1ms70zBYLXFgzDBFgaa15evaY07Mz5pMZSBjGkV29Z3F8RCB2fy6Pj5BpQgC29Z7bmxuCD8wmEyZlhR3H6Ntad0wmBc56dCIpi5zr6xs++/wLBmN5/fodH3/0AR9/+9tcXl9zc32Nc5b3nj0Dpfnd3/9DgnexR/fiktXxCdbFoKRnz55FyeDtLXmWkaQpRVGgtUYnik8/+xQpJE3TxdcqSdmfXzCdziiK6LdzYaDtGrquI3iBtZ5JWaGV5vzmBucMb96+oe0Hum5gvlhwfHwcAeHr15RFcQ8y5vMZt5tryqLgyy9fAYKqqNiubzl/94blYsLJ8Yq6bTi/2DCZzA5VKQKIstHlcsVkKqKsUyqKKuX8/IJPP/2Up0+fslxGL+luv4+9s2nK7/3e72GtJc9zqiquEpZlidaa8/Nz3r59izGGumlYr7d89OGHVNMJT549pd7vabsO6x2ffv4Z89mMLNXkaYLzlvlsTkDw408+Ybla8p3v/R20Snj+/CXeGrabW5Ik4bNPP6WaTu5l4UGIQ7p2wmweFz3ee+891ut19INXFd57Hj9+TNd1fPb55yyWc3rT01w1TCZV9JxqCNLzvV/9LkUZz+3//C/+BcvFiu1uyyc//Amr2YL1+pbjR8fkZcbxyRE/+vSP6Mw6SinzGU275+V7H0QwN4nHuLm9xXvHfDHn9vYWgSTPCiZVlOj/9r/+Hf7tb/9O7Cp2Dus9HodzIIUm1wljcOANztiYQmxdvF7zjNEHRutIdOwgNd2I8IFUKnCB0XikStGJIAhLPzqkdkgTk4yTtCAQX0sEmIMfMgiiVEuIWHcjQCUaK2Kwmh9jl/VsMkUFyJMUJSXBe2TwPDpeIU6PaOqGPJUcLWf0XYvAoGXKy/eeMoaRfbOnqqY46zk5WWFtwLnAbDrn/PyCzeYmSljDoStVpwfQKhiNoT8kFMfXTiBkDCYahoExeBKpWK3O6PuW/W4Xw+aaBiklWZYTgHGMaeE+CLRKyYsKax3WOjyBVGtGM9L2MenYhXAIVRIHP2+GdRatU+q65unjD2maPYv5nCJPUQfJLnC/KFYWZQTlB2XE3eJZlqTs1xu6uqHQCRiHHy0nT4/Ii4Ku72j3NW3bsqt3IDUqiXVHQkmc9fRdrM5BeLwX6AD+4NXVaRp7hnE0fUOWpdTdHh8sVVke1BjRQ51lKXXd3gexjePIZFoxmU7uvcyLxQLvLccn8TPfmCGei6GJXcixPPdQ92bgoBQYxxFnLfoQJmZHw97uuLy+oppODosGD/MwD/NXNUFJwvJrwBOWU8Kj1V/jEf05RgpC8vDZ8WeZUOW4Ki5g+7MlWIf+/AKsRezav+aje5iH+Xq+ObDV8hDkISmKyHIoBfPFlMm0ZBgMLkQmxFtL37RoH7ALy2a9RilFnqX0ZqQfekxXs9luKMqSYRyoptMIaAVIrcB7JtMpSgiuzi+ir1RA10VZbZpnFFWJ0hqpNU+ePWO/26GVQvjAT/7oRygho6/UB8xoQDomsxKhoqLi4uKcxWLFP/pH/4jL6xtevHifjz76kNliydMX75NozfX1FcPQs9usmcxmTKqKR2dnDMPAdDaNkmdr4w3kbsd+v2e73eKc5fTklMVyibUjdV1zdXnFbLZgOtWMo2E6nVJVU7qu582bN1zdvuHDD9+nKqfsdw3n7y65vrpmc3vN//A//DOOj5dsd1uSrKBuWv79v//3nJ6ecnp6yrNnMTn47ds3/E//0/+T6WzCf//P/jvef/8Fx8cn/PCHP+L4qOTjjz7g//F/f8V6fctHH77go1/6iNniMU3T4UNMcL66uopANYshO4HAqijZNR0rY6mmU54/f4/Ly0vyPOfR0ydkWfzAu12vefzo0X2v6R27F7tqp7x88SKy3CEQhGQ6ndJ3PcYaLi8uqUwMLULAbLkgEYGbm2vKsiLPc/pxJE0iS/T973+fEARZnuOcZb/fsFwsQCuubm/Y1HuWyyW7eo8xhslsymdffE6mY8AWAdab9cHjWREIGGN4/OgRaZpyvb7BmJF3715zfX3Je+894+mzJzgf64bevHnFZ599Sp69xQ8ebFxgMGZgU28o5zk39S3n12+YLBVdL+jalhfPPkAp6IaWq8tr0iTl8ekp2/2O7XbDcrWiLCYM/cjNzQ17ted3f/c/cHNzS5oe3nuJiEFQwhCEx8sEVIIXMVk2SE9apIyDobeeIDVXt7cEW4MbCINHoQlWIgMkSXaQsXYxfCkEnPUEqQ5ex5EkaHKd3st379jcoiwig2dgNAapFaMzSC05Pj0BG48pywqm1YSqKOnbljGMkZ0tJ9ixB2+ZVDkyxEqh/W6HGQ3lomQYW4QITCYzyirDO9hs9mw2N/R9iw8OrWJtzm63p/VDlCK7r72aAoESEploxIH9NCYGRgmdoLRivdkw9gNd11FNJsxmEWifHB+zvV0jhMKMI5nOCBCtEweWMU1ThjomfN/5SqWSB2VDZHdPjlc4Y3jy5DE+eKwxSAl5FoHn5eUlddNQlSXb7fa+MukO3EKsTwohUO/2DG2P0pIszxmNod7tsc4ym8TPplYIPDGJejpJyasCGwJeWPIkyrMJMXXa+4BQChs8wRp0omOndN9xdX1N3TYQApnWZFnOEMaDjaAkT1Patscag7GGXXBkecYwRBVA8I6yLBBECXNd13jn0TK+F51zWGMxB+8xUsRFFGJdk3CBIDyDGQ/+5sjqtvX+L/Hr8GEe5mHuJiT6non1HzyBNH7+oCV+NfvrO7CH+WufkGpINeY7zxHWIbYNct8h393CIXvhYR7mF01IFUH9yTIP2cfGmr/IfGNgmyUTtFLgNUU+IQTPdrOL8r0sxdqOtu1ZHJ2QHMKaOmn46WefMZqRPM9JsgQfAmePHnE8PybLshh2olPevjtnt93Tti2ZzsB6ymkZvX1KUU0q2qHHjIbjsyXT2QydpwQhyIzh8vycm+sbJpOKse85PTuOdT1Dg4CY8qkSTG9QSjEpJnR1z9D2BOt5enqGOBNcXFxwfn7B1e0txycnfPDBh6yWS7abNdfXl1xeXvK//Iv/hbre8Vu/+VskiSbNUkCQF4pHj14ym0y5vrxgWk1QUuE8PDo+pnn2Hm03kBcx8KkoK9IsY7acIxPBycmUJ49OSHSOOBN8+OIl9W4PwZMXGZubNTrVDMMIQvKbv/Vb0aM2DJRlgXOG58+fkWeai7ev+f/8r/8zN1ff5Zd/+Xv85j/+xxRZSb3f8Pd/4zfQ0vPk0Qn7es/NzSXeQ103yIM8cV/X7PZ70ixF64Tr62vGYSQRAuMcputZzZeM1lKUFVU15fWb12RFhdYJ8/kcrdUhhMfTdw1X11ekOmExn5FkOWmWY40l1RIRBB998ALvA6+++gqlNYmEoR+xxqOTwHDoB5Yy4fl7L1gdHbNYLGLIVdey228IPhxSZvdMJhPyPGM5m+G9ZzabcXt5S99ZkiRhOZ/jRo8QcHS0RGqF9Q6dxs7U07Mjlssl+3rHMHR88flnECLoOX+3YbvZ8OLpI1bLE9p9Q98OrNcbbjcjQsPy8Yz9sEaXgryoqOuat2+/oqxmoBTDOHC1u44VNlPJ9eaGk5NTfvk7v4RWKV9+9Qpn4LNPv+DVxRu8DxgTsNKRTBXeGkIwBKlQecYH336CMYbPP/2McRjIqpxhcIBku93w9Ml7iLSgrXt0ofA2Ah4rLXW7xjhPP0bWTUrNMPYkSUaeRN+pdY5+6GNyMlBVE8w4oJIEJQQyywhCIEVgu9+x3u7gVPL86VP2mw1JnpGUKb3pqRYVq3RG0+7AGfJUHTz8kqPjBdvNhqPlLNbM5Alp+hiQFEWJGS15mpNpRb1vKLME8ow0TZktFtzebnh3fsV6s2M8VMkgRawe0jomuB+uyxBC9MBKwb5p8D6g0pS+78i8w+FRSQTqs+Uc3r1FOAHC0fd7rPP44O69yOEg5VeHBM1xGCGAEAGEY7vZsr694enTxzG8bBg4OV7hhcBYS5CKarLA2cgynx2fsN9uo2TYe9q2oSxLdtsdqU4YvKVeN0xsDANTQaCTDN8bvLEor5iUc0ZnmSzn2ABVpmiblrEdwUGZVyip2dcNOk0xdsQLh04Et5tzlosFL1+c8fa1YXO7RuMZxoy67ciyFC8cSiimk4LgMoa+h1TTm57R9qA9ZuiQSULXNEzyiuW0QnjY18PhOyAh0xpxSJc2o4031UJgrMFJQaIl1jvc6MAplNKkSfoX+gJ8mId5mJ8f/2gFWYJ///HXQUkPlTYP8wsmaEU4muGPZoinRzEFehiR17u/7kN7mL8BMzybYo5/Xvre/dKS8fRP9pdPfu+C8ke3JNfdn3uf3xjYml4gMsU4jEwmJUKFu/uOuBpf5LGHtBso5gWPnp9RltU9mxKCv++rVEJSJhlZVjD0I+fnl9R1E7sUuwGRwLScUO92ZElOkia0Nx3Hp6f329jXe46KE5arJbvtjiLJeHx2xvHxinfv3jKdVKxWEZScn79DeYnyih/83g/ou56/83f+DmdnZ7Fmwll26zV5ljErC/ZDz8sXzyjyktV8hneOPMs5OT7lg/ff58MPX7Be35ClKaenpygl2e62KJkgsQztjjKR+K5GCoVUCbjA5Zu3/OgnP8EDv/rrv47zjnFjcSFwtFqRi4R2tyfLDEpKfvSjH9P3A9/97vcYhwFrDNvtjqvtjqwo+PiXPor5W96T5yn7fcfm9oppVaBYsrm55Hf/7W+z3+x5/4Nvsdvu2e22TMqURMVk5WlVcr1uqJuOLM+5vrrgyy+/woXA6ugY5z2XV5ckQlHoLMoypSBVirMnT7HW8uqr1zRdx+dffInpe/7u975LmqToRFGVJUIE3r57y1dffcH7L1/w+vWXrFZHzGYLqqqirjvs0LFpaoQQXJ6/5fT0BCNhs96BiN5ApTXOOSbVlOlkSqJUrCrxHjuMNOsdk2qClrC5uqbQmsEa0jRBCBiahjzLyaYVAvA2kKXZoa5E0bYdeZUzjiPTaUU/jOx2G96+fY0Qjs3mitEMZHnCdnuFc5bjxQQpLLv9LaMx6Ery8fMPmSxKWlNzMlmitMAMgrYZWB63lIs59djy5dsvWcxnjIy8a84plyWLsxm7YcvV5TVv314wnSx4dfkal3hG70iV4vjZCeUqxYXImr579w6RdpTTwMnpE7LS8YMf/ABdWKSysRNUezrTsdleMPY1aZLgneDy6go9UzxOV1xe3dKMPVrFBajBW0Bg+siiaScZ+vh+UUlC3TfsmpasKnn0+DFIFdN08xKpNV3fc3F9TQiep48eMZtNSdKEq/MN1aJEKYHynq6uQceEXmNHVkcLhr6LHavGIJTGmcAwtNxc3mKM5fjoGIUgeEeq09i3nAqaZsv1zSVN0zCMI94LhEpQSYIPDqE1KgSCDVjrMCZeH6M13G42qCSCWuM9Xnp2dQxt2rUNs8kEtCQRMRk71ha1eCRKJygbPedKyMh+EhAB3KEGqagyhmFkOpvR9wNpqtlud+RFztHxMY6AC4J9M5AlGuegLAp26zWJElRlTpYXvHv3ltvNhtXxMVYEnAAbAtPpBCEkXdMxDobb21uSoqA6WmKaPXVTs2n3ZEVOUqaxH3n0VGlJkRaUWUndNiS5oLcd49hQVRmptng7spwotMtjtRUCYyEvNXmu2W9rgko4Xp5wddEx2p6j5ZLNzuCC4+zkCOE9zgqUdEgnD8nngaLIyZKUcRxRMnr3M60PCgoLSiJUQGWaVOZonSAOtVZ33u6HeZiH+bNPKDM4+Er9sxPCrIIyfsc/zMP8WSckGvvBo/hZ/3wEQIwW9cXFzz1OtMM3ryASglB9/Tkv6p4Hb+9/HnP7zz5geDbFF99c9l//+iO6b63Ivtgx+cMrAOwyZ//rj77xNr7x3qwz5DKj60bGUVOUMUwl9jJqwOOso+t2JGmCTk6omy3WGrIs3nj64Dg6XhJ8YDAGG2K/Y1EUWOeYSM2snLBbbymKAmcdZVXigqdMC7q+p+t73l6cc7te872/8z1+73d3CBEosozZbMbVxSUKQdu0EEBpxfNnL2PybVbw9PF7OBOlw9bHLshUx3AZ4x3WGv7g93+f6WrGRx99i7aNHjAhYvDVq1evyYuUs7MnfPXFFwx9TIi93dyiteR4uWJWlRzNFwRjaesGa3qETvjed7/Lr/zKr/Du4pLZaoFxHpUk6CQCiZuLcySBeZIgvKeczyDp2bZNTBqdlFgBE2dBSPq24/PPP0UryaOzM+rdlqvrS/7Jb/4mpyfHiOBYr7ek+YTL6w1apXz7W9/G2YH/9//6/+LLL34KIbDedHz8Sx+x30bv4T/9p/9HvIfziyuarqUsYmBLsJblcsV2t0Mmmnfnb+iNoR9HjPMY29N2NT/84Q/45JMf0/ctWZYxW8woD76/3//BH5JlGT/86U9IpObZs/coy/K+89JYQzkp+OrNV9R1w7e+9cuY0VG3W7bbLd55JpOK8/NXMdW465gfGNm6rlksFmRZisOx3q9JUg2NhwCr1Yqb9RXDcE6WpDhraOoaIWC5XFJMSkZv0GlCZ0beXr7l9esoQ+6HBu8tQgQePT7FBEtR5SyqBX03cHy64vWbt7x+85rWHfFi8px+HNFOYwO4kLBtO1arIzprY5fpcsm63sXu3OWCZ0+esh97fvrqC26ubyKoTxPI4Nu/+i3evbukbVpOnq0opzGsbbfd8uL9p1hj+PTzH3O7uWSxWLA6nmL7EadHdK757M2n9KwJfqBt9mitydOCdVfTh5F0VnKcHpHNMryHru2xNnB6espuW+N9oMwzdts15TTD+0A3jAgdqJst/TjnvecvsMGA93Rjz9P3nuHGkfVmzbQsWM2npEnKpCrZrjfsjGHsO7yMtVU61VSTCeNgMdZR6AxVaowAZwVZVdEMI0mek00mOGtJxgKtEvq+Z1+37Pd7NusNgpQ8yemNI89LunE4sM6xx9d7j/f+vrt5v9/T9zFhXCqFlIoQJNYF+r4jTWqSJCd4Qd8bgg/M5zOMDRgfP8eMszEdWUl8iF/aWZ7hnCPLc/IiPSwGxt5dkEil2ay37BZ7pBSURXUImosVOlJqnj59SvCWwTi2uz1t11NWU9I0Z7u9Jsty8qJiGBz7sUMKQdd2VGVFM8TEbq/h+NERx8sV+7bG2QElBEIrLi/OybOc5fEReZ7QW0uaKEYzUG83mGbHBy+eo63F7Qdk05GkKUFrJGCGnum8oigqds2ekAkW0wV26Em1pus7hrZjUlWM1mC6EWkjABc65g0gPEoL/GBwh/7aLMtQiWCsBwQaiOoXGQSJVDg7RovJwzzM3+D5j4LEROPff/wn/GJAfv7uzybtFCJu6xuGIIWTBSFLvvn2H+ZhvsEEKeEARkMFfjn5uf+XV1vEN72upcSdLe7/qS7W4H8e2Ipd+/MMsY/98Q/z1zt2kf+ZQO3duElK+91j2u8e/7n2+82BrY2+wjRN6PuO1dGCtnVYO1KonH7okUpS6ISyzLi+viQQEzcn00dw8C8aM9A2HdfDDfP5nHaIPi0BNPs6emTvekO1orMjTdNwenqKD579bsfHH3yIdZGJypOUoshQElIl+eyzz1gslsxmc4Z2YD5f8PrLt2RZxrW7IYTAxcUFeZazWi1JXOxdTJIEmWjsOPDyw+d0fcNPfvx93rx6xX7fRsljWfHxxx/x9t0b/t7f/bv8/V//h9T7mn4cePLsOVIKEiURLtA0DVpIinLKenPL7c05dVMzmU44PT1GJZrrm1t2mw0oSZYVpFnG0fHRIbhpydHZGT/84Q+p+5a+H5BSRCaqH/nDP/hDPvzwJfP5HCES6t0Wa0aKNKPZ7VGnZxyvjnl0/ARkwslxxyefRInq0WrB3/nVX+Xf/c7/FyUFv/LL3+HXfu3XQQq6rgchyYuK+XyOMY66rvnkk5/w0S99gFKa48cnOO95/e4dT06eIpVmu99z+viYk+UR0scbeiEEX375BU3f8uL9F2y2az774nOu9hvyLCPNcwY3YNuYjHqzuaEqS9oRnr54Rr2vOTpdsdvtmU6mLNsZWRp7k5fLBS8+eEbbtrRty1dffcXby6/obM0/+a1/glTw27/921Eq6SzXNzc8ffqEcrbkbL5i6HrGvuejb71Plma8uzhnX9d0ZmC93zKZlbgw8ubyDcPYo5Wkmk2p6x1132FwrK8uSJMMj2d1uuDZB8/5g+9/n81uy83tLVfrK47HY6aLOT/+5BN0knB9u+bR40dYZ1gtl/RmZLE6Yr6Y040jV7e3bDcbnIv1V1+dv+Fodczq0RyZgzGWvmuZTI+iRD2ds91tKbKULIMiE0gx8p1f/pBXX71DqISXL55SlJp9t0VpGLAgFJtmT1CCYlYiE4XINKuzJ3gPSiWY0bFcHHF1fcM4jqQ6Yb7KSJKMruvIy4rRWW43G5zvQYwcHU2pd3tmyylITzUpWExL8ix6czWCTCestzsUgiTNSbIUlSYEAd5BohXL5RFj17PbN1gpcFLivGdxfBSPLQQGY9F5gRSKKsvZ3t7QNwM4ATL2YwdGnPE0+wbjLDq5W5SLfnJjzH037p0X9y592FlPCND3hrruyNKWJCto24Ek0VgbyNOSodlDCNFLGgJHR0f3HdXOxQoqgLKYMI4D6UF1ErzHO8Hq9ITT08f86Ec/ZL/fc7w64fb2lqP5nHDILXDW0rQt290eIRUiSFZHJ7x9d4l1A87tePrkKeubW7I0Q6CYTCawvkF7g84TpPc0my3b3Zb3X75Elprzr96B8LR9jbkeYq9totBasKgqvEvwY099u8Ybw9PlEdJKdl2LHQ39OECaxLDAscMKQ7HImeQZzXZHkSVMlisury/Yb7csF0u8cWzXW1rb44eYbD0YYvWbifKjpt8zDRPKqsIHixkD1gucdSgVwwCFAOse6ice5q9/wqyMdTF/wvgXj+AX/B8Agl+YxhseH/3Z7s//lG09zMP8TRl/Mv9z/647W/6xn4lHS9yHXy8OyfM1ov6PS1nlugH78B3yn2rSiwZz8s0SuP8y5xsD2/l8BgS8ByE1bdswDAPWjoxmZDKpSHSCcZambdjttpRlAQSkhJvbW9brLWWZslysMGMgAM4HiqLAGItzlmBd7DTtB4SS9GZg9AaL4+TkhGEYEASSQ5+uHXs++PbH1M2Wum44OT5iuVxhRhfDR4LAjo7b63P2Tc0vf/fb/Nf/zf+B3X7HdrPl/OI8hhzVjvQgS33/wxcURcr11S2vX53za7/2d/FOYK3jhz/8IcvlgvPzC9Y3G/puRGpJNZtEG0rw4APX5+d8+elnOGvY79ekmeY73/0uT54+QbUtCMF6uyNJU/K0wAw9SZrQtx3/6l/+K6qq5OnTJ5weH8W6jb6j7zqWTx4ffMi/yk8//YTXX33JP/qv/iGJljT7Ox8oPH/+HpubDUIosnKCEpLnL96jbmsCgo8+/Jhvf+tjCOFwsyhp246rywvyvIyhPZMp280tk8mUlx+8pDM9u5sd09ksMmAY6nZL1/dc3dzGwKgqR5iAC5bXb1/z2RefMZlNefvvzglS0HYtgxnJJyU6T9i1NdfXV4zjSNd1ZFnG48ePmbk5r8/fILRgtVyw3l0xDCObnaMsS86vGk5OTkE5kkLx9MUjzm/f8Eu//CGjb2nrhr/7v/se9X5PXuTc/Ot/xavzL8mLG476M7IkYVZN2da3lEXFL33rY3ZNzZevXzOsB8b9wNXtOe+u3+G958XL5zEJOFXUQ0ue50yUorM93lpGP2Jx5GXKaXnCvm3Y71v64R0f5hVD03G5vYi+792el++/5ObimjzJEEng9vIGKQRh5bm5vqZtWoSUlGWBGRukKEgSzzi2TCrFfnfNbDojzxVtC+v1DbPpDOcGBAlVmfLy/Sf8UjoFPEI4ht5h3YiW8TodxwEzWlbHK7zwpGlGolWULouAGQfq5oY881Rl/HBSKtY6JUUMblMmcJavcD7gXBcVHIng+GTF+uqatKywPrA4OyXPUur9jt12S990TCcTVJKS5bEr0DqHd0TGdjQoqZnNl9RjT6IkdV1TFgWz2YKmbtkPe6bTGc557Ggoi4IkSclSGG0MQ7LWsa9bjHXRN+Hj4o0QcaEtSZJ7EAox0bcoCkIIbLY1OkkIDqwL7PYNXTugkpwQAtYGOLCeozUY7yDAYGKP9l2CdDmJvvNxNGRpwTD2WDsiQmDoR7yPntI8K2jrmFQcnOX9ly9QSnF9fYMxBiE1Sie4IBitwxjH48dP2Ww2BO9w3iOkpO1a8jwjyxOWyzmD7Xl3dY7WAtt1zPOS3c2asTNoLcnykrbvGG1HliUs5lO6pqHf7xDBo/C4YWQxnbG7XmMGGxe+JhPcvma/q2M4lomhfmUyZWz3ONNTFinWGObVlNFZtEoIMmFwt1g8WkuqSU7dNjRti/GRgZ0tZiyXC4KPj7EDBBd9zN7HnmBjhntm/GH+85igJfynSLIOATH8PHsfpPg68OgvOkriP34Gv4B9DVXxn4T5fACpD/Mw//EJQvycSsE9+2ZMn9x3fylhV2IwqK9+QfXc8LdXVVT94RXNn5N1/YvMN/fYmoFxHBESyiKGOtX17tDzqSiLEu8O8rss5ehoRVWVhyRPz3e+823KMt4wSqF58/aK6XTKer1lc7sGoMyKA/NhYtWDNaR5yqPFGY8encX9lDkhxKqR2XRCohXXN5fkecLR8ZIkUez2W5q6RcoE7z2/8iu/QllNGOxAbzrqriXNc568N+Xo5Ji6rvmd3/kdfulb3+Ls0SNOT+co6SjzknrfcnZ6infQ9wO/9Zu/yWI+Z7GYI4Vmt99jvYu9q0rivWU+nSFD4D/8zr/jk09+wne+9y1evv8eRVkxjiNNG6tHHj86xQdouw68I1iBcI6xbTFdw6/+yi9zdHzE7e0NJ6s5Wsfu0LyscM7x67e/Gn2haRrB7HvvcbRa8vbNG16/fsWT06eMg2X36jV5VeGFYHW8om72zGcVn/z0E969fct7T5/xG7/xGxRFgQ+eru958+Y1R8cn9EPPze0NWZWzbXdsdlv+6NOfMJiY9JxlGc1B1p0kCbe3l/T7Dh8C09mMy5tL6rFFpZER33c1bdex222Y5yXGGLSO1SZeBLwIXN1ecb2+put63l284Xi1YLPZsFyumE6nnJ2dHeTfV+z3e6y1CAWL1ZSLq7ecX71GSJBC0rYN0+mEdtjT9x1X62u2zQaFItcZZV5SlhN+9MkfgVS044DWCRfX79i3W47PjtBao5IYolFM54fUWxh6z9XNBanUrI6P8cGgdODm6oYgNYv5gsvLK/pm4Dsf/hKEEBNhm5o8SG7We5aPz3h0umQYB+xoaNuWl4+eIIRAJwoIKCmxbuR0PsHPCrIsRSWCvh9ilcysZLWY0NQN1ze35Img71KUTNjenKO1Yj6tmGQpQqS0ocGMlmmW0RgH40iaSUQI+MGSJilSCpzy9M0mgjghQUhUolGJpigK+mHEB0ikJCAYhgggJ9UEjaIqc8w4MJvPcc6gpUBmKUpEmW0QkDuHdR6l4zalkCipma5mjMMQ5cJFzma7IdcJpuuhsCRCkClFmSb0/UgQAusD1jnSIiMMntFEP3A/DngCCLCDxWOJ2U6xhmcYhsN1qBnH8VBPleAJGOvw1tEPBkJ8DYoip63raHcQ4IVnPFSKSSnxITAac1/dk2YZfdeTFjOsc1xf37BaLUi0wpmCyWTC7SFxuZpMKMsSbw3OezabDeMhKTxJM2wQuABFXuI8zObzg3RZ8O78HfPplH4w+M6iE8lkWpE6QZo+RUoFoyFJM5Iso2dAac10MmPfanZ1oGtrdpvAaj7DDhLh4qLG7c01idBMjpZ88eVXbG2PkinWemZ5AaNDtB2aQJZnvHr7jiQrGLq4iOdCICsKetdz9vgxQcCXX3zFyXLFfDpBKEiLlLprydIUa+J7uqkbtBb41uGcwbl47pQSKK1QD6E2f+PGv3f6C6WwYTHBH/3lJ+qK0SBfXf38vvIE//TkF/zGwzzMw/xtn2/a5/tNxj36E5hkH5Cvr38u5Vdeb6PH+G/ByMaQXLSYs/KvdL/fGNgqJQGP1glZnuKcxXuPMTZWPwwj1jqQEQAqJen7nhCiF40QQ0EI0LQ9b9+9YxwGqmqK6Hs22x2JTsnznLzI8SLKn4ss4/T0hEQrkiShqRu6pokJoV3Ho0ePqOYFWZGRZSnP5lHCWjctu22NCyPvLt+QJhkmOPKyiP5dFyW2dV2zXq/xIbBYLLDOcnl+jhQ+yvmKgrPjY9I056uvXseaEyXYbbfUdY1SCTKRDGaMYVDjQNc1rBZzzp6e8fjpGadnC169/oK3F28YR8tsNsMFR93WWGPJsozeDmgJqZb8ve99h2Hsub2+YL+7heCpd4LpJILzfT/gfaCqJrx584bPf/oZ3/vu98izjKzIOD475Qd/+H1+/JNP2e8bXr19S9N1fPs73+blixdMqwpvRy7evWE6qXjz7g3f/+EP6Pue7XaLUAqk5MtXX7Ld78nynFV6zLrZ8clnP2VX75FSYp1DdYo0TciKlLZrefX2S8q0QOuU9e4GR7xBbduGwRkCREbKGEY7HLZj8XgCHkSI//YxbXa0A9t6Q1ok6EzSm5b/8Af//pDWrLHWHrpoS5SSXF2fx3OU6MMNP2z3t0gVqCY5RZD4YLHOsOsbhqGl7aK8MyCIohSBUp75rCQcJKqJEoQgEAGyNI0/VwmL+YLkUGUVBMxnU5SKXsDn773Hy+cvmU1mKGvJdKx/sdYSguP56SlSCkLwnE5nMbX59hZCYDQDRVFQVgVt02BMDGJw3iHFoVd4PkcImFbRo3x2csLL589BRNCGF0yzCjsatJDgPYLANC8ISWS9ZllJVmQ4P0ZC03usdSQK8qrEZwXGGoyxGAJBK3QCWgYyHVN/xz5ew5M8JQACwdj2jF3NyeqE2bRit9uwmkwJPmCcJc1Tmq7FeIcLPoaghZhcHYKnaWvquokLYRKKLGG1mCEOwUw6T8hPj9lut7RNi7OO9X7L6A3eORyCwVpGNxJkBLWBg3Q1OLRMEEKQZbGSRghx34HbdbH6Sil9uDYjULXGkOjYJxvbnkFKiRCxdzZJU5y199dkkiTMZjPquo4VTVocel0dzlnKIiNbLqK/34x89tlP+bVf+zWUlPRKsd1usWOPMVGGPJ2vcAGarscjafuexWJGkiZ0Xcd0OiHNNMgCvOfy+oL1RrBczZlP5xyvjpllJa/fvCGE6Fr13rHd3VJMSyoKvBuRBOxg0FJzc3OFGUaOVqd0fZTkL997TN8ONJuGpmlJupEyS1GjZTpVZM7y8ukjRiG5uVnjXGC+WGJ9YH27RuuE2WLOy/dfIG18LaSWHB+dUAwdXdvhRSAICHj6vkWq2JfrvCT4gFQhpq67v72r4f8pJ0yL/6hP0x/PCad//GYu5Nl9Tcxf1YQ0wX345K92pw/zMA/zMH/KBClwz39+cc0/WcGBBCQE9GfnX//75x7oEfs/fzLw34RRjaH88S3bk+IXql3+U8w3BrZd3zKZVrjDCRAi9jPe3RAKIUnSjNVqiXWWYRwwo6Pvd+z3NZNJyXZb4L3DuMBwqAnpuo66rjHDgBKKrutiCqr3HB2tWEynTIqSqqrQWqOl5N27c5I05YtXr/j7//AfkOWabqgZ7IAjsO9qLq4uuL6+ZTKZ0LYNu+2ejz76FkVZcHV5SZIkTKdTEq1ZzhcI4OL8nMV8TnA9eMP5+RWnJ49o6gaTWo5WS87P37Hd3mKMYbPZcnp6SjOMWGe52dxydXXJ8+fPuLx6zfXFJSIEvnpXobTgxz/+MevNltVyRVVNSNMMKRUvnj9nvpix3WwY7UBaJnzx+jN+//f/A0dHK6azCkRgPpuSlwWDh+XyiPVuzWhGds2Of/lv/jXPnj7l448+5uTRGf/0+Xt0g+Htu3O6f/2/8fdePOejjz9CS8mXn33G2fEJ//0/++8Yuo6r2xv27Z6bm1uq6ZTRWLbrDVop/sE/+ocY6/jxT3/C519+xeA85XRG17VIKWISsNAYZ5FKYqxhvV2TFwVFUVJWBbvdBpUkpEqzq2u01pRZilaSPM/vgcCdmSgcQK51BpUoikmBkIJ2bGnqGuc9pos9m845pJAIEcjTFG8twTnyqsCYgWHocSbCkDRNSNIEITXCxzTpRCq0UjgfuzyVgNEaEglZliGkxFkXr3GlSLRGBIHzUKQZQiVRLikTXLBMy4JJWWJdADSr6RIlFL7vkASkUqAlzsXaKakEZVlixpF6u6YqsoMU2KOVRCHIswytJN776AFNNF6ClAlJkuCUw/vY0+pcPFYfYjgSAqQWpFmKICCJANJ7jxQSd/CXaJ2jlWYYB7wbYi9tCAjpkWlCliagFWOIrKi3I6YfyLViUVUMw0Cex9orRcLl9pp5VTApUnabNXY0fPXqS06PTsnKjKLM0fsdCMFyscCOI13bAJ48zzHWxAUWQMiA84amt9E/KhXWWC4urxBC0rR7rq5vsASmqwXr9Z5uGKn7kdFbgvIonRBEwFtJsPE6K4q4yHW3AOdcVB00TUMQkKTyAIgDUsXe476PaoQizymKHATsu320VTiHsYcUahH7lYdxpB8GtNYYM2DMSJLqA/MomJYFSaJ4e/kOHwKTScmrz79kOo1VSuM4slytuLq5xcs9m92e07PH7PY7ur5l5ifoVLO92PDB+89JEoVWc4ahYzYvwTu0AoWn3e+okgR9WNDQZYbTUPctxtxVaUm6tsP2hvlkRpFXFNWEXTuwbxqWk4xqucCYNUH06CQnk4rlfIEUM7JMUNd79KKiHw0+GB4/ekLd9DjjkEEQnEMAx0cr9uvYG7yrawY8JjgQcPbkMbYf7yu4wGBdhxACqaOq3PmY7P4wf7njvvOScDSPXZUP8zAP8zAP85c2IdHwM64F850Xf+LjhPPIm92f4LEPqC8u/2Qw7Dx/00Kzqj+4Yv8bj/D5X933iQjhmzXh/ubffcTJSVx50DrBOctuV5OmKVLKeHNuDD54lqvlgWHyZFmOdQbvHVVVRUC42+GAo8USLRQ3l9ekOiFJM/pxRKUZJ2dnkV1KU95//yVpnjOaERs8xln+3b//91RVhfOelx88J800zUEaO5lUfPHFl1xeXfDd7/4K7z17j+vrG54//QDvYoejtTYe76F38t27d/zgBz/gww8/4MV7TyBYEp0yjo6m7jg+PuGrr75iNH30pWUpy9WK4+MjbrYblJboLOF2syZLUyZFgVaSt69f42VMlVZSUhwCZPp+ZFJOefP2LdvNhqIoEFoRCDhvcc4gpMeMA0mqqCYFdV0jAJ1OUFKTphkEcMZR1y0iCLRKePnyJdvdjqvthn1TxzTqoxUhOFKp0QEen54ySXP6vudyfcsHH3xI13fc3K55/vIlbdehpEZpzf/2L/8l26ZBljlKJ3RdgyBQlAW7/ZaqiNvxwZEoxdjdpcsm5EXOdrMlIBFCstvVJElCkad4N5JlGXmeow9VPpHNDAcWy+C9paxypJRkWXafZBtCiKDOxcqWREiUuEvohqLISJLoBffeE3A45xEqQcoECQjvCD6QJmmspBIgEhXj5Z0n0clBSh9ZVQJ4HxiGCFZEACkUAkhTTcAjoyiBgGToLUplhADeDGgdF4O8d4xmRAqBtYbRjITgo+Q5TRmNxTl/CL7yGPs1K+WdJ80yvPMHaX6JtTYyufLAZsm4n0glSrxxsSrJWgSeNE0RwR0CkAzWeqRQKK0x44i1liSNlTZRlhyDm6w39GN/WNySOOfQSlNkxcEf62mbFm/BW6K83Hn6bqBrerzzlHmBEIonT54wmU5QUtDs90gf2U8tVewtDQGRKFSSgA40XQ1CkCYp1louL664vLymKAratuX2doNUGp2kXN9syLIpowEXYLQOoeJzCM4hYkw1z57F8LH1en2/IKC1pu97lNboLDLQXduR59F/X+QF3jm8cyilEVKw3e9+7qskyzKqqiJJEs7Pzw+srqBME5SSpFlCVRWslgua3Y6iyOjahsmkYjadYbqRzeaW5WyKlAIfAk3Xs9k2tKMhKyY4b3j2+ARrDcvFDOcMaaJIE8kw9KSJZj6fIoLj9vKKdteyKOfkSclmvWUMDlGk6EnOxfqC2WoFnpigbDzBeE5Wx6RZjs5ymq7n+vaWvFSsVjO6fcf+tmG/3nN2fMLzF8/ICsVPv/gRg+lIZjlJkROsIFiJHT19a9jua0SiWB4vWR4vKbP4+fD26gITHFYKuralKkueP3qCdIEvP/ucLCtourh6raRiHO39otgf/fjdX+xb8GF+bv73//R//Os+hId5mId5mIf5BSN+QeqzfHuL6P64zFnsOkTb/xUc2R+foCTn/9fv/aUA2x/8j/+3b/S4b7yn2XRyL92LwALWt1tkHlmVmHjsSNIUgULJCDratqNtm0OXaGSdyrIkL0uC80gZb3K11BhjOSpy6rZlGAcyrdjttnz600+w3jOZz3DBg5R88NGH9ONAXuTkVcnNzSXDOOCEZ6InZFWKv7Z8+eYLdu0mPlmVoEPBZrNlHGPCs5SKoihYLRb85j/+xxytljg7cnt7TeN6Tk8eMZstsdbywYfvIxXs9xvSLMFZy3Z3w3pzS9u1zBYzbPB03Y6uS9ne3kZwUJZsdzu89+TZluPjEz78+CPapmXWzuiGPoLjIkGkkjxPMcYDlmSaRSbatljtEAGs7cmSgu3tNRLB0I8UeawJ6YaBV69f4QAjHEbGm/Bdt6NvGzKlkdbT7jfMiwl93yOylO//6PuMg6GsJnz2xef0/QBCMIwjNkSW0AZwxqLTjK5rCF3HdDJFKYk4JDbrJGFalZG5Xa9R6ojVcsk4WoyxPDo5Ic9yQrBYN9wDVn1gi/yBOdNaR5+1GdCJwjpHXkQ/xB3wVUpFn51SCO/JZJSOBh+woyE4jzMOHxxaq8i+HeTEWkWm1jtL8BalBEKBwxICJCo59OMOCMRBmRDl8cFaEhGDbLSMS29d05JkiqEfUUoyjBZrA1pbjHEE5dFocGCtIQTPMPRorej6lixL6caRBM9w6D11MiohbAgkOtJUNhiED5jBoKQnTaIn3TpLouP1LITEGI/xHifBh0CGwPtACAdpp4QkRM+iEAqJIowG52PompASsiyGr0gJzpEGxWw2xTnPOJgIqK2ja2IllEw0Vg0YF/chDgsvfdcilWK5OqLeN3Rdw81mzbbekqaaVCnyJCVNEgTQDQYbPNZ5UpEjU8WoHSHA4GxUKbiW/GjCaAy+kJy9/wQtFbttTdZnWGsophXOS9IQCAjavmUcPImWFEVJINC2DUIKRIh/fPBR5p5oRm/j4pGMCyM6TXn0+IybqyturncURYFKNVIdPOIH2bpUcWGhbRuKokAnGmsMoxlQXuKDoSxTrDXkRUo1KWmaHUWZxcTmAOMwsNvHz93IBnvmizlTobnZ7qnKCmNGZvMJxo6E4Nhsd6wWM5SC+XyCsQPeGKbTCfN8QpkU3F5s6JsGJ6MkfxwarDfstmuuL26pigmTsqTKK5Iko647wuC4XN9yc7smV4HUeazxpCJFBkU/Wn73D/6Qo8dLejyiSnn8Ii4mDmZEi5Q8y+lbg1aK3X7PaHt29Zaz41Ourm7IqxI7xkXDNA+ARCcpwRnyLKeaFiyPZxRFSd8NbLc7mrplPEj0H+ZhHuZhHuZh/jZMrBD749LeXxSaJQbzx8L1fnbkzR5xs/uF//9NRoQA/Z/wfZxq1ABCBFz2p8uRhQ3IgwjLZQJpAuLPkQ/5jYHtJKtQUuMGh3SSNI+1H7ttjU4TpmnGZBbDnPb7GkRgMq0w/cj7H3/A8ckR680t1lnyNGe/bSknBfWuxktBHyy9H0mD4qpeM4wjH7z/gqvbS+ZySllVNPsLNtstaZYitSZJE07KU3a9pfMNxo/s1xvqYYNUksmq4uL6nG27YTKt6K0hVRWbzTYudvjIXuVJRr2vmUwmbOorhBRcXV+hlGY77El0DIG5urokEAjBYeyINwatZPRzisB6d02apYzjiDMGpTTD0OHXgjwvIks8Dux2W968eY2UknEY2TU1QgV8MOQ6RxCoyhJjh6+DlbyLnkfrSEKKCIJsNqfrOqq8OPRuBswoEdKhEEzShMX0JDKhZqDUEonA9iNN36KkRCgJWIbRkBc5ve3o9330CKYJRZmwDBPavuf89gZrHfPZDJlJdKLIMol3DqEFi/mExXTGpKwOx1WR6BSpFEUuIsMlBN55rBsIQSClQkmJ0oosyw61Uvbgd4RMJIho+UUSUAdf7YGMJASJzhQieLRShDEm1cpDui+JJLhAOHggvRcY61EASh8uA4s/MN+egJAC40e8jUAleA41MDH0SOvoz5RS4v2Ic57BDHgZGb5xHAFJkILRDqg0ZbCG0Vi8c/cMntCa0Tu8lAidkEgFQZMVGd45kjQhECWxQkTQFYivWTXJscYShKIopzEYycZOZXFwgGoVkFJgvYv+90AMEJLqIFsG6+78rWNMBhaROTXOopWiaVvSNPqZg4vbkQf7QZIlIAJhcPSmi2y09DRDSzP01F3PZDKhmE0YhhGZKZbFiqlzCCnJ8wQpPEEERsZ7truhRWiJTBO2/RbrA50biMx5TPEelIl+/0lOLqKkOJEpx++dUry9YLdvWC5XNE2Hs9Ejm/UJTWOwzcjq9Jjr63NquyfLcjTiAEwhSRKUUtjeM5lNoiw50VRVxWdffY6zjslqTp5HtlFrSZIovBf0fUeiM05Ol3zw/q9RNzUQGLqeL7/4lL5vCQKyMiEpE8bB0ZqO5x+84PrqisePHzO0HdUkZzqdHpLlBSePTinLirobeF8+Yz6f8u71VyBgOltyfX3F0I9MZgvKIqduthhr2N7ccrI44mi14urdZXwvaUkxqSgWU17dnLPb15wWp5wdHaFVBKtXV7e0TQ9IXIBuGBAOptUMGQqKTLNuN5BqQqIJPkWXFWeLUwbXc3XVUG8Nm+2e05MTjAzMHy3pLjo0MFvEoLrPX72iay2Vje+hNEsQzlJUCddv37CazShyxbq5ZVEcMS0ViVAUNqWa5Ox2+z/7t97DPMzDPMzDPMzfkglZ8qemtvtZCe+f/YX2IaxDnq//+L4XExafOYL0dMfyT91G0gaS2gOC7kSSbj1q/LNLq795eBQa4SWJUtR1w2k1Y7k64tWbNzjrmOmEyXyOljCdTdm3ewY7kFc5MpNc3F5ws76imkxo+gYtNOt9jwseLTxWBLZ2T3d1SVaWTI/m1DScffCIsixw1tLXA7Xds1/vefr0KYmWXN2+oygznBu5vL6MXjbXUjcNq+WKR09igu4wDKybNf14ye3tLU8fP8EOlpubljzNSFUKvWG7v8YHsMR0ZzGAqaNkOcmTA5NJvPGWKjJfmcb7CCKCd2glIUTJKUKQSI3wgSov8CHgQ8CYyIiqRLE6XiCFJESEEdm6bogrID5QZAUuOLBQJFXU3osYWoONICHR0ZecaYUPPgYMiYAmMDiLElFGaY0lnySo+QwBWO8xPsqkXYghTmaMwDIPGc450jRlmmQk2XFcmMjze9lrDNARh6AmSUz9cnhjmU0mPHnylKvra4w1dH1Mg45MqyD46Ku1zmCdib2U1t4zthBiEnQSOyudcwQfw7sigAuYQ7WKOHgh1YE9u1NpeAH2wI4KBAR5qJI5yIIP7K9zjlhNpe7DgCLDGVOJRZpgnMMrhUyTmHxrLd5ZnLXx3DkbmU4OKgYf/094G9OEhUTAvbw51lsJijyJ6cJCo1SO1ilKS6SAtm2x3qJUlP4KAlpGsI6QGGuxgoNsOxxAmbxnZ6VSpDJK3BEglULemfgDJFITgsMLS5om955lay12jHU4AhFBv4//NzqL8wZpBd47imkFhOgbDZJiVpBVE7z/mlkvZXV/3YwHRtqKEcHXcvCtHaMcfBJ9lfv6JiodtCQpshjO5B3OW1QqyYoUpRRpmjIOI0F6vIXJqmB6XOGso5pPEEIydB1QoYRCkLDb7mktHD95TFt3DMOIEAcAH2Ll0DQrSDJJ4ROsszTdDpUKdKaZLErKqkRnAhkCu82Wcewoy4TnL06ZzXKqqaLt+uilPa1o6glfvd5QTSZU84LRduzaHYv5gs4OPHn2hDRL8GHk+ctnMXRKeHa7PWePT2OqPJZ+6NEipywzvHW8efWa9Tput9733NxssHbAmIFEJjTNwMVwi1Ip22ZLUuSkRc7F9TXNMIBIaPYtv/zhxwQvaOqBofNMqtgh3fc9k7ygKAvKvMQ6QT9atk2HShVOBbKq4PzyGndxhdKC/WbHYrZgUi6xQeEliBRmZwuO0yPcOJBnBcNwS5YXtM0eO4yI0XB6fMR8WpFnCfvtLUkiybKSxnYUY87Tp4/5cviCPEmBv/qOvId5mId5mId5mIf5eoJWv7hmKYBwgfLim1YrBYrLP38N0zcPjxodUgUSIaPnaujprcHiUUIQZMAJR1mU7PfbWK3Tt6wmS7q+Y7A9MtGkeYYxI5t6S9t3FGVJoh3GGrK5JhUTpFYUZUauU+wwUu8tSZJQlSVnp6eslssDc2OZTqcHQKmYVtMYEJSkSBR5GkvRrXV0TU87dEitEc7S1w1lUeHTBBECzX5PCyghSfOcoiwwZmQ4+O6sNchEk6hD7UtRoJWg71p0ojGjOfgmI9OpicxilmVoqWO4VpLgQqwGkfrggSQCNhsi/66UuveN3gE0ay1t20bZ7iLDeQ8SQIA6sFghBgXpNKXrWtI8YxyiX9J7j5ISKeQhpIl7xlErGT2mBxllCIEsi75jrTXDMJBlB4CbxVqhu3AimSi8c4dwnQisrTOgE5QSBxmlI+AAR5JqwjjivY2y9IOv8e7POI4xDfkAfsOhNsX5CLTvXh8pv34ed4FKIQS88wgsSsXrRchDsFmQqCDuZaIiTeNrdgfGD+cg7jccQtFCDF8iSnnF4e9KKbo+MtohxMdykE2Lw8/SND3U9ST32zDWopXGASLElPFEZaQ6iQypsYBACYkdR/AKoRVKgFIaqUSs4/EeQuxgjSDcH0C4QClx8PHKwzUUQaNzcfEhz3OSJF4f3vl7UC9EQIqAICafKykRQYGEMi/uz0VQUc6ttUaLr/3Cd2nK4zggpSDLNYJ4fUsZr6O7JFspYjBYMLGnNlHxPRpCAC9Ik4TRjNH2kKYcHR+xb5rYW9r1EZwjUAj8aHAYgomBTabvqaoJnY3AOU9T3GhItCbTiuAcWsdrR88nHK++BUEghKRtup/pRzVROj86hJAcH62o65qmqUnT6Aefz0uyLGdSxE7t5TLmDqRZynJRMpnmDOMteenRiSbRjpOTJUiPB4oyZTJZkeWaRGm0guVqzrSsePLkMdaM5PkRUkqm0wlSwjgOCBF4+uQxNzfXNEPN+btL2qYjVSmLxZKToxM+++xT+r4jz1OqYhJDzjyM3YAxnizPaLuRm9stssxZLU/Y3tzw7u0lic5RKmW/b8nz8pA4XsU+3GGg3tX0/Rhl3dZQyJztOipipIdEx6wDjcQZw2w2RShF8B68IM9KNptbyiIj0TlaCrqmxo8DwRiyvMJaw263R85ndINjMp3ghj1JlrPdN1gT1S4IyPPsz/qd9zAP8zAP8zAP8zD/hc43BraX200Mf6r3CC05mxbsNnu27RadaqqxxG8sTZfSdh1JqjHCcb2+YaVW5GWGJsE4i1eBUAbySR6ZqQSykNzfQFeTCcaMBDfGsBcZwYzWmrIscdYyGsPTp085OTlhu9kwqQouzi/Ybrcx/MQG1ldrTk9POT4+BhuoipIkTwmrI5SQVEXFHgkekumMSTmN1R8ysqcxKdXjnCVLNM1+R5Ikse+y7xB5itCCNE/RqUaPGh8OqdEIsjRKa81gIwvWOfqxRypFludIpe6BGnAP6O5ClKSMACXe3E7v/88R8N7dB18JKXDE0CDrHf04wuF3FQoXYoWLG/oI+ISIYCREUCgCP5NuHdnQKKeNAD6CKElwHmsOhThSMg7RjO4PDKuQMcCpafYIJbm5veT86h1Kx+colELK2OUafOz8vJMd34dAJXdAL3Z3/qyN4K53dBzH+6CfO4CuUIgDE6lUrIaK4M1HD6WKfS8OjyX2IAP327gLr7oDzXf7utv+3f7vgOsdsL0D4sBBmhzPIXwtaQ0hRAl5khyAoLy/nu0hlTjuWwEKM0aGVipJkSYoLRnHAdKMwB2oFVjrGIY2LjiIA3MeDCIoQoiLCXkSU5udc5ihw9sRf1jsCD6yuBwqa8YhdrGmKsGGmHyO8xgbZdg60ZhDb/UdqxxBrcOYEa1ThACtZZQo3y8K2UMFU3w/JRnkRYbwGkm8Hru+p8xzXrz/kvPLC+qmiQsEUsaAqK6LTH4SQ7Du3qcCCM4jQkx8FtaQChiDxw1D9FIHH69BHf30oBjkSFWVGGNjqFVaxcRqxME7HKuivPcH/7hGylV8vwhx/z4aB40PjmqWEXxKkmgCHbt6d7i2oG4HghfYTvD8+WM8sG9qRtMym0d7QZ4maB149fozzlYnTCclzlnqumG5nNG2sSZISsWnn/6EfduQVTkOS9u3pPOcpmt48+YtVV4xdgPCSvp2INhAmRV0g6GoZlxerxmMRaU53krwmpPjJzT7hvms4ic//QwhFOPgaJqG1dECay2b7S3jYJFCURQZdJ5UKaSSbK5uWMznlGnKo/feZ+x71tstu9sNgx8xxKTyNEtiWBkBPzZ89PJ9vvjkc/qQENKD7904HJJuMCRZgUxycimo2xq85+LNObnWPH50ivzTlU0P8zAP8zAP8zAP87dovjGwbcYeKwPGGo5OjpCZJqsyFsczRjdiGNHEepLedhgkq+NVvJFXAmS8UXbOIrRAopA6ylm7tkVLhUhSqqoEYxHGH4CUQ6cS4T3BOrSUdMMYWYwAb756xXa9pipiAXCZFPRDT5HkZJM5OAg2MC2nKC0Y3XBgpASpVFR5Tp7lSBEZ3jxNSPOMuo0djWmiSCfTQ9RtDLC5S7cN+HtfqDHm50DPnTQ3hAAJeBcIeIQSSCWQWsQbZ9x9b+vY91FamaSHehEPIgILCKQigxB7XoWUBGLXpnOWcRxJ0+gFVpkGGQg2eiKtdQe5sEOIBCnFPSBxziCQ92FNUZJ7J8X191Uo1lqk58DQRtDmDgATAc7fMZ13nlAZg3jy7D4QyloLdzUqxPNyn+AL9wDSWvu1pFgE1KH7Ffg5oHn3GGejTFu4CPLVwUN6l5BMiDJliP2r0hqU1ode5QhOw6EyKBwCsjzh0KEqf+583rHwxpj7epi7x9w97m5+9mdKRsZV3TOdh4TeECuApBBoqfFBIJMDoA+ePI9BSOoA8sVBzpzp2P/bdVAW2QHkHbyvaRrlyMYifNynsRZzYMsTCRyee2TC42uaFLFWSQrwgAgebyO4V1qhpCII8XW1jRmRUuC8O1z/8bFDP5DoqFxQQuAOoBPncYcFC6k0wTuGMZ7r4D3DMPD29RuavqNuaqqywhqLlpJ5Nfl6ESHJKJLs/vWNMuwDcxwsy9UisuPWoZVi7Af8IQFbE8hSTSrB2xhQp9I0piAf3gN351aIeM045ymzeF0ZY7DOYY3BWIMSjtVqHvtgtzuUBCFBS4mQAe8cZZ6gdYJNBc51BCFIM7BuQAjNYjEB7/nJT/6QWTWjGxrSPC6gJU5zvb7Ge8fl1RV5lrPdbpgu53jhyKuUciiYTidsN1twMCsn+NGx3tYcnR4hlaYfLWlZcfH2AuNBJhlSJwzO0NYDtbWMXYcQCVle4l3s8y2qCPhvN7f3YVdDHxdW5tMJPnh22y1d25BrTTAW0w9RHl431Adlj8w0k2rGdt3gnGXoYj4BrWExKRlSzXQ2I8kyjLVs9zVdN6K0Zrk6RZoWoTV26BmTlkRLvI2fnQ/zMA/zMA/zMA/zMPBnALay0AQNq6Mlp4+PabuatNSclEeUk4LJdHKQB3tG10dNtYKua+lNR25iDQ8EpNBkMosARApGq9BCUCUl2mvcaBAuMmyJTlFCYUeDlB4pBbNqgreerz7/Isp+ZfydQPQaEgJpkoDz9F2PHc29zNQHG2VxCMYki2A2z3A2+jCdczRdE3tZDwDwjpnM8wznbHwOkiiwDdF7GERACBjG+NgkSQ7y5AERJJ5Dd6gU+OCw1qCThECU2/rg8cEhfMA6AY7owQyHPlUhMWaIDKcAfPSFSntgEyVYb+9v/sfRI/wdcIGAOuzrwLIeAJiQEpy4l+LeVSDdAXQpJWmaEnyUnMtD1c7hSTKOI1rpe+ZZyECQRO+0lDGp2rsDOy0O/lIgRN+qP3Rx3QHHu+PXWkcJtI+v9/32D6zpHdC9kzErqdDy68vZjOae9b4DzkIQF1kAZ20EJyb6bQOx1/aOhTWHxYP7pNsDwwowDMO9DPlnwfjd87hbDMiy7H5xI1X6HkjeL3gcjv/uNXHOk6UF4xiBWpJolBJ0XQsiSlGdi9U9UsfgLynBWPN1IJUQhMMCTJZnCOtjz67OKIv8nvG+Y6zvzntki+M1571DSfFzx8nh+nXeE/hZZt8cwJ5BHWT6Yz+iygIvBF3d3bOcToEU0bNrBhdT0YXCDCNIgXWO/S5228ogvj7XvUEKgXcO510810qCCwTn8KON/xaQZzl+MAw+9rKmOkGl6X1FT3AevEPh72XJzhncaFjNjmP/dj+Q64SuH8nSnKoqCCFEwC4lozFYiIsNCYx9D0JQ5BlJkv5cardz8T2vpMJJz2jdoU83yuKtHRmHJgZGVRmzWUHbN7E3fDJhGEeyIqHrLIvljM1mg3EjAYf1HiEDeZEgVODFi2dkKuPy/IJwuH5msylN31LXDS+fv88YHJ016FQSrGNXtywWS4ZgWR0f0bU9k9mMtmk5nk5Is5RhaLCDxXiDaUem1QStUoa+Q0vJ2ckJ4zBDac3Z6SlD33N8fEyWpqx3W0gUzdCzW2/Z7Oq4eKkEZVFRphmlVgxpwssXL9jsa758/Zr1ZsujR4+p247zi0tu2y3LoxWL5YRCajIp6bo9zv7ipMeHeZiHeZiHeZiH+ds13xjYLk6mOGeoFjky9SzKCuct3ltGO9IPNbPZDO8VJ4+OIQRWyyX+naHv+si6HTxX1loSp9EkJEoxyUsUoFGkIsErR296lFYgYxqsEII0jR2WhHhDm6UZaZrc+zyD90gBQUR2MgAI8M7CISDIuZ8BbgJGM7LZrqMPU8fjSXQC5mtPW2QiozRVaYUZR4bBEpTAmQjM7gHWAey44CLo5cDMHRhMqWLo1GgGYgZvwBp7ACl3Mtj4mt9Lj539GWns1wDsjm2Mr22UO0emN4D3CBU7VsVBVu2dx4zmsH0R5a4IrLH30t87AHcHXO5Al1QqApEDSIy+WhVZOaUPgUQChAfpcYfgLKVV7CQVIv7OAUARJJKEcEeqHgDU3XmGyHgG1P05uHvcHRi7e8299+C5B8V3APkuMOmOrQXuX0NxYB6TgwT5DoxIKZHqwMx5+3N+3jvZ9B1g1lrTHbo178Oz4N6TbK29fy1/VuZ85++NAVjRwxu8j4DWEVlTJbDOst6skVLE60ZJkjR2C++a+ufUAXf7uHsOUYYuEO7AVB9k7wrI8vz+mCOQDYfnZUAoZPga5FoTXxtjDdb3CJ0glcRZi1SSEKJX93A5xgWJVKJlgUCRJQljiOA3OA4S54D3Au/sIbk51u/UTR2vQxmv4bZpIktsLShF8f8XPnW3SJDc+a5VfL5CSIQERWSP48Fx//7o2g4QZFnKMA6H8yQZx/7g045XeJ7mWOvZ9XVcCLGx/kcKxaQqDj5qzWgH7CFR+W6BYTjIuuMFGP3PSS5o+57ODLFPWUemum87pIJMpThnSJKMYRwZTc8wDiRa44PFB8vJ2THz5YzRDGRlRpZoTOk5WT3CDI7XX7xic3uLHQ2Pzk6Z/P/Y+9c2ybLsvg/7rX07JyKzqntmAAKkwIsEPbJf2tb3/wSU/UiyrTcybYoAIQKYS3dXZsQ5Z1+WX6y1T2QBM4MegBRBINY8NdVdnZkRcW61//t/+3xhZ+dz/sS///M/5cv9B/qA779/4/Onb1nXwhidfb/zB3/wU+7bnT/99/8bMSb+8OWfMtS89etYCRF++vkbIvCrX/2Kbdv49PLKH//xH9N753/8H/9Hcsqs68L/9D//z9adrMo4hL0dxJz4r/7gn9BbIwLvv/yOP/4//bfU7cb3v/wV/49f/N/5o3/5L/h0feXP/uzP+Xf/25/w/Zd3VAbpJaO9E3/yE/7s3/0p//yf/iHXfKH+msqD5zznOc95znOe849zfjSwvb4KqplYGrXfiLlQVqsnuXiSbD3ufHm/8+23PyHHSGs7nz9/4qfffkOQB/N3ubwQLpHeOjqGhek4qxGGAIEkkSDBw2ICZVlMstiHgduhlJQMmPVuya46zs7Rrg/gIyGCKIKyLMXBpy/0Pdiptk53Nnf0YcCzd4YMjn6cAMpqUhw0j4D/k7Ey0dJcU5geVWGgZ6jUGIOgBpLb6DQPfFJVoorJY52lOgEbnJLXZVncG2m/JpDrbZBDJOfyQVLc7L198IKmGClhOatrcs4WnrPK+VoTmJ/VMY6yVRWJVmFjqlhxxAwq0F26q73T+uEgNkAQq6hJkd7bQzZKJAWTwU5QO9nV+X5jjKzLcvo1J5id72u+Z1U1r3Nytoyv3/fpWRarFQoOak/2dFigjyVJC0GET58+sTsbNH2ik7GdoOqjPHq+1vwVQuCP/uiP+O6773h/fzcQHQJEez3BZPkpJQaWlE0Uhpj3dQZ9hWzXaWvHea3U4wGYp5R4vv4E3yLCft8Ifiw+bpqIhPOz2vv3/xMIKVnAlgitRYgWEHY4u80w4HgchykMhA+VVMYGZyn0rhz77h2vmRjMf34cFRD34QpjNGKIXB1s92GMdK3V6oeAy8vLKRGen21ufnw89q01qvuHUwjsfZBTOhO8R++W1Bzs2G+bS+l1EFJg/7M/PyX6IURSXO16dVZ9Wda/xt7PLRMRoR4HtVlyNGr2AyEYw62waUVRhodMtWEbcjlHu7e6BXClZGzudtwBe34pnW9/8hkQXl8tCfj6ciGGRD0GX75/537/wpCDn/3+N6h2Pn9z4S9/+e/ZWmM/GkIgrsJ3v/iO1hS5CTFmri8rv/d73/Dd9z+nLIlP31xJMSOi/PDlO1qr9F755ptP/LN/9ods7++8XC/se+UXv/wFP//lz6mtoTHwZ3/x53ZtqhBSICbr5f72+hN+8Yuf89/9N/+KP/m3/5acIsvrC7e3N16v5nX+/ocfuG8773fbbNjrjT/6Z/+UP/+LvyQoSGuMfee/+oM/ZNROjhkd8cf+Ffac5zznOc95znP+gc+PBrbrp0ivlctFSElRDlJanUHlZJ9+9tOfMFrn0zef+cUvfsHrywtRAkEiotabedy3kzWLIVKK+RSPfacBOpRj7IQeiWoLewH2bWPf91MyCwY6NCgETvAMfAXMZohLrxXRQUgfZK2iDDpHr6gKJUYkBEos1GbeVXWQNRgGAKyJhpDkfK3Wldq8nFiKdY76YvyoBykkZxCVMatr+gcuUXY0LyR5MLcxfgRwwwOBlBwtJCrGQCxTxtpJyapceleGqOUCRWGMB3C0XxMQWLqxtgfTNFOUgfPYgbOhKM3B9JSjjm7gPIg4YLKiZvXvZwgEsfMvVkEzhl0r1ZnoOTNA6pQD10rKyaW1+tWv+f5mmFetla1uZyKxTqAt9hkl22eJmARzMnBjDHLOZJdYW1hQQFK0oly/xibgn79PgDX/25mg7L8vy8Jf/MVfnCFD275xOOhEOL25HSWgkGwzBzV5eM6ZFG0z5HZ/d8AXidmSsnVMmbD90iEESUj0nyGBNhpE8+S21lG15GWvuXXPrtUmdW3m6YbT82ufz+TyUQKXdGXfusukM63j5/MB8pdS3MPeSRFuty/ofD6IXWc5ZfvnmIjB5Nr3+533tzdUjMEOwTazZlr2x3M9Gft57UyAH0KwpPOhphQ4zJZgfc0mG0aBmE6WOgRcRh29Jqlz1N2AKR2CEgWQTu0d1UHXCFVPv3lru6kfBJYcSTEzFdwi0a+LjvZ4nsOBHbMlZwYGage2ubYd26n+SClTe0WicN/vqA4ulyujNVQbS16IIfOzn3zm9Xrh5WVhWQohKCkKX243/uDTJ46j8qtf/sC3P/vMH/3LP+JXv/qBuje0A1S6du779/zzf/GvUBn8h//957zdjDG/b3dSssC7X/3ql7T7RkqRX/3qO77/4Tv+4ue/4PryQtOOpsDl8ycueaVXU618+5NvOdrBN58+8Rd/9qf8n//4v+bY7nz/3a/Q0fnTf/9npJR5ff1EyoXW/Xnbld/79ls+vVz51dsv+f1vv+EPfu/32d5v/Ic/+VP+8pffn5kAz3nOc57znOc85zk/Gth++lQo+YXPnz7T2+B2u3G/feHl5dUYvtqIIdCODRD2/c7r9UJEbLddh+2yh8iQhuJewQhdKn2AZGNsNKiDsQ5dz0qXmc4bYiCRjPkKYjUyQUkpkksx5qTXk/VTB3niwLK1Ts5iC1V/HxIEHQZOQxTqqNzvd2PPQjBAfhjzerKKvbrUN5yL7HkswsnMGbuUoh3qGCPD5bEivuB2gKieOIyIJQzHB2vdnTULIvz0J9/w/uWN+7aBqgNKY4m0D3Dmeoxu/t4xzkCmWhs5P5hHCw6KzmQGk8i6pPVjUFP3nyHyqImJYmFNioUNRQEJthlhjLmcEujeBu38GRBdbmqgZwJtMTmsH4PJ7ob4tdzwo8/2UcljUt9+PBhLcRA3fw8IKS4kycSUWP1nDR2k+JAMx5RsY8A3CmJMZ4I0wHpZjeWdTHiI5j1VA+4A7+/vXK/XM9QrJGPlZsXRZN/3/YDeXWqtBPFQJ5TWTepblkJPzryrnmFfBlbtHM7Ni8mcTo+nOEhVD0+KLkmezD8iqA60Nbp/JnHApi6vnpseFmYWyXmx1xWXco922gUQsQ2eEHh9eSHEr6XjMZpvePRObVZzlfz+SylxfXlBglh4lVj/tDqY3ff9lMzXWk0Boo/AMwmRpRR6P+htOFtqwWbzngghcFlfOGrjfr8TxTt+Q0CxayGmhd4rMQnJ2Vm7NzrHfgCKSmeEbr3E5eHFVu3ct93Ohwglrx9C0KwCqSwLrTeSy/w1DgvXGpYaHZN516NL4gVQDfQ+KMvFNipqJapytMH9/h2lrPShDGm83e/ECEfdWK9XRDoxw8vnhWPvSBD+6F/8IYzI/f3Ose1cXgtH+8Tr65WXlyu///u/x+19J6XMsR+eRN75iz//OUsIfP7mGz59eqEz6Aqvnz6zXK9IsGfM97/4HsQS7u15HfnpTz/T9jsxDC5L5Jv/6p/yi+/f+PzNtx6Gp3z58sZtu6Ot809+71vasXFZF7peuX/5AfnpT7j/8D2/95Of8t2vfsXt/fZj/wp7znOe85znPOc5/8DnRwPbJIklr8gI6OikkPj8+hmR4N66TBCxjskYaftGyYUogyAm5ezaaM3SU9uoBjKrsZyqSsrGpLTe3CNoHi0YyPDgnxRo9eAYjZQjqVhFhw6lVUVH437f2TfzuLU+aMduIBH1wJrAfq/nQlzZfeEuJgkNSu2WjDpTj7vLGBULvMG7NA1Qyun0SiE//K8IJUfC+vBBppQsJXj0k8nqM5hpvRDEwJSiDKM9T2ZZRekKf/nd95aObEfmBB99snAhEZJQXMYY06As5rM0Nmz2j05AFIxVDwFG995JW4i33l26HLlEO9enJxWIKX/FokYwxnAA7iFOITKGkjCQGHwjQMeDebVR81R362pdU7KeXnGPr7OpJ2Nq3+xhU9MX+gBR/hPtfYVZ5dJpztadMtahJ5AyQDzMo6n2swiDHCMlxQ9hSsFfdwV9hG8duwGaFIRjuz18r6LEMCXQwmhWjzNisGMzWfoQ7XqrleEy4lENxEsQREwmGxeTpw7t3tgj5GSJ17UqSYQmSuuV/sF/GyXQej2vqRCEFDIpPj7b2Q08j6Mf4z7MYz3EAHgQSEthSRdXJxz01g3ILJlKZwiQrI5pbkqNYSx/DMKxH+y7gf+YIrVX2yXxZ0Kt1X9mtD5WEQd9iVwWZ9iNiU4SKDkyuj2HVOz78wfP+Exmr/tOPXaCLCzFaopM+mzPoZiisbTHTj8sndeqo5IdD2DgtVBqKc+1Nf9eAbcPlGLy5d46A04bgakVXCmBX3/BNl9ElaUU6lEZtZP8nim5UPJiGw6LbUgQIuuL9WjrvAa6kFL0wxhRhXY0ArAskRASgtKOnZdPkeVSWJbCTy+vtNoJl8hPfvJKPZpZ5n3T79h3xh/9zPzVIVCWlZ++vfF+u1GWhbwsxBS53XYCK+3oLIvw+duFn/3sn/L29j33d+FW32nHjnZlvb7y5f7GUi6gyk9+7xPEwQ8/fGFdM/v2Tm87/+TzJ37x53/B9he/4DWaLSN9+y39m29+7F9hz3nOc57znOc85x/4/Ghgm6WgVdn7TpDAWlZQbAEIp7dRW7WuyhCMwQNCMB/eGIMgQu9Q4nLKbKfc1apGzLSZovnyejPJqnFYg/t2o7YDCcK+b9yOG0ky6mRnionWG6pCjMbotN5O9km71Zn0MUD5Kv03eGVKl2Hs2lndIuRcyNhiUsTYRnFg+9HDaD5csLW7VaTEZICy1srdK32uL1d6MxZ6VFsQ73tFpBFC/Cqk6GOwkYG25v+spADSB0Ef4UnwAGk5c4YJHV6tglcMpeiAMxWTosIpzU3l0T2bwQJ63Ls7hn71mWN8HIMUE/TxlVR0soiTcZzXwQQprTVnIh8g9wxECjC8n3bK0IN/TXTAMtnH9gFwT3au+/HIuXioFqe3dAI21XF+nYhw1IOj3gBTAdQjfCV9lymXFasVmtcImNKglMK6FEp+sKeD7qDOgoysgglCyYyBb2gYOx9zZmhCJwAPdp1N1lCCULspC9JMku6NY6+nPFxDsJqdUlBg8a7b4TJP1XHW2qQQyfGR5ouarz26DFkViAa+Qs7nRgcNmg6GB1R1VZM+S2RIoLVu51vNNywiJDV21vTwSl4Xkj5qnxSTtQffRLmWYhtO/ZFOHZxxntfVlIP346Afh1WDYZscgqWVqw731ZuvN+dAzi/MiqTeOr2657la/3FeIqjdu/1wxYR3JEsQQiosy8rRzA/cRqAdtgGWc2Zvg73dHvdGSoSUCQKxGDMfYyC43Lq1auFqKqhCyZmcMqN19u3gvt/J0XzLe6sMBpfrhZQz5Xqxzt7pKQbKfvHEarsG18vF+507274RsgWp5dXC3waDXOwa248NnR5lCfTRWBbIywWVcD7z4/rKT+QT9/vdrvvLhdfXzO//7JXL5cpx7Hz33Xds+/eoHPzk979l3+80OYghkdfES1v9eWdhez/7/W/42e//hGP343pU5Dj4/U+vFGDbbuio/PDlC5eX64/9K+w5z3nOc57znOf8A58fDWx/8s03xta5/FOwFNIgHsyiviDNxcJPwmQzpnTUvHizTiaXbNLf2ogfvv6jfy7FRxhUzhmJQmyVhWySYw94SiFDFwdpkUu4fABfwsKKl5me3tsSTLobooXYCMbcdU95lZhI7qGNubgk19OWFZiVJ/59wwE0OKiMweTEObMd2wxHZe+VcWwQHxLhNhp0r+35IGv+CGbnwngem48hNg9G+WtQOyXTk63LOT/AunLKV+frnKyrpzFPKbeBvWqFQR+CnhDsM0s6mWdV89jijO/HkKYJQps+GNMYrfLJBcNnD+0EQ43pFzaG3JhD9+Jikm2Z3li1kJ7WrPopnXU8wnHfvOYpnJ7wGD8ysI/wp9Y6IskAbxeXIxcHwdbRKwxaG2fYEVjHr4TA9vblId/1zwTOdg47dkMHtZqMGBWae7Kn99boPE5AmN07TDM27uiHATXftBgipz/bgos62q3SSEIgwLm5Ms85k/VWZXiQW0rZQ8UsMVyHnl5cUKpXYvVgYD/EeAY05fCoHMIl3iEm81wHP7Z9IMO83K1ZcJQIj1qcaCFoMtS9vMU3VVzV4a81X2faE3JKsCzUbT/l89PfLJ6kPIZJlnuvqN/7qnYNhxgpS7IOYP/+oR0t2VKfMe/z4ZsBvQ6oJuNX9ATYrZnUf77XeR9NFnwGeAUR5mkeDjxjCIyuNKzDO2erRhq9E0okakaieXh7gNt2477vjPud4Qzx5XqxayYE32oxD/ZAGfWgtkofg3ocBn5LYbmslLIgwWXrHtAnwJIL9/udsSnrshhT7Z5qC8gzNUVZ7Rn5fnsjpczl9cL9duN6vfB//eP/C9eXC//D//Cv+cV3P+fT6wv/8r/5l/TW+PL9O+t1JYTIf/gP/4HLeiXlxPX6wrFX+rgSRCjdOsxrr+gWeL/fya+FkR7373Oe85znPOc5z/nHPT8a2PY6zhThIHqClDH0AxjFkoUdtKgzUzo8idUXgTElYlwwY1kk5fRg4cLwrw14Sg7JCZ65EMM9qut6MfJNBelyJsKGIKc09avQoSBI9roVjJUJGk52T6IzfdgCc+gjEfc4LAF2fmaYPtlH3+YEcHa8mi9kN7p2Sw11tlcEvrzfzpAgFJr7DycD+DG4CfgK8EdnZua03p0lfvhAJwM2gQA8Olbn+511JLW+IxLOhfj8GfN7W2ts9zsBJTnQPdnTD4D1o9x1Mr8fJdizsmeC61LKCX6ts9fek07WkYe/GhEDpsPY6TBgaKOr+kJeTjl1SH7ePTlbgvD+K8FQiwAAbXVJREFUfjPglssZ7POxMmheK4/3J+YR5rFxMauP1JO7ez8waDrZa08wHmo1J84ymgS8E01b7iDROkzBmNj5Pibw/Ai45zF81BgVBpaObBnD7hUOFtKWUqSHziVbiFkIlmyMCK/rxRUNmJy9m/c2SaLNVPBm57GkR2exiCWNR1GGWIJ3CpO5G4zmTHoI1N5pM4nar4+PlVlfHWMHwQQgBDt2Dphaa6TDeobDeISffaxRqrWSUiKlRA7BQo4ujzqj1ho5BpZ1Oe+DeRx7d7be67hmANu8XltvyBGoHoyVSyEehwnsW0MxNUnOmXVdTwBbSjm7juf99vG9408P8QCpfuwsy2IMf1diFiSJsbLug5cg5HVxbzqIgiRjbnNKJnkG9mbncAao2Wdzf696ZpiABqG3zn3bXEKdkWCfPcdkoFph7428GPhttdGOwy0ZcH15OTcPeu/cbjfebzdaq5Sl2LN67/y7P/3/8fmbz1xeFiR+opRMH433+xtDlNdvXlmWlcvrlfe3d2ptECEUYTR7w/e2s8RCHZ312xf+6L/7V/z8l7/gz//iL3jOc57znOc85znPgd8B2H7/ww+nV625/y7lfAKquXitavLD6Av9kBKqmCcuL/Rmi8jWvGolBAbG7MIMemnm7awHS8mnTLdrP/1vzqG49DQQQ7bFWh8WOOQg1EJPHCAZwjbw5KCseM/qlNia9zQRg6XP3u47YzioZC4WhzFlanVAZzepAwJErG7HWSiJQlkyOOOYXaJqulP77OZbFa8kMQAc3dNpCaEG6mYHaUgGVoZ7k61OqBN6dAAtpJi+qqiZrNIEG8vyWOxv205KlsQMEMIEIu0McDIvqstVozG2tXdPpjawBpy+XMTCoOb1MJnx+fu2beScT9Aj8mDyJmiOIZDDDPiJ9HnOo29WYGxg8PCZKIGSDaA3bYhClsin64upBZBTDv2RRZvpu3NT5u3tDVVLN8450fvgfrPU5ZnYnEuh0djqcYIrmikSZl9x791qXVRPEFXblLjbJodiNTsiQin5PAaCe4tV2fed7sxe65bWOyYodxDfqoHApSwItjGBGvOIWGp46+6V9ftg+p9zLlbv4yNYRyvg948SXAbdg28EDXG2VejDvKA5J2oIxJgJ4hVBIu6VV2YVFXjHcR+utEhYgvBDEVBKOmXmQ5XRxglm5zNnAsXeO/fWyDGy7/tXQHomXpvntZhfHbV6sWgbWxIsCCs52xpiIEpiCYHkYVohWFp2rdV86DyqpMCA+Opdu6+vr+dGiF3yQq3NWWOd21eEEFhfP3lAlBJmGreI7d5IMFl4jIjad/XWIUbW18v5vDCJejBAmIJvIgnRFSZjdAu1C7aRMkRI62LPJ4Q2lFEtRXpjPzdL5vWkarVlovh5sNRoFZe2oyyXwuXlnyDinc/YBlleEnvdCEmIOTBofPfll9zvd4Imbvc7vXdeXz9RLvn8mpCEuld6b3zzzZXLZaWOxnbfuPWN/LoQ3x/H+DnPec5znvOc5/zjnh/vsS2LhYZEISZbfAdPkk0huA/QBKNgdsaUC6Or+7yU1jdblA8hhkxOgVY7t5vVW+T0AGI5Fff+ie/+Zwu7iRHVTtdB79UBQIBkrJ8lxSrtXh1Qe2iNy11zKSdYUFXzlWX3aqrSmtAO93s5u5ScuTqOwxaiayFl8x+24WmyvXMc3WJgVD3Z2CS1dEXE2Lxt26jNQ3mcwR3dfIx7PWxDwN/fx+qbs2e2tRNcdV/cL8vix/zhObU6ofGBIXr4VycjNUFt65Vg0dWI+6IlOKPkmxg5R4I8fJjzfX2svZl/FvL8+dEZSEtuhlkLYzLYGVhU2+wnDXYugqUBoxCZibyY7zGlEzA8pJ1ystFfSdmdbTeft7Ods8PVwexMCZ6s2jxeLy+viARqbbT2YLf33ZKae+/Ocpnks3clBJPWqypJ04fPa4A7LZkYMzGm8/NOyXyM7o3UR/BV6x1tjcvlcrLd5+cFZ7aNfRUswEiH0ppvtlSTI89NgodH2z73RyD/AIN2+S7rQlnyqaSYSoPeTYLae0ddTh+DeO8pjNEIElmKfW8Mptw467VU6T26Z957a2OgtYqIntfMrN9JKRCIlPAIB5tS+eCKh+TXxBgdxkBapTlzOv+8tkrtjaNVUkke3qbm+Z/HJATzbdsHJnqo1vRyqwiZDCJccmLbN5awnBta87qcGzbzPc6NkN4G62Xlv//v/2/8L//v/4W3L1+4lAsvl5Xb7UbvjRgTW9v9XCfLF1AldmPIBdvYCF6BpoJ14nqqdR9+T4xBWRZSWrnf79RWiTl9dcyA02dtm0hy+uDN5+w1a60++oElANb1XXs/35+9X9uYGKqkaB22Ihb6p6ht8K0W1JXXzHpZGE3Yt+P0TfdeCTH55gfkEqF29nFw3A+zeBTh3u/ElPj9P/z9H/tX2HOe85znPOc5z/kHPj8a2A4RmkCaIS86qA4+tDeXuVkfpnnXFDkqrXWT2nbz5ZokTumehjww6TASzvRbCWKeOY1E0XNxaB7Bg+PYqd0ygQ24CrU164w9DpMnI+eCt+RsYFHMV3em4Tq4nbLG1ixQqcrgdtuotbIsq1XJSCAXY8D6aCxxsc7NBqrd/L/RwMx8vykl7vc7EgK1drbt8ORVztf8WNUy2d7kvb4Gyh5M5gyfqmdCrv+qx8OLe/osbaNg/tyPns8JlN/f36n1IKbw1bmeXz9lySEElmVB1D23/rPKsnC5zETcelaxaIxo7ySBznCfpntm26PeZTiDNxlUsLRYxGXQw8KlZHAybMa4GZDroyPjAXpjdo/k3Lhw7aV93s4lutS1D9Tl1h9rg+bnnHLznIuDPQfcEjzV26uSAkgyprjWalVQwbzWs98XNSAiCY5aOY4pHrZAqxiSB5ntJtdO4ZTUz+v4/fb+oZrJgCLxwcrNczb9oXMjANQDq9zLixIIJGe0e7NfiDHGvfXH+W+B44sxwBP85pTIKZBzJOfI0GwbENMHGgOjD97eN/NYY5VaIQSWnIyx7A3GMNl4jkg07/D9fme0RiyBdTHw31qlu5e6p8f9Cg+pfa31lDz33ggiLC4LPj22Urhcr+fmVO39q3omO96W/iu14kVRaL89ZP+eaJ1LoQ1n4bHnVQwPZcUEuB+VItPXr2qpzN9/94X9OE4Zda2N7htyQ1zR4UBb1XuJ1RPYsfdZcjIFipof19Le7frIHvpVZ/CSKi/rhRAj9TjohwXWxRgtjT1E31iJrhyBfh4X8+vmYn5fVBE1L/3chKlt2gjsmROwTTqana/t2JlR1yb1tufwsq6sZeV2uzO6SeYlBHIq9GE+5jEGtTWaVpoaCLf7fzDacW7qPec5z3nOc57znOf8aGD7l7/6JYKxA7MPdThzMFmvECzNtHoaaormxdu2w8FSNACrSi7pZHmNEQlWF6KNoMJ22AI4BwcwoqhAbY1t31EHxNH7ZRQDEn00ByKZoYNt3zg+SEVDnCFNnmjs9TLDOyrFmdb1UojJEn/N1/gIgTmOw+NYhDHcD6m4NxFKWTlqZSkLKSQGAxVISUkp02p7hCO14XJLBQa7DvZ6nIzPBGlzAT8X0HNhP5m8GSw1a40AMg+v5gQnfzU5ebIsE8xOpszAtv36mNKsgH7oj52vPdnllJL1UKpyuVycnP1g7gvm1QwEl9p6qrL/vFM27iFTAfPWGjM42Fv1qhhLm44huIR8WF2M17tEl5unlL1rN1Bypkhw+euDGZ0ewfnaxszjsuzgx3837x8P9pHxqHeSZOqA63LxYKhq11UYJiEV76D1MKspTe1hstlw1IY0836fEvQP7zPGR9WROps8/BgtpbDtO2kyu24NIBhonddJd5ZtjEFIiTBBrg4Dur3TRydXSz+foH9ZCmspBBnn9WfhaWLXiyo5ZnJJ/CR/Rpty1Mrnl59YxVKrhCC0IVS1DmgVu+ZDjOQgINGAWvOaKLFQrVmtNAHix6TwUsr5ufDj23pn3zbu9zvLYjLaPsYpz+6qtA+Kg9NLrd657bR1jHYn7fWgekBbXszfDCZT3/ed4BaDacewc/X43Y5XJMXB6PC//q//H+qxn4oA8bCnaCZ/jm6y845/XoKdV/VU6yCkGHhZr5Ya3Bqa89y7OJPqJ1ielo22H2bBEAuI6rOjuzX2sRFDIsbEshQi4QzRmv3GAyWlQAoPdcZwebrZD5pJh1sjl0JOmWns7XPjarOaIwT2/eA9vPu9HY21rfYsFwlIFpa4cI1XV8dY8FVvjdoa+/1OeGZHPec5z3nOc57zHJ8fDWwl2pc2FVobNK+qiXGQspJFiAR62z3ZdLGd/2G1LClNFqbRuwXk1Hp8JR2dwGvKWqMIqp6+Gozd7cMrKFK0QKmTwRFiFLL7AkPgBIKqgmpnjIcsdYb9mKfO5MNLSe4XC4RowLgeBtg+ylSXxSSH9XAGE69/weWxWJ+rtk4UsToUwYKMcqHnmc7aTzbWGEYLs5nH4eGttK+fgGIuZlNK58J+Mo7A6dEMK6Yr5cFwfXzdEAIpR2RKkEUQMZ/xZAxTih6etRMkM1OWP4ZUzdfvvRsLKwZej97O8zqZrzEMfOr0B0+Zpz6SZT+GTuWcT9AcHICC4+RolTZtdIYOuh/nLjDc4zxmyjL+3wdf9efOXxMAjTF4fX09j+u2bSeon+fCAJZ9f9uPExQ3gVIWk+Q7Y1nywqWs7P2A8JA7i0us9/1ghqVt20YukZJNai4hUO/3k2mfx3uosjvbd3FbgATvSJ4AXcRlqeYMD/ERpjZl6MnZ9+RpRPO8Tkm3MkjL4xFxjEoYnb49AuLgUZn1fjOWtIRCIlJSYsmRuC4mB67zvjdlRcfOnfwVxcN+dMJoXK9XZF2oXYHw11QHtVbzaYbgmyvHCXoni3u4H3deT7V3Ng92674RtC6rMcliwWAivpGQ3WKhQlT1zamEOiF+tMax76y5nM+hKdOO7vV9hH4pS7lQa6OUTMqZy7rYPT03ndw7vQSr5BGElDIM28ixxO8PQWJ9QB+UmEhLPG0Y04NsmyOJ6/X6kEN3Ow/dGeGcEiUlDzqzjcZeK0drfl89NmRijDQdNB6BfBbWFsnp6x5kO19TTVMZQ8h5QUYnl3Q+RwjqX3NAt82F2g7f7LHPvy4X+vSd+2Zc0MDL+kJJ5W/6q+s5z3nOc57znOf8I5kfDWzjYgvozZkrq+oIdJSOUscgii2iY1BCMPCX4iM0SfXBOMJAgrEyQ60yqPuuv6qnsaZE0Gh1HEF8Qanm94zJ2INkckyTwYYTPM/wJAkPtmc0Y3UIwWsrjOVTr6Z5eXkhKFQ6M8gmZAfyo6Ke6dJqpeTCJa4WMuWfb3ga7HEcXNaVy/XKly9fcN0ehy90U0qkmDwINpBjBBH3wTlDe1RigoKZXmcNTGuN9XKxxbMHPJn82iTNJg0FEG43SwKex3yCyOOoziwvpBx8QyCf0s2/yupaB25FxKTYBlC7e6cNCJkfMhoj2wcpfd3FO32HYMBmzeZ/DP56U8YMJtmdoTi32402A6oceK4zQGuMM303pcTuHuj2IRRqO/avZKLBUYmvwU/Q/bFC5qiVbb8bA1Url8vFpNhOD7XaztChY6s0CSegoHcHDRFEaftu4CAZu59zcFZsIYRETLv7bM3fiUzPafPQo5k8boFqQ4eT3x6cNJR929B15bpeGDGxFANa9/s7KsaWhWEbIwaKTREwfOMixcBtuzFGJ5XMS8nnRsWsE2rN/ePBg9pwdr13jt6ZsVNBlf3YjH0dif1+8w0S33CKkSiwFAOIrT+An4GdwctS6L2x398toTxkkNldG8+vzTmR0ifAOo5np3JrH5PBA9t253p94Ztvv+G7777nkgsSbMNGh5JLJg3zfs6qJVEF9Y2BIMScKKpnRVDKifu2sXz6hIyZsPzYMFFVlmX5qoZrDCVI4NgPjuPg2HZLcc6eLaDKspiM2PytQknJ6qdcOTET6Vs97FmYbKNjbuwd+4GOdob3qcJ2v5/316wPKjmjCu2oFnTmNpGY7flp16JwTH+tf7Z93+mjMj3zZ9DdyUxPRUQnyKCUjFU3ByREaj2QPsPiIoSBiUa6y+eFECxwsNZKPSwUa0kLda8cvnkBSkmZ2/7+Y/8Ke85znvOc5zznOf/A50cD2yVnRrfUUVEliEnMQoCcgi/4hBgz2/1O142UMocMUsx8+fLlrMXQ3iDYIlWCLd56a4QeyRIttVOV0ZXbYR7VJS/u6bKkYgmVUrJ7aAvaA0ksMXlEPQOjjuNARclhoL0hYpJl67UcSH8kjb69vRnoThHd7meI0wRnIQSTNI5BQIlRacdmi8DRYXSiKtcSySmwBCV/unJ0S2Q2cA9BjMlQisvqrIvzkhZfFI8zyCVESzEVFatU6UIMiZLNm6gosXjNjDOJQ5Xtvpmc7wNga22cNSQArSnrWkAb+31nWRfz531g9WKMViETiwEWLBCoj4ASWZZ8euxar7SjncnTEpQoimojYJ65UgrlslBr53ZsxqaOYb7Uodw8QEuCeF9oP3tqZx3Rly9fUFWKd7tOr7Kqgft5HGqdzLP9dxGh6QN4nHLqZqxjSolWJxup6LC+z/YhXAggBwMdOjqXJVNeX+mjc79vJ0BJKTHUZM2jDzSYpDU4U92HZcYGAAdFJVo39OgNYZBR8moM8H7sJi111YJK4H7fOFRJIRERWjUZ794bX768kXIAaXaNuFd4DAUJ3F12X7+8kbKFnDVngV+uLwiBFITeGnRIBEQiJWf6GOzbZuCwK2EED41TjqEEhdYPJHjQWR+M4273lm9kLMviGyH2Z0o3dm69nF5s29ywaq42NgRldKHVbiAvFk94DlyXhfsxrLIoDGKx8KKBsr6stHHwFz//c3ofVg9mEWl+H/bH/X1Y2FkuJquux8GU8loysHlgtQHd3mOtOykkQrRNrpgLR7XnSy6ZlCO9NqhqXl0J5NXu9YiB0V7t3N7vd1S6X28efBcDyYPBwNhbRU1t4UFRx2gM7fSgjAgq6onttqEVSzyDzC7LYkA3AKoM7YwhKPYcPo7KXiu4qiCESI6JECMpCGOEMwBt+rJr7Yw2wK0dItHOhV/bIQjt6LS904/7o96o4hKL4mnfQsdUFepy6AG2eVIKHUt4Hr0z+kzYfs5znvOc5zznOc/5XcKjWiW6n06HECUTowG9KNYhirOqxgxxJmmi1uWaJdO10/vB6I1B8sWdLVKsYiY4IxVdFjscND3kr72rpb12pR6dIzYYQoqR3jdmVY6IWPVJtnCaWhspmTR1KReWxUxpM3BnMtGjHbTRDNgOtSqTlNzPaQzaoTsilRgix36wpEyIQhuNtazEKEQGpUT0UESD9eiKECSdLGgIkU+vnziOav2TAyCePrmUk3uABwyFNhjiqcUyS0O811KNTQS4LKuzofMYGgB4ub46e2MVTCinFLYelWM/Ts/sx55aY3PN5wmQY6QUT7Ae6Svv8Tz2Vm9j7PnLy/WDl7VbB+0wb6N5mCF7aNaY/lJVYzDnAj+EM6zqOI6TIbrf74yxk1I+vw5AZJws9fwcfXTvz01s2523tzcDobsSPI1X1Xx8OScUYdvu9Fqd8ffwnpSdOe7nPRKiIMGrd4aFRMVkabMpJYN+U4I5Hu9tONiL0SqkYoDoKcPd07kTSimPuq29Nr55vZBzQYi0pqCBEQKjKUHNCxmSSflHG/TgPnFtVL+XcOb3aDspRJPe90FkMttKCgasbPPK7olSrnYt6E72tF1jJMWqtlpFh3K0h4+1+T+PMVxebD7WnPOssUUkEqJdmwExO0DbqENOr3YNluJ87NUSoCWQSiGXSBhy+oLHaB+UIN1VHFZTNOusAHR07veb3W8u74+YMkPEel2tqkdJEghqEnRpSsr22vf7TujK6+snjtZptTPU0phDxZLFtVhlWjDWV+RRw2XHyFKi+2jkkokhcvewOdsISG4z2EyJcveKpWJKiGmVCClRynLK6bVbUNRCcTl9tdCo+OgiNyBpQLikjNSADujN/O7HdkMksC6ezuzv17pvI6LdQXQ2wKmD1s0P36olaU8gjdgm3QgDBux75egdYiAvAUIkJiG617m2ytENaIPVm3UG48Mz8DnPec5znvOc5zznRwNbFNaZQOly1OnZnHJO87ANUjKQ1HojiLEHa85AZ7sfjNEsPXYY6GG3hR4qvu4JpJxJLjkzZpIzLdhkvwbWVMx7G1Okjc7RPFVX7b3t9TDZ5BgEiQaKFcqU3eoghOSJtM7iCYB13qraom8444rqmWK8HzvHMADYkyWyzp+pzdmMXVyuzUPqGCK52OLzqAe3281BlzGIk6UJIsSSkd6JCFkgHpnd5bUfq25MmpnPECmAkjKMr1N/Y4x0D3Wx7lfoalUrtTbv3+2ekNrOcKn9OKjd2Cy843TxBOLzGkiZNaWTWbdAH75iM20hat3D5YPkdX6GU7bZH2xrjJHL5XJ+zcfr7eNMCfqsQ3pIQB91NzFGGJjPu6ttAIRwAvnsDDXSKTESktKqS0yDnZPaG/v9xtGbbUDsdz9nEeoDvE7fK0Mp05Po9TFzo2QygWe4l5pfNgSx0KVhrJeFn3lCrvefbtud+7azLFeW5UJvw/c+Bp9fL87qQRb7fDpABlyXldptEycV8zDn8EjCToSzjimnjPqmhdROvNjnCSIkiVyXxZQBIsYSDutbTjGh4XHtzfMAnIFoZjvwRGFPB+9uF1A1GCMSyEvisrp0tlV6d7YeCMGv2bahzTZFGOrfOxPHxc4p2AaTP2fsfrU+5sslupffvJ33253aGpfrlSB6ZgqoKq+vr+iwPu5Pr5/Y9419O1A1dcpxdNZy4ba9U+tOLmY9aK0TxWT8vc+E8UdNEygxZbTDVivbUU8bQlOrjDqa2R3WCfyHcL/NcD5xn23j2DtwQ0QRVd+QslR5EeFyWc5gvBACMSfMxRAQlOzPSomBBMhuz702On1UC6mKmZzs+tn2nZQLXR8efbDu5BQjwXuXz82cYWFlwof0dZRta9Rum0rrspgPXMyOMeuwpp3D+pmfwPY5z3nOc57znOfY/Pge2w/dh7NKIzpYGKp071HUMYgCkiMpPgKh5qKLACUXeq8o6vLRzkyGtQATBweqlmQaA8OZYAnBWUxbHEoQY8h0AMpyXU/AhgOGMbwKJiVkGPt7eBqxMTmH+eqwztrLuniAj7NaSZxdca8u9n3rejGfnYfHjKHkmOgd7xc1AEC0X6q4P/DwHtEb+344axpRmemswwKngHa7neE4VjlkKb9nAvKHWp7unbOAHx/sHDkYiiGifZBDNBDd3a+MMenT/wkzYCt+6MztNIaluIrJTbfaqO83Z3zdp5uylWtikuuc53lVUGFdrZN1PyrRk58/BmjNa+04DnprXJaV4vLo1tqjykcfSdHwADGzpxM4vccPZs68kNIex0gwmf0lL1YrclQGIKq0vRoD7ovq2isaIuKVJV2MzT8l5lM+Lo9uVAsFGnz78ol8BmiNcyPjI1jXYfUto44THLfauFwvX3X3RgaC8Ol6dem10vY79RjO8OKp4IoMoeRsTBgGykfrJBFSLp5Gq4xhibs5ZdZloR3ma5ehjD5YcyGESPMAor01Ws5Wv8Rj4wDM09vR88/m5z03pdxTPT21YPLu4nL7c1PCve99ZMrw3uUh5GhSfxHhGpbzOhDJMOKZKq2qJi1nSu8b9agmf/bNl1zSI4EcOb2ix1Sc9M7hHv3uHdK39/fz8/z8L3/OsmTWZUWCMapBBEmJb7/91mW+tolAtp+tLpXHa8pQzvdsF7PV7dg/2jOhj8792GwzMAiEQCLR+6AetmmUU2FIfWyoIJhmurlawqqZRIRt20kt0kf98AwZxJBI2VjrCeZTzqS4su0bIUUiU9YcIJlNIuSAJOg01MPobLPCO36jbWIlr6jq6htOouSUiTmjIrRRPajK2Nrh/uJaO8tir2t+/cRxHLjE5TnPec5znvOc5zznxwPbflS6JwS31tDWT+ZsgkIDNr6oxCSLqoNcLqgH/ZwJw14rMiXAFjL1kPqi0KrJVikF1Xayph89krN6CIScC3UMYztdPplLtuqM3r1LV+hDT6/pX2X9hnIuclszOelHZhT/nCkXhgzWy2rp0CEiSVxqZ9jOJM+Fve6Mbj+rdXVwMDiO6h5BO4bLywuInLUr04u4LAtHtT/LObOkzMBAq/l7ByrW3zkBn8bI2OpX4DeAyQD7w7e690Yolg49wcZc6H/ssbX01kjrm4ONQfVjmFKiHp3b/U4Qk+nOsKrp1Z3nbCbFttYJrRsr6NLDeYxziIRcuJ/+vXomPc+Qq+m3nT7bbdsAq4Vq7XCQYPVKxtB5jVBriMt+UTvG95v93BgtSGkMkz/jvtpUMh1lvV4YLouXZOfMEpANqB2t+lU0K3As+ZthncEXVzzMTuIZagacoK+keFb1hCgwbHGvwapgRKGkQipWl9S63S8xRFodtmEQ0nlPHnUnBjlfJ2Ge1RQzZVnY64FE21RJxdh2GRAU87uH4NZQsSCp2kkSyMVTpB34K0K5XFiuF7p23m/v57me53CygymlMwDsI4jd953uQWBzE633zv3eqW3+mRJToKTkgNpYS5HIkq6I2rOl1UZr1TaS7JRQQiIvkb11A4Z+bap/Qc7lDKNLSfl2WRkuezfJd2D0GX5nPt11vXK7fSGlwvVSuL29I9E2Yr59+Yb9uHPbN3sOjYc9I/h9WbyLN/IIIOvNNvpm3dM45dT2PIgxMrqy5Ew/Dpa0eBDU4LJcz+eybaQdtG7P01IStcrpS7V72zbMQgqkRR5KkCQseUGSh92lTDmyvZfxOJ8SsOApNWVHa83Y/hBJqXhK2wTVgzGM6Z190Qx7Jh/aLUU9CEks9CvGgKhJqXOMRKCrAWa6mv0jfN3B/ZznPOc5z3nOc/7xzo/32I5xggiAdV1PRuajPBSxhertdiOIsO07+7ZxuVwMLLpMLcVICtEYtGhMYQgRVLwSqFO7LQDrYXLiWuspF5w1MMk7cBXY9u1cmH2UPU5glkIiissgFUIwWWit1SRtqhx9EMdgHNU7OmfozrBETq+hOGqjaUWiA19PMVUdxqdJoPWBHtU9mYsxiM5cxpC4XjK9TRZYuL2/M9RYaJi1KBtjvBBjcplwYx83lqWAZN9sgPf3H1iW1bs3lV5N0jnB8GQKP24uzHRVemBos/TVEDiOZuyue+yIdt5adzYwRfPedeVyWYEp+Rzse2W/H1wuq/eXvnO9vnxVNWQJz5HRO7d9/0omDcbuXq9XXl5e6K0b640lss5zalU5Bqy3bUMEkifE9tEcoATP7Lb/dZfGi4yzoseuJZPVd2fZc06MZjL3roPRql2HXpWiQMzWw6wuy//INs9/772TR7ZaFpdx4qFCbTeFQ/K+XW0YkBYxxlhmyqxVttRqCb2WjN3RYenJgpwL/SBwWTJBLDlYgMvySmuVQ23zI+XkPtuB9sqoplYIKgRV22zxc/Sx1slqc9TBXzpZV9sMePz7GXj2IbRsgo9ZnTQVHwba7HwHT8HtraHD2P4ZLGbXorDfD1K2DYe9m8D/5cUqXxRl1I5W2/iiKyUWxCt7Zp3OACR01OXeKBbshJ3r6cl1GYU91/wZVxxwz+vG/MkGSvf7nWM7SHlhLYmjVn747ntqP7hvd/KSCS5HDiFQSnn4fh3ETxn9uTnlm0wfa7xCCOem3+24oV1PkFz3gxbMItBrd/M9tNZts6ZH+minpHd2VYtgxzxahZrdp3bfm1qjQRsgSsqZqEKI09Mr5BJZ1+LPSDuHS0xkSY80ZhWONogxmYcXd6dP9YkEUojEJZ52kHZU1rJYaFQdlvisA1Hs61Oij4fH/TnPec5znvOc5/zjnh8NbEMwhig6qIwu9509rtU7HdVByiWvtN75/LKgvoC3BYwn+J5S3WgyXXxx7f5T+5pqiyoePalHMKDb9sMTPRt7bQYs5SHR/ehbnL+naMxDzoWQk7NqyhA9mZvWGxKiJ9lAG519O06vKWLBKIqanziY7/H9dicwF8LGuml/SHd1dGKK7kuzwBWT53Zgvl8IMZ0MzVpMZvn2w5dzEbwsC9lZ2mPfCRIoS+HT6yutNrbbnVIKy5IJOfrCdJzs4MmeYmBl3w8i6r7P4gz4lHZGLPTHQC0IJVqv5uiDEjOR6ZGMBmhy+Aqkihijbr8MhMe427WinpLs3a+T3dnud+pRye7jzs7uTbYKODtRwcByyh641bvvUZivcIKzKTEtMRIlOOhuFtazd5ZFT9+4JfE6Wzw6aCcJZPcUqxgIGDrMbx7jCQT/qp+39w4J0jAp9OwEzaXw+XJxxYJ9ltE6Qe3f+7B06D4GrTvTPAOwekP0AcxnUFBKyTqOqyV1Rwm8v/3gjCqknM97mFMKahVaow9iKby8vHDUyk++/Zb7tlk90LGjvVk9zxios+e9dwP+eGJwq+hdiTl+5d+cG02TbZ9Mu4Fv+4zH/e6fJ7qXdjDE6oR66OdGRoyBZSmUkihL5ofv3lhK4Xq9EEqGPPtUN4yxL2zb3cPGzKfcFZP9Txbf/a6jq/XZYteCdj3PsfHfcOz1vBdzznZOMKmtIuiAbbMNl9ttp+tBiEJJhcOl9DklUowWFudhYBKCp24buxnF6qKm/SEl22wZbZCy+bMzCUnWax1D4OXlhVn/FaM9l/a6n3Vp9mxKlKU4091Pu4UpMCwB2s7X/ticCJzPD9XDpe6Jy7qeNhMwC8X1ZaXuO6NaQryx6bZRoZq97min90EpC/jG1EDRGM5sBKuS8g2oPui1O7OcOfbDn0/hlLI/5znPec5znvOc5/xoYPvtN9+cAGGyOMDZQ6oOnkYbxGyJtsGgHmBJrVOimWOmpMyxP3x2vXUkBoZ7LSVl0OE/vxuQFVhTpjiTMxfNZUpv3ZM7U3Mni2oBUZ782xutN1JOhP6QsQmCRFug9tZAhof1CNo6RzPWOBLouBwaxYhKtUUtYgys2vGJYovVpRQkWuDNcTSC9+2Obr2gybsyU7f06MEgu1RSl+XBEGG+UdSqaHQAYTBa4HCZ7roshGDgKCfvGZ5hLjGcvtYxBur9nLPW6OsAJ69B+hDiRFe0uU9v1uZMFqaY37KPTu2N6kFOy7KeLLtOMBUCORfzOXoP686DXf8IwD96ZoGT6ZoS6ev1iqqyrAbmJyifncgmU3egIsr7/eaKAWPfkoSTuQ8xkherp+lifmh6M+LLwdnH+qDs0tjjOJyJE2cZO7HYta/D1AnRN4ZmQrWIsO2bH1+8J9fuk5lSHZJVa+lQCPFk8lUFCdnYfxH6EI7a2Y/mQUAWtFQ9XVdEDIDqoNaD4BtL3YFVDJGQ7L7ej4PL5cIf/rN/SoiRf/sn/46mg0v2ZOBuUuymg4HVuhAC3VOQ56bSlKqezwm/nidTa/5hLzzS+Zldhh1sEyJKQFI+ZdDi4VHalf1eYQREMsddef/yPUteSDkbo+tKgOzHQkKktsbtfqcOZzmd8XbVuqeEK5PqFAm0Vk81yhiDpSzGSro0mK68v93ISyGnxTaDMEb05eWFmF6xvLhATHZPBAnkmExKXhsBk7QzlFYParWkeQOYtokkwZ49OhTp5ud+BDHZJl0IZmPYt82Tv72rF/tY9/vGcViKdc6Wch2jJcintFDbDHJTtu0gpmDKi251PRIidCUFsefgUe3ZjOUb2DlTchRas2dUDHZuCfFU5Ox7PRUFKSVGKaZmiCYjn/VUq2/iiXa2982eCc3TqaMpdZ7RUc95znOe85zn/MOYUIevwyDe25mJ87vM78TYToD1UWY4PXIpJZayMKqxDdt2Z71czh5IcZ9jq41KJQYLigFbqDOUWnev1xn0WC2YRwaXdeGyLCfIWspyMhOCsC4LVR30iTBapx71XPipL1ZVrLOx9U4dlVKWr3yOs+pDRzdforq/NEckPXyiFipjPkXtJpXNyRaqMcYz2TXMsKBunrPRoNdBisHZWpPfzdTPpUSOercKJT/eYGzKBOxBlaMexoKEYMzW6OiwxFNVdWYzWaCWgAZbqMcYGUBXNQ9wyaSST5n3XMBPyfkEiPOcH/c7YegpxxSRs/d2tE7T3VJRA2dncc759MfCQ05MybTj8PqR7gBEv5KrTiZzyt4nwDU2Nn4VZmYybds4Scm8rMdxsCzlBFW9d/YUaLWeycSjG5OuKLf9RlPbIAjZvIeLr5xT+MgkWY/mrH8KCItLRmOM9plqO8O81APE0ocQrDNUzd+/+OZGbc02G/z8DzCmPxj4URR6p7XxwRNqXluwECKYGxKdNbt309Ouwfzfzft0S85oa0RJXC4X2hjc9o3/6f/1/0RSJPhGlrjXeBzNEoGjBWg1HTA6ZV0565x6J+dC8WfHvAamlaC7pLu1gWBJ0zOlHPfzWsVXOyW/U45u3nTrP45h8evjwr4rVQapeG73TAH2uqna6nlt5WUlxsezQYcBzNPWoEqvlhg934uF2MWz/zp42NcYnc+fP7siRbC9qkhzAKvDrBZBhEterFppPxh+fbTWbFNFzA2RxLzU0a+l4jLvGCMa8ymXTyFSkvtzBXo9uL19Oa/pegzw9x9zIefkgXe2UbYfO9GZ9tYakpRajX1d1oVPn+zaCtHk1ualN9VKCpbsfL+9k9LDqxwCdH+GByytXhxsi1jVtxBZy0JJiz2/6mHnMiVIgToqWz3Qbv577QaaL+t69htflpV1uSASqOHZY/uc5zznOc95zt+nEcBzO3/rhL0Rjg8kyNFPYPu3nR8NbCd7NkHHlG1+ZNaWvCId3t5upFhotdPqw89onjXAU3ajJyoLYoslUTSopWxqQLEUTW2dlG2hWFuj9cOYXGf2RhCTWabEfdsAuJRyMoS9NXqtqIBGQITjmEzk4zOO0ajVZMDJ/WUT7EoItvgOtngXhKCRIMEYvtbOhGb1+qHoLJF06y7pY3C5XlEVtvtG8HAewyqNlA3QxhDOZNMYogHxWqn1IEkkLqsxUzwY0NvtZuBQYN82tr2Sl8v5dZNhDiGQXOo9gUifIU7ZQO5cVJ/Jy36sS85nAFLv3Raj6inOIsSYiKIc6lUmCO9v7ydIDiGwlIWcMkfdYXRSuuKXxgffq5jU12WYk6kcY3hIlIHdbdu43++AUtvB+/twmerDC774+x1jUHJBQmSPu7PmgTYGvVYDszF50FA4j1X2LtCIbaRYKE4w4LpXQgwkMZb56AelFHKI3ofsdVZ90IfV0HQHlEspHk5lx7keh13LTIBqstz8IUWZYEBpBJCYkJTA5dbtZILtWlb3Tlb10B5n7CeYW8uCRPN6mgdYrNtWLIFXRdhvd6pXPs2QOB1q7zsmJAZ6a+zHTm3t9KyiA8Gu3QliZ0/vsiyI4JtKlooOoP79QYxFHb1DsGMQgslzm4cd2eZS5+39zj//o39BSpk///Ofk7KiMvxcGigHU4TEFHl5fQEE5euNuY/30VSlTI/0/G8zuGxZlhOgz3uylOxfb570kJIx5kfnvt8pi0mgYzAJ8vSIihiTGxDqdvj1upJL8oA3k7yLXyOtVcsbUEXyYHdlCnACyzEaY3RSCqD2PYjdp61VlyRjLDnBQtLkYYEQ7DPkHL2P2RQFMQVitAq2xZngoOqe3FndZD3BTdu5YaEIvR+Yl9fDyYIxzPf7ho7Gsi622Tb0lHT3ZkqJWbVmXvRH6vm+b4SQmNVrz3nOc57znOc85z/exK39KHD66ybUQTh+xMbzf4K/wn80sL29/+ApxwaSaojeaGqSPZHALjvSjf2Iwf4sp8Do1XovU6S26vI3Axa1mvQtRAOzFiblvahENDSsLqP768wFfzkZ2aYKIXF0pUjyuojptdMT/IcSaNK53W5svTKapbZOoJFioLWDVs1hmWdS8OjG3kSh18p6uTCGsqRE1GAMXrJ051giSHI/ZTc5dRE6VgPSwm4e1WCSw5ytHkcZBJl0k5BCNhm3BpdkRrQLyyVCmH43AxgDZb1cT6Zq2zbKuhgrXncDZCmhKZ9+uOv1hVwyOUTzJToT+/7+Rh+NuhsLWkphKNzvd0IUVNIJ9mfXbatCG4M6bMMhhUgKgfq+W8w0UCTx+z/7JwbkeucebxwXA5JBAvu2cbvfiMW80FaHVMkxUz3lNqXpdFRu+3amBPcxjKWqlU+fPrEfjZwiJRfe9nfWpZiPrw9UIiFmJEX2ozFGQLvSuzLaoPZKS53L5UJWoXc5A57q3imrMcBhXex6Hg2CcLvdvpLgTmA9ZfoyOk1MSi2qaLMgsVoby1JOwJTLI4E7JvuAMZsMN5XIGIF8CYza6b06A98IxY5DyhnrSTVWtSEMFaspkuCbBIGmBh6PvTr7rEAglkgYQq0diYkSrTZmDAt4mhUuYzQ3GTykwzM4yhKuDVBPsX9wZq9rRWVQ207zex84WX/BjlFM5je9LIWhyu1+J3tAUfH7WyTwZfuOEAI//YPPJ3N/bHeX7puqIMRAWmwTSQe0w3qVY4xnOu9xHF4jk09A20ZnWZZzQ+9+v59S+egbQSVnxD3K+OvHKKSYqbXzulyZSUn16HQxlnzfK5f1wrFt7NXuk5TNBnGMeuYQoLYhUNvum0XqXtxBb5WSo/vWI2DKjh6FlAJLyRao5tdjTtlsGDESS8GFBPYUF+XyabV7CmPZ++gnQ3xZV5N3M9hnkrVE761Veo/IEMaI9B5MqtyGe331vM9r6+TsKhoZdIUf3m4ED2IrlwVRIYv1FI/WGSPQs4XC6RhoF4hAtCCp5zznOc/5P3IE/ppEUmOYTYfPec7fuxEF+S2ZFNKVeKtf/9nfQgb892F+NLDdd2PKdHB6AJOnkRoaG4gqmUgU6561xVZkLeWrQJ0gtpDato0QKsdRvf8xfkhLHZacS/O0zniyviUXUiwn4xrc4xqTUDDp4gwOengsMxqNrfj8+srL5XJKRZuHwXTvTr2uF0AscdMZ6mPfOfYNAgw16ezeOiVMGZ6wLOmUy04f4RgDle4BPIrSEQ12lUXvVVH7tR+7hRGleIb7pGRAxZgr+0wlJspqwTV9DPdPmrz4qAdxJreqGmjK6QRdqrZI3+/v7HdOBiTGyBAlBguoMplkOFnUkiN1VCS4NzGYd1kF1stKLuXsnmVYKnMgcFkKQawm5v7DuyfeBnbdGcV+9gjmOb5ern4dGHhIMRnIbZ0DS6ROyapsuktrDY6ZTDbnhTFgu+/ostDqnX3bqOsCY5hMfabnjkGrjSUXRmuMaCxStIQk6vsG2cDyfYb8tIa2cdbVHL1zjArO4gNnyu3HhOcgxkgm7/o9DqsAyikRRXwB34giLIuFDM3+z4GCDo5WOcYHObFLbG1zx1637426e2p4sg0eCQHfX3E2WsipeKq1eURbbahWcipItA2pGMU7iIXRldnPO1q1dGXfVJrTezfJcLAeavFOX7sdp2XB37sOqxk6fazzs1jn7/32BuA+/DtIcJYvcrksp2pEBEKyNOwsycOE+hnuNIbJsbOD/f0wlUSdPbIMjsOCnuYmVowzoMtSp1UNrJpMX776uSKBUjIpRr7//nvu982fi5HeKyEkl9ibF1mkM7oxyKJCr8021CTYhsheaaJoFppXpak/V5dltXA07M9DsA2aGCNHPWjd/NQzWCmlSC6ZOKKztfZnP3v9qcmp1ZKfczYmdKs7Ywb1qV1zYPLrWiu399sZUmVnfW5oinujg3lzD+uZLe6N7kM5XHadcyHGwFF3Usq8fnqh1kHz+2sGqc2gtxk6ZuoQD8JSS7DPOZt64D/Fdu9znvOcH+Vf/y/97vv4GeOtwo9dx6sam/VhxpLc9gUaYPuD1YDubziQ5cv4+gD+HeWX/4eMnP/3YfTxOT7893YRRv7NV1HclHj8lc8s0BYhbY8/1wD19ZGH81eP29/0OnPSbfCbnCsjQbv+muo49dc7//0/zzn6q59O2iBsv1sjgPRhMt9/BPOjge2UksaYSDGfYUDAY3GDWP9lMsnelITOwJzjqMZK9OaL1AspFVI6PEBqUFtzcJfMs9V90ROsQ3KMxmhTamkpnzFiQTsCvT1kz703knfjxhhp2un+/kjF5KIuM6zHwe5hVhGXlh47uWRfRAYEZblaV2yOie3LjZEyOVlVUSnZAQnuVU0nY3QcuwUMSaDu1TYEHAiMoQwGS85n+ioCKSdSDIRoYLlVaE2px0F3aXHKmZeXqwVkxcTtfuPleqU388CFKW12AJVS8s92cL/dAE726dPnz+a5dE/hZKuGgwWVxaXHinbbiLgsF3pXJEC5Xt1/axJCEWMa77e7VTPFSGt2LdR+ED0waFT3cJJgeNBQTGgwn15IiTUvpxSx986QAMkki+/v7/zw9ktyyVyvVwKwb7sB1t6ICEsxz+8Q6z1trSE6KNnYS1VPT5Zgya21c5zJy+rXoJwbBId7kjUqhA/J276pMIOmDNwFtHdUkl3fH76uTbmrByjp1tz/6p7b3i1xvFW/xmdH6ZSSy3ndGsvWLOxHIIdAb+YHtnvVulcZxnQl70rNEmg9Gfu9W/q1mbNtwyr6NSwK+CbVx8875cbzObHts1PYJOVT2i6IS90jsXidVLeNAgvaMgVD8hCnFJNtnmgwee9QYkieVCxn+JM9O+ppiQDO8LAguLrBaoMEoSyJyzd2j5iCxGTvqgsxRQ+Pyy5l5vQFT8C7LI/6rDE6t/1Gp1EuyTzn4gFpJSKiHNthrHHO9NBRNX/0aAdVhZAF0WHAMgZj5hXyshA+9CqHGPzesk2a2hshBl4/fTptE+/v76xcrA6tWep5ygt9mNR3a43tODxsajKig71230TB/bQzVd6eFfbZhzGljFM9A5CSXS+TGS6lAHqG9qWSoJmyYCkXk5WPSq+dmDNrWqnVkpzvx52oLgnHU6LpbJv1gKe8mjpob+ffPc95znP+7hPaMNsUEPaO1N++CNYYGJdfv4TUFBjx7++9GepAhhLfjxMkyd/R1hD2r1HTy79r9BzY/mDl+Gwb8h+nXR5AKjQlvT8AVKyKtL9HQFeEvgojylcgEyC/Pa4bgnB8sv8+Qf5vmnrVX6u4UYG/inc//qyPx+3HvM7j9cJvVPjYBsSv/zkT8Kb7IPgbEwyY/12Arig/CmhKH4T719eWzETI5/za+dHAdnoyUc7aFmMTB7Z2NyaWNliWQRud7XhURgCPepAxSMGA07yglnUBAj/88MUSMdeV0Zr1Wqr5bnUoDDHpqE4J80BH94TPeO78i5hMsqQHA5zSI3BIhxIkIUkYIaN55XV9Ob2M7/ebJZaqJf/WoxJLRLqScrSHoA5aPRjdZMa9m2xzsqAGPgLDjdE5JvNvJiWUSD3qGZYTQ/D36p7EbtU6e21c0sVAUlBbJHYwoSWA0vady/XiITQX86YixOv1TAkOzpQfnhabQuB6uZwsuh1jdXnqfnoMZwhUDEKMmevlQkqJbT/YtgNt3VhHBe2D1g8LpvIaKAPRmzGH2tn3O+ZzHOg2zHOpEZpVLc0Qn8nItLY/vJLDuyx9EV891GbNhVpW82gPpfVh3j8HR1FsU6S3Dn49RpSmg9YO+uiUbKnOAauVwRna6Exu7ybzDP6XdasH2TtHRx8nu3R2jcIJ/kKIaIy0MWieXHxUu673fT8/b+/K6JupC+xWOplQNBDMII446x4k+caLXdMpRi4XOYPA1lI49jsasDqtYN/fa6NX20QaLhUNEjzdW0kpeH1QNLYRC6VShGWxiqIJdqY0N2fzOxrTbrVWwHk/osakP1KxswWc1W69yROUirCUYt21kyVWcUWC/XuURFNj9lWVY9994ySZ114MJIvaBti+bYQgvvE0sIqtTh8H9pKDXOycjWEyabtGLCl7vZSTJTXGfT9Dl1Qz11i41tWvl/zY8COAWC1PDAFJQhzGiKckBHzjr3dCiqR1gWD91wEhl+QbB/b8UrxiLZm/ue536ugktXvj9vZ2nvvamvueE6OZd3r0xu1X31ki8pBzsyaIJR5HxFUm3S0iw1nU7oF0lntgG0zjzDCYdpJpZ4gxGAjHNrxyTkizTZCUEm27u7XEfnYYdi8Q4fXzC0NNGj6wDckYAoNI64PqsnmJgaPWM1TsOc/5zzG/Dgz9poW2iUT+hsWoyH80OevH9yZtEO+/3e8mbfxO4E5GJ/wG8KsxoH8F2I4SGUv0b/71n/PXHqO/4Zh8/B4Dq/U3f7HPx+TV/1QjTUmt8/pv36mvfx3YfpzbP13Zv4ng105o+gCLv2FCU/IEw8rf+PV/qwlCLwZme/k1jCZwfI5/u5/9W87rbzvfPxbI/i6v99tmvl59ifDy+PN4PJjj8jaQpnZd/bqX/nXXpfIb75/n/N3mdwK2YAxLq8ZuHUdlJg7H6Is3ly1OFkdEuHhfZynGkpZSWK7u2er6AM0S+Pz588mMdA9QGd16Rc2HNxi1MvxeCtjCvHVjMWcYzEeQC77DggFNHdbtiqpVtsToxjIDBSrCNy/fsObVGLDRuN3fkRF5//LG6+srfQxKyrR6cOwW4DJu9tqlFNZ1Rb1yYwzIqXiXo/rxMOne6J0gxqRaJ67JlFtrDO3ma6Uz1AJdxhiUtNCcRYrOqN7eb8a+lcyx7cxKmTwB2wewNRnsjwFRrTV+9atfnedpHrt5HkvOrEui7sLomXF0ZCghKFEixzAGuLZGSPHxmipWZ2TwiMuSzX/omxwyHjU4UZNvcHB2eV5zYKixp0tKLMUYwpQSiegy3MCSF+7toKRMb5aInaJJRXOMvL9/oe3VgGCyBTpqIWBjNO5b5Th2im98RPdwFwevBv6h1sOPjQWJpVxOBnZWzMwEaHhIk1dnkue1+fb2xr7vX4VbiQQ6FixUa4XWfbMiECWSPDiJjm30NGP61f9C2/fjq9Tyulm6rPkkMZ93CKRYQBSVQA7W2zsa1m/qMuKASfNjDOQcLRhpDPbtxrbvZyr1VD1MJh2Gqy3k3DRJMdH6g/mbrHeOmSWXMxncgosa9aho9GRdEbrLoUsp7HcDsdMPm3M+5autdWe+hdljXI/dguq8DielRMgwRmVotftUIQZhPw5Siry+XkzRsN8Qscob6wvOrGuhlEdH8RgDMaEBt9vNjuWwHIB9s8+75pWUIhIGqnbf1aNyvRgYvt02NHTykr3SxphKBIaoy8OtQmcM60FOIbFcLgwd7M16tjUI5bqSU+I4Do59M1beU4wNeAvL5cr77Z37/d02F9Vk+ZflyuzTtk2NGd6lXtEzSMk4VJHHOVY1ewHRjvt920AGGtQ3FBYL3aOx3Te/NyO9D9u0EtMS/PD2w9nHXHs973N70KtvSLi/VkDGQMKvX2w95zk/dqQrcf/rC0wV6B8YydDGV+md6F/3pGkQZzH/+gpa+iBsvx1cjiWh6T/CNa1KvNf/bFph6QP5K4c0HB3MZcLIAS2/Zvk5/joA1xgY629Zqv6a7/n7Nvntt7+/b75Ujp8U9p9k6qfMSALpN6Ow9NZI740RhO33CjIg3x4g1wDv3+3kt0ugXX8zoP3HPr0YGbD+fD/V2PlX+9+Z+X/O331+NLCdi1iT7akv7NQB7kEIVrGTPZAl50zKyVi25jvrwWSUfXTebjcHXpY6u3twTkrJPF4ut0veWzq69SKGBLV2WjtY1wttWODMcMkyLv9snvAp3i1qSaqV2JLVuzg4OKr1405poQ7rlpUwSBIQiaQcuS4ry7rwfn+nbg0dBjxLyaSUT+Boi1pPcW3G8kSJBDVwosFDpuKglMS+dVv0aYc+LIwmCZfFFq0xWgjSlLWuaeG43amjIQHz/I7OOA40pbPyw+pOLMm59U5AeL2+cEO4rBdPTjXZsQ573SjBziUW4KSqDGdxSZHjvtMPlxR3k3buvRNDIueF18vVOnyjONNmKafxsrLvB8dmvsrk1UnbdtC7MW0yjI3L0RNm647SSSVRsrOuOhwgKyVmrsvlrJEJ64XP67fUYzcG0StUdAxG61zWq10jeOCMs2IpWMp0rSYPVzH1Ad49OsRqh0oolKWgYgA2uFew7sY6H8dBrZVlWbhcLid4m5UuKURUpi85WgULlgLcencvp4Hb+36cwGIMWJbCaLv5k4Mx4UezWp192/2Y2vuyRGBLn1aF5B7blC3sa/ThATyDNRdSTrx9eYcRoCu1V/O5NOsxbfXg5dU2pmrvtGHHBQZfvnzPrACzWihTWljQlnt9LyavDxrIIZ9p0zFEjr26XF2IybpVNenZ6WrVUMOk7iIc20ZrjX3f2baNm0uXry8vJrP35ObWmlWNuY/3ul6cUbeqHZEBOZL9V/fjP60DIpDLlU/fvNJHZ9t2lEFMgf24u6Q/MLTRRqeEQo6RGANjVL//rQu79ca6XBi9kYCleI90q7y9WQ1WKtkUKGIVRxBdCdMpxUKkhOCbYZVt31lEISpv72/mPc/+/DoGb16VM0bnl7/8JZ+/+dbYzQAhFt7ub9S6k5divuNoSPHB0NqG5cvLi6kLjuNhRQkKtFOaDW5NsH8408e7VroYEN32zTcuhP3YTY3jG5BF7Hk/X3vaJD5We5lqwFh2VNFhXc0p+p8957+oEf0NoSSqpPe/GYz1a0Ljr19sp7fj6+8XaC/lxJnSB/H2V0CG6m9cjH4FmH7L150v9yMZw980YW+w/62//b+YCXVAPX7U10ofJhn+Bz7lVwf5h2qg9m+Yj4zu8ovHBdMvke1nC/UKIPQlMPLX90rcOqEpGoR2/c1sqwZ+K8v8n3SGku4djUJf/5aM8N9iLMl3MIodt7j1r5jw9N5YfvnhWlRnbp/z92p+p7ofk5cGNM1/lzMpFCAXk4/W3ujurxIJdB0crXP0ZpI2CTC6yy/HmYw62a/b+/vpyYzRehBjSogKo1mPYpDIcZhkNIjS63EmmsYQbHH1AXSXkokSjfF1n6f5/YLLMCFJgmhpqNohEkjRF42iJIlc8krbf/DtXDHQkAzczi5OY1uHpTwfVkHSdEf2g5QjuGxVQvAaIF/gigEGEWG9LHhE8ulpHJ60HEvm4v2lgdkPXFmW1RgO1dNHN2tJZtjPrCwBWzQex0FZV2KMvIf3k/FrrTmbZa97uaxEMYb7qBXtjVQWlrjSmkkQQ7HPU0clp2zPRBV6c0CJSbp1dCCyrtdzQ2F6Na1KCbL/u1UhWeBO79azGWPmOCx0zGpozGtJG1yXKy01WrWwqa6DXi0oxwC50naTHwcEBmcNUGvN60kGEOj9OI/9DOgxRup+LsSjM4YzUOrBXD6kyGBs6ryPRKJveiRXN6hX6gTzTSZLV7R7QDm2ndoOdMQzqKzVSlkK1+Vi9oBmGx1jdJOLagaMPRvee2ty9ICqeV9bb+7Ttvup1sO6kPHaF696aU1dsmoBSBZEZI+O+VntXreQuVYbOdq9fL/vzpZGSlnOa+56WVkXv67d59mrqzKwS99SwQXB76VmHujrcrXz3M2PX6Il6MZofahRhCRiSeLRJMjm0Tfwtred3gf7bl26Ly/Xk3WebK+IcLle2e4b62LAG+xZlFKiD6X74lzELA+fXz9xHJVt21lLYj8OerPKsuVyobeDtZhSJXnwk2CbEEGiBcG1SgxWz7PkBZOeQ6vVJNsxUnJm9GZ9zEx23dQxS1mI4tdjWXh5MXWJq7ytmzYIcV1IOVGT2AaiJETtufT6+uIS48MZ1MD9bsnq62IbJvNeNZuH+cNTfATn5ZLJDlon0BhjcF0ulnGAKQHnMz96T/T77R0VsxA0naFdhSCWiGy+ajvX965nINlz/n6NwHne/6pfU4b+nUJM0pffDeTk77e/9Wv9thTR5zznP/ZIV+LvKCmO+/jqn8t3j42V9pLoy1/1xFpvqEbh+Cb/1p9dPyXq59/+NXN+nUT4d2EvL/9hO0GkdKV8Xxk5UD/9dZiy/6z83QDvUK7/Yftrm2hxG6Rbo10TfQ3kL+03youf8/d3fifG1kCOEofJ/sBqIS6XK+/vt3NB81ECrCitdWd0rLd2vrD9UzNGJ0a2baOlmYIZkSi2oA9KVQsP0QDHUSlFyNdMb4PhDI2qntK07om9MVuaqs6dJ5dJT3/gXGT1bkyjTL8oJoVEQYZZH+peiSFwKcZ41tBptbPfN1TvXC8X1vVi9TNjMILJXId75MR9fiEZCEglnWxtG+bnHNrJ0UBJ90VbHw+vonVyppM1TyFaByoJicJ6Xc1r2Qdv7+ZnjUt8AMfReX97P+W1IRhD01un5MK6rKfntrVq51m8poaORPN6LrKSsnmGpXdj+jAPam0HgtWaxBgJCmFduCwrt/d3Wu3uv1O2/W4+3sviTCgWsuVQuGvnuB8noxpj4nLJqHuRQzf/X8rWNdxqM7Zs2KI3p0RE2PfNQJxE2qiMph6MpWx9tx5Yv9Zbb4TQHEQbe5ZzIpcLYwzfdIAYE2VZTQLr5/x2u33lKz+Bklon7uidfT/oY7CUR4CZSXszeCVLqxYMJALbdjN5+1LMJ4xJZ+uxIRRiTOC90OIrSksxHw4Ulfv9Rmv9Q/ibBY2VXLhcVhjeNZsf8nRxL/ReO/XYiDkQkjgLbYzsshgbkmI6N5ZqiIg+QqPArt2S8ymtRp3V9I2ZGa4ekFNKe7/dTf0RrBOXZD9/24wBTCEiwe7XWhvDPctTWTJ7W3uzNF4JBsBLXrwn2hKhv/vVDyhW+ZVLcc9p4H//sz/3jbFwStJF4OXlFRFLOk4xIEPYbpuDfJNNb7c31MO6vv/yPUsprLnw/fsPp+ddQrTQqC6kUEhRiFIYDUK2TYz327t1+wq8XBeSH4PaGiUmttrow0L5ckrUfUdCOLuUS4hojuAy55wzQ61/F+2kaH5xjbaBYf3OBkh1DO73d7/+7Xh+//3dmN9gipAZWhZjts7tZpt0uId3zYmlLAbae/drc27yBNpWrT86eOBaU/Ztp+fp67Uqst4Do9l9eLQKNFoDHU+P7f9RI2og9cdM2BphsrLPkJPnPOc/y6T3Rnr/9f9Nun7NPv6aKb+qIPe/+YUEbn+4nh5h4DeCx9/4I34NCA51/Nr3+BG8/23nt4HudGuk29/5JZ7zn2l+J4+tySv3c2FrrFZnDE5GcIaqTCA7axvAFvlT7hticADhVT7ggSf9XLS2VkklUIIxdIBJR0u0VNQQ6Xrw6fUzenSro3Ag0p1R6w5YYoouTQ4kZ1UnWJwpyvP3GCIpmJS2tca+mfTUNIiBl/VK65Vx31ERluvl9Fb+8pffeapoOmtfxCWn0WuLRC0EKsYIQRnVGDGJwTy1Qbltt5MVnCDcGCmr5emqlmoazGc5tHO7H85mGOPTWztl0sZMC9d8YU/7Vz5mFO732+m77b2zrquBK2eXt/ud9VrY9p19N8ZrvJsUVCQSrHzYenFRjmNj9EaOCcHCZAKR19cXQMh54dO3P6GUhXVd+f6HH/jTP/mT8zOrGPCNIZLKy+mZnv7tPixU6ajVmMiYiQK3d2OdL8vC/X5D+yAGIRBsgawD0WAsXzKGr1s8LwOvtVFBgpJcwnPsO4gSm1WfTFZ76GDfd0QewUPz+jvB4QdP6VCruFJf6N08JC3lzFDlh/c3CxHKVoWSQmS/36FkC/ZpjdE7l8tqktT3jbrvrKsBgOLJ4CBe6dI4urFuZV3JagoFU4Fa0nDMyVOdm8n2kwG1PgOxLCMNxST0KQjrZT37esfQ0zt7vV7t3o0RbZZQnmLygKTB7bidz4GSC9WvvRjsuo6uCrnf7+ybS1a7+csnaAJYF+tbrbVy7DsxJV5eXmzTqx2nr9kCrRqz33Zot3MSwiPVWq1LWNUY2OL2AWM2I9fr6+njztk+y7pe/Flmmyf1aPYZQppB0oj3uOoY5JjJoUCFUZXWTPac10Idg+PeHtVMGmhHpRQDl1EiMQjqGwDHvrl/PoDa5lHwexsRJFkacj0O6x2XZozusK7nlq3vFswvHlPwaqJgm3hR6KMCAwmwLuXcsBh90Hu11y2FCWytZmmckvhSilsB5FF7dRwMdXZXTelzv91BEst6MZm/TtArHPeKjMD1mnm5vPDl+3faHgjxQhyFGALffr6eG0jP+Y83+btfr4UV1f9iew2f85zn/O4jHxQ3f9O8/PsfAYD/I83Tx/qc3zY/Gtje3++nfy2nQorJvG/FvVkheoiSWBooagviYFLP/dhNuudBISFE95pap+0Y1eo4vCPXwEtFQ6BSz4CSMRoxRe73nT/+4/+Gv/zLv6RtVucx+1VLKe5xbazX1QBw72z3u0nmcqKOjhDpDmYQ4fCFs3Y92VyBUy55fb161QhESUSxGpaByaolgKRHcNVxHMgwMDFTnFFFoofCtGqMbetncE/KmZgsXCZlk2/GFD2JVLheX6h92MJSjXG6Xi58+eGLVy2ZF3rbNiQIiLLvd3rPlLLw/m7bd58+fToBh/Xn6gme+xhU99VNKXIqkf0wyexQNU+kBA8QG6h6gFbP1GPzABoLxLLznbi/383zeL1ahY2az/c4DvZtR8VeZ11X9m3nvt1dbpyo1Vii6JU3y2Le7OwL+96rgUws0v12u9tDOegj0VgC++4yzcvFPKOtWfJfGxy1knJiKSshWudwCIHXF9uEaLX6JoWpC+w8eyJxSucmAExvoH4I60onm1hKoR52vLZts6CPGP04gkjiODbImZQjvTbzq3do3TpIl7WgdJdPD/pQEKW3mSTcHfxYsFvOj1Cu1swXnbJ1jY7RuH66cn+/00blen1l3w9q7ehQyrKwrFegM/Sg7rbJdL2YlLzWSh/d/bWKdvO491653++nbPlkKkXOmiMRS8+trbK3zqx6ur68WEBaa0g0CW1ySbNtyliVD86i4vVZBrob9/uNZSm8vL4CUNuB9UEbWF+8F7f3zstLOs+bgWA7D2UxFcCsw5odxL0rtR703m1DKAyrKEJsI4lAjpmA+vUb2O4HxTdXUiiEkDn2xrFVBpCyeXat59n8xzFG1rJyv9tmTR9u5YjCflSrheoWXrVVu/5fX1958T5oDUobza+HwRjmX5ygPwZchq1cLi/cbrsrORK9NfP2CuQUWZdiyoSeLXEa84abv76YdxuhVXuG1r0zmrG0syd8XVeO+x0lEGXhm09Xri+v7HvlcrnwB3/wByzLwl/+/C/58sMXUs4sS2FdroT2yl0sbO1Qq0+S/qP/+nrO7zDPpM7nPOc5z3nOf6nz41cGPZz1J0mSM6IW2KLRJMppuVh9A5Gg1VJGJSAaoAmtWo9rKRltgVo7Pbh0zSuDyuKJvDRigNaNFeytmRRSFAmd2Dt/8m/+jYdDJfO5rsWZJPMZhghDO6NZQFNaCiFFbrc727FxjE7Yt7PrU7DaoZzMs1e7pawGsVTR+/tmIC9nC2wh8vnl5fQfp+v1ZEEvl8sJZKp2q7TBNr/a0Rl7JedicuSRaHel0qjV2ezaOOrB6+sr33z+BlX48uWGYszWl9uNFI0V6aqUZLLk6LU+xb2fuRS2u3krU4pEsVqZY6aT5sSny4UjPRixIIEcCuGyAlgoUSkgtuFQZCV6uFRI0dn5RCmZ2+2dGLPJDL0fuJTC2w+/YvTOy/WFH95/IC0LUreTJVZRPn3zyYCqBJZL4WVc+fLDD6hvCpQlcRyN+93YvLJmWm0Pnx9KyeFk/bJfSzkn9t16Mr+9fKK2YXU7WI2ODLgsK6LKZb2gKFutJptVO945JMgLR60MhdfrtxzNPKpjDFo3X6r1zyZycpDrTH2vjTUb82r+x2JSX/3YeQvHcZwycTDg3hgwjLkkJ354f2NJ1hu95OVkjFVhccl5DrZBsabIODCDpVoyeErZ7lvsNWNZCKKs2c53ULiUwnX1apqY3HNZaQ1iLMRoNVitN2clAwnzp9fdpagnQ2qfMaRAG+bPfT9uznAaazvG4GgHMUTWZAFhUgJ5vVK3nSVDzpYy/v5mPswWBulqYVl7O8wnr4mQhZd8ZVkWlpI5aqUOAVwVgVJyIQRBe7I0w7gw2rAwrzboOvj86dMpa973He3jlCa33r0mSYlZUTns2jwUkQgEcloYDPZtp7XB7qByNCU4SFWx+ycRPW2+sZRim4AqfP/dD6ZAuFwYHUbK9DroGhg0JAltNAiwvljl1d52FK8Ry6agUIWSF/e+C0ESyxLJ+WKbNsegSHH1AixpZUl2UdWt0rDnY6+KNtjr7htyK1rsM+dSaH3nv/3j/5Z/8c//a/6//+bf8Sd/8ifgdhQZwlqsLyGsgZyL11BZUOAvfnkgUmktE9O3qMJ2h21zwF9WhkTCYoqUJsE3UZ/znOc85znPec5zfgdgq6rGJnryaAhyhu3grI+xTSZ7JeWzNqJ6yqXqcD+iotrorVslhBgTpzpcPptMuhqs35VhoVGSrfMxifn3BFhy9mRlk0qXkt3n5dUYLlWbHtehkErmJSfE5boiwogW3W3gTiAXArbAZVhPZN+7dUBappOBkeavMRwQpowoHPtBd/aiJFsw1sPkqDll6qFEjbaYpNNqpaqF54QYGH0QQ2K77dxvf36Ci+2+ETGJ4OiD7D2rqurJsOY/VYU6Grn3M7lWAYmBFAKtGpsW9shSsnmnQzqrU0I02e1SCi0Mjr0xpeel2AL5hx++oDq4XC7U2hANfHr9hmANTNxuNxqVHAvrcvFNjeIpq53R2ykxLUvhVS3d9u39i/n6UuJyWWxzwtk2COiIIEoQWNYCiEutOSumBgvLYh5WFSUkk5LXfiCSiAlUTVbaPQm4fPoE2M+4rhcIkAjkGNFmYV+SoRmtxsvlcrLmM0RpqEltUWhdmfEGMSaXjD4UCWWxjZj1cuF2uxnrj0lMe23gXawBYYx+hi9FERbf/DAZrbOfRNISDHSqAlYXtW0bx7Z7greFGom6RD0Goph0drKvE1ifx7I/Ng9UDXQiwSW/gdYO3m9vHPXgclm5Xi+MOug5odi9E0tCQiD4BpnJvk3pAZiXuh3s+861X09gv5RCXgs7g9oP+jEI2Xt8i517BPKaieKKCJfuS4DdmdUZfqVAzNGCtrwSK8VEyQu3evPE44TWypcvX87wsMm0z+CsIMLtfmdZMiKDfd/Y9+qezxkI1tEBKRVSwo/vwbHt5Bg42oGqsetvb28cx8HlslDrnaGDPoIpB0ZnqL3+6I37tiERGo31snofsDG4UYXsXdOz4se80CaTDsGes8dhkv7mm0vb+0Hbx9mpPEPsrtcr1/X1TEseA0JMrNksHslT7WsbBE2s5cqXHzr/5n/99/z859/RqiXfp2g9twOTb/fB49+BEORMtlcVrE7oodBovbsiLpCypdVbWvYT2D7nOc95znOe8xybHw1sazsenYcTDGpnP9rpKV2Whff3jZQy67qwHwbQQphyZZBg/ksdg3VZ3atli0xVS/GVrogMxoDtVvmX//JfEkLgT/70T/jmm08cx3Yuyk2yvLOUy7kITVM26MnK4im/EiK1D+IwlhAF9RReCzzRs7YkJmOJu7Np1sJqckd7zWG9oh6KchzG2Ay19N0QA6WsqA4GgxISyyWfksclZvOGqiW/9uF+hoExQQg5Zd7e3qitsi4rQ8cJUIIEbu/vXNcLLy8vvL+9IyK8vphX7mgVDVb52Frnvu3kVGjVgGZr3apPEO43+56Us6UrryvQnalq3O8HORcPxYLWhm1M9OkjTag26tHJRbi9mw8wxsS62GZIvGbfZBBSXLhvN97v76Q1MmpHEhy3nbYd3O93dCibCOulINGBuZpnsZTsyaxK9Ej63itNB0e16/RyLeSSYbdUohDjWSMSI+z7sIW/A/8pj9/3g6HK4vLW1naOraPVAs1mjdV9u9N655uXbyxt20MTVMxzasFeiYDQRqeNwRB77xZaZZsUIsJ234xdC5GcZuWMfBVCdb2a7Pft7c2vzeodxQvVAS4qLqWdqcyehhwAcTDROqrdGGuXSpt/NJ/S8+mL/9jHC86Y5nSmfs+INYmBZb2Y7P2oVDr9MDab03eZqM1UGJIjA6VVSznuhnLIKYJmgkAIeFKucoxGq4OyLGz7RvHKnAnopiz807IQGKcfdqatn8FcQO8ToHavp1FyjlbpMxRJVm/z9vbGXg++/cm3Z33X7WZp2L/61Xe8vr7SWvc06kCtCurJyd2Cpa6XF3q3MKTaDspiicYvL1d6H7y9vaGKX1MZJXl42u7PG7i+vphc+moJyRYGZhtPR8/0ZszsUl4InoPQa6Md5j1P8WLWjdvG7X4jJ9vcQGCMQJBESSvX9TMjCPKhsuk4DtoekOF1ZmOxqqwREWeB6zFrggK1G+j91S92hr4hDEpZ3ZNu5/LcIPFrQ8Wz3z8EDs5MBruGZy+wqQdErDf3o0rjOc95znOe85znPAd+R2BrLJl54ubvOWVfJA2OY2NZsoODRozh7Pjc98pSEtfLYsyCTCbkIEbze/WuxjbR6V4hsV4u/PRnP+Pt7Y3eO7f7/Qw7MbaoeZCUgdkZ2lNK8X5GTjBpRGwBZ6JSjODsqIiQY/LP2mh9GJug46yjWdbl9FGKrcYIMTHUGFsV69ENMbFtOzmvhJj5dFlp9bAeXf/+s3dSlbUsXNcLcYkMbRb+UqvJIAmsl1dyLmzbHVJhKQu1DmrtbBxA4NhNMnnsljw6hjKScPRB653b7U6KDVHYsQTdkBLaYdsOSioc3RbpvZl0cN/euF6vBBL1MIl0cYDbOyzFQnR6U1K08Jd6mLF6dCWGQKvq3aHyAUiZBHhJC0kScQlESSZtVfXaJaHWg9vbO8c4Tl/g9Ixa/y7UYUm0ijHdXRu1C7Vb7ZDOkAGBQbfYnNFAGmXx2pEBIsZQgnkKxQN2tDdGa6QUycnqmFIQSkmsUuy/10ei8uidMJQUxa6f3mn7ThM8mCzQ9NEDmnPmy5cvzsYdSHWvs/c5995ZLxe+/Oo71nXl8+sr2/2OugR8DPXE5NUYQ33UDIkEjuPOuprE2ELf7H4DU1PMgzPBxPx9gtoplQ7BKog6gzoa2u3a3dpu/navITKGtyNBuSwLISbvGraKpaEGaayWK1JyYkS7x9bVQoFqtUTqlAwM79U3BnbzjedSKIgpG5ZCKpbIm1QJHsw1Bicgsk2Q6X0WjqM92OjWsTJoY96PvZ7XQcr5BLytm1qjHvXMB2its5SV1iEQPQG+cRwNkcFRrHPXPttK6xutQ06FfbcNquv1hda6B1IFUhKGXumt0oeyLBbiVr3fdV0vtgHVDUinZGnICvRzsyKjYPVGFNblhfT6icvaz+dhSvFUtMSQISa/ppR+uCqHjKgQpHjVmqtsmhJCIrh3Wvy60VnPFIQcCzGNM1RvqG3SWCAcDyWN6HmdzfnYj2v/bBuKj7A/AP1q4+c5z3nOc57znOc850cD2yGDox8nkxQkWG+nmN+sjgoayGphUCaHHNS6M0YnJe+IZBDDTAUX68j0xU0InMxKjJEUM8dW+df/+l+z7zufP386uxP3fSd7JYaIeeCO43CWInJUA5ETTIUQ2FulZPOamuRXYARbiIt1gG7bZkxvKcQcKaGcVTN5yScgsRoKzpTej97I2f86q0m0Vpp3neac2feduteT+S6lEFMgk+lq0sHr+mIMY8jnAm7EzppXJEb2enC9fCZ5ZU3OF3QMbjcLgirrQu2DrW1c1pWX18+MbhUe23YQBxSXigqR69WObc5WtTJ6p3fYd98ESJZ+HGNGtTlDfZzHNnuH76xtWbIdg1YtmVnVpMND1fzSKZIX8yEn9w2OyAmiSims5YLGQR0HIczAsUrv7ZTBTsASUySvBSKnpLZ7ou48L9fXK/TmPu0A2h3kBVJc6L2zLCZ3hsax37m/P9KpP3/+TIqJy1qIVSzVV0ziCgbWareanh4GOpS4JK5Log1lrt1vt5udo8VeM3ngl6kXOtrNH55SZoTIqI3X11eOY+fYdu7vN9qoZ71MjMnvGznTyQ0AdPqwLmiTpLpVIBoYyDk6A2ZAZb6P+Z7mvWP3piVbV7oXtwdDj+Ie9xw9/E2IOgg6LDldG8g4Q6SmxDnOALBggWfTG5/9XpgJ6iIQRVjXFwShLOVkCAOBkAJrNL9y3e6EoOf3TuZ59PGoowoBxO7/FJN5gmuFIQY2U6GUxdjr3rm9u1TXWWGT+CqogdH5M+cxjilwTSu1VUQe/bGqlgCfYuH19TOtDV5fP9t/G3be7veNvdt10qpttlgcn2cMxAtL+Wz3VYehmZwXstsvjv1w37SfM+8svt8mc25VXqNXGJEAjD5oIyAayaEQTQmPCISUaK1aIFmwALi0LLTQzmeCpTWb4ibE7JuBFg2tY0rv5dFLPHGo+tcFu5Q+qhRmyJ5+AL1KcJa2e2f09dyAeM5znvOc5zznOc+B3wHYrsvVKnF8kW9VGw2RwL57r2Q0Gd9cFM8gJZMwq7O6hy065VEBNHfdb7fbuXjsvbONnd4h5MSny4oIHLXShydv9u5S28r7fT8XdDPB1Jgik/HGZIzKF31DBAPliMmPXYLpIatWPZLSWdtyuVxOMDul05aUrCxlRa/Kly9f+P777/nm5YoKrJfVEknd/zpa52idXhvb/f51DRKCdj2TQFurZ11QSct5nKI0q1dpldu283K5sB3GwKmDUgEL07lXbrpT1oW3txtBhdasNiXFhKjw/mbSxJKMNVwcaE0Qsq7rCXZsod/OjYXpv9t3q4boLukF84TWej/B7v1+/yoxeFkW1P9ZhtCPzrou9MPOa9NGlETI1oGaYrGQpqbkuPByfTUmqFbSat7N2g4LyFpNkv7p+nL6C0MIvL29OdgJjH6Qc6LV7vLkgog642jXcK8719cr0TtVU8pWD1QyR2+00QkCLcHuAVYSBRbrTJaczjTggCB7pze7F1Cr/4l+/lNK7Ntm/nLxpGeF7f1mNVPAD7/8lTGuy2HMerTjiC/4RczHe7vdKaXYz9yrS5ij+yaNiTW/u72HWjfW9XqGJJVSfLMhnffq/Hl5XRCtxBQsnMzTlfuwcz9c2j9Q6nZ3KbHdW68vn8/PLRoMBBNph1USmVfYekzVQY+IEBCKZFZ3K+tW0d4JvoE0aveaMEvx7aPbRpGrNephyb6jK/f7RkqRslpw1O6bS/Vo3jg766QGrQ5q76gGQnikSos8eo3HwNOKK6DkkrjmWUGjZ/VTa9W8tAP27eD78cbl8gk0chyVdb16AB7seyPnF5aSLVAvRqshKv75h4F2vLJp3wb7ZinBQYyZV1cbhBARAsOrgIJY7dWSTdYsIuDBfwHfbJyVwmoe6JSChX9p90ohxfYerUpohpIFCah4CJ+nMHdXS4gET2j/ml0NKDEIrT8Y9JwDtuHZH8ogNQ+2SZGNVYZ6XvfPec5znvOc5zznOfA7ANv9aB4eoyxLQUJCiS4zE3IqlvjbrAMxRlvIqfoixeVjOS/4+uiDPNX++dOnb1zKd3gQVDnBgS1UldbrgymMVluzrCu3d2NswVJ8a62UUgysjU4/LEBmCt7u9zsBW+zt9819bFcDvCFSnUH79GrMaT2qS5nt/dfaUBn88OVXXNYLIoN/8k9+z1NyO7XvzgpltqO6dNk+9+XFfHPJJaEhmCf3ZS0QBDkmuG/0YaCxt2YdjyKUdeX1pdDqgXZLpp7y4OAyXwmR1+WV/Tiox0GK2btUB+l6oe6VkhbvutTTm5lzZl3XByutj07WQXcZeEREOY6d1iqlZF/EGyMcCEQJyPTHKYzWzp5L7dMLWyjLhdY7bUA9jDkXCRxfDNSlHK0GyD3cow2+3N8IwepDUrANiBwzuZST1aGDqCAqRIlcyoXj2EkpcAylujd8WVZeXz9xv2/knLjdbqjCtz/9Ceu6ctvupMOAQ3SfbuvD664697ajKVDWBfH+WEQY0bp4g8uPY4OowpIL4Wq+Z/OIG6Ocg3fQip4SY4nRa34sOCukSMyJS8mEJKd3NAT3i6uxZzPFd1kW8GMHOLhVbrc7OU+AYOzb4kzouq7n+VfVEwQDlLVwO+4cx06QSBRjaN/fd7+es1/TyhgGnNbFK4CcsStlBT049oPm94hteARyKoyuHLWe9VMghN7JJYLYvRAkkNfM+3df7PUEgipRAvdjA4RlmRsp4p7/i1Vl1QpB3Qax+zVnADoG61w2MGr93Mtim1rXi3UF37fNPMtE6zIjuGIhOftqSeG2cdBP33KKmcv6QgrmXS/LghDICVptqBReLi8sRYFs/t3a0OHAbhjwnj5bgGBOCsDkv5MFDcFZe/uqs37sa+82/jwfhKCYkLhP5yuA34uGdlWtzmf+mQu+UYE21J85Zuq3TtzZcSv+s8Sv9a97UE1xMeuu9Dxe9v7lVFswHn9fTHuIofsnsn3Oc57znOc85zk2v0MqsnukBERsgdzacNbCehn3fSd71YsOYXT1xYwF4yAmmxx9EETcn2uJr2o0ASEkB8QGgifTYKv+QXSva0qJod36VHPhcg2epBzOahJLIE5ETGa87zt99HOBH3MmhkBZMq0KrVVqDQa+fRm53W5ICGeP47FvgIEvsE7a2/ZOLplO9eCmg73u5mMNlro6VN3vaYvq2joSIkMHzf2rdavewduN/VJlDPO9EiIxF5chDmLMoJ1lWc9jJRIIvnhNIbHvBt5fL68cR+X+dmPJK2tZebm8oM5W12Pn5Xr1kK2DmOLZbwqYdFVsITlBrXX/dksXxkKYxhhoV6+0ccko1tFZa3fm0OSNrVVUDJziTExZIt2loa11EraREIKw3Q9u72/kEllKoe4Hb19+ybqadFREaUej90d9VMrZ0rtjtCqpaGz7srxwuQRbOKPmsUYoJSNiNTGlLNQxyOuF8vrKD1++MBA0ZaIIKWZC76xRiCWzLIsxVZf1rMUyYKbntUQ3oJicyRtjIEW+kk5rUPZjdw95dsBp52n++eVyIURxWbwBCJOPmxJhMtWtdTtHXqk0Paf23wbLsnK5XJngwDpS48nUzp87wc2239iOzdKECRagFjNRBRELyxrdPleIhZSzVStt3pPs7N48P9ot0C26VH3fqoduFQdcdpyie473fT97mMP7OzlnamhnaFwPBremnHqCIhE5lQUWGmes57KslKS8vVlPbAy2UWAbOYNUMpfLhft98y7gRCnLqVqYG3IlW6ieiJDTQkyZ++1u12AUlrKwrhdaFaKYRL3t0EdHCISwoj2zN3umhgh9BEQK4psHzTt+g0QnSS1POIQHsDOGk9O68Ng0/OpJfion5u8h2PU5MeeUzD+A7fzzD7tz8HimucXEv4s+LJjrg232t/y9MkG0nO/Z3tPjHgnB2WcJjNERB76W0P2c5zznOc95znOeY/M7NNwb2AGc1bDEVTBvbGvDUk6jS9MCWGWDeJCQ/T5EqbWR1yshZFs8efAKavUoWsyvNob5YMUXroiQS6YsBiTGsAVsbRUJ1qM4F7lTStx6cxBsSZw523ua6c6DRk6JEDL1OOgui0uxIKrU1vjpT///7Z3Jkhs3EEQTa0+PNLakcPj/P8+2bqLUC4ACfKhCk7IvivDBQTvfZQ6cpUk2MUhkVdZHYAD7tqtosOvoUCdp3wtCzNj33UKrdOZqjFFFzfCADMBrOm/vKqp9jIAJiCoamOVjtI0i7Ks6LMM20prCmnWDZ/MySzkRfcAYFcHr+xRjwBAV0jI0pXbNK3rrOPcTyWecx4HRBa3uADRYJqWEvLyDiAbfeO/0tRsq4jWcCFCXZY6u6VfZObr2w/nLSZqHDdoTCwh6bwgpogOoTV2i6W426ahNQ4bc0EoBndebIKOglo4uFaWoS+jQNPCmNcRgwt7r6JpeO0rTwwbYnSsYQLi7bDEG1KpBPgMdL6sGhH3dNviY0WApwyEi5ozog75nVQXj6lUeY7rpMcDJQHDqgqnI6kDVcLRZVTD7xHPOV+hZzAnddQ04A1BqQTOhviwL3tlc1dYFfuhYohmE1FpD8An7fuA4Dry9vdn7pOFe3jkrmRYdT9Q7lsVb2q4Gb53naY61VktMB226aSIVVU4dGQM9xDiLjbRJGVIbugiqdHQ3EKMD4JGXF7vehmJzo3NOGE77w8+q6dwhBkgbkKYCN60RDgO1FtzOXZ+nA2KKGM4hvr7gdrshxYT13SvKsV0ifvavt9au8KxZ6fHy+qIBVc4hp6ztBXaPtCZXC0MOFoRn1QwxRrx///7qE55pv9IdjsOEs8+AeJ2H3D1EBoY4lCOgSwegbqp32lsKC1yqZbqwCX3ooddMfYe9NlPkYhZOW9LwoyicbQLzEHJc7iYehKa7gr60d9ZjyEDv3kqRx/V6aE/yDFiDJU0Pa6XX9cn5YH22gIe/emxnw/2jUP6rwzoPZmaQlffh8VETswPSm32vVmT4oD3kDx9uQgghhPzP+WFhG0N6OEGPCCFBZLcetYoQupVCOitxw3cblta6OUkqxsaAlfv1azM2N5DTLepVZ5DOckjnYYJpbuBmAuq4elLnJm72+T6GEYXgzR1WoSatQUypiQicjZHwziMnnTnZasXnP36/NrI5Z3gf0GpBXAIGBOuaUeqBdc1oInBuICYH7zUROLmA5eX16muEbTyb3EezHMeJ4TqwB3Pr7jNlR/c4bSauC9Feb53lKyLq4EFdqdZ0Jm6IHjHreIzzOFGOgre3n5CDht+c227lgVqifZ4H1nVFjAHbpm4Y3MAxy7qXbH/juHqYa70HZmmQF9Bbh8bSmBNkm2tn43NKKaitYVlf0brOFe2949i2K0AppAQpRZNo44LWNAHZey3PLuVASgHLspioG4guWM+0BeKI9YyGjGBlwyoKdYdem6AUDaKKUd36mCwEqjeUAgREfPr1F3z49BG/ff6ML19vqKUATeA7kH2A6x0Y8l3oknMeo6qg1dJKIIRsSb396v+cjujtdkNrDT99+Bkj3J3TauOm+tDyXOc9tm3Dvu/oon3Y3geEELGuK469oLV6uceA9mxu3w47CBKIdBsTlNGqYNsOhKAzX/d9A3AvZZ7BYCqgi3723ECrJ6Rp+bBzATHavXHoz+R1RRs6+if6gBz1nhXryQ1R3d3aB5zDVWWgpbkeMWhvdgwZtVf4mDCCB0ZHyhqUJSL4eu5obgCuQ44d325f0EU0yXvOCs4a/rbv+yX+9n23sU/B7gFB9FppEq0CJKWMvLziOM+rV3xWUzw62c4FjJGQ4quufTKsRDkghKzJzX1oirRVX2g40kygVuc7JU12bqNqHYHTgyNnDmytuq5otcR9XZ5r53Ti532ln785Gke+W8tVHM6gJn18iPa7T1d2/o5ZFqzuqK7tfVjLAByGcxiWQA3n4WKEc9qOgXFfayd/SzHuWm7+3bzxuS5d7RDDSpjHw3N1dm0/+A+MEEIIIf953HjcdRBCCCGEEEIIIU+G/7cvgBBCCCGEEEII+SdQ2BJCCCGEEEIIeWoobAkhhBBCCCGEPDUUtoQQQgghhBBCnhoKW0IIIYQQQgghTw2FLSGEEEIIIYSQp4bClhBCCCGEEELIU0NhSwghhBBCCCHkqaGwJYQQQgghhBDy1PwJjVlLLRAljLsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot results\n", + "plt.figure(figsize=(12, 6))\n", + "\n", + "plt.subplot(121)\n", + "plt.axis(\"off\")\n", + "plt.imshow(image)\n", + "plt.title(\"Input Image\")\n", + "\n", + "plt.subplot(122)\n", + "plt.axis(\"off\")\n", + "plt.imshow(mask)\n", + "plt.title(\"Output Mask\")\n", + "\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/segformer_inference_pretrained.ipynb b/examples/segformer_inference_pretrained.ipynb index a0dda7d4..4ea44987 100644 --- a/examples/segformer_inference_pretrained.ipynb +++ b/examples/segformer_inference_pretrained.ipynb @@ -13,9 +13,9 @@ "metadata": {}, "outputs": [], "source": [ - "# fix for HF hub download\n", - "# see PR https://github.com/albumentations-team/albumentations/pull/2171\n", - "!pip install -U git+https://github.com/qubvel/albumentations@patch-2" + "# make sure you have the latest version of the libraries\n", + "!pip install -U segmentation-models-pytorch\n", + "!pip install albumentations matplotlib requests pillow" ] }, { @@ -63,7 +63,7 @@ "input_tensor = input_tensor.to(device)\n", "\n", "# Perform inference\n", - "with torch.no_grad():\n", + "with torch.inference_mode():\n", " output_mask = model(input_tensor)\n", "\n", "# Postprocess mask\n", diff --git a/examples/upernet_inference_pretrained.ipynb b/examples/upernet_inference_pretrained.ipynb new file mode 100644 index 00000000..85512595 --- /dev/null +++ b/examples/upernet_inference_pretrained.ipynb @@ -0,0 +1,153 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/upernet_inference_pretrained.ipynb)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# make sure you have the latest version of the libraries\n", + "!pip install -U segmentation-models-pytorch\n", + "!pip install albumentations matplotlib requests pillow" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/ubuntu/projects/segmentation_models.pytorch/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", + " from .autonotebook import tqdm as notebook_tqdm\n" + ] + } + ], + "source": [ + "import requests\n", + "import numpy as np\n", + "import albumentations as A\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import torch\n", + "import segmentation_models_pytorch as smp\n", + "\n", + "from PIL import Image" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preprocessing:\n", + " Compose([\n", + " Resize(p=1.0, height=512, width=512, interpolation=1, mask_interpolation=0),\n", + " Normalize(p=1.0, mean=(123.675, 116.28, 103.53), std=(58.395, 57.12, 57.375), max_pixel_value=1.0, normalization='standard'),\n", + "], p=1.0, bbox_params=None, keypoint_params=None, additional_targets={}, is_check_shapes=True)\n" + ] + } + ], + "source": [ + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "# More checkpoints can be found here:\n", + "# https://huggingface.co/collections/smp-hub/upernet-67fadcdbe08418c6ea94f768\n", + "checkpoint = \"smp-hub/upernet-swin-tiny\"\n", + "\n", + "# Load pretrained model and preprocessing function\n", + "model = smp.from_pretrained(checkpoint).eval().to(device)\n", + "preprocessing = A.Compose.from_pretrained(checkpoint)\n", + "print(\"Preprocessing:\\n\", preprocessing)\n", + "\n", + "# Load image\n", + "url = \"https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg\"\n", + "image = Image.open(requests.get(url, stream=True).raw)\n", + "\n", + "# Preprocess image\n", + "image = np.array(image)\n", + "normalized_image = preprocessing(image=image)[\"image\"]\n", + "input_tensor = torch.as_tensor(normalized_image)\n", + "input_tensor = input_tensor.permute(2, 0, 1).unsqueeze(0) # HWC -> BCHW\n", + "input_tensor = input_tensor.to(device)\n", + "\n", + "# Perform inference\n", + "with torch.inference_mode():\n", + " output_mask = model(input_tensor)\n", + "\n", + "# Postprocess mask\n", + "mask = torch.nn.functional.interpolate(\n", + " output_mask, size=image.shape[:2], mode=\"bilinear\", align_corners=False\n", + ")\n", + "mask = mask[0].argmax(0).cpu().numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAFnCAYAAACSB9U7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/Xe4LMld3wF/qjpNOumem+/u3s0raSUkJCFhFFYI2wIjQMKyANlYMsIRh8e2cHgckBwwtizgMcEGjA1GpNdC8BonjG14sRFgDEZCQkKbtbs3nzR5OlS9f/T0TMeZnnPO3avdrc/z3HvO9FRXVVdX9/l96/erKqG11hgMBoPBYDAYDAaDwfAcRd7qChgMBoPBYDAYDAaDwXAUjLA1GAwGg8FgMBgMBsNzGiNsDQaDwWAwGAwGg8HwnMYIW4PBYDAYDAaDwWAwPKcxwtZgMBgMBoPBYDAYDM9pjLA1GAwGg8FgMBgMBsNzGiNsDQaDwWAwGAwGg8HwnMYIW4PBYDAYDAaDwWAwPKcxwtZgMBgMBoPBYDAYDM9pjLA1GAwGg8FgMBhe4Lz//e9HCMGNGzdudVUMhkNhhK3hOcWP/MiPIITg//7f/3urqwLAcDjk/e9/P7/8y79cK/0v//IvI4TgIx/5yM2tmMFgMBgMz1E+9alP8Sf+xJ/gwoULeJ7H+fPn+eN//I/zqU996kj5fvu3fzs/93M/dzyVXMLHPvYx3v/+97O/v18r/Xve8x6EEKyvrzMajQrfP/zwwwghEELwz//5Pz/m2hoMzw+MsDUYjsBwOOQDH/hAbWFrMBgMBoOhmo9+9KO88pWv5H/8j//Bn/pTf4rv//7v573vfS+/9Eu/xCtf+Up+9md/9tB5P9vC9gMf+EBtYQtg2zbD4ZCf//mfL3z34z/+4zQajWOsocHw/MO+1RUwGAwGg8FgMBgeffRRvvEbv5G7776bX/mVX+HUqVOz7/7KX/krvOENb+Abv/Eb+cQnPsHdd999C2t6c/A8j9e97nX85E/+JO985zsz3/3ET/wEX/mVX8nP/MzP3KLaGQyf/xiPreE5z3ve8x46nQ7PPPMMb3vb2+h0Opw6dYr3ve99RFE0S/fEE0/MQni+67u+i4sXL9JsNnnooYf45Cc/mcnzTW96E29605tKy7rzzjtn+SV/dD/wgQ/MQoTe//73r1T/ZE7LZz/7Wf7En/gTbGxscOrUKf7e3/t7aK156qmn+Jqv+RrW19c5e/YsH/rQhzLn+77P3//7f59XvepVbGxs0G63ecMb3sAv/dIvFcra2dnhG7/xG1lfX2dzc5N3v/vdfPzjH0cIwY/8yI9k0n7mM5/hHe94BydOnKDRaPDqV7+a//Af/sNK12YwGAwGQ10++MEPMhwO+cEf/MGMqAU4efIkP/ADP8BgMOCf/bN/Njue/rucJvnbmiCEYDAY8KM/+qOzv9fvec97Mmk/85nP8M53vpP19XW2t7f5K3/lrzAej2d5JHZE/u9lkn/y9//9738/3/qt3wrAXXfdNSvviSeeWNoG73rXu/gv/+W/ZDy9v/mbv8nDDz/Mu971rkL63d1d3ve+9/Gyl72MTqfD+vo6X/EVX8HHP/7xQtrv+Z7v4cEHH6TVarG1tcWrX/1qfuInfmJhfZ588knuvfdeXvrSl3L16tWl9TcYbiVG2BqeF0RRxFve8ha2t7f55//8n/PQQw/xoQ99iB/8wR8spP13/+7f8S/+xb/gW77lW/jbf/tv88lPfpI3v/nNK7+wT506xb/8l/8SgLe//e382I/9GD/2Yz/G137t1x7qGr7u674OpRTf8R3fwWtf+1r+0T/6R3z3d383f+gP/SEuXLjAP/2n/5R7772X973vffzKr/zK7Lxut8u//tf/mje96U3803/6T3n/+9/P9evXectb3sLv/M7vzNIppfiqr/oqfvInf5J3v/vd/ON//I+5fPky7373uwt1+dSnPsUXf/EX8+lPf5q/9bf+Fh/60Idot9u87W1vO1IYmMFgMBgMVfz8z/88d955J294wxtKv3/jG9/InXfeyX/6T/9p5bx/7Md+DM/zeMMb3jD7e/1n/+yfzaR55zvfyXg85p/8k3/CH/kjf4R/8S/+BX/mz/yZlcv62q/9Wr7hG74BgO/6ru+alZcX61XnCiH46Ec/Ojv2Ez/xE7zoRS/ila98ZSH9Y489xs/93M/x1re+le/8zu/kW7/1W/nd3/1dHnroIS5dujRL90M/9EP85b/8l3nJS17Cd3/3d/OBD3yAV7ziFfzGb/xGZV0effRR3vjGN7K2tsYv//Ivc+bMmVWawWB49tEGw3OIf/tv/60G9G/+5m/Ojr373e/WgP4H/+AfZNJ+4Rd+oX7Vq141+/z4449rQDebTf3000/Pjv/Gb/yGBvRf/at/dXbsoYce0g899FCh/He/+9364sWLs8/Xr1/XgP62b/u2WvX/pV/6JQ3of//v//3s2Ld927dpQP+ZP/NnZsfCMNS33XabFkLo7/iO75gd39vb081mU7/73e/OpJ1MJply9vb29JkzZ/Q3fdM3zY79zM/8jAb0d3/3d8+ORVGk3/zmN2tA/9t/+29nx7/sy75Mv+xlL9Pj8Xh2TCmlv+RLvkTfd999ta7VYDAYDIa67O/va0B/zdd8zcJ0X/3VX60B3e12tdbFv8sJyd/WNO12O/P3M5/2q7/6qzPH/8Jf+Asa0B//+Me11nM7Iv33MiFvC3zwgx/UgH788ccXXk/Cu9/9bt1ut7XWWr/jHe/QX/ZlX6a1jv9Onz17Vn/gAx+Ylf/BD35wdt54PNZRFGXyevzxx7XneRm76Gu+5mv0gw8+uLAOSTtcv35df/rTn9bnz5/XX/RFX6R3d3drXYPBcKsxHlvD84Y/9+f+XObzG97wBh577LFCure97W1cuHBh9vk1r3kNr33ta/nP//k/3/Q6LuKbv/mbZ79blsWrX/1qtNa8973vnR3f3NzkgQceyFyXZVm4rgvEXtnd3V3CMOTVr341v/3bvz1L91//63/FcRz+9J/+07NjUkq+5Vu+JVOP3d1d/uf//J+8853vpNfrcePGDW7cuMHOzg5vectbePjhh3nmmWeO/foNBoPB8MKl1+sBsLa2tjBd8n232z32OuT/Hv6lv/SXAJ51++Bd73oXv/zLv8yVK1f4n//zf3LlypXSMGSI5+VKGZvzURSxs7NDp9PhgQceyNgAm5ubPP300/zmb/7m0vI/+clP8tBDD3HnnXfy3//7f2dra+t4LsxguMkYYWt4XtBoNAohPltbW+zt7RXS3nfffYVj999/f625LzeTO+64I/N5Y2ODRqPByZMnC8fz1/WjP/qjfMEXfAGNRoPt7W1OnTrFf/pP/4mDg4NZmieffJJz587RarUy5957772Zz4888ghaa/7e3/t7nDp1KvPv277t2wC4du3aka/XYDAYDIaERLAmAreKugL4MOTtg3vuuQcp5bNuH/yRP/JHWFtb46d/+qf58R//cb7oi76o8Lc6QSnFd33Xd3HffffheR4nT57k1KlTfOITn8jYAH/zb/5NOp0Or3nNa7jvvvv4lm/5Fn71V3+1NM+v+qqvYm1tjV/4hV9gfX39plyjwXAzMMLW8LzAsqxjzS+94ESa9GJUx03ZNVRdl9Z69vuHP/xh3vOe93DPPffwwz/8w/zX//pf+cVf/EXe/OY3o5RauR7JOe973/v4xV/8xdJ/VX9gDQaDwWA4DBsbG5w7d45PfOITC9N94hOf4MKFCzPBdTP/XufzfrZsA8/z+Nqv/Vp+9Ed/lJ/92Z+t9NZCvIXRX/trf403vvGNfPjDH+YXfuEX+MVf/EUefPDBjA3w4he/mN///d/np37qp3j961/Pz/zMz/D6179+NmCd5o/+0T/Ko48+yo//+I8f63UZDDcbs92P4QXHww8/XDj22c9+NrOq4tbWVmkY85NPPpn5XPVH7tnkIx/5CHfffTcf/ehHM/XJ/7G6ePEiv/RLv8RwOMx4bR955JFMumQLBcdx+IN/8A/exJobDAaDwTDnrW99Kz/0Qz/E//7f/5vXv/71he//1//6XzzxxBOZRZ+2trZK94rN/72G5X+zH374Ye66667Z50ceeQSl1Mw+SEJy8+UdpqxlvOtd7+Lf/Jt/g5SSr//6r69M95GPfIQv/dIv5Yd/+Iczx/f39wsRX+12m6/7uq/j677u6/B9n6/92q/lH//jf8zf/tt/O7NH7gc/+EFs2+Yv/IW/wNra2kJhbTB8PmE8toYXHD/3cz+XmSP6f/7P/+E3fuM3+Iqv+IrZsXvuuYfPfOYzXL9+fXbs4x//eCFsJxGIq2zAftwkXt20F/c3fuM3+LVf+7VMure85S0EQcAP/dAPzY4ppfi+7/u+TLrTp0/zpje9iR/4gR/g8uXLhfLSbWIwGAwGw3Hxrd/6rTSbTf7sn/2z7OzsZL7b3d3lz/25P0er1ZptpQPx3+uDg4OMp/fy5culK/i32+2Ff6/zfw+/53u+B2BmH6yvr3Py5MnMzgQA3//9319aFhzePvjSL/1S/uE//Id87/d+L2fPnq1MZ1lW5u8/wL//9/++sBZGvj1d1+UlL3kJWmuCIMh8J4TgB3/wB3nHO97Bu9/9brPVn+E5g/HYGl5w3Hvvvbz+9a/nz//5P89kMuG7v/u72d7e5m/8jb8xS/NN3/RNfOd3fidvectbeO9738u1a9f4V//qX/Hggw9mFqxoNpu85CUv4ad/+qe5//77OXHiBC996Ut56Utf+qxdz1vf+lY++tGP8va3v52v/Mqv5PHHH+df/at/xUte8hL6/f4s3dve9jZe85rX8Nf/+l/nkUce4UUvehH/4T/8B3Z3d4Hs6PL3fd/38frXv56Xvexl/Ok//ae5++67uXr1Kr/2a7/G008/Xbo/nsFgMBgMR+G+++7jR3/0R/njf/yP87KXvYz3vve93HXXXTzxxBP88A//MDdu3OAnf/Inueeee2bnfP3Xfz1/82/+Td7+9rfzl//yX2Y4HPIv/+W/5P77788sngTwqle9iv/+3/873/md38n58+e56667eO1rXzv7/vHHH+erv/qr+fIv/3J+7dd+jQ9/+MO8613v4uUvf/kszTd/8zfzHd/xHXzzN38zr371q/mVX/kVPvvZzxau5VWvehUAf+fv/B2+/uu/Hsdx+Kqv+qqZ4F2GlJK/+3f/7tJ0b33rW/kH/+Af8Kf+1J/iS77kS/jd3/1dfvzHf3wWfZXwh//wH+bs2bO87nWv48yZM3z605/me7/3e/nKr/zK0vnKUko+/OEP87a3vY13vvOd/Of//J9585vfXKvuBsMt41YuyWwwrErVdj/JEvlp8kv9p5fJ/9CHPqRvv/127XmefsMb3jBbyj/Nhz/8YX333Xdr13X1K17xCv0Lv/ALpdsKfOxjH9OvetWrtOu6S7f+WbTdz/Xr1zNpq67roYceyizZr5TS3/7t364vXryoPc/TX/iFX6j/43/8j6V1vX79un7Xu96l19bW9MbGhn7Pe96jf/VXf1UD+qd+6qcyaR999FH9J//kn9Rnz57VjuPoCxcu6Le+9a36Ix/5SOX1GQwGg8FwVD7xiU/ob/iGb9Dnzp3TjuPos2fP6m/4hm/Qv/u7v1ua/r/9t/+mX/rSl2rXdfUDDzygP/zhD5du9/OZz3xGv/GNb9TNZlMDs61/krS/93u/p9/xjnfotbU1vbW1pf/iX/yLejQaZfIYDof6ve99r97Y2NBra2v6ne98p7527Vrp3/9/+A//ob5w4YKWUi7d+qfqb36aqu1+/vpf/+v63Llzutls6te97nX6137t1wrbFv7AD/yAfuMb36i3t7e153n6nnvu0d/6rd+qDw4OZmnK7JHhcKgfeugh3el09K//+q8vrJ/BcKsRWufiFwyG5ylPPPEEd911Fx/84Ad53/ved6ur83nDz/3cz/H2t7+d//2//zeve93rbnV1DAaDwWB4Vnn/+9/PBz7wAa5fv16Yl2owGJ47mDm2BsMLiNFolPkcRRHf8z3fw/r6Oq985StvUa0MBoPBYDAYDIajYebYGgwvIP7SX/pLjEYj/sAf+ANMJhM++tGP8rGPfYxv//Zvp9ls3urqGQwGg8FgMBgMh8IIW4PhBcSb3/xmPvShD/Ef/+N/ZDwec++99/I93/M9/MW/+BdvddUMBoPBYDAYDIZDY+bYGgwGg8FgMBgMBoPhOY2ZY2swGAwGg8FgMBgMhuc0RtgaDAaDwWAwGAwGg+E5jRG2BoPBYDAYDAaDwWB4TlN78ah3/rP/htZi+kkgkGitEUICAqUUSiuElAghCufnjwkN6em9QohCGq1BU8wrnZ/WevZPSomU1Vo9TjcvN11eciy+pmJdqqiTrmwasxACrTVKKYQQSCmJk9XJL1paTpJ/nToLYc3Sp9syaQsArTRay0L90vdhEUJM+8j0epNrrqr//GB5i9Rt9+Rfkj7/M/1dVR3S/SVd/6p+lLRf+h6XlV12bjr/5Pvqti2/F7nal56Z1DNh0XMzz0eDUJX5zNtFgC7ml+5jcX4qfsjRS9t9WV+RUiK0AubPb1nbaSBSGp3rg/n7mr8P+foc9ljVNaYRIv63kAXPdr7fF9+rxfbWWlf0lPIy0iT9O93n0+/TfP/IlIsqpK16/1a15//37/+hmjU31OEtG990q6tgMBgMBkOGXzj4N7XSHeuqyFLIUotsmQhZRUguy2PVtbDyAuIweSxjUX7ZehfbYJW6pK+hqk0XiewygzyXsnAkLQDy+eRJBh6erfXKFgnQdFvlP+frl/4uEUJSyplBX1YmzNs6fc3L+nktsR/nVDhSJZKqOM6+vsrzK4Qg7u2CWNSW16VsIOA4kFKip3nmBx3K7tlxUHUNxQEFjdbFflWHZSLyZpEfZEyuKV2XOsJ+1QFFs+6hwWAwGAyGNEcStmkjREo5H/EX1ekqkhyJKs9KScrCkTIhdtwGYVV+RUNOkK9j+bWIUsGS9z6CKDh2qsRu2ltSatSLRIhkSdKmPZNl4iwtuOuKvFTRxWOH9JTn86gSt1XllX1f9lkptbA9F4l/YHZ+kl/59dbxCJaL20XXWk2xfyZ5zX+K2c/SHJK0qfzSdUm328riLNdHq9pElYipsrKPUzgtGlA6LvKDS2mRXpb2OMuF+SBBWeRIZXka9BIve1WdjbA1GAwGg8GQ5sge29i2SEIvs0YjVIvaRUJh9TpkPQXVxlHRK1rPU3nzyNa1XDQUhXd5PpANpS5xKJaWUc/LU348iqLZeXlPTbpuae/molDD0mutIc6rqBIUee9tknaR5zB9fFGfyYdTpvv4MmP8sPeiqs8vE7X1xUFyI5YIViFAi6VhrXH6+J2Rrkt+EGClZ1PM61hVvmYacquzonZRCOzNovodVSMUuSK/5HlMT8uodY/jG7F6oZksiu+gZf1MSFFrMOJWvJsNBoPBYDA8tzjWUGQhJILyMLqCYaKzx4/qvSibn5Weu1Vah1z56XrU9eLWqXOVuEr/jEN6i2nKPYTVZeW96MXK5D9m54RW1Tefd5IuXUY6rDOfl2VZGQ9SXuyWlZOEZ6eLXSZ08sLwqF6d9H1KX1e6n+SjBdLtmXiyy7y6ZXXL9+Gy/lilQcrbZPFczJUFQ8GRL2Zad+apLRmMKKunEBp0efQBLA/hL3jBYRZiXHrO9H+Z8iin70/ZvOiqulfVY1VhVkwv4nZZkq5yyKPk2Xs2SD9v+ffAon4mhUyGGkrf4QaDwWAwGAx1qS1s58aJiMPHdHbOoRBlgaqLSRuF1aF69fLJi4uqa8h/TnsUFhlTVd/nRUdaWCWGcpUXMH28Kl3egxXXQVW2V+rTdIEvSOYxTg+TT2VZ5aG1mfoVSit6MtOfkzmo+Tm4CWXCocrjKDicQM2HYlaJlbLjZUK/TDQs8jyXtUs6Tf5YWX6rXHfdcg4veMrDoWdPfibbskWl4s9xe2uE0EhR3o/KB3SOKNqSfp0KgU7yyofvJs9vOjw5PTiTZ9Eg2iJRW/xucf6z9CIR6Nk0VeHA+XSlgyq5z+lBN1i8wNii8vJk2p1s/4ii4sJ4xotrMBgMBoOhDrWFbWzoT1fF1aB12jBMGUsLwmSzB5mFA8Z5FI08resZSVVGe51QuLSxVmXwleWd5J8vJ388n3bRdazC0vSZqoqpl0+XzpON8yvJInVN8yDU4gBCflBhkSBZRjFt2qMdi4t02cvySs7N13NZ3Q5rNC86L91PqspdNGBxKA/rESgX2fXqnCc9eDB/5hRaR6X3p46H83BtkRW1i/IqG5hYJLLK6nbYOqZPy9ejStzXFftlfa8qyPwwfa6qbeu8W4/9PWgwGAwGg+EFQ21hGxtDMvkAKjHm5nGHsREkCxZSwfjQ82wq08y/qVW/ZaP6i7y/ec/xqkJsmVi5NRQN+PKqaRaFqxaS1ik5J1BWactC7bRC63IP6qJzy8TIIjG5qP9U1X/Ve50XCYc14o/ax45TtCcRAbmUhWc7P/iBACnitPnnp2oAKe1VLRdn1VvWiPhxSBIupe6gzaLvFnnQV6Vs0OywvaC0DloX1keYlbOkzkcNeU6fX7bQ2ufPO9VgMBgMBsPnMyvOsZ2O6089N6UGyDJRS5xFehpZlWBZJEaXllGRpjQEL2d4rupJS5+3yHt8a1js5amVw+zcemkPK2zL0qfDiYUQRFE0C3VeVNdlx5ZRN0S9bh3y+S6KIqjK7zDnHj958VbsF3F9F4v4JAxVClFj0bflz1cuvr6Arv7qWMj3laM8b4vKSH6WXUfdflEnDLms3JvZ5z4/+rbBYDAYDIbnMivMsS0LS4S5d2ZqlJScmw9hTZtRi43fMq9hzt2bmqeVTzerYWIIzv+bVUFN94wU5DyuRSdUOXp6bmrbklLBX2ZZ69SB2Q9R8DvNfeLJeXXMczENFycTflzp4yq1JaftoUWxDmX1So4nxul0HKQq3dIrEAIh5WyO7aKQ4ky509+T+ZH5ObZlnrUy4VWV9yLvfpWnL53P4muu+iLpo4vzqQq9z7fNMsoE5FxYTSuU2oO2eA1FEZpuLykFSkUoNReDSiXlyFx+83eMlGI2wJGNNkieG13a2QpiUBcH4aZfTHObeg6FTPVnha7c7ijf7hXpNKnnO/+u0SDiN0DZVILpb/NT8gJQZ5/1+NCC8N9ULQQCIcufgaKwLWu4Yl3qPfWrvRnyz5URwQaDwWAwGBLqhyJjzT9okDJvuCcLFMmMdS6qJm/lqDZQKkTMvCqz3zMGWIkrKTHg4vNik88Sy1cOhthjGCmF0hppx4vIiGien5jOPZZYJVVWs3rG6ZNwu/j32fI7QqNR88WSZiI+laUCdEmdC2JFgAJpTfeZnYk6Pc2sLAQ5dS3EgjadpFCqELOBgXkOYmpggzXzqk6N9Vy6ooCfnzsTUdPQxKpBgzSZOcElonPR4jd1yYtbKPcm1qFUEE7vTTbEdzo3epZcT/vIKnmnw4OL930+TrS4fWMBN2/H8qjW8jzy4eQCCbm8loe9Mn/P5K9iVj9m7TVrx4wGtpg9jdN20UplWmXWB6fnCUAKa7pf9/T+zAbP0oNoqYrm8rOERGmFVkkUQkqkTt8Q8VOhSN+jwsBgMpiWeibmIrTQKsVGzNex0iMrMsnmbZ5NJ6WVqkPyXisuyDYrNr3A1bTPJ/c9WTyqamAo+U5KWbrQlMFgMBgMhhcuK82xnX8oHlvoDdJ5g6vcW1JmWBX1WuI1ypZd5jkr1iW7/US1Ca0Ln+Y2YErAiOTaUoKw9LqKh4WwZpnHxrqmTGPP8s3UbKaAMpVcZAyW1GqWU760+P/0XGmROSddRlkrzgzx/D3PlF69kFV+Xmx63t1xhgWnyys7Ly8cqlZKztc37Z1MH1seJp1WX3ljPl3f4rnLPMW5UiuOF+uV9wDnvbarhFPXDUuve4+zyXQcoZDqV/M4g/yzIqYDX5ncSlslfzTxKsfly6mEU5lU80ErcsenOaaeq8Tbq/PvkUOzQMimPq4aBh//nr222uWX5JWgS7Y2okb9Dvs+MBgMBoPB8PzlWPaxXRROvEoeZUK0IIgqREidY5QIgrpoMd1zUcf+lMTTMzOiF+SZFRtxRaTMOnUWCb1MXnGGLDYuV2Nev1S+s7otLuco9zvPKh7PZaHDR61LWf5V6fJhtotClRcRd40KcaPzv68uEKvFgK4Uy2WifHk49fJ7Gw+KHK8wEannYlG7r9ZTdO63xHsuSH7knZPLwsSr+lH2+PIBiuOew3/89yJLWWh6nLg6XT7P/LNlQpENBoPBYDAkHEnY5r06R2GRMVP2uY7HtpgZpeK2kDZ2TRROE3GsJFpFc+9diWduYcHMDbO0Rbda+90sL4XI/YS5x+vmG5CreZxvLmWhxvnvyoRF3nub/n7pNWViYY/3Hh+mPdOituixXe1e5fM6jnfGorKWP5PLMqk6lHyR9IHD1S9POpQ4vdJ8kn7RNTyXBF7Zs3OUPIzH1mAwGAwGQ8KxeGzT5EM1Vzmv3EhZ3WNb7TGpLruQsCrMMyNk4//qhlemF1+JF82ZXncSkihUoY6FvEVZkGP5PLT576lLSoVBzsKRSzzK8+zS6crrdlgjtbYns+TaykKCD5NX/tzk92Tf3HR5adGa/FRKzQY5ls0BXiQGi5+T9i4OKqTHXZa1fZk4XYW6Htsy4ZsPz07a6VYJsXmfyX6uTF8ymBOHxUP8jEz/VeSVv9/5Abgqj2tuXK0WR23T44igyKRPRbOUlTNrO1FPnC7yghsMBoPBYDDAEYTtIkMqb/yXebyWhXXOj9Urd5nBmIQ+1jGDCgJECGZrZYl4ERidSrtM4EmZFwexwpwJIiXQ+UWYKgy52cJOJVhWPG+3uPrvdEsVAdl5nFUGLbm6zr4pLXd+Xvx92ZzYsrDYuiKwDnXuwyr51g23XSVEt165MvX8JP2/ZKEkUbH6do26FttnNY98WblVz3r6+/QzoLWOB4kOuaBXVb9N12/ROyo/WJFeWCw+R5NehTpVSiqP+F+ksnUqK1fA7FoXtd+8jXTJsXqs8s4TYr7d0lGFsWVZued6ef8UIruIXFUfzbdp9UCowWAwGAyGFyqHWzyKRfO+5gJtkeFRdn7R+1YtYuuUUcYyzwoQr5Ca8q4kxte0dtNzKLUYy/KPhaZOGZGS+NrixWjirTYk8WS9msKrxhy8rMcvVWExP5b1JMnYWE+VMv+ZDZ3OX/Mi43sVb8uiMNIyD2o6r7ohscvqUSZM6nqG63rOFovMdHuXiatqD/2y+pXfp+p7WyfPfJr0AAfMB1rS3wGVorZOeYvu98LzhUAiUbo8ZDyXdOlxjZivblwyoJc/qc7TrVR2ZeBVvKn5ZyKeByxL0xw14iJNfnCjjss5ea+W/W0xotVgMBgMBsOqHMljWy7i5t8l36cN2yrKjMHDhOQtpCI8rpAs5/1LDMRKS7fk/Dzp0N74+6xRKYXICOeF3LTou6nAEWLlMooer5hFxvOi7XfqCrVl1B2QWXReVcjoomOHp2wQoUyIzss+jDcvk5vO5rkobfHcoic2qVM6ciAfjZGIn4Ksr3ktxfuoUwM55YMfybfJFNZ8aHCxjOy2O0kO2eQi42VP6la37Wa5zNqvMBOi9mBJXeoK2iNFN1S8aw87+GQwGAwGg8GwjGNZPCqNZZV7Bw6TV3zucYuGWpXJKmqt0aLeJhzlwkciRNbwTeoipQSdhOPVCQk9fqNvbtwnBq8i3l93MfmQzyoxuoqhWpbPqkb9s2kY3wojPDOVUdQLwV7EcQunMioF8CHzK9Z53n+FWBQlwDz2IleXYhlJFMUCdLLv7OGjSLJlzrcAmhdR/97kt6QqDh3MyzlMqHPtiIRnYcE5M7/WYDAYDAZDmtrCtsyEKA8lLYbklZENj0sLpPhzcmqpwVUSvTnfuzL+P2/QrWJmpUORmYYP65T0TOowW/SpcG1ZoZH2xsyvTSPl3KsULyaVnb8Xe27S5yZXUhSO5SGthZrFFdcQh0PPty5J2ker+DplJovysNz8NVaFdtYNE15GlRc1//1iI73su5L5qkkf0tljudOm2YnMwbTQXy4Y0j1TkHge0167OK+SMzPRDaI0MqK+yMq1pxClTSVY4mlN3Ws5fX6UUrPFuDKiKw7vOGR9y9Lm73/yMzu/PW7P7IJfhT5LegBqUd+dv7OSsvPe6XSddN4dmyovORrPyZ8KcF29OFWhJkIUoiC0Tv6bt0VSfvrKkvm4yTUlH8QsekNDKn2twZR8nesOcpZ5emf1nV9LVaSBwWAwGAyGFyYrCNuisaEQBUNOLgnbnB8XMwNeT8MCE6GXMThzdkuZGSOmtppWyWI08/Nm5pyO5W6pQsjVV0FhoZe0FyVjAJL1WJaLuvT5iac2vhqto1QZibcUkgWDhLBIFrOJYyir2zSpQ8a4LTSYTIn+qQmp56JE1ArWnl9burxVBGy1R6248nBdox6K3su8mBL5DgVAPLdYKTW/V9O2SO8vLHKtMxO+merN5yqXXF1JvUHrsgWXkt+S/pAVz3mqwv3j50rOhG9RxM0HWsh4OnVJOan+p+fPQl5gZ65kKpisZEGx1HkzgXUIj3N5hEfS78XsuoSwCpcgU1c2e+ZTq2DHmQFivopz3HZJ/8hmmCyWlv5X2b+Z38n0cEb6c/xC08lLKyMs09cxe25T15K8B6Ioin+fDSikToyVcmZwMRsmnqRMDyTN06X7SeVcXyi8R3SSeaoRqzy7pQOTQiC0IBnIvAXBEgaDwWAwGD6PqS9slxidM6Ou5LtqYZKI2+x2JBkjK++dXFB+3rjPC82qupUtxFNmuBUkX8pbV5o+ZWima5+IqLSHMf51sWcoLdzSpEV1RsTl6jg/Xu0lWygmc+nS17fMW7rIs50vO59mkRG9etjn8oGNbOrVrefq66pqm+q8FjvE6tVt8Rx3gRCaumuGl6XK1KPiPufF3mpe7cOQGojKvwNE8U6k+2/14kr1xVQ+zHlhCO+STKu+zvfNvLBOVkkveMpn74bq5z49mJNdtTjtzT4k6cEPXZTA6cGk+PP0NOZJTRiywWAwGAyGPEeeY1swTEvsjaKhn/0uvz1MxmO7grBI75NZGpY5DbutS73Q1ixlBnxVunxZC0O340RL06XLrFvrKuFRknBhuuMQKEXPZfaaqz3jhy+zTMgUPI8c3piu2weOSp2BgvJ0iZCJVctCGX6MGvTmCNrDU/W8rxI5UJXnimcxF+YVZevqvJc9k8uOLX7vzQcjq9MYDAaDwWAwPPscaVXk/M+6HrUkGq0sTeb3mlZ0mZcl+X2Zx3ZRnvn8VjlvVmaFuEiL+Xm6srRJTHUcBiulJIqi0nLT11vpI8/dp/z9q7zeinSZQYiawntVyrzgN5vng7le5ukuW4k6vmclXvFno53zz+gt8sSVPe/5vl1x4sL88nnVrA3F4YV8fhReF2XRDfkylwnSpe+958ODYTAYDAaD4XnJofaxTRtP+T0qpajewiWVW2n+ybywtBGYz69qQZbk36Kwy8Rjmzbu8vmVeSRXMUrTgrVsnmcZ+blt2e+S64yFbe1w3BKBW8eorbzO4uTCSuqK+2Xn5c9d7GnKhjRWXUtV/ykTBcfNzRRwi+6pyu3LXB5qmyilEsWUYpV6V3nC87+vmu9RKLu6ZWJu0ferTb2YnrNIKGf6cPreVA0QVkd+pO/74jKz9V6ULh+anL6muvcwO70je6z0GU++r4jmMBgMBoPBYIBDeGyXiZYyA6Uwf0uAlNZstdTEi1QQlAvmryafM17KBV6SRBwuM0TTC8Fk61welgeLhfIisnmXGXapeYgkqyerSoPuKEZelee9jkg/rIFZ95y8ICo/t9hX8vWq+i75mbStlLKwaFlpmWK1KIA8Vfv41u9/q4vlqoGRREDF2VWUmYoqKGvXZeVUpamT9jj61yoDF0KI2WrEdc5b5nle9u7KfEe8anOc73xRs+I1FdsvGRxMH0/3s6oBn4ViNlVPNZ3/mk5fZ5/ydNn1B6vIXEd6YKaOUDcYDAaDwfDC4kihyKWGhSrfh3TRsXy+s58V4iLxQiX5VNWveJDS8L0y71E94+84xWW5p2zWXiTC4/i9FIuEatqIPKyIW+gJTlHV5un7LXOrVR+G/EBKflVnrTWWkJUG9qxuFd6rujwbXsr6cyHrRFrUq29yr8r60AtZjCwadFl2XvEdOp8MXdZPn832rvt8J6TXQki2VkvyqcyrZGDrVoWtGwwGg8Fg+Pzk0MK2yqiQJR6mvKhNvKfpY2XiV5RrvVmaVUb+5wKxPK/0z/z818Us9lzBaov4ZL/Pna+PFn5Xx+s3r4su/BQVHsZl1PWuVN3DsnDLsrqWDTSUkd/apVQYxL8srWPdO7GKl2xZ31vk0cofL2v7omexTp+apoPaF13X01nn2CrlpVnVO/lssNwLLJOEcR/UScun1ypWQPHe5kVt3Ws9qkgslrP4nZdERqg65QoxD0dO5WOErcFgMBgMhjRHXjyqgM4aL+XnFUVtPt/ZuRXzJOvMFy33sC43uKoon8+2/NyjGdeJdyY7hzQ7ebbwy4K86tWjzsBBXY5ihJaFU5Z9f9i8y65TCIFVMVf8uL22R2WZaKwKgc2em+tbpQXN8yR3xVVzVuee2/lzv3RgIPV+SJeQ7uLFcxZXPZ+/0Lfmji0aYEgzm1erITNwlpK1ZCJa5isVaz3ftzhVUq7c8kG04xWK1e/a9Bzgefnzd2jxGTvcXGaDwWAwGAwvLFbax3Y6bl4q5MTs/7z3LDmWnb+XD5WrCp3Ll5UOF11ZUAoWzp1McsmEIsfKNfN99tyUIVolmslLgeR4ynNW8hktiPWVmO7tqJFSANlVkXWFfSd0WiQk8yPL9uIsb/d8SHaZd2XR4MS8gvM2ZImoqPLOloZG535mWnDm7p/fGz0VRSJWWrMtlLRODOx5H9VaFQUbokxz5Vbv1vN7mYxJUD5ndlHodVlblFF84tJ9aOrtm12TzpyTObfkunT2FyQKSZj0RLSQgIj7hdZxtIbWcV+VAq0ihA4RgCWm7w8tplnKqW6TqTpL1LQ4LeIyEAKNimfHa43QGilAJJEEIumXNb2TqTZIXWp18uU5Liwn37Dp+1415aGMfDgySqR2e82JWCEzzxu5NDr1/+x9POu3ZL4lv3CVVmhKtlIrjSIoux/za1dKY8nUVIMF9y/9Pnq2QqwNBoPBUB9tC0YX25lj0lc0nhreohoZXojUF7aRSlwvCDnb9XJumImp14D0qsDJKVkPQt7jWiZyE8oWPindo7YiPDN7cC4cMkIse+LcSGeJYauThZyWpBS6xMRLRNe8DnE7zed7Kq2QgJBz4zIOk40yLpdEoBV8YUJmbMX4lHzbCcCqrnpKiKncNkNJW2Y8L5SYsykXUdrcLTVO8/dxQX2KAyspD+/Umx73reS2qmk/TUk6rbMmfzyiULHxUm5f5Zn3MN23k3vJ3Jtb8I6Vz+tOf58X8mWNkpQtUsczzaenUwOm1zST/rp4bslYx/w5nvZVQYQgmIpSG4VECTkdBNA4QkwFaIi0AD1GqDHKH9BuuHi2jQo0kRJY0sXXECEQSMBCaQstbCJpE2hJJAQKiRZgSYFUClSERIKKEEKj0GgdgSURwipt62VUy698wmLKsvabhbKT7ev5PI8SxRD3HznLUyfe3Vm/T94nxXK0LhlUESL18EqSEOj8E13X1y1KIh7i94SI662n77+kTdPv/pJ2XjYdwWAwGAzPLtoW+Kcb7H3JSQCUIxneu5ZJIycRrcf6ped7l0as/84eACLSyEm9hQgNhkXUFraWZc2MiURsJnNRk20lYmOrWiSlqTX/ruI8y7IKHrDyMOGCKTkLHV60CFH6+2Q+ZpnAWBTGuyxd+XUvPy8WX5K86V3c87euuV7fuC4LBy4VZCXhr/kFYvLn3iwy4vdZMIbT15ZewVqK+YJV6ZDRJO1K4dqC0siD46RYF4ESFhp36rG1AAsisITAsWy0CpAqQjLGDscMe7s88einadqK21/6YjxtEUQB41GAJR08y0YJGXsYtYUWDgqbUNhE0iUUFiGgpY3CAhULNyUkWsppF0/+EGbfB9XXUbsBKp+MWmJ5yQDNsnzykSwVqZbWo+o9kMkz59HPfpEfLjvaInLFgUU1e6dDcf57QnpBMiNqDQaD4dYyuG+N3ss36d+/Dlb1O1l5Fv0Xb5R+13/ROrtvOg2As+uz8Vu7uNcnNJ8Y3JQ6G14YrCRsE8rCQufeu/qFVy0GssxwSZ9XFZpWZhDmnQGLQpjT4YKL0paVWyaA64VJZvOrEr9leVWK4KVpknRlRm3y3WIhmh7wSPlCK9M+24bpsnD3m1FeoW+nRG7+Hpd5cMvqnzm2Ql0OS2HwCBsl7Fn5ArAFSCKYjPGkxpGaYfcKzzzzaUa9XWy/h+uA219ja30NbUX0oh5S2YS+YhwEaC1AOyBdhN0glDbSa6Etj0haaNlgElmEuESiSShslGWhpt72uH5R5UDYKteaO1gZMbCIqoEsnfu+KhQ5PxhzMwaAMnlq6o+UiLJBtJqnpvr+fIAnrkB+pfKy92D+fIPBYDA8e2hb4J9qcOMPnmFyrony6jmyKhECPRXF/qkG17/8PHIU0nx6xOmffwZrEB5DrQ0vNGoL27Lw37zYzYR4LqDMsC9NtyCPOoIzbxBKKTLOxFpzGGt4VbJllHs163l7l3tsY4eozKQVonhufB8ilpPcs0XCuLqt0+1cFUZ4FC9avR5VcW6J5/xmG8Rl8wDzz05eaC8St2X9eHa7lzTMsYsiGc+yjWe/RkgdIdUET0bYts+kv8+lK8+we+VhotEVJoMufn+HsCHZX1dMbAuhI2wp8bwGjpQ4UiCFg2M3sN02w/EBu/0x2muC7eG4Ht7aJp5oMKaF7wi0sIiQKB2HMdtSgwqXisRVOUrL1YpIqbg/+aiGmyVuD8/yzlcp7gt9PBa36f13k7RleR7Hdl8Gg8FgWBEBu288zd7rTt3UYlTTZnDfGpffcTvn/z+fQ47q2LEGw5zawrZMsCWhyOl/iUdx0RxCWGxwzow5qsORy47l5+3mv0+HweU9amVpM3VZQQSvanTNz6sXNht/t1hAzhdvWexljdNSmS4teusMImhdNp/48G2zjPQc77IQ6DIPz2HFTnFeIuRX7iqLPEjCjssiHfLnllE4nrrkyrqlji2PAljujUeIeKEmoRE6xBYhVjjCs3wm3es8/blHGHV38Ec9ujuX6O1eQgcj1jzBbXfcxb0XzxON+vT2d0EpwkGf7sEeYRAipUWzsY7XaKOwiSYRXnsdp9XBddq4QYStbaS9DkIzIULa61jSjaMw0IjpwlPxfPRiNMgibqVIWhQ1kn9m8mG8depdFnlSWubSd9z8XZIfSFvadyrqkuSbLN6WPCdl9y7//jYYDAbDs4QluPFlZ9j/ou1nrcjxHW0u/7E7OPuzT2H1jOfWUJ/awrbMGCpfxAmqwmUX5Vlc4CRrvdf18lblnTfy6xpJy0LfqoywsjSLvcyiYDCWicG4zmXCtiycuC7lomhezySMMjvUUNfArBIZtQzziuOL7l3aOE63+aL9iQ/v2ZvXQ0qJUqqw3YqUkuIay9VeqbL2ygidkgWpqkh7j6uem0VtMi+TeDVcKbCEQgcjhOpz5dKj7F96jINrn8Mf7DHqHeCPhwgV0nAsLCmJ/IidazvoaIznOLQbHkJoTmx2IIoYjcb4E0W/u0cYaSItORgcIB0Pr9XCa3hYjTbW2hnaaxYRgkGowGqh8RBILCnRan6t6TmZh+VI3t7CIEgxgHfRIMOiwbllXuA6x3Ilkl14LCk//hQPasZtmlo2cGn++fdu9YCkLKSvqn96UMgIXIPBYLj5KEdy8KoTIJ/dKSCji22uvP12zn3kc8ih8dwa6nHofWyrOb6Ov2pO+TC1otBc7OlNU3eebFp4pBcLqipjcTjs4vzTXos8SuXrW+7ZTS/OsorhHpuyy8NkS8/NecDrCKkErXXpNkP5OsRjAuVioE79DkteMFZ6XVNe73yocpq6xnr+zCohtCzNsuOzPGYDBQpLgo4miGjMU4/8Hmpwg9H+Vfq7V9AqwJY2rutho3EsF6UE6+snGI96ROEYXwssaQERUissy6XVFLjSQVo2nc46gVKMw5D+cMiVpz7HKIiw1k5x7oEvZOukha0VY8AHosgh0BLkYWd/Fjlu4VQjcrwW+XdbsnBfce/ainqsEjkxrXRmoEWK0vdKnXfoojotE6vJoFESsrxokMpgMBgMzw9GF9tc+mN3cO4jT5k5t4ZaHLuwPaxIWElk1QjZTAy+tHFe5RHNs4qRlg7RXsWTUhpemqtf9bk573bJsbJzywRYbKPWMBBnIbc1jOeKeiz2WBfrC9Wzf9N5iljFQ4lgXNruS44vRWcHUEr7wCyaN5vuKIZ5nfrWG0ypHwEhhYXUEPlj2laDpx75PXavXmO0+zSMD+h4Do5lE0wCbK2wFHiWDUoThSCEi5CakR/iupKG7WFhgQrQQRQvRKUiejeu4jYarLcaNNsO63deYBwp+gHY4xvofQvb2cRxQoQDgbWOhUM4lY5psXeU9jyKSC7rx/lQ+bp9Li9Gy/r0Im9u0h6rlAnTwZjMcxsfy+eRzn91pkNmNcRt4cwjDEgZDAaD4bnB+I42oztadD7dvdVVMTwHuAke22MUt2UaYYmBnpBsCZT+J6UsNXZXEQn588rKrEqXFjYFz8lU1Jb5nPLnahT5xsleQrzjKiX7VZaJvlrXD4W6aZ0vl5JU5aHgleUsCUXMp81fQz6Mt+p43TKWU7y3xWsQs3Y6zPVXllwxaFH3nFXK0FojtIXUEktFWCLC0i56Ak2rid3U6GBAFEZIDSIMWO+s0XIc1lttbMvCkh5eo8MkHDMc9YmAhu3gCIswGjEOJriuS6vlYtsC1AQVTGh4HlvbJxFug2sHfSb+Lk3LRkceWjYJdJMQG23JQ63YW+U5L4seOHS+ut72QauWsWxgLX1sZXFbcDPHB47Vkz1975XNKU6TDvdPfzbi1mAwGJ7/7L3ulBG2hlocSdiWCwSoCrqLbZFYIslS72TZecs9rMl3+Xl1ibGUX7hnXs9yQ6rqutLJks95r5jWifei6DlcbhBq8uZvsv+pnqnIRNTm5/AVPypVXMCrVMzqinYV6V8Fmgh0YkhXXEvJ9M/0vLgqsZlPX6hjWfXSbbokVLss/3Q+y6i+d4nHOMmsxKM2Lyi1BvWCMgVF7x65W5x/zkrOSbZmKRNOdUJSC+0i4+crAiZKcN+Lv4Anfu+36Q1uoKMAqSNsS+PaHmvtNhsba/jjIcNxn+tXL2FpTWetjeXaRH5IYFlMItChJgwFVmMNy3OxHclkMkKFEW6zg68Vk8mESXfA0088hW81aJ4aMXEHuKdbWI1NpLBRevp8JJekk9nh83aPR2MOJyZF/iWwhIyoJDWdIPd51TzLBqeWzR2flZOcu0BoJzWWQoDQRFH8vhFiun924X0hClOvNIfzEifpy4Ru2itt5tkaDAbDC4eoaRFsezg7k1tdFcPnOUdaPKrc01G2oFSSbm5xCmSJty9/4uy/WmIlb6zm90ac1ydrJNUxvOI5rHlhmPYCMvucFlix4C4aeIkQTwyzSm/v1JZkNiiQmOn1xVveACxeb3leafEVL1ikiYV18n2JZwUBZL3iZWJzlbmkpcMdFUbtUUON8yGd+bDhgiASaa/1fBZyNh2ZsQiRPj9fPmRDQJNzRElYbfqSpnXJfL0gjruOt7cQMi0CAj3Bdl38AAZhSKAVURTQFCGdjsf6RgutJJNxwOUbNxgOu1y+ErB//RIN4p7R3tigsbmG0IL15hqWtJAC2u0mSJex0iirgdN0wXPQ4wF+EOGPQzbbmyjLBQlhFO+dqwBbuvg6mr5/4sgHrVNabiooldal7538/U0EaEmjlJ6XP5Y/nswDF0kZqQGZ5S/C+f1I36f0qvSLRJ6chwtkrmNez/gpEyQvm2mS5H0nmR6PyG81xuxTfsBKz96z6Taoc43pn4uu33hrDQaD4YVBuOkyvKvNhhG2hiUcyWO7irBY9t2zwVHnNFaFvaa/y6/IOzccy/PMf15Wx7peirhORUPxKGG4ZYK46P0sd0Cl22zZirUiZ4Av8mjNroui4btq/1xG2f2qR9kAwOIyysTKfCCGoogt6xeCgnctn/+y65ilRyO0xlIgRIQlFOgJDU9A0+ZEc52GK/CDkEG/R7/XR4kQgc+Fc2f4wpe8iDXLYtTvc/n6NUb7O0SRYnd8CcuysC0b13XZ3NzA9RwajQau69BVEdIWtFttNjY28BprDCchE8dhs7NJZFtEKiKS8X6o+XbJTz2QUpKfU/5svJfSAybJAm5lCyBVDeQcutySekD23TWPpig2YDxAGA8SxM+tJj9wVV1ynSupl+4w70qDwWAwGAwvLI7ksT2acHh2jMmEm2EEVYnGxBublFsVHlsnbDafNp33MmKbfrlnelkY46J05d7fwwrlbDmz72sIYEG58VuVd926HCZdaRl5IVpyLM6fmXidiVjI/IydfMfznC0TtfNwWUAJmpaL74/xHEXDiei0QDRhPBnQ7wb0BiPQGtex8BoNdKRpNV3OndxmzRJ0bjvDXXecYeCPOXnqNN2DHnu7ewwHY/b29+juXGU0HOG4Lo7tIKREOJLOWofNtW0ct4mWDmiwHQdtWfHcX9uCSNeaY3uzheyiAZuykPybXW76+7Jneh59cjiRWf5eoPK5zVLvb0iZp3aVxcEMBoPBYDA8/zm0sK0SSrXmesHxuiUWlLeoTqtQ97ryRlfZfNuqOi4SwOnf64mrYvqqcNrDGtjlhvIxe+3F4v0/D+9FXZ36bX80j2DZQMT8HpZ730vv48wBV/6cLupzZXWRSmApgRCSYNTl2qXfxx93UdGIg90b6FAgrCbtdosoGmJZFrffcZEzG2sEkyHKErgNi9MbLfb6EQQjzp/aouNZ+JOA86e32Nndx5/4OI7LeDRhb3+PwXDIvu8zPBghLZfm5hZr5zpE04WMIhURqah0cCO5zvy1VrXd8S6MlC0jXYfK8HaONuRX7APF6RFJfeZpNVqLaRh38dlK173sXVbeZvMF0xZRd3A03WZlbWgwGAwGg8Fw6FDkKsNwkdjNfKeny7qkjJSSUirzXJWyObiHMYry15nPt643tXLOZsl3hxXpUs69p1VtWLUfZF1xVjy3phe2Io9Sw7xEnKfTisSNWYNF11ElkoUQhdVYF+VXZoSnSsqUWV3P6uPJYEn+uVsUipxvtypBu2huthQSHUQ4js3OjQM+8Tu/ze7jv0cr7NKW4LZbCNnEcWyEtDh9epsvfu1raAuF7B3gWgIR+gyHQxqeQ6vh0D/YIRhNCIMQqeC2M9sMh2MsaaM34Mz2CZQNluvR644YjQPszjpaaFQY4roWTigJSLb3qmzSm0L1u6uYTilVGhqdDs2v5zMtr0Np3849G7ri9/mpxTwy9at5vfn8q+tePVhTTFsc6LnZ3neDwWAwGAzPHY68KnKduXplxxNBlf6uPLQse2zVUNJFArZKbFV5Ecqu8zgMq0Xeonz+yfy85HhiLJfNdaVk+6Cy+a112rTSw1Qi9NLG77K+sezelHlsS0VZLt1hvKSLykiESWU9l+RFapXYwyyiU+fcKo9tIhzKxG26P+TzLnwmXuRMaM362ib33fciPn3jMdpK0tQB/jjEEpoo8llba/Gmh97Ai+67k8H1y/RGXQb9Pq5qMvZHTPpdPM/DloJwMsJ1PLAEo34fKSSeE3txo2ACWtBoNXDXO+yqPk898zRyY0i0qbGsLYJmC9nYJKrRjqKkPy1r14VtXHKsaqCmShTmn5dVBq9WFYRJ/er027J0yaDKovOEoLC6ezViOgCXL4PCsbzH2WAwGAwGgyHNsW73s4r3QgqZEQqLPLaLylylnmnjcZGRtGju1uGEbL1z6g4UJGkWih2d/FgsHA9jRKd/L9bxeDwomfxTAuy5MK8uL+oTT2LeO1V1btUASno+ZJmXq8pjm3h588/nquJAaY1l2UyCgPbaFg++9FXsP/F7HDz1KcJojGMLbC9O98pXvJxzZ8/Q63UZ9LqcOHGCiVJIS2LbLn6g2d/rcvG2O3jRfS/mt37rtwjDEMeSOLaDY1mEjLGlwnZsXBSW63BjPOCRz3wSe+skB9ZTyNNdLr5iC889HXt5V7qi1Vl1YK0us3u44jm1IiuW3uekTy2/trjMpTWbjqwd7904aoi/wWAwGJ67DB5YZ/3j+4igXmSk4YXJkRaPKvu+rrGRbHUjpZztM1t+7vL86nqxyrxWVSF8y8RHVbq617DIiKwjOPJzBwvfx4mW5pOUedh0ZcL2qM6Uwj2rc05pXY6XZaG71Wn17N/yKibpkudpXk5aoJILMa++dpERtVUe9eXXAEpCIEDZDpMQ1EQirXUC38KzLSwr5Pz5E9x3/wOcOLGFUiG//5lPce+Fs2ysrdHtDxn2egSRAstFCI+rV3ZwbA/PbRH4/XgFXjR+MMKyBa2WBzrEUj46jNhaa/GyB+4laK3xZF8RthustV1CQhQWiHoRHsuutYpVvO35c6r6Tz4CYtXn8ShTKublVqerG32Ryo25uF1GvTm2defiGgwGg+H5yeiOFtoWiOBW18Tw+cwKwrZwJGVYLDeSi2cn+S4L612e5zIxuCwMtk4I3krXdsTrSBuQi8Lyqj6nUhbKzW9HVFbnZUbkal6/pA6rpEt506dl5Oe4loYiH6OhG5dTFt6dZ7kwnO9jnD2+jHmyvNc1+W6JuNXM5rGX9ZH0sVRPiLf2yeWnp8VpSyKlhQ5BWi06nW26zQ7ba03uv/csd9x5G5ubJwgjeOKJx7n//vvYbjfp2DZXJj5hGCFthwhNfzBipDS9Xg/LsnA9jyCYpK5VI4RChyHD7ohGo0PLs7nvnjsZ2B5rtJFnXozfbnGgNKHWU127PLQ12871Re2qfWzRe2TRfOY65ZTlVfrsLjhvevY0VZ3By+XpZnnWuIZFgnqeprrdjbg1GAyGm0vUtG51FQyG2qwmbDUzoxcRm8CItAiQiam9JDPi2Z8zw3++NU6x3DqLPC1fqXPZ90UjM30uiJknaLpfJokhOU9TVk5ljUuEWLo9Fnkt6nrckvoWC48rPq8zaNTsSyFK7oUAQflCU0WiEo9ldd3i8uJ7PT+e9CQZb/ky/UZBuTVcdkhrMqsCzz4XqfKwzjMuux5Z2v75+xf/Lqe/k/o5HxjK97f8dcT9L6mPSPXHrOeueN9SmSV9RkpQU+Eh4utQTPd31Rp0cbZq/PgL0AId+XgioOFEnNxuc+LB+7nvfAvCPTp2SPfGJRqdTdbbTU5tb3HmxBajnR1wHSaDCBnEIcmWAM91kFIgpGASTNBaEylFFISEkzG2bbPWadPr9wiFYqIDRlrSHYVEjSZSSgaTgMhzQJeEqQsQctbBagfK1x0oq5p7nk6b95Qnn/PrDGSiE+ajF6XDQlViNd8HKiMetM72bBHf27oe1CpmfwtE/HPZe6pyuaz0NST1qyzPYDAYDDeL3YdOo+3P/2lgBgOsIGyl0PF8zZmRNv1Cp8Sn1ghpLR2onwvDOqFtWQOpPL1Glxm1hXLrekTiBU3yc3KTuidCLJ9XleeszPjKzxUt81wfxrjOXUaBmTkrculm508FQIUDuL4ne7HBOW9bcj9THWv6Uwg5FwTpxLlLKPPUpaVMfhBiMRpQuc95IsDKlFvtDS9r07JrzaaLHyuFEDI14FA9KJM/lh28mP8uLDkrefroxvURCikEAk1aEmkBlrAQUuCgcKM+enyNs9sOodVkf+8yJ9dcwmGPMIg4CCPuv+8+Tm5tMR4OCVSEt9ZiNOohghCigGajAVrTH/bQQuC4Do7nEvkBUkg6rTWiIGDQGxBEIYG0GGrNWAucxjqi2UILG9tpMtQSPW2j/BhFOnS7Tuj4cYT2po/lIzCS90nZ4JZMlZ/5Jj8Qx2JRvexdp9NppoI/O9hSRdFjW/7uEcQLpqlCO6TPyQ4axlStLH/Ue2QwGAyG1Rjf1mRw/9qtrobBUJvawjZtRJV5N+vPv0qEYX0vQJVnM1u/eufWpUoslnlE8obrYYyuMk9OFEWZa8jPj3xWKbVdq1d5PQxV4dRzQ7fMe5pNW5ZfJl9x89uuOry+qt6J10qUpJuHYS8LUU9/l7/29DzbTPqpUHYIZ+XFNUi39VQV6wgdBaCHOGpEONihd+0p9PA6F8+eYL3tIUXEZLzP9okN9vf2CP0xG50W680mGs14MmHNdWm1W6ggQGnF1sltpGVx0O0yHI1oeQ0cy0L5IUJKmraHDKC1vklbw05/iB9qLC3RSKxQ4ziSIAkreZZJh8kn7Vu2yFmdUOa8Zzc5rwxd8V1+qkC9MN7DPbP58mb1J5qFwRsMBoPhuYe2BQdftI3yTCiy4bnDSqsiVxnNc+Ol5jzH2OJZpegFYoGMsK46t44XNF3BfLIqI3PZ56o6Pxsc65xTyIYHLmnvzLk1xW9525UfKy8/d0zk0009uDWaJe3lW0Qx8rdem1cNjpTXo3xApSrffKh6+ljZeVIrLOLVGBI/rUbGPutZco1EYWufaLDDM0/9Hv7Oo7jjHS6cXuPlL385T3zuSZ65cpU7L97N+XOn6R8coFRIEIREboRSirW1NdqOA0EYvwNsi1BF+P4EJaDVaePZDqEfEAkNMr5fjnQg0milcIUkDBXKDxCBwnY0to7958vWSlxlqkBV+9ZJe6ue97L7vyjtPE16YGVhKbXqonMrd9ft74vqbDAYDIZnB+VKrn3VBfovXr/VVTEYVqJ+KHLKK1FlrMwCQpcYJqkg5MXpKgz5onF5vIZSkv0yEZwWu4uEQx3SnpqqrW2qQg+Peu11PcB1w5DritZ66bLXWX09JeJi1h+zaeoI76r6Zc+rqMlKgyiLvWrpPpYOY62irB8u65tC6Hh6rYiFrSIO61Wz6sfCx9JjGO0wvP4k453P0fAPOLXucu/F8/S6B+z3RzjtTc7efidtT+JIievYNBzJ3vXrNJtN1HhM6Ae4UmK3mowDH+k42EIQKUWz2SQKQ/wwYHNzk6br4g/6WEIwCiP8sY+UEtuxCIRAoxAWRDqKo0COIFyX9dFKz+mCCI50Gq11qXe3alpBOp9CeK4o7ttc5u2tovD+SELRD0FZ/fV0nm0yjSD5rjA4uiQ/uBU+eIPBYHjholzJ9a84T/8lG7e6KhmsYVRteBkMUw613U9VaPAioZMYZkIIpBApo/lwZeZSLj1/UR5FwVad5zKqBMQiUVh/3mqWVdKVGbv127c6zaoiblE4bT5sNm2oz8tIhkXy5cmSY3F+6b5XKoArr72ON778PubrXn3+8VBVTlk/y1yvEGgkobDQQhAhUTreNideqCvEkRJ0hK0mjPefwt/7HA3V42TH5iX3XuDi7ed47KlL9PpD7n/ZKxlNQqwoxBYQBD62sHFdl4nWNBpNwkjh+xNsMZ1TGyk8z8N1HE5sbeHaDpcuXSKMQoYTxeaJE4xGQwgiWrbDfr/PaDghkBOEDgmlJpQaldO1ZX2sqr2O6iWsepbS5STbmi2jzOtael6Nd3K+Dunvsv2AeGRjSb3Sz0Q+n3m9p8dENoS+DgufEePJNRgMhpuLJbj21gv0H/z8ErUAW796HTk2e9gaFrNSKDKUG3DzY/U9h1Ves7xBVjZXrXhusewq70U+v/QKtmUG4CJDa5n37LBUhZ+WpVkmLPMCq8xgjqJooSEcp539trTOZd9JKQtep0UDDel7P6/zfEXq4rlloZQ614bJasJ1xG0xv6prW2yLH24rqrLzq7yBy/JcOKiCngYZS5QQRFpOw48FtgRLC4Qa4wiF6l9n94lPMNx9hu0G3POi+7j7rosoreh2u5w/dw6JxnUsgskQLQXNpofWIIUgDEP63QPUaAxRSNu20BEM+gOarovneezt7OLYDq7jADAcjYhQ7OwfoITADyL8MMLrbGK12gSeg7YF2BIdzb2A6YGRRe1aJmpXaduqcpYN3CyibkRBVb5lHt9lZVRNDymbalE1eDAvj1jUClWarphf9n1X1p5VLXAzB4sMBoPhhYRqSEYX22axKMNzmpWFbZpiuCOUiQal1MxbEYfaZlerTeeVH/2vV4/ycsuoYwjFHod8GccrYNOCOjHkkmNV83nzdakjisrySQvGvGG+OCy22vBdJCTKvK9V9U3XI2mP+B8w22N1tXtxMwYf8vnnvWzHnf+izwlVwjtdv5LcZ3NpFXLaugqLCIcIEfRp2xo17nP50f+H7F/m3LrN+VNbbG6sMQ4jrly5jEDg2QJPhIz7ExwZoUJFq+khpcAPgtk9tR0bpRVKKcbDMUJrXMtmrdliNBzRPzig2WwhLUkUhgzHmsZaG6UgGgxxhUWz0WTiOARoNAqliytU12nPVe7ZIpFcl2XPdm1W8PzWpiTgIXkvxUXWHchboT0gE1qWDGgVhbfOVO9mPWsGg8HwQkTbgutffp7eyzZvdVUMhiNxqFDkqmNVAvMw8ytvhuFSP7/5wic3WxQVSi6ZH5mnzLtalW7ZvNwqL3XpdS/xZC1qq/S84Tpe5nSRQqa2+pkubVTqccqR9y4dlUphqJe0W+W5q5W9TKgs6gOLnyc9lbTTnzrC1j5NEdCQA+xxl91nnmBy5dNs0OX89gUunDuFtG2efPoS+3t73HX33ezu3MDvaiIV0VlfQ6GZTHzaGx1s257VRwpJqBST8RjbdfAaTRxh4Q/GjPoD1tc6SGnxzNXL2J6HYzsEviIMI6SSuJbFYP+AsSMQznlcT9C0XcZBvX2W089E8rMsMqQude9tvsyqZ7d2fsdUr+oCEg943DZyupeypvjOyNesNGi/7J2vFJp5+yfvh8I7ThSHs57td7PBYDA8Hxnet0b35ZtmoSjD84JjEbbL5o8m29ekjch50OA8XV3PYZ4kPHVZfVclX4e6Ar0OaUN6tuBKToAsEq1lLPLkJd/lvedV7V5X2JbVt65IKAu5TOcxF6aJC33urS2YuXH8YyG/dDnzOYJlc3GXC6LywZjYm1zHY7usLy06L30PhRCo5NoW1C39fRJpqgvyIBa0QkexN1xH2CrA1RO8aIDqXmHv+hOMdi6zbY9Rwy5ntl9Eu90gVIq9Xp8XPfhSxoM+niNxdIhSIY1Gg9MnT7LWaaNDn2H3AA34fgBoPNdFi/g+++MJjusxHg3xHIdBf4DtOKyvrROoKN6SyA+RWqPGE7Ttsua1abbWCByHnh8Q6QlIL77iGo+LiBsDRLqfLGrBGvmlW7Xi/taNxlhG3tOZnJsPDV40nWFpGeloDJkabJo+L/P3bn6PZlH5NJWJ+PT7pvJvSvxloW4Gg8FgOBzRms3gng43/vC558SWPuGaHS+nYqbZGhZQX9iWHZvaFhkjMZ+m1BshCtuJJtJC5D6nzyv1PuqsYTUXiczEUC6jTLk6HeKWzrJ049bioTLynudMfUvSLjLSls37reO9TdchLWoTErGbzqdc2JYbmzpScw+3LL/OMgG8DCFEvFLv9DbO+0hyo2RKuGmSt11S96QqiZk9i6QW+e2c6gndsvDx+Hqmv0/bTelcnytZtTsJ8UyLkap2L5vnmDuC0HnJKmIPrI7ilY4FqJTo0ypJpeNWsyws7ePpCU3VR3UvM9x9mu7lx2g7IWpwnSgYcvvFO7hwx+30Rz6XnnmGs2fPsrW1wdXJkM76OhtrbfwgotVqMQl8xjsjhI4YTsYI22J9c52GFqjJhDDwsaXFWEcIxwatGakIH0XDthhPQsIwxAoVURSxtr6O12gQRYpJpAlVRKRBCBshrNJnu7w94ytHxAMlSdcXIj3wIYj/goqMiBRCZPaPnfW/kns0Sz/9PRmMyAvSbFecnjcd/FvUL5L8q45XimStC3Vguopxcjg5Nc5nOiiiFXG0BNPnPal9yYBX/rqSvBbUf/5rIpwzL+748Z6OX0khKvzCBoPBYFiEtgQHr9mm99INJmebt7o6tdn/4pNs/foOchTd6qoYPo+pv93PkkWDEkETVtgaGS9eYjxlMyp8JifU0kalyKUT6e9zaRKDScW+qUzBM+NJpGs0v4i08VQn/HWRqMycWsOTsiwkeRlVIciLvCZp8VlMV1pKrBGm/6QoLqZUtWhMGRmhTuKZmgrI2ehFevgjNoKTOy8Sz66Ye41mXuCpUE5yzw5gpC+u2lOenQM4HaRJzk08q/lrKru2I3h28z7n/KBQnGYqDmZzaMVM2CqlkEJgC4FEo7QiUgGuGqEPLvPM45/Ev/4olr9Pwwpx1xvsDXe4/eIdbJ09T2/ss3ewjxCa06e2uXz5aXq9Ho7j0BuNWO+sseV5IAWNZhvPkRzs7yJtC6/RYHLQJRj0cbTElg7tRpP+YIi2LXw0suEiGy7Dbhc0tDxnOkiriYRi6I8YBppIdEBFaGkhpEv8llLLB6D09L7N+sq0xTLClun9FLP2TY6lO3iZrMuL0YInf8GznKSSuT5QfPcUj5W9U5L3Yr6MYr9KrjsZChdImX4fTMWsLPNulz3fqngbCgMy2XNng2PZJo7bTyXPWnxOLJLF9J4ZDAaDYRlR22Z4T4edN58hbNvz0X+D4XnEkRePKgi3Q4SILQtpzn+/KGR5oYe0Qogu84pW5TfzVOeOpUNHF4WnptPV8cqUtcOqlInadCj0YbAsa56PKvfglNVjWfimYOokTg9EMDWqdSzSElNZpMOUc4Ki0H6zOsyN6TpUp0tb4cVDdfNb5X4WRKwQRLP2S0S9jZZyuj9tLFosobAtUMEEgcLWAkuMCYfXuPrEZ+heeozgxlO09IDNlsV6s8noYJeNpseLX3Q/TqvDjRs7XLlyhdOnT6N17O0PgoAoipBS0u12aXgeSsRicfvEBgBRFKHDgMlkgue4rDfb9Lp9+qMB0nVob66jfJ/96ztEzTENaWGJ6fZg0wWoxpMRYRTRaq1hrW8QtFp0NYDKDGakW6fY7sniafF/WU/h9OcKguk4w2LL3mtH75910mWHR+Zlp89LJV1WBvXWSCh7d+cjc6SUqCTyRuTrb4StwWAwLERC2HG49pXnGd5rVjw2PL850hzbI6VLGVCLzikLu80fWxaaO/+uXHeXCaw6okNoUTDyVmmnvKhddO4iz29V2ZVivIJV5jWny84YpCWzOI/adwoeMQChs9tuTh1OZe2U95bN/D412r2sfkXDOt/uJZVekF8xzyXMwkDnZr2eFqwRoKch3FiE0iWOVQixiJDax9ITWjLEQ+EP+hxceYQrj/w6/evPcKLpcOepBoPdPdrSxh/4KBXxBa98JWdOnSYQFk888SSdTgfP8+j1eozHYxzHodls0m63saRFv9/Ha3mcPLVNu91m0NhnsBvRbjZpnZAM9/fpD4c4noeHxvZchBa4QrLR7uDYNioKUVGEVoJWu8329jYTf8z+3h7dYUA4HqKDAGlrLEvE/lqdnXxTPi9ez8XtLJBEM98LOb6nxZ58NOre4zoh+7X7i5gPc+RKKSQUQpY/0+ljouzcenUse9aUikq92/lnTUwHZ7KC24hag8FgWIR/2qP3sk32vvik8dAaXhAcWtjmFzyapUviUlPpluVbZaSVLWyUP6dqPmthzhv1RO2yuhaOUWyXdN2XGadVHudF5S/Lt24+6c/ZrXVEYc/ZReS3KapTZt3Fc4RO2nieXompgBa5dCXCs/i7mHp9Fw8ClAuibF4pB+n8eP5ABXnhsMy7nzl3Oqc28dTqWYj9tFyhpqG7CkkUi1o9wdVjPD3GCfuM964xONhh98ozdK88ius/w1lXYAc9op7FRtNi4vv4SnPbXXdz8d4H6I18rly7RhRF3HXXXWxtbQHQ6/XY2dmZe22FYHNrE7fhMRqNcSyJZVn4vk8w8ekIC8dxwLVBWmgV0h0O2NraxPU8IhXhOA7DgY8fTmg2PA56XQ66BwitsS2Ja7mEgNIKS4KKQrSs6wUXs5kH8+9F5vtVnLBlZRx2caiy98aySI6qfKrSVU0zyJddFSFSZ27rond6VdrkZzJtJS/wi17kfFC+wWAwGMI1m9FdHXZffwrlSaKOc6urdCxsfewGcmzm1xoWs1Io8jJjKTayycz/KjXWRVYQLjPm8+VWGVy18rtJA1ZlxmIdD2iVmKl7Xh0Dsq4BvOhYVR0Kn0tCswteH5YPaBTKms0Znc4a1TruRzIrQpLy8sZxKneO0gmKdc4a10lxIlFOs7m81de7kreWeCZpsujTPPI7bgdLEq8irENsIdDRCKl9HDXC00MY7XD9yc8SHFxncrBDMOxz0vZpuZL+/i5SWrjNDYIwQlsOa1ub3PvSV9DYPM3+1Utcv3GDRsNjOBzSarVwXZe1tTXCMF7o6eLFiwz6ffyJH4ccew5oTRRFBEGADAN8Isa9HnazxVhF9Ad9pBBMdITneoQTiFSIaLpIWxCgcDwPKQQijK8r1BKlFePJCNnQSDm/D/O2nz+DSX+IB2HS9y4Z2CmJBFFFCZcP2Y/7/GKxlrwby96Jy94bZQN46XTpNPny5+csF4BJSH5+MDFpu1XDreuKfTHdQmj54F6ZqK0nsg0Gg+GFgHYkB6/aovfgJpPzz51FoepiDUIzlmlYypHn2KbRs/+XeE2SuVKHFBhp47LKq1tuRJEUnMmrmK5mvRZopKN6guvkURluu0I5VaG7q4qt2bmz/6o9zKuI/anpPs905p+czudVarqEk0Ra8ahkFEWFFYwz9atRj8Ne/7yEbJ2rOsqye1heDx17qPV05XsRz0MVUqPCCbaIsIRChCMaekzDCglHO/RvfI6DK09g+z2a/oD+tc+x0W7Rtm3azSb4LVzHw2t36O7sIzyPl7/8VbROnOZab8CnH3kMqTVbW1sEQcD169fZ3t5GKYXjOARBwOXLl7GkZNgfYHs2ti0ZjkZYlo1SiigIcVptQstCEdHa7DBWPjqMiNBEWtFaW2Pi+wyGA4IowpEW7UaDdsODICQajwhGAcJWoEIEEZYUWIjZAmNJuymlkVJkBFHinSwLx42PJ579aq/rouetbBCHlGd+2Xz2su2y6g7eFcJ6iVcyzqWqKLl88CV77PDvhlXfc2Ve5aQOoBFH2HvYYDAYni+opkX/gXV233T6eb0o1OR8E20JRGTUraGaIwnbPM/Wo7RMkJSG80HtOXO1PYmpUMa0MXuci8kclTJxd/PLy4fsrm4Mz9pRiniXDy1mC0RppbCEBq3QOsK2LCIobJ9Tmm/FjMPjIr5OXfi9ztNRPxRZTFcpFygxnTOsFZE/oemCCCeIYExbTvD8XXYuP8b1px/DDvs0pI+Y9IlGA05vNpgMBwTCJpBNms01QqXZ7w3RtsvFe+5l49RJxirg4SceRzo2Jza2GQ6HBEFAp9NhPB4ThvG+tbZtMxqN2NzY4NSpUxz0u4xGI9Y6LcaTMSdOnKAlJU4Q0bAshGehXMmwK/EDH4KA/W4fPwxA2gSRQoup95YR/mhEOBxgRRHS9mjYDqHjMEKjdICQ9kz9JN1NymQgS8/mgJOsnKzT9yV5Q4hpC4tpX8nej3x/Lrtny7yt6eNlUQ/5MPX0Ofk8yuqVyb+s/xziHZX2PB92jm31YGNdsh7oZ+udZjAYDJ+XCAi2XG582VkGL1q/1bW56fQe3ODkL15BmO1+DAs4Vo8tcKxhAlXeg3woX94ArDR4Sup2VM9qVfheptianrg6xuZh5u4tDAtfMa/lZIXtKvmVhZwrIdBCTsM9BUJrpBBYAnQUe2tlFMahqdNRymQ7nupyl9ennuGvSw3zuD+Q8gwe78BCrNPm4gtASnAtCz3p0bBChB4zuPYU1576JMFgFzk6wLUCJD6OiMCzEQj6/QEbrQ5SQBiGCGHR7/fYOn2GO++8SBCMuXr9GU6c6HD+5F3ceOYZugcHNJtNfN/n0Ucf5cSJE4xGI6IootlsotfXZ+HgliVwHJsxMB6PUUrRkTYNzyNSPtcvX0UOx6zZDjIIaWIRTnxCoUBI/DCgF42QJySd9TWEJWkIyWAwJgwCdBQhhEYKEEKDUNnA20TUTv8Xiat7tvKYAiySMHo9u1fxDVwkDBcNGpXd96RPLvPaLveaLmeePtkSJ1dWvmy9+H00e55qVqPs+Su75vqXlcz5T4f9R59Xg4gGg8HwbNJ9+SbXvvLC89ZDazAchiN7bFcNhz1K/vlyVllAKQkwLDulngFWvT3NMq9kHQP2sPNaj+O74zxnqgziX0vCj1fqI0KAkLFXUoClk6BjkDoWc23PQauIoRKElk0QhLFnVxDPNRVAErws5t64pZdxyAGAxKmViKOUviCtCqZ6K3vutKazz4Xs0ydIkqh6gUbqEMIRTSvCjoZcffoRrj/+KTr+dUa9GzRsDZ5kMumjHRsVaVy3wdaps4RBQOiPEEi0JdjY2OC1r/kiOhttdnr79LvXuePiWVA+nU4bAXieRxRFRFG80JPv+3ieRxAE0zEIQavVQuuIa9euM+rF3tvReIy2XXwhiCYD3Cik4Xq4tkcUCSYohNskQOJraNgeoaXwXGfaboLxeMx4PCYSQ/zmeLozz3SAKyca88Iyni+abstUOOtMyErmGq78/ZMVtTr3ffK+mGWbubOl83QrvisLSy6rTzqfgjd3XolC/WfHZv8tJp9XnXplzi8V7avmEz/XRtMaDIYXIsEJl8F9a+x86Rkjag2GHEcStokRljZWLBGHhDIz7mTsL5kZn5B4Q+qWcZjv8mlmxl+ZqMmLWF3idUwbz4k3amoIa61j87hiJeGy4L385SfGb12O6mmuw6HmHyeKbSYqU8fTx7SYtmla7OV+1xBpAZaNigJcaSEDRUMLrGhM25lw5+l1hJ7QOXWK3/nsLoNIE0bQsCVtV+BPhijbZT+yCe01iDSWUmitABGHquri/Uk2fsk1yNzjBmgVexXFTBzpworLSRuGcUB1LET1NCxeg9DT87VEoJAiBBSRjFtBCdBCIyRIFOiISAm0WEOrCEv5eGKCpfq4us/+5cfpXn+awf41RO8qDStga7PF/sEu3f0Rmxtr+JMJruWgJiH+eISFxpEar+UR2Q73PvAAoeOwOxjw8OOPcfLUCW5cuYRne7jSw7YEKgrxHIftrU0c16HhOjSaDVzXYzgactDtYtkWrZaHsCyEtGg2W3heg+GNPTQCWws8u41t2bTbHWzLZTQOGIxGdAcjbCERUuLrCdFwxEF/hNAaEUywLZuGa6EsiS8EQrpobaX2UY6Vz2x348QLq5O7m/Y+xvdTaRUPewiN0nr6eXo/K8J74/DcXMivSC8YNhfcUlilA2bL5p9XRVrEx7PiOk6nksua9smSDp7qm/Myc++vTFU0eXFcVd9Z+iWs9l5KrnF+34SQ0/ttMBiebygvHmjdfeg0UavaVHX2fbY+dgMRaYRffzeH5yLaEgRbLlf+2O34Jxu3ujoGw+clKwnbZYaImAo9MV1FM/FaaD01r2ZGoSbem+PQ9c7UZ5U5nLWSiQoBnEmSDgRdTMqJWVkXrUVFmqM10rK5eWUc3fOus7ohfyxxD2m5sH4aEFrhyogo9BFhgCc0J9tNRrs9ejtPcuKe+7l4ewdvrcWNS1d5qt8lVJLTnTUeuHiW0G/Qx+b/PHaVYeRg4WCnV8+dDXjkEMW7m4hWkXRqIRBJGOs0K60VQsjcWXoqZhPfcXxYJmGi8YXG6YjQIk6phEAJGYtvQlQYYguF63hMRkMaQtGQI/TwOsMbT3L96mMM9y7RccHt7dDUEzbcJjduXEErRcN12bmxh1CaM9snGfZ6KD/EbbhoIFARXmuN1olNQksymoy4cPvt3HvPnQy6B/QP+qAVjm3jui6dTofBYIBt2wRBQOD7BL6PRhIp6A36hKpN5I+J/AA1CQhGIwhDhO2gsBj5ismkT38c4DWajMYT/CBE2BIxXcFY+gFaKZxGK57LKxQqDJgIQMfzqkMFKjXvsuBZnHbp2Guf7XdpD26yV6rWGktas3BypRRKqdiDmsl3Ol9XpJ6ZZGEqkWzDNB3oSfWVOnNzy77LHc29Q1Kh8SK1engNhKAgRUt81bUHJJeXtzgkO+tpz9dIzKpjMBieZ0jovnyL/ddsE5xw0XbR0ZBBa/Zfs413ZczZn3kKuxs8a1V9tog6Nv0XrTM+36T/0g20ZRbOMxiqONbFo6pCT4sLK5WLuJtBPkz4KLZQdssQkQknXRRqW2Y0HjfPxkIqx1bG1Ds9D9mtbjcbH48QbQ2xojFNK+LBBx7gxjMN/tfDj/DEYz5EJ9ja7NII9th2Qx557CnWgm3aFzsIN4IgwFND2k6bSFnEntqq7YAylVx4/el5jDH5AZa5qHX01EvIdEVnoRAiYhZWiY4XSgJAopEILGwtsFS8CqClXGwirGBMW/UYHdyg37vOtc99lt71z9FgjIdPKEOC7j7tTgcdxqG+O7u7tC2LUye2cWwbT9pYbc0g6oGQaAvWtrbYOnuOTqfDKPDZ2dnh/LkzhOOQU9unaDlNdnb26PV6M2ESBAGj0Wg6n9aKt/2JIqTl4LkuDcdlEgUgY++rJW0moULpCD8MCFFI22IiNMNhn/HEx23EI9G+CnEsG7fh4ihNKARBEBJqHx2G+JZN0AjmXsuSeaIFyp2XufuZ3Ec904X5qQi1BvlSAx5JZEf6u0XidjWSSkJxLqogf8XH8RznRXjxOaoud9lCe8X6ze+LwWB4/jK8t8POl55hcqZRfxBNCLQtGN/W4urbbuPCjz3+vHhVKE8yOdfkxpedQXkWwbZ3q6tkMDwnOFZhC2S2Wamep7qKobL85bbIUEuvkFzfoCuOEJYtTpUYrHmDt2z15KUlivKEZYZfnXl3R+HZCHMGEJLYYwlzz2kuu6aIaOge7bYiGO4xOLhGNG7jsMf+jcdoOLextdYiGtzghDXhnhffyad/+39xEFzn8pYiCkNEZ5uOJZioIVEkEaJRo97LhUtc79Q1oGchznPigRxbS4QWaBGv9KsRKK3RIiJe8ChCC0kkGnEkgBZYGmylsJXCCgOaUiCCgHH3CvvX/h87V59ARmN0b5cT+Ah/gCs1toDNzQ7D4YihHzAaj2lMRWan1SIKQsLpnFjfGeM0GvSDEbffczdWo8loNGK326XherQaTcaDIa6QjEbxCsjJ/Frf92m320RRLMfb7TZSSi5dukJv/wDHsYkmEyBio92i3+8jELi2TegHaAnakvRGQ/QYPK+BkgJfRYxGI5A20rUJQ4VQilBrLBtcS4K0sG0bKQRhFK4UZVC21U8yvSA9vSIOSy7O2c2K0qKAK+sn0+G8TB758lefo59JlapH6vc60SeHeN6XC/KkbcrzWH09gOr8DAbDc5/RnW2uvO02VPPwZunkbIPhPR1aj/SPsWbPMpag/8Aa3ZdvMbx37VbXxmB4znHswhayYWaqYt5p/SG1uiHG5aIwLWrz8x8Xl1k0PDOe31lYddFzUbYwS/3Bx3SIZLWxu2jBmap0q1I2V/TY8q+4/Zn8tCYcdkHd4I4L53m6v8/Dj/42j7d9Bns9CAa86J57uOu2C+jJgCvyMoPBDfR4n/amxxe8+E5GozHXx4LHuj0sAbZtoVV2a6BqyvtUfhXsyvqnL1ZGoAVaMA0xtqZhsTYIBUTE2/hYCK2xUDgqxFUhbjRGBgO6169w5cnHGex+jhaXsNSQM9snGIxGhOMhrYaN59js7e4x8i2CULG20SEIAtbW10BIOo0WV/Yux4IfcDyXSMCLX/EKztx2O3vdLlduXGPzxBZbWyfidFrQO+hx/cZ1tIDBYBCH6loWlmWhlKLRaNDr9RgOh4xHExquBxJ8f4IgQrkeKlL44zHK92lJG8uRhFGACkIirXEcFyEsJqMxnucxmQQM+n1aUmALC7fZpNVq41qKfrfLeDxm4vqzVbDrj9JnRVJ+vujsucsJ2vxq28kgXdmWQGU/pZhHCSwKQ17di6tz/yDdGHW8y3U5zNSGRXnVe47KRW2Vx9dgMDy30Lag+wWbRxK1AMqzGF9oPSeFrbYEw3vX2H3DKfxTHto24cYGw2E4dmFbFm5WTANlwjEtNophnsUy0ucuC2lLi9t8mvy56Tl3+XIS71SSIu+xLeOoocjp9kgGChZdb9miXquUlc6j7Ls0xbbTs59LPTNxylT+EEUBTD1lrmPT398j6D1FcKHJcO8aDgFtR7DT73L25Ck22xvoUGIJCyHhsccexg/HnDi5QbvdwHEdxEYL5/IYlESpZCueYlhptu6y0DfKfo+7cvr3+DpUFG87I6YrFkYqQEmBRqKEhcJCSgcVaaRSSKkRKkJGExq2wNYTHDXG9ntce/Iz7F15nKC3gz84oGmHtOwRkoCgv4OtJzQbDo2Gx/5+F8v2GE0C/EBhTbfYGfQHcb2VIvB9ev0+J0+dotvrced99/KiB19GoBWjyZggDOl0OjiOjWNZNGyXMAixLBs/8FFK4TgOWmsGgwFKqVjQjse0223W19ewLJcwDHA8G1vG5TqOjfA8hv0+SmiE0rRdj9aJ2AOshSBSmmbbQwhBNAlRUTyvNYxCRt0u4/EE19ZYGpqtDr7jEM66kU4tpkRBlMZ9WiWznGf9TIj43qnZ9jFJ309vpzSfhpDt87q2I7HsWan7jKb7Yubdmprbmwy0KRWHuAshkId4B+Sf4XTY/mHfK1XlHDavRYN5BoPhuYVqWPRetnmrq/HsIyHsOOy8+QxRx2Z4Z7u+F8RgMJRSW9iuYoAtOy+2R8o8uXkhlcxLTJ9bNGgWeRMz87lKjpXVsba9NFW2pQZnSV3q1LnsvDIRVpWuTr5Vntg693iZFzdf16rQxdjwTp83FyCWJYmiiMlkzI3rVxk++Xvcdsbl4PoNTm+eQAWKpx5/ilNbp7Gky1prnckoYn1rm3HwMAqBlhbCtjnYO0A1mthOA+HbCGlNw4eLgx5p735dD1pq3V3SC2YlXry432lCqVAi7vUaC62Jt9yREhkqGIe4IqTjBNhqRDTe5+DK41x6/FNEg2useRFr7phQ92l5LtEkZDwegy1jz6vr0RuMOOiP2dg8QeAPiaQg0tBZX2d/by8Wd/0+E99HaY0fhWye3OYLXvkqJlHEaDzixs4Ot91xG2EQsLe7y4mtEwSRIlKa7ZNn6Pb2WFtfw/M8lFJMJhMajQatVotr167NnzMpmYQBjabHqe0t9GTC9WGfSIDT8JAIdBRBFHtGLQTJStkCwWg4giCi1WzgSE0Qhtgy9hBrHaCmocMz4SbKl3Irfy6yIcTzsPKpx1PE908Kmcmz8j1TXCmtJE263FRNKt5liyIy5n0zCTeee2vnC0iJ2aBKYRG0ijLy+ed/TwYH8sdX4bhE8XHlYzAYbj3Dezq1BwiXMbq9hWpYyHG0PPEtQluCg1efIFxz2H/tttmyx2A4Ro4kbA87Yl5mkyQGWfIvG1a3vG7HswjLvH6FabIVojHvdagStXU8xflz04bk8joXRfpxGn+HHdhYmK7EqI+iCMtykyP4/pAzp7doNByklJzc3ubS09cYDnz0BjiWBEKkbTMJ4bd/5xP4UUS700GpCFsIRkGALSQ60kghUAvERVaM17oUqvrpLB/i7V6S+Y5iuvqxpXy8UOHpAEtMsMMRev9pdq4/zbWnH8GTY07ZIaHdp0GE5yoiqRiPuwQTiWM7CC2Y+CGB32M8CeisbxBEGmHZrK+to6MxfhjE83q1xnIcHClwmh7NtTYvfumDWA0XP1Q88cSTnD17jhNbW3iuw+UrV+h2u7Tb6/SHQ4LJGHSI70eEYYjrurRaLSaTCUEQcPLkSW7s7DAa+9hugBYaPwjoDfvIMGLk+6BCPM9FKk2o1Hy1aBkvDDUeT2i0WjTbbRxPxQJThzi2g5Q2ruthC5thv48/HuNbQbzlSzLhnaIYS3tZk9DprMhMC93kXtZ9duYC+TDUWzypJAJCQHahqLnIFclKzCvOS02XURb9kfyrnl6SuQqO0i518jPi1mB4ftB/0fqxeSpHd7WJmp+fwjZcdxjd1Wb3dacITrjGO2sw3ARqC9u6BlhdyjyY6YWn5ksOZ42zZ8uYqeW9TP4tEZNaFH1JZWF4Usb7UpbN+atTrzph4FXnrFJO3TSL8kvarizPRIgIIWi2bLZb64z8HsISNJot9na6uK5Hq9Wg1Xbw/R5SCsbDMZOJjwRsFMof0/ZsoiCi7Tg0RLyfrBaHi8Avv96skT9v+/lAjVYaKWzQEg1IrbEJaFgBerCDFw1Rg11uXHqUwbVHaNmKTTXE1SGDnR2E8hlGAb5tI6zpisla0PQaDAc9pJDYtk0Dieu5DEY+a2sdQhWiBHieR1sKttY3GI3GeAJ2Dva45/w5Tp0/R6PT5rFPfZbxeEIwnjDqD9g4fxbX87h+Y5fBJMCy4i2B2s0mURjOhG0URQghGA6HuK4bC0wp0ZZkOBrQGwYIBxpSEuoI17aRIoJIEWSGGBShBNn0CAX0R33Qkk67jYgU/njEKBhjOxNcS2NLgXQcbNtG2RZCytjjK8rDdpP7l104ajaZgPm7Jv2dVasP5OfY3gzy7xidqef8p4B4m94FW+Ks+g6tGzWSZTVRvbwOFPKrJ7ANBsMLC0HvCzY58f+7dqsrMkM7koNXbdF76SaTc81bXR2D4XlNbQtf1gqVqGfIaDSa3GiagHhtFZ2WscVzb8IiSeV5FYV3mTiTFd6NkkxrlCuJV9VN16PoNalX/+Lvq3rYDytuEwGxUCiXtpNASJAyFhRaKdbWWzh2l6eeeRLPie/LxYsXufS5Z9jY7PC7n/wtOh2LltfGdTe5eP4sV69dp+XZCBUQTsZ4ToPtToOn90c4solKPKjphb9Scyvjto63BYpHGmIhIUQx5FTrvCdpOjjB/PqEBqmdqbc2wtIhDiMsf5fhjce49NjvEvSusOEpzrc0w4MdwvGIs2fPoBtb7O8e4E9sLLuB22wznExQ/ojQ91FhRBCM8NbXcWzJxB8QRiGT/hikRAmN7cQ79+73eqAVWgjO3XaBU+fO4rYa7Ozu4jou995zD1EU0Gh4HOzvc7C/T38wwI00jqsY9bsMrXjRqCiKVy52HIetra1ZdEGj0SBEEAqN47k4WAwGA0YqQjo2UocMBn1cBMJz0FIw8SeoCLxGE6E144lP3/fjwS5b0FAK27HY7KzjNTwIJwx6PYLxmMCeoFSEVtH0BZKNXEjPE50NGtXWXHkPYVWKVZ6rVNpZd8p5jkU23fy5j+VsPE9Yz0ORk7NnUS+xwI+FX/mFlk0ZSQ8GpN85yaJZR51je/g5sck9PY68DAbD853eSzZY+8Q+zp5/q6vC+PYWl99xO1HLNiHHBsOzwAqhyCWGRMq7mIRZlpkbiXCIzbbYe6korvgWe7cUSsdCOjamigZYFYnhld4OJzN3Ml3QAqbm4/R6dPbcKVJIhBRTX4+aiRnEbHblzMtQ9i7TSQxm+tq0wiLlN5p6wyxSXt+awj5JnzZS0RppWal7EbdFZiGkWQY6U1aStkTZZeuR/Kc1QmtI6lHwrsT3Vmo1HSGwiIRNNHVzSjXB0YqOZeEpwSAAgcWw7/O5a0/R7x2wf7DDb/32HjocYilBNIoIR0Nu32hy6bOfIeru4TTX2DwLKvJo0CPQAsU6gfRQlksYTkNdpwMqSggUEqWt2bUm2xKpabvpVGi5JL6Perr3bBJyLIUmjEIcGbeFEmALhRON8MIu6uBpnvr932b/0iPYYZ+WrYnGAf3ukGg84vTJk4gwYjIeo1SEkDD2R3itJoKQ9bU2vu/T84N44SUk/nR14XarTa83QCJAgYWkNxjR6rTxwwin6XHx/vtxWk2u3LjBjes7nD19hkbTxXVbCMtCaTh16gz9wYSttXUazSZqrU0wHiOAXq+L5zbxPJd+b4AQko3NNTY2Ngi0otFuc/XqZYa9EbYAoSI8SzKejBiNR2jXhUghLRuv0WTiR4z8CKUE7dYGreYag24XGUYEkY/TajL2RzgNGxUFhNEY6TSwiFA6wBGKMBPyn/bECrSWyVM1fS6n/VFP+/C0n2ZjK3Le+JL+Xk7q2U6e2/ghYP786NQzlc5TFactTOsVFx0/l2J2HQly/lnpqfC1UjkUq1h2IC0YqxaNWrQIVn5ueuJVzW9RNktH8d2a1vmZd5Oe34NkUNFgMDy30Y5Euce7AnBw0uPKH72d237kMUR4awbBVENy/cvPM7yzTdRxbkkdDIYXIvWFbckxPV0AKBZ+sYFWumdiynuXeLJEibCdrUQ6swTTv1eT92guGs2vG2I8yzuZv5c7N75ulbJfk/lnaeO5+HNeRtH7lxhumfmnyXUtq3Tak5JOnwvJnBnTSzwvR/KAp0RxkkvRY5t41zRSa5SORaWWFhqNZWmk79Pv7nJq28b1Guzu7PLwZx9Golhvuqy3mhCMEcpGT3z2b9wgGI+I9gWjGw6fe/RxGpvb9MOPoxrrbJ27iOgI8Fy0kCjpoaVAq1g0yKSvaUE0HayQU92RGOACUDq1Wm4idmHmBY5t+bm4sQRYjLCVj+5f4+oTn2T38U/i+nuccSLCYELH9ljvrLHudbhx7TIqUkShotvtM/InaAXNVhshIwSx4B1PJrTbHYIwJAgjbMclHE+wpUPD9QjCkIbrIRC0220mYYjTbHDPA/dz9vw5buzvcfXaNc6fP49lC7yGG8dSKMVoNMb3fVrNBpsb6wRBSBCERGGEZVlsb58EYG1tjclkRL/fYzQa0Ww2sS1J07M5d+okVwMfS2ui8QgdBKy1WrhCEE58hBLYlgVKMBpM6A3HOI6LLWyIAnQQYTtxWLOKh4/YOzjACid4roP0HELPAdtCRSHaikDOxVz6PRLfCzkdeisfoMl65DWgci8DXfrMilx+6dfPrP+XeGLn5aSLKBF6qbRzvy2l79B5+eWLaS2mzEucFbJVERrzsvNe7sXvmFJhO0tQfmg2qGSErcHwnGd4T4fRnZ1jzzc44c7/gD+bCOg/uEH3CzYZ3mP2oTUYnm2OtN3PzBOaGaUvpkuHpc7SVNgkZeGpy6iak3rUOcD5bS/qnlf2+6rlHvdc4iRUtPye1TVGawwKLDF85wclQk0N/mkYsBQaCFHhGNsK0WGfwaTLo5d3uXblEsoPaTU87ChEjX1GO/s4KmC96eF6LdpnzqFUiFAhlmPjR4qJEjQ9j64/QXV3cTsXCCTTFYo1lrQgFxWA0AipSFY2EoDUIFT8c5oEgYjDmtGoxKMrBJYAHQUIHSIVWAR0gi6XH/k9rj3xafzdZ9iwxmw3BI6e4LQErh3hqAkoCyktJpMJruti2zYt22I0nGDbDoPBMN5ySth4jstoPEZKK/boRYowjOgeHBAEAUgLJSTCthiOxyAFt589ywMPPBCHAE8mXLhwASkle3t7MzHTbncYjUaAoNls4fs+Qkhsy0JZFs1mEyFgd3cHpSJarQaOa+P7Pq7rsL21DRq2NjaY9Pv093aROm47rRS2lFi2jdQQhAFBGGJJOHXyBLblYElJMFFIz8GxYk/0YDTBaa5x+/lzTHp7hJMxEyxGYx8VaYRnMZ3LUN5nhUhGjVLez0V9tChESwfNBIX+U/aM1WXR83iz3g1x5llv9ap1BjLvy1XzWKWMm9oOBoPh2UMKdr709E3JWrmS3TecYvt/XL0p+efRjmR0R4udLzuDf8JDO2YfWoPhVnBkYQtzY6PK0EgbI/F5yX/V+a4yh6psTmdSblWdF1G2EmjZeflQvaqQvFU5boOtKkxw9ToWRySWnVvuRZ/6uKREqGjqQFNACCgajkKN9jm48QS9g+s8euX3Obm1iUITBAEiDGEyYv/6DdZtge83GaERtoXrWLi2hevYNDyLSRgRSouma2M3bYbRhGE0QQoXFfkobOQ0FDU7shsBYexP0oJIC6ypcJJKx2G+Ws/Cj6XWWESgI4QOsESEY0UMu/sc7F3lmYf/H4PLj+GqMbe1JE3hs2Ypxt19trc3GY8H+OMQKTaQUuK6HlqB4zi0vCaD/jX6/QGD4QDX8fC8VlwXYbHWWYv3d214aC3o9fsopZFSEEYRvZ0dIq15+Re+grvvvw/bdXjm0iUGgwFnz52j2WiwvbnBeDxmNBrx2GOPYVk2wXTvWq01tmUTRRHr6/EI9HA4pNVq4Tg2mnhubbfbpdfroVRI4Ptsbmww7HWZDEe4QhBNJliWpGE5KA2B78db+HgSZIQQmiiYIC0bMY2GiKKISIG0HXqDIXv7PQgCIj8gsh20ZaG0JNLz7byq+2csVuPbXaMfiwUjcNmE1d8c4T2Qzyf/Hj1qfnnyi2CVlVWn7Nl84AXhy6uS9wobUWswPPfpvWyDYNNdnvAwCEH/JRus/789nN2bN9dWu5LhxTYHrz7B8F7joTUYbjVHErYJ+RDdbFieLux/mA6ZTadL0mYXKqlffn6O7WGNqXw+VfmlV+UsE7/L5gMXmftMVjHcloVe59t+magtGySY1S/v3KwhbEtqPP8u8aQRb4FjS0U43ueRj3+MwfXHadJnu91GjcZMhiPGE5/utaucaDY4v7nGaBwiVUigFb6KUFGAa0s8x0IDjWYL22thN9o4ekI02keJDax2A1s0CElVAUhmaUokaHsaVS3QSEIhiEQ8f1ZOQ0aVsgGBpX0sAhw9wo6GDHYvs3fjGa5dfpLB7lXWRjucsBSepTjhuIhwDH7AesdFRz4q8vEcF8uy2No8EXtR9/eRVuwJDYIApUErgZQ2/X6fKIpwGw36/QGtdpvRaEKvN2AwGOJ6HhEB3f6QdqfD6VOnOHXmNM12k+vXrvHU009x6uwZpBAMBwNUFHL77bczmUw4e/YcQkjG4zFS2iilODjoYulY0E4mEzzPwXUdhIQwDIiiAFD0en36vS6WEIz7PRqOgyMlrpQI16Vh29hCcDAaEkx8mq0WkVJYOood5FrF4cnTaHbHcQmIEJZDx/OYBBEijHAsG+E0sN0GoZAgbagIzRUpb+18Ua9lkQVTUZs6VCqoZtq3WnitIm4Xibbj9FQW5uRTz2Nb9b7If18WRXMcdTeC1mB4fqCaFt0v2ETbN8+zGWy6RC0LZ/fm5N976QYHrzrB+LaWWRjKYPg84UjCtmjQFEfny0Je9TyDzPfHEUqcNyirwpTr5JMXgGXCdVl+h/WwHNbbXFWHVUgPRGS918U/QIm4X2a8F9oumaMq4ll2QiikBKV8okmf3s4l3KBH0N9l0u8yHo1iMedPaHsOF++8g61TJ8Ef0nBtCCY0XIco8CEKQUcMBwPGYYDuDxhNnkFZDpO1uzn54BmkUPgi3ktVWhYoNVsqSGiBpSQgibCIhEQJQST0bCEprQNQCkeDi8BWEZ4eY012ufb47/K5z/wW1mSfrbbFlhjTaWtkFKGCCcqP2FxvY6Hx/QnatvHabhxW6wdM/AGO4+JPAvxwjLRtzpw5y2gUz6v1/QBhWTS8RrzdDRBGiuFwzNj38VptlFIMhiMaa22anQ4vevAl3HnP3XR7sVd168QJTmydYDgYxJ46pXjyyScJwxAQRFHcGu32Gu12m0ajQeD7qDBeNXl9fY319TUm/hitI3zf57bbLgAQ+gGDfpfe/j42YHsunmUhIwv8AK0VUisc28ISgiAMsQU0PIf+cMSo3wUh8VotgiBESkmExrYtWq0W0SgiGA3ojfbZsxs0TyfPik6FGGfnutehGGasYcmjq1P/5Z+B9ABRfvGk0vJWIO/BTH7WfdbzW+VUaP3ag4VFIV98Vy4TxQnJ+ye98NRxvg8NBsOtJ1yzb8rc2puNakgm55rcePNZ/DMe2jIhxwbD5xMrrIqcG+FfsqDIYSg3jup5OW5WPRYdX+ZdWbmMBXbucYravFGc7B+ceMuFyO4lu+jcqu/qea916qdARyGW0Ny4fpVg0EX1dwh3rzHp9giCACkEJ09sc3J7k7Nnz7B9ahsVNBE6okkbLTST8RitIkLfx5uG0HqNBusKesMxSirWGxb90AcrABF7JOXMVxuLbqkkQkm0lCgZe3+lDWE0QYgI24YonNCQ4AYBVtDlxuc+zTOf/k1U9xlOegEtZ8iGZTHWXaLAQiuwRBwePBwF2I6FH8J6u00YRoxVQFPHAwg3buwwmfg0W23a7Q5RpBhPfA4OuigN61tbREqhrThsWVg2B4M+26dO4fsBN27s0N7osHnmJNsnt7n7vntxGx7XHrvO3sEBnfU1wiDAdhw816HZ8PB9P15hWYPruiilGI1G+L6PZdnYto20JaPxECkhjAK63QM2Nzdot9ucPHmS9fV1RsMB+zs73HX7bbQbDQYH+1x75hn84RApJSrw45BgpZiMRjQ8D60jQn+EKyKchoO24q0RxtPw5Va7xUF/EM/VVSGg2VxfB3edyLLQKvbqJnew6r2RDzivRpdF3tfKb5XIjcp8K56zsgG64yhPT+e5Vw1KZqNo6ojW8pZetW5VgnheZ4PB8Fyk9+Dmra7CakhB/0XrdF++aUKODYbPY44lFHnOYktw5gVNiYjZmTfJSLkVo/pVc1prnFiwBas80Pk0R2m/tDepuNDXci/QIuOzmsR7nzKkkQy7PX7v45+A7gH+tSvIcQ9HWJzc3qbT6dAf9HjskYe5dulJ1poODQvOnDrBxkYHhMBzXVzXw3Yc1jsbaKVwLBev1cCzWzS9TcJxH9FoYTugLEkYZesU/ybQSQSrVlgClB/QEAGWnmD5E5qWRnQvs//0E1x+/DNce+LTnGwqTjc1F7baMPFR/pCWAJoekyDe7sW2bbRlc333gFa7TW8Y0Ov32drcQIcTxuMJzWaT8xduYzSaMBqNCSPF5uYmntcg0opxFDEcB6w1Guz3e9zY2aXZbIFl0R3ugy0JoojBcMAX3ftaeoM+n3v6Kfr9PpsbG/hhwHg8Ro9GANjTcDClFJZlI2UU70kbBvi+z/r6Bp7nIlAE4YT9g3386xMGgz5RFLK5ucHnPvckruty+vQpeoM+/sRC64hmqwlSYLs2ahLhhwF+6BMFIU2vyajfxbYtmp7HIIwXqgqjkChSNJoNhI7odfdx3BauI4kmEZ5t4XgOE9dlbIElNJFI1g1OC9vUtIcFi0eV9GrKVzHOJ8uuPnzconYR+WdTSlnwxNYvNPsOrhosrPKeFrKbhmcvG3QUC4Ya8tu2GQyG5w/Du9u3ugq10JZgeG+H3Teexj/p3dTQaYPBcHQOLWyXeRTSFOfXloctH4Wjzl877jLzorZWuTo7p6+sjOM28BJPbeK5Te6HZVnli36VnL/KHMIsOr5kDSCQQmJJC388pnf1Ok6/z0bbwWk0iGzJU1cvM+x1EWHA+e1N7jhzinBwQP/Kda4//hiWa2PZDpNJgLQcmo0WWmssabO2tkaz1WHSGdPbVZy+/9XgnkAJhRAWWaWjUFJNN3yJtyVylI69ieGYpp4Q9Xe58cyjXP3s/0H1ryOCIWdkn7PNNi4BahhiS5CWh3Cb8XZGKiCMFEEQz32Vls1oPGEwHE+95LEXUwiBZdmMhmMOuj20FPiTIBauwGA0YoIAW9IbDdnfP8DyXBrtDmPfJ9Qat9nEabi87g1vYPvUSbrdLleuXuWee+6h1+uxs7eL12iwsbFBp9NhNBrQ7XaZTCZYlo3vBzQaDTyvidaag4MDDvYjOq0GtmMThnGI8NraGr4/4fr16wipabVaHBzs4dgWotViZ3eXaDxiZ2+HNc9DqxDHtVnf2ECE8d69rbU1hNCoKMISgNAoYDSZMPYjPEfSaTYQtsPGWgdfRoz7XSajAaOgh1YBlrXMeypmP8oWjyql7uJRJQNSSdmLBp2Oe77pkd5vAoSQpUI0ieBYJe+0h7esrqmEpS1cp6yy8G6DwWA4DpQnGd/WYu8PnGR0Z3u1eS0Gg+GWsYKwLZiMx1qRyjK1nhc1jxXN1qR0blj8MzF+8nNBi+kXG2CHMU4PL/hmOSwYQEjXLSlj+v3yqYEZ8otgpX9fHG5NJm3xu7hO6XmPye+z8Q09Fw8aTcNr0PSa9CLF6e2T9Ic32O3tEfoB0XhCw7JoOzbntk/ywB134KoQW0X0hvtI1yYMI5SWeI0We7sHTPwAHSmGvQF7e1c58CY07j6B12gwFmK2crBMBlu0Rovp9j1oBCG20rg6pKUC3HGP/ace5cojn2Zw4yla6hLbHU1rw8UWHaLAZzIao0K41h3QaHXQKIJhFxUFSNtl68RJOmtr9AdDHNclDEKazSaea9NaP8WNKF79eTKZ0Gg2abSaXL16nW6/DwhGEx/tubNteBCSVqtNt9dDEc8bDnzFF37xF3Hy9GkODg64cuUK586dI1KK9lqHO7yLBGEw8/J5nke73Z6FIluWhe/79PsDNjY2kVIShhGD4RDLkjiOTavVRClFv9/HdV22T26xubHBjd0bNBseZ86cZnBwwNPXr2JbkvF4hCMEnVYL13HxhI32AxxbIlCMhgOaLRfpeAz9EGFPsKwAWyocS9Af9Hmm34PIp91wsKRAoonCAGFHgGK+gFT6pSEyh8rmgBYpLh5VmWy22vJ8riswC+2HJe+f9KH5pN2yguan5MKDE6QU89QVl5B/jepcfkn+iZgtvBNSudTdK7cy2oTyNsm/98reQyYU2WAw3Ax6L9uk+4pNRheNoDUYnmvUn2Mrp/MgtZ4KJ41WaSNRTwVW9ryy8DbQIKw438WlEgcXpoy1OhPfiOsRRxKqZAZnlWNlJRbNMc2zSCyn58plvs9kqTMHqq46axfH5whAWk7GoBZCxHugVtRlmYGZJyNSk7szFapZY5iMuJ3/LxHY8ZxWodFMsC3FqdMbeL1zDC8/ysF+j4kAz3Nx3QYtWyKDCeNxn1bHY7DXZeSPaK01Wd/YmG4RoxiPfbzTW6ggpGF7WAr8SUjUOY+6+4vYa59iz22hdIArNDYeER6hmmALHyEtCDVtGeCGBzjjXXqXH+XxRz5N/8YzODrkRNOiLQQtF4gmYNmEocJ2PYJQYdsOtmUzGA4ItcLxPDyvQX80mO0961oSFeh47u0k4NHLO3iey2gUL7Jk2QJfRbQ3NxhMfAYTn5HSnGx4DKMIIo3tetgK7GaLcRQSoHngJS/h3gceIFQB13augVA0PRffnyClYDwcogWMxpIg9Gk3mziWhQTchoc/8VEqQjgSS2jWOq2pwIji1ZhdFyEknudx48YOSin293pEIfSGo1g0o4hGQ3QwRgYBba+J1JKD3T6e49FoguNqNAFeo0Fz7QS+H6I0uCMfR8NYgE+I47g0rQbDIKAXQtBwGPs+lqPQQYhsT/vqbE/ZpMNFpCNEYg4ZrptiJtTENL+0fhbpZyJOI62yXKpWH88XVlb+dMX46fs4ft+lBHZaIOcXfZvOpxXJglBKz57beZJimPOsLiI+J85aTFezzrayBpACKWJXuk4aJn9ZJYv7lUepKNLvQl05AGAwGAyrozzJjT98jvFtLYJNx4QcGwzPUVb02KZcACmbIhYu84O1xF9iwNQQTtk61PcVz4xPrWdVrhJvy1bgzIdbrxr2V5Y2KXO26jDF7XSymSw+rlPXma/z0rluhxyVLL+/ibjNit/Es5xeHVvoePVhUGil+PVf/xhXHnuY8dOfQ3b3EAjazSYSgUUIUUTb83Bsi/FkiLA0nY02jWaDCxdvZ+xPEELw9FOX6O4f4EiLIByhlMQSgk7DxXdsrisNtoMOY6GnIlBC4Ng2MuxjBSEbtsVk9xL71x5jcPmzjK89wemOzckTgvFwAiqk3fBwLBgMBly9co2NjU06nbV4pV/XY2/vANuWnDh5EsuW9Hp9BJJ2p40KFM1mExUpxqMx/eGIQNtEk4AgjGg1PWzHwm00uHz9GqGwsNwGXhMc20ZHEcEkwHUboDVra2uM93e5cPsFXvWaV2M5Ftdu7OL7Pie3ThCGASoMUYBlyXhBLClxXYfJeIzjOJw8eTLeOzYMsSyJbdv4/pjr14esra3RaDRotVrcuHEDgFarRavVpt1u02q1aDQa9Id9pJRMxmP8fh/XspA2WFoQBSGD3gDdBFdENDo2bqNFEEUIaeE2HSajCa7j0thyGfT6XOvvAfHewZa0sBsNIqnQMn5mLCFAiqmHvawfZweI6pF7yaW/yU0zSJLnS04eKZH6P1OrsuyXOHTL6zOvy0xwCjETrhVnzd87oqIus3qm3iOpQtP1SgJGRPocnT2p7H2/9J1XVfsldTYYDIbG5wY4e0F1Aglhx2H3jacI1xyzKJTB8Dxg5Tm2c4ESf0g8ttVTqMpC0A5nzNwsyr3KN5+0QBbH4E5O5xfr+XixooTjvra8p3eVrZQQxQXExpMJ+3t7PPPUU3j9Plu2TdNrx97KXhdLW9hC03A9XNvGczy63V0sbRFqzeeuXOLkqVNsbG4SXbrMuYu3s9lZ58ozl+jvdpGWha0n2AQ4UmNpjUagogjHAh0FiGBIiyFesM+Vz3yaxz79O9jjPU63BZv0OeF0mAwGODKk1WmiI8VkNMZzXE6dOoXWMJn4jP0Jrteg0W5hSUGz2SSKAgLfx7Yc/MmEhtvk2rVruK7H1tYJ+sMRw/EIISWWBMtxcBsuewcHHHS7nL/tDhQW/mTCfreH02wy8gOCyYhGq83+oIvd8Hjxgw/S6rTp9rvs7+9x/vx5Tp04wXg4ZjQc0u12cZsNIhURhiGBLxFas7e3h+d5NJtNtre32dvbw7ZtgiAgDEPOnDmD4zj4vs9kMkFKOVs1WUo5+9nptOh0PGwU3eEIPxhhhRHatlFhRKfRxLGtuOzIwlIwCUJEBNKSSNvBlqDCkPUT20RNl53dfTqNBkEQMRmPkY6g0+6As8EBkkgT7yN4nF1cVIvbW82y6IrDrD68jHQI8+zZn/43m448Fbcy8R4naXIid3ZurfJTma9YZ4PB8MLF3ZlgDcLS78YXmvRfGoccK7c0pMZgMDwHqS1siwtAzaP+0t6456KxkZ+nVvcajnKtSVtl5rEdQXjmveRpnZyfO3eclN3zOvORdYmQbzabvPnLvozh9ccILg1wJl1UMMQfDIgmE4TWeK5Ly/OwsbCQNLwmjgXN9Q5IwdOXnuHS5Uv4gc9wMqbVbuO2Wrh+RL83IBoN6KgQKQRCaWytsQmxwiGOBjvs0n/yd7jy1CfZv/QYF1o2J0+7RIM9LOnT0jbtloPvK7r7O0Ra4jgeURDiNTw2Nrc46PbwWk2GozHttQ6OY9PrHiCBE5tbWFa8xdDe/h7NRpO1tXXCKCRUEUqAZQkmwYSd/X3anRZKKzrtDsHER0ibYDwBWzAOhlieC0Lg64jxaMSXPPQQ524/z2A45MmnnsJxXE6eOolnO9jSxnUchsMhnU4bISVqGroaTvypd9bH9/3pCszedM6tJgxDhsMhnuchpeTMmTNEUUQQBJw4cQIA35/mMZng2zAJfAa9Pi6CRqMFYZy+2XAROo5Y2N/vEu7uYbkejVYLy7bRSuE5DVy3waA/wG020bLL2A/pjcaMQp+G7XFjdx+cFtb6NPhe1xRoFSuLFw8Wpz0c936qx72YXXqQqeqZX2VBusx7MTkmBHL6vpqFIKfErSDenzpbSM6Lm+QlxczjXFZmcrKou5CXwWAwTFGeRbjhYB/MvbaqIRmfb3H1qy8QrTkLzjYYDM9FjrDdj0iN3CfhbNWCJvudKMzHPe4Vi1fhKJ6ORXlVeYLTi74U9oKtSJ+n6vu5YRvnlixgk6x6fFgOs3jWMhFQjDTXeJ7L2lqHq2FISwiaDY+J79NwHEQY4lgWg96Afcfm6aefZqPjcvLENn4Y0h3s0263GQ5HrK+tI4TkYHeP0XCEsCRrWxtE7gYjYeOHGscVSB3hRiPsaML1p55k+MzvY+18lnD/Kc41LNZsl0Y4/P+z959PsmTnmSf4O8pVqBRX1S0tgIIgJAE2u5vdMy1sbXdsxnZtVvxr82U/rtmO2dqs2do0p62nZ1pQgCCbBEEBErIEqq5KFcLD5VH7wSPz5s2beRWqWBDxwAqZEeF+/ISnn3PPe97neV5QluAt68Wcvu9p+54kyRmPx1RVPeh7BRwfH1OMJyxXK9brNQFYLDt82zLKBxfiw6NjmqYhyQp67zhezIfxoCTSQNXUGDVkoe8fHJJnGV3X431kNBozHhW0MVDVFVpLyqpCKsnbn/8c73zhc5jEcPTggLpac+P6Pnc+vsM4L0iNITEJMcbhp4Akz0iTlMXJCTFG+r7HOUff98Q4mFidvv/ee+8xGo3Y3d1Fa41Siul0ipSSuq7Z2dkhSQz1esWtGzcYZxnvB4+rahQC21nqqsJrTar1mW4/TTLQmlVZ0vUWoiA1KalJiHEwwpJS4308oyyXVcUk3UMXY6xSSKURyE3G8FEGwbPq4h99ls9Fac957pOkDJ+kFODidS7OCefnmcvmiPPyi6v6erFfIYazeV8ghtcX9LVDhjZu3M7PfUcezfpedTcvdzv+xXXRW2yxxW8W1l+a0bwxYvoXJ2fvdS8Xm1JD242yLbb4dcSzm0c9tvCKPCwPcd7t9vEF3vkF1hBoPVty8mHQ/ElNQFfT965y7TzF6WLrdLH3tOPP4/zi8qqsdoxxkwV59L1n/e6PL2ohxEev90lkli6jHT8WnD9DsHuZWlpKRQyDIy9AlmVo3+C9JViHZrhHvbUgBdPJDGLHweExRZGRREGsO0bKQNOjTULX92gEb7z5Jp0L/PBBgwOU1hjXkfRLVnd+yHt/9z3s4oDbuuXNvCF5aczdBw/wGKySeOtQUjEaTYiiBV2QJBm9c/TWcnxyQpIm9M5jfWBdVThnqasaYuDa3h4xeI4Oj5BCsr+/j/WRcr1GKU2aZiitcW3Jzs6M9XqNDZ7JbIeu6xjPZigh8M4ilaKqasqmYaQVMtFcv3GDr33zm3TWcnB8RFmWfPnLX6TvWgiR6AOrVUnwnq4b6tAKKelOjplMJoiNgZBSivF4vKldO6Wua7quI01T+r4/y9iebpScZm27rttovEekacqHH3zI3myGMTnZLGN5dADAzt4OwjmCtWgp0Ymhc5ZmXRGkQCuFNglaGaq6QQBBBaxzGJFx7do+I+N5cHQfKQXGGBrv8cETRXwGPepzjIELVOQXGT/PM0+8CC7Lvl4VZF889kXK5QiGuTv6jSnfxeD1ocD/TMN9Wfb4dI7ym/t7vtTYVf067f7zSh+22GKL31z4QjP/Zzc+625s8UlACPprKdlH9Wfdky1+ifHcVOTzeIxudsXxFwO0q9Yjj1Nan/W4Z9R2Dic/27FPOe55FqwXF5rna0I+YqYUHs+4/KI4XTC+6KL8FJcFr580LfP8dZSU9H1N11YgI1oK8ixHSoUPnqppuHdwiAgd41FC19YYIZFSorXC2UCMMNvbJcTIj3/0Y/LplMYm5EYQXM388GPu/Ox7zD/8K6RdcbPQ3NSeW4kjpCnryRhjDFoq5icLdJpR94G02EGFSNt2SK1wDFmr3BgSqVitSnrbM53t4F1AKUnbtCTJkOWUShFCwDnPYrGgGI2QWjOdTWicxdoOKSQ7+3tUVUvvA3pTpqdal6zXK+q6o+k7TJaS5Clf/MqXccFR1WuWizmj0Qh8wFmHkpIYAjdv3kBJxf0H96nqmvFsigyBxWKBCJE8z9FabwylErquw7mhFFGSJOR5jlKKo6Mj2rYlTVPixrRqZ2eHsixp2hYlAkmW0tmeLMvo1hWNdUhnyfIMYxRddMQQCM6hERit8AKs89i+IyhPDEPAqoxmNp0grKIJHiEC+3u7zO+viGqNzzuUjBuTuKdvOj3bMyp4lizhVUHWxQ2ly9gZz9qvF2FLnJ4nhHimAPZ5gsRTzewjWdoLr6MYst3+NKCVG90/nMkkLmOnXN2Xq7PgW2yxxRZb/PojKsHi2/vc2ga2WzwBL0xFPqX7nRoVXaQiX7a4/GXX335a2ZWLi9+raImXUQafJyv86DkP6YbPs8D9LHGatdZa40Og7y06erzzBCCLCXXf0TuL9YMedW9/jyIzjFLDJM9oqnqT+RZUTTsEmdGjsozFySE1Kc3Hf8e947/l/gcfMe7vsxfnZIUiUyl2vWLZ9jCeDQFoBBsiQWg6G5hMJtRNh0AOZYq0IilylJQEhk2LJBmMpGzb09oeGSLjUYGQYG0NkSFoDDCejHEhIrWiamoSpQa9bprgXCAIGE9nhOjogx9q9VaeLMtJRgVpnvGlr/0Wn/vc5+n6jo9+/iGT0YgvvvsueVFQtQ2HB4f01lFVFZPxhJ3ZDp21Z1mzJEnwvaWuB+fjGONZJtZ7j5SS5XJJjBFjDGmakiQJzg1taq2JMbJarYYMXbCkiWI8GnH91i2Wx8fMphN8W7E+PqCtGpJMIaxHIfBx2LgQQD4ZIaQaStBkQ/Df+hbXd+SqIHQt67YiH+doJbBdQ5GnzL1F6uIsFv1E5poLss7nmRuexZDudKx+mt4Ep+P+WQLrZ8ZmvpeP+D1H5PnmpcCzMbATIIUcdLZE4iPnXdL8pRtx5+th//L/W7LFFltsscUWW/zD4wWoyILze/MPgzUeeX3ZYu1h5uIX6vMnist0aZ8GLgapl1IEL1z6RRfSYkOhvEgP/7QMpJ4Fl9OvL7xmoKorNTjmxhiQRuOsIyIGszIBKjGsm5qqbbhmdkiKAmUklogpMhJjaNseI2GU58zXJT2g0oS86/jw77/Leq14VSdMdEmmOmKaEowkkTO0DNTBg5IUoxFN3SOk4Nr169iuZ5SliADlesWi73AiMi4KejtkIbMsw7YdeZoh/BAMEiPrcs1yVbKzv09iEqajMfcPHhAl1E0zOCd3FhkFznmabo1KUtZVRV6kNF1H3zesqwqTTZHKcOvWS7z99jss5ks62xJD4NreLidHh0it6UOgbVuyJGG9rnDW4dxgnuXPAlODFoLRaERZlrRti5SSLMvOzKO01hhjcM4RQqDrOtbrNVpr2rYdguPNsUpFEIooJShFOhpxbWcGXcNHtmHV1QgEMTqCcyAliZKgFZGI8xbn/FAfNQQSI/C9w3UNaaLZTSagYHTrOvOqwMkIG0Ow+AQq7pOexSue2k1d6Kefd9k8clHn+rTM65Oyv8+Ky7Kfn2RQ+zAzu/l+l3yO2FSdFYAaNtMe5r4f/Y6XbbU96ftelgnfYostttjiNwMhk8REIvqt78IWl+MFqMiRYTkyrGAuBrZX6kfPmRg9aiHCudcvjkeobTwWI37ieFQr+hCP5xl4LIK7auF2vobuI6YvFzcIzrV99fXEY/c9hICQV9u2PPyriId8w08V4iyLAyCERCCJUQwZ0N4ThSfLErTUQ+kZb4lETGJ4+dVXKEYp9+7fY2dacG13hyRJaNuWgCCbjKlshzOSt999l4PjI37+F98l6yKpGrOXePYy8CHSG0EZAxZNJxN87FgtlxAHRkKe5XjbQ/D0bTf0z/W0fUMTHIkxKAaX67ZtmI2nOGuxXU+WJPTeUYzG9C4Q4lAS6HBxd6i7qxQ+BE7mc3YnO4yKMYt1jUk0h/M5WZ5j0hxrW5quQ2gNYgi6vvTlL5MmKUfHR7RtzTe++ltc29tDxEDTtpRth1aS5cmCpq6QUiCFZFWuMEmCtRatDGzufQiRNM1wzkKMQ73cTRa6yHPCRoc7mQz1/uqmJsZIkecIoO1aklQxnY1x1nHn7l2Csxw9uE89P8aul4i+wQmYJikID0oRgM45vBAopdEbdkGSaKzv8cGRZglKSrzymDwhVWO8yvjJwUdM3rnByncEoYjIc89yGMaDgIAgIlHPODmcGiSdx/PSgmOMZ+P/srF6tl14/vyL17hsw+2Sflw2F4UY8c6dtSEGas1j7V+JR9Kkj7cvhEBs9LTi3DGnga0UpzWq49nnj8+d4qzScORhdvfs000wLTddFaebXGwoz1tsscUWW/xGoH57QvNaQfHT9WfdlS1+SfEcGdvzr4ZljNiYtcQozkxDhLia7nqeYjaUbzif5YBHVVpsnDOfMdsgznXydKF1+l7kSsHu+SzJ82pRH/0GA8IpL/vCcY9lNs5razfX9fF86Z+N5lY8fm7gdGF4bkEpH182D99/04YAJR6vHftIL+NpqwwOs4/0Fy7mV66im1+8p6e/X+gdIIgi8tBxRuGcwluBtx6No1CKRKd0XUfwPYlUOCEYpSmx71GpItYNItU0ywUtEq0ThFKETlBMJrzzla/hEsNHP/wRnU+YGIWMgXwsqDuBjwmJNOi2JXhJ6SVVXdP0ljyPtG3D7t4+Vd9h+0En6gFCyl6W4kOgrVvS0ZjDk0P29vaJUhBCROeGum9JJgWt87RIhExZlEs6G7FRIsJwD3Zu3qBcOw7nJVobfO/wCDofWZQ162qNtYGIJh3nfPOb32C2N2NVzgm+5ZXbN1gsjrh79wPeeuN1kjRld2eEsy1tVxNlYN2sEQjSbCink5iAUGYItm1Eq5Q8T/HOcvPGNZQU3L9/DxUdWkRa61jMFyCHv931G9cZFQV5lqIC5EYjlGc2KViVKwQdIjqu7+2ycD1l29GsO5xS3CvXmEST5QqtDVFpnO2H4F0IkiRBolEIUmMo6xa0xivBZDrFCYMsBO7wfZI7jv1b32ItDQ0KLxOIlgSPxhKAXqX0IoVgUVxe2/BRPJ79vWx+GP5+4qHT7+a4GB6OTykGB+GzcSAejjCxOeeyTTAAES83xbp4pNy060MYylltrhHOnX++j8PhDwPdx64cH+arh6lUImQc6MWb2e+hblYQxGa8R4hIRAQZPRKPIhLDkNE/3WAYNiEgCAFCDs8UEnc6s4nNdxeQBokOcQiBxWA5JZQE/QsY+2+xxRZbbPErh6N/dYvXfvbTTz/3ssWvJH7BwHajEePR5+tpi8GHQezZOw+bPfc6PutTe0Us+sjZQlx94MXmnjW4vYSKd/HzoSPPRwF+jDJ8VaonPk5jvNAQp3dBbILaq3rwUCd97iKXLeJ58t/27FqPaX4f/wpx8z+50d3FEDb0U1BSUSQZ0nWoAJlJAJAx4OOw4I0u0FRrjJKkUoEN2ODoO4fJC6QyFFnBbHePf/8Hf8Dx4QlFPiEN0DcldVcTrcNITddajJB4GfHBoU3C3njCaDTCez+UwfEeHwOdtTRdixISFSRKKLJkoO1KpZnOZtjeIgHnPVmWEYgcHB7QdB4XFUEoOtcxmk4IOJSRCG1YtzV13eF8yXQ2I8sKWtvTLFeDfjfNSfOU3/rqV/jyV36L5XLB/OSY6WTE1776VU6OD7l7t+P45GiTuFcobUgSQ98/HLdaabIsQwpJRGJ9pGtbTJKSZTkxGIzRdG1DjIPOtm0bQlRMJmOc97jo6foOYzSjPKNpKkQIFOOMk+MTbty4zmq5REmJkGCMJi9ydIzkJsEWGUIJlFIkSYIQgqZpaLt2oExbi1EaKRRISZaBMAaVZbz80ss0UeBOlrz12k1+9MEHXNt7hyzfofMSIQ3WR5JNelYgEPF0M+7F/jW8eozxeOB47vVlY+Oy98825C659vNQqsWFY5RSj1GSLx23D086f+ELv8fLE7znvngUp9nuIRcrYiRGz2kUPOzbDY14GQgynirWh59hyALLTaZWxEiQhl4KBIFBvbvxDohbOtoWW2yxxW8S7F5C+ZUdJn+9+Ky7ssUvIV5wu/uCzukxwt7Tz3+cjvzpUcqepMW6TAf8zO3yyW4YPeu1z5vOPM95z9Pmp4rTjHSMiE2WZxPaDsZPIWC0ZjKeoLohexxixDnHJhcEMTIqcoz0WJMMi+EgEHLIxbngybTildffYHE8pzw8QbcOYsTHgHeWngDekuYZwTrSLGVdN0RgNJkAgrquUUohhDgrd9O0LUqroa3gsb1DGY3Sht29/aHGrTYQwiY7BSfHRxRZivctiIAQMB5NODw6JhtlFGrE4fECpQxJCoaECOSjAtkpDtZr9vb3EUKwt7/LW2+9idsYPJXrii9/6QscHR3TNjVCaLwPhACrsmQ8maC1xjmPcw5jEiaTKUpprB10rolO0EUGMRK8YzoZMZ/PKcsV41FBXa0xicCYBGU0Umui7ajraghYvEeFYeOh7zRoyXvv/RzvLXli6OuaxcEROnhG2uB8T5ppgndoDdH3CCkZFykiOpxkcHaOQBQsliXW9iRKcnz4gMb26MmM8c4+xWTG4aJkffhzZq/foI6BKBKcEjipN5nDiGZ4tj6rTd6rxu3TNLaf1LXP/35R+3tlkPyCOlbFhiYcOR3ZQAQpCUiCkBvasUfiEFEgI5v/BDKIs8A2IqmUwkqFxA+UZALgEcG/wN3YYostttjiVxVRS1Zf3WH04xLZbv8N2OJRvGAd22Ev/uy9eHWA9/QSFufSj5cEt79IoPW4kdXjWdtfxIDk01ggP6nu5MX3n+ao+jzliE7b+rQX1efePMvLi81rKSShdxADRklkdJusoqJtW1By8KLxiuA9zltC3w8ZJL+pq6okVg2la954+x18jPzBf/wD6pMl2vvhfOlJjWE6LojWEqzF9o48l6RZhlIaHyNt1xHCkBFquw6phjI41lmEUrRNi+s8WipMmmGyhNj19NYipaKpanxvMcbw8q2XOJqfkO3vsapauq4DZRBSkeZj2t7TW7B9Q1GMmc6mrMoVUinmm5JASZIwGo/42je+gZSScrXi6OiQt996i67rKcsSYqCuG65fu06SJnS9I/gNZTQOdFLvA6vVit3dHbQWzE8WGJNuatdOaHpLCJZRkZOm17C2Iy9GaG2wLuC6Dqn12XaWDwFjDAaJJCKloreeIp8wGuUcHdyjWiwxWoL16FSD97RtjZEQZcA7f/aspEaTJQltM2hosmyEFJHedrS2IysK0iyh6Rp03+Fl4J03XuOHHy5oT95nNH2VGFOCHuOjwguJCB4ZIwkBLyL+M9BmPmncXmQ5fFK4yhzvSSZ/V50fY2SQvz65f6cSkoeMEUEUg9b/YVA7zMVJCKgQzskghoxwFGAlECVBCrwc6PoiegQWHXu08ERvX+i+bLHFFlts8auL5s0xB//NS9z6/378WXdli18yPHdg+3BB9MiHF5SxT8fDBdPDoFY89tnji7xnCbyu0n5e1b+rFphPRbycLP2ii9TzWZTzWZUnHf+suKjnveraV7b5JB7zFde62P7Fpk5/nppVKTH8LIocOxohXIcIARcDIQz1YEUcuMpJYphNpzSrE6RSaKkQSLowlMV57dZL7Fzb5z//pz9geXLCxOQIHAiH9R0xBGQEHwWJSSGAMSnSRJarJSbNyfOcvu9Zr9eEGDEioSzLIagsS4iQJhlFMcIGT9fbM6pyVdeMiwKJQBtDuV4TvCdGi9aKoshoOr/JSkq01gjpMYliMp1g0oRQwvHxMWJTV7a3lm+8+y6vv/E6zvf81V99j729PW7fvo2zPUpJ8jTDWYeUenCG1glKDxlcKeVZLdqu61guFyRJQpoZlJB4B872VNWaJNlFSIkPjtFoNDgpS43uPS5GXPCEGNjZ2UFJyXQ6ZW86oy5LHhwccXgy5403X2exWJEkKXhHYRTNcslqXZIpxd50jO9avHcoNQTcMQSk1ANdWg8E1bZrWa1XOO+RRhOJ2K5FmIxEK8Z7+xyerHh5v+Bv3/sBt788o3Mapw1BFAQ0AYHBIqMjPCWYuzhezj+/lz7bzzYsLh0L518/aYPqRdydL8sEX8zQPi2ofWwOumIeeExDH/yZ/IHToDY+1Naf/ieDQQdFjIGAB7HZeFASLwReSIIQJKFH+0EvbWKHjh0qdPTN1kBkiy222OI3Ec3rI9pXCrKPt3Vtf90Rn9X1k+cMbM9nWUMIj2Rsn7a8u7hAfDzQ3Cx24pMJvlcGZU/s7z8czuvZTvtxqRPpFbiMnnjxe0gpCSE8+jd4QlvPex8uUhVhs559juD22S40kNiFjIO6LnqkFHhr6dsWH3qcsAQh8K4HpRAxkqYJWgkW8xOk78m0QmmFsxFtDLev3+SlWzf5/vf+goO7dxinCco6+qZG6kCaSVznWc4XKKEYFyOKYqAen8yHQFJugsmu6wZnacB5N+hB04QsDnV2lTZokwz61DShWa9RJtm8nyE1HJ/MEQq0UnS9ReqEEANSCoIL9HWDTnNSk9P7njv37jKeTDaaXcWsKEAIvvr1r/HO5z+PkJKPP/qInd0d3nrrrYFO7ANCKObzJTGC7YdySWma47xjf38f5xxN09B1HdZaIGJtTwxA6IaNAwLjcUGMgXVVMpTvmeB8wLU1wTNks/sO6y1pmhBC4ODggLasmI3H5HnO9X1FnuWU5Yo80yilafuOIGA6nYDz1G2P6/ohK68UaW5o2pYoDXXT0LX9oL1VimyUM55OWVdrdJqj8owuKrz3NHWD0ZrdUcJuGvjgb77L69/4F0BDFOmZppnoHvFLfu7H9UKAOOhIr56vrpqrXgSXZVuvalsp9ch7593RT+eM05rWT9s4Oz33DOcNsC7g/Jw3mK8PRlHAENRusrIDjXiY71up6bXB9y1GKLQQECypEni/0eviGbk1WWhR0aJ8g6+XrBcPaJZz4P/+1Pu3xRZbbLHFrxf82FD+1ozsbn2+ptwWvwZwM0Pz+ujsdfmV2TOf+8yB7Skl82HANSidhhfyMeOn87hs5/9xavPpsU8PSh/L4nIhg3zums+KF1pwisdJeRdNk06NYi7LPD+NanzV66dRkK867ypcbO8ykxkh4KzGxrn2XySjLM7+7+FrweC2qoQg0RolBEYpRqmi6Xuq3pKMFBJB27T4VJGlBhUErq0pXcVsZ5/UaL70pS9yslpwfPcuOni0lOSpZqxGlM0C13v2d3eJDrq6wyhDYhK8iIyKMZ6h9ut6XQ3U2DQlAtY7jDF4H1gsFhiToGUgIJFKI3XCaDyltz2276nqGnyk6SxpnrKuGhCC0HtMmoKAtne4ziPRRCk3+l1N1/d47/Hek48K9q9d4+133sF5x933Pma+mvPb3/wmWZrStR1SKOqmRUqNUglCKBCD4RNCsFis2NvbxTnHfD6nbRvyvCBER5akFGkOUgy1a0OgbhpSkw3lYkIgzTKIHVHAznRM7xxt1yCkoFqvUcC8ndM3zWBwlaY0dUPfdyRmoHgnMqPXBiMVQnmE9/je0QVB2baEUGO0xkSJixKZ5ngp0VqhkozeeVAGL8A7T1TDdyxGY5T1EAJvvXKDe3/5Y/ziDuk0wYmMwHDcQyu1p+Oy8XAxyHu4AXT5JtSjz/+L7wpdxgB5EvPiPM7Pvc8yZzy9vec5eWBjnGZppQSCh+gHyrpWLGXEKomWHhMtibco11H0AuVBIiE4bHkHFda4pqIqT6CvmT+4g+23O/VbbLHFFr+pWH5rD11adv/46LPuyhYviGgEbmwAOPnnN3Azgy8U/fXshdp7rjq257OsDzWr8OiC7Wo63dX0t9PFmnhkEXb5sZ8+nvWaTzrqkwo6n4TzdW8/aVxcOD/69+bC+8/ZNptAWTBQi4cLQhjKiEgi0Xl8tDTeYolkWcJpLd48TZhMxsQQWK2WpFrgEaxtw1uvvQ0x8F/++Dtkec4sTQjWIQIoo9hJJwQ8fduCFzjr6EQPCDpvBxMoNTyLIQzBTN/3aGNQSmGtZTQesbu7S54XVJXFOse6qQlNjRCCdVURvCdNEqajMSFGyrplPJ1RNxWrckXmLAhF9IFEKRIl6Z1HKUGaZ9RNQ4yR8WTMzZs3+af/7PeY7ezw/gcfcHh0xLtffJuubWnqmsQYbNeTJOmZntaYDCkFeT6iXJfEGPAbsymt1RnV17aeEDzjcUGaZaxWK9quwznL0dF6yBzHQN02uM5RpAXr9RqpFFJKlFakaYoChAsopQjR43uLEIbZbMpkVOBsR7MuiR48sFyUpMbgUKTSkExGrFZLjhclwQfyImcymSCFpG6bIXMr5fC67/B9ZLo3JSJZlWvKuqWra7x1fPHN23z4wd/z6tdv42KNJcGLBC8HgzGeMcC7TId60V2Yzah4+nx1boPoQvuPHHXJ+Vdpcl8kI3wxMH5eVsez3DdxbsNvw8kYfosBhR8Mo4ID68kThQmBNLYUtmZkG0bBklqLXdd0TUtVrui6Jd7X2KZiefyAplziu4auaZ6p31tsscUWW/waQgjWX5ox+dslern1XPiVwGaBsPrGLm5q6HcT1r81e/TDXwAvaB51SsV7+PpJnXl8MXV+5/98sPxQbfsP5tD7C+BJpOnTvocQiJdkdn/ha5+7Nxez6Z90+7DJpD/DccOxT14knwYCUoAQceApMtT6lEKgtSbPM0YxJ1WG2vY0TYMxKQBd20CMFEUBtkUGS5CQzEa89NrL/OkffwcZPLLrMCGgjMJ5z7JcEegxSuH7yPX9W/TaYXuPcwHnLD44gow4d6rrVWRZxrqqWNcVMUZ29/bIY8R7D0R67+itxYeA0AqhJFmSYLQGKajbFpShbHqapkcng7NyluVkqcGojBgl5bIkZorlanWWKU7SlG99+9vceukllssl77//PrdeusHObAabMVKuVoOBlTG46PFC4X3AWo9JDHle4HxPVVXs7u4wm01ZrpZkWUrbNigh2N/fQ2vFdDbl5z//Oc459q9dw1pLe0pd9hHXO7IiZ//6dbRRdH1HtV4jpcRai20b0jRFZ8ngfJzkdH1HDJ6T4zl3P/qYUZKAj2R5Tlrk7GRjVmUNwrB742VijKyrNcvGMhoVZJMZiZas12uEVOzsXSdITesjCjFoeBuLNhnTQjMdB07m73PnR99n8s7vovUIj8GLgWL+GL3jOcbDI/T8+ND47PSYJ5mwXbzss8olnnWT70qZxhOow0+SPDwrLsson07mpxlbSURJEM4jfYuOlkRGpnVDaJaIboloFhhXEnxFF3rqtma+WPDx3Xus1z19ZzFSoISnSFOEjrjYv1Cft9hiiy22+PVAdyvn3v/jNV76//wcvdgGt7+MiFrQvloQgdXXdmhfG+HHmqjkU899XjxzYHs+OxgjG1reZmH0jOuhRzO+j3xy1q4Q8Vz5oHgJx5izY8+d+pnoaS/DVQH5YxrgJ7Vx4fOrzr10QXmuH4+cc/5+iUGTHDcXkjwauEqGrFbccDfDphen2u2zK11GxX6kL1csqM+6ISButH6cPktDuRmIeAJVXROlIM8zvA8470EO9OT5qkR6j5ECnSV84ctf4GRxwvLkCN+2yEzQVNXwBZUCJchNju1atNJorWiqjrbtEEogtMT7Icg1JmF3d5+T+YLlqiJJM7JcDfdFpXSuZTKZ4aWls54gNVIJpNF0rmJnMhmMr5xDG0NWTOmswySGqlqBUDRtT54qitwgMWRpTRkcekNFzpOE3/727/DSKy8zX5zw3ns/4fr1Ga+8coO+r2jbDtcHbG8ZFSPW65osTQnBU9fdplJOpOs6fHDE6KmqGucdIQSyLGd/f5/oHH3f8977d9DGsFqtMGlGU9eMJxMKM+bw8JDeWaKAUDeEgwOEkkAg+sBoMqHygc72FEaj1ZBpVYlBK0me5YynM/L8mLosWS+W9M7jicxmM7qupygK8rxgNBrR9/3mOZJ4p+i1QChNmuVYH1BaY7uebr2m7Dyd9YzyESZPmSjNV77wOf7dd/6G/MYbmJ0cpySBBCc0QoRzWtvHn83TT85ox6fB7GZsn86Fpxpb8UiAeH7T7sXox+eD5eHyjxvhPevG3ynTIpyyIS5oa0/ZEzGGC3XDxWbOEOffQUSJwBNPJxSxMYQSQzmfs/bEcCdFtGgiOjpE35IKR4rDNSua5TFqeYRYHRJchXclQXes/ZpVNedwdURjO9ZNh7BjEpUzGRWIGJiOR9Rtiza7z3Vvt9hiiy22+PVDdytn9bVd9v7g4Nk1R1t8qgipJBrJ8b+4iS8U1ecHL5tPGy9Ux3bIuj4pyn7UUfT0nLNPr9SHxbPg9ixgJZ7TdgqQQyAdY9zUQdzUR3ymwPbZbuhVTqiXaXufdP7ZOZd8V3/hHjwWmJ9e+wntX0WVPN9DwRDUSoC4sW3Z1Hq1eCKgEQyewpvakXG4bhCSKBRCCiAQQ39u0X15vlrAucXzQ8OYi8fEONBCA5ogBZIAsUWIgJKBqmvQwjExhmBbqtYR2AQ3xYTpzZcpdq/RVQvquuSLn/8cQim+/1ffH8jMYTBQUkJTtw3FNCPVBkVgZ29GVTUsVytcCEx2xpg0Y93UlOWaYjRiPBnTdD19UMhsBycTbPSUTU111CB0Sll5nDc0PXTOkGYpIgROVi371zL6tqJal0PgZgdX57brQGrSIiEGqNqWdrmkaTukkCRGM57tUvWWt959l9fe+Rytt/z0gx/RNif83u9+k7JcYLICbz06NWilAUlVNVTrNQHLeDLoXE9O5tQbumZRFPRlhXNDCaKT+ZKmtYyLgr6zTHf3aduGJCsQG4Oy8XiCEIImHyGKCX3nyLIhC1ukGX3XEgUkOkFOJtjeYr2jXXegFCEKkrxgZ2eGtx3Jm6+REsD2xAhV02KShMOjI8qyIriGZtXhQ6CqKg7uDtlj63qu37hJPh7jUYxnu9x6+VWWVc1sklG3CzphGeUTGhvY2d/h7Vd2ef8nf8ztLzvE6HXW8ia92sH4mgS7CVjDELBqRUTg4zAHhRgxUp5NGecp84/o6M8M3B6OyYfP/MNg9+os7tPnJHlVJvapZ25Mm5Dn+rgJOCUMoWzY9Ndv/mOYCaIEFDIAUSAYaODDOHVEMTAbBBIXBUKmhBgJwiGkBywy9CShZRwa8m6BrpfIekm7mOOXS5Lg6PoVi+URh/MTTlZLkjQBAnlu6OqADIIdNYIgiK4lNZLd3RlpqugWJeP8xTQ4W2yxxRZb/Hph/k+uMfveCap0n3VXfqNRvz3G7iYsfvcabqKJ+pPPyj4JzxXYXqWNffSYx2PMUxff0zakfFyveVkZoXhaIFc8eq0IQ7D1lJXd5YvGZ98teFFq70NTmXj+zUcPeoZA/HmMbs7//ghNfEMHPP0phRiqRW6uLzcldMTp5sDpwlwKpIgEEYmbRbE4d61nvTVi87d77F7GyJBDimyUd0ipB9qiUggBfd/j9FDjUklFZz1JYti9fhOVZDgh6UPkxu2X2dvd4+/+9gfUZYUJcSizow1aGxyR3jnqrsUIiM6TJBkigBeBxjt62xOERudjuihYzJdgNMlshy99+euMJjv0IVL3Fhsc0gzBgk4nWBtQMtI3FQTHBz/7Efc++pDruxMW5ZzFesViWVEUk6F+LQKhoO+HskBJliONYTwaYfse6yzT6YR33nkbrSWr1ZL5/Ih//O2vsbc7I08FMi1Ik4512SFFStP0TMYTQnQ0bUnTDAFs73qklGdli7TWaK3JshytNX1vaWRHYjQIQZYXdL09c4NeLBZIKWmagWKcJIYsS5jOxggiRgnKsmS9LplMhrq13juyPCdKhXMe5z1lVWFtR5al2HIJtidNEvamwz3Zm0147ZWXaZuOKARSa/ymNrGQcPfuXcqqpixLFmXNvou89tbbXB+NmM9X1NWayreE6EmiJjcpb75+mzvHf8Xi/gdc/8IrtK7DBYcUcjP8hvqq5+2+xYY8K8+eeXH+Qd48uqfZ2kcZCufnsIsbf8/DKHkWyv9lueAnlSJ6dF4Vm71CcZpjRQSJjGZ4ZzM9RyJeeSLhbDNTxgwRRyB6EBZiQIWIjG5TVMlCaJHekkaHXx9THn7Eujog6dfEpmR+eJ+6XNNUFU29IM0UVe+QShIECBRapcz2cnKtEM5RVQ1JmkIcSkIRI9evXxt+32KLLbbY4jceUUtOfu861//tvc+6K79xsLsJIZUc/6tbtLdzQqaeftKnhBfU2MK5JdO5/x4ee5kB1KP1WV+800Nz8myx9ovqcZ9G473quKdd8bPVCA9/k4fJVXG2Go4bB2IpBeos2zuU8QgxIERECgjyYZA+rIOHxfrTNH+XZbgfM9shoghEJI6B7iyiQEWBdZ7EaFIvaJqGPM0QSmLQuBB5cHhE19WMRyk398e88c7b3Lt3n+P7D9BCspwfM80KYgj4GAhEsqIgGeU0qxVN25JkBb33eCnpXcD7HqRBJBkuRGol6YWgWq4wR4fcTguSLEdkOYZIkiYICUKPMUJy6/oet29eA9dy+D8eEO9/zKqtUXmG6y3FaMxkPKFcr0HAzf2XKMs1i9VqQ6dWWOeQWqGM5lu/821msxkff/wRH9/5gJvXr7G3u0fbtgz03MBoNKJtHEoNQaBzAaMNo9E+dTvoXsfTXYKPrNdrmk3mNoRwZorVNA3Be8QoZyjtM0xGVVXRdR1N07Czs0NRFFhrWa2OMYni2vVdnHVoLfBhKKNTVStCdEynU6RULNcVQkmKvBgC/94iuo5gLamUeO/wIaC0QjlJ33XEGOg6i1Sa2e4uSZJgjGZvd491XbNuWsq6YbKzT13XoBRSCfZ2d1h1a6pyQTreZTLKSbOcL33+c/yn7/09k9vvkuY5Uo2xLuLFkI0dYtrTMHHYEDolx185ss49/48brA04ZS2c3uvz7102Ji5r/3lx1XkiPiyvE880sA/ZFFGAFBF1mpQmbDa0IGzmC2QkShBeIn2KkgIjIypYVPTo6JGhx4iWGCq6kwWrB/dZzx9AM8fVJ/TrY7p6RVkukUoRg2d/NiZRAh/WlE2DVpK9vV3efv01hO3BW04ePKAsS/bSlLwoEAKWqzV1UzMq8he6V1tsscVniGGX/LPuxRa/hqjemTC9NSe9337WXfn1h4CQSOa/d53VV3fwG2fjzxovREV+LJg9NQq5JEA8fe+8Lu2TwKNZkstpsb9o2081a7nkqped+1npfx/LGolI2PwNlBSbOHeTFR+UtQgpQZxSEgOIIQAFOeSvnvHePAkRkITBVkZ4QG/0oGKTUVTE4NAyIo2i6z1oiUkzvHOsqwrwJHnG17/5TZbzA97/2c+QLiJjZGcyJVGaru0wiUEEhQ/DYj0fFYgQ8EAfAl4oRFYQhcLHIXPslGDeNRzXFWmS8/PFmoPmfSIC5z0+BPquG+i6MqHrekLfsDPOka7BN0P918OjE6LrsW2HEpqT4zlSK3Z3d+n7fmM45UGA956qrrh1+xbf/t3f5eXXX2W5Ljk+PiTPEl59+WXmJyfgO7LUELVDiJ66rlEqUORjpFRAQGnBcrVAacVokuGd59q1a2esiSQZHKarqiJNU6aTCTE46rrGOUeaprz11lsYY6jrmhgjzg2ljnb3dqibirv37pBozWQyRohBu6u1guCxtmU0npGkCc45ynVJqhVaa4T3iDSlW5cYpZBKD7NIjCTGYEYJPkRCANv3hODpO0HTtjRdx2g6w6QZ0iTYjVY4IinGI4pZRl3V5IkmzwZK6439KddmBT/5m//CF769R+w00UxxUZ6mVhm2dYaxMOhl45UzymWbdhc37i6tY31FW582TouyxY13QTwr0xY3gf3A1hDSg+xPeRmA2mhqNYIEgkBEhfACFTtM7DG+QYcW4z2ia2mXR7TtMX19wuH7H/Dg/Q/omxX7s5ydScpIOZq+wrsGrXOmezN28hQdPLs7U05WJUfzE2LfMj+8T+hb9qczpIDZbMru3h5aKQ6Pj/Au0Hb2bLNtiy22+NVB+dUduptbGcEWnzzcTsL9/9trvPY//ATht2LbTwPRCOq3xvT7KYt/fA1fKJ6HDftp4wUD2wGnNNMzx5DHPr8sUxvPBaPPchE4Xz/19NxHdWuPOpFe7fD5CQfVl7T4JAfS523/eZxKL9PYirPc6EMzlxAjSgiGECgiN0GElBK5CW4RmoEoHIZszzmjmPPXuvj7Vd/zssW9jAERPSIGBB6JIFWRO++9z4fv/wQdHN7bIRiKEh/B9pbeO7q+I0kkr772KpHID3/494yyjLpu8c6TajMEcRJcDDjv6CrLZDalyFLqsuRkucQrQ+McJBIvE9oQKJsOJxQhz5hee4XVquTr/+ifMhnP6NpuU04n0FQ1WVEgdYrtOu7+/Gf85G//ClcvEX1NpgUmKtrOkyhDkub0/Yo0TWm7jrpeDjrOJCFNU6zzGJPw9hc+z0uv3Ka3HScnR/Rdw+uvvUxwlqrvsV01ZNuTFCE0As1yeUyp1yRJhkkUSgmapmZ3bx/vHHXdDA7SQNu21HXNeDzeZEMHbTBBI8RAK3bO4ZwjxkiWZQghqKpqUxZoxGIxZ7VakmcpSkFvO5Q6DQ+HIFgrzXg8pm4ajDakWYL0dhgzMeB0TV3VJEnCdDobspkx4qzFBY9ShiJNOTo+Zr0uKcYjnA+sVyuETsiznNxkSGOIUoEU+GAZ5SkywuHBkOXrQuD12/vc+ev3WN39KfuvfJlFGOrbCqEYtliAzQaPEBEZBzqyf8pYexIultO5OJav0u2fXeNCW8+KR9uLsGFgnG5McWb0BDJGYKD1Ij1O+WHOCBIZBTJo8AIZFBKFRGKoMaxQvgFXIvoG1zSsDo948NH7LI4/pl4f0i9OmKaGa7s5ioZuOaep1gTveOv2SxTjyfBs2R7XNSitePWlmyg8Xd+wOunItGYNzCYTiqlmsV4jgOVqycnJgtl0ymQyfeZ7s8UWW3z2iIlk8e39wS9liy0+BbipYfntfXb+7Pis6sYWL46YyMEISgmO/tUtfKFo3hh/1t26Es8V2D5qivR4WPc0at2TFmiXBXHnXZTP/wwhEML5oPnqa15491IKdLhEp/VUl+GnfKfLFrHPghfNiD7mlLrJwg6/bv63Sc5qKQjOYbQCHzAxojclYoTQINVgoiNOg9u4Weg//Xuc/zs+UhblEo3g4DTrMGpwlq1PHvDH/+F/oT2+z47vCDEQhQataJuO2va44HGu4/VXb/H2m2/ws7//PsF2dM7T1vUQlPhAmqYIIfEhoJVCCYFtO2pr6bohM9VZT9Q5XZAcLdfEZARmTDHbYd1b6iZSlj3GFLz+2lsE50lMghASEUFpg5IKiec/nhzxk7bFOE+uDL5tkESuT/fpbc/JaonWGu/9UBPWR6TSZHmOkBLve975/Od4+dVXiALmixOOjg747W98lSJPIFiW8yOc8yityNKcuumIoafvO5xzQ3azF+zt7zKd7uCsw7oKay1932OtxXtPnuc455BSkiQJRMiy7KxkjzHDxoAQgqIoiDFSliVJkpDnOcZojDFopejahjzPqKsK7y1ZmlKVDQ8e3CdKPdBZg0MQyJOEploTvRso0/t7eO/p+xalDNZ1Z1nxrl8BEucHXfVyMcf6QJIXSJOST6ZoJdHGYP3g8LyqW+7evYdtHEUyYnd3B6MFyVjxlXde5b2ffp/9nT2ScUIXI0rlw3M+cO43mePh/8SGgfIsI/fqeevxY87PGyEEpJSPHH+xhNDpORczw/HcZ6dtXcqIiZvgdnMdCfg4rCkVESkG5oQVBifSoQSX9yjnkbYhE4Ikgo6ggseuPqIvPyDEmq5Z0qxLTh6cUC5KysUJeSp4ZT+H8S62XuHtnPF4xHhnir6xN9DXlaKrG5Ync9I0YTIdI5SkLlf4vmV3PEIriVGaPE0hRsrVnKZt2dvd49133mY0GmGd22pst9jiVwzVO+NttnaLTxVRCY7+9U2ihN3vHH3W3fmVhd1NWH9xSvtqQfXOZHjzV2BD6hfK2P6ieJpT8rCAO7PW3bx3utCDhwHvs7mNnp77tGOfJRA9v7h8Gi5q6y67xi9KS7xYX3OgFotNDm2g+SJAIQfTH6OJziKCJw090rcoEnqnCVIjVLJxRn2YiRPi6RsAz/pdQhQIqfBdy8gIlof3+E//5n/izo++x8sTCWFwQXYx0tiWVbPG+cBkOmUy3uHrX/0yH73/U8rjI65PJ3z83vtDMBuHAKX3DmU04zynXK2wblhQR+uwXUeaFnQ9rNoOnyQkk12symi8pGsDAoMUAqMLJAlJkiMSIArSJB2SXBEyLfn7v/lLvv9nf0KoKwoZmOQp3aaETrWqB/q3VOzs7XB4eIhJEsbTEW3XE2OkaVv2b1znS7/1JdI8Y7VecTI/4ubNa+SZoanWEBzeOsbFhCBguVwxnkypqoa2bTBm0KJKYWjbbmOcpek3mde2bc/Mo9I0pW1bQhg2AGKWkRhFXdd0XUee5zRNg1IK7z2j0YjRaMR6XTI/WQxBrU7wPpCmg1mUEApjFJPxdHAmbi1t79BGI5SgrirS8aDTFd5jtKZtKqyzJCbdbEQk9M7Sdx1FnqOTlLJcIwTo2RSpDEIbXAQlBEWeYQM4a6nrCmc90+mUpS0xWUZnLSJEHPDaS7sc3D/kzo//kptfv0YmJSFAwGBMgfOnlPxTKm68MMdc/nw/iVXxtHFwfl4425h6xvFziqdlfgdsxu/mlSIgwyAxMNEigkP5AutGCCwpFhMtqe4R7Zy+PMT2a46O7lM++JA8tkhpuXf353Rdx854n+tphvUVvmxpRcJsmjDbzelbCcHStYFl1ZAnGeloysgYcA6pNR/fvYf3liTR7Mym2K4jREk+Gly2y1VJWa/JipydaYFUkpOjg0EC4LeB7RZb/Kqg/MoOh/+nl34lFsdb/IpDCFZf32X61wvUeuuS/Cywewm+0Jz83nXcbkJIJG76y6GbfR58ooHtJ64ZEw/ptGdvcF5X+/C65y/9IgvDp+F8ZuVsMXlFcPui9+FFy4FcPHb4KTcFaAVn5jinydwYCN6DD4wSmMqWGCIimVK2DkuKH7xhH/ZNPLs++rKNgsey4lJibU+RJvTlMf/lP/0+H//dnzIKJdoqpPBYH1lVJS4GRtMRr73+OrdvvcRslDPNDB/97CckoWO97onOIZIc2w9Zw7ZpSRIDMZLqBNf2SLnJQqY5bRQYpblx/QaM9zhqAj8/WtELhZSK/Z1dXNsSKRFKoxKDs3bQw0qBd5HgPB998GP+9//tf6Ep51TlCSYzzNsSJSQxCmwYnpFiNKIsS3prSbKMyXRCe3iM8558VPCtb32LV159lVVXcff+XSBy7doegsh0MiZ4i+1aYhxowZ11FEUkhkCSGJRS9H2HtYMWdrlYIqSiGBe0bUuMceNqnJxlbgdX5J7d3R2yLGOxWJAkCXVdM5lMsNayXq+BwUxqsViSJAmj0RiioG07JpMR49EEEQVN2wAKYxL63qO1Ik1TinGOCB7pLc55+qoiEZAnhizLNjWKB1rsNBsTQzijaMcYh3rDbUvXO4iBNM3QRqGUou5qlFbs7OxwNLeYZAdJxo1rt9BGcXzyAOl78lHBN37rbf7sL3/M4v57jF/+Ai5GTGIomzXK5IMmXbDZHHnUKO0qPI9vwGXmUhf1upFnH/NXlVO7cBQPg9rNRqH3iOgxwpOEHul7TPDkwiPpCd0K7ILV6g7N6i6xnzM/+JC7P/8ZvmwYacNknCKwZCKyPr5HqnNevz4jhJTJOGFcGJJkKCK2XJVUVcNoVDCZzEhMSt87pNO01iGlYX9/H60FQgaMUvRdR1XVVOsGay3TyYjZbIISga5paaoSwbDJtMUWWzwdUYtHmSD2H3BTSMD6C1MO/puXiMln55a6xW8W7H7K/f/+VW7/jx8i+u0m6EVEI/GF4uT3roOA5o0RdvdX/9/UzzRj+yK4iqr7afuwXEUtfla93aeJi2Y1MChrH4n/xRDgOudAgtkYNa3md5jNFkMJnNQhAgjGSFXg0RsX1Ye5nmftz1X9O4XzEaFT6uaEP/3ffp+/+ZP/gGmOGRkPXaTqO7TRXH/pJd56+w2u37yF7Xtc1zM/OcLqyEuzAtE19E2FFoJ6k2W0G1MmZwUnR8doIZmNxtR1RZoljPMxx+uaJoC1gVxnJJkE2aHTgiANURpUCtloQjIqCErhoyeESG878nzMerHgD7/7B1jXoJIIyrN34zqh60mSjJPFComm6x3eWrI8JwBpmnJweIh3ga7v+erXv85rr73Gulpzf37AaDLmrTdep14vaeqKeyfH7Ewn3L59m7qqmMxmrKp6KIfkPOPxmDRNqapqoxsd2AnlckXTNYzHY/b39/He03UdQgicc2clfD7+6KMzd9m+71FKUVUVWg/Tw2KxQCnFzZu3KMuKpukoy6FG78GDA6bTCWmS0LYdrrOk6UDXjhHqpsEHR5Ya9sYFxmiCUhRZQldX2L7Du/Hm+ZQopYfauVIOmtcYWS6XxBjQSTLI7WPE9T11tca5gAuWBwcHdLbDI2hbz+HxnNEoo2kbJtMRWkZu7s94981X+PP3fsjXX36T4DxRGhKdPDQNj+d1sU+3pHseHfz5sXExW3v62fNuil006LtMVrE5crgWEUkcglo8CT3SN4j+kL6a0zYlbbXk449+yvLkPsFWrJaHrFcnJFowyXc5qXoq27M3y9mfTqnjmkIrMhkYj3KmY0MiJUYoXAQrDapQ9CFwvFoSlUJow6pe0Teea3vXUTqhadfs7kzo2xbvAzEOrA2pDbPpmPEoxfsOSUDLSGIGavwWW2zxZLiZ4f5//yr99WHRKlxk/z8+QNWO0Y/KT/366y/PePDfvfwPXs9yiy2aVwua1wqKn64/66585ohasP7iFIQgSsHxv7gx6Gd/zTabniOwlQgRz9F5T2mqF3CqVdvgbMk3nPhQQ3aJ3vWy9eFpSYpLPjm7vhAPzz1PVR4CqrNubT6Pl2ZOHr3m45lYKeWjFzrf6GW9e6qR1dUU6BfR1z7yuxCIeFqjEti4vAYgSDHUpZSRvl7zN3/5J+SfNyRakRlJHhJSGXHe4oUhSEWIw3I4iATEYEITkYTNMxA2FM4gBkMaiX94rzaJ4iEZNvzNYowYAa5b86d/8L/z/T/9Q3I6chNJhMMoxWtvvcHrr7/J9et7lMsTDj76OYSAFoJERDJjwFnKkwUyOrI0R0bJZDLlwb17BB+QuWRnNiNYh4+REAWdC5TzBV0EoXKatsVE0GmBNGuESUiTjDxLyZKCpl3jQkCnKWiF857gPSH2/MWf/wl//b0/ZSQd1fwYiBweHbO3M2Nerrh/dMju/nXa0A++z9bhQmR1fMJoPCZJU67dvMG3/9G3aZqa48UJ8/UJn//852iaisl4jO0avLP4ELh77x6j0YjT0GWoR5sNdOamIcZInqd457h58wazWYvUw4S1Xpc0dYNUiul0ghRiU6v14RhIkuSsJBAMRlPGGNI0xfvBSmk8GrGu1gQfSJIU2/e0bTvQrtdrvB/Mu9IiQ5sEpKBtGyol8M1QgihJE2zfk+U53nu89yhj8N7Tdi15nrOu1rRNh/eOsBmPTV2DVEjjQMqB7u0jMklJdEFnLT4KRuMJXdfTnNSA5+R4zmw6RQjNm6/d5uP1B3z04z/nnd/6J8ybHqkSvBjGBBszvCFju6nv/AQMj/7VmtqHA5Oz4Pn0tRCCEE4tnTYDJcazGrPEM7unQfO76U+MEOJQY/qM03I2z2zM4jYX0QJMcEPGXEiIHuUtoq+R/Zp2Padfn1DNP6Rb32G1WnL/3n2qdY0QAi0lGpgkY0Z5xng0I9lL2NsbUa+OEUJSjApi14McnL27znNjukfEIIwmUSmrakHtHChF7zxSCdJxgdaOLNX0XYPteg4fHDEdj8gnI3wIpMbhvYMosNbjnEUpTZImVOs1Sm0Xylts8ST4seb+//VV2peLh2+mcPDfvoxwgexOQ3LYsvPd47OPVe2Q3SeT4YqJZPE7+9ugdovPBlLw4P/8Crf/3x+S3m2efvyvEUIq8YUGCUf/+ha+0LSv5Fwau/0a4ZkD2xglUkikPM0uDEuq8+6fYRO8XnIy8XThJS43cIpDKubCu5KLJWuGYwdn2kfPvdjuQ63cw9cPjaaeFDzGCz8Rg1b1sSj5GXGVMdZFjfFpDdHT11dmgi4xYnrk9xjPNhKk2GRvBSAlQRhCtMTYYutD6uOPsKvrvPbaK6R9jW7XBL9CyARhcjApfQg4EjqREqTBo7FC41VGkAk+SjwKhEIITwweyaYm7ll/B6opQkAIZLHl+3/67/jBH/4+pl+CbYjRM9mb8a/++T9FBM9qteTDv/sBGTDWCkVEy8h0lGMIdMs1ic7RWmGMpl+taFZLjFRkoylSSnrnQUrSJCUxBuc9Njasq4pFXXLUS964+SYUOel4QpIlGCXoykNefvNN7nxkiV6iZE6MDoOlyATf/7Pv8MH3v8suPfO7d3HWMpvM2Jnt43yg6Syz3RldXwMOFw1t3SKlwKQZJk0xieFf/x//NbvXdhGl4mcfv8eNa/vgLFFE1suGxCiUBussUhtOyjU+hMHlWAjSokAAi5M53jlEDnmWYvuWLDVoY/DBs1rOsX1PkiT0bUOe59h+0J1ok5LnOUqpwUxq83yeZm9Pn9U0TRHAG6+/snE71tx/cJ+yLAkxkOYZ1lratiOJOVJIrPcIEdHakCQpfdugjEIIRV3VdL1DmZQ0ycA5lBooxiEEpBIIqUFIpFJAxDqL0BB9SwiKiELqFJNobhS3WFcNQgiy6Yi+76gqT0QQ0CQmIQbLV98Z85+++z2a66+QTz5PRBFlIIiNDiemEA0iWuIzrcXEOQXr6Xg8t0klhk0mJ4eiQiIOjuQb4/GHGwxIEJGhGNXQotwYWRFBBAExbNyMQWiBDx4hQEk91EFWmhgDQkikgCxa0rBC+45oW5rlEa4+oTy8S+Ib6vkBXbXk3uF9Vl1LiII8H3FtZ5dquUQ4x629HXZHBXmi0UqwKpfcMBkPXIORBiccshD0siPISJ4WPGh7EiGQvcfant4OGx6z3R2W6xV13yKkZPfaiJv7U378o/coj9fs7uzTlZ62Kbl+Y5fpZIS1LX2EB4cr1tWa/f09lJRIbbDhKu/qLbbYAmD+T68/GtSeQ9SS5vURzesjlt/aO3u/+Nma7E6D7AM7f3rEud2y50JUggf/7e0rr7/FFv8Q8IXG579eWclLsVmGLH5nn5Ap2pdy6s+NH/3wNwDPHtgGCOJxB+JTZ8/hmIBQ6vH572Km8+EH56/Ap33jr6ot+1iQ+ynwmp+Xsny2WXAVtfB8e5fdWwGDe+8moIwMOlqpBrpljFTlHC09J8f3effNl6hWB4ggIShCEERl0Gm+WWArRmYCMsFGRdApURb0VuPQOBTeiyFwJiEIOcSwDDrQoRxLQCpFiI6/+t53+PP//O9Q7ZIUi4yWt166we3rM8qj+zTlkvEo51queWl3h+gs5XKBlBHRV3SuRwBKCbyVaCWHwAVIN1nMVVkOGU0ENgS0Mhs6saep10iRMJ2MB61pjAglWZUlRaKYFTnGDNrVGCKut4AnTw2Lgzv85Z99h66cI4NjZzKm7yz7e3u0Xc/9gwO0UeR5SohDkCKFxPYdeZ4xno4JMfDO5z5HMSoo6zV3790ZdKVJinOOcZFTrxtiEGRZDgKstXTW0VtHVdfs7+0xmUzoux6tNbdu3WJnOqOqKtZlyWq1YjyZgBiyu6dBqpSS5XJJVVWD2dJyuTGE0rRte6bDzbKMJEnOnsWmrkkSQ297imLItk4mE5qmQUp5VvdWKz3UrWbI+mbpoJd1zg16343GVikFQtA2LVprjDZoOdzvGALeumFzRGnarhvqGwPRWsajMU4ovAsIoRBSojaa3hACzlmklOzs7ND3Pdev32AymXByckQ+Tnj3zVf54Gd/yztfv42MGhUzopCI05JXhGeajs6Y/udmvUeyspsyQlFEzLmyAzKebrRtMrMR2JS+ErLftCOJQhOEIqJBDYF8RCKiQ9EBPSJYsmCZSIt0LTp0yOAItqVpKhblima9Ynn8gL5aIG3Fyb0P8c0K+pZEgxeCxKQIpUi0QYTAZDRibzLi+mxMszjB9hXT3Rmj6RTZWcZq2CyYVzVN31KMckajgugjMUSqbo3tOooiZzYZGAqRSFtVRBEZT8ckUtDWa15+6RapWmLt8G9KXhSs64p17djZmbA32yEfj6jWa5xzFHnOzes3aJvfrB34LbZ4HsREYmfPav7ycMKr355Qvz2BGFl8ew8iTP96Qf7zCgAz79EL+8TW2ldylt/aZ/2l2Yt2f4stPjEc/8ubFO+tX2iD5pcVbmawe0Myon2lYPn1XRDgJuY32qDtmQPb08XtRdOTU1Ol83VqPylcTUN+MVw0f3oRTdsvct3zuOw+XezPZfVfn7X9szbhXBmTIVsqiSjhcV3NqDAslveYLw+J1vHS9VtUq4qua7GNR4TREIC4SPQPUCoFocBkkBTIoIgmR+gMpMLJEZUvCFGg1VA2CBFByiErLTQ/+tHf80f/9v/HxFaMC0VG5PrNm+wVmsRWiMZxrTAo4SgyQRpqhIh4HWi6BoyhyId/rJMkQRtNVbUkaXZGFRZiCLR8iFhvafueLMuRImC7miJLKHZv8HHpAA8E1uuSJE3wIQyOzCGikwStFVpCcI5mVfKH/+Hfc3TvY6Tv2d/d4bCtSdKE4/kJIUCeZehEo4zEYPB+KEtSpBneB5q6xhEoxiOqriX2LceLBUWeb8aTpO86jDY4NwQ5eV4QIriqxjo/lCyK8SyIPd1gapqGxWLB/OSEvf39TY1c+zBIjxGtNTdu3MB7f0Y9ds7RdR3ee46Pj9nZ2cF7jxBiqEdb1xwdHSEEfPTRR9y4cQMhBMYYjDE0TUMIAWPMEJjGiJSSyWSC1gopJV3bDG7L1g56b+sxejjfO49W+uxZztIM7zzNuiGElmI8wfsw0K9HBTEKtEko0gRMjvcQenfGfOi6DuCsT9ZaDg8PUUqRm4KvfOGL/PR//Q73P/5rrr312xA0UAyBowighuyteKbNNvH4q4t7ZfFc9vWMSXJaYmhTiutUf4va0JHlEMQiNrTjSGQo66NCRxFLNBZNj+4aVL/Glcc0ywO68oSmXDCvWw7KjrqqUCISbE3oG1yzRgbHbDRCiuEqSmmapuFkccitGze4fm2f2DZE21Mkmug8XVmRSM10Z0Y226Pre0KaI4uCnZ0ZJk2o6pqAoNgf2ARaSup1RVWt8USMEoyLgslkQiqhWpWsVg1CJNy4foMoJAcH92n7htlsROstD97/GTBowwWCrmlYL1ZP0BRvscUW/V5C9e4vUOtZCNxsWDif/PMbZ28nBy3JYXv2evc7R5jlEOguf3uP7kZK/c6EkP4GZMm2+JVAv5+y/tKM8Q+Wn3VXXghRCWIiiQKO/8VNQiqx11K6m1ufiYt4LvOoy4KuRwK0f4Ag8RfBJ11i55PGi5QdekJr5/TMbGjJYpN9DfTNmmpxTLNe0nVzmq5FxUDEkphI1I5uvcCHCp1odIgYFPWyIQZQaUHUKcGBlylRJwiVkhY77E2u03V2qNsaIjrROOsJwEfvfcTdP/sur+cdezsTUhXpyznXRoZCeUaJZJprJJ6uqcknY9pqRZblmETTeU0xmZxldI7XJUNKTGI0rKtqoLVKiYsRazu8DyAkyjlSMxRBunnjOpWDvu1I0wSMIU0TnHNMZ2N29/cRRiOkADxaRnQi+aM//CN+9nd/TbM4QnnLspwTnCUEMCbDJAk+RpyzZCZhMptwcnxM6CPaJKyqEp1qsiznf/79f4PODDdfusU3f/ubZHlG31tEqun6SGY0UgxBjjGGNB+Rj6e0Xcfx8RGLxWJDIdYketCoPrh3n77vz+rW9rbHbUoPGWPONqJOn63TTC7A7u4u+/v7dF1HkiSbzKfj8PCQGCP7+/s4NzglO+dwzuG9pygKtNZD1tUYurbDOU8IYajTK6BpGgqtmE6nxCrSliVSCLIsRStFXhTEEIYMrVCMRgVZmjIej3HO0zQdo1GB0BppNMKkRJPRWc+6KpFJSppHunbI/jrnhmx231OWJVJK5IaSLmNKW5a8/douf/6jP2J2/TrJ+F1EGOOEIcieKN0Q7D7DELx0Fjl9Mw7h6DC0Ly7yBhbD6fECQRQJjUoY8rUeFR06WLRrSERAy4AikriKOP+YppxjfU/TrOmqkuXRfarVnGBbbNfQWE8vNbkxjLKMsm+p2hIlwLqezhtGRc64GHP33j2cs7z+yivszaa4pqJIFePM0PRrsixhlo8JXcBbj1KCRCpu7V/HBUffdWghyZSh6Rq6psR2lkQb2qahrip29nZRasRivSJEj/KOTCfsTGcgDCfzE3yMjKZjro+vU3drkkSTdh1t05Amw8ZJnqakJt2W+9lii88A/Y2M/sbDWrTVF6Znc2VU4pd+LbjFbx6ikay+tkPx0/IT04//Q6D8yoyQKNpXi8H4CbZ69afgOTS2j2s+L9ZOPdXQPt1USZxlQp4UvF3JYH5BnPbxaRnmy9S+59sY+vbJT9xyk9U8f50Xv1YcTJ1EZCi6MWQCQ/SoGOnbGtet6es1KkBV9uzOJtjOU61KmuWC9fwYsozRzhQNhK4h8YFUKlxTUXUOqVM6B0GlCJOTNIfY4x/SNy2kGdpo0qIgU5rluuTwr/6KYnmfRFhEG1lXJeNUsT+ZkUnHOE8wArwPmCJHJSk+SEJS0AsLMiOMpiy8pVcZlegwSoK1qCgoRmOsdcMiOMsQShPikLkTStO0FRHB/YMDxns32bu2R9iUwonBM51NuHHjGpFI13c0zZroe4pE8bMf/h1/9sf/mer4Aa6u6PsaJSJRDq5AzjuazjKdzRhPJ6zKJYtyySgvCMEhpCTLh3vSdB3ZZMS6Knn9jTfY37+G7TpAsC4riizBti3TyZi9vX263tK1HU1nWa1LnHNEBnqyVoo0yxmPxygpOT46HmjHQNe2SKXOmBZaDzThw8NDqqpib2/vzE3XWntGQ5ZS0vc9IQTG4zFZlqGUZF0O116thmzZaDRCSnnmuCylpCgKjDYslktiA1k2mE/pLEMkCa5RjMYjhgc00vcdfd8OmxfG0DY1zg2lgZSSOAdaaaqqoveOJCtIRpHZeAc9yjC9J5/MMEZxcHAfpdSZS/TpeD8NvKWQVGVDsJbrOxnvvDLlg7//U9792kvIZIcYPVEGovAMBnnqhceg2GhrY4hEIfHy1LF6kAeIGPEbeYfc2FV5IXFCo4nI6EjpyeMa45e49QGuPKJZL6iqE9qju3Rdg1KasixZryt6OzwXWT64e2sZmChL9D3tYkEiJJO9IfvtXMq1GzeYn8w5OHiA61qUELSrFVZLCiNxTcXa1uxOJyigsz15XmCtQ8RI5y1d6+j7Du8s1juyLCPLEnrb0fcNmdFcu7bP7u4O+WjE8WLBsizJkoybu7v0TYuPEusiQkaM1iSpoZiMCCpS5CltW7MznaKUHvTs4x2EkCznqxeYG7fY4jcDbvIPU4Mybk3ctvgVQP32hIP/7mVu/Ju7yPaXz58hGoHdTQca/zf2QEB/I92Or+fEMwe254Ouy4yPnoZHj3ny8Q/bfjT4vUglvqyPp59fRTO+2O9npU+ffv8QwhkF+0kGT+f7chkeL1ckzn5+EhTpCEO2UTDYsZ66rEZQm4yta0t81yCE5uhwzUvXX6HvIlpk7E6voVtHvZzjlNm4GvdE76iqNdY6PIp0POPozgMsCcloitgZIURHU1V8PJ8jtWZ3fx+pDCbLKNQaaY8QPRidM92bUBhFDBZHwHoPWqHTgvW6QusRYaqZW08VNX0MHK2Gxft4soOcZYNTahwyoV3XodOEcZpwfDInRMGNm7coy5KD4yOmkxHZeIqtG+4cHHJv7fncjTcxzpIXGd71BG9x3lHkGURHIgP18oj/8sd/gPI9uM1/3pFPcnpnqeueLM9QPmKdo5rPWVdrtJGkWUbT12ijGeWGfDLi9uuvUfcNP/npj3nppVtMRiNaqSAEUmN46eY1jg8PuHfvPqvVinw0RirNwdEJvXM415MYjRQCtdHMxhjJkkFjmiTJ2TPYti3ee4wxZ4ZQUspNNnSoe5skCfP5/Ox5Xa1WWGvZ2dk5oyi3bbtx5Y1ntGbvPUmSEGM8y4yulisEYgh2q54kMezu7mKiI9iO0XhMtZwDw3jSehhLfd9i7RAcD3Tilqpq0TpDSY3Rkrq1BBpEkhI22dCqbeiB6WTCtWvXKMsSpdRAi9701RgzjC0fSRJDPtqlO1zwhTdu8yff+4DF3R9z8/V9HBk+DHrrh15x4pGfl47pc++d/iblqaHdYJ5nH5lrIkpEkAGi33jdCUzoGPk1ifD06zmyW7Fe3GNx7z2a449JQku3ntOWS/qmRskhYA8h4rxnlBf4EMgUBAnXbtwkxI6joyPS0eAWXTU1Wmuu3biGMZpj1+O7hlwppuOCTEtstUSOC67tjNmbTpECmrqi6T1VNfydrR302FpLVqsarRVKwoP5EUpExkXO7u4O0QVWqxXOBe7dP2C8M+Nzn3uXIMB2LVXdEKUiz8dcv3GN+WqJTgxN0w7a7q5nOtshek8M0DQ9VXWfPM3x7tdIMLXFFp8wTv7rG08/aIstfoOw/uKM4mdrpn85/6y7MkANDh3N6yNWX99l/eWtJv0XxQtTkZ/3vPMB29ni7tya5GJ5HHHmpPvk4HQ499n6fFkwfqoFfKS9S656GtCe0jaf6Fr8jLjqfr5ILcvHG9mYRxE2LsmDeZSUEZzdaOw6Ui0R0XByXNI2Hp1ppEqILtD3nkkxIZMpd+98QJIJdmYTMm0QzuFjQPQNMli0VOB6VsvA3FX0fceyakjynK6sGU2mVCcL7q4qWpOTZ4YkCPIsxRhJbXtGo5waQ9943nrndf7r/8s/ISnGOBToBGFSUAkRgXc9eItra37yd3/DT773XZq2JDGGCCxXJUlWkKYZq7JESg1Sk013WZUruiCp+siD+ZLXnEfEQNe2pIkmNZK9nR2IgUmm6dYL/v2//Z/52+//Ba5a4ZsStQkU265BaIXSkt71aJUilAbvGU8mtF3DfLlERcXObMrezWtMr+2CkqwO1lzb38f3jqMHB0NmN4JWkqpqyLKcohiyY/1iObSLIkk0SgmydKALhxAZjUbUdc3iZH5GCdbGUNU162p9lsU81dTmec50OmW1WtF1HcYYptMpIQRmsxllWdK2LSEEqqqi6zpC8Ny4fp0sGyhoWg+a2Pl8+AciTYcaiUoqnHUIIRiNRuR5jhCCal0xkgJrLcZoovWDajQE+r4nTVOyNMWHwU17OhozKUZobajqhq63FFlCUAZtNF3XUjctTdPT2IEKKwhn9Ghr7ZkB21nGVkradUOSSmzTs3/jBr/z1S/yne/9FcVon/zmO/hoiGTYzRg6Hevn2R7nBt/grPfo0Bve9xER45DzFYM+drBC9ghvkViMjGjpwVu868lcxbi+z8mDu8yPj1gv5qyXc1bzI6LrmYzygfpOgshy+o3uO08k03HOzjijSDWpljTVGmVLsvEMOxoRYyQdZeRGYUyCbWvu371DIiVfffdzROdwXctslDObFoyzlHK1Yj6fDzWSlSQbTTg8PCRJEvb3ZjRNy/GDe8QQyFIDSlCMx7TNGhs8y7IcNMMemqbF+oBqe9oHh0NNZ6MQUuF8oF+vcGGgnd+5f49IZHdvf0Mpb3C2J89yPAIf4P7hIUr+ypVi32KLLbbY4jPEyX91g8kPloj+s6MkN6+P8IXi+F/eJKSKYATx16ye7GeFz2hVIC6l+z5e+/XTcSd+UfOo88d/kiZZvyiu/A5CbLK1Q2ArGIiVrm+xbYWRkTzVCBKsdTRdS6JTplmKsx297RHBc1CuSE3CuEgYZRmdd+jEYLIUbXLqpufjwznNumFnbx+RpFTrBkdC8AoVNZnMmZdrlo3Hy2xwIQ6eqBRWSESS05ucVetZt4H+QUn71++RjjK8AKQhCoPfZJ9VcFzfmfLKtR26zhEDVHVNnxhCiDRdx87OCKkUOkmHmqxpys/vHxKEomk77h7OqTqHSjKUNjhnCb5FikCiwCjDu2+9zsGdn/OXf/ZdEhnJ8gwbLUZK0kRTt0ta2w46ZJVRN5a+6VBakxgDXYtShuvXrmOyhKTIscGT5glN3w1mOCFya//6YIjT93gXOek79mYT8rwYaL8xDs7PiabpmiHYbAc34sQYjFKMRiNGxYjZdErXtnRdN5glbUypmqY5CzYH6uqaruvO3Ipv3rwJwHq9JkkSxuMxJycnwKZmbjo6q2mbJAlZlp3Rlk9dlIfMa3+mzx0ng861qVpGicJ7y3KxYFpkKC0JPiCkoFApQgict5uxFTEmQSsNMaIVkGpkkASl0VqA8GiTkMucdWOpm5q2qUmMOaNIA2ffO03TQU+tPZ21vHTjFYRUvHFrn7svLbjzwZ/z1mxKNnqZ2g7fOZx3O36SbOKSsfcIw8U7iuBQBCQO5Xtk7NCxwzUldXlCUy5p2xPK5fvc+fB9ynINUWKtI1GayWxnYEr4QG8dJskYjQqMAt/VZEkCBFzfc3TvACWhmOwSVcpsuovtOvq+Y29/ymIxZ3VwQJFoZrMxhYxko5x0Nia4DlutKdt68wxpopQ0nYfE4bxHekdV1cxPToghcm1/fyiqpDRKSIjQdD1FVqBVgtEJOstxPlK3PW3b4JwjTST7ezsIMWxMnMonxuMR08mUqmoolytMmhJlQlqMKaSi7zqkVsOG2hZbbPEYqs9NsLvJZ92NLbb4pYMbaZbf3H2kdvOnCgl+pOmvpSz+0T4AzWujrbnap4TnDGxfPNh8JMMZT6s0Xn4c8MSM7XNc9cLrR2nHz+o6/LA/lwXfv5wQQuBiRJ7eQzHUyTRK0HYdru8YZYaQSMp1i0OwWB6T6BlFEmn7mrarIQZMCMxmY3YmOdG2tOvV4KysJd5H9icjms5x72hFs1rw9jtv8vL+Pu9/+BFojZYKXzf0ZYmrG7wPpEXGeGcHaTRSKZROOKkanDCY3T3c6BqlGnPn4ARlAkJqQtT4ADhPt1rw3bs/J8OyVyTsGEVME7Q29L2lKEYIKVmt15vF8kD3kGnBsu649+CEVdXiZEoUCmsdxmiM0igBbV3ygx//kN3JhMO7d1iv5owSg2trmrIkT1IEERsrZrtTvBecnJwgVYrWCdoYrHMYk5JmGcuqRLmEV8Zv8ju/97u8/c47/NEf/gEPPr6D9oGjew9ItEElhtFkRJ4mpEbS9x1t22KdxyQBk2VU1VByQWtNmqZ0bcdyuURKSZ5lQ9Z1Z2egBtuekRwC2dNA9Pbt2yilKMuSo6OjM/fj9XpN3/d0XUee5+zu7p4Fqt57JuPxWVALkGXZYLY1nZJl2Rl9ucgLYhpp2payLMnzjDxLmE5H2HKJFIK2bZAxYvuhVNF0OiXGuNH5DkZYzln6viNNEooiRWmNDXHYBEEybyoOVke0aFCGPDHs7+2xt7eHUorFYkGSDIZgSZJszLMEbV8SQyT4McJJRpnmG195m//pf/3PHD74Mddfv4GME5wPRHm5/OKRsXY2DZz+IjZWA6cluyLC9uzRI1yHa0v6ao5vV1SrQ47vfUi1PET6Hh8aqmaOtS1aKvZ3p9iuRwuFwlHbNVOjme1PGI1yylVJJyN7r76GNgnz5Yp7xycEOSbLC05OlozqACEwyjOMlqyXK1KhePXWDYwSeGdx1YpWKVrvSIzEaEUI0DUNfRBEpRFa4VxgdzIlxoAWkrdeewMRA1opnO0hBtIkRUlB07cIpemso+0cTdMxX5SoJKNzjrzIMVnO8XLBj3/4Q27cuMFbb71NEQJaGxaL1bBpY1KOFguiEgQUWglm0wkjJfHefUoz6BZb/GrD7ZjtwnmLLS6DFJRf3mH8gyW6/BT/DVGCxW/v4Sea+e9eO5McbfHp4tkDW3Gash/0YmITMg2fcaVs9iJl9ywwvHDM1biozb3qYpEYxbmAeHh91sWzQHRjXiXOZzovuCXzeOB9ev5ZSY6NSVaM4dx6VpyV+jgfll/W2+d6tK+gGl9849GvE1AxbJxW1YaWDNE1dOURoSsxBELwtG1FCIH1esXN/aEOat9U7OztoPqOkZZkRhOcI1gLPqKkQLhAjBYtBbf39zAm497BAQd3PiLJcxI9OBPnxrBcLVF9y64RJEWKSVOyLCHqjHndE4NCjq7hPLReMMmn/NN/+X+A0CPoEDohCE0IEhk93ckBf/Lvf5/u6GNS39KuK5yPKKPwwWJdZFmeUHcdUhtuv/oqdx88oAmWe/cfULUdMklITcbt27c4WbdMs4TUKH74tz9gVqSEpuWDO3ewbU3sW0KRg3VDDdIQqZoaTGBd9xiToUzGum7RCnzTU4zH5JOCDz/+iKprufXybV7/3BfpneRP/+L7qCSnai25MqSpwSlFlht0IlFG0tqezjqSPIfeIZQkyRL29B4x+iEDLwXeeUSMrJYrvA+U64adXb8JiLuNeZGg2bgdH58s6LqOyWRCMZ5itEaKiEkSjNFY66jWa2DQ5xZFgbOOtuvRZghql2UJQtA7x91798iyFJMklGVJjJBlOb3tN8ZVCu88fdcjIkwmM8rFCYlWCKXonaPalAsCMGlKYgzWenzf4YKna3pihIAgaotMcowyFGmK6y3LckGvE/Z39siynNVqibOO8WgMWUBJRVVVLJYLRBJZzJcsj37GP/rWP8I6i4yOr3zhHb7/kx8ynbzJaK9gFRUhKqR8OP4HScLD8Y6QBEDGiIgeHSxGBFTwaCIET9c2uGpJubhH7GtWiyOWRw9wTUk5P8A2JQbPpMhABqTQJCpDKyiShLqt0ThSo3jptWt0bcekMLTlMcq23Jjt0/cNd4+PWNWW1ivWraVQkj4Y6sUKLeDa3i6ZhsIo+ramKiv0uMAkemMmZSEGlBpqGnsf2Nm7RtN7Oh+J1pMYQ6IF5WqF7SzLfg7eD/WgpWRd1azDmj5GTDGitZ7UGLRWBAliXaK15Nbt1+itw/mWddXwpa98jfFkTNtbnAvEztH5QN9b0ggmz5ivlngRKLKc5uhgs7m2XSRsscVFhEwx/8fXPutubLHFLy262znNm2Mmf734ZBoU0N3KiQrqdyasvzgdvDX2km0w+w+MZw9s5XkHMUGIgY2Q89zPp2NYIHJl/cHHjanCE18P5ww/QxicTE8D2EdNqARSbvr6sLXL+3BZ9cpN6Zzzelyx4feGjcZOivNa3XiunuXF616NS3XAF14LcfnGwOn1IxEtQEWLx9BLjUciY48OFXZ1F+VWuL4FqehsBxFWqxJtEkLfETw46yiUIMhAIBCjQKkMpTJiCLSNR2jFyfIIrzSz6Yx6kmMVrK1FZSMEktrByWJFdJYb04L96YhlWbJanRBHNwnJLo0s6GxAEEjN4OA8Ho/Ap0gmeGXohaLtHVoGPjz8AfPj+1wTHbE+AqHoECzLCu8CIQqslzR9REnFT+484OD4hNVqMZShKXKiNrz8+hvYZs78zj1c3VJMdnj39beYZgk/+bu/pWw6lLUYIfB1jSAOOk8fmIwnrLqGtpf0PrKsenxUeKXoQ2R+UuIO5kynu9y4NaHznv/h//n/IuL58pe+yBfe/Tzvf3yAd5Zv/fY3IXjGRUrV1SyrFUSB1Jobr75BDJGT+Qn3Dh4wKkbs7+yRGkOWGIQI9G3LarUCIUFqysaSJBnRW3rXo7RG6YR8NKGsauq6Zr4q6doOpSUQmIwHPSwhojeGS9PxhLZtKeuaiASZkGaGJCvovEdqxWyyC2xo2sFy78EBiXcsFwtm4ynT6YxMSWzbowO0vQc01nt0mmC7Fi8FzoNUmj5CrlMkAdc5vA14H4YyUzpBOElUgulkwu71Eb2ARVWzXDX0znN0fELfdSTKEKzH9Z4+9NRljYqK4OH6jdvcvA7p2FBWa5CG29du8957c47e/ws+P06o01dxqI2M1hOjR0pQQg4bWgiiELgY0CKShJbEr8l9TaxOsKsT2nJBOT+mKo/pqwPqdcliscC7wejJ2sFROOoEmRfsFCnXd3Ki71nMj5C2wiTQOYc0htI55k3DUduRS83+rTdoOstyXdPYyHi2Q78s0TISfYcPliAkqZF41w5GVRF8vSbTYKSgaXtUkuFEJE0zvNJYBIt1xUQk1K0jCDUwO3zNqMgQUWKUJIYhY9/3LSdlSZKm7OztUXWCqrFMd8YUI0P0HVF6rK8pTE5dLanKjtGkQKucBwdLTpYNYTPBjacTYpIyXyzplwvSLMVjWazWhDjGbModFGb0TPPqFlv8JiEYgR9v9edbbPEknPyz60x+sAT/AuxL8bDszvwf7+NmCeVvzbaleH4J8EIz38MM6yUB4DPiMlfgi6VuLmpgn4X6e3r4xfK6n+aGydP7KD6R6z90Z42PvX9ZKabgPV5IQhyUgiFaunZNtVpgyxWZdKRZhtKaNDFY7+itZZJl9JUkEHExsKpqvNY01jHJc4pRjhGCLE2xIRClZNm2zBdH2K6hi4EoNa5vmc72mC/maN9SpIJZJiiUI2aa8f4errhJPR8yrFEaxqMUb2uM0UAkCIXUCT6EIUMTLCcP7vCTH/wl0nc430EINF1LPrvGuloMmbrxlPmqJB+NaL3nZH5C0zZkJmF3d4fJ7i4ySdnZv87iwX3eeu0lppMdjg6OufPxh/z48AHCO4xiKDejJRI51B0VEiegazs6HxiNMg4Pj5BKE4SkLNfoJGPv2nWkMpTrko8+ukPXtwgRybKU7/zRd/iLP/szxuOCa/t7/N3f/T1ZZnjwIEEqgTEJ4/GEyWTEx/fnGxptzrVbr7Ezm6EJBGc5PDlBiYhtm4HK23YIlTCeatIkRcvIcn6HEDxpmiE2Jbn6pkJrTddW7O3vDe7Cm/I4XdMwnUxx1hFDYL1eY61lMplhbU/fd2gtQYB1DgEURYGIUK0rpJC0TctkMuPdz3+Bvu1YLk4ojEI5R5AKK6GqKhI/OBcHOwRcKkAmEzoPbdfThUiiFDGATjXexcFcynlkb/GxokcMGmStAE9ZLujajt2dXQIBZERJSVakeBdorKXICupqzYc//5CqqjHpCJkUvPv2a3z/b3/M/Y93GX3uGjZElDKE4NFSIqJDeocRHrxDRk8SBX21wtcLVif3uHP4EXQl1fKI+fED6nWJUTA2kCSaSQpmnKOVxnvJtTdeRggxlNzRxVAn1nVkekP39prEeWrrqeoVh8dzEp1w+9pNPr73gJP5gnw0xUc4OT4kSQtGezuczBeEvqUwiv8/e3/2JVmWXndivzPd2SZ3jzmHqgIBEmCTTbS6l6gnSVT3i5aW/lN1S2q1JLbEJYrNh+YgjiABFCqrcorJ3W22O51RD9cjMiIyMiuyQDKBgu1Y4e527Q7H7F67y/b59rf3siloygxhW9w4kmUabXLyssL6hIsJneccTkfKLKPrTmhtOLYtN7c7ymbOqe1QOiMkwStDZyUVQmtyXVPcyf99moydusExhgaxtkgxTQoslkuKvIAkmS1moBT94cBmt6esSparFaMdpjxioxnHfso7lhqT5SwePWJ1sZik78fD2TzqjDPeg/Xfe3COCDnjjF8Dt8rY/VcXP6jXNuaS9vfm2Hs5+//yYlqWyXNV9i8QPvhbwbtS3JTEGxXJH4735se+h6B92wH5uw2f3synfeVi/Pbz/+Fzcd+sDP/H6rn9rgr1+9Z77eAqAKEQUk7vCQkZE872KJVYXK5QsWe7cyQxEdjBWnyM6Dzj8ccf86/+yVco13M5r/Ep4sae6EYKoyAzpMHhY0KqRF5oZrpkvmjohukLcOcCWjjCac1llTGvclSwmDDQH4+IrCHTiiwT5MrgkGRZRhBTv6uUkig0Q5yiZYTr0fbIP/kH/zeuf/UnPGwyCpMx2ozt9RaRz++2U3R9T5YbdKaxY8BoxZNHDylNRpnlmCInnzVc3bsiK0qePf2aX2z/LQTouw7XnzgdD+RGE73Fe7i6uqLrBwKSKBXHY8sQPMNuT5SKUzewurzi4eV9+mHk5nZN2w6MbiTPMx7cu8fFaklRZDx9+hVGK5L3/PLP/ozPfv6nlFVJktN7YLKMIi8oqxpSoq4aUppipu7fu+LB5ZzHD+8RIozjwGq5wI0DeQKhNGVmyJVEZzN48JC+7/HB4d1I0zQs5hVd12FUJEWLkIYHDx5MsUBqchC21lLmBVVVoaRkGC0mMxiTcTqdaLsTQkBVlXRdR1kWgKCpGlaX94kxst3uSTEglGZ3PGC7I7Mio16sqJYLlJaM48g42EmynMBJjYsQTY4UeqqWRotH4BEokxOFZHCBUz8SlSKvJ3XA2A9YZzHaEImcuhZrLQA+BJxzOBvIugE7jtixJzOKIldkZU4II588ueLpF3/C7336N6mLSwIO58NkxKUFMrSUaST1BxhObL7+eiK2rue4e8nti69R0nM67kgiUuaKwmguyxIifPrgAc5Z2ralrGpS6EgJhD0RlaeTPbOmwnaW4zhQ3OUCb55d09pAYXLmswVKG0wQzO7+3mx39ONId2ypm4Y601S65KP7F6zmFfNc4fuE7eKUBxsSvfOUzZxSGzpnaW9v0Jkhv3Oyts6TBGRFxr2qoihnWOc4HbboTJGVJS4mnJ0ymK21IBXOhTvpdiLLM8pCU+YZAsHx0BGCR+sMF6EbLJf37vHgwX0gMQw9XdcijeCjRw8wxvDRg48Yu55je8CeetYvbzgcD9Sz+X+Ue+4ZZ/xlRjJnUnvGGb8WQuAbM0XWf49Bsp8b9v/FiuHjimQkw5PqP9kQz/jh+MFxPxNxgl+XRftD8SZpfjM38k3S+KHE8U2C+3ZEx4ey8Fe9uB+y3vuP/x8Db+/3100AAFJN5HbKH0EKz/6wIXmLzgXeOlKIzBcL+qGn7Vt6O2BDRWly7j18SLu9RmSGcRyYlSWFEojgqKoSUsAIAXakPQ137rWKxw/ukeUVm/2B2/UWkzyZ0AhvIYxkRcaD+1ecspKsKlFtT6YziAJS5PJiRUwRqQTWgkdSKg3jyC/+7T9l9+XPWapAreG4PWFHz+rqPkIIqqqibXsOpx3a5AzHIyIzPHrwYCK7UrKczQgk/DDw/MvPMSajrCqshu1hhwyB6HvyXLFczOi60yRFNxoRDN3g6AZHMBlJSDaHlsVyyeN7Dzm1Pb/84ktG61Da0DQzjDd8+vFjHj64z+Gw4/b6Jbbv+ORnP0VIaHdbstxw2u8JqFcd4pPJWprySZtqNvUeIijLgswk/o//h/89P/3kCbkSyOShyMkyg3Me5wPeDWSqpswL3DiiVUaMnnlTUhYCKT1GRxKB+/cf83u/99cJIfD86VP6booFMsbgvafI87sYpR1Zlk95uFKSZYYUEiFNPbRD1yOlYexHhJDEOMXcGK344ulTtrcvWdQFhdEsF5PpVFlWJJ1TNXN88LgI42iZzeYIHfB9i9CGwTqQmoTAIdBInE/ozKBUhhJhkgYjkEoyjJMzdEzTOkJJnA1IKbGjna7/GCnrEq0FIo4k17KqFS+e7Xn52b/m47/+d0gqpzAaiSWejoy7l6RxS3/9JeP2mu2L53TtEWcHlIbGSDKtWFzVKKNJQJ2XnK7XrBZLGqNorUcVmszA0A+TY/OjJXYYKDNJsAMx+MkZWhtuNzsUmof37lE1c0IS9P3AMFqyLCemRJXnfPz4MVVVobXGOcft9VNqHciTm1oM3GRGpnTGqbdklSKXObc3twzBUjQNeVmR6SlTGSGxPoIUDONAO04kP7iBxfwSnRfUZc5uu6Vte0bnGIaWbnQgptit3/mdT0hx5HA8kZmMqq6YNUtub3c8f37NbLUi04qUInmmOR0GCiORKZJixA+WZ0+foaSmmdcoIzHeE48Hwl9gA78zzvgx4C4y7L38xx7GGWf8pcDu715idpbF/2/zreeOf2uJu8jY/y8uCNVZHfSXBT/4TL1JbqeeVd4huh8mu30f+ft11dof4kT8Jjn+UHxXFflDj/XenEs+vEr87ut78/H3kdq3j/WGURfirtM3QXIQR7rTBoHD2R6RIk1Tc7Ij3dDTdT3HU8vjBw+wISCNoR0sfXvCnw7cL3M+fnCfLDP44Bm6E2VdUdcVnoQ7tnRdhwsQYsup62i7nsIdw68AAQAASURBVMvLK/ruhJQKQc7u1JHNCk6nI1f3p2xgEUEp0Jnm8ePH7La35FnGkCRS5gh7YP/yKX/2L/8Jc+kQtmXzYoN1AakzMm2IIWLdyLFriYAymqapGa2D6KkyQ64Mhql0L6VEKIkPHj/2bG+u8dYSQ0QpcMFzvb4my8yUtbpZg87Z9wM3mz0hCZqmYXl1j91uz+3uSIwJnWV88uljru7dJ88L2tOB25fPOO43ECNlkfHTTz4mzwy77Yb/+r/+ezx+/JD17Zq+t5xOJw7HA9YOHE9H+nY6N8E5FrMVs9mc3/87f8DVvfu0bcfl4weI6Djtd5ASwbspDkUInHSkmCjyAqkSw9BNJMyPGCUJWhCToChLvv766ylvtu1YLZeTs7Z1lGWJdw6tNdVddNDV5QXWTmONMRKc52a7pa5rHj96zHZzYH88EGIikbi6WvH4o4+Yz2u0DKyvX/Jv/+SPkVKRmZzj8cDlxRVaG4SQFEXJ/Xv3kVIQx546M1gfqeY1QmcM3YCyjgC43tKPO3CT+ZH3DkRCKonJDNY7QvTUVcNyteSrn39J747TvI9IjMOAJNGUFWbVsNsf+dnjS/7NL/4Vj++vyKo5N7d7Njc3jLtb3OY5jT/gd8+nKqtIKCUwuSDLMsrcIBCToZbO2e33KEZ+8ughRZ7z4uUzlFbcv7wgpkAhc5y3VFWGN5LcZGz3e6RUlHWD0jnNbMXq3kcIlWFdwAPt6NgdWpwbuVgt+fTTTylyw831S65fvCDLNPcuZpQ6MbY7yvmcrKq4vd0ggiAkiTQ57eAYnEfmGfVs6l9NIXA4HsmzHKEEQiT6vuN2u6esZzy8d0k39Oy2a7SaMoq1yfAxYZ0jCcGTJx+R55PjeN/1DOPAYpbx8vqWX/3yK0xeEmLkdrPhYjGD6BhlhGDpxh5jMhbzJYfjCSFzvEjsbm4Qdz3/5XJOkufK1BlnvAm3yrBXxY89jDPO+MsBIbj9bx6+12wtNPrcM/uXED+4Yjv9/vDq6Xv38/aPb+3/u47964jtt5yL3/Ol57uO8fZ+344Z+nUS5leyZynld1SW5W9cxf0hcURv5+xCFHIy/BEgUkAkh+0P1FoQhhEjE0oplvM519c3aK3ZbXeMoyUvC6QymCynO/SUeUkCDqeWTx49BDcipWJzu8aUBSrPWc4bxqTZnCyjdVxvDgzDgFhNGbRR5QzDiRgkWmqKMsc6CySkBOJEEKqqpG+nvlpBQkVLHE78s3/8DzleP6cRA8KPpBSnnlDrGQYHKeG9RxvNqq4YrcMHR1FOZKlve/K8wA091WzGaew5tT1CSV6+PDAMPcSph3P0CZSaJLne4b0n+Mhxc2DfjaBylDF0o+VwahnHkczk/ORnP+X+/fsArDcbPv/8l3jniK5nVleslguePH7I48eP+NUvP6Oqcn72s0/5vd/7XXabLU1WYoyiH1qCdzx//ozb9ZrjoeWLL56yvtnx+P4lP/30U1arFd1hy3q9nipcUr7OpX3lRCxLidY5zazG2oGUIjE5siyfyK3JQGqur6+RQr6WH282m+m6TmCtxTuHVJIYA13Xvs6xresaY6Z4no8++oiLi0tI0NQzitucpplR1CXaSKK3uPGSpsoY+p/RHk9kWY5UitvbW2bNHCkl+/2R58+e8/PP/oyqLIlDDyHQW4spSlSW45IkK0oePn6CzjQKAUoSfWQ+m5GXBV0/oO8qzsfTkf1uz2KxJNMKZTKKIkNKcG4k0xn98chqtcKIRL/fc6Edz/79P8MnxZdfPcW2AyZZVLcDBhphyXWiuH8BWiFQRBcJLjAra5azObYfie3I4v6cXEl26xs0UGaG3foGH9wUM2U0GlDaYJ3DBVAmx0aJ6z3H3lFIT3s6stsfGEPkNDq00qyu7lFXBaf2yHbdsV3f8ODqguViTp1LVLQMXkwTOD5y7AZmyxopFUlqTt2R0QWqMkcgaNueFCzee5y1jKPjcDiyP5wwJiczGlJkvV6jRaJpKkKMaCEwWYYNiXv3rjBmkrOH6Li93TCb1XT9yH5/YLW8YLG8YLi+oTsNQCQzGcJ7CqNJwbCYLzBFgdsdub65oagb6jqnWdRUTUGWZ+yOh9/ovnrGGb+tiNn5i/gZZ/wQJC3xy3Pm828LflCP7avf7yOMfxHxQyuwb/fKvtuj+z7COsmb31zvzyNDfl/l933u0d/XY/vmSjEKQkpEIplM2OHE+uYFUXXMdMA6R14UZFpTFzld29G1LUWeUxUFQ1EihEIKjfeWspkhJNzeblnUBXU9o64qkpL0zuGs5Wa75+jUnVmVIMtKumGkLkpCgNF66mrG6CLRJDJjkNJilCGESNM0hOiRUpCSp9SaaDv+0T/6f/HVL/6YB3WB6AeUyRF4VAqEKHDOkmuNF4JuGBDWgpRIo6as137g6nJFliTH/RGlJ7lqInA8ntifTsSYGMaRumqYLRachp5xGPBJ0A2eUz8SkAhpsDEhhCJXkkcPH1JVFafTieAdX37xOcfjka7rqOua+1dXeN9BDFg3YooMISEkx9XVBWVVgEh4b6eqZ5VTNwWzecnlxe+w3d7D2cCimfEP/t//kCcP7/GzTz8myzTt1uNDQJcNx/3k+DyMlvlyhXeefpxIQx5znBvpR4vWkuVyQT90KG0RUmP9dN01TQMx4pzDWksKkbquyYuC5WKOUIJhGIkxIqUiNxnOeUSSBBe5vblFCon3HqMF88VkKCRFQhUZx/GEFpArQSwMxuipNzcsuby8mrJ5M0NTFfyv/u5/xdXVFblQKOA0DHz2+edsjy2XDx5xPHXY0SPVVCF1LiC1JM8MwVlkCgQbJsdiIYnRomPk/oOH7NdbtFREAl3X0x4OKODll0959vXXHA9HWg/D+BkJ0CFyWdVkEupmRkHJg9WMYehoVQSt6dpxylDOKoRQPHv6gjhaFmWF6wdOxy1KSaQSKDnFIB02W5bLJbOmQgjB5rAnyozegdGKm80RlwTa5IzdyM16PUnVlUEUJVIb9t3A4XigMAJD5OpqxdXlgugsQ+fRIqJNjo+C682e42AZd0cGFxG3R0xecOo7TGG47dcctmvmdYkRcHl5SVU1vLy+QUsFyuAJHA87tICyyIjeMQwdQikWzYxmMWM+m/PZLz7jdDpRFpMs8uuvX7KY1fy13/097t+/z8uXN6zXt+hMM29K7q1mNHnG0Pc8e3HN4dQiek83BnobmV1WXN6/YnkxZ3/Y8KvPP2e32/3G99szzvitg4T1/+7hjz2KM84444wfDb+haPzdzNT/dPhP07/6drX2u2TN7+bkfvfYfrO4H3h/1fl9Xe7fljAL0qv4oeSRJE7tgcW8JB13hBBQTJE+SmtmdUN0ETuOnA4n3PFEoTMyk3MKkeQjIcB8dcmyKshl4nTYIki0xxPb04EkJVcXVww3B/phoC4LUvCIlBjaA15KijzDaEWUEicFWZEhhEVKycV8cju9vr6hMBKtNclZ/uSP/gV//C/+Z0xyuN4jRk9eFgw20LUdSRlSiljnGOxIJJFnGXmZ07Yn5AmqvKDMDCrCcjFnDI794cjtYU/vPKasiHGKO3FI2mPPaD19NzDagRgSPoANgXJWM6/nVPWMexdzxJ38NUbPfrtBa0ORaXLToLVGyURWlzhvMVJhckM39kQiJjeUVYHONBdXl+wjlFVJUWWMY4vwiaLMCXGgqEpmi8VUFRta/JjIjZ7iZ2KgrmvmyxX9YBHKMPQdUgna05FuHEgxUpQlCPBREJMmxEDfDSAlMQSMMXf7i1hrqYpykmGPI7NZjdEG7x1VVZESdF0PCaRUxJiQSJKMZJmiHyyH/Y6yzAnBYyQ0RUahJaf1kcvViigS49ijhMcNRxwSlTxVrtlvblApsJzNMUpTlQV1U+HE5C58//49xtEx9naKqQmO6+sXfP3118QYqaqKWdNwMVtgkkTO5oyjZXt7Q3fq0aNhv99xc3PN2Pe0+z2u68iUxNtJen1hDGWeQfDcu8iZNTVd2+GcZL1v8X5SBLh+IHYjSiikmcj/fDHD9R2CyGA7ZvMZRVEQgudwPOKcIytqlMnZHfrJ+ExXyLxEJ8Pt4cSL9Z7ZcknyI1JJZFWyXM4ZfKLbtMQYEClCcGituLyY89HDK6pMMQ4CNySil4w+4mPEowjCsD20SJ3jfMf9ZkaRSsbBUuaGTz/+hHlZIJkUEQrBajanKWt2bYtPkYvVEqPklFXt3RQxZnJCcNy+WHP94hqYerQRklnT4L3n6v4DXl6v+Xf//k+pq5zlvGZ1uWRe5bi+Y3Pao5WZJpSEoahnCB1YLivGfuRXn33O1X6JVgl7aHH70wfdV884468Kkjq7s55xxhl/dfHBxPbbLsPiPzmp/SH4TQjwm7m36a47VYj0TUzve17vlJ7ybvbuu73CH1bhfldO/H1E+bsk2a+2mfqf1USno4fk2e/WeDcS+g4pPE1d4aylUJqLxZLT/shhs2ezXrNqapp5Q1XWnLSZqlsR2rankApTGIzO6doTznqqoiZKQfAeZ3uiHUghUFc5TVGyXvd4N2CyBhEc1lme3dxQP/odJmdpkGqSwq7mFW7oyYzh5sXX/KP/8b8n9Sfq3HBcb8lEYuj3+OARSPI8J8VE13aTDNdoxJ3ZTVVXLGdztBCkGADB4bAFbTi2R0bvyZsaU9b4weGd59h2bHYdIUKKHpEiWVagREAkz+XlfS7vP8T6wG67JvqRcRzp+466LlFSkmLCh4QUESUCUmnwUw9x27ccj47FakFZlyAFQgqEVlTzJUJJ+uCIajL+kkJiakPWzEmmQJiMTCmOxx3BWYSW6DJntlziQpxMw5Ti/qNHONsh5HSd7vd7fISmaUgCqqZkYTRt2xKiY7vZEEIgJk/XdlPUjPe0bYtWis16AzIihSKGiLOO4+kECbKsmN4jpXGuZ7YoyXPDbFYBifZ0wqVANptcdI2ETEM3DBRGMZwsYxeZNQvKRU0IifV6zdDu6QWELKM/7O4MhgykSFnmHPdHrl+8QCuD1IIYw13WNRACKUSCtagYSSGwffGS6+st/TDSdh3H04ngPXVRgAvM6xmu61g2C+qqYOyPXNY5RmqkP3F4foONgnx+SdsnpMhZuIQeE2XR0IfA+uaWq3tXFFWG0tPnARIq03TjgBSS46mjrhvy0qCUwfoRERTHYSR6hUsKmzSYgjFJBmvRWjNrSmyK7NuOwQekiIRxoM41y9USnQkOpwOboaUpMtpTRwiSEBOX9x7y5OIhnRVUSaCU5sWLl4yjneTQuWFWl8zKnNwojIKx7zkd9uz3Ry4vr7hcLUhyMnlLwaKyEpPn/PTTT5A645dffMV+t2M2m/PRRx9DSsznc7x1SCHwPpJlht///d8lJehtz2xeU2kFXkCcpOhd1xFkSTIeobLpTpbiNHl0vaEpDfebFVU4f4k/44xXaH9nRij+cijqzjjjjDP+Y+CDie3bROptUvuDY3QEkMQH8eL3JeW+j++9Ov43z/2wLzxvk8m71/c6FHdite903vKqcv2uFPlDSfW7WbvfvKmvjvT+Xua7I7+5p2+OKcT03CuCKxKSgHQ97rRDp4gxhuQcdhiICGwIOOswxqClZhwszaNHOO+RUiOVAQJB5Bw7Sxo3DJlEa4EuC5QxnLqOEAWHXcf+0OHtwKopqbSk2+8olcICQmaorGZ9u+ZXz2558rcDUQhGN3B/9pg8NyRnybTmq19+xv/nv/8/EY9rsmjZ3x6pTMZpt6WqSkbviFJifSCGQNt36MxQ1RVSGyBRlxVutCAUh3ZPnleMGHb7lj5IUDm9jez6u77FrqVte0CjpKYoa5qmnvr/pGCwjhg8n//yF4zWIsLArC7IixKtaoQQlHlB254QJOqyoK4nMlIUBcvlAi0VHoe3Fu887fHIuFxwOpwIHmZNTZblhAA+OITQxBiYLRZIY/Ap0fUtWkuqvEJJmM0b+q5nvd3ikyAgGYY5SkwmWVIolNIYY5g3Mw6HA23fIiUMw8AwdhR5jtYaKSRlUVIUBY8fPrpzZvbs9zuKMufhg4ecji15llGUJe2pY31zy/F4wnmHUoosz+nalt12y3w+4/JiSXIDIjrGoUdEx/r6mpAEeZ6xWq4o8oKu60kpsj8cECIRYmBzWHN5dYlPjgcPL7AuMlhPcgPRdqzmNUIoeucpmjkJRXc6cTq27Nc72uMRN460xxPt6YS1jhgCAsGsKMjriirPp2gn6xHZJIdWKZAVGTJ5kvfEFDF6coGOzqJJ5FqynGW0ybPvjgzO8fD+JTIzHNqWzX6DyTSrxYqUFGPXcXlxQZVXuGEkOE/MI4vVDOsDm5uXHIJiDIneB/Jqhi4qMpPT9j3d9oSSElSGlwoloFjUlIVBz2ZkpUEZSR82HCLsB8uDqweYLGO9P5CODpPXPLq6h1YK7zzGKMqqpK4rUgw4H9jcrlmvb6jLgsV8htIK6wZ2mz2ff/GCq6s5jx7d57Y9UZU1UQgiI6C4WF1xcbFiPp9xOp3Y7Dfc3Nxix4FPPv6Ei9UC23c4N6KUYrvbc2MtWgiElCiVU108wEaJZ8onzoXEqIymWbHd3ICPoMGYs/vrGWe8wvBxRcrUjz2MM84444wfDR9MbL8tiRVv/P7G2Cmlb8ti4d1lkvje5d8mhJJff5N+lSf7ajwf4p7866TDQrx7XIl8zR2n1/y+Y7ybs/tu1u3bY3jz9YvXy+62fOfxW4vftd165/npPEQZkcFSCItrt8TTARUCWVYgZMKNHUprfIoU9ZShejwcOXQt1nviMIBSJKGIQtDHhAQCkdF6ApLeRTaDpY+SRMbBebwsqGclzp7YbVqasqAoKlTecHuyPHu540++vuZl78gXK3I6EBlCTo7BUkvmWc3/9P/8v/P5H/0rliayu10zK0tSiGR5SUiSgGT0ATe2SJnwInKxnGO0wflAiiCigKRo5kuGMXBzdHhhsLIi6MDheKB3A9v9ntE7UJK6rlnUNbnOSGmqsmotp4zQrqPtOmJMCCFpKsV83pASBC/u4pUkJsuQSoAU+BiQSnG5uuBiteS43+OtRxARMRFdpD+0hGFEGUWmE6tZTd9OvZSjdRRVw9A5EoGQHJFIVeQM7RGjJcfjnizLubxacbvZs1gsEEhWiyVaaY7HA0WWQ0iMfQ/Bo0TCKElUguMwcHVxgVIKay1D30/9kXcuyFprnnz8CV989SWb/YH9dsfFckV7V9m9d3WJsyOZVtSLhqzMWF1coLWesoqN4LTf0O5bPnp4j9vrF3TtiEgGZxNaR4If6PoBqRVCGUKwjM4RkkWPBsHUE13khrEfiDFw/3KJlIph8Ow6x83mwPXzNZv1LaftFj8MJOcwUiAT1EpzURtE8qgkkDGSy4RODuk8psxBaUY3ErxnNq8ZhgEpDbnJkM5hdwdK5bkqDVIl9vbE0beU85Ju57B2gBBoR0cSBbqYEVI+GUnZyO3zG7SQjKNHlgoXHMehZb3f4YzANHMOuwOmqrn/+DE+Ca6/+BplcnSRT3E8RcXcFHTdkb/zn/8tHj+6T5lpJIH+cKLaHXCDJb9qicFxvd/yfNcxq2oe3H+EKDKSSPyt//K/4MWzp2Rast2u6bsBwWT6hGkYEJP0P8tQRcaT+QMuVg3OB07HA8rkmKJmtJ7joZ0yaiPsdwcOhy3dMIAWjNYhJYx+4PmLFhECs2bGze2WdhwJCYTO7iq6gaZpaNuW3GjmtWE4tHS9JTOJLMtQWk5Zu9nZ8OOMM84444wzzpjwGwczpbd/fPd66f2k7j80/sMf431xRG89+t5x/LrxvBvl88FRRgLEh5W6mQjuJFdsDzvawx76HRfNXaWnnOI27GjJ8pzFYkHX9RwOB7IinyYzcsXzrxO2b9FZhi4ymqog2ZaUAse2Z4wQRE7XdRMxkeK1ZFRHpmN4T54nYoJffPYrtqNF1w2ffPIJ7S+/4uPf+V1+9cXXfH39nOPNDfeaime//AzpLD56mrqgzHKCdSglafuOzg64GHEpUJYlRVnTDRbnOpbLJabISNIQUmSMgmK+xA8bXtyu2ey2DNbiUwApyfKcqqmx3rOYzckzjU6SECJte+J06uj6niQEeVFSlvkUS5MLIgklFXlT4WygKEuyPMO6ASESQgoWyxVGZ+x3B4a+597lJcGPKKm5vLgkRYgxYfue4EeCsyQfJhMmk5MXitl8xmI+RynJ/fv3aU+THNuOjuViDkw901opBFOV9cXL57hxZDabkWcZKXkOxx3eWooi5+OPf4pznkTi8vISay3GGJbLJVprnj9/zjAM/OEf/iFVXeO95/MvviA6T/CBuiy5vb1lsViwWCzY7nas1xuEllMU0nJJpjMOhyNaamKA7e5ACBEfp0gerQ1KZ0itCIMlJUnZNNRSMrrpHLkQ6LoOqXpII9cvp2ik6BPPn79ku92x3uxxzhOdwyhJmRnK3BBEAu8p8xwtwAiLIrGoKzKpCc6RXkmbuxPeRrRSZEXOqWtRUiKVYXQOJSTKaPI8p8hzRufovUEWKzCGpslQUrLbbfHWIrWiGzr8XQV4Xs/ITUael4R9hswynJAcncebJauLGW0UHPw0Afhyu0WZnHuPH+GjICXJ6AL73Z5qDs9evODhk4csL+cImVMYRb2Y8/DJR8zrOY7EgMM7x+l0YBg68juDruNuy8OHDzBff8UXf/pz8AKhBpRQfHJ1j9vr57ixZ386wKklItDCoyUUecF8kSGVwfvA9fUNw+gm0qk0VaGp64yb2zUv1zcsL69omoayrCBEuuOJZ8+vGXzAAdv9gdl8QTNfMg4D+/0BowRjf6JLntVsRn+K9O2RspomG3a73XvcBs44468mYqkYnpQ/9jDOOOOMM35U/LkSh99PxD6EYKY3pMN/fkL6/mro+4jpD8vA/b5tvy826EPH876c3g8a3wetBVKAFAIJHPd7UnIokYjeE6MjSvAhsFwuObUt4i6WyDpLjJH5Yk5G4PLePWxukN2RaDuiiTy6f0VQkTw4ZO+43nYcj0eMySlKQxhbvAtURY6InpASX371NZ8/W9PMGsoHDXJ1gYiRNA78k//vP+T5s+dUmaGSgq+++ox+v2VeSFSdTwTWO4axpz21rC4viFowHA6YzCCVpqpqlNIo6zFlw+gcPoHOS57vdjx//oJnNxt6G0AK8iKnLnKKopjk2Slx6jrcMJKcpWs72rafzKjykvl8Rl5WlFWNlJK+H4l+6j81JkfrDEFEa4O1ASGmjF4lFUpqxtGSQsBkOSmBc4kei5KaFAOZmSqqSk29yhIxSYOVZL/fsz2cpugdP+27LAtsl1MvFwghuL295eLqHnQD6/WG7E5e28xqdvsN3jncOHJxsUIbyWgHnj79ipQEznuePn2KMYau67i6upokzFKyWq0IIbC+vUWkNEmpZSTGSEyJoizRWuPdJEMGyPOSYbD0/UhRlNzcblnNSmbzFU2u2FlHEpMMPUnJ9nDEx0iIaZoEGQPz+YIQNSYr6YeB4/HAfvuc65e33Ly8xo0B7yO5yVFSQd9RikRRZOTGoAARA1FBludkWtMeDpSFoMwEmXBEN0z9mwKC69B4Zk3FEAJeKkyWsd1uOR2PzGczlJBopVFaMYwDt7sDHRWnrmdelszrEnxkVjXksqftTrTtEb2cEXKFyyCIxPPbW2wQ+DHiksILg6kuUFmDHVtM1ZAXJd3gcCFyfbthf5jIZVnWqCwD2/Pok8f0fuAXn39GlRnc2JN8oCoqClMQMoOeVRRFick0mdZ4IfnTX37Bp598wp+9XHPx4CP+8PFP8acTmTQk55Ex8u//zb/iuL0lAsn1VPMliyZnXhUMw8jt7YZ+dDg3EEJguZizWK4mp/PoSGFkKHPaIieOI6Kq8aMjxkQ/WDa7A8JklM2MupnMp9rTCTeOPH70gKE9EL2jLmZoEZF4qrIipoAdh6miW56/yJ9xBkCoFP1Pmh97GGecccYZPyr+XMT2ffhPUZ39vuP+Omnzn4fcvlr+Ia/xQ0jrhxlFvbsR3H0P/4AVI0Imghtpj1vKTCOiZBhaynzqg8yEwDmHlJIsywgh4IaBfhj45PFjbHdAGY1UAoHlcrVkWRbE5DmeTgxCUpY1jZO8fLlFCoGpKnwfEAK0MQy9Q4iEKSuefFJRzFbQzNm4wP/wf/0/o7OK1cUl93/3Z5w2a3Yvn2NcT13nFLkiBM9ut6Opa8bREgQEKRi8IytLirpCCI31giLLKGY1FsHz2x23mw0uTj2bKUFnHXlZcXl1SZkXk3w+REIIAGghOB5PjHbAh0CeFZgip6oaqrpGao1UGiklQkiE0FRNTYoAAqEUyhg0kW7sccFSNw2r1SXr21v6fqCupl7SMp8yQZ8/f8knHz0BkzAoBPGu31lNubzagIBhWNP3PVopYkoEHyjKgvV6TYqBoijY7/bstnuWl5dokzGflVwslzRNhR0HvLOkFFFCUBQFQ9+z3e0pywZ5J0Ou6xrnHGVZMptNfZLPnz/HGIMdxqn7O0TKokDr6Ray3+9ZLpc0UnLqOpaLFcZkbLYbTqenkCLOJ8oqRxqNj5K6mZOkou0GumFAKUPbD7RtT14EDseB/eHAYbfl5bNnDP1Ae2pp6hl1WWFQROuww9STvTSSZHuMj1QaovdURQHSIIGuPdJkilmVIZKHFLFuxI6OWTOjH0f0nYtv37UMIoDSIBXL1QVVVZGbDK01brS0bQdSUZQ1QueUeUY/9LihR5GwziFNwfJeRZAC2VSIZoXziZMKOCHpHehyBqYgmIx+jBwGy6kbsPuWrh8RUhGF4uLRI2azBUVZY3KDMIIyN/yd//w/o8oMeEvfnrDDQPAB7wIJgR8s3al7nXHsvcc5x/rZS7Q2/CIluq5FCkGdFzy8uEA4y5dffcmD1YxPnjxit76GGOm6kd12yny21t25ho9TC4oQ5EUBRAyee6slZZFzPBywPpKcZ9cOr920hdSYrEBnOdI62lPLbDbDjT1f/OozHl1d8OTRA8pc48cRRcC7nma2YHXxCc+ub9gezjm2Z5xxxhlnnHHGhB9EbN8mhW9bKU14P+l7ReC+IXIfWpn8zSJyPhRvSoE/9Bi/Can9dWP4oeMX/HoCD0wuwMkTXI8bW4iOcWhJtiPPmsn8SCmyvCDLc4QU05de77m+ueHTJ08o8oJmPuPpL/+ERewxZkVR5igiRVnjQmA3DJxOJ2Lwd7ExDikm4ysfE0lIsrKkNIJCl2TljBOSv/3Xf4+E4Msvn9IeNnT9QLvbIpwF21HWNd5aghDcu/+Q/WHP+nCgnjVs2hNJSC7uXeJDhKSxg+Ples+L62tOXYcn4UMkL0t03TCfL2m8JSbQeUZSguji9JrHkb7rIU1mS0YblNKUVUVRlRRFRZZlDNYi4pT3WlU1CE8MfpLVCkFMkVPbkeeGLMspq5xHT56QUsIYg1ksyJSk76bqa/BuclQeBkiBJDzjOPVCysQUy6RHpMppmnrqgXV2cl5Wit2p5eLiAmdHjscjOk4XyOFwZHWxpO97Xt71BueZYbVcTM7Rd9Lj/W7LMA6sViuU1vR9T4zx9XgXiwVfffUVNzc3ZMbgnWexWCCF5MWLFzRNwzAMOOfwIRC8J89ztpsNx1OLUpqizJnP50gt6AZLkWegMrqhR2qBNhnGJw6HI8+evuDFy5upqteNOGuZ5QadIjMhWS2XZFojUsQOPbmQCBL98UguIlpCVWRURQ5kExkbRrTSVEbjnCWkHJOVdF3PZt9T1zV9UpiqROqMXd8TdYkUkt3xSPCBiwcPpomVfsCHyHa/n3J+kRzbp0QExJquHdDa0PcjOsvBKMqmwSOwQRFcCUIiltXULy4U+75nvb3GhYjJckxm8LpAZYp7l5PEvigr8qJCm2xypRYJU0qqIuN//ff+t/zkySOMgOgsxMQ4Wtq+Q7hI6nr6tqXtOjbbLdvtjhgTu8OR3W5LjJFdW9C7nl/+/Oe064YiRXy3xRlHXmRczgpIkc3+wO1mR5ZlzBcL9scWfzduFyKDcyAlQgW+/upLvA98+vFHZEWN9YmXt2v60XJ5dY9T29ONw51xXUZV1VR5TrQ9y+oCrQSSQJVXmKrgweUlu+MRGzw3Ny/ZbHeTA/gZZ5zB8FH1Yw/hjDPOOONHx29UsU13vbVTxeoVUX3bGfibdb9dlUxMEtlvWSC9S9DSd7kiv73sQ0jeq+f+vBXlXydJ/r7Yn/et9ya5/tAe2w+NWVJSoBIcDztOxz1VGBDBoZRAKUlkOg9d22IyQ1kZVqsVu+2W9W6DC57gHdWsoWwaRGv5+vlz4jAyaxq27ZHbrmNvHdYLmqokWEty9i6aIzDYccoYTXKqfgnJ/ngkZDkvnz3lsDuw2+7ItcEIyEXCE8jLgtFZkhB0g2PX9lOPY1WT8oJ8NsN7z7G3bLZbRhtYr/e4EBBS4VKibBoWVU1WFCitiUAuK6y1tKcTIQT8aHGjRd9l4pR5McmHg0QZgzEZSqk7We6dtFgbsixDSoV1IyCIMXI47snzcnJRzjMSkbpuJpJx2tJ3A8v5jCAiWmuKIqfIDfP5DJiycKumYD6rUUJg+4Gu65E+8pOffswDnVHVNSkmxnHEDj1CCLIsm6KbnGOxvODyvkbqjK7vIHn0nby4O015tE+ePKbIMp4+fUp7OuF94Hg6ou9e1+FwwDmHc47lcslut8Nai7OWuijpu47D8UgIYYoC0pqiLBFCYLIM7z2LZo7Wmn6wjNYxWkt3GqgKTRKSsm4ICEKEw/7AcX+gb3sOmx2xHxFJUCRYVDW1Fgg/EpxDBIcJCgnkKZJrTVllhKLG2oE8y9DaEKMnMd2r6jxntFOkjVCCJA23h44QEqKaM0jNvrWUSZNliUM7xT7Vs3Jyks5ydofD1Ces1PQ5lQpxZ6q1KAUuRFLsqeoMU83IlhfYJOlCwsyXSF0iRohZRVbl+NORSOQ0nDhFTzASXUzHyosFq7KiqOrXRFYbgxQKqTQCQSBgconJNd6F6XUDKsuIIZKVNYvLK1QMyGAnF7o7ZYILkRA8Yzf1jbenE9vdlj/6t/+awnb404F+t+VeY8jTSBYjSgmePXtKaydZvg+Bruvp+oGYEvW8xDrH7thRR/DCkUtQmcE6z3rznCQ1ZVGSlxXKGF7c3DCMlseLBcfTiegSs6sL7q0WRDfibYtAMPQ9I9OE02gd++MRoTOqqmB/aD/sZnjGGb/l2P/h6scewhlnnHHGj44fRGy/qbp+k9/6m2DiZj+uZPkV3hun86G9rt8jV/6QSqwQ4k7S+gPMo3ibFH/ntq/Mo2LADR2aQJkrRivxo+d4PBCEIC9qZnUFKRG8n+TIMXA8nrDBUWhBWdfUsxkXi5I8TPLGZzcbykXDbJljDyeG3Qkl9CR5dS1KC6QwRKCoa4TMEC7hkkSLhI+e036LGwYykbDtATsFx6KMZoyB09BT5BXt4HEpkNc1UkmG6BlOHTfrW6L39H1PiJOTdVaWDHakni+4un9v6mcVEussth8Zxo5xHOi6DlJCxDSZLQlBbjIWiwVaT1mzxhi0zkAKiiInywuk9q+v3ZQSQioOhwO3N2sQip/+5AptMsbR4nxEaY3JMpzfojWYTBK8IzHlc462p20P5Jnkwf17jG7Aew9CTGTSWUQIHA4HbADvHDFNxFZJiVaK29tbgnfEGOn651TNnE9++jMur664efli6g2ViqauuXn5kvXthovVCqUMxuRUdU7fj8hMvr62bm9vcc5NZNUYSJBCYLVcoYxmGAZEltF2HQAxRQY7UhQFzjsOhx3OeZr5nLwosXZAKoVQk1EXImLyknF0vHj2ku7Ucf3sOetnz7l/cYHtRkRMVEKgvJt6sQGlJLmSGAmm1BTGIEn03qIzjfUebx1Ka4TShBjwPhCFBARBKKyL6KJGIthttnRjx2gDHzUrksjoo2I2n5OXCpVNDsExTBnISQikkty+fElmDE2myTOJdAEfIcsz2nGgTw5ZLejtyPWzF5x6j9ILVJajC80QRoSWoAV5M2dx/x5FnqNkBqpGaYOS6s6fT6DMNJHyahIFMfVFBw/X12serlbMqwItJUpPPcBJgJeAlIQYEBJkZkjRozDMljV1DNwXUHz2S/7H/+5P6TcvqaXgZz/5iFIKhvaIHQciiRD8JG+Okq7rCVWkqmq6YWSwgSQUowtgPYvLOZezghQTh8OBru/Jy4qb65e0dpxen0oURnDY3jJaR1nVHHd7QplTFRmz2Zy6MCgSfd9j79QkJsuYLVaslGa+6D7onnnGGb/NGB8W+MXZIfyMM84444OJ7Ztk7RWp/Ya4fbe8+L3SZD5QZiw+bL0fKv39kG3/Q5DbDxnHNzFJP0CS/J5JhW9tK6aKLSGyvr3mdNpj7ZZae+q6JCSBTYK8LIjeM1qL9oEQIs551ps1z54/58HlEqMlHjiMjiImSqkQecl6f2LXtey7FpEUs0IjiPSnAyF6Htx/gMkKnI9Y33HqHSqvcAH6cUQYiW0nsybJVO1LwK5tOXQtSUpSBI9CmZxDZzn0La0bcDHg/BRDInTOfDajrmuapiHERNu29MPAqe0YR8swDlN/bvQordBKobVGJCZpqxCURYnOs6mCq9XdxINAGUOMiZgiQoi7imBkv9+x2d0SY+Ti4oqrqwekNH0JN8ZwsbqgKEra9kQ/tNy/uiLLFEMYEDLi/YhRCucHYrS8fPkMZQyL+ex1tTTGSEISY+Tevfs0swYhxPSlvzTcvgxkWrFe30xkV2fQdfz85z/n8vIKO46cji2ZyXh4/zFt1fLy5YuperxcUFUNIUau7t3j4uKC4/FIfpdnm1JCa/16HN465vVdDEuW8ejxY6RS9EPPbr9nd9izkILZrMbbEZMprB1IIqGNpigKUnDsT0eit0QvuL3ZYkePFopCZzy6vMTERG00udZoASEZDq3FW0tTFUghJ9WBAG9HCAEtBc4npNKoTJMQuBBo+4GQYDZb4GOka1ticrR9zxA8NkTq+ZLHF5esNzv2uwNlPsVK7fcDea7xPpAZg1aKuqw4nU7kRYkSkvl8ickFT58/IwRB3++JGJAZfX/Dfn8gSo0xBcEERCXJ6oIin5MVxdSTmhJKKDI9Vdqd0AipvpmwStOkjRCKGO+uQZNRNRlGJP75P/0X/D/+2/8L91Zz6rIEAdVsxmK1Ip+VyExxcTGZOs3q6rW5lhCJKi+4vb3hH/39v8/+5Q3aB+qq4HC7Zu9GlBR37ukBh5w+O9ogKpgtFlSzGZ9/9ZRjP5BXNb33nPZH+v7AtjasFktmdcNHn9YIIUniGu0zRucgwNVyzuVihY+J7e6A947uZLl92ZJrycdPHlJXU5XXxIjMck5ty2a7IQnBerP5sHvmGWf8FmN8UODn5scexhlnnHHGj47fuGL7Te7qN1Lk7ys4vkW8Xq/3hmyX9C2J7fukw99V1fwQTvhdVeZvLxIftL/39RR/qCz6zWrrm9v9WnKbvsm//f6+36kCq1Lk+uULJIkiN8yKDGcH2mEgq+ZkeY5v29eVuXFsCTGi1fSl8d7lEoC8rIjBI7RiHC25zjFCkIaBvCiRSWC0IlMTsanrmpTEZFgTBW1v0VmJUor1djdllYpIsMMkqUWQBAhjsClhpUAYTecjfT9yGnZ0zmJToA+OIBKzZsbDx49RSmGUBCI2eMbRcmpPtKcOO7rXBkxlWSFkjlRTJrNS6rW0VDBV25ByyrItGjKTIaUmCYhxynKOKXI8HjmdWvq+Z3mx4N69eyyXF1Ocz+E4fYFPgdGOxGMgRkddV5RlRkoRSCglkQqkTuSFQRuFd44qr2m7FiMkXdfRNA0xwjiMHA4HxtHivWMYeja3L0jBk2k5VZqNYbc/0vU9wnlCvMFITWYM9bKha3vGwVGVDUZrlDQ8efKYzd0khrX2dcU6pXQnt57clpVSPH7wkExqYhF4+OAhjx49opnN2O62UzXVGLTRlGVJNqtICK5vboljZLQgmorkLYfjAe8sQ2u5vd7Rn3oON9eMxyN5SsS+pzaGkki0jiANWdlQVTOKzCDTpEJQmZomBkJPcB6hC1KS2LsooePphFCG0Xl82+FCoCorSiPItCAoRe89Y4jsd2tOhwMiwWoxo8hyfMw5tgd2ux2rO3I/WkNZVYzjiNGG3eFIFGDyBYVQtMeOXBmyssTHQK3m1PM5oazYVCtEWSFMRhKahCJFNfWdywwRBT5EhJHTh1wIpADB5MQsEqToUMpQViV5pohjzzAO2N7yy/Xn7HYbimIyZBq9B6Umg6si4/7lJZcXS7wbWMwaHt27x9C3/PxP/pj1F59zePoMFRwPf/YTBttSZDkxRV6ut7TO42VOPSsotcH5yO505Nj2bPc7hMkptOFisUJqhe+2nGxL3B9xLtAeThitWV2u0EXOze01yhhqbVDEOxlPoGtblFI45zE6px89h+MtXXeirErqZobJC5rFglN74lJcfP/98owz/gogGfljD+GMM8444y8EfkDF9u73KwIrQKQ3yWi6+/n+ntj01uNXq79BApnI7aun0t1BIq8PPB377t+rsbzeNqU3H73e86tlr/b9IYz1g62tXsl938qj5Q3n4omFvo+MSykQCIQUkCC+8z5+7+CSeGOS4btHq5TGtT1haFlVBXQnUhSEpCirOdLkaCGxREIMd32fBZk2KAHHw3F6nVIyW6748uaawziwzDOqak7qLaCwQ09TFqToOfZ3UlpGEoJ0dw6LogSlaE9HtEpkuaEfHafTgPcBHxLC92ACp9GzPY14MTIcO5KbZKjCKJYXVzyqK0JKtF1LiIngLadxxA1TBMg4DlPsjxSURY6S5dTXLad3N8/MFBEkFFJOParOuclA605qKqREqKlCZYMnysjheKTrRoTSlLOGT3/nr5E1c7TO8AG6bmB36JDScXWxoCgzrPUc9i33r+Z456ZKcZYTgycJiZDT49FatJR0XYvRCpumz9c4juR5hbWO55/9isPuyOrigq4ficgp+idFtJJcXlwipcL5W7KiACD4kd//W3+AEJKnX3/NcjXl054OR4QQdP3I8dQjlWaz2XJ7e8tqtZrMozJNezpNzsci8eXXX5DpjJ/85KesNxt+9fnn9MNkWhWip6hKssyQZ4bCKPrB8vGTjymrms1mg/eWbghkQnHaHnn5ckPwkr4d6E89uVDkMqGKHCMT4EB4AgopNYKEtQMiWspck4j0zuK8w/mAwNBbh/UBaXJSPmN0nq+vr3n46DEPHz7hdNiz3+9YLWckpRj3R+zQg9Is53NSEgTvOI4jeQZ1nmFWF7SnE6ppiHG651VVQ9tPplnJO8qq4TQOJCQ+BOiOFEVGVhpisFTlJWFxgZUG6xNaTxmwCYVIeoqlUpLMGIgDKE1kqtTiPdEOU7tAnLKgQzuwO448WDY8fvyQSgT+xT/75yAV7eiQYTI4EynhRsfoAn/28hfcXl6wmM94/sVLfqU/Q0ZLGHtUcDSFYVnPidEilUBqiUBy6DqiMtx/9BHLskSFwJdPn3I6HcmqmmZWc327ppnVGFFQZYb5/CGn7ZrgAwHDtrX0w4GvbrcIGanLjPm84bKZYZRmf2zJi4zHiznBR7a7LUYrBmuxfc8w9Cgj8cfEoe3QWUbVzKgXlx90tz7jjN9WxEyy/t/c/7GHccYZZ5zxFwIfTGzlG8ZPr6hUmuyH3ln6DrkV7+GS6Y70fesYvDZHSkz0NKU4VfJeEVbxDYl9vTxN0TZvH+NO8Cxf7fBtMvwmvk0Ov6vvVry1zqte41fri1frvbW79D1c+ptxyQ9VU79+q79d7f3WmGFyiyVSSVBFiXMjeTEnK0u2uy3b9YaiVCglcc5RZDlVXtK3Lf2xZ+hGCJqsrNHVDJNpjEoEHHacMkCNzhj7kYCjyHPyvKQfRoSSICQ+RopMsz8c8SlSVjVdP3LqLL31oAxWRMbR0x16Dl3P4BxJSEKMrC7mNHVNXhTk+VRxdc5hu47d+pYYIrYfCdYDTLmmejJ7Kot8eo8EmMygtEYb8/rcZVlGnuWvK5TAVGUOAW00PgW6sWN32E/GPVnGk09+wmy2IiSJEwWtTWTKYIPHJ0GVSQIDbd/Td46yqtBycu9NCfK8YrPbESKYrAChyfIKokPIhHMWYkSSCCFh7ZGqXrCYL5nN56Qkubi6x259AyFQFAZvLb/4xWeEEDBZhtFTVFAII+v1C/KsYLFoMEZR11P1tu8HYDIs6te3d9E+B9brW7JsMmAqSnPXa6wJVUbw0A4d/TAymy0IUaKNZWxHovd4NzJ2HS9vb0EohNKTI661zJqGwpRsb7esrze0p56UJP2xJfpADJ6oQBGw3hFlQmhQrz563kEY0TKSYiASQQp0kXPYHwlhZLQJYXLyYoa3nqfrLUlXJJlxfbulO+65bAxKZ3TW4pxHKU3VzDl1A0VeMvYjMXqG44G6Lrl/dY+DmWKeqmI6d6e2QyjFrKqJ3Y5oe2KUnAaLlLCoMsoqR2UZz2/3BJuQzMhViVEJpMSFgFSCJBPIxBg9wntyBS4ErJ+IbRoHZHCIlAhCE3WJdwEhI3a0CDzDcMSlEVM0lNWM1XLBTz75hOdffcFus6EfPEkK9m3P4AOZhiwvSCnSdQdON8/43Yf3qIwiupGYHCav6AdLWVWYak5K8OzFSwqpiEjq+ZyiqdBuZHQdl/OSeZPz0cMHrJ89o11vEFnFvvX0QdEGxWqxIFNwuaxRRHob+ez5lyAFTz7+GCEFbdsic4MdLSbLuP/oIVWhMJlh3/a0zrM9dWz7gDkMH3jjPOOM31II7m6SZ5xxxhlnfDixlfJ1L+j0H4R4m9S++vkOr7vjYW9WZ7/7Jvy6ignElEhJvN4PQiBeH1u8luV+ax/fYaj053VF/q5Nf3Bcz3dUcT8od/cVo/81+xNCIEXkdNiSZxpvHfjJITcCwzBQVxVSRISMJOGpypI8m7JJpVQcjydu1xuWi4amrpAmo2/3RNfTRY+WmsxoRmuJIlKXBcFHBhvIigbU5OY6eo/Mc8hGiryg63tebLeovMQLSdt1HE8t7TBifUTnBVVVE2JCKcHFckXTNHRty2k/Ofae2hNd24GAzGRoIVBG3eXxGpRWSCWRUqLUlNGrMoMyBpQieD9VJfN8cscV8jWxfZXrW5Ylo5uyTU2W8+DRRyhTkoTGecmpG8hmBS5E5k2FDB6XF8waMMYzDD2jHfjJpz+l398iROR2s2a1uiTPcrQWeD85C1/M53g3ZYzaYcCNI6d0JIZEVc8p6znOuyliJk1xPK+mU5RSqDyjrqc4oIRA5Tld29IsFxwOe4bhhjzLkVKhdUZRFJRlwcuXz0lEFosFs9mMYZjMeKSU9H2PcyN1XRNjICWw1nM6nQgxMJ/Pqaqatm0pigKlNE1dk1KcquYmIzOG9fqW2XxBSJEYE4djO1VWR8twPNHu9oTuRL2YocWk+1Z380N5liGTYrs/IlLgctGgZKLvW4SQ+ATSaBKGw6HDJUGpcrCO3f6AUhqtNbPZjCLPMEoicNxsdpyGgXq+IDg3qQfanuOpxygDKZErw/37D3B+mjDx3rPebths99M7LxUX8znlckkShvZmy8XlJXVVIvxUZbRdh86Ku/krySuRixJyOv/JE0Ikxel+Z/ue3g14oYkiIyWJTp4mN9ihp3c9m9Oaw+D45JMnuEqzvt3w4sVzLi4vKWcrVlf36boWpCDPczKTUTdLZiExOo8xilmZURvByy+fcvPiGQ+qCmtHclWQBFzfbrjZ7EBqsrLBRe4iqSTRRzanE4O35PMZx1NLU9akENje3BD7ARkjRVXzcrtH5Q1Ka6z1ZCbnZ58+QYcRKRLXmwMvtyeElJzcV9x/eJ9Hjz7iNHh2hxfktaIdA25sJwOyrOTy4pJjNzI4T8T+kFvvGWecccYZZ5zxW4wf0GP7RkV00v4ixLtZtq81xt/Cu5RtIsXfIKVEjBEp5TvrvdPD+say18+9cdg3yetv1MP6PXg/Gf12b8uv67v9ztzZD3Zo/pDXECFY+vaASIGuaymER0RBXmW4EEgRkJOUNzMZ4zgQfKQsyzsXUsfheGI2n2FDIqmM2fKKbDwQjjuOuz1K5xgp0FWBkoG2Gwkyw/uIUQaTl3TDnrbd4Yn0mx39OHCwlsN2R9f3jKMjJsirknlZURRT1ImQmtNhT388cdhs6fseAK010fvJ9AkBMWG0QitzR2Knqm4iIZWiKEtMlhGBJCVCaYTUk2mPzhj95Pr6yixp6g8Ok3xdSuaLBcoUzBeXKFNyc3Ogmc/IQkZRNgg1uUl7KSjKgtWqpCoFX3zxObmZ4ldSSiilWC4W9EM/mRuNA5cXyzv5sMOOI8PQQ4rkeclxvyPLckgwjlM1cT6fMwwD19fXiBQY+g43tmRKEWKYIoxCJANCDEg5xRV55yDB1dUVKcE49ggh2Wy3FMVkFrVe39L3PU3TUNcViETXKUIId/m2CYHkeGhxLnCxusL7QNd1ZPm0Xp7nDO2B+w+uOJw6ju2JqmlYXa6w1rHfbelGS0yC5BzaB3ISpixQMeH9SGkUZV4gREQkECHQFBkpBPpuQBuFMiUuJhISYQqidFTzHGVyAgIfI4fDHqEMZTkZJI1DT2E0mUo4b0Fp2n7kMAwMo0PrDGMMIknGvufxk3v0o6Vtu8kwqygIaSKLzvtJyt21SCNBwalrcUngh54ylygxncfRJl48f4HW95hfPiCS6MeekCI+RoSWDOOIVApNpMxzjp3DpYDJFIvlkuP6hj/61/+KU28JssBLw0cfP0FIhTLTRFQmNSFGrPeEmLi+vsGPIyrLWCyXjC7gnOPh/Svaw5pnn/+C4/oG4R1NOacpMxaLOc+ePeXYDZi8QKjE8dBx6DZ0g6UuS9rjgdXFBQ8fPqJuKoTSHLYblFTM5xXRB0RmyLVCdQNSSepyageIzrG7XYMdyIykGyMOhbOOTCh+8asv+bPPfkWWZfzOT/8ay/mcQkl8d4vfWrbbLS5JmrphkVcfeC8844zfXtj7BemDJV9nnHHGGb/d+GBim8JEbOWrqBMpXiliX5PK9Lq59NfcZMX7ZcFKqWn5azfQqS8SuKtQfSPrfbXlq8rta6fmu3+vD/VqvK82+g2J7fvlvm8T7HcNod7d9tVz31WZ/aBKbuKt6vfrRe9MKAgSMYz07Y4YLSaTGDnJTpESESOkhMkMfhgZ7UhKoJUhEidpcoBusCiTg8r5/f/sD1l/9Rn2euTUj1hrkSGhjSHPc/w4koREZiUqy0Epnq933Gw35E1NN1put1u6YWCz29314AJKoaTiwZNHUxXOTSe0PR44HvaE4O/iViZSmxnzTV+1ECitqMscJZnIgTEIIYkJpNYUVTVdHyRUXk75qeNACB4dBUVZTZVqkyEQaC2YElUmp+YYQaqMsp5TN5fsjom8XHLoNoQEymi4W9ePU0TL4XAghMBivsSNljzPMUZS1Q27wxGEYj6rybQixkDfD2Ra0zQNSkqKLONiubzr6VRInXHqeoa+o6grtNYooRhapvOQZRRFjveelOJddS0xDpaUGaqqRko5Ra90Hd4HlFKEEAnBTaR7uSDPLxnHkb4fqKpyiu9xjqoyeB8oyxKBYr8/8fz589f7yfN8+qzeffyPxwOHU0c3WFaXV9zc3tJ3A+3pRDeMbNe3dC+uuVcUXNQlOIcWkOsKGT39MCBJaK2IUUKYXL6FvHPUjYKQBDLL6IdA6yJlWeETrDdbrAs47yi0ghQ4tT1VUaKzjOAtAUV76hnDkcF75vMlPkR0mq6xh48eEfG0x5Zje+Ly4pIQAjIljseWLM8py5K6LNivr/FJUlU1QmnqpqZQkb5r6Y4tuyGwePgTqCuGoWWwDp1lSKNRSjNaR56X5EXOzbOnfPH8KdtDjxWay3v3mf/+702kMEaC90TliEnc9RZ7iqJheXHBV189JReGYRhJMU6xQFIjFVRNg+h6RPIUSrA57BG2Z1Hm6HwJwWMtnLqeqplz9eAxP//sl2RFzcMnn7C4V/L0+QtevHyJkBAORyyJfLejqUqKoiQ4T5Ca7tSCFtzu98yWF9SzJcPgGIeeKs9pD0dc3xLcyNEntDI0s4blcsHQtwzOUuWG425Lt99y/2LF5byiPe4pywLpICoNKeJ8eN/t+owz/spg/4crkj6bR51xxhlnwA+p2N5FnQCTJPiNTts3Ie4ky/B9VdL394Z+O8IG3qwUv9nFO/WYptfrvUsaX5srvXvc76mmfh+pfD8Zfffxh1Zcv73+95lBfXu/3z7ORPqn1z+RoQB+YOj2hKGlMorgLK6PIA15URCDZeymfNGqqiZSRKKqS06nIyFFtrs9Jm+4vHePy6sr/s0//Z9Zf/YLct/RlAXeRTAQEIwhElWGA3SSHE8t++OJoAwvt3u+ePqUwVqkVuR1Q5YZiqJEa0N7PDE6xziMOBew3UjXdXcZs1Mv7Kv3QUpJVVUYY0hp6kkVEqQS5EVGUVZYN+XtRiGxgbu4HtAakpIkZSjykhgCUhmUmfJBJaCknMyKpGRwltFFVF5TFDXKFEhToLKSvJyTFQbvLUJKQkp0bcdedfTdhkxryqzguN9zsZrI6O1mS0oCnU1VVCUSRVFS1xXt8YCUAg8E63jy6BFd16O0IURJ3WgWqzmj9SilkESKokAmjR16um6qmJZlRRCCsiiQKbLb7SiKYuq/NYa2O929fwrpBSlFnBu5vb2hrCqOxyOzZvY607jvBoQUBD/JkGOA3e6IMTnz2Zwsn8y3FosppiimhCdxak/cf/gE6xzH0xE7OJSQpBAIznMxa9DjSOgdVZET7yKcJHEy1dIa7z0CQZ4ZQoJuGBEmw0XwQkIQWJ9Qec36cKIoJzfgcRypyuK1W/TxcEQbw3qzoakrFosLMC0f37/i+uaWANjjie12y09/8hPKssSNLfVszma3pxvGiSimNMnUi4Kua6eJBpOjVYbrp9zh7XZk1UyxNKKoycuKPK8IWqFNQVnVPHv5gvV2y7Ht8THyN/7gD5jNFwyDZb/ZYz04LQghoM1E/LTWpBBIySOyDJhif7p+oG17un6g8/Crr55xsVrx5NED8rssZqkkP/vZT+gOez7/+b/nl3/yR5zWL6hU4mcfPWLZNOTGcDyeeHlzze5w4nZ74N6DmkPbQtfjvaesqynfuq7I8pzoLF3bImPE9j1qIVleXPD89hqd51jnWX/5JTEmri4uqcqcq0cP2Ny85OnXX1HkxTTp1Xccbl/QFIpCGlSyzHJ4cHmJHQZOh57MZPhDC1IznzXEBNadie0ZZ5xxxhlnnDHhw12RXyVQMBG69Kp3lldmSXd1wxRfL/+1Wa6vfn9nTlB6fZypGvtq6atq8R2ZTROhfnfnk7EUr0bzXpH0u9XW7yKn71/+9vjfJ3t+td8Y4+tlr/7+/tf+fqT3GWV9C5GUPF27Bd+jZZwmAe4cmOUdaYhEIgmTKZSUzFcrhnGkbU9Y71EmY3CBUzvw+OOGolxSzy64lZqymSOFQBBxSXMYAzEpVF6BKdh1PTebDdfrNdvDARs8g/PkRcHq8pKyqvDO3vXAarIsZ78/0HcdwQe0UBijMHd9mkpNuZ5T/+/UO1tWFSlO5M77nn5sUVkGStG1PdZPFavV5YJZ3aB0hs4zVJ6RYsQoyYtnT4li6nl03mKUIvlEIoAMnE4dUSi0nMysXIxT1mhMoDQuhuk6EAJjNI8ePWIxS1w/H0ghoO/kx8H1WDldy8M4glRTH6kQhDD1+3o/GRkZpem6jq7rsdbS7Q64EHFRTPJaqej7jsJohmGgMFN/8JRvakiAlgpjDDIl6rrGe48xmrquCHExVbqVQqtIM5thrb0ziVLMZzOklAzDSFmWFHnJ7e0th8ORLDfEIKbKmdCEECiLgrww02dfCAbnGKzDmIJT2yOxJB/x1mK7ljiOCOc4bjcYpVksp4ihY3vE2pFMq6n6jGDwDi1BGIWLkaCna9JFcDHSjVOMjzaavG7o+54QE2VVcbFaMJs1d+7eEecteVWi1FRhXy6WWGvxzhFioCpLHt67x9C12K7DB8fpdMI5i+6HiVjGSFlV5EVOCA7nHPVszvE0YLKM0ihkClRVRp4XkFc83fZ8/vXXPLn6BKOmCZCXL1+w3u6nT7LUvMoHz00O8U6UcSdhRwiWywVCJPJMM/hEioEQE/4u51jemaINIXB1/wFKSG5v11xdXJDnU4/v86dPmRWG2+dfk8aWnMAsM/SHHTdff0k7jJPjcgRpMh4/+RjrPbvNmr4fmM0XXC5nWO+YNQ11XrBdr6cWBudJMVA0NWMIjD6gMkMIAUGiqUpSDFy/fMHYtixmDX/jD/4AJHRjz2e/vKHrTjx69IDZvQWZFMwKBeOJSkmkyXHGsN3+cronnQaEVG/dS88444wzzjjjjL/a+HDzKL6R9QpxZ1yTXpHJb8yjQnxVOXxVfRR32Z3fICEncip+DaG8o6PvVk3fynB9awTfje8i0e/24X7XWH4TvK8a/Mp8K8b41rFDCEgpf0AP8Jtj/MYs69V/SWK7foFIlqrMEK6d3HKLmiQ0RmuCSAgtSUTGfpLmDuPIYrngeGo5tQNxdJTVjPnyHj5J8qLm4vIBmT+RSYkfHC4mYhSYouBkHV8//ZybzZrd7og2GlMWNGWFUpp+GPDOMfYDEhiDY9/vJpdja9FaowtNpqYv+1IqjM7QRqPvjIASCa30JH/2Hm00QhaIkyQpzWA93eiZry5pFisePPwIoQzyjoiObsC6kWEcCEmilcQHT4rT+xGDw8eJLGV5TpKaKOXkPKkEUSaiSESZUFKglWEcLaRIoTUvXnyNupPI397ccLG8ou9bSlFOZFNp8rLGjR0hRIZhoD21k/NwSGRVgRKCzWaLMZp+aMnymsWdAZKPU9VwGMep/9WPjH13lzsrUdoQhcA6h4zTdTWOIyH4ibwbjVKSsixQd9V6IRqUUmw2W+7ff0BZVtzerMnzqer58OEjvvjic65vXlIUOUpliDszpHEc0UZyOh1ZLGd38USBqlpR1zNevrgmOEtyjna7ZTydSGNPqTWZnshPIGFjRGQFZJo+JiQCU89QQrHZ70BrdqeB0+AJCJrFgj5GvPecdhuEnPZVZoblrEEIOOx2hBim12wyVEyUeU6K06SFjR4pEs47LpdLYvDsN7c8evCIzdjjYyIva7KiIniHEILZbIZS03sqhODZ85dUswVV3eDdSHADwxAnJULb0vUjMptjjJ56v2OcJPV5hg+JJMRkCJemSR6ZxF23gZgM1LTmk08/mqKAgBQcqCnOqaoqYpr6gKXSPHnwkNnqEiklz77+gpc3N/z+7/8BddMg/chn/+7fcNjcUGtJvpxhgsUe9/Rth9AZbdtRzxY8+fgTQkxstxvcOGKqnGRPCB2pTEalBFfzhkWRcf3iJdoYArA9nujvJm6IkBvDrJoMxfa7A0ZrRjtwaGHcWvruSFHmPLx/H+8XLBYzmrpABkccR2J0HIeBpDOyasY4jOisQAD13fV7xhlnnHHGGWecAT+A2MYYJjMXIUlpIlFSckduvyFZ6s60JyVIMb42e3qbrsUpxiK9XdV8X+zOqw7Zb566iwB6va1AIL/XafkVRErfWet8Vz7958WH7OfXyaC/Z8tvPX4VO/QNcQ4cdxtSsMRoGcceLwSoDCSkmCAEMiVAGJJKSKm4d+8eLnhCipgsIyVN2w/EBF9+8SX//o//lFm0pBgRmWIMcLSJzeHAy9trbndr4h1Bny0WLBYLYppia5RSrJaLyQU2xLv8yj22HyaClRd38uLpOjN5hlIaIaYKszHmddX2lYNxZqYKrpCRvKpBKnRecH+24vFHnyJUThKa0SWC8wy2p2sPlEVO8BGpNNZZbN8hYkBJhbozBEsIlDYIbRgjCCUQCpKIJBlBRaRWU2QMU9V3d9zRnY7Mqynep2maSXKsNFIKlNSMXc+w31GXxesc3aquGe4ybDOTsd7t0HL63JVlSZaX5GXBlG4VKIqCKp9zMgo/dszq6q76G0h3VVMh5DQJdTeRElOcMmeDQ2vFxcUKrTXb7Zosy+n7cepNjpGrq/v0fc96vaFt+zspcySEyYBIqYlExzhdN9vtlqoqcdYyuzPbsqPnxYsbjvsjmRAc12tSP1AQGb0lVxqkYvQeH0CVJVIb/F0LgRCSwUf80PNyu8NUDZ0LDBHKWYMTis5aBBGVZeisIPrIcjGjbkqaIicFh/OO65s1uVJkmUGEwHa3oRt7VGaYzedcXV4QvUMrzcePHiCVZLzrD3748AHBe/bbLdG7O0LLndmdIi9LTJYz2pG+PU1ZvDIjAae2pR8j5HKalBGJREQpRWYMUoGP3Lm/T5Mkkm8mDMWdEmA2X5Dl2dQSksRkpDWMhJDo/cBoLUVRsry8YHCB9fVLDocjZVEwWyyJKbLfbPjiV7/AtkdmpeHRvQtqDaVWPN/s+JPPv2Y2XzBfruj7gZQiuZb85MknKCKf//IzVBp5fHUPANceGIeR3fqWdhwJUtIsV5gip98fUSFOEwqzGbOmYfbRjOvra059B0Zx6Dr22wOX6pJm1XD/8iNOhx3dGFjUNbN6joyetn/JoplTNnMePniIzkquHjxASU1MZynyGWecccYZZ5wx4cOlyG/8+8YtKjFZ675ZN02v/3qtUv7WvninYnt3hG+tPMX7vLt3wRvV42kgfJvsfau79q7K/PZTr4jgq79fr/8fwD35+yq27+7/XTfo79n7+w44GXe9EXMUg+d02BK9JSXPrGkQgIsBKabTLgUIKXDWUVQFo7NTtMldT2s/9AipKauaX/7qc/7R//SP6dqOTHmCG7her/nq+S03px7MlNl59ehjhEmMo0UkGJ0lxoS3Hmcdq+VEpk5dy3GwhBQpsvwbaayevqxGMRE+k+UINZFXfef861PASHEnSZ6IrpBQ6Mkwygco8oLZ4oLBJ756+hJtCobRUVYGoTRl1XA67nFhIqV5nqMAKQUpBbQ2SKVIMSG1RsXpfY8pEJK/+x9QOmfoegppaIee7c0Nl/OcJ08eYLuO6GDsPZAYhpGi0qSUCCHivcPoHKU0Tx4/xtmRL794Stt2eO9YrFYICcYYQhQ4Z6eeYCnpuo7DdoNMkVmdTxViEs57vA+EEMmMIVM5kO6kxpNk+JWaIi8mE65xTLx48YIsK2jqmpvrG9a3G1KazsH19Q0pwXIxmwiun9QG1tqJ2OUZWjPlC3vLODhcgK++ego+0lQN+9trwmiRMWC7FhkDeVFgTA5aI0TCpkQQitlijjEZ7bHFhR5VNlQrz7Ef8VKjqgxMwRg9s+WKcWipm4ainHF7e4vShuOpxQ4twVliDFxcXlJVM7ph4LBeMww9q+USU079wXbo0UpQVSUWJlMsrdkdDiCgriqqpua439P1PUVmkFJiR0skMNhI1cymnGHXYZ0lxEiIicVigVpdoI0mCImI0yRPluWIEIn+TnKMQCmNkhLhw+TafWeGlhnNp59+SlM2CJGxc1Pl2GQGGRRlWXH/4UN++ru/x7/+d39MCIHZfEFT11jnmc9r/uTrr4jes2hqrhYldZGho6XIDfPZjOXqApOXWOcZxo6PPnqCjJ5ge9a3L1lUGbOmZpYrrPUUZY5ZLNBKc7M/sG1bBmtxQlBXFf12T1ZWfPzkCW13oht7EmlSTfiAKXLqxQWqaLjZnTiNluNhx3LeMIyORVUwK3IePP4YpTS//Pxz+q6nyQrW6zV5nn/gPfOMM347Ye8XdL/T/NjDOOOMM874C4MPlyIr/VafqhB3nJY3SeCdcZG4805+NwrnVVURECK8ufBu62+T0W8cgMX0d/qmt1WIb7aPd729r+TP3xwzvUVov3FZvhvLG09+y+Lqe6J5vhn7d1da3+7BfS2Gfmv529Xq9K2esfdVsdPdmZBxmlRIYnKITUKiRELKwNAfkP2eLFqIgWEMKCWnvj8SbmzJ9dS36oNjGKCqK4RQWOdYLa7ou2v+xu//TUiRf/wP/wH9ac/QHfmj51/gugOjHYhpiltZrRZIpYgi4qMjV4a+GxnbFms9KQSyzLDbrIkpoOQkAa6LciJJo3uj91dRlpNLbEAQEFOFWAi01Pjgv2n0TpJ0F/sSAyDBR4+PEZ0VyAQuajJTIRnJqgqkIqJJUSCSwCiFVpLoLX3XEoOnrAqyXIOUk/RXKEAixN12CEAiUw4M6DznuA8EIpKc9YtbjBLMmgYXLMddT1lVBJ+YNfMpksVZvA8Mw8Bms0GKxHzeTA7R9y/ZbtZ3EnWFNAYpBXmmJhfdzODHnuPxCClw56NEWZb4GMl0jh8tNlqqsqQqC+qm5nDY8+jRI0JwUzSQd1RlQ5onFvMpy1YIiXMeEFNvZVUyDAPOJwiaqsxRSk6EPs/wdpgcam1ASEF/aulHR7CW6CPd8cjmeoMfHXGMFOWKPDNEk9EliY0QtWKMcOx6fvbxY/7wf/l32e22jMM4Xb/9gNY5bdez2R/oup6hH9htb2kWD/jo0SOu7j3guN/zL//lP58k2kPLdr/h/uUFf/A3/zZf/Pwznn31HOcso0/kMdEeWgSJIkEbAu0QuLq4xA8jRVMirGWzXeO9JTdTPnLwYrrW43RvmS/m03uTJFLlIGF/vCWRKKs56IyoBEEKUAYZQAmFURqXHEIJPNM5FDKhckFT1SzqOffu30MJePbsKVpJstxwfbvl+banWF6hksToyQyuGwYOxwNFVbFYXlIYxe//zk+ZFzn/4O//D9x89SvE2KKMQMbEdr2lyjS7zZ6b9RYR4bDb03WWop7x/Itn7HdbLi+XXF4+4nTc0gfJuD1xbDtC3GLykrYfGKwny2tc34MPqDIjSrjdbRn+9M9eT5pVVYk2OUVeTNLu3HK1yLm5vWW/3mN0RvLgSLQEhu5Elk1GbrKcUSRNtViy2x/Yt7uzFPmMv9KIhSQ05scexhlnnHHGXxh8eNwP8o4gptc12fiaYvH6i76QbxLLd8qjIt1J7iIpubf2/8rZ+G2IO0Lx9nqk90iWxauK6N14xCRPTq8I+N2wJvOr9Po3r4nlN7LoyNsuyx/uVvzGGN9ZT8pXfbzfmEh9Q3K/Wwb97rHT3QFESogU716jAWmmnNZkyUXgtH2Bsv9/9v7sV5b9zu7EPr8pphz3dKY7kKxiVUnVlkrdhh88tAHDbvSDYcDwX2jATx7aMGAbRsMQjFa7JLVUreoSWUXykrzjmfeQY4y/yQ+/yNz7DGRdlmRIauYCyLN37szIyMjIvLF+a33XqtHRpW5LH5iYEoDgegTJRum9J8tSmE7f94BkvljSK8ff++M/4Xyx4P/+f/u/8urFd/huhyCSZwYzmXN+8SgpqENPcD19OzBYi4sR78D7iNYZWhiEMeSZRsiAUpqqKgg+oJUiekHwAaIgeE+IkcxkSCHRxqTO0xjHGh/wPs3b+hAQMTL0A8pkiCixzhKCHY+zROmMspyjshwlIg6J0hVCQpaXOLNHBEvwjqHvGPou2emDp21r2sHho6KYnSPQaJWjZIZWGVoERFRIkYGURA2TecWkKjgrDZkGLxyDa1kuzyjLCd0wcHe3QmcZSkQgkfm71S3BWYKPnC3P2NgukfPRmhv7nhA6ohtwQ0vXN6kfdDLBZDnRKIKIyEnF0uRUwuD7FkRSi9frNd45nHU0dcNqtUKMqriSoBDsNxva/Z7JqO5779ntdhiTIQngwTvJftdSlRkX50u0llRlwetXr4kBtFIMeNre0nU9wXm6fqD1AS80ZjalRdIgaHYdu3qHR9JYx64d8Eh2xYqN/pvjTPB8OkNJhaCnLCrOPn/EhRAoKfHWoZVK55KUTC8/ITu7AhXZdFsclj/6gx/x83/5F9ztarwXWKGZX50R8Gil2e221F2yYVdTw1//+mtmsxnD0GKHnhADWktMptlv92gp2W33hABVNSEGj3OeurVs6oaAZXADWSbJlML1HX3Y4LuOokrnqYxpBjvL82RrJuD9gDGST37wCbvesm09Qz/grWe72vLzX/yCN2/e0vYOzBzhPLlUxBgp8wyUoG72TCcVtuv4/NlTPn/6iJ/+N3/O5tU3hGZDFiwXl1eE4IlR8PzNNUpIzi8uEET2u4628ngMWTllsTin846Xd3tUVvDi9TXz2YzBRmwI2GZP23VUZckyy5FCIGOkb1qG4AlSUluLVBlZVvLoyWPq3QZCTEFibs+Pnv4hf/DJJb/44mu+/uY74nBGVU6ghPliyr5vudvs2NY1dd3w2WeSLM8xKsOMIwknnPD7iOHy5Fo44YQTTniI71/3M+LeaJyIWTz+dEgvfqjSinceFePBbizGRz606n78+UL8cCr2YyTzGJ7EA4V0DPBJluf3XsdvIJHH3f27O5E/wMFm/ND2/G9idX5fJD68J0oJogsoEdmt7vDOphqOYSDLDF3XIYTA9j1lUeBDwOiUsFtWFUoK2q5jtU5zldc3dzz/7gX7fc3Qt0wywaOrK7SUKUl2TPKNAdqhpetS2A5SEoPAmJw8ywkhopTEZIqIQyqQyuCDxcUxgMilRQap0rb7vqfSVZrpJpKNtsPjezyegsM482gC5GWelF2dH+8vhERpjdIaGSRSKoJIluJ0bsik+kSf5raVTpbREJBSkmc5Ho2zLs2W5mkxQgAEjyZiRMBbS5lrltOnzISnIPD2zXOignI6ASfSfGuIZFl+nGFOQUwq1eQ4i7eOpqlpmgalFEVRUBQFq9WKYRjoug6EZHl+wXwyIwyWruvwSrDpGuouWYH7qDibTtjttlg74JzDOcd8PqdtU3WL1jrN3lqPFBKl03xt2zTJqpznzGYz+r5n6Hq0rsiKEpMZjJHE6Nnttuzrfeoi1oq2G2iHgWZwNC7Stj1dN9CjqbuG9ZuXOOuZzhZEIXBekE8qqqlhcpmhs4ysKtnWNcvFjBAc+/2GGNL7deM93ifFXwrJYC1GKRCCet+ikGRS0NRb/tP/xf+MP/0Hf5//8v/1/+RnP/1rnlQz5k+fsR9aXHTk2hCDg+DIjaEoC7RR2Fxju5bb1S1VUXJxfk6WFVxf39Dsaz7/9DPybAwuCh6pBNvtLTYomsExhJ5PPnvM5aMLdpual29e40vHRdcj9YBykUlVkU9KegGttyM59/RdxzffPqcPgt0QEbokzyvOFxV5VhIDCKEIRLwbIDqC7cmVoLc9t29e8vSTz7mYlfy9H33Gz/7qL/jLv/hzgm347NkjlpOCod6xWW8ojOby8ROapmF+dYUykquspOsdX3/7im3T0O8tN+sVWZkxm02IUjI/m1M3HaJ36EzQDwPep/NWEpFj/kGWFWnpUymUMTx78hglBKvVHbiBR5dnFMbQ9z15rjlbLtA6Z79v2e62SAnffbdisB0Xj55Stx3TyQQB6bmkPqUin/B7jdX/+PLf9S6ccMIJJ/x7he+v2H4wf3pQNOV4mxzZRnxHsXz3cfc/yPdsyg9J3++yLw9/PyisUqrRqXqvJR9UWR4os79tW/828X1J7Pe538NZ4QOhjeNCgQSkCETX0eySQtc3e4BkMSWw3W4pjD4eqywzRHK0lkglGIaO3eqO7757wWa7RynDZFriXU+e54QQWO12SCHouw4pOF7gK6URKqKyHJBkpiDLCpxLlThFkSUy6y0+SoLK6HvL0DlyU3J2dkaR57x+9RLnU8BOXe9hnLGFD9/rQ4jUoe5JaY1SpPPrgeJOBCUVWht8TKpSJIVsWW8JdqDtunQkjU4X41oTkMQo8RFi8ATvEhmKHmIg2pZSgdSCvMwpZcTVNV1ICdNDdFgJJmqm0xkRqNsWJXQ69iEpzsIIlBAsFkvm8zmPHz8+ks+Dau+cYzqd0gyWP/jxH9PVPW9fvmJxfoXIDReFQUjFs8tH7G/ueP31l7x584a63pNlGV3XsVwumUwmhBCOSdxaa4rMpMRmKVOSb9NQN5uU4GsMzkdMLgmhxw4WqXLqekff95TVhGoyZb9v6aznqxevWdUdu31NXbfj+SlBKNT0jEplmDxP4WDGkOVlqrxRiqzImU0n/O/+t/8bLs+XeNuzubuh6xq6tqXpWpx19ENP3/c0bZv+7ToeyYxmV+O2e25fPef/8X/8P/Pn/+8Ft7dvMQJurt+iXWAIjuX5giIzvHn5hlxLtIzsVykFej6d0Q2WxWxGjDCdTqnrmqIoePLkCcEnJbXet0gCZWH45JOnvHq7oXGeophQzuZ0AfY2UgfJ2ze3LMZz2jYN+/2Wzjnq4Oi8YzqZYswFWmUIoUGkhSDrI84GJpM5WmWEkM5tIQRKOGR09P2eod3R9S1ZOWN//YpPnjxm9/ZbXvz6r4nDnseXM6aZJjMgS4OdljT7Oi3A3N0xuzqnaVva/pqbmxWr1Y6IpB8GQoQyK9nsd2gCt7d3SKXH+XfFo/yCSVmCd2gBF+fnaJ3xzfMXXN/cEHygKARSCG6u39A3e55cnTOflsynOVVZUdcttu8JzrFZ31JWE6ztOTtbsK81d6s72rZFCMFqteLs7Iy2bRn+//B9fcIJJ5xwwgkn/IeJ701svU8zsfcW2nuicbTrHlTc33KtcU/ePrzTx63IfzsBfv9x6T7p8el5vt82jrf/m6ipH8H7iwLv990+/Ntvety794sPDt8YojUGeanoabcrmt2KoWtxw4BSiqapqcoiBS0JQTfaB52zKTlXeEBQVjnT+YzPPvuMFy9f84tf/JK+H5hMSqy1rDc7pEy1TlKmvlGtVbJGC+itRZls7JtNya9ZlmaAsiyjHwTeR3oLfYhUkyWPP7ng4vyS8+UFbugYnEdEOy5SCITRhIP0PiZsuxAIIVAVBUIriEk5CjhQEJVNtsiRuBljcLj7GXGpEFIREXiXbKxFUaJNSkUebEuIEesCPiqy6QyjFUqKpEoJyLSgzBRtXbPdrYmhZYieMlim8xk//OEP2XZ78kmFbSxKKqTWRCFxwaO0JDp3VEclcexNtSiljgsJRZHUwRgj1lratiOg+Nc//Rv++Z//U4qyYPnoimIxRRnD//o/+885v3zM86++5NGjRwzDYjyWkjzPR8t5qunpug4pBLuQkpZDCGw2m2P1kjGGtksdrlrL9P4rQdPt8cGR5Sl0LCsqvn35gr/5my/Y9oFBZAShyPIp5XSOyQuUSuRZq7FjVyUrvFBphjJEiEpSzWZU0wnnF2doAU+uLpGk2pvkxYjpvfGOwdqU4h1iGo1wjptff81/8b//P/Dlz2/Y9R19vWEggPN8cvUIFx1D17Hqaj559oRpmXN7/YZZkVG3LV29Zb4448knn/H6zVu22x3r9Sqp9/6OMAZzuRCQIlI3e65vV8hsTjcMzGfnvLpdEYXgm+9es161+GzGfDHn/GzJ1npiCATvUoCbYPw9zSgrbZBOIILC+/Q5q8pUFSUiSFLAmQo90e4RvqMyEIeAb7eU05xhe82//ptv8M2azz65RITA6xffcb6Ys1uviT5yfnHJbLbg0gdevHmTqo+Uouk7XLAUecnF5RN22z2Z0hgpyTOFUinIbN80CKkgRDIJRaaRBFzf8M3XX/PyzU1yb8SIcwOEgFGwXE6ZzSY8fnSFsx2/+vIrNqsNtnfM5md8+vQJu7pmMp8xmU7QueEqK3l7fcNuuyF6y+buFmdTuvcJJ/w+YvdnS9z8NF97wgknnPAQ3z8V+QEZO6QZh3CfiHyYsVXqI+m+Yvy7OJiXSRdx4zZ/Y0hT5Nj3+v6+vE8OHwZYHaqAjn7i8fdIsrs+7Hv9Da/2uO3fVcF9Zx72I4/92zpz/zZye6hSUuKwuDBuQ0SiHdDSs9neIWyLMYoqm2OMoe87rLWJ2LTNg+OfYTLJZFJhB4f3jkAin4vFgslkQtd1aJMREQx9R6EzhISqLNOFZYwoKYkxIE1GVhRpNnasQ9EqkVxnPfu6pSgqzh9dMb28Yr44YzpZQFQ4a2nrpPppETAqEb4wEp+DZTfZhNP553wihuJwAe0dQkh0vE+JPrz3wXuccAQfUAqiGJXYCFEIdJbqVOqmwYeBqiooyxKPSn9XCi1Fmo31FhEDz7/9hv1ujY89y0VJodM+CyFo25bdfkcz9Ng6kdWQBsApJhWMtUxKKxbLJTIGGtXgnBtTjM24QHDoofXHqiOlM3rrafuBICTzCP3gmGRFWnRQGuvS8Z9MJiil6Lou2YqHgWfPntG2LV3XMfQ9wXumszmQguI2mw3GGJqmoSiS6n63XqUFAu+I0fP4yRPKaoJzgTdvblBS8h/96Z/yZtOy6UFmJTIrQGdEqVHajAsD9z3XInB8b2WMZFmGUBn/+P/zX2MklJnmbDqnyJK1PCsKpFZkebItK6NRRmMyQ5aDCpaf/81P+eqLXzAzmqLIEb4nywzD0FF3NbvNhk8/ecpyPmW3uqHZ3PGDz1NP7JdffQVCEWMimgeiL6UiAlpr8klO13WozOCtZbFcIEzP3a5H5wWtdVgfeH1zzZubDTHkVJOcx48fczZfsr++Ow5zKJGW3WLwFHkG0yp9k0qJ6y1tXROcI9OKyhiMABcDWSa5Oq/A7pG+IReBZmiZVlNMGHj9zbeoMDAtJHW9wyjFxfmSWVnghpbFbInJSu5Wa/ZNg3WepqlxzlLoDF2VyU2w2yGsxUjF+cU5Tz99Qt01fPHLX+IOrz3CpMppthu0DFBoSiM5m00JCHb7PSpG8J7pbMb06oxJYWjbhrZtkEIznUxZD2syJeiaHUWWUxYZbddwc7dC63xMVx8wo8Ogmk9TkNwJJ/wews0MUX/fNoUTTjjhhN8P/E5W5PsgI3FUgO6HUQXElLD7wZNodZ9MfLj3A9IhR1JyUIUf3CvVrYy9qIf9eJ8Qvju7qh6QWvHRedn3ifH7s68RPpjdStUyHyq/vw3fy1r8ESL8jnr8sceQFgpSNY2AKFNFCAKFZ3f3BmxDkWUoEXDOURYlUo6vK8bj7KaUkWGw+O0OOzjyvECbAiEkq1dv0jzjqLAV1QSY4axDK0lZ5Fg7QIwpyAmYTKaozIAQhJCsl0YbQDJYz2Qy50/+5E/JFnOYTGlby+1+oO8Ghq4D21F3lmk+1twQGLyHQ3+q1uR5nvpaD8cNcNamgCmtQSWl/5DL5ZxDeUOIESkOtUICr3VSbENgaJukeEuBNobSZBijkdqghCGiMFrRdzXBW7769Re07UCZ5cymc4QOZFlEiUCInsFaurbFaM2urpFeYq2lnEyICOq6Rk4SiamqCucs0VmklMznaTHCOUee55Rlydu3b6mqisvLS3bfvSCEiNYGJTXGZIQIuTZkeaoP8s6zWq1QsYaYunAPx8eMc413d3c455BCUBQlbTcgpWA6W6DHCiapDXmWY53FBz8q9JrBdjRNjXeOPK/om4bKZMQo0bScnZ0RVU6QGVHneCFBSiQxzcsSCRGkTjPQyXAQkTrD5BVdb3l5/SbZW6NCqyz1x0qRAspCQBmdSG6WcX6x5PLcoO2On/y3/5Kr5Yzzako/dDhfMDiLHXrqtiU3hvXqlmZ7h4yex1cXY0WSZ7ZYgpBc3665/u45u92e2XxOWabPy8uXr8iLAh8Ds9mMMs/Ytw036y0im9F3A5u7FdfbO+qhJ5ITkNgQaJqa8/kiVQeVBVEKhAj0XSK1n332KdJafvZXf8lu09DuW8o8I4aeOLQY4TibFQhtOLs4Y1aACg0hdBA9hYYq19iuZmj36DAQgkuLBSFgxpnq5WJJkZe8vb5jvd7TdB2zyQwbU9DVtMy5evYJi9mc25tbtpsti/kZCMnzr77GCk9V5JR5wdX5OVVV4vueaCS5koS+xRDodiuqyYxZmeOJLJdTprMKguf5i5dkRjObTtPiSzXh06dPKbOcrh+wIbBtW169eklvPVK2GJXx6OoKbwcmVYWUIOLvHBNxwgn/wSNqcQqOOuGEE074CP5Oim2M4ajaPlRFEeKj1rD3SWJ8oMS+T3DfvWNScz6m6B62+dsI728jlr+N3B6I+9/2Oj6G9yt8ftM+/C4py+887jDbTDgecykELgSMiMShp93eYQh4l/pWpZTkRY4c3zM39EgpKYqc3XaDVHBxecVmsyUEGAaLUobVKilV0+mczGRUeZbsxl2Hkql6RGuVrMHWIQTkRQ6jsioONksC3geapkMIzWy25NVqi+sDbe9BZBAFShUpCEhnuNDjQyCKiBuVM4BCKUKMDNYeSbcaq1cOyq2PIaVzi7QwcjjearQlBx/HFNqQ0piFRJsMQUppLoocosVHR991ID1FOUMKaOo9fdOwXt3x7NlnaF1icoPQAaM9u9u3NN2em67h8vKMajbBxsC8WtC1PYO1SK2OSdkiKqqyYjYrwHu26y1KqeP5cUgmns1mVFU1dnemRQOjdVKRlcIoRZHnKKHAJwI7m0xRJPIEYK0lyzL2+z2bzQatNYvFgs1mS9cPFIWEAIOrj8csL5IFXUiFs45AWsyaTWdkRqOE5PbmBuEd86Lg5cvXYAOF0mAMThi80sfZUCnAB58y1sfz1rYdEYmQCrutWc4WPLq4REvN0DYER5rXHgZA0Pcd2hgmkwk6M2ilOTubMcv23H37ErffoQWE6Hj19iXt0GGdRQsB1lFOShaLKRdnaYZXEBmsY7vbc323AqnZ7ltCEJyfXaBNmo9ebzbs6oYoFZdXKbTl1ds33N3dIFQORvB2vaMLntY5PGKc/Vb4CEZryrLg6ZPHfPnFF9Rdm+acBSwXCx4/ekRoazIVGdo9Rgky5dFxwPU7/uN/8Cf8/R9/RpSKfVtT769xXaDbr5AhMJ+fs9tv2Wx3zCc57a6m3u9pB4sSgvPlgt56cqMAwXw64+5mTa4zhA9M8wnLaspsOiGXCrxjMZtwdX5ODILnL14x9C3ZrMBbcN6zur7m7dDz2dMn/PGPPudsOsENHd98+5J1YShyjZeKyXLJZDan61tev37FdrthMZ/RD5ZpWeKdo1Z7Qj5Q5AXd0PPmdSK/UUrafYfMJEYpzuYXacRCBM4Wi7/1O/OEE/77Bl9pdv+D07l/wgknnPA+vn+P7aiqHgOZjrOvDxRbYuqxfW9+9gPCCu/0Dx4IqbXvq72p7udjj//43Kp45+ePPCi1wD4gwB8nn4L3KebH7vebVNW/a+LxQ3L/t6m28HDMVkBMZKFrdriuIdfQiYhznul0Stf1ZEYd5zcnkwnGGIYhHfP9vmUYPEqb1GEaQ+qfDRIlNVU5QQFCBvKiIDM6qaRIpBSUVYYUgsE6hm4AETGZRih5rCgqqhI3gNKGm7s10UNWzpEqJ9M5mZIw1AipaZstQ6HIikSmjUnzmd57ttvtUX1Miao5WmdYG3DOEmS8V9j9g/dPSoSQxOgIKQKZrCgQWhKtwI52bSkFUoQk+AfSazGa4D2PHz1CKkPX91RFgcxnqKKgt3u8sAid8eM//nv061vWd2+5eHSOzjRuCEynE168fMXF1SVSJ6XV257VekWRX+L6Lqlro9oN0DRNslw7l8JyhoEQPIJApiUQ0FJgjMIoSZFrYvQYJbm8OMf2AvC0bXt0RGRZxnK5HBc3itGibI/PNQwDRVGQ5znWWrbbLfP5nK7rEUrTRc+FWVJkOa9ePGd1cwsebnc3DNs9VTYn2gFURpTJAq6iIMSQ+nuHmugt1gdMMSEvKnSWE4PEOo9SOdoUSJmjDchcUJYVZhgA0F1S7Y3WZCZjMqmo8oztq1/zN//iXzA1mtf1lma/ZtvsiEqgtGSWV+ii4vJiQdPu6NsarRQueLqmw0ZJPl1igyB0kVzJ4zlXFAVz4G69YrFcpNcRPE8/+ZTP//AP+eqbF7y62dJ76GNEao3waQ5caYXQirreYYeBIssoigKBoCwLymxKCJ6ubbiaT/lH//A/4n/4P6roo0RLDa7lJ3/531BKjxs6TF6yvXuFtRtWbo3bbyl0RpwuuL29ZbPdI8SC4Dwow9nlBVoIfN9hu4H55ALvHF/84hfs644YBcvZEiM0k2qKkIK6rdm3u/Ec7Kh3DT5Clhts1/Ho/AIpFXc3t3zyySf84NkTwtDh2prZpOTp2ZzbMgMV+eSHn9N6+PbVK7ZNzWQ6YZkZjNZcnZ1TGo2OgeV8ytDUoxIbuTw/49vXr1F5ydOnT1nfrRAx0uz3BGe5PF+i/u3GIZxwwgknnHDCCf8B43f2cR2SkIWQH7EOM/a1flxdfbCVd/KZDuTtIdlNf+CYbvybZmrftUgfFOQUGHX/HGPglZRH1fL95z78K6UkHMOnHuxKiKSG2wevQn5Idt/9/UDyv586K37Dvn2wSSIxhHG2Nv2upCR4x36TwlXwjklV4ZwZw1tsah6OkUwbyrLEOU+e50ynM4ikChNtUDry9s0N3gUOorwPESGhMDkx9ngfsdahpCBET91044yrR2c5RVUgZbL5xhDpO4sUGUJIpDJInZFN5uisGnt4NQEIIdmaM2OSEuxcmr8cF1YOQUtCiGQ7Ht/fvu9p25ogPNlY+8NBFT14ksf/SSmRKbGHvu9x7dhlawdiSAnOUkRMpo7nwzAMRCJ5ljGdTtFqTJH2kVJmRKGRRlJNpzRNx7SseN11fP3118hcI7zi4uKKvMhx1lE3NcFZikwna+8wIAGlFVVVEUKg6zpiDDRNQ1mWx4TkGMENdrR5azJjyE2G0YZMGbRMFUo+ePqhh+iPx2q9XgPp2LVtOx5TSVVVxwC4GGNSjYGzszNmsxl3qxUARmdcXZ6hBNzc3HLz9oZcSjbrFW9evEr1Tl7j5R6NJhoIeDyS3lm6pkb4nuAsg/dcTWYoIi+fP6frPJPJlPPlObPpDB8lk9mSEAekkUgkWmm0UUghUoetFkTv+Plff8Hbn/9zwnaLR5AZxYtXb6lth1CSTx4/4Wq24Lya0rVb9rsBQclgLV99/TW9DUyX5+hiQufBRUGhNDe3t1RVxYuXLwkxIqRivd2is4zLy0uavuPFd895e7vBBk2UiqZuQI+ugCAwmnGhaEhLZgJ+/OMf8+zzz6DICDIt/rx6+YKXv97z+PKMPoDdNMRgafsaNewIoUdryXa1o6tXVKUEP6AlECP1fkee53z22TkxWuq+JcsLhNDc3d1RGMmsmiKioG97zpZLjGooywnTyZy27tg3DbfrBqEiZZnTNG2yjBcZOE+WZxgl+Pbr73h0dcHFcsHN61e8/uZLCqP4w88/5fnXO/abLctpwdWzzxgQ3Lx+w+3tLVEp6us75osZWW64uVtRKkkmoa/3nC9mGK2pqpKvX74gy3MWFxes3t7hnWOz3fCHP/oRi2lFs9/xW5MKTzjhhBNOOOGE3yv8TlbkpCKm3++txIc5W3HfQzPecmBkH9iTo0iK2UNdNH6EAAsQ8rCthxOV46aFQIwVQ0mNhRgs4RBoJcTxQh0EUinkOIN7IJEHonCk4zEi39NrxfH/3r01jBephz8dSOCBWqd7iY9efH1c1I0Q/bitdHyESLPLD/dF+RQi5aUjiJDuFyTKB/p6iwg9yAEXAkKm2c40cyqxQ08mDUPnUEIyLWdIJIiIj5Gu68iLCU3XEiAF5PhAawcyBchI33eE4FJYlIcYA9F7ptMJuZBoo9FZweA9fddjJGRGUe/3CF0QjEAWOVoZlFQpETd4lBR4bwneo1WyS8YY0gzt0XaskVIzDJamScQvRjBKMSlzkIKsmlIUFYiIkg4jHYqBDEelYHCeaAfsfkOzXaGip8wUTgFSJSIfPUYonLe4KNAhEjAMXiF0icgLZKEwQuHDgCKgvGe/2SCNoLyYc/n0MXerGwSCut6xPFuglCAQyPOkzPrgE2kOFUVZptCoLJHOzCiK5YJJUeBCZDabM5udEeNL2t4TlQGj0VWqzpmWc3JdINBECUN0SKkYepueNwBIhmHg+u0tk8kEgSLPCqwd2KzWSARGa2Z5SSBSVRUmy1jvtkQb6W2LZ8m+bnn5+gYpc9bbLbvNnrP5AqxlP1hUJShzgzMS7y1DMyBUsuK+fbmmaxos8PjznH6w/PKvf4a1gc9++COGzz+ltz0+epz3VGWOlGmRI0qNyA0iRoyUXJzN+e7LX/L1L/472FyzzDX1vuHr598RhAIMmc7o9j296qm9oN5uKLMp09k5m6Zl0BVORTppmOQl3WaLNpp9N5BnJfvBUWlDFOCFZnBp0WT3Zs1qu2XTtHRO4n1gsA6lFYOzRCFR2hCFBBEYmh3OdrStw0eoyilI2O63KA3RRnarG9ow4EJECo33jlyBx1F3LUoItvWeGBwqqjQ/X6ZFCa8is3lF27YYBbPphH6w1PWO2aTABI9yA1nQSW0+P2dfVJydXfLtize01tM2FqLgrFowKQu2d3uk1lRlgVOOoiwhRs7PF2gl2a7XFHnO8uqK4ANvNh3TyZLP//Ap2/Udu6Zj3VrK6YIfTOY4IvV+i5JQ5qkzemh6Ym5oBs/6xWu8c9zcrpguFzy9vKTre0Lf0+93TIuMvq15sV0BHm1OM7Yn/P5h9w+XHzWlnXDCCSf8vuN3Co963457sB2LQ4rw+HPinOKevX2E2Mn37cIC5AeKbSTEFDRzvNtxpDceCefx+Q4bGp/y/unHkpAQsc5/8DqO6u/4f1JKtLzf3kMSfNw1EgGO4t42fNjPyEPrckTG326lPmzxoCwmghzf2eZxX6NARUkUkSACUabFAB01mYK+3hFCh+1rrA2EAEpKjEodpXmWk2dZSioWAmc9eWbwIdD3yeq63Tes1xt8jAQEQQgEEecc3qeKjSwbVVECWiRirLTBDgNKZUhtIEiicAgJWoJSnqjBy4gHnPNInVpOiQ6tNJhEcns/EIoKrRQCm4KxlBwtm0kxThf0SX2clQbneprO0rUDughIKXDOoqUD3zPUe3Z3K5p9gwyO6HumhcEIgxQeZz1SSfJcU9epJ1VomVQvpQlRE8jTgoZWWBwxDuRSY6RAx0AmBSE6Xrx5xZPLc+ZhyXa75vxsgdaKrmu4fv4cH+HZk0ecny2oqorMGHa7HSjJN99+S240bhjwLp3/Ji/xdwLnAy4IEIZHz57xwz/6AybTkkeXTyiyGd6FVB1kYNtsCfWWGEJSOMfe2slkglE6qbQhUBhDU9dMywoRAiIK/GCZzGZomVTry0dXCCGwQ8/b62s2613qcfWBzc0a0VuUiEhnyYoJppqS5ZoXr17w6xcvqZ3j8x/8mMuLp2w2NdtNjTMCJxRZpilNQRhqCBalBTrXCBlTJZKPeB/Jswn7Ls0oEyxXizkvvvuKn/7lP6e5e8VSB1abDavVltam4K2qMORas1tv8XXLSkueXl5wdnbBatfwq+fPud62zM7POH/yCbvthvVqxWw6oZhM8c4jpKKzju1+j8lLitmC1gWev76m6S1DjDiXKqCQESN0SgmXCo/EB48hphloZXi7XeOHQPAdMThst0cIixAWNzQpMTqmMYKbm2vyTGOHHqN0CuKLnsvlEuFbhFbILIWBtfUWKfaIEJnO5lgXU2iUjFS5oRKGi+mE/XqNigGtNLVz3F6/5W51RzNElvM5l8slRZbR7LfYPjArctqmQerUa/vm9WskkU+fPuHTT58io+Duds2LN9cMLpLnNauZwXZ75pePaQZP3exQRUEUkBcFF8sZ80kBLnLz5obdbocxButheXZBPp3jveftq9cIBJ89e0Y9n1N3LevtDh8DTdcQThf3J/weov284sRsTzjhhBM+xN9huftei4REHo8m4AMzvJc/H971b8VHRl3/VlJ4UGUF9+TzoPymNOV7Ui6lAKEekNqP1/445+5fm5Djv+8ScXF/h+P2HgZqHZ7ieNv3cMwd+4DFgZh/eOCEEBBGpVjIVBUCCNL83frumugc1g5oXSbL8NCjhAQ0xqhkqZYBZQzOB7a7DT4E7tYbkJrNrgaRUpa9c6OdMSJ9BMaKp5iU2hA8zg3Jlj2q48PgKLKI9yHZnZU8Hssxyymp58akpFylQQh8BKRC5znCehCKEAMRMb4nAikP/a6RPM8ZBscw9LTC07c1URoiyfY5DJa79Y7Xb6+p65o8z1Eqp6omGBXxtmV319LaFhEd3jmETL2A+ZiKrHOFDYKh6wjBo5UkMxqtNEYZosiQQmLtQIwDSmnyXNHtWlarFdamud29dfiYuljn8xlRqLEaK6WB90OPcw47eIauRZQlfdtSlSVd1yGkw7pUBSQE3N1c8z/9n/9P+E/+7O8Roye4CNEgkEwmBdvtWwgO8OnvCPLCJKImIkqlLtSUag1FUaCFxDvHtKzwIdB2Ldtmj8ozpNFMplO6pqPZ1fjBohFsVits0zDVEhU9udEMRmO9I5cp1Ms6i3eeGCN5XmCMOX4+tdbEwcGYiu5c+lkpySFgPSpNRGK9x2QZmdbIKGjWt/z1X/5Lbl9+w7LUKCGodw12cDx98jQldAvJ3fVb+nbHxMx49uxTyrzgZr3iq5cv2fZ9SkF3ga+/+or9dstiJP5DP5AXBUan4zKpKqaLM56/ecvLtzfs2gGhDGhBpjVKJjcAMUAUeOcpqxlIjQue1WqLySoCkuvbG6KPtPWW3faW4FuKUjHNFZWGs8WC+WKCbXecn52hlWC5XGD7ge1uQyZhdVMjEDT7hqIsiCFyfnbG7ZtrFrM5q+GW+WTCrXUsZjPcvj5+/kyWsVrvWG93ZGVFP3SApGk2fLO9QwnJ2dmCcjbBEsAoopIUVcXVxQXnywWPL87JtEqzuvuWMs9JH2WBDZEgFd88f8ns8jGf/uAH3Kw39ENPXk3pnWfXtAhrmU0Ltptb1qs1i8WSYWiRQqK1oCpzzs7OmMyXLJ8+ZXCWtutZbTZIqfleX6wnnHDCCSeccMLvBb4/sRUBeFjvk+Zppbwniod52A/xQRTT9w5Y+k3k7qHq+pBDH+YDw2EG9YM98cC76cnyg+7dd4daU5iP/4hVOtXtfHz+94Hi+xFm//FU5HDczsOZ3/f3LEqRUmQhEc4o0Cqy3d7StnsmEoqswHlBbjJEhKIsmFQFzlm6rsVu0kxs33VorSjKkmo6wbqItRtiSPzZmAIlDV1To1VAK5J1NkaUTFbhbKwDAkEI42JBcmuO5MWgRapTCSKgtMZkGVJpAgIXSbO4MWL7gd46lBDjOyURImJMhlIK7xJZttbhXKoTkiLN32pjQOVEZciynCIvmC8kV12qtrm6ekREMZvOwA20+4G6bVDRY7TAGEMMkbZpk0roPPQRHyLTs8cYIRnd2AifjnvvHUoalNbo4Ef1ziOVwjrLarWiLBOZy/OceVHxyacTmrZnv10nMmstlAXT6ZR9U6OrCikEi/n8WLUklcFHSdO2DH3HT//1X1LvbhHSIkVg6D1alVTFhEmV43zNZnXDrDAURUaWZXjnaOyQZnT9QKEyyjKna/tkwVeSqBRN39F1HVKl0KPJZIKPgXZfs99scf1A6DqazRa3r5kXOXn0ZBgkgS5GdFYglMFkBVU5QTiX1HchyPMMYwwdgbIsWJ5P0cYca73k2Gub0qElHsXgIlU5wblkiXdNzV/80/+K9vYlExnIo6XeNihhcENNvdszHRcwCAOfPLtiMZ0gVOCXX39FlIbBe4pqQl83CARGKZ5ePcZ1HUPb4YUkhgzvAmVVMjjLz3/2M1a7GnRGWRaECFmuCMETvUPhUCqd81lR0btAOS359A/+iEIX/Bf/p/8LRmdoqZhPZ1xdLvnRZ1fkeaTrt+QSnp0v6buW1d2KXIHwPZv1jvXNGzarFcvFAqKjrxtmsymWtKgYnKfZ7fnB558TnccozW5fc75copXmbrejr2tc1zGbzciKkrq75m5f8/TpY66uLthtt3zz1dforGA6qzi7OuPtzR1OJpdKlmXMrx4joueLX/wCEVLo32w2Z3l2iQvw6s1bpDYEEdGFoh0c/+1f/WuawWKM5sc//hHTyYzV7Vtcvadvdgz9wA9+9AOqsqIo0uelqioGO9C2PXsHt9sd3z5/yW7X4IJjs99j3Yc5DyeccMIJJ5xwwu8nfjfFVhzZI4liyZGMHcjX+9ZZwcdX1N9VNX8bvk82SHLsvhsCdbhAfkiApVQ8JK0H8vs+Yb2fJ75XdIUQH4RbhRgR8cGrPCqz8V7KRoym6Q9Dpj4Mmjror/fE94NwKrh/H4QYlxoCBMt2/YbcQOwDUqhkh4wxddAWRVIFvaMbemL0aC2RRhKI7JoarXO6PnWp+mBROsdkZQp+khrBgdxLpEivSipF3w9pNnTsSFVS45xHAFpplNSISOpczQtCiDRtR1V5YgAtFQGREpSjoCxLluUU6Ye0oBJDsr3HiBuJbVEUx4WULNdIGTG6oOkdg4dSQD/W1JydX2Dygtl8Tt1aVJYz+IEoklocbFJKtRLHY6pQqAgm09gQiM4hxrKb4APepn1XSqWFES8ZOsvbt2/5R//gj7BtRq4FF+dL2rZhVk3orcM6x/76GmXyBzPriRwYJVBa44dAVVWUebKAKqXQJqPe7gneE7ynygztbkM3bMmMInhYzDTb1Q2/+sUrJhPN48dn5Foy9B0QcG4gLzKWywVDN6QEae/wPjKZThgGixY6hVbBGA4Xafc1YfycNLsa3/XYusHXDQUC4wNu6FE6HYvNdo+e92Qx6ftFWWDbPrkQxu+OKBjrhpb80Q9+xD/WGpMlJdeH1FkcY8B5nwwCUjMMjnlVoFzDT/+7v6C5eUklLSH0uNbi+0jbOnbbmskk0tV7ZGEQ0bNczBEEdrsNItMsLx7Rvrmm6QdiFDR1w9lizrQsqZ2F4Omtpal3zOdzVqs7nr94QdvblNqrJFFKMq2xQ42WsFjOmFaXyQouNdV0zmS+ZLOr+V/9Z/9L5pfPWG/2/PAHP0CEQNc12L7m5voFr159w/Xb7yi0YvVtoMhz1usVeZ6xHWqi9/R9R5FJZpVhaD1Ra/a7PabIMEqz7Xp+8OM/Yr/d8fL5CxbTGcvZnKwsWd/eMZlMESHS1B3rfZvUZWPwzjE0Nf1a8OTsnCd/9mf0gwWpuVmt6JoGXVXsm4Z5ltP1XToX2h7vPYvZHGVybtdrEJL5cs7ibMHr6zc07Y5mu+VmtSGrJrjB8quvv2U2KZkUGevNjiLTLB5f0KmM27sNTfuK/W5P0zTUTUPbeeogiHI0q0iFD6T/+ZMd84TfLzQ/ntL+YPLvejdOOOGEE/69xO9AbB8m/AoQ42wk79pn4V3S9pCYvjvX+j2e8WBbfVA19DHCKYQ4qnbvd9k+TFR+l2THo8X4vrro/jGHfYxRHF9j6u99qM4ejschMCuO1Tbch0r9Bm4fxvTdw7ZSr+l91c+H+3LvbU5zteIYTKUIyGjZb6+RDBA9ISayFELAmBS2tN1tkkXZKDKjsT7VxkiRFNv54ozt18+xPoAQdG1HjPLYEZvUUU2IgeAdzjlCSDO6UiTCx1jrEr3Hh7T44UMgeocclfTgw2g5TQRBaY1wDkRAKEmW52SZxLY9fW8JpICoPDdonai8Uikh2Hs/Wr0jSIVUmiIrEUIhlUILjXQpFTgCyhikTn+LIu0bIZ0LUmqEhMzkaCHpu5ambhBKMpsbpEjvuRRiXDRIxF1KSSARtbIs+e6778hVJFOCPDNsNhtcP2B9YLXZ4kPk2SefpYUSAVobhqEneksQUI7BUnVdH4mtD2khpppMMNqA9xglCFpxtpiT6YK2sbi+ZVrmZBmI4MmznNuba4qiYFJVbLdb1uvItJpgrSN4j/dprruqKpq6ppxUZN6PFukBAbi+5+bmFtf12Lpmf3uLsJZJUcCoxmqtGZxn13acG4PKckIAaz0SkdZjhEBqNdq8Nd57jDH86Z/+KdfX16jCJGu3c8gYUVrhYkQbjfSWWWH47/75X3L9/CuG/Yoyl0wKQxgCfQw0TU9RTphOJ9ihp4sDZZFR13sgHb/QR643W+p+QAhFkZcMQ89ysSR6R5FnVGUOTYe1jrdv36CUZDGbM5lEhgimmrLe1UQpOJ+fU+SaSVVSFjlnywXzxZJ+cNytdyxmFfX6BhkizWbPX3z9C9r9jtubN4BFSocbaiaTjDIrkwtAaKZlTlnktG2D0opgYTop8UNHcAMSQVPXPJpN+eKLX/Do0SM2mw0//9nPKUxGJhXBeW6ur+m7ntLk7LY76rrG+4jQiqa3tIPjUgroOtx+z3y2JC80nXVczJdsdw1d0yMs3F7fcTYp0CZDZSVu6BFFiZUSL9O4wfXdHd++fYNXEusi+XzOj59+Sm8tL1+94na9pRss1wSarqUbevovv8M7P37X3K8PRlIewxAFWhcIIZJjw0Wk1IQPJ1VOOOG/1wiZJOrTiX/CCSec8DH8DqnIh58OScAHG/CHwU7v3PeQ7HtUaH8To/24NJtmXN8NepJSHlXWNGP74dztb36OD/f3g4CmcT8f7vfBYntPRse/SXFgwEn9PZCs97b5vi36/ZndVMnjjn87vIaHr/Owb0k4VoBCxLTA0NYr6v0N1tZMjaZtI9F7Qgx0nSMvciaTGTe3N0QCeZlTZQatNMvlkt2uZrXes93VOBeYTKdkNhCDwA4dUkac9YTgkXK0k5YVzg1IkpqXeLnA+4DWySrtnKMPHiMCAolWBpNl47yrxBMIPqlzh/7Yoe9oIxgiWikCGqWSoue9S5VAI/FKFTiBvrfoLOIcIB0RgdIZQiiEGNA6bUPGiA2RKBVSa/KiBK0Q3iYr9GDxLqYk3X4giAGdG5quprcdpbcjQdaIMT9bSolQGlMUnJ2doenZra7xWhB86oeNPnD16DHLs3N2dUPf9xAcQgTatuFisSB4y9XVJX3THGdNz87OGIaBfd2S5yWTyQRre5xLSceFzAjBs92sqcoFi/mcEArabkNT18Tg0doQQmC720MUWOtYrdbpGFqLc4HehlQJJASlVtRtw2w2T3bkEFmv1vT1Hts2tJstWfSIGLD1HiUVJst4e7dhCIGYn5FP5gw+0jtHDIKymJBnGZJIlmdcPXpELwJaK968ecM3X3/N2+trzh9f8Ym1OGvJjUEpiUIz9C1X5zP+1T/7J3z9N3/F5u135KFnMr9ERcem63nxeo2QBfPFjBB62rZFkjGbVcznSeF49eY1+y4yeIsQiiwruLtdcXFxRp5lbDc106ri9u4G5yLz+YzZbMqkqtjVe7rBEqRi31nm0xk+ejIdsX2H15JoJLvtmv1uhzQZmSkwWvP25Qv+8p/9U4zWKCkQBC7OF0yqCUO/R0wqhAjc3b5l2zj8sEgui7bBKIkgMptUqYZKKZwghWgJgQuezz7/nGdPn3L95m2ysEtJNakgRIa2hQjffPsdm82Oopxy+eiKx0+f8ObtNZvtmslkyuPFjKEbuL2+wfrIerenGRyt9TTWooucR4+fgLdEBLoS1AFer/dcXl0xv1yQGc2273l9c4uTEucj9uaOIBTWO9o2jUBcr9apVk2bNFoRDFEYdJ6Ct5z349w6KdFdCrTKEVJCdCgxRhWe6n5OOOGEE0444YQR/0ZdCUJEONTtcCCBD9N973/+kPR+iI+Tv++1J/zbDBH5UI1N/96HSHH/fDG+Q9UTt7tXdWMID6zI79qg74n+qAS+P087qqTvHAcR8SHNuIooETEgcHTNFi09XjikEAQf0VqTG4X3gcxkDNYymS6ZL+aEkKp9quWMyeycrocvv3pB13vyvEjVJUPHMCRldjIpCUMY31OFdx5nbbKrBpfmQMfkXS3TbKSUAiHH8KLRypqbjODjGLDj0UqTKUGUEonH9i0hpJoV5R39EBAqEdTgI3ZwOO8pipyyLFFK0vcd9dCjQsA6IEgKa/EhIFS6+NcmAyGJIoCURCFx3uF8QI5W4+jH92S0PKosw2iFzhUuenwMmDxLaciI1O8pEpGP3hN96ro1xlBWVUpejpEnT56gDgFYD4LNpNJomYhmNZlg+zal23YtYRgosgw/1hydnZ2BNLy9WVEUJWVZMp8vkMqRZZrWdAiSDXwYIsppCBbnPFpnKdSr73jy+DHepUWBpqlT8FBRpX0TYJ2DsX94X++RUeCHAdv12LZldf2aTAgqqdBGkqmCpu3Ydz23u5pt17PLIsthQBUlWueoQ/9uSKnpXdex3uxovcNax8X5Oc57NtsN2aQkxLHLOMvRShG949FywvV3X/L1z39Ct7lhUWRcLc5QInL99hbnwcukyu/bDoXF9T0X50uW55e0bcPLVy9pe4uNhohmXzfkWUjnkVTc3N6O9UyB5XKBHpOMZ7MpRitubq9xISKMwHvHdLbAOksmPfP5OYUxxJCs/HXT4boBH2uqqaUqSz559ohJVVJkGUPfEsNA3+7Zrm+ZTkts37G6vSOfLBFC4J1FSkFmNEow9hYrrB3o+g6k5vzygm4YOL+44MWrVwx9jw+O88mSwTl2qzUxOPK84uziAqlL8rJis29Y/fJLssxwfvWIs+WM169fsVltMNrQD5YoFI8/+ZRt25J1HcV0QlZVLOYzlMl4+eaaV9uGpusY1ju++O4l6/Udw9DTWEdUhkDEuzA2gCenhc4N1jp8CFgPUmiESt9xOi9HB4sFlfqmtdaIECBKvIvgGb/j0nfLCSf83kCAm5p/13txwgknnPDvLf4Oiu09sbvvsOV42/3978nd+/Oi79uF33/McWsf4aoPbcgPn/djAU1/Vzy0Ob+/3+/fTxzU2nGHPxYkJeSHtqF723ZSpdOsL8QQH9znw+1BAC2QKETQyBhQUbDd3pFqcRxDn6o8pvMJ1lnWmy3OeWKUWBvZbFpMVjCdXXFx+ZiyyHn8pOInP/1ZmruTlqFrCSFQlhVlaUbbbHFUlUOMiWhai5bj/PExKTkwDBYfJVJIjMqQoU/zsCYDRmInAkIEghsIwZNlCi0jbuggGHKjkFIRVTEGeIWxxzaFCzVNQ9+3x35brQ0oicoLhEqpzlrro0VYSMFgLVFp8I7BjmRVawSRgEUpiRSaGKEoKqK2DKFnaGu29ZaLaHExMHhPLhgZcLLKEiRISYgpJEehEATatmVaVqk+SCWl15gUtDSblsxmMx7OVk8nU3ZuzWKxSLO3xrCrWwbbsdvt6PuBfhjo+p7B7TFaEb0A79E61TBplRFksjm3bUfwAaUyrA00TYtRmkk1hyDJTIZQCqkVIUbyokBnhug8q5tbXNsTrcP1LVWukHbASImOEW8HhJREJK2PNEHSeohCEWXqdu3aHiFV2getxnMpYoym73vMSOCTFTUQQ6BrW8R8jkAwyRWZ7/ibf/Uv6La3FMKjo+PrL3+FkIrJbEEQgiHuWS6X4HvC4FmcnTGZzrm+vuNuvaYbPHle0XcuEUcb0IXh7OyMLFdstmuKssT6gW2zZ1JMyDJNU+9p2xZipN7viVITpGa/2+GDJ2RwlZ9zfn6GCJ5+6JjOFrSDJUpN0w188etf02zXzGcTFvMZRkmc7fFuSJ8fHRn6SIia2WxOMaZh50WB957JbEa935HnM+r1mn4YMJUhn1S4BlSm+fLrr4gh8unTp+ybmq5umJXlWEkmsYNlsBYXO16+uSYKWCwX7LqGt69fcDmd8OTHf8DZ4jwtfFnLfHnGmXMEIXh7e8Pz757zxZdfsa1brlcb9t0AWmOfvxxTw9N/EbyQafEnpO81IdPIQRASlEGrDN8PGEAbCTF9p0gCPvhUHaVV+j6xFhkkHp/GQWJAyIiGtFB1wgm/J4hKsPpPr/5d78YJJ5xwwr+3+B2I7cGDCwcy+06Q0QNF8mNE8P3bDrU4h42KjyUli/fJ7YFMf2Tf/i060t7f74dzvff7ftzFezs0Y6DU4XaZ7LhRiI/u3iHc6vi7EET57nM8VHFjTPY7H5PFWIaACIFAsu92fQMxMvQDuMjQ95g8YxgsTdsymS74wx9/BqMF04dI1wfKiUZnhmHwCAR2GMjzHOdTp6j3nmA9wqfE6RgDxDSvqlSyA8YIMQRUStZJxyJEkOk4ZLpgX7cpmMp7RAjI6BFRMlhLva9ZDS2+2VLmGURP1/VEYQhBj1btZFlOoUKWENx9cq734wWywA6WcgyWEgis82x3NbPZAmPGhODgCCHgvcf6iB6VVK10UhUHjwuWIAd0oRBS0HYt+/2OIDKqqiTLMkxmKPMCFSR1t6NtW+52N1yezRmGDufsmOSr03PnJfu6YX13R1VkFLnh7GyJ955hGBIhjwEpJSbL0GMgV9P2zOflmJQs0SZLgVtCo43BEbHWY5uaiEdpz9D3LCZzppMF69UqzcAOjjwriCEghGJSTREIXPQjqZ6gM0PdNDR1TVM3SBfYbbfs1ismJpJrhbAWQSKuNghqG1k1Hd/erNix4z8mUk4mFGWRZuTH81c+qM8a7ICz9hjKprXGhxRYNfQ9SimqomCqBP/ff/xfsr5+SWVAdI7d5o71ekNWVGyaRCBRqVan2e6Ylobzyyt2TcO+bhEqQ2lJQFPkhrKaEHwkywwxBNbrPdoonn3yCXfbW5qmQQjB3e0d+/0O71NdU54XmHKCRaQFEiEoC0UAfvXll6zv7nDWghTcrjY0ncUjMFmOEFAVBRfnZ8xnFcFZfvDZp5wtz9is1wQtefLpGUWZ4WxyZfR9T1kUSK0RQvD69WtCCBTVBJRiX9c8efqEru95+umnXCzPiCGwX2+JUrCr98TBsd81rPcdURiWszMef/Ipq80aVeR47xjswNRkPF9v+PL1DXXT8ObNNZePH9EHz7bes97tsE2Lawei0si8xKk0i6uNQRtDnhu8t+mzL0yarZeBLMuQIrlHDt8P2mRIPDGkLAABuHHRQY3fuSEECAEtyjSnrVQK78IDnjSSccIJJ5xwwgknnPC7WJHHhfF3XLHAPaM8pPq+S04PxO+dB0cgCkQc525Hsiri+6prHElUShGRIu3IgbDA+zO2Dx4/zrsKkWa0jvRbimMa8ofJxO/s3jH8KR7DTOIDop1+8HGcMz4EIh8CpMb5rwcm7Xd2T4hxPuyo9gJjhc/DY/Vw74RINT/pbVPjARGIqJhMznjRRUxQRA8iRAbrUZnisx/8AbPlBVkxxQUYrGWIgmEYsK7n1c+f44YBpSRFXiKBzBh2+z3OenxIgUkiBmSUx8CmNJOZUpVjAClS12WUjEFRnkjEeo/re9q2Ye59UqWD59U335JNFniZFOEiKyFYeiL94FL3rhREP6RZawneh7GPOImlcbTCexcJzYCQmiBABjBJTEVHiNYhohiJa1KI1JhqK11HjANKQPQdznmMUBAi88WCZ58/o5zNWW8b6LdIVfCDxxd4BCqAGPbYoWXY3iHswNl8znw2JTiD8wOb1Yq6a3k0X6JVznRiCEEhYiB6iC6QaUHUEiNjmufG0/YtMULTtvjomRYZ3vUE39N1LTEKtM7RSjN0NZMqo97VEAIigPCkz60PZDp91L1NVm4hBNGHFB4VA2jFfDbFA4w29dXtHf1uT2haus2WucooosXWDVJIgjEMBPZB8M3thi9vt6ythCLNSj779Blff/c1yuhxRj0wmeQsZgXrlUWLiJaJ5EQjQQsEESMilRZcLWa4ruWf/1f/hOe//An9fsuu3dPsNng7sO88yypjX9cgNbk21Js7hr7lk6efE4Tg/NEjdFHw6vVLZDYq80Pg7voGKSVnixnb/Z6uaxFWgBRYF1guLiiMpt7vKaZTsqJk33a4KNg7z7Zu6QZPbwes7fCuR2vBk8dX+BhZni3pUexev2E6nXP16BFCwJPHVxgFfbOjmk05P5vSdVvadsN8vmC+qOiaBiVBS6jyjMxoNqs7/KEaClAhEJHkWc71q7e8ev2avKx4Wb9iPpsTkHihicqwtTW9yMnOF6x3ezZ3aza7Pf1gCasNzjmid/ziuzdjT3IKRnPO8dXtFmVSdY+1Pp1HuQIpEUJiSk2pp0wmE64uLiiyjO+++4bVbofQCikFMYyjCON8erR9mq8lJvU1BtT4PQ0QvD8GBmopUyicTp3IPjiCiGm6Pfq0kHbCCSeccMIJJ5zA76LYHv99SB7ft4FFEPpdavsR9TbCSGrvI6g++pwClLwPTTrMox5tvuPWYiSRlQe6aDwERY18+0AyP96z+3E81KIfvpZ3bj1kRb1/+3uP/63jwg9sxgdF+sOt3P8uEeNocxyJt2A6XdAPEIdIlRUoHWjammq25JPPfkjrIu3gafqBpmkZ+p7NZk3b7FEy4vp2VEIgBk/fWbzzCKnHfYqjOno4FOmHYbBHVVlKSfCpE1ZKQCmUBCUDAjWGcIUUBCMlXbNnefkEVS2Sxdi1bPe3tE3L/GKZ+mCFRCk5hlMJZBRjFUwc62ggy3KyskAKTZaXOB9RSTIG55ARjDZIoRlcBOXRyozqdo8OlkxC8JaAQCsJMSSSH2FWTpBCUiqJrbeYwhGChAD1dke92+DcgNaSMtMImRRO73uMliwWi2Oe2H5fo01Jbirs0BJsZOh68olJKnU7UE2m5HmRlOy6OZ4iYXWH9wPBW4RICufQD3glkzo7rcCZo4V8EwL73Y4YkzXdOTcmWgeKMtU/Df1AVubkeU6WZ6xXa54/f47tehgG+t0OX++ZKIVygegshc4QWvHi7Q3fXa94vRt4sevZxRyrS7TM0FnG8vwMxllkbQxSS/7sH/1Dbm9v+O75twxty9D1aK35oz/+IyZVkWbCuxpdZoi+4a//8i/48hc/ITS7FKRkMtCpozlqT5SGarrAGIPvenwcKMqCbrBsXr1GX0u8d0Qh8NFClESh6LwjNwVd9JBpqmJJ3dR0MZJP5gSteXn7lrrec3O3oh0c1gWi0LgIUSqESrNuZW6YTCcoLTCTGbPc8Otf/ZJhsEznM8qiJM8znr/8DmMif/QHP+TqrCLXiqHdEb0jNwIpHEpGgu2ZzWb0TU3XNtihxxiDi5FhGNI3RYTJvGRSTdhsd/zoh3+A9xGlM6zzfPn8SxCC5y/f8uZmndwV2rDZ7kBIfByrc1QiqBFJWhFSozMkIo0hLwu01rRti84CUQJSjPP7ya1glKbvOl5+9xxnbeq5FuDGLIDDIqI8OFiCO36PCSJG6+N3yEG5NWOvMcC+rnF2gGPeQESEFFCn9EmxPeGEE0444YQTEn6n8KjfNGv6Ad7jYkK8e9uRoxLf+eNHt3uwLodI5D5451DxcuDW7z9SiHulVIpkdo4xjMrpA9r4Th3Qw6f8njO7/wajve8dlvGQvDs7fK/mHu4UQcaxOiXdJEd1Jc8MoQ9p7lUbtNbstlu22y2325rNrmHXdjgXyDJDWVZcnJ/z9vV3bOsaN/TMJiV5lmGHZAUVShFdmpvt3YB+0OXrR+Xv3Qqmd88TKUQKeIlhtGcLZtMZi+WCN7c3FGWJLAoEEhEHjDFMp1NCiAx2YFbMCWMIkxjDqay1FEVBVVXHdGTvLSF6lFGEKFJFkIhEKUGlnlyPQGqJlIqh75BKkRclsQ8URYYb2lHNB+8jfd2Ru2RVjqGnrmuq6ZRgB9Z367HGJoAITKcVIXrKwrDZ3FGNVS11vUdJQVWV9N3A9fUt2uRUVUraVSKw3e1wg0DLyOAskXR+D4PF2mS3DiHSd0OyeCLo+h4hBFmW4ZylH3r2+z3dvibPc67fvmU6mabKm66jKAqss8eQr7brkgV4nDueGkOzr2l2O8LQg+1xTc3QbJF2AJWCkYSSyKJi0/R89WbNi7sdmwGGIJFao4jE4Gi7HmOyZMdXcrSta5wPfP7DHyC1xkfN2WLBm+fP+fEPf8gPnz3m7uYNmRR0mxX/6p/913zxi59z9/o100zhQ2B9c5sWI7RGSMVgHUVRMJ3OWA2WZnBIJbhebxiGjvl8lpwDMc33TqczOhvoO8sQA5vbG3yM7HY7trvtOE6QzoHMKHSm6VxI506eE0c1M7kFfJq7bQeUFlwtz7m5uUYJsMOA0YZMG8qioO86BGkxom1azCTHS5hWk2RBl2pUMQVKp95pbQx2SCpn23X0Xcd8seDNmzc8u7xivdvxT/78z5lUM87OL3nz9oambbHWs9s3FEVB0zmE0tjeEboerTRIiSTigkfI8fMb3sm3vx+xSEwUNXZMQySQZutt39PWDYRA9CGdp378nB/mY0M4zsRrrZP9Hz86cARaqHcW/R4G5h3m47uuIwBivD3GCCKiVbLpn3DCCSeccMIJJ8DfYcb24b8ftfEG+ICuRVKC8uE+URxX3t+t6XlvWxHwYfz5XWb8QLAcL5I+EkY1Mr9UlhGPeyXHmdd3ld/xOQ+PEw9ueEDW/i4Q7/37sb/d//5QdYYPX9b9vh1fP5H9fkvftWQClJLU9Z7B9fgo+MUXv2AIEp1XLJZJRTv05po8T7UhpAUDZx3B2WTlDgEpU6qwEAKTZSloSaSE39RjG46kVqkU9iTG0JgYIz6ACB4jZAqQkQptdJpP1anaIzK+90LgnGXoewpdoGSyM0NScJRSOOfe+fnwv2S1TQTX+ojzjsFZgna4GLEx4qXAepeSkoFqMqOtJuy6Js0JKkMk4J0njhfWNkZ+8tO/YbGcMZ/PsH3LfrthNplxd7dGKLi9u2GxXFCVJd7D2dmSereHCMYU1PuG3W7PfL7g7GwJQlFVE4K3mEwjBFhnE4nqBrTJmc/nSJleo5KGruuIEfre4n2gKstkD9caZx1VmUi+VIq2bfEupSnPzs8YhgnGGPb7/XExAhLJyvIMpTV2GOjblv12Tb/bMCtyXt29xdU1pVL44MiKnCgEjYdvrje83PRsXMY+RJyQ6Tm1wEdHN3RkZcH51SVCK4qiYLFY8OuvviTLMi4uL4lB4gfL9auX2L4juo5SwtDuubt+w/r2mnq/I4aBfZPe0ygEWVmijcbEgjzP0yKAd4jMcPb4MXmRsdlsWN3d0Y3q9ND39EPH7stvaX2kH4OsfEijDlIlS7RQEuc8WZZTh4ByEKTGx0A3qstKydGpkebpc2148vgx+92aGDx116b3OQjKssJaS9PUlEVBbrI0gxszNqsNcerI8xypNPW+Qe1rovesd3vafkhBbG1Ky14sFmRFSjWezOb81c++oKimyCzHC8lqX3N5eYVSGf2LV9RtB0ITxxA3hERrhXUOH1xKbI9pptknGfpIQLVWyY5sLW48V0IIRCDTCmJMjo70wU0pCVISnQcpjiMgh++Vh/87kFMpJLnRSDi6L9J3yH2ftxCCvCiIziebPGOntjYfCS884YQTTjjhhBN+n/G7h0c9+Pnjtt4PrbMfzN2KSIwPrcNHyvkbt3W42HkY4vSw2/WjEcoc1NhU4yJGReT41/e2w2FPhXjAa+M9wfy3QG5/O949VgI+PCRJez5meImR3Hrn0Eph6x7fdagYmEzKlASbZfzBD3/M9WqLyisgzckiIC9L+r7HeU9uDFpLok/JxzEyptQyklSPfnDheZizDSEc+3YhKV6Eg/04EfFD9ZPSo+oSEhE2WYaTSQWTQFEUCCkJPvWqeh/G50nni5SaojBYa5MaqjR5nmO0RCqYL+YMLqIzPYYRBRAwmc8pyoICiRICUxrevljRdx1ZntPUe/LMAIIoNUrqpM6FZE9eLpfkhSaGkFJ1oyXYhrruiFg2m1tgwdAlGykBnA0URU4IDU3ToKQCoYF04V+VOV1X0/cdWZUjZerV7fqBrB8QIhHbPFeYvKBtOqrJDGUMq/Wa7W6HkpEiT8fA2x6tFII071zXe4SI7Ov9uJ08kXVrqZuGvEi/G6DrB96+ekmhBDOj+faLn8EwUBlDLiVaiFTDo3Jer/Z8/XbFbQdNUAyjN6LINUYLWiJKCoo84+L8jOVifjx/Vqs7tpsNfddjW0tlSp49ecwkU0idIQz89Fc/I9ge7XtiW6OAZrB0fY+UKTVaKcXdaoX1yZK+2e7Z1nuEVPR9j7UDEGnsjvbNNVmWlD0fBCLLKaRisANKp8+CG9OYjUpBYT4qut6jVBxJmCBTOUIEjFTJBTLOgE7zKs1nx8CTJ0+4vX6LFILBW+5ur/mjH/8x1nnqZocUgqosCeOCXdO1ICT7uk41Rdrgh47r62u01lRVIsYPnREXl5c8f/GSrKyYnV1ye5us0p9+/iMQii9//TX7uh9TsFNXcggORKAbUuqwlKC1QhtFiCn0TQpzfB4hQEqB1hkPHTWjWJpI5WjecMERYurX1dVIgKU4jpEccCC1h7CwOGYnCCkwxhzHCw7J64fFt1TrI1A62aZD8ATv0JnB6JNie8IJJ5xwwgknJHxvYnsgLu/Myn5QiTMGIr2HwxytGC8G4/jzQdV7eNH2Dg4XPgcCJ5IycLQvHwKbYurITGKmuP+X8W4hHFVXMSotSojj7Oj7pPOQQ3Uf/PTua0lWuPsk5PfJ8PsEWMTDjr5/TMabHywUHPO1IqN1+iNVQYdu3BiO+59lhjzP6GWy28besbq9o5ovmM8XlGVFNQSQJgVI+UimDQg1PleyF8qokCKmYKVM4Xwky0dr8vj8wzBgbUoyzfP8qOAe7OFJ6U1dpEWWg7P0TYf3yQqulUZphVQqBVGJmJReIdDGMJlM8H2bFMIxUCzL8vEcTOE2eV4gZXp8Uh41MVi6ruV2teP8kcI6S1SCLDP86AefoU2O9wHXt9iuo29S0JIeK4TSiaYwxtC3A1pFQgzMqylt1+G8INeaMjfYrmE6KQl4+qGh7y15fkX0ns1mQ5kn8uKdYzadcXl5xm63QWmTanpsh8BhZLKRE/N00R4FLkRcSAsyXTewq7vU95vlDN4TSRf7zlqESWSh63vq7QacxxjD0A9MJ5Ojoq61piiK0eI8UFYlzjn6vgdgt94QrSW6wOb6DaUQzM7OUEBbt3gh8FHyq2++44uvX7J1qd4nKJPmoKUg0wIRLLPJnE+fPSF6S7ADbdvQti2RZB/NjeLRxVMyYTifLXh8dYkfer7+9S/59S9/wavn3xLdgJGCoWvpQiBIzWQ2ZRgGVtsNbduy3qxxdjzvRJp7VaPVWqqk5hmdoaPAhjRbjJDgQkoWDyEtsoWAFAKiQEeBjJJgA5kyx20IEcmUQsqIiJ7gHEWeo42mqqbstltyY6iKnDrPaNuG4FJ/7c3NDYv5kkxr2qZGXZ5BjNjBUuQznAs07YBSGft9A97SDw6ts9SzrAzGaObzJV3fsV5vQBuKyYxff/k1q9Was/NLHj16whdf/Jrtrgah8C4RzvTllxRqLRRGaLSRPL66oq739EOHQONdmoPV48xrOj7p82eHAXWw/saIdRbrA35M8M7zPIX0jb+r7H4bDxPeP/jvx9jTLKW8/w4BrLVMJpM0TrGvU5p6qqAexx3Sd4BSp/CoE0444YQTTjgh4XeasT3gIQF9pwInRuQYCfLO/cX97WJUfsKBlB28xO9t9wD5gGG+S4KTmnokl8enHAmvOCQn35NKMRp9D3eVBwXiY1FNh/Hfh6TzwX69by8+zKQdjgPv3fc3WZmPBPcDW/RBmQ7vXgwSxr0MCMJ4VANdUzN0Lc5ZZpnBZBmqFVTVhMePrlien7HtHNLktINHBZDaHMKuk4oyhgvFkNJypTJJsT6QVRHfuUhN/bGJkFZVldTb6JBSpHnKEHDegXX0/XAMLzoQrUk1QUqJHe3GXV1z+/oNOniKsb8zhGRDds4d05gf2p8hLbq0XcfQd1i3o+56FhdXuKHHY2l6S9MODNbjnKXebenbPWHoEHgkSV0KMVUK+XFRwfvApCqZTCsG25NnReo13ddMJhVlOQUFRZXTti3W9njvOTs7Y7NaYwdLlhn29Z67Vct0OhnVJ0/TNkwnF1R5xmw2YTaboaXAVBMG6zAmH+3dGcZkeJ+I2eNHT4gxYowhLwrKwrDb3uG9TVbkGKnrmizLAejHsKF9XY+znIm4HOY9vffsd3uGpiEOA5vtCuUs0zzHNi37fiAvJwwefvndd/zsmxe0NmKlQSnDdFoyWM9yPiPPBEZEPvvjv09O5Mtf/IxJrrmYP0rvZ/AUeeokvru74/nX37K/ecsXf/1XvH39mma/Ic8U88Wctt5h+56m79n1Pdu2p++61EMckpoPoEdyCQIXA54wfkLiOJfcHYO7EIpDGrkMESUkWiqQiUhlJkdLjfOWLM/xo8U2zzKUAKMlRI+IgeBsstGHwHRSotSE1eqGel9ztlwSvcMKwbSqmExm5LnBeFjMZwiROmyraoL3nvVmBzIFn93e3FCYpGDu9nvc2jObzTBG0vU9fW95+fIlu3agcZJvnr/AaMOjxwX7uknvt7xXXA/fgVJqzGgxljIlgpvRUixJIwIm10e78CF5/vCzzFP1lByrtUIIBBkgRJRJM8FSyjF1Ph4/54fvrof24iPBjWBE+lY+/N1ae7TLq3Hhy2hNCODDoVYs7ZtS+kRsTzjhhBNOOOGEI35nYvvuTOx7c7dSIg8XkfePSGTkQDgPAUNKv3PHj9qaIxx7d+ID8nokqolDSnHYh1Txc5Bcf5NzeBRc7/nnu+O7R7X2A1f1g+e8/4VjUBURPvqUH3NJf2S7D+8oRtKftv0eUT7unxgvvVOVihApbbjIM5SPtAIyo5nN58ymU/J8i8on9L5F6QhSEaInhKTQBpkuOsdkHKRU6PG5lFJomRYDHs5XHy6ED6FOITq0UOgMlNbvHJQwKuc+eLq2o2kaps6lDlJJUn2kxFpHJnTq6pWKvh+Swu8DYSTFcUz3jXBvTdQZSiuycsrQ9nz1y19hQ6RtO3rrGMaqFEEguAGjJUbEVI9Espv6cbFEKYl3A2dnj7i8PGe7vkFrRd3U5EWeOoCHHqk0ZnQfpAoeqOs988UU4nh80FRVwXI5Z7vbMLiOqsqxtsfKRNzLqiRYh9QZLggG68iznMm0wlmHUiT7rvOYLGc2X/D555+jFQjh8XZg9uQxk7wYQ8P23N7eIJViWhbIcXbSe09ZlgDUdU3bdTT7Pd1+i6t35AJypRnqNCOss5K7XctXz1/xzdsNMSupJhnaZChtmE7nZFnO1dUleZ6xmM/5kz/7T3j8+Q/JiwJxdsbt7S3f/vqX7Hd7trstd7e3SeXvHVob9vst333zLUSPUoLNes1mvcIOA1JJAhI7znDnVYkaZ4+ddzggOI8PniACJssevL52nAOVo4I7pvI6iyCmqicpiS6MHazp/HNEiizHxUAUoFRKZ1cyfYdpqYhKjFVJguu311STksViznw+4frtWyAwn83Ybna0Tcf5+QUX50sW0xnBWzJjmFQl+/2etutRGjzdGCLlabueyWSCMUmp11pxfXNDVVU8f/GS2fKK7bZGCU1ZVBhjWK9W5LlBKnDeE6NDCDBZRpbnicAqgVaKaZW2XZUTQpYWcbTJjp/ngyPjYA9Ot4s0c2s9Uog0NiAEyuhxRjnNKjvvITysYbtfCDts/wAZArbvj4tdSimstUyn0yOBlkpB8OmT68MYoJYWLsRHshVOOOGEE0444YTfT3xvYnsI9/hNxDZVOQikkO+Ru3dnqvyozvFgNT+R3w+f87CqLw6kNh7UT0aSPP4+ktsY09hXWs8/qBX3iNw/hof/infvI967jYeP40Fb7wNifC/u/nZl9jfhoBw/5O5inO1795gcnlY8sD+nC06lJJ6kUoWuR0gwJqMsCoqipKoqnEgXnhGRkoJjsgwrrZExkBlD8A5iwBiNCCkhWBpDdEO6aB1xsKenZF6XAqb04ZRK+xZCQI3nwMOL2sEODEOPPKq+kizPmU6n1P1+DLjxaJ0sokppBAG8T79LgxT39ScRSQhJCdJZRt/19N0bQBLGNGwjBFFEjJH0g0UHRZFnDEOPiB6jMhACk2fgLB6JEhEZPbPpBK0lzjvaPqm3jGSg2bYYk6Wwp8GSF4Z4uCgXmt1+z25X8+bNaz77/BOePnsKBDKjmRQ509kUrTQ+RFRRUk5nxHAIzNIjaR6wzrM8Ox/XHSJ2GNg0O/Isx0lYrVaYiwsAuq4lMxnZOI9sRlUthHAkuMMwpHnUvsd2LX1TY/ser2BeTmj7gV1r2bYWUUyYXmpUNSXTkma3IZOBRR5YzDOWs4xu8Gw2a372k3/NT37yU4SQDMNA27ZkmaHve66vb3j16lV67mFI1mtn6boekVao0lqWNJClNGuhQMeU9u06/853kJQSaQxGZ4REc+n7dvxMeUL0EALep6GCGCMxWLJMYwqDMYbg0nx58GmGPMvK+3lSKYgEpJJJBfbh+F0VRMTkOYU2xODG2eaUwl6WJcTIYj5juTxHa4PRmu12C9GxmE1pmobVas3NzS2Pn35C11tW6w0XZxOkVmRFPp7Phru7u0Q0hUDqtLDx+rYhz8rUHx0iXdsSg08EfJzDV0ZTTAryosT1luA8IYyhTwHKokJEQT8M6XWOBPSw0CYeKLQQEVGjpU6LmDL1TAslU8/s+H7o8ftOCnH878Yh0TyE8X10LoW0OYsbhqNCG2OkLMsjyY0xEsckd6UNymQpodn7keDefx+dcMIJJ5xwwgm/3/jexPaQkgnhGPoBwEhWvRtX5j8I8xB4P863itGCJiIBjxirHuLoFXy4kg8gwuHy7LfRwhTvFGI4Ekt5HIx9ny1HxgJYjnIr795PfORR7zz+wT0ORuh3oqbeV3+/Jz6mLn+sXund+Kv73XHOYrTGKZlqNIqcvCzIsoyiKJhMp5gsxw4pRRihkEoio0xJxxRYYuqFjJ7gkgoZfCK+Win8aC80Os3IxtFy+PDiNYS0EhFimmcUJEukc/ad6g+pFMpkSY1JSw4pkdmnueIYIkqqlKyqBFIKQI6z2YlQHy58pZRkWYl1nhhAeggujMfJYYdEyPMsdalKZci1YjGfoZRg6BoOs9jeeaR0yOh5/OiKy4szjJYIoUmkaRhnkntC27NYzKjKiqqq2O22xNHae3l+Rp5naW5ZRq4ur3j85ClPnz2m7fa0XU2eGYxM5G/dDxRZwW69RUiFlMlGfkh+dS6pm3awDN3Azc0NN7e3EB1ERwwO6zwvXr6iyFMCsVSaEBxZlpKP66YhhoB1jvV6zX63w1rL6m6FsQPTskJqRR4jTdcR0NggaFzA64JyPoEsR0XHpMyZF4Z5lTGvcoQfUEJi8gJvLSbPsXbg7vo1q9WK7XbL3d1q7CSOx0+Q9+n8KaoM6wPWebyP+Bjv3RouIGLAhUCWZcfAssPpH4Ch70E4QnB4H0dCKhBIQoAYQAiFUhKVa4QWeOHTOWYEvR/Sfkc9BilJnEjz1wjQWUoDT+9nSvgOw4DMNEokVdl5j/OeyaSiaRuCC0wnU2IMDH3H+XLOelWjZFLfm6ZmsA7rXEpo9pGiLJjPZxR5Rp4X7Pd7mqYhyzLOzs7Y7/d8/vkzrBNj85fA6NQnm2c5PjqEjPjgQKb+4LzKUVJiO4+UgiIvqaoJtrepbzpCXuR0Q4eQoLXEZBrvx3l2mWGHdN5jRPqMjWnmPgYGZ/Ex4FxKIoe0EBpcOI4PiAeWY6XVuNCVSHtVJKVcKjn2VqvRrZLIcJZnLMuc5fkF1aQiBM/mbsV2syZ+0KV+wgknnHDCCSf8vuL7W5GjxShJsP1ojw1HItoN9pDzhI8OpQ1SKtq2w7tIlhVIcSAw6Xo1ymQJhAdqp/cIJY6JozFKhEy7eD9PO/50iAMetxCRD2in4LjheE+cEREhw7ivPpHmD1jiSKbjPaGMhzQpDvsViVEQRulWHFTl0X73PkeNQHjvxncqhcaDkqjbu3uT+Pmhzza9MqkUlqTOChHRimS1jIHpZIbv2pSu6gNd11KWFdPJlMwYepcSayNJ3RYhcSNvLTFYhr5DS41UGVIYlAKUSz2xCPxYuaKFYBiGpOqKVDuTLmKhyCucc0gVyY0kjxKvMiyJnHkig4BeK/roEv0IgWAt7b7Hdp5JnqN1Ii29d3RdR5ZlKclWpUTbyWRCEGlBQ2uDGsOhiqI4+sPbpkWo1CdalOWYrBpxUbDbt0lVijpZpG0gWIf3HabMmEwqQgjs9w1aSYSMFFlG31tu315T5CUER4yeaZnz2bMnzGcz3r55Q9M05NogQ8SUFVUx4/b6hq+++pLnL76jbvZ89uknzKsJwQ5kSqe6IZVTTSZoI7i6uuDq0RVtm4i3tY67uxXlNMdFz4s3r5HRoZVAKznWt0Su13te3W3JtCEMfap1KnN62yWb8m7DbrNBIeiblmg9BQblI0IUdNFTe0/UhlpFVjZwt28weUWOxIXAo0efkRvFrq7ZrzsGWzNYTxCCehgYnGO/r4/hVF3fE4JHKz1a1pO12A4WISV+3PfMGFwIqJhIL6TbiAKt1VHxC360poZx7tp7BD5VSgmJdRGhUiq2EBJkwGhFWWRoJcbQqDRra5TGR9AmQ49drEoqXIxpfncMm3PWYVSqqmq6FqEk7TAQVA5BUJkcDzgpaYYBkCgf2e8aonNoLZlOKqqy5NWrl2RZTmcd1XTCzc018/kSJSJ1s0OpGdP5hLjz3N7ccXF+TrvfMy1LJkXB7XqPVJFMSfI8o25ahNRU5RTnLb5vUUYxnVacL5eECJnKiBHyvEAYiVbZ8fhIpYlDhneOqFXqq3Zj3daoGjtrGboebx3OB3prcd4hJOOCRcD5NHtsshxhNMIkpTrTeqxkiwgVkXrMSrDpvyNeRmxwRMD5wFRP6QeLUOCiIM9TFZdzPSFEsiKjCtMUDHjCCSeccMIJJ5zA70BsVRwIg8fbDkWqd9F5jvUeXMCFSFFWoGIiQwSkAJUp8swgUDCSz0AkyjRrGYI/kk8fIgqRSOBIIMN7icIH2/NDPKyQeIhjINMhDOWogPJBGNT4iMMDP7j9oCAcnu8hKT6IwGL0NR/s0Yz/+o/km8R3lN50RxHvabE47Ojhz/d7lwi0FGlxYFQw+76naztmWlIPA05KzqcVCIFSkqosMFqSaYWWAh/iOLsbgbShLM8gDHjrEaTE5BA8LqYZRkKaRTykpqYkU59mEMcQKVAoZYjRIqUn0wrlAt5aiMneGXzqiXWkc0CFAFFSmBRw0zpPzBVDPzCEFOZkrU1hXyGAkuRZRte2KJVeXyCRJmNMIoLj+2VygxxVUaEU1g20TT3OEKd54jgqyVJKcm3GVOSW67dvePbsCdYNRJW0QT/Y1Ft69Yj5bI7SACHVAeU5rusRIdDsdnz9q19zc3ND3bQQFSFG8iL1Brtg+clP/pqrs3Ouzs/ItGboB6LMQQgG26JNuqAvRkXLmAznPFVVcLte8fr6DU+uzumbBmJAKkGWFZg8x+QludJU2iCVxCtJQKCkoiinGJ0RneO2S7VCwUUam+zfUUmaKLm5veNu1xBMjq4m1HXLvm6ww8DtaoW1lr5Pixve+6Ny31mLHWepj9bz0W56WHQ4JJMfQqBijFRlSV4WdMNAiOk7xvukqhJToJK1lmYYjnOfIYRUG2U0hDSDiTrUyhhCdMfPTQgBQRztxhneOkSIaKMoszwlq8eIEy7NcUuVkrxDpHc93npms2lKox43ap2nMJrBDQitCQjqtsOGNPfu6pqhd4jgOZuWTCcVu/2efrAobbi4vGS1Wh32kH5oadsuEbkYmEwr6v2eX//qV/zJn/wJ3jkW8zmbfcN0ktP1jiw3OOuQ0uB9ZLARqTIm0ylFniGjpixzvA2JLAqZvleVBuHTogIgxlCxANgH87XB+2T/laCNRiuF9h6d6bSgJpIrI73VEa0kAcX/j70/65EsXbP0sOcb92RmPsSUZ6o61eymSIItApKgG6IFQb9FEPTTxDtBEAiRgK4lioBEsJtksavqnKqTc0T4ZMMevlEX7zaLyFN5urOri2RV0V4gMyM9PDxsdN/vt9Z6VqkKXUGVCqVQS6XWTE6JEDK5Zmw1hJQZy4x2lt1GrO4pB1HGjabvehrXEeNCCHLA5bzDBEO+OpGvc53rXOc617nOOj9dsQ0HWfjCTEbUjzhH5phQxhEWAX4oo8lxEdufkou7WiK1JLS2q70UkgKrNfXzmhzqindZ06aVVbXhs8/4Yc5XPlhJP0ZUPtOXWK3Qn30NrVZC8oWy/GmprWcw0vrfC5CqfkZhXlf1+pk4fM6Vfa7aKrXmf3/CQ3zOFP+1j633+Xw7K/VSf7R6aAnLzPPzE8OrHd45wjyzLBO7uzvaxtL3zaqYFIwGbQX2EtYOW6VkEVG1EHMi54XOeFLNAtCxhpIyCunMxWiskWqcEBbp0bXy/NYiKqrRFq0tkFiWRCnQOI+qYJXmtu/ZNA26QGssugg8qKrCHGeoCaUVjfN4J720oRb0+jjnFFeybEKrirWw2fYsy1EyqOuiVmJhniaUytSSyTmsKqBUDW02osx65xi6nlIrMRq2Q4/TkEvhOB653W3ZbDfc37+ia3rCElkmyc7+5k//jJf9C0/PzyzLIocpVJqmoSJKb7/Z0LQtbd9wHI88PxX+6T/9D/mn/8G/z+12y2kcmUOl7TqUKuQaCWGiUjgdR8ZxIobEOC38t3/2W7y3xOmEN4bxdFgPVs6VQVJX064Z5qUksZoqhfMObyyv7+5QpaJSJp7p01lxOB15/+EDH573HJfAGArKeayVPGqthdM0ydJTK9MyS19wrWsWVa3EbH05iDLafLKxy2kAmko1a4TBmLXDWCyqVKmQKetCZI1ZD480tzfbi6VVDiXEsj6NJ/b7/aeAQakrYReMhnMVTdM0kgs3Ruy8Rq/wInOpSlrCQrXSp9w1DVZp8BBCJCRRmVMtuFWBzilQciElObBqfINznnleqCXjneP27oa2bTmdTtze3hJj5Hg8AtD3vSiXKUnO/DTxzTffMvQDP//FL6DA3d0dCjkk6JoW1AvTNPJHv/4TvvzqW6xrSEsil0Q3NOx2WxprIVdSyJRcCSEyLwFjHU3X4XyLsutBGRB1YJkX5mUmxQWtFEZrcpb3t3UWVcHhVkBVvbgjSi3EFBjnhVKF215zhlzkH+Q5iDmRasZYi0oRbS1JO0os2CDkdqMtMWdSgZoytS7UXC59t/v9/gffH69znetc5zrXuc51fnqP7fwomcoYCDGQrCPEBMbj2o4YAst0RGuhWjZth9VWQD81EXOCbMQeWAGjVtugWRVQTa1q3RTVWlkhltfPp9YfWWx/BD4ltTBiV/yhpVjmc6rvmZB8zu39kNwpy6xaP+9z/3BZac+fOaIvC/Tnt/qnXnupc6bwB3/20yp96bld/ysLs6iu1hh22y0xLBz2L1itqFXjnQYKfe9xTqNU4XB4ZpwF3FRTppDRqjKFGacLShsMevVFy7JdquQWcxJIjnPtqhTPkpUzRi5sQ8Y6JMuKXvN4lrbvmZ+OxBBZ5pmbvmfoOqiFp8cHPk4T42HPaf9M2zdYU6AawjwDeVXk5X4bo9G6stkMF3qq85LXtaay3Uhfa0pJOmNDoHiNc5BjpfWGvm8Jy4KzjqFvaZqWGBbCMjIMG3TVhOnE14dHbm62/PqXP8cozX6/5y/+5X/P89MLH95/JE0rfCklgU5pDUVextY5+mGDb7IsFqUwTSOH04H98YUYZv4//+X/m//vf/lfcH93C0UoxPevXtH1DcZAygJfKjkzbLb8u//kf0GIhf/uz37L/+Z/9b/m5+/e8qf/7b9g0/8xf/RHv6JtW5Yl8v2Hj6gKu36g6zueD3s+PDzw9Py8QoYKznVMp5HHj088PHzkdDgQlgWtFTkLqAjjcU1DSGLJriUBK0xOgbNOlthV9W7blooipXxR/ACazstLqdTP1P1ProWmbTDGrtAkz7wsa2a7UHPCW4EYGW/lOU8Zpc8LtAEULxoOh+PlvXMG1dXPDoHsZ4u1wLnkPeCtkwqbUsjrP0qZtadZnCZ17XV1zrHEQC4F5ySTbldw2HiakcMjg1HiCPDOMvQ9WmmWZeF0Ol0o4vf393L/m4YPHz7QNC23N3c0rSzfMQTapuPXv/41u92O8SSdrt999y1GWba7Dcs00zgHRvKpnW9p+1ZqirRmCTP7w5ElJuL6jzJJeplbPj2f+twvXrDWobXCOYvVmvF0kmz0+m2x1so0TRyPR1lwFXJIqcUuXrUcUNUs8DhnLNZYgYIZOdwy3uOUXb8/JoouuLajoogFnvcnTN9hrJPs/uriOUOo8lWu/R9kLocFzrJaUmRqgSVcYjHXuc51rnOd6/xdm59ORT59YFkW2qalVRCXI3FObO9e4VwlpUJJJ5S2NMag0iSqkfOEpZBSxvsGY1s0coCvsKBkoS0YtHLkukKC0Bj9uQH30/z+ovhjp/YC3flEYwYu9RWfW4o/h1edwVhy4fSZjrzaVj/vYjwvsOassp6VW3VmMn9+Y37sEa0/+I98XvkkAV/uZ/3hry91Rp8t1LVSqqiR43TCrnZjIbVWvNM4o/ju2694Pk48Pz9inGfY9Fil+GgtNQdRrLwjLumiDhujMcaSY8EUTcxJlDgyOYW1YzWvj5lU5zhtcY1de20r8xIIS8Rax+lw4K9+81ueTieWsKy9rhXnLCmc6DqLdRpVM23j2ZeId2IJzUmaRY0GazTOWbQqvH77mqfnJ/q2kUVHDxyPRzZ9j3U3lFJ4eX4Wq3CMLGHhZrtDKU3bNHRtiwL2zy8Eo7i9Gdht3rIZBhSFL7/6S/70v/lv+frrLwkhosqa6dWG1nlu+g1LFEBVyJGQCyjFPM8cTye0dTgsh8ORfjuAPlPGK3d3t/w7v/5jjvsXlmlhCYn3332NUgXrDCHM6wIxYq3jX/xX/5xxjty9+zn/+X/2n9NYRZhOpGXm5mZL4xzWN4zTvNa6bGiahmmZadpODpZS4Te/+S3L/N8wzzNVKUzrpdKm7Sgls8SZmBIpR5T1VMRKrbW8j3zrMUaWGKUV3ok9VCpgBBCVc2JalV3rPvWjnv8cFbq2E6K2Bt9Y2q5DW4M6cKE5q6LXjLMQvlGKaZpovMM6J2CkmCRnXMXkr5WmKCF21youhRwDpRTarqNpPPM8M0+TZMW1wWhNu256uRTyEhkGz3ga6ZoWv9bh5FJYQqLvOnF/VHk9dl1HzpGKputaDocDKUmvceOkvspZ6WQ+06kPhwObzYaXl5eVLG9Zlsg8Bzabnv3+wN3tPY1zFxBT27Z47yhFE1NmPB3Z7baMc5Bqr5stGFBaYFepVAoG5wxtN1CrkuVWacjyOMccxd5rDKpqrNUY01BqJq7gMlHSFaoqVM1Ya2maBkJgSYlcNcZ4qtVoU9CmYrU4O4yybIYtu7t7+uEGZR3GelzVhLiA1yQi33z1JXWeCXFh2N1guo4lF0pa5OdG/kTF/oHT5jp/a6M2w/qLy7/WqeAclAIhUtf6tOtc5zrXuc51/q7MT19spwdKWDB2Q9u1vMxH8jxRFo3tFJ0thGmmaTfUKPa0rmlIy4kwzmtOzrMsCus8aMu0RLRxtN0WY5vVtmhJOa2n8xpVyw/Vz88U2E9Tf8SevH7+WZEtBaNAaXP+Qp990dX+bD6FYS+QqM/+v+R0yeZ+3uXKD77UZwuxUmJnPsdxz2ruaoM+/+vThZoQWD8t4vUHVUnn0UaU3VQr2sjXtEayzPOY6RqPNZq2NSuJVGGd1Ge8ev2K0xRgVddSiOe7LwtrLVgtMBnnHImCtlqosWkRWJUV2q4xilIiOSdA0fc9Rmka07CUhLUNcVUAlVa8enVPSoFvvvotS670XU/rhL56sx3QZaLrW2IMtG2Pdx6jKvN4hCxZ3q4fLv2ebStLiPeG3a6Xi/7G0nceSrpkUyvg7R05Z56fJoyCrnV0bYezoiQZrXl1+yuGfuB4OvGXf/EbvvnmG6bpSAgTSgl0a2hbjDbEmKGILTQu8QIIK0UgRNOyMIcF4yzGaRrfYp0llYQ1jrdvXxPCxH/0H/0v+T//n/6P5LAwnUaen498+Vd/xfG052c/fydL6Tjx+PjEf/X/+695fjnwV19+jabys3dv+ONf/pz3337Jd1//jjAdKcFgFyt1ScpAjoSlIYTAx/fveXo+EGLGugZjHb7tmVPkFNe6GipOKZSxlFypaqVTWw9kFFEOD6z9ZI1fc65tJ0skteKs1EY5Y2icu5CZtdZYa5nnmRQjpWSaxlOoK3m9MM8BrdUK+lKyPJWMs5bGy31rvaNp/Cd67hp7sNaSUpaMrlJQ85oFT1hjCEEOcM75XCFqe3mfloprPE2rMc4SVojcMAyYVW1tmoZ5mlZQkhxOaCRzf9zLIqsUtDcdx3rEO0fjLF3b0LYt4/FIznmlXFvevHnDZrPBWsv79+9JSajLp9ORcZzo2pacMqclYK1jWUQR3m63nD6+oKhM04nXb94KXdlonDWELAc4dX2NVqXouo6u7SlFarJqUYRloaQMpVJiIS4RZRRKeamCimFdyA2NlRxyiAFnJdfc9/ekXHDdgHIdCYNre4zOHI+PlBQpWR7nn//8l2x39/zZb37HcQy8++IXLMcTf/nb36A7w5/8kz/B2IasE9bJ906lNWTJz9ffU2jPB47X+VueP2gxkp87yhhoNfi1ASFGLmHn8iM/i69znetc5zrX+R9pfvJiW9MLNQbSHJiiZnx+kUzZVEk+Mk+BeYm47SuhjyiFK524WecDCUUsFW0Mm82OmGGZIk03oL1CkSgqYFyHNo7Cmskq9YeipvpDP3f/wA/jSy3I76mol0ht/fSnz4vnmjcrn0GTlVbUzzp6L7fp/ENcffp4KUVsyuvvaUSDPp+Ay334ZHWWJRqUXVeLVZGtFVJab/9ZJdagqoCfVC2odbHIKV4APLuhl0xzibK4Vmh9w/3dHdV4Pj7sxWqJlqW7ylJgqDTWiY0w68tBwBxGSpJFtms7aq2EkPGtF2um3VCq2KE1isY4aigsy0iMkY1rubm9oWt6htsbppI5TjOv7m4xxjDPJzadg9ywP7ysatwbrNXc398yN5YU46Xz9rzQbjeD5BtzZLfZsEwTfdtyf3+Pt1agN9ZSSyE5xxICu82GxnuxITuPt5bxNPL+4YF5mtnv97y8PGO0ZVkWtBaKrNailIdlYZknUaCNxxuP0RZjLUWBLlkOSLQRJdRaVFW0bScX4XmtzqLy5s1rbu52pLSgVaXrJcvZN/8OS5hpG8d2t6XvBsZp5h/9+k/46qvv+L/+3/7vuM3AP/tn/zH/4b/377Kc9vzmz/6Ur373WxTw7t0XFCpaW2KpdE2/9se+Z14Sf/4Xf8m333+gaktMGZwlaal9qhRCShhE7TTaUdGkLNlu5wWudbYri1IvvajlQsVu6dpOlNS1j1SptbLIOXbbLUZrDocD3ntubm8u76dpmaXjtJYLbKpzDj6zFRttqFoOfvTq6pC3mvrsQGq1OSu1AurEWvz69Rtu7+749rvvmKcJasVojfVCBC614r1YousSxJKdKyFHoYxPCyhN1/VgNLUWvNGwAtxAOmyncZY8/rp87XabC8FZ8ryWWiWDfVY+Hx4euL+/X/+s4f7+NV3b8Pz0wqv7W56fn2Sxj4V/9I/+EW++CPz2L3/Hh4dnTscD1MI8j9iTJhXJ2hYUIUe0NuSaWcJEXnPAWmm8M4RFEWMBBBJnMJJPz1LZpbUcdKAE0lYUOO8le2wtTdfTDDd89f0DD/s9d296aox8+/UHtIab7YbdbiPf16vmZX/i4/OJ4eYtJE1IYFKlZMhFXrdKlUu/dKli7W5cyzzPlz7mlNKPQgOv8z/CKCULLsBnz0HNGfX5AUSIV3L1da5znetc53+0+cmLbUp7pvFAjhbvHc4WlvnEvJ8g7xnnQC6aUzzRNR3aGI7TuYqjME7TqqgY6rwB0xKXjK07igPTbNGmo9SMMi1g0MZTtf6BPRf40XzP762tP5qb/ZRX/fxLrUvk+jUq0g95oRyfP69wUYfk/wtaSe/iGkOVr2EUrLbNut4QVcqFonq+tXXthP18cspUzhfw9Qf//XS/FBaoupARW2QJCyEslJxQpXA6HUkx8GrbiXvMyvLV+g7Xb+ma9yznC9dSUaXgtcaZhqFvCEtiChnItH2LVp5m09Jaw2G/R2vFdrtZraWi1p2rfsgZozNv3txQjHSIdsby8Zv3vL6/5e7NGz4eXvjZz79gOs3kHLm73aB15Uikawy329fcv3oldvCaGVf782Y7CAHXOk6nEw8fP6BXaurtzQ27X/4Sa0QNvLu9JSdR1Iyx+EZUuSUEnh4eeXl6ljqaaeL56ZmwLPRdL0sbWrpQlSUmAQnltAAVrRTOenzjpJ6nKrJWl45fZQxoof1657FeSL7WelHTWkfTOQqJn/3sC9rW8803X+MMOG0YDzNagdKw30vnKRWOhxNDP/DuzRuGruP2zT3/h//9P+OLN3eYEvkP/smvmE4H9i/PQv1tGqz3TFF6YftuSymK//w/+3/yF3/+FxilyBqU0YScAY1RCl2lb9oohXeWWhXLEsQ26jxKFWrOpFQv7y2/kqS9tWgtS+yyzDjn6LoWo4XCO89ij5ZOYyHttl1L33Wkki9qqm8bQowCJcuJKQm9uNR6gXzJS61IB7PWlFwvvcafv1dQCq0N1jhKkq+PVnR9h9IKstQHVZDHbP3aS1hYliQ5XCssgNbLgUrMiZQzdrX2pukkee55wlmPs349FDHUXLBW453j8PRImJfLwn7OiU7TxNdff421lpwrMSSaxkOVmMbuZofWmr7vcVaz2Qx8fHjmw/vv8d6hgQ/vP3D36jVqpY4rLfb+jMJXcN5JF3VMjOOJGJIsi75FUy8Va0YbycIqhbYapRXKsB4qKcn9Gk1Buoa9MSil6YcBY4+ksrAkxf1wR9fsCHHCaIfWFm0crm1p+4H6PFGqRmGoVQjKuZwP8xIqRUqWwzQoONfI92SlLhnbT/nq6/xdGSWI/E8fcE4OeHKWJTel/8lu23Wuc53rXOcf/vx0xbbMWJuxVrGMR3KOeGPIIZBtRKXM0Ay0piHNM0V9pkzkjIqjXLBXRWZGuw2mKMpSyYuTHGWthDxjbKQqh26g4vjrauy/2gIMnwmpn4KoP8jXfvpzn3+8/uDzP1+C/3quF7Sq6PNnnX+/CFAKJfZbrdWqjP7+gvrZKfeq2LKquPViUf7MllyFDquoqwq99gLXQimZGCKVijEKTaFrWjbDFusa+n6D0Q5rHV3bY60jFSg5iprYeFlsbWY3dIzMNMYAFmU1xlSsrQx9x3YzME0T8zzLMl0Kfd9jrUB97m+2NFrxeNzjNxtyrmzbgZth4PhyQJvKmze3HMeZFGea1tN3Z7DV7UpWlqqhw/5E37e8ffcG5xzOOg6HA0pz+VjXdfIg5irqtIMYAiVlnp+e1tsZCCFwOBw4HU+cjifsSulNUSyq281WMrNNy2F/5OPTM6VCzhHnNI03NI1bwV0WZTTet4zLjDT8CoxoGDagoMkdfp5RWvH88oIxhr7vwFR857AONpuBWgrzMqGcxTjQuhKWmVIyWium6cRut8NoTQppraqxpDTz8PQe8omyjOwf3nN/u+MXX7wRhcsYYslgFaUqwnwizInf/MWfkVLAOFnysQ6doLEepzUlZgzglHQLa2Ok19RZtAalK7UIJdt7Lw99KTRe8qfGGKEnVwEiaS3QJ1UK1mhyjhz207oUS/3LEmaBsGnEahvXnmWj0UpRQkZliClKHtTEC4HbaotWCq3MqqxrdK2Uqi6LbSmFJYn6tywLMUT6QdR+jACilmUBpS4VRVJDlKRmyViKErtuSumTct00WGtQ1kCxNL7BO8niUisxgTXgrOWw368qqBxcyeIr7/fj8Yi1dqUea8Ic2G5vcM4Dilf3rwnLhPeWWhKn04mn5yfef/iAwrAZeuYlkVIUKn3OGC2PXVWKpvN47ym5UDKUmilFlgy1fl8xSpNXX4tSCo1GGbFY11ootaCqIaUEpWJbDymRc1pt3k7eBcZRqqFWS82aGhUlIbb2vL52tMC+YkzYyiWTXYtQs/P6uGgqtcj9mov0TFtrL8r4+UDtOn+H58yzsFYW3iVAjFe78nWuc53rXOd/kPnJi+04TdSSsKYSwglKwmkBB5Egh0jWilg0p9MoACOjoQgAh5IJMeKcZbtp8N6QimJaRsbDI9pYMoFUPba3AkOyDm3sWr+jLnbDH+FJUX/sg3C5eCwXO9Tva7ufPudHqyNWMNQZfHP+gay1Rn/2tS5NPUp037MVueZyydj+4M+vF90iGK+KsVp1Y7Vak9V50VZoDGp9tlTOVK0paKqqVC1/Z5hmnEkoJ6TRM+jmnAtum5a+H3CuIWUIVSBR97c31DShmNkMkpNNUeNcT6yZVCxhOVFL4XQaCSFInnYYqLXSdR0lZ/qhp2taapqZlwm84XgcGZoG7y3GKHIOxJxZpoX7uxvatuHp+SM5a2qOKGOwWuNdQ+0KJUeM1mz7DUPf07cdIOrfuD/yV3/xG172e3bbHVTFOI48PT3RNC3H44FpEviStQatFF3TcbO7xVkLiD22lsL+5YVpnGDNTnrfgJbeW+c1Xesu1THWNVAVVRu0tZJ5ZlUrrNi7rTFUVS8K2rLMbHcDGLEi393vpIYnBKgIRThnjBIS7bJIBnMJM99+9w3zFFnmRCmKEGbqotjvX3Ak4nhg23c03lFX+/mYI8Nuh64wH4+kAM9PL7w8P6DXvHDbdkxRVEmrQMVEjRHbODZ9hzJKoHDF0HUN1CLOBS1LhTNWFL0VEBSj2A7Fqh4vqlqtlb7vVyVXFMsYIynKojrPM/m8jMcoLoRaGTYbsXJnOXQyFXnca4WqKFUqpQTkVVDaYqxBlzX3umbrFXWFNRmen5/ptwN1fY/mmOSiG3U5PNFaE2IUd0mpxCqKMbUSohwgNVYOpuZ5Wb+JnntzFadxppREWCZu77fc3Nxw2D/Rdx2673laO4BTSoQQOB6PF+Ux58qbN2+4u7tls5Esedd1xDCz3W4ZT0ceHh5xzvHu7Tv+/M9/AxgyikEbzBkyRaHGQtHQDAOsr8PLAZ+W+3s+0DPKkFMhlUxZMiiFcYZci9ClVcU6h1aK1kktUsxSeyTfbGRZbfuBth9AGxRWYFLI4qqNpq7k6TNrQPLOipgTMSV0qRglXeclRZS2AsLLRbqHcxYq9brcfop0XOfv/CiFahvJ5k6T/Gy8znWuc53rXOdvcX7yYhsRIMgUZmKu5BDQK9F4njJadeRoCcUwh0pDQVEoecYYqGpBqYWm21DqwjSNVCwKjbOVHE6kGsm5YcmFXB1WO2zXcK4DkripQa0rpaoVXSHrQtHlk6x6XiAV1LMKqiRL+vv7r7osyupHVuPPg7OfSMjnj5VPv/xERq6f/qxeRV+9Lp7nNG+tAkap5bzwnu3PK5xjzQb+4MudVV2qKClKFA1Wu7XTmjFnMALgUhrGNLG7uaPognIKZaSWxxqDVgajpXrJOwXGUPGkWnFdw+amRSlDxXA4HJjGwvF4wnnH7e2w1pxUtBIVrmsawjTykiPeW96+eYeyljd3r9k/vaBKpek8jbPoXLFDhzaV+bQnzhO329eMpdLYRui2OfL6bseyBB4eHvnvfvffMY4jh8OeZVlYgoCsnBOL5cf3HzDOEUPieDhRi6ZxHqqiMS1932GtxmpN58XK/Pz8zOl4Iqd0sXre3N1xGkeOUyDWIgsuGd8MhLBQKTR9LzUq80LjHNpojHPUWogpCX05Z7KS57M6w5RGljRglaFpB7YbyVze7G7RSgjLJQX8Ci/ybQNKbLK5FmKO+K4hhox2jpQURrUsc2Xb3xKXkS+//A6tCsYIEKkow3GZmaaZmitt67i93dIPLbEYDmPE4lBVQ0pio69FFL11KddWqnxqznRdw9mjoLUmhIBWFlULyxJwXmy8c1hwrqVWiEmsw/MiBO3NtmEcJ5q2w2hFKUkW2ZSJIUjlkbK4tqFxjdh5G+l3rapS1Wp714BShJwxvpFccwHfdpymp4sN+JwFVgpUqeRcSbFgrKFrOqYykqvi9v5uzXvPhJBYQsZad8nC5pSgKkzjmKYJfwZnVViSIldLQlFTJaQFamIYevphy+F4gqq43e34sz/7lxwOB25ubtntdjjnaJqWp6dnlhBoW8/r+xs2m4ZSAsYYUokoq8kVvv7+PUvMdMMGbUZ+/stf8eXvvuLVm7dsb26JJaG05rhWClnvWJb18G5VRtENxrdy0OgbjDOEJVB0IcYkFWyI0iqUeCFfL3HBaIXFkXMSErISMFo2GuUs8TiL1dwritYUo9f3gaZUViVciMmlBKoWGrf8kChopYgpU2PB2YZcxcVQQPK9NSM0AA3KkMtV+ft7N1qj+g5Sps7Lj0aLrvPj8/QfvyF3V/v9da5znev8ofnpVuRq5OJqmShFYV1DTGJtc42iaVoqjoJGaVEMU47UPNO2XrozlWTKpDZot+bkEjmKNXGOClRP1zqc0pRwhMZTlZe/X1lQa59pVWhEiZQ+1094qB9Ecj+HQ/11hNS/Yn7kM+sPf/0pnfvpY2eFVX3+wdV2eSE6K/0DMnJdJd36Oazq9/57/r26/k8lozCrJRpSjEI9detjWosAuuJCyolCZZwn0sODUFljRFWpzilabkNMhQq0bUPOiZITMWa8d9zd3XM4vFw6PsnIxX7JKCDGQNd1GGdJVWG0YTpO9K86tpstyzyzf3lhWeTzakX6Xkvmzf1rdNW0tqVre2KMvDw/8y//9L/nr/7yS8Zx4Xg8YK3Fectut2XTDyuVV5aUVCIpBkquWOPQzqOR3t0QEvP8RK2JuCzsNlvpwB02UOHx6ZHdMPDuiy/YbDfMX32NNgmVZUmsq6JaSqXrO5q2oZTCsBlIIVye7bRa2t0KqgLwbYNvG7qhxzqxI7/74p0oevNCyXU9qNF444lRrLlKQdM4eV5CQBu9qruatu04zIFlSeiqMGQaraXOh4IxSgjXSjMMA1ppDi9HSslYJ7Rr56SmEi33T9UkgCwv768lLLRtK8teDoCi66Rm5pKpVhCzdLhuh4Gma5mmiRgKxlhCCKLOprQqbCfatl2XG7Ewl9VK6r1nmia01gzDhr4fCDmx37/grRU3g674xosyXBFCb4hYu9YCrYRj59wniFQtWKNwTvKx1hiBTxUIIVKrWi3ThrbtUGtXcSoFVkX1DG47216tdxfFc1kWQsrkXMTqW6ocuJF5/fYN83zEGM/Q9RzW17AxVqzWVh6j7XYHKEqtdK3n3RdvmadRIGqN5fvvv5NKoP2L2O+Hge+//0DJmtevXvH99+8pNdP1LSYlxkkiAt57YhIafFWKWipoLbTzlKmqkHKl1EKuFWU0re0u9/PMJTjbyb1vsEbJgeUZ6qc16uwMUax1WwJNq0YO72qtxJwvDAKlFUbL1zlX+BRVqFUqvXLK1CTAr6wq1VliEoXbOU8p9XIfYrxmNv9ejtIotx46T/P/xDfm78/kzvwheuZ1rnOd61yHf4PFtvWKw+EJQ8Y1DXEZ0VURUkLZjCmZXCreeoahRZFIS8CaFYJSDMo4wqLwXpFMBIrkH9OCtS2+GahqJs6PktNyA7o1NG5Hwa4W34JWllq1LITnLC2fLGmXBbf+3tJ5/sXfYC6U1c8/9gdOmn/4c0curj//2PnXn2BWP2Qt//W88OcgKaEgV6Wo+tPCnmIkLgutlkxzSAs3ww3OuLUfU+jM333/LePxwDIvGKWhZFJOdG2DdQKCyTlzPB7Z7W7JWRaEUkT9qSWzPx5oGs/NzQ1xWdhsBsbTkYosC2W1Jp7GiVofGYYBpS1v337By8sLxkr/aCkQToklRHLOdF3Hn//5X/C7L7/k44cPoBRWWdqmo+RKjIEYMssUmMaZWgU4FGPEeunOjbEQQwHseuihVhptoes9g9sQUuI4TvzsZze8efeWf6z/CcfTiaenJ/bHI0uMGGOxqgiAJ4uiu9kMFzW01iJUXyWgHWMMm24rT9i69NRaBaxkLK33WGsJMUKFaZpIYWEcR1IWCrGzZr3P8rqQxUIT4wwYUUWtJ8ZAymntD9Y8Pe3pG43KUfLVfYtvW4wVuvh2t2MeFw77UfKXxmC0wJtSlcXCqir1SKYBxLYrVlVLPyisceuy/InQPQwbpmVmHEdA7KPnPuNYZNk8w5HOf++yyNLFmlFXfEYFX23YpRRRHKssyLkUtJbu4LX+llwEioXS5FrQpTCO48Wqer6NQnCWzKxSa+2V1oS1S/bcW52SdO6mFW7jnMNqzTiOKISMrZTCGnv5fiA5Vg1klCqr/V80bW89Hz58T9NYfvHzt2hV+fD1R/aHo1QMOcmLv379mrZtOJ2O7DZboLLdbpmnkd1uJ4T1lbh8e3tLKYXvvvuOtmmZ5kTTNvzyl7/g/ccHzidrvnEM27dyiBgiFSF0S8VPpe09zlWBbpWCtQ7vHWm1R/9+fEMpgUZ57zGqUGv8we+hEKeBb6h1QSm9KtEN1lSUrpceXKUUt7e3KNfSdVvuN/cC9GqhHxyP33+zPt8KXTWxJErOtG13sbaHEPGuXdX0H/0WfJ2/J6OcBVrqPP9NfzRf5zrXuc51rnOZn67Y5pnGGZZpIocshFQUuhqKMqLk1UrMC85qUgikKPbJnAoKj9GeFOqlT9IYS8kLCkVWGZMLTVNIcUZph9OKML/gWycQKV0o1Yh6s1rbRLWTfz7d2HNmVX1W56O44I7/hvPXcrzqRzBWP3KYetlT1XlBLWs27POe3M8X2vp7F2yfbMg/VIhXy3WVTtiPHwJBZYHM5HOWV1OSqK9GK2KYoSSMqtQSGbqGPHoU5aJwpXS+gJQFUhYItapqI75p0MZwOByppUg/axKVZ7fZ0LQ9fTfQ+JZlmuXraUPTDbzrN7y8vPDd9x/48suv+P7774lRalXevhUgVEwJ6xtiCISY0cifT2jCMjMykXKkaTxtI6rimcWlUHjnMLah1rPqVDHWsNm0GLQo1cZSKoyzqAUpJfqhl+UrBkIWeFPTeHI2GKOxzmCtZRxH5nlaL9yt1KZ4z+7mhlorD0+P5LWeyBnD0PeM0yjwKFV5enriNB64v71du0IjKhXImlIzvnFAISVZ+K11pFikC9c6WRys9Lj2nSepjNVSiyL5VM2yJOb4wpIXdtsbUBrnPd55nLMYm3DeklYwkDVOcvFOU2u+ANW0hr7v1tqfQq2JZYkrAVqyteel8fw4ai3LfCn1ssieF0yAGGXpLbVCzat7oeK9RykhiueUSPXTa7KxjqoUc5iJ68EDWpbpmIRSfBpHlFLsdruL2mitKNRt2xCjgI5ijAJDWlXS0+nEPM84Zxn6Ab+SXHOMUuMTpIu1aRpiDmvFVGIe5XWI+mw5R4BNKEXbtfzxH/2CJcy8/+5b3ty94uPHB4y1DJstp5Nka7VW3N3dsCyBt+9ec9i/XOqRhmG4dN7O88w8z9ze3jKOC0/PB778F1/x61//mhAW7u/vOZxG9scD3juWpbDZbJjmQFVauntRl9ewZMbl4Mf7FXgV4yUXLQcn+aLaLsu85rPlwOd8oHOOA9zd3bG5/QK053YYMCRKnjnsH0lxIeVMTJElBlJM0InT43n/QhkLS/SMk+TcrZa6MVPAOiO07fXwUq/gtxAko32dv8+jUE76cK/L7XWuc53rXOffdn7yYqtrRJVILXKxIwRfTcEIaVPltadzYZkDRoEzBqVEaZqmyNZtKLkwTxnXJNpWoVTBaI3RmTjvScuRZUm0bS9AEj2wjAdStfh2B7q5QKRqXXOodYXEnKt41u5IhdgVAan24JP6ea4DOv/6bzL6x6zNl8DtZ5+3VlZQ19taywUUJffjfJv0738hLkutOt/2ImAcBJ5DXS2QWcjIxYKzLbrvcc6TU6asNR6qVubTkZoDYRo5Hg786hc/I4ZANZV6VtDDwqtXrzBGCMWyyEBRhVKkP7TtPH3XMfQdy7zIwUZOdN3Adncrds+q+PkXv+Djh498+PCe3/zFXzJPMx8+fiBFobsOw0BYIlTFMkdqURwPowCFcoYMRknWcRhE9am1YoxbQViOtmY2255UEk+Pe1IseGNB60tNCRpCTKQQCdNC0zSiiFXo+55hs+Ow3/Py8kLKKxCrFu7Wrt2n50dCCIDYIL3f0rYdThn6rmOeZ06noyiGxlBWq3frHEPT8jCdGMeRm9sdr1694oufvSXM0wpcqtJhXIWWOy/TqlBaYgxM08yyJBrfYa0s+fPxwDzN9N6w2W5QJTKVgrGWw2kixBf67QCq8vz0QgqJtunoeoFvaa1xTlMUmGQwFEIMdP2GnNXF+u19QymVlCLGaEoVpa5pGlgVUbcSkZ9enlmWhc2w43Q6rT2zopael9/P36Mgr1ulNNpqlmWhrhCmWispp3XROi/bstRsNhtArY/LcllurDXc39/SNM2l59RayYOGsKy1S5ZCxa7LmtaaBTlU0VqTUmK/36/Po6Vtm/WAIdI0G4GNVU27WuYtmpCX9YAJeT8rqbnKOfPNN99Qa2bYbBinmWF3Q8mSk759dU/IieOH97x5+5q3735BTgljP9F+zyrlZrPBrATnlBJPTy9oo2kaz9PzE3/0R79iv3/Gernv8zyJql+q2ITJ67L86SCh7TyN71iWRQ4k1hqizyF3l/5spSRvXiIhSHWb1nqFUhVyLrzsX3jaJ/rNDVYpvvrqK0IcMSrLYWcWKNXxeOTLr7/nF780NLcN7z+8p9pK072TWAF1jU+Atpp+u2WZI2a1sHsHp9MJrUXhv87f/1HOQUrUq7X8Ote5znWu828xP/mqwFBQtaC1oRSNNh0xV7yXzklnG7rOk+JEVpKVattW6jliYru9wVqhWjZtR6qJaYlAxTWasEyUWmh8Q98Y5nkPuqdzb1AxiNhpM8aq1YrIWi9iJS+qfri4llIuCtH547UWWC/wfqiI/s02W7FCf0I8fboN8rtKfVpcS/mUW9PKrLdFffYP1PqpuuLzr/U5JblW1uVCr9RkRUqRw/7AzXZL62AeJ5qupRY4nkZenl/4f/yn/yn/xf/rv+R3X33DNM9CJ42Jl4/f8O61LG8VmOd8UYes9eRUBXZlLCkmbm9vCfPCZhCY0jTOvH3zmrb9BVopcsosp4mvv/6Gb7/9htPxxHF/4HA4QK3c7G7Ybrcc0wFvNWEeyTEQY+C74wHvPbe3t+jWk2Ji6LeQJSuaa8IaydWWmum7jtubHcNmoKrC4bBnbgMfD480TS/VO1qhjcI4jdKV+TTT9wObzYbNZsM4joQUOTyc5PXkHb2R1433nqbxHI6H9fmUJbjvO8p6wLOkGbVUyTdqy7LCmrbbAaU1yzyyzCPGmEu+NKVI1zcsteK8xzqpiplOB3IutG1L23lyjmitmeeFm5tbgR6d63RKYRpH6rZjniMlLdJTWjLtMOAZyFker/F4wmixbVprRSlV0skLhRgWqoZ+aGWxoZByIMSZWivDsMWaNQNrJJMqZF1zed3knC/3r5RK27Ysi+RTm6a5LGqXQyelUApyiijNqsAFSgXnKnqFnDnnQFXG6YTRBq2tWJS1kUxt24jKv2Zh9WqvPf8TgtBzP1cezVrro6pkbot1PD8+XSzMJQvMapqDHJiVinWW6SS2ZHntBznYMpqhbUlrzlYr6VmWeiPLYX9gt9tQKnx8fMQaw89/9jOG7Yanh0f6vuVl/4w2cLPbMo0ju+32ooSeSdKHw4GmaXh+fmaeZ17dv+Lbb//0oqpaZ6lUckksy0TMgZQKSkcqiqZtWZZIiIGUEr5pabuOkgvGSh81VSzYokjnT/Ztay/P+Xia1tdyR6Vc+ptF0V2Y54AykoOepol5OTL0DbthIwcgxtC0LWgty+t6UIJSpLUfuALWObHmG0PJ8nOnadoLDdk5eQ+0bfs3+t59nb97o5oGSrnSkq9znetc5zp/4/nJi21eZmoqGCyua+m39zztT/TbG9Q8rsuGQhtNSoGaIiFCiYVcpM+WKkrPEhKu70gprHnFStP0jOOBMAe88+gKNUZ0nNFxwWoNccG6XuonVktpTVnop+aHlT2fanh+mF+tnymkP/z9T/OHs7P/anX2ByoHP1SnPgGbK5WEYF3Pt/SHf9/vKyaf335WYFalCpZZQc2FnBIb39A1iurl4jSGSMqF/+T/8p/w8fFFLOO5st1uaPoWXSttIwtLyhqtpTv0vLSVElDIn6kx0XYtm34guhZjFMeXPcfwwje/+1KWymmm1MI8zeSULz2zjTWooSPGhLeaHBceP76/VCg11rHtO4HGUPHW8ubVK+Z54ngYGbqBoW/QumPoGpZ5kh5V59huetq24Tgeab3Hr5bXEAJNSrjGgxKFW2tFtxkEfFUq07Iwh4A1lpgym00n9T1KSW9sFrVwsxmAyjxPdF0rFu1ppGmEZryERei7SRZYBdzd3mGtZf/yQolJqNEhYBdzcRhIF6s8Bi8vL8R5oqpK0zQ0vmWaM8syAnqFg23ICVk+S4EqvapLEnu5N4pYMhWpSdHr8mqtY+gGnBPrtrOWFE+UKoqk0ZqSg9SuxHCBXIUQcNYxzxOlTKt6KvZTWQATeSmXZXKeZ4E/9QMlyWs757zGDswl03p+jRvDBQKkNGw2G0JIQgTXUjVTcqIqgXDFmC6gopgysWTpRNWaTMVU6cINYWZelsvfKYqxWf9cWAFTlmWeCaeFuirdzluM0XSt5/l5JMe0Lut6teZGtFLSu1sE0lWVhppXoJZ0wnrXYLXYwWs1PDw8A5WQIs5aXvZ7rHM0XYt1lq7vsEazf3nh9ZtXsKq9pUiO2xjD119/zT/+x/8Y5xzfffcdt7ev+Pf+/X+P//qf/3MU8PL8jPGOzW7H/f0dp2lCqcQ8B1zTrg6IlQ6thAEvKrxZadFCfT6r2Of3ZttKtvhwOMh91lLbIwcTQlk+Rz76ruM0q8v3u6JAaS3U8BWYdbawK63EmhyjxEa0Aq3xTUOOi1SaXb7vsroZ4kV1V0qvB33XJegfzGgNzkO+wqSuc53rXOc6f7P5yYutyhmVoWTAOIwdpNtSe5rWrRdKJzSZEGZ0rcQUKTGRUuE07tHaU7GEomlu7tltbwnLiSWMGF1pmx3LNBGXTC0KaxK2nEhjZSkW3Uz4tsHoFrOSfEteqcj1Ux3Pj/bRAqy9sJ8syL+/NPIH/v8PzSf7IUhXplLq0u14XlBLTSitVhtyvahVkhk7K7ef3UzFZwvAp9tzztNSM1UZyqqil1IYug5ThPrrrPSBLouiUJnHmaHrmEKm8RZnNCUuGKsJsywSWnts6+j7DSnFiz3RrzTZZVqIc+Dhuw+8f/89OUWWaaKULH2T6zLfdi2dc4whUCNMMTCeRpwVVdIpxeA9N/1A2zZ0XYdzDmMl07vf7+kbzxevXwl46HbGWMfpNBLDgvMWO7RMkyx8tUSOxwWoOOvompa721tiZr1fmkIlxAC50LjuUuFSURjr0MbQGlmQvHN453h5fuT5+ZGUIjc3NzhnSckwrbTarm8ZNgOqKoZ+YBpPbIYBay05ZazWlJzZ9T3tz39GdZavvvmGUjIpRcZpouREaRu8E3ptf3MDWjKPp/FEKUmyhUqxLIGcTzS+F9W+ZGIOTPOEroXGG9CKtmnIuTKHQEiBWi3eWJz31AJN29K2HcYcyFm+jjLQWI/3llIL4yh50+12g8KsC0WSw6u19krypqvCptRlaZXX3YJR/qL8nRfM8/vjPPM0i018VQWVUuSyoLXFmTO5OGGcwTVe3CEhyZJ5dmQoxbzMhBjxRhNjWMFGsqyJspeZoizX3ntKSri2YTMM5JwZpxHp6M2My7y+1yTjTBVrb0ySs91sNtSVBK6VAOzKCpWytiHHwjQtkAs3NzdM48jpOLLZ9pQCS0yMy4I/HMg58aufv2O72aCoDJue0/HEq/tXgADGhmGg6zpA3ALnxe50OjDOkV//+o95fHwi1cKvfvUr5hDEejzKY22sZJblucsoY6iUy/fCl5dnYhSb+rlL9/wcee+Z55mXl5fVHaPBynsk54yxes0Iy+NgjPQBS9XaJ4r0irxbf/3pe2sBYpK6J40s0tZZihZGQ4yZqhW6erzpSCmt+X/5vppW4vl1/uGM8haKp65U+etc5zrXuc51/k3mJy+21liUNtRk0a6nbXdkEgWF90I4DftRTv5Xpaisv845Mo4HlHKgLL6/Q9sW2/Scpgnre4yqqFJoW8cyTqSQ8Lbg9MwSF8ZTorst5LgB21FLS8VSqsKYnlo/dbv9dbVTJmfpQTRGrzblH19gf0wF+NFluRaoCqXq5cJdqjHk17WsKGYlKsf54t+5hjMt+XMrsqgfn/6+c53N5/dJLiAN0mKrocpjHWIknA6YMtM1DdpIJm5/OBBiEAUPmOcRVRJ957nZ9hyPR9pug3MW7+2aV5T7E2NkmSPPz3s+fP+REpJU0JTKdjPQDFuWZWbOmbDI4nB8eaFrG3ZDz5kK/Pr2Fr3en5Iz3mh+9vYVpWa0NnhvxWqcE0Pr2WwGjs8PgOLdz38umdGgsdbTdS2lJnwjtTRN61ar5gmtRIXrup75WRaHWsXqK7LQCiOCi/K3xIDJRupJUiKVzBIDuUo11X6/x1pDSumSdby9vaEiS07XtJITpbLMM8syoyrsp4nj4SAU2q5lHteL8Zz5/vvv6fqW2932ktFu2obGGKZFqLIKQylJ7MPGUa1iGiesaUgxEZbAOE4MbUPrhaYcV9pzTJmipE4lLDONNSzzQljiCr6asc6hrGFcEqVUQk4MqxV5CRPWflLlts1Wss/HI/M8cjgc5NCjbS9VMM45bhqJGuRUL2Cz8zL7AyuwMVQ+vSdKScSU1yoceR/P80xRslyhWate3OXreO9QygBC+3XOodf3lEC/msv77XwbzipkyRlKxbeOYjTztFKoUbTeczyeSCHirZO+aRCCuCqk9f1hraMWcYr4pmFapI/TWE8tmWWeGceZGCvet+Qi6q42Cm2MHAqEBWMt+8Oet69fU3JmniceHrhY5Y/HIzFG7u7uPi2RtWKMJoZlfS4N+2fJcG9vduwPR9q2YZpm2sZjXCtVXynTtS1VKU6nEdRy/kZ2OYRbluVCiQ7rcnFerK01WKOATM5Jat2M3B690tTT6pKw1qKNQSsrCrDRq1IrhxFKSZe3X+3Jec1T5yWga5E6IKVlsdWaaZrJsaA0pGTW7LYjxqti+w9rFKrxANfl9jrXuc51rvNvPD/dilwqpVaBB8VEXKS2xFmLMTCHidM00Ttw1qFRlJipZVXGjGWcJra7G7StjPMCxuJ8TwwjIS3oWnj36hWjaVimGes0YT6QMcQw05WBcHoAO1B1Q8ailMMMVtTgiqgTiNVOKYWqUikClRRnsSI2Dc66VVkQII3MeSGuF4vdD0qCVrWVs7W4VlQt0ie7Bn+1EitvCotkw4wilUitYsmmKrqh4H0jsKh6KSciRflBbowRcJY6L7CrUKtEIRYYDNI9WTM5JZZ5QsdI20iG0mpLyplpmmmalhAz1gq9V1HlAr0KACuEZV2iLE9PD/R9d1FrUqp0fc/bd+94//W3pJjx1rBMM88vz9ScUFS8c7x791Yyk1WWwH69IH5+emaZZ25vbsT6ag273b3kpddc3zTNhCXQeM/+5WXNkhr2+2fQTiBOVkn9StXMcyTlRF87msaj1I7xJITtru94eHom5UgsSezU61JpFKBWyqqCgixBISzc392tHakFilv7VuU57/uOcRz5+PED2+0W7z3LEgWcFSP7lxdZQHNh//LC0PV0Xce5FqdMJ5QG7x39IDndGNOqUh/onCNUqWBpW4+1hmlKxCT5dbMqggpw3qLWC/6mafFOUUqSxzBGrG/o2g5qWSuAZGGZpxmlNIfDgVoNej3g8d5RolTBnB0FAgnLNK2jaVvpMHWGx4fEvCworYWGnfPl1/Oq8qdYmcYjXStq/DiOFyqygLckfjClRIjy+qzr8muMLDTGGLj03CqUUSzzQuM9FQEWpbyAWhVEpYhhEZpxjmvvqnxPyDmth0QCdSo1U2tmmkZqrXSd0KYlV24vmdGu6wSSRV2V3ROyl2m0FmpxVYY4C1RNKYHViVVbeofbtiOGha5rUXFiGHpCkCq025stx8OBFBPdCiCrpfLVV1/SdT2//OUvOZ1OF7DTF2/f0bcdP/viC75//54YZTG9ub3n6fmF/cuLZOCXhbDI95KqQBshYhstduBzPZMxSoj1SiBMMYht/PMapPOhgLWS7bamklMm5YLSBWukeslaeU0qJbbiCqDlMReHgdC3ldJ45zHWCTfArHT49XVXS5Vu2lpx2mC8wzQNqmSK+aQ8n10LKV2pyP/gRilU64FKDdfn9zrXuc51rvPT5ycvthOO/f7IZrjBqkQ4fZTFy3vmknh4fiSXhaVEYlC0vqfpOj68/0jJUJWm6Tu6jaMdeqJxaGNpug7vHd9+8yVGw+PhgNagBwvKcgwGozVd08EyodweUwq20YxLAq3IesH0DVUZlFnrQorUxKgaUHmh5kiKM2hNzRHrN+QMWlmocmG23+/Zbgcqio9PT9ze3VGVKKPLIhfVGljmia5pUMjiUYtGG0etQh0tJVDiRJiP9L3Hxonvv/+OzfaOJRYcr2jVDdqIkrhMAlAaTw/0XUuxHdZvcc2WjKYqQ6oF6y0pL+tCJhfS0qVZxUYatdS35IwJQk3W1pMrWGeJKdG2HTlFptPCfj8KrCOONJsBVRKb1lNzIgdF4zzOW7RtOJ5mXCtLil57jrqNLE9t2zB0PcNmgzVgyBxPR+YVPlQM7N68JgOnlFBdS20cT/tnhmFHCIXHl5GUCylO3N3doA0saSHMM42vGA0pyyHEOC1Y39IYzWlapPZjSWhlKcC4jMS6YLQlEAFHKOD8Rmy5WuPblqbr2SkBepUcSWGiUlGq0njH7uaGvpcKoKenR2JMsvQ38rF5jvSNw7qGzbDj5XnP0G/pB8V3339H13l843k6vGAahVKBpu3XzK4mp0jjOrzvJWubIt5L/YvkQt2l2kRsnYWUIynPVAXOS364FOk2LnW1FTeWTMZZAQpppWiNw/uem5sj3nlyNRQMVlVUroRxoW9aNJq+25ByZg4zp2kiZLFE51Q4zRNt19ENvRy4KLGTHl5OsuQqhcHRtf2lYscYu1qZWSnLQtFFaZpmuACLrJYao7PF+LDf45sGqqLkSloiRedLl6ksYwsGuf8AShuO+wMhBF69ekWMiXGcaZoGbSDljNMwzyec9RJl0AZvO1QxzKeEKp7GNtzubvGNZV5GlK60nWGcJ7kvpTLOM/1myzwGtNGrq0Vs71Vn0IYlLVIgjeKLN1/w8vyEUvDq/hVD5/ndX33J21d3UCoxxMviv9kMPDx8JCwLu82Wtm1X0rymMQZVMuSFEBO67ti2HkIgTjOqKrSyJApdP5Cy1C2pRuz+4kAo1FJoG4kalJzRGoahW4F/Ee/FTn6uaxLb+BqB0I5UKk5btLHEkkW9pZJKXrPemrwebFrnsdphtBzmedvgndSGvXr9CqUSN23PlBJRCU0/5kRnW+E6DEJvXpYFaxw5BRrn1rbq6/zDGyUwKaWoy1W5vc51rnOd6/y0+cmLre93HL9/ounEMjyNJ6xzlBLJqmB1peQiF5LTglEdNWdKVpSiyFlso1prGu/oh4GHhyf0ZsA7w81uy/75kZf9E7vtBmc1pSZyjnjXAFHUwWyYpgO2XWj7V+Q6YfQAZFIp1JpXYEmFknFWcRonpsMzykBRCppItgbnWqwRK2OJmf3TR2qaMd4zzyPL3NH0A8syc9jvaV+/ZhpHxsML7f0dx8MLKUasb3Guo1aBL6W4cDo+sUx7VPFYEjqPjPtAN9wQ5idyq2jdwGG/53Q8oGqhxgOhnvDtDQWoxhCzwbcbvNVrR6jkcmspKGNFQQJCWPBaso65VpaQCHNZlV5NqYrNdif1LG3Ltu+kbiZFukFgRDlVbrY3xBhAW6qKHKeFJU7kUnDecut3eGvxjWMaRxprpYpEC3wq50RYJow2bDc75mXBtz3aGOYlUGvh9Zu37F+e2d7csiyRh4dnTscZEIvpHCN2zUxbK8roNEt3aq5i/zTW8PR8YAlBakiqKH1t11NM5ebuhmG3o9lsafotuchFuUOhS5EqEWOpa2XNNEa0sRgNhrp23ZqLildWJW6aZr7//j3ee9qm4bQP1CyPc8kwTjP7/Z55WThNJ+7udlir0UWsk8YYXl5euL97jfZKFjRr0RSavsM49Rm8S+zQZwXxXIHUtH49EBL1WytZEo01WGXp+p6YCymKmt/2PZt+4HQ8st1s8b7hNAaUsTgn/aXWO4y1AgiqUs+jo6bqStuIYrx/2V/6TudlwTpHipIfP3voQ4iokmlsxzhOsohYK5ZTLY6BlBLzPK+gssLpdFpV4nIBTZ0/XyslJHYN2chjUYvYicul0kvgaVrJAi3PlUVrg3OKrutXErPGWo0hid1ba+nLTYV6GgkxoVaLfy2Vl/2BSsI5jW8MTeOZlmlVpReUsszjRFVaqrZMWTtgRVUsRSrQNpsNtVYePz4QY+DN61fc3d7y7TdfAYrNZnOxugPsdjumaeLx8ZEv3n2BNYbj4cBxuyXHxP3tHcZojqc9Iew5HfbEZcFYIaLXIt2+xnlSLp+gTWtcQqISkkm39vwjQK3kdXWxjk/TdCHLpyQgLTm4E9U6piCd041eIxaeN2/fELIAzr744gsokRSEym2MIadM13b88he/wLiO3W7LdNwBicZp5gqqKsn/x8h4PInlGHGq6NWGnhVyAJc/keSv8w9slEJ5LyiLv4u2ZKVQ1sJPrZwqBX7vfpzrCK9znetc5zp/O/PT4VF+wDQbtO+knxIYxxPGGN7+7A3jeMQAuQql93Q8EuYXclrJpsXgbGUeFcYeaXkmjM8kl4lTpoSZmiaohrxMzKeAYH8yy3xWJjW1HDGuJ8yBeX5h2L7CmYFQOowW+I2q53xqRtVKmGdeXvb0vcdYjbKGNI84ZXh+eiHGQNu2OF2oeeH4cqJvhVSqaqakQMmB/fNHlvlEmhfKrmU8PhKWQD/sKDmhtaVkhTMVTWQ6PaOLY9cZnA68HJ5oW83+6YEwP1Nfv+bl+ZHxeMAZzTLu6fueZR45jl9x9/oX3Nx/ga2GWsQ6HVOmqoLSFiikuAjNWClyTEBEGUsIM2i5eO03GypiOZ2miaRgu+lZSmKeR6w3dN2WeTyxWOl9le5bTd/3nCZRvK2GxnmUQnK8OdN4j1GwzCeoBQ3EeZYcoUsYbfHW8d3337O9ueFmd8vz4zPGKvaHF06nmWme6Tf9aosElKhex+Meb1q863DO47yjhMA0L6Q0cTwdpV7IZ5Zxpu96uk3PNI4rhVVhrCWljPWd2LG1xvqGmCQj6L1nu90Q40wJmRQzIQWGtmUcR47HoyhW63JWaxUAUZXbqGtGAyllwhLJeSLnzN3dHeN45OPHj7x794bTuHBzd4tSFqM9w7Bh//xEiAsv+yc6b8nGYNf84Lnq5Xzhfs48ykItt22cRrrG4nRF1XTJoR4PB5ZccMYJKKxkYlzYbjcs90JrDuEAupIEXYtyhpATSRXmGAjLwmYzcHd3w+l0wqDwzjHPgWVZCDGy2+1kcXWW1jcsyALldENjpQ/1DIUCLvnQ87IeQkAhGU6tNeM4XjK052U+5UxOEeNFyTzX2wiFOK+9y4GcM1o76UqFy+N2zu2es7YhRLTKdK0X+/P6seIVpWp57edMLoXOSD676zyn8YDS0PgGa5xkurUlp4IxDr0C23JMEs9Q+mLrLTkznk7kGFAK3n94j7WKx8cHfvbFO8Zxoru7YRxPFwt127bc3d3xxbt37F9eLvf1m6++5vWrV8Qcub25YbPZsNve8bvffcX3Hx4oymDa7gL0skpLZGHNGFvrsDaRc7gcnHjv17xquhyoLMtCKYXXr18x49GFAAEAAElEQVRfqN3H45FzZZTWllqDdNiWTwcOagVpnYFhKUZyjISwEEKg6yuPT4/85V99w/3rLzAKfvvb31JL4N0Xr+Cz1/u5A1lpTQlSVaSVom08TduQo15BYdf5BztnW7JWEOO/tgpIaf3TFs1cqOlfAx5TCuXdH/59a1cr/b+Ba+Dzr1eBEGGNgVznOte5znX+7ecnL7Yvp0S7vUc5T5onVEmAAIbef/ctzhr2z0eenj7SNj1N3zMXuaBx67JUSyXMC/BCLZZNo+ldZZ4WKpGbbUuOiXk8YLTGOkXMJ5ZloWsblDFMxxPW9yjTcxwL1gTa7Q6lGpzpZLGuFY0hpcBpHpnHIzkFxuNMjgsH7fC+45e/+CP+6s//JTFG3rx9w+HwzK//5Nfs7m8xTU+ImZIDnbf4uy2Q2XVbxmMmzXsMgb5TeJuJ8UhRYiPtNx2tA6MCOQaCUpQwosvCcnqWi+samI+QlxfC9CyKVAzooqR6pRRs3qFTT6qRkDXdZkcqUbLOKqLxlLBQUsRoxZICjRcbZ992ECf0Wg/knWOaR7RW1JIpOdF6B72oqSmKTdlax7JI7lGrijeWsU7kFNm2Dc5YAfTUgrOasIw0bmC3We20uVC7gVQk1zytz+2m37DMkcZnnh6f6IeGcTmglaYfpO84lYxScDwFnNNY59DaoYyjoJmXxLwkcqksIRNiRSuD1g50oCqxERdg2GxQ1nGzveXD857tzYDSkTBKD2dIBaOSwGmMxmhDyBmtFQVIMTFPE7c3NzSNp9aW4/EEVFJS0lmqNTEEgQYZty6WLfM8EWPl/v4e6wzH00hIAdu0vNve8sUXPyemzO3dHbtNRylRKm+qIUQuaqV0FMtC+7na+f79e1EscxH1sATIkc1WlMmX/YFYKm57I4RirRjHLErrPNO2Db7xoB22Sp77OJ8IOeONQN9kYbSMJw15tTmXilFrTnutRFIgaqnWa42RxAASokCe+08lry1fN60XlNbYCyxtWZZPy2xKl4VUcvKS2RQqrvzesHbJXr6WtQybLSll5nnm4eGB4/FI13WXxVb+nvlCKVc6g9X0zUY4cKmgjMYZj0cRS6JGRYgLFVHKaxHFMYbEPC8opej6ls2w4eVlz+l0AgQsVWvBKEVYFozWZCRP3q7Asc1ms7oBJArRti1fffUVfd9fFtGz/bbWysPDA4+Pj/RdR9WV16/foI3h5eXAZjPQb3Z89+EBs/49mU8HCp8DtJyTfGuKeX1eCtamS0fs+Xno+x7nJHss9Ubmkh+W519+nZP0zC5L4PsPL2gnj8fDwyMpjGwHd8lYn9V456wcYiC93HqlqqecL33YZn1xpBgFCOY9WrHWIO1lMb9mbP9nMKtyay1M048ut8pocE4U1M/66//gVHHlVIB5+VSVoPUFXnX+/7/dUT/4pWq8LOIp/aTF/TrXuc51rvOvnp+82D4fJ/rGE1ImhsB8eKHzBsg40+GcwUn0kmmesMajVCGnQNf2NM6iVCXnQphHKALKsVX6JslB7J8Uck20viPnGaMyvrV4q6EUgVItE8YrhqZhOX3k9LzDbj05HgXYpC22aanLzOHxkTgvmJpJ80xOgaoTYZp4cI759ELbtnhTsCqTlxM0nXQpVoW3TqzCCjZ9w3H/wuHpPaVtyGGk6VqoCzVltLFYbckhk+IRbwqUSF4qKmV23YDWhnbTkmtmOr6Qw0QJM1iNU5nT4SMKS9tuOTx9zTTucd0tY9C8fvdLlPNopTidJrphg6qZsIw4o7FdQ+cM++MJ6xts48lnmNF2RwhSFeKsEftniaKITTPON7Teo41ms9muqlpknk6EZRbScd/ivYMqF5udt5QsF6xWa6w1FGVYUmSaZIFU2nDYH1Bao7Thy999yX5/ZHe7IeUJrRWvXr3BOUPXNRwOB3IuGONRWpOyKP5LGEVF6zqsa5lCwjWi9FWtaNoOqIyrfbLre0KpbHY3fPvxGd90VOWYpwXrWnI12FUFtM7jnGdWa67YKOI8s7Yey4Lm/bq0KFKMzMtC2zZYY5imaa1LsRfb8jSdQFWs1RyPB/rtjtev3vL2i58xhUAIE7/59hv+5I9+yT/+k1+RlhFdKrUo5nm+qJDH4/Giep4rTkotK1XYSJ1NErLwPM9ir80Z3wpU67SMTOOIqtJ1Ok0ztWZYAWIxJ6qV/DUOcpHFp9+IurpMMyWeLZ+KsIKOqlai/q8W2hgjjXNQCmHJFC0dpfM8r5U7n6p+znZXOWQpF1jRefn8vBpIKXEP+LUTOaV0+dycM20rGVGxwkon7lnxBC4KL8iBgTEWow1VGbHJO8921zPPgZzk+4NYli25ZmqqlJJou4bjYaLvWrQ2DENHKYmSK2GZSW2DdRrnDVAIcZEl0jtCCOy2O8xuy+Gw5+b2BqMV2+2Otm0Jk5CPHx8f6bqO3W53WSqbpuH169c8Pz2hlOKf/JN/TNu0vBxfVrXcrbVJlrbpUDyKol0q3dAzR7HYp5TJWeqYwhIpRUCA58eolHJRSc+ZWufcxSVwc3OzgtXEspzSp5oy6cc1l4MIrUWtPSu58rXz5YDGrpb38/NmjYW1KkqvrxGz2tBTEtu45rN+71pWQrSS3O91/ucxWqO67qLqfz7K2ksc4ieNkviEAui7v7Wb+DcarT8t7vNMTVd7/XWuc53r/E3np1ORU0G1ihgCtURiHCEVvLOcDgFDpW8bNpuBZQ6ULCrFdtdiVCGmmVoVw9BJNcpxj9KKfV7oux5gtbEZlFPMpz3WixXTOssyLqQQUMrQNAPaFjILac48ffgdN8oRYqZrewEulZ58WmA5kuaFmivbruPh4cASR25v7wnziWU80TWW3/zZn/Lm7StZROOMdw0xLtQSefjwLa9f3VFj4vD0Hafn97hdTwgLhgHlE2QoxaBMA0UT5wOGiFKRxjQ43zPOC8NmoCpFSJHTfo+zCq8dYZqwpmCN4vWrHeM4s3/6yNP+t7z+4te4zSu+//aveP32F/Q7gTTNpwPzeOT08kxYZlqlWKaRrmmpCoxylJponb1QR0MIONuTS+HVzR1fff01pmvJuRBThlI4zhObzYZhGIhpT8mRxjtiSsQY1otuKxbzer5Yli5ZpQzeD7x6/VZypscT7bDh7u6e9x8+4JqOu1cdTWdp21sqkqtUEoFlsxswWlSi55cX5jEzDLeyaJQiPaNKkWul3wxy0K7B0TAe91jnwJhLb6vzDW03oLTFWiNVS9pivNiUJccrC0RsGsbDEzVHaop0jaPkiDOK4+EFq6WGRhZ54VWfl7B5zZKeO1QB5mmi7Rq5CDeacZ542e9p2g7nNO/evcM1njkspGXBdC3W2EsGVSnFbre7ZC7btiWEwB//8R/zZ3/1tWShEfBP13UMm05sw9stRWkqRTKMpyPOWLabgft7g3PyWJQKzhimlTzadT277UAMgeenJzZ9j9HgraNxjsfnlws12BtHJIlKvy4pc5xYQoAqy33OmaZpsNauC4paIURmrcZSpPXPnqt8aq20rdQOnW2yuhSpJ1KKvu9JSaphPqcs55yZJ1GFx3FkWZaLQvh5x661lsq5msuQUub5ec+yVgY5pwGp5aEaptNJbudpwmrFopc1X1vZDh3H44lcMofVLnxexmrONG0rqrZz7F+e1wyr1Hq9f/hA11j6rhEVt225v7/HOccwDAKraxq++/47coi8evWKp6cnfv7uC7ntJ1HOUYpXr+55eHiiFumBzcjhwDiOpFKJeb44DGqBnCu1si6Zfl0+8+UA5Zz1rbUyTdP6/pTnTmEv1V2Sy1X0Xbc+nnb9egrrBBRlvF/7mNVFOVdK4awjrt3CSilSLusBp+R/vXOkIBbNlMIaAZDOaXFGCGBqWaZ/6x+C1/l7NHqtjPqHOFoLWPF4+kNNhNe5znWuc51/zfzkxbb3jhIXchhxJLa9Jy8T5IjRjrhMNG2HVrAZWprGE0NkmefLQaq1ouKmECjrqWTbeLzVhBRYgmSoqqoUlYhJkVMkzAGjFGYFnOCBkgUs1SiMT8TxG+Zxpk4NRjvyqSWGQjgG4pzQxpMt3N3eklKm7/pVWUjUmqWGpWupNVJrZDyJyng6vfD+2y8xdeZjOHF6eaCEiaf5gd3uFqs6jBJ1Yp5OpMXiDCynPfPpmdPxmbe3b3G2oWk8u+3AOC9r36nCasfHlyN951nmQLPtySlTUqRxik3vaD08P39kDJpXr99iVKXzlv1RbNZpmelbT0slkVHGkKo0BjXOM4dECJmmaylzYIkJKnx4eMR3Hcp5jJOL5HMustSEztB4x3azIS7LqngntAlYIx26KddLN+iZzLtkDePEEiLGWG7vXzGHSEHRb2+Y5knIsTWjjeLjxwfatuHVq3tizBSjiCmTk1QaLTFQtcJ37UoBlgMVvS5ZSiucUfR1YH86sL25IRdZsq3ztF0PaNBQ0BSlJbOlLTFHlhAY1wt4kN/KtVwu9Kdp4nQ6ScfrusBut1uUUoxhpTKHhFKWm5s7uq5jWWZWoxt3d/eEmpmWkafnR5xruLnZoSkXkrC1/tL5CVyWi5zzRcE9L4gxSFVTCIEY4wrukkVH7stM1Ybj8cjdbkPTtjit2e22xLDW4CCW4bqqFlYb+rYTYnKMqArTNLHdDYAiURk2G07jdIE8nS2krLbpGCPWWJxtMdpdOm5zzhfK7vk+5TWfrbW+3OdzBndZFrz3hCALjbbmomCf1cVPlTWiFotF2VHhYn8+W5c/76CWpapZ7dMGrRQxJnQROnQlyz8pUpEDlFokw15qZRpntpuOzdBJrrxEzFqtNY7jhaLdNA2bYbg8f2fFvaygq65tMetBye1W1Nkvv/zI27dvmaaJ29tbnp+feX5+xluxub9+/ZrTeCLFxDRPLGHm7bsveHx4IoTIdreRA4JUSOuhU0GjtcEaTwhRaNSodcHUl5ytLLT6clBzzkCfbdDWCpjLWS1Z5rTCsYpZK8v02k0r76+zlZ56rkeS/y+5UHIBheR6zwr8Zwq9stJRLbRyOcSo64GRMdKJ61wnWf++/zf9mXed6/zdHSU06Dov//rPvc51rnOd6/y1+cmL7dOH77jZtDiTqWHCqUwlYrUhxwXtG0pO3N1smOaJlCaUqnS9YRpHlhBxbkBrh9GKeQ40rWRqU4qUklAUYkloA9UI1fV0PFFz5XYnVrih31BKJMaKNpqcJ+IpUMcnFIp5KjjjSbqhFgsBypwJRazMw82bteNWoA9d12GNodkOKFU5HF5I1VKNUHhPpyOUyPvvvuK0/4glsmksIU4CWtKWmivzEjkeR2otdI3l4cO3WJVIYebx6Xu6dqDpBk6njpgLlYS1GlQlxsBUM846vNvQ+I7WOt4vH+gaRy2RoR/Y3N1I/ch0JGWIYcZZTX+747dhYdNqQinEMGF8SzWWcZqJpRIz7MdnvPNAofOOm9s76b0shePhhZw1zhlKDCzTLH2vq9J3uuTeDKUqjtMisKlp5u2bNzRdi1YwTgsYwzBsGNC0fc9+v+cwzXz/+Ih1Da9evSJHS8mReZq5vXtN23qBGGnNNEfGMRCTVIWkEvHK0286tDEs8Qy+kaW0lEIwil3fEZ7DCtqJNENLrQqjpZInLRHrGqxrJTeIgvXC3xgj6lCMOCNLVmMdw2aQ2pOwMJ6OtI3YlrWS/ltKRqEIS2Sez/2posJN88gw3NO0juoV/WbDNC8475gXqYxyrqFtB4oJ1JKpCFH2bN+dponn5+eL2hVCIKYISqpzuq6jpIVpnihPiZQzfd+TK2ileHl+xhrNXMoKD1sAWUjbthXYUCosITIeDkynA1rJ+yKERTKPWnM6jljtVqUtXqzCzlqmRQBgoqQoYhjp2k+Z4PNyeV7yYowopdb+4U85UGsty7Jc8phndTiEgG0bQgi8vLwAsryee4LHcZS/Q0t1j7X2BwowcFEKlVLUXMkhoY3UPlmlycVijcE6A8gSe5oXjHM4Y3HaUFKgFsl4T6cTIZy4vbthf4g0xjJPEMNC07Z0bccyT9IrbIwQtMfxssTv93u2G7n9m82WaZpomoaUEvv9ntvbW47HI957+laqbkTFltdEjBFtDI+Pj2htOBwONN1A13bsH59QvsF5SyqQLzVk5VIfdZaEclofI10J4ROBWzqSm09VTOtjWop039Yiz3VKcmghjzWUtUs8pxXypWVhPtuIxVpeiCHSDQazvvdSlNdAThVrDDXHSya4aeRnizEapSXbbY1mCQtLvC4A1/mHNGueOIrr4zrXuc51rvNvNj9dsbVAmtG1UPJM1zm8agjzwuk04W3DNE9kW6mqSkWGMxijMTqjVcvQ91ArmYJzouqM04y2BnShqESpiZoLSsMSFmxjMAjo5e5+R1gWSq1QE9Y4Up4Ic0RR2fQb5nlCuY6Ko1SPrV6yuDHjRAhgHCesbdBac3//ir5vCXG6XFilGNDVUmplnk6omjGq0ljN/ukZmz2t1yzTiZwVXZ+Z5ghFoTU0ztE2nhITcZlJ84EQ9pi55Tg/E7OiKEOOiZwS43ikNC3H/UzjevZPzygC1IxpWna7Df3dz5iyJ5MpMTMvkWWZaKxBFbBG07cNaXbM84lUJT+ojOf163u2t/erpVBjVoWzcVJn8/LygHNWunBrwjpLmEamZQSl2Wx3tE2Lsw2PD488vewJYRGgS9/Tb7fc7m542T/xanvLkjL9sME5z+F4YsmZrOAXf/RHPD4+83Q48O7Va5xSlJKwTuGcptbMOEoGtFaDdR1VBbRRKF2YlxGz5kFTztI5aypmBWJJJtFLt/A0gfOEGMllVamUpiqN8w3aWFxjmcaD5IxX1appPLoWlnnitCxYK/laZy1hVZ2s0bSNZ56nVdECYy21LozjyDAM7HY7fGMvMKQ5zrx6+0rqeawhl0xMiXGa2O9P9I2ndR2t06QUL+rxmY58ttQKwMeuapYsiq03bLdb+r4h5Ywxlm8/fMRZqZ7puv4CJdFa0bQt1hlK1SxRqqPIhZCEsI2WxbbtO7TVAs9SMB0nVOaSZVN6pTaXui7CQbKe3Qat3CVH2bbtxQYPrPlIoZynEi9qnjHmAk461/40TcM4T5dF92xB7jrpW52maSUia1FVVzX3TCQWgq8sk6IoKshCN67rgqVX6FkqGbDr7cp0XUvKlRyzqLe50nhPnBeWMrHbttzutozjM0ob7u5uiSstOsYIVBolFNRzPvu8jLPCl+7u7lAKObQbBqZpwlrLt99+u35/umc6yUJ8Op0wSl1U1LhEhs0GrQzv3r1lCWlVqjPO1VUpFTU11YzWsrQbY6XrOGfG00StBefdJbd8fjzPeebza2+aZpSyKIzwEbQBrVDarIdDVqz0VdO0YsFPYSJSL1CvJSxsN1t+8ctfst3dM/Qdv/zVL6EmnK08vB9JJZFTQAO6gnOWaqSqSWtZbp01WNfDePVsXuc617nOda5zHZmfvNiG8UisEb/r0Up6U60GYxRv37yioJlOE/vTQZaDrgHXrrYxg6qSlco5Y6xns+s4HSfmJdANPTknCgllKmKgU0DFqELbSN9sLIFUAlorMIpcI6VGvFfEOZDCiZwWWC2bqCqKk9FYpbFK0fmeI9OqBC1oo6hknp4eubndYq3h22+/ZZwTv/rVL7G64p3GW0i6UsJCdjCGjPXgq+TKcsq0/UDftsQwYoxm/3Rknme2gwECzrX4xhLnRMkJ18gFJjVCzjTtFusalrSgMIynI3f9htPxSDYHVHuDLYVpHkX5s5bbbc+yn3DGUqrCO0/XZk5LYJmlY3OeJow94Zt2ramJlKzkQlnLhWMME8lASQtpmWm8ZXAD4zjz8PDI6ThhXSO3JUes82w2Az/72ReAIinN5vY1zy97TvMCtsVVje0HBjT9LTS+5c3Pf0ml8vL4TJgWYljhVVYuVmNKYlN0UmdUqqZtHW3bgAJnDd5L3jav5NmcMilkqkIWcN+CMeQo+WznPaBovaf2Ld4ZTmEmx0oK8WIPbbyn7R3H5wfiavMVZbDn7u6OvPbVykK1yAGJMxgFBoW2hpQj0zSSS+Jmd8tpPOC8ZdgONN6hlOb55cDbN+/IKV1qhIyWpc2qT+pWXRdZZ6102K6387DfS4a1FKZ5RuOway75rLAZLUtc2/d0XU+YZ6ZpopS62mAtNSuUElBPSTOlFkzjLlZj33rMentEnUuoLGqpNgZlZCHNUmwq6vFKPq8rFfmcOT1/zXOnbc6ZWD6BnYBLZvbcHSz0XumkzSmjnaZrO1KMnA5H5lXd7buOaZol/2w0XdfQ9y0PD48XCJLYleUwQVfFdrOBWjmNR4C1R1e6uHPNl/7XsARKln7nrtlRS6SayjAMfPHunloyb9+85uHpZV0+F06n48UFcFYonfN0fbMuy4n7uzuhn2vF8/ML796+5uVZiOmlSDWOc45TBbdCycRBMq79ySOH45GqDDEmHh/3UjumNMNuB8ZgnSzpVEPbGo5HyR4bI48J9axka6E2p0+WYFZ11Vr5u3PONM6SSpUFV6+AqTXLnlNG1YKhUBXomunbhmKhlsg4jmum1mNsw9u3b+RrnQ4YDTkmnh5fqEXAZkqBswIjY6UlKy0HSNoo6hpZ6YerFfk6/wDHO5h+qNgqvfbmXuc617nOdf7g/OTvksvpmb5rSSHQNIYQM27TQM1kFdbsYWXQq72wFrH8Vsg5raf/Bd84Sq0oa9AtNKZBWUcJEELBWEUImRAnvK00jabvPblWwrJQgSVEvNKoXMBotLYoJfUvmJalGmJmpfJayRPGhbbC4fGFrvHEcGQOI9opsD3aieWxb+/ZDJDqnspCCkd0WXj68IChsOl6akmgBAbUbW+Y5gMxFiAydK942T+whIlQC1kpaiqYqiBW5ilScLTDsNqwF9q2Q5WCcR04BUERl0LTbYihEvJCt1XYqleLUiIvI69f3aHLSJgOaGfYTyNxnqgloUqkN57TNBJLIRmD1QptHa5pqCWT5kTbtsQ5YhuDNXAYJ6w1KOdRGHKNhBi52d2zf3yhJsnIbW4Huk3PfppwvucQIyEUKJ5+u6Uay//2n/3vuLm/Yw4LHx8fubm9YbfZ8v133/PP/+t/QcmV/eMD333zO5SC7TBQT0eoVYi5TSEEsYUqNJthizWKUjLKInm9ksBa3k9HtJdFqncNIVViqsSYOc0jzWaBVDg+vqdT98TxhNts6ZuGrmmYmw5bDCZP3Aw9cZ7WPGdlnhfu7u5I8QMpCR0Ya+i6DUtaWJIsIe2mpXENRhkeHh44TSOb4YZSM33TEeeCcw27QTN0G6bxKNVLJeA7i1EWpzQlSbVMXFXHlKR6yBpL2zT0qyW1KsVme4Opn2yb8ywqu6FitSKnyniSDPaURmII0gta5P02zZkChNXa7buWzrcs88wyzrS7LeEwczweJPfrFEUJKVgjKp1Cy+KpDXGO5FqxzlOoKGNEEa5CD87JQD0Do6z0xpZESqyKrKjGSkFKQfKv2lIqLFEI6mkRxb7Egm89qmh01SibyXWh6/o16uDWfG/COY/RhlgWKoWqpbJpXqnOfd9DypRVPd3dCNjsaZ6wxqB1JZVEzavdPFs+PL4wDB3d0NKOmg8fH+j6jtN4pOs2WN+QSySlQiqV8XgAKt4Zms6BkfubSyYXGMfA0O/oen+xYM/LgvLgnZflfVqoufDdt+/Z3d1hTMfTyzPHuaBajWlalBeF9mzb1Uqv2VpQaEqGeQrknPCNk0PFktBUjJL+6kolh4UM0q/snNC4VaXpVuBTqeRQiGXi6y+/QhuLVwuN0nz7mz+lN3AYA9ZbunZgmiceHp/IBTCakhJxPEGKpBgoNdFYKwctSl4bVa01cbWQipL+6Qw6JfqhZzMMf8s/Eq9znb8DszIWfjDW0X0bePmnlWqvNPDrXOc61/mx+cmL7Wa7JSwzFSgoYs5M84J3FqVhnEY2mw3H44R1nu12u2Zn5WR/WSbMevo/T4EYTxjdoI1YL733xBiJIXI6HTFGsdlt2fSeaVnkIhlFygmUwjkBtuSQMWhqlbxkiEkUE9XI1XENtJ2hUpinPVhL3w2rfdJTVCWGgFUKVTIlLby622G95tuvv+Tl8YGSAjlO3G0HUopMpyN919Bvt2gK4zQxjTP+7p7x8AwlEeaJV3c7Jq/Jx2e0duiqsaahaQd8N/D4+CggoBTZDQPHsKCtJ6e0qnVi93s+7Bl2R0rV6JgoNeOMJs4T0zKyTCeaxrMf98zTiLdW/qzRDH1HXi2J1ko1ToiRlAIhJVIuxBjwzlA+s/MuS+Tp6YEUKwrDPC9ym5Smas3z8zOb2x3We1zT0vuOcY7SBSomYR4en7Bty9P+hVIqp+NIConHxydKFYUzA8N2h1flsmCERWi2xjrmeWFZpHIkp0TOAh9TiMqW16VSASFGurZDIVUyRhsqoNdO1JoLWoFSFecdxhpyqWhtyKVweH7ibtNgrLt0pZaSeX5+vtiLTyeBJ3kvludxmhi2A4fDgRgjX/zJF/KaNIaSM23TMs4j4zSx2W7RyiBVi2IlphZSDBgzkJZF6M3GMC/zp4qc1RpsndhalTHElFGrKth5h66SVa9rNY4eZOmsuVJLxDpHW6WqZrvdYq2mVY5UEsfxBKbSWEfOcbXXt1KvExaOhz1934KSVuSzUgriejgvTVSp1FFGHlfJdOpLjUzbthfI1ZnEewYVsT6fZ8DS2RabUkabilJCnJY6L4NF4QcvCmuSTtisAxWP9y05V9pWYEPnPOlZgURVxnlCKUW7Wpq1MbRdx4cPHwQ+RV2VV1GsDwfJHmtVKDnTNAYdwS6BulJ6u76j64YLgTinRAxB3m8xrVn8hTdvvqBxmpKFRi33F4Zhw/PTA9psMMaSUuDmZst2s2E7bAhx4c3bV+xfXsSerxSn08g333xLVpbIM5vbW7S1NNahrBw4KM6P8YplppJSkce/Sq62IoqQUfaSmT0/ZloZ+T1rhUxsHTnDHDLaOCqKx4dncpUe6lIzVLX+XQJ6yymJDbxWiVgoR4wLJQcsFWcUKIu38rqyVmONEQo/Fbf2k9YiSrpSsrBf5zr/EEcpBY2nLhLfUN6jGs/wmwkd///s/deTbVt63Yn9pl1uuzTH3nNdeViCAJptoqloUtFS9KNC+uv0ogc9qUOPCikUITbZLaHZDYKmQaIAFMpcd3y67ZaZVg9z5b632GiiQLIJkJVfxY26J2/myZ3b5frmGOM3ElH/OYvvwzzMwzzMw/wlFtvVisNBEDKEYSLFogiEEKjrQtVVxrLolhijERnImbHvadqGRbcoheQzQddNETVTe1MMZCmQItIsKoSo5170zHZ/wM2W0OA93pfqixQyOUKOGZ8CAkEGvM/0xwmlMkpDTgIf9/iQqBtDVxkqawmDQ2mL1JppciAE1ghgIidD11jc2OPGnsoolssFy67BSUGlFU1dKMLX797Q1C1WS7rGlqynBKvAjT1WS0ZRKkRSygQfENLT9zf4acKNE7VWBbySygVmVdeoyuKnvlitlcD1O6y19ENPNqaQgr2i0rLYtINjHAZ8CLRNjZrJt7auC0imbpiCJ8vM6KZCGw2eYRpPi0WYSbH3/66kwsWpHE5UDdoopDJUyvLq7Wvu7rY8evy05PImh3OBylhULjbhddfxnU8/5bMvv+B4PM6Lkid7T2U0tm4YmhY/HiEU+6XVkrPz81mxCtgK7imuxhqgqH9KCgQCbMlQ6qEcmogkUaiy/KUCwrk/21Zao60hCYGypRZIkIjA6BxTiNzt94joQArMvWU2TLx+85q2XVA3NdfX1yijOfZ9WVz7AWtrmrotNs1c7LpD3+O95/37dwSKa6FuWkxV6my6rqOuaxaLBcdjDylg6vL37vf7YvmdQT73h0LFSqqwc/Z2cg5CJqcJrQRKwTSNOOdRuqjA913ESgqMsUzTyOFwQOkOBOSc0EoiKdZkRCHQxuBK9tFKoOQuEepEHfY+4H1gfvogRVFdpZD45E/QqPu87P3cL63MHcEnqFBKJ7DU/UIpRCT4UJ57M2X5vmv1PnN7f4gwuQmhIIaB4EMBpd1b1X3AaEtlLTEX98j991FzhYzW+tR/e0+cllLMizikEDnuS9QihMD52YrDYcfq8SP2+2sqo1ktF1RVxe3tlpvba7S2VHVd9rlUWABGa8ZpQIkEObFZrxBktJKEGJjcONOaPbt94Gyzou8P5BxZr1dMY893v/sd7rZHTN2yWa959e6KfT8QMyzPN8SYscKUftgQKaJ5Rkk1Z44zxlh8cIVEPjsDMqVfPKdyqKC1JpIJKaFEyakjC2gt5YASAm0sMUH0DkRGCVkiAKbQnAs0rD+BqXwIiGEkp0T0ASEKI0BrhbWWoT8WS7Ipdvv73yUlJ16eKxLw08Q4q/8P8zD/QY0QiMqClOU8ymq4v8pJD7nyh3mYh3mY/6X5hRfbjMBWNfvdFiEyIidspUoWLSu6dkXwETJIIZnGiZzTSVGpq4YYSw+qRFGZirZpUVrNwBNHUxuMlcSgMFaTM/RD5PrqlrZpaeoaKQx+jIQhzgATSSIhVLErCjRSJqbJo5NECkMWYaYgD6R4Q/DF6mtYI5VFJsHheCR7QZjg1csvWK4v6GqLOdvw7Oklw2HPzfu3BF+gTm7sybkoc8fdxNnmnOQHYggzYdijjWCcRqZpRAnF1A/IINEBqqZF1xW+P5SLNDchhUUqhQRyCLhpInhH23aINCHzgEwR7zRaQGMMVkvu3m3LAl5bmqosPdF7kigdp2mckHVX7E1SEnO5eNXWFNV0VspyThijGIay+ExjmEmpgqA0mUjMEVIBxgzDhFQGFyKJojb74CBlxmlkvVjwaz/4AZ98/DH/9X/9f+O//f/8Pe5ub7m7uQVt+U/+9t+mrmv2Mw25riuUyIyTKzUgyFKl4z0pRQ6HA01TUVcF/CPmlXVyE3G+aEYWqI6aSWF6BhWdqLha4VMiCYmfs6ERiAKSKL2qq65jvVzQ90d2ux01ZbmpqprbmzuMtex2O4ZxxAWHqSpWq9Ih29QNVutS5yQF19dXZfmqy0V723ZUTVOqb1Lpq40xEtzE2XoNqQCjzs7Piwo9V97EGElzhc0JQJRzIca6fu6TLVZaKLlXNwwYZVGq2Du9d0gpWSwWxYIeMwJKZpmMJGGMRkpBTI7JFydB2zUcDgekNoQoSL5kJpXSNE1TOpD9Pbgo4MaxEK6/0Vt734n6zXofIcDasvwApwOWE1zqVCNUOm9LPU2cD2BmS7oo705934NKKKlKplVrlDJMk0NJQQj38KyMUgalJNM0nWjDZZFVrFZLxnGcb4ecM74SKRQ+Q9u2SCmYphEfAtM48erVa5qmYb0+5+5uS6ZYwo1RM6l9PP3MbdtirKYyLUoUUJ3pulIB1NRcnJ+hbTls2JytaKqaceiRQmCs5ur6Pcfjnqpu2WxWCKHZ73d45wmpqLJGF+K4mxz90OMnjxCKnCRKVVil5tocQYizsQWYZoeNtYYsBVkWt0ACXPSIKDFJkUIg5VI8nWB2PWik0qQUUFqRcsbP/bM+lNdviuXAK8yvaXJZjpNWkE1Rj1MqanUutUOCAoaTyBMVWYhisfajw08PVOSH+Q91BGJ26Zw+EuHy9+54+7+7/Cu6TQ/zMA/zMH+95xdebO+VmZgyldUENxFCgcrsDz1aKWIMKCXQCqSSHA5HjFaMeSKGVC6gZsvwNHpyGgnB0XY1SkmcHzG2pu1ajNGlViIbbm/2eJ+pK4XWFpIqfYm+0HbLouKJMcOsjobgym+BnKmVIeeIczuQAxDoB0WbNSLLQoTtD4y7HmsFd7sDQz8QvWe7veNw+w4lwE0DRgu0lKXmJQe8HzC6omssMkVCLAprBEgRP/blqlEo3OTROGwVUDmQQqCxGpET0+BoN0sWbUsYjwxuQmnJ1B+RItMtJNPxlqpuySkDkhxGQhKkMEIu3beTm0ptiTX008iiXRCyKBeESpEoKp8QGa0VUkmGvidoOT8+ht1uyzBMxFjyzEoajNW4VJSkyTm0MeWxWizpb+7ox5HMyPW7d1wsFmy3W+qmoalrqqrieDjyB7//+wyHY1E0F8uvnZEwXxSD1JJmscTGzOTcrDAO7HY7wkwBjjHS1BW6skW5zyUXOE0TjbQcxx6LQn6jNuaefIuQhJxLB+tcf5KEQBnDvj/SGdCTIMZbcoyz0igZxpH9/sg4TGURnR0LPkRSnriLEaUVfd9zjGXxur66omu7klkWxXK62+1oU2K5XKLmyiClNMJY+r6nNtXJwjuMZSFy3p8qcDLArDTWdc3ZZsPu1lOOQyQplcW3qht2232BOfmp2P7nZdBajbGKMBawmq00o/MYrWenRCyHUkmQc7HJCgHOO5xLhLkiJsYw04fL4i2FLt24KWEqS0rp9HgZY75+HHKelVnQWp3oyd+smrkHTgkhyqKFIMaitMIMFAolA31PVLZ1BbI4N1LKxeYPc3+ux7mJvj+ircYYjXNuVmoVVWWxVjOOw0wPF99QjotNt6oqRI5IKU6dxlIpUsyFyBwDVWWYnGe9XrLbHYnzwd4UIrW1aCnxk6NtDDFMiJy5ubnBast6taYyhrOLJf1wRAjB3faOs9WK9+/f07YtVmlubq/55JMN3XLJ1dUd69WK27sdi25B17V4N4GEpi1dr16HkhUfQrGah/K6Dy7inENK0MbQCMiU15MWAm3S6fUj5nooIRU+RnKWIIqzI2WBlMVaLlX5uJSFrUDKGCWJUTB6R/QBqzVt1xZQnKzQc3Qi50LYzjnhpgml5Gx5Z4ahSeSs7MdUFuMHN/LD/LKNDA+K7cM8zMM8zP/S/OKK7Qzoe/b4GbvtHaiMRDONhewprUQKy3A8ElwstjLdcDzs6boOciq1ISnS2AWH7ZZp2NN2NdMwYSuNMXJWdyuiD0hpscrw9PEHOFegKUZZgkuEGE7qTMyZrDUpJlwo6qxWFoFEKoXzBW61XGjwgagslV5xtmoxpub29pbGCMYQGY89isx03KKVIvmB235LbQ1GS3zMZKXQc75TiMxmvYAU2O37ufvTYa0iJkcMHiHMXCeTqSqFn464qWSSdzfv2GzWtLUlx6nQaaPHTRNEV8A6fqQ/RPa7zHJzhrIdw+TJdV1sSTkS/MTQH4taZQ3jMEDOJX+aCnxmiumk+mkjZztmyTwaLTke9yAyu92etu0Y+iMxJExd4byjbizb3RZlyoJS1S3W1mht2O2vqZtuzisWg6+1hWysFUhSoQdLiK5YGI0uGdGYIpv1Ei1hvVoyDCMhJkIW+LlLVSlF3TbkGGYVfGC5WLLZrBidY71ZI5Umh3zqTM3alFqV2cabkqduGrQ1DKMjZ3AuFOvvsefm9ha1brAS3OhnNTGilSkk6QRCF2V5v98TQmQYJpqmBsrBT9CBnAJhLI/dYtFy7Pc0bXsicef7uhzEKVe6WHSInDDSsNvt5n7TRbFgz5229/bbe9voPZFYSUmeez6tna20J8tyTdCKFD11XfKLq/USKWGxbOmHCD5QYRGzYptzOgG8mBeJ8j0j3ufT99fanFRarTXk8rM0TUueachVVZ2sy9M0/VyO1lozA7rSiSDc932hRM9/vn8sjbWnnK2U6lTPpLU8deFqZfDBz9nc8j5glZ7fnwzJB2xdEWeF934h9t6fFP0CwStviymJ03K+6JZUVcWjizOmaSDn8tpfdi1376+JsbxvQSr55VigY/3RoaVCKIE2mhgc0zDw6HzJNEa0kux3ey42ZwRfsuQpJ6apHKAsuu60VB4OB148/+B0QND3Ry4uznh3fTOTi8MpB2+tRpCxVuNdsXcLWaIbUomZsixIqWSOpQA15/bu7/N7PsL941FVFd57jFZIbUhBkFA4F5jGI0iBlQaRVXGMpFLdFkMsdOMUMUoUOr53IMDHIhlrJcuSmr7OWMv5uRWdn3PTAVDzYdgcT3igxD7ML9nYa4/Zevza/MWf/DAP8zAP80s2v7hiOzpSirh+QpBZdWuC98isMVJR6YoQPJXtZhUmolWFlA7Q9McRcukgtUZhdAXZMY4Ty2WL0RZjCkF1GDzWVrgxE31CS4O2mmkc8VNESQVC4kO5ABfaAgo3DYScgcg0OeqmBkSxKkvQUkOMyJRROjH1t7zfv+H6+pbgRwQRKYpikbLAe0HyU+kYrSw5RpqqJqZQFvSmmRUumKaSEfWh5PIgl+wuGVtZfJjKhX+Y0NrgY2A8BpQI5DCirGKajsTRcHP1HqtVqSvKgVoZhvFQLuR6RQUMhx6ZWg7HnhwLAddWlpwTx+ORcRxp6hpSQiuLkpJKGSKC1WJRbpfRyHnxg0SIkdAfGYYercsvzfvM4TD2VNayXC04HCdiSlRVjVSakCDlQi+WuuRbtSlwpgyMzhNnu6kSkiRKlvNUJ6J0WeZyYr1e0y6WvHl3RdMVOzBQDkdEWXSXekHbNIQQ2O/33NzcsL44Z1E3GCUZ5DhXrBRVzk0TwzDg+oHb2xtMZQgJEBohJeSE1YYPP3jBolKIODEcpzkbONLU8huLXcQYWzLf80I3Ta7UuISiYBolWK1WbNYrzjZrxmmgWXYlO20Sj588LV83HGmaM0IIeEfJNcqI1Ir9/kDTdcWGqRUpFnuqUApjLUorDodD+X7WknyiqjQhTEyTL9TgmaxrlCJRAE5d1zL5gJCU17MfSUmAkKSYSzbTVAxDcVt452dVVM6PYT5lf+Ocebyv8jFzN3QIATnX+vy8Qltyo/eVP+U1UqykVVWdFuj7DO29NTmmSBiGE3Tq/nnzzaqgU964/Imcme3L4vR13rtS/SUFKev57zFUVYVzE4fDvtQfzWCm+0ME7z3jOOKd4+bqHV3X0raF2qu0pq4brDb4aaRrG3b7fVkeJbRNw7v3tywXy7LMVer0vMw5M44jlbVIAeM0EIIjqxqlDEIogo+0dcfQT1hToZXhwxcfzbVEDr1QXJyfsVwu2B2H8jNLSDGg1Px9SEipqSoLWVFVNTknQig260xZLu03DiqSjwV+JSQiQ1IKJWQBeeVI9JEUBTFJRBJIYiF1J9BWoa3FTxkfY1FvU0IrgdGaGOUcWRGolEnkAuaS5f2hQPXjDICTiLrBx4xtGob+iJ4PK4J3ZTF+mIf5JZrqxmPuwsNi+zAP8zAP8+fML7zYigRd1XJ1dcVi0eJHT06JZbMCEiKAiKUPUQlDXWuatsGNkdVig1iWzNqbN6+Z+p7gE4hM0zacrc8QMhd7nE9lIVSGME4oodBCElJAZHVSiWKKCKkhlUoXkRRCGEgRrSXJCHIuF9Ihp7kr1OKHgTGN6EriXWB/GBiOewSCZbfAO49VCqvK1666pnSopsTkJ1JS5FiWNKlkuXA8DnRdWdpDiNS1Jc5KDwJUCMSYkRKc61m3a0wq/bKVlYQ4Mo2ZlBTb9yNTfyRXttiz3USoDCEGUk7sD1v6YaK2NWO/p9/t0drQ93tiLECYmGKxZKdMChFrFZKiTk0xI1JmciNa1qVm5HhkvVpyeXHBF19+PucKFc4dubjYcDz0xaJIQhuLNrosw0KiTXVafAqBWJEVZCUY/ESkqMSJogBKJU+5SCUEUhRLq8iZtq4wtgKp2B8OdKs1bq5jsVXF7e0t/fFA1zbl/heiAMmkYHIT7sazrhdorejHgLpXfmabctu09McDOeVCX5UWqSRt3WJSoA8TKfTUUrFzpU4kxlQOY6qKmCdEzDRNg7F2tggHxnEqOVYlTktZUflqmrbh0eNL+mmiqmv84XgiLm9vrzHG0DQNi7ZiOB45HnvatuXy0SWH4+Gk1Cml6LrupNbFmE7Ln5ISafTc1Rq4uDgnpczbt+9p6oamrpAEpMzUTcVmvaaymn4sdUlCaIwqy35OIKVCCo21NVJA8FMxBsxZX+/7kz01zQobcAIx/cvLxv3nKqVOSiRQaNzWnGjJKSXqusZae/q8EEq1T9t1SCVomupr+JQoNtk4f05xAZRaGmEMTd0UsFQuFvBpGLBVRZ77d++VyDwDiJQqt/9eQb5XcnMuNmwtJV3XEaPncJhQCvw00uqKGCLD0OPCiLEGbaqiSIdIZSw5loV8uVjgppFxkFgjqauK2hhSLPbuqqrIKfPyq1cFkqcUu+0eYywXFxfkLDg7u+Dm5harFT/60Y+wVcs49OUxQKCkIIpU/j+U58Ry0SGlYRimmWQdCcFTyEzptAgbY0AqkghIY4vanEEClTHYSjH5kXGc8FMgpQIUEzmjEGgSIjlSyKTJIXJGzxb6yU2Q04nCbLQpXcipkKZTyuQ5Ry3m94ukFFoqkAIfA0hJP01oLec+8wcv8sM8zMM8zMM8zMOU+cV7bIeRHBOrbsE0TkhTsmsqy2LHbGvWi65cdBiLlILjfiJFyW7b07UNSWWMbsjJEePAarXg/GKDEHDYH+ZMmyUnhZ8EORRSZnChVOCETInEZnxMSFWydJMryyxAjCXrlWFWLMpyKYUguMR0TKU2Jg1I5cjRcbZukULT7yeCC5jGFNhJCEhRLl6NVtRVWRqL2hFx3tEuOmLOvL++JsaigLi5oiSLkl90wRVSrA+QA25UWKMJ/khV10WRCgPRZXISLLuOw7FnO5WKmGN/ZJxGhCgKapUFSUm22z3DOLLenLPoWra7PXd3dzRti6BkSnOIaKkIziGTgCxwY7mwjS7QdvVcG3KgaUsdTF3XjGOpmwk+YEyBeik9q2cxME2O7XaLMRZEycIJMYOBZujM7nhgmMYCcNKqXMTKkve9V/q0MRhtCGFCKo3UGucCPiRSBmMrwrjHh5Izdd7BkKnrqqiSKWCspe06xqHc5hgTx74nGENOibPzc6YpsGwXBDcxDgNSW5AGFwMpRBZtRzhumYZAlAU6pZSiWywYhnGmcZ8zDiVffK9Y972jrgvYKOdyKJNnC3mMDZvNmrOzDe76muPhgA/FVu2dw8wL3ziOED1aChbLZVmstOKDFy8Yx4GYZhqslAW+k8pS4r1nv9uzCwOSQNcWmvh2uyXGhJDlOaeVRIlISh6pKORaPTsEUoGDKWMKVdwFUuxnK+pAbUq1i/cRIRRSZELyp47f+8f83g4MoJUCqU5QqHtra5yXNyhL8mq1mmFVZaE8Ho8ndRU4KbhKqZIHl+JkEx6GoRyICGY4UUaKkodNc/2Qc+70PeOsrjvnyEoitUIbTYqRYRjL10tB30+lkqiy3wBdCcZhmjuNxwIqzQ6BYnl+hkkCYxTLZcPd/oblsiv59Glgu+tZdGdYU1M1M1BLG5aLBYJE19ZE7yELmrohxcj799dIaXAu0q4XKCGoK0nXLhmHga5pqKuBxXLBl1+9wlaa5WLBzW5XeowV6KrYzru2QSo3d4kX0nFORZnPOZFTREhQUs6VZ5kUykETGZyfijoqJCJl1psWLTM5OIbjAdC03YrKFkiYNrq8tkPEDwP7Q+ml1pUtdUFVsVqHGJFG4kZHmgFWhdV8n7Mu0KhpmphyLgedKVFVBi0MSpUDk/L9HuZhfrmmeTnSf1wcaQ/zMA/zMA/z9fzCVwXR+UIeBrRURB9BQ/CxkCsjTKNDG02OsVzYjRNWGaytyoVhjFhjscayXq6REoKL7Ifj6ftYC0oaptEjYkZoRfCzIiYy3gWkViihCSGTckYrUzoNc6a2FimLOqAEp9N+mTPDccCNvtRV4MliIgFKKEKIcxWHLBeaOmG0IIZY1ATynCMsy2sMAR8czpccZxaZmDxZSESMyLmnMwRK7lQUau2iWwGZaRhw41j6eF1gcg7JTF+dBDmV6pvaaA69Q8+VJGM/kHVkGgZCzBz2u1lNK2q2VB5tLG509KHH1jWdyMX6KwVqpq1oKZmGkUpLmqbheNwhJ9isV1xfOWJMnJ1tmKaJxXJNzoHRj+QEkwsMg2eYAllqspKgBFKVjtj7epoYI8f+WABJ82Kbv2FBllKU54TVVFZhK1O6UoXA1g2pyLEoa2naFiiqWprzldZadruRYRixVYMbHFOSxJCoGkvTtSAK+TfnAjSyVY0LvijHSpG9AxJ1VSMoByBaK6ra0vdHjLForbi5uUHKmQI+lgU2eEcIHmPsvJAlYvQchwgkDoeBd+/ec35xxtAPDKMj5MzLVy8525whRek11UoiculTFnMuOOXM5KaZDp2pq7qo5qlkWCVFLRVSFJUbxTh5pMyQA1IplDKlg3S2uXo/IGQmpkKDCrPt18d7zpogxMg0ledlShGjiu0/pYxQCqVhUVWM48Q4HIuCrzVCyNIrnRJSaYyWpJhIMjEOIzFFjDZopfHJkWY1thxOSY59gSVppU9UYikV1kq0KXRjrTQxprmyRhVoVYiAwBqDUqa8BqQk5cQ4DqXLWIAymkqXvztSDg4KTIsCEpPqVLWzXC5RSkAqS7oUkqBmQFeOuHGiaQ11VeGdo2kLQ2C339MfBmpbk5EElyFJhnEiZkHMGa8Fm/WClBLn5xtub67x08iyW1JXFe+vrmgXHSFGNps1la24fv+epq7RxlClxOQmbu/uaLqWxWLBcOw526zZDwNVXaGNLp3HWWBNNR8SCSQKY0p2WGtBxjCNI0JS6qOQJzW9miMIfgaXBecZ+p6UR5SC4BNyzoG33aKQ1oUsVW8CfIKmqcv9LCS6tpiZLD6MA7vDgZBSsdWj5ux1IMU01/+UOMt9llbqmmqu+2pN6V+urKVuqn+DX38P8zD/fs7qT45c/6ebh732YR7mYR7mX5pfeLFtqxol5Fy9kk5Am8lPc3VIZJgGjFWs1yuOxyNaFoLy0B8QlBqPMDmapkHrimkc2Pc9YbZ6AqicqVqNC8VaF2KgamrGseQ6ldIMx6FkHW2FkgplJLYq1sFpGtGVpdYKRQH0pJiojWXMEZ8ieXQsdEcKxT5prCWIgCy1jwwx4oIvnbspQRaQ0gyCUqVaJpeL6YwnhjhfmI0oaclzZ6TRGSkSqtLklNGqXCymmNlteypbo7LFh0wla6rW4J0jRYdV0HRLvHPgPVpIZCp5RRfHsrxO7tQhutvv8CGDUExjQGmNEBksRBEQxuBzwFZtUUSEJEfQSrN3U1HOKErY2XrD7e0W7+Yleaa9jtNAHBNugHFM2GaJV4poFIep59x2SDLWWLzznJ2dM42OaRwLzEcW26PURaEJIcy/lxMhOaxQZJEQWlG1LVW7xNQ7lNCkXIBXXdtAikTvEMpw2O3pjyNWHiEmTLfENhqVM9KW3r8UCx07C4UnI6qq5IFlAhGwthC5fXCknDn0/awES9w0zY+l5LDb4UNEK03btoxkSIEcBM+ff8p2d+Td1Xu69UXpxw0jLohCrj0/ox/eI4Rku9uTcub8bF1yoTkjgf7Yo7uOTMl+usmzWq7QUpfcd0xoq1g2HUYZrC6Lq4uepq4Q2RYVGEFMmWkcIDusbViuV6TUMgzltQOStl0RkmR0ieNxJOeIj1/Dv4xWJBI5C5rFAmvsqd9ViYC1FaaqCTEVW7Yt6n8ModyOnJF5zleWUC8ZyLFAsIxRNG2N1ppze0bf97x/f3VaTp0vi00ICSkUMRbbelIAmabugIxzHucCKTnquhCr7+3yQkpiTlRVW+7nGImxWFljjCipsaY4FXAT6/UaKQXj2KNRaEQ5YPGBJBSLtiZbS9NYKqtQCkY3UNmKd2+ueHTxiHFPyZ+nBu8cIU8IrdmcLfFuIAMuJK6ubgpB2tYlaqEq+unAsl1jlGC7v+XZ06c0iwqZM2/efMU4DKzXK+plzRdvv2KYBg7bI9a0NE2LUJqsypJPiAUkJYu92JqKkDLj6IpKjSBTDgh8hCyKqr1cdgXMF1M5uNHFKp1ipLIS70eMgboV1E2HMhX9MEIWSF0hpWJ/GDi6kUW3YLFYzXnu+8dJQBKkEIFIzA5jCkjsvvN4yu5ExVbaELMkBQCB9w4hIcaJ8sp5mId5mId5mId5mIf5y1iRp6kQO2eYyr3NsOT9InVdE6NHClGUEiUJU6H7qvlz7omo4ziiQwHOTFMhgZYlLaOkKqAf52ZC6wwzSXm2C5YeypSK0iqFJIWIEyVfWmo+ysl/0zbkLBFZkALEmHAzDEfKVbHRQqmY+AasxmhNymmuMkkz1XRWdUUsUJkYycVRW2yfoqjHUOzRMd/3bcqZbFshtSkE0ezJQqCrCpciWZa+2WEKjG6iqRukLDTnYZwIKdLWFRhR+kSVYBx6MpKmrhiHoaiNmbmeJhPdRGBCm0u01oSc0abQZLXRpf83yrlzMiEpFNfdfo81BmsM290RoSMhj5xdnJEShBjZ7fYz7EWUupNclBejNV3bFvKqKAcQh8OB1WpVyKfSAKU0M8322vsaG+9T6Qj+BvE0xMjkHWHcIVIgB1csj1jaukYIVSBjLmKUxljJomvpvWO/37GuKqrKErNmmgJSSIw1MFvYi821qO+SVCpuclnMpSzLtBQRHwIpivm5WmpzhmEkxoRWRaXq+6Eo95SKpLapCX6a72vB8VjU393xwHK1Kh/X+hudrQWgdA99GvqEWS7ZbNYsu47r62sQovT9WjvnWxMxBULwDGMoGUhx/5opdmGRBd5n3HjEWk2KgpQEAsvQ97gkKSKdOKlzbVshRbGCKqHmyiXPbii05mEYyv03Q6FSZoZYlXxsCqFk1W1ZhMtroliKjTElp5qKMowolumc96fX2/3r0Fo7v9fEU+3M/UhZVL77WqBv5nz1TFNWSpHIRBdP1nofPFVlEULOKrBFSjN/z5L/VlJidPk54nx7Ui5KcQGtFSu3VBKlBJnM4XAoXce25svPX3F2/gilDE3TcpxKJZIPnq5tefL0Ge/evmbVNXPFkuRss+H161fsdwfOHz0ihIg1iml0jJMjp0xtMs1iiaka0IH90HN+cY7KisPgOR6PTAg2T56Ux4NS5RUFCJXwQpApcCmlVDlsm5kFQlIeB0rNlhJzXjoE+mMhSFfGkJFoaxFSzZGQwBR6fCjRkGlyJMr7hPee7W5bKsOUwvtwAnYZbUmxgAidH9FaUdfVidSeczplnu8dMchySBWDJ+dIEIL8AI96mId5mId5mId5mHl+8bqfecH85r/f9zx2XTf3ISqElIRQlpZpcvOyeV/poecLUknwkb4fSRGU1AzDhNGaw/54oqlGkfDCzz2ZpU8zxoz3geAjOblCYU0Rk3S5SBW2KFZxYhj8nJUsHaljP51u99XVFcvlEmMM0zSdFAMhBFJrBBKtDDHHuZ4kE1NCAEKV7xljQM/2vdIJq/ExkVNGSkUmE5Mgp0TwE1IYtFJkEspIlC3gG2FkKX6UoIwBKdkdj6VPUltMZYlkfHAEIibJYslNEFLEDSNKV4QcqEw1d8JKpCoAnftFx2jLMA5lIZp7VYsCX+i5IqdSmeICy2VL3UTevrthud7gxpGmrRj2ZYlerZYIKdBKIXJ5HhhtSsUOsthlhUaiqGxNXTUoWf49IBnHqdi658qfkqGUtHWDT2V5yre3HA5HVI7k4JApsGxrDnd3KEGxCatSbSKlKMt/TkxDj1WKHCIiJ+RsR5YlxEdOETL4yZ1ymmnunu26FpkC3jv2u4G2bRiGI7vdga7ryAmcD7OCCvdLeKF5jzMV2J/6eQudV7Lb3bE6O0dZjfOOeExcnG0QslhtzXxfjr6o8EorSImrd2/xzjGNhR68aDtSCng/oZSg7RqCh5QDKQacK89TsqBpmnKgExIxJLTOOFcqU87OLnl3dURmSv5ROYbhMAOXNG4aEaQCP1NlafS+LMtSlmXeVlWJJ5wOKsp7A6JY0osq7+bXX6Hjluorj/eBSCSLAiqL8R7gVCz3Rc1X89Il5v7esjDlnE80b6U1Bub3nXmZl8WmDeX18c1cLxmm0WMskEv3b+nYVkipkfe9ylKDKY253geykti6QmhFDJ5hGhldwlpNbcvSprXlzdt3JQ9uTVnESDRNxWK5QKlMgtLJHCJJiJkSX2HrmrZb8K1vfRshFNfXNzx58gQlLVpV+OQ5DhNJKJpuyXE4opRiu9uxWCy4uXvLOAy0TVsOEIFxGlFSFvBcACEUGVGyxymREnM3cqnaEbo4U8rhQjrlou8PX3zwhMOENKVGrbzHleiAqSwgccHjg0cpSds25MycPQ+nQ9ACp9PzoZL/RpaZEzjsvuqp5PA1yIyQkSRSqXiLqTh29INi+zAP8zAP8zAP8zBlfuHFVmvN8fh1Fnac7aUhBLz3VFXFYtFCFqRcTuud8/T9cKrNuL/YrOsGssA7D8Dx2DONE/W6pu/3JxVXSUlPUbCULDk+rSFTAFIh+ZOCJFVZqL8Jqgkhk225SC1QoThfYFusNYzjUAiqUpRFYrbH5hAREbTQZYmN4WsKLRk3BuKcDTVKF3VDzxfnGUIOhUosFEpqMkVZ09oiBLhxwBiNTxFty8W0wnJzc4P3ngbJza7cD48ePULXChcTWQpsUxfab8wcDntAUNeWcXQctjtIxaJ5n0UdjkeENJiqw1qLNg19P3I89liradqOxWqDEpnDbksKga5doLVhv3uLvu+aDQE3ZfrDgNGaummKPTu68jlCslmfs/WZyjbkeGC5WPL82Qd479DSoGRZtKPS7I4DOZUcsvce8td03bquaaqapmo4GEslJYt6wxef/QQ5K2jjOJQL+NkinpMp1lsJVknariMrhcoFkiPnCpHgxmJlFIJpGskxzACaUHK3OTH0I96Vi2vvQrGWp/tFNiOEQWvFet3gxpbrm2v6vgfk6Xl2D0fKOfDu3TXWKqahp3cOHxPnl5cndVpITUgBhaBrGvphQAFaSfrjkTArqTEEhqHneCiqulTFMmBsqZwhJtw0smqXgGQaPVlmUgwYXRGjI+X7QybJMB7xUSJVxFjDarXGTT3j2LPo2vJY+QJKuz/0KYcQulTRpFj6kuV9RrJUZU3zIUlMRY1FQFVX5XVU7kSyyLNiLU9fe989ex8cEwLMPdQqhGJjnr+HresTbfmejH3faSqVmpfbRI73dndOCy4Igk84F2Y7sTkdVKQYyURC9NS1xdY1UhfltJ9GYo4oKTAaYvCkHBG5dA83dUtOAqE1x3Fgd9gzTo6qbpimgcPhyJMnl/TjSAbubre4aeDTjz9iHCdyBj95UvSsFxs2yzO2+x2r5YafffYZTdNyfbNldJG2q3j85Al9dUAEwXK5pOs6mpmcTSzvUTklpC71RyF4hCzZ4qapSVkQYy73t8wFKiZNUcFDPLkqxOzOqGxNJJJkBilR2pYscUizA8ESUqYVLSInkq8QQp5+D1hbzbVL5TDJWFMqk1RFNf83rRvW69XpdRTnA8SYPUpLhJRzDKawG4R4WGwf5mEe5mEe5mEepswvvNg65zgeCwjIWnvK2LZtS1VVNE2D94HDYU8pcyigm/1uX5Yg8qlbUmtTlFqlAGaroeJ47IkxEWM4qQQpQwwRNVM1nQ/z58WTHXFyReXS2sxqsJ8vgCTOhVk1yDjvCTHggyemojw1bU2YqzruwSdSCCQSMXM6EYosc+nZJeP8hMiCHBzJ5aLwplKjU9VNWepDICeBMqUGxlNAVD54lDVEMvu+x9hSExRTQijLcTcwugMulEzo6AJZDGXhnpXBRpb6HjFnMZXSBFnut+A9uSpLSGOrkrGb4UtJKoSyVHXF5MYCGDKGtlsyHHZobWjaBdE7DocD3jmcL9k6aQ1+CuSYaZqaurI0TY3RuoBnpKBtW27Ce7DFUj5NU4HvyIrFYsH52TlTf8RPE0KaUoOSAzkltFKlbzUmZCjPK2NtUShdj7EVXdMiUmDRtkzjSGUMTW2JMXB+tsENPZUp+dcpRAKA9wglsFqiJBityFkhhSKZAKZkQfVsvw6TA5Fpu45pXjZizCdFbxxHqqosklobrnY76rqeVf14OuhRSmGs4e56W55ndYU1mv3hgK4rgvd452eFUxYIkwTvphORmTzngykLl1a6ZDLnzKPWpSonpQIXEypBNjx//gE5weeff4ELPUZLKquYpshyVTOOnpRHfOgJSeOnkSo0xBQwWiGlxVhTbMWyWHS987MTIs4/nyCnAr+SSp8s9/c9tMaYkglWZVESutRrpZyK0otAaXn6unuqcrErl8iDmwIhTAWENLtDpCrPfKnmvLlz82tZfZ3bLqQ0vPen/P/9oUmhd5f0fWntuo9JlIW6wKRKnVAWzATqONO+i1VXW0tdGbwfSCnMOegSVRhHD1pxt98RZ6t9saofQRaXSoHJCZZtXR43qbi6vpm7bB2+95yfnXNzfcfTZ88IKdDULVfXN9zd3fH8xQesz9Z459mcnfH5n30GwGZzxphSiUDkUp00TSN10yCVKjVqQtDYBmMqUoZhKM/xoi7HooTPMLNCYa9Q92qqNmAkmPK+K4XCuYBwDmPnSIEry7ORiqzs3Et7H8ew8/v014+HoDxudqYql98HBeIlpaRpasZxIEeHVqCNImdNThTQ1f1ZxcM8zMM8zMM8zMP80s8vvNj2fVkmh2GYASNL+r4/XVyW3lNHzuUicJwrZaQstl4pJdZUTNNEfxxomg6lCkk251jybjNdtaoahChQE2Msh/2RlJjrVQYArK3QumQbBapQXGMmJQ/lOxJ8qaUR88Va3/ekHLBWzzndwM3NNVVVzcpvZL3e0DZtIZoKcG4i5UjwRV3WRrNsCw01R18owErhQ1lAgpsKTRWBCwEXE4umLWRZHxj6HukVUmt0ZYu9kMxufyBOmf3uUCy5bYvWFSEKdBKMU+B4PKKkZMiZytgC1MmCylSENJwsvYKMHyesLYuQRNB1C6aYiVlR1TV2GovtUghiBOcjQppi90uZq6srtNYslmvqpj2RY6WUGKVQEpaLluWiQwjBerFi0XRcXl5itCoX1JUlpcD1zQ2rxYL/0//x/4ASgt3dHT/77MtTrjmnhLYFsBW8J0RRctkhEEPC6kJldS7g+z3Lp4/wsijFy+Vizm02LJuK6D3Rlf5jISnqtkyI2Q6upSTNymplTVENBcCck06h9O6mAjgKPhBjoOs62rb9uQwoFCvner1G2YphDByGnpQid3d3pNiUzluZMVpwcbZhu98Xq7AolmFbVcSUUbYihInRu0L9FaIAeYC6qhj6ASEC52dn2LpGKFkOSlwgREd/nIjeI8h8+cVXs1I20HaGnAIIT8oTx+OhZLNbRdNokjD0Q7GeDkNPsgXqZLShshWyKvln78JJLb13RSRK76qbs5M+BHJOrNZLrC0Oj2maEFLg/IQ2Re0tBt2EmPPAfd/Pr+/qlHu/V4fvF8oQA6mAiksVjBAYWyz6wSVGN6GFnOnIismXzP4wlkVytV5jTHm8tbYcjz3j6OZHUcwxizk7mzMpyVOPrRASa0s+fhynUicW9Uygzoz9iPcR7wO744EUoe0WdF3H7d0dJptizV2WGq/VcoHU5dDu/Pycqml49eV7mqbm8ePH/PhPfsKf/fjHfPs73+bdu3e0XctiseT127czTfmCnBJffvWSDx49o24aXr35ipzLgYxSCiM1MmUWXUeSfL28z++F99TnUl0kShUXkOYl3taGcRznrKspnbGZ8neoopSXZT6dun9BIFIsCroqCysCpJoX5JlqneelGSjRgJzmOIg+OWPquqaqqtMn6Qw5f21DzxKmyWOt+sv9xnuYh/kPYPJ9ZuJhHuZhHuZhfm5+4cW2QGVanHPUdU3f93On49f2y/sLHCFy6cZUBojEWGyHpWMWtC5La7lQLn2z9ZwFdc6VfOZ8MZsFVE1NCIlKSpq2Zb8/FOtvmhUO51hVC8QMYeq6rkClciJTLprcGBjHYT7xz6fbfG9nVKr0typVsnoZgRSgFQU+5TzReXIU+CFT1zXdsiPlxOQ8RpflNqSIkCV3WGmNlhpCIE0jyloqXXJp+/2RhlK5koXgbnvg7v2eFODi4oKcDXd3BaijtWKz2dA2S47HY7FmG0UMiTD0OJ+ZfCCkjK2aUv9DuUj1U6lWqeqK5CIKjTGGqqnn5QSEVmhT44Yj+/2B4XjgyaPHXF9dM/Y9i25BzJLJOVbLFZWq6McRKTOCRGU1Z88/AAR1VXHcb2kaW/5bZbi5ec//+D/+HsfdjrvrW0iRL756w9/6z/5z1utlyeamVNR8peiWKz77/CV1W3HcH3AisF52WGMRtsIai+4EwTuWyxWL5YLsPJKMmYFDKQa00ogUkEmTQqCuDPtdxGrFOLmSG96s0Fpxd3MDQLdYoESGkJBmVp2Nom2b0gerynOlqoq9vdiNy0GAMvUpK5hzZrvd8sHTJ7SVwehEXRmausLNiqCYHQlCSoZpwg09WQikVmShSEKipMKFVLKMGa5u7vjJzz4nhEwIGbJEZEVVtVw+O2Poe/rjQFWVzPl+f0fblCxy13V4P1HVLRcXF0CBKcVQMuFN06JkLsvO/L9xnDgeB6Z5CSzODM8wTJy6iLUu/bHp6/5YSKes/Df/uVdm9QxhSrMi6pyfQWJizqtqmqYqX2c0h74/waWqqmK9XhNjPC0/Qgjy/Hz3ISCCOIHUvvn6vn98Ugo0TY13ASEUxijCnA3VukIq8H5EUSzNLkxIFLUxs7tAM009Riv2+yMheCYfGEdHFtBIQYiebtmhRKmu2W63JRe73/P82RNShv1+T1NZjLGEEDkOA6OfOLs4x9YVV1fXoATdYkFdFefD2B9ZLM4Z+oHJOfrjkbZr6Q9HtrsdS2PQs4KqlACRyKrkWgsJOZ36YtUMxSvQpozWBdKlpCRjykFTcIVUfX8AMJ/rZFMOo3JMRYEvfV9E7xn9eHqcvS8dulXVEGPC+2n+PaARZKzV34iJiPn5kHBuOi3B1qoZMgY5Fdq91bbUuT3Mw/ySzdV/fsbXp0MP8zAP8zAPcz9/qXb7EMJJqdVaU1XVScEJIZwUkW8SSpVSJ6VHSjl/TbkIds6dsnvwNXn5Pm83TiNVvWKxWOJm22YIZYG+/56FSCzm7JafF+jAcRzpZvXCWoO1Bq0liXIBNU33VGeBcyNCyJMlzhjN0A84FyF6urqiXrSQIk1lqGxZ2hIZYw0+BI7jRMoCFyIuJnzIdHWFURrfH9FGIpTgfHPJ9X7P6BxKGoy1vH77lv12xE+Qk2S/HzkcxqIWz3nInBVVZfHeEbwv3bbGYKQmZQezqhsRGKWBUpUSYySGgJYKKYuN0lYVdQpM04jSmmGcuL3bkoMnzdnn5rwplkYhOewPKGM4HHpW7YK2axj3ASUlFxdneO/42cs3dNJigJQnpJLsdrfUlWbZ1SyXLW9efsGrV1/w+PKyVCdRFsAUIj6OVHWFRMyVNQUkUx4XRVM1PDq/5Pq9YxxGurYmJkG4h8+ITPAObStkTsXSnBP9/oBdaUiB6D1SlIWfnFBS4twEOVDXFYPvySmijSKk8twKwdF1zcl6Xw5GEuPU452nrUtP6InCOytXUkguLx/jveNqv+WDpxdcXlzysy++IsWEj+OJGhxToqkrVoslPgfatiWnRH8oILVpnKgbGPq+QLVQpFSstDmL+fsr9rsecvn3cXC0bUfXVmglCGGC7AneE2OgbdY0zRoVBHWliRGG4Qi5vL6GvifeZ6Pn11BZUMI3bL2WLOblXAjarpvzuJ5+dPNryeCcww3lQEwqOf/8skDWZgXxHh5WlmFVuo/nvGc/TcUNQsnPOu85HI9IKefO2eIWEYrTe8M91TzPt/UeejVNU1mYmC3TdrbTZkGmqJpNY1ksG7wbIRWlklxcINM0ELyn9xMQWLYtw75HSk2mHMQlAXf7HY8uLtjv9pydrwmx4W63w7mJzWaDc57aGrrFEm0tl0+e8KM/+WPquma5WbJYLri6veI49azSEmMkTy4vWK1XHI5H3r95w2azIc+HK8uN5d0P/5i+72nWayYyWUikzCQ1Z2KlwPlIiAmtPDFnYigHK0rIufO5vK8O3pfqsVQcE0qpudZJULUGmOuppCpwvBBJznN/kBBCwMfCQPA+FHjfOM0Ar3swVIQcSMmcwFLH4/H0u+T+9VR4CYW8X9f1fD1f5GA/O2ke5mH+15o818VBcSL8dVgok/mrvw0P8zAP8zB/HecvlbGtquoEkCrwpLKEHo9H1uv1zym31tq54qFceNwTlMtFz9ek0nLREk75qnvwzna7pW1bDscjddMUCnFIxBBJGcZpwvuAVJrlaoGUmd1ux3K5nDN0Ga0Vi0X3DajNiFTitHzfd/LeZySPxyPWGqQCWxl22x6VI7Xt8OPAB0+esOpqtBQYpUBLjmPPOC84WWpSFmwPPcPkMFWNd551rdBCIrSmapdFXY1Q1R1Vu+DqektlOyZKxnjs40x49UXFUMwW5ZJjHfw9xTmRQqBtOj549oyq60DIsmwQaZsGoUqv6fwgnHKKMUYOx2PpFDZVsdimjJ4pt/eHFE1T/k6fEimU26WVoq4qmrriBz/4Pi/fvONl/ZLD1R1hONI2lkTi9asv2e+31LVlve6oKk3X1SiZWXQ1WpccqRQCn/Kp+mQaJ+o5H2y0oZkrgUKMzO7pAgcKkaZZMQwDTWWplcCPE0oIqqYhZEn0juNuR7JVyacqzeQCkuIcmMYRkQyb9YLke6bjDmMMYRoJ0aGNpLIVaa5GaduWvh/o+x45K2lv375jmhxSV1RzxVDbNHRdxfb2mqqyDP2RaRyp6wqZBcdhJMXSuSpVWa5iCNimYfLz4Y22+AS2boq1OCQaZXj05ClSGrbbPSkKtLKE4Dn4ATPbd42xdN0ZIoWidhE5HLaQE26KKNli9ZJxmgq8KowlUiBhtVqUg5s5Twvlvp+m6fQallKU7mOtmZxnsVjQdss5mxo59jv2+z3TNH0NAuojTdPMlS+lGqp0pUaEmGbVLp3qvYwuttRpmsr9NOdx76t7lFLs93u01mVpTpnof/6ATQo9L1d+hhOp8pgqgzHVCSJV3s/KcxRRgFub5YoUyyKWY3n8+6PEuZGh31PZqmRRs6BuGlyKCDUhAG0M1zc3SIrF2u33xJiKSuw9Ao21HVobum7B29ev+ODFhwTv+ODDDwAIt4FH3QWPHl3ixpHDYct2e8NqsWTse9rFeekIlpof/umfstvtUVrPdWSBJAsvIOc8d0knQJbH20dizghkUXIzhBTK+xrlkDH4kqtWQjCO5bAoClVI2LFY10XOaFmiIDlGzByH0FqC1CdnTrHwlyx0ZS1KFRv6OHiGYSDGWJwkVYmYTNN0yqqnlKmqtgDQQlH5tdGzuhv+DX8FPswv9/x8SDsde5gJ7V9/7Aj3mfCuRfyrXAJSILvunn/3jfm3tYhm3LnBr/9SmsTDPMzDPMwvzfwlFdt4OmkvFjNP3xfo0jSNNE2DtYbJFVWkaRqqqiq9iHMnoptcAShpXSof5mXmflFer1ZYWxaDyY0chiMhlCyXVAotDcdDX+pCQirQn7rCuwEpxdwnW6pFYgr0wxEBtF3Hql4TCjGGaZpmtZdTDrBuKlIKvH37hv3ugNGFqhumEZEi55uzcuEeA92yZZhGfAw0iwWvX18xOMe3vv1dTITbfY/PE3VVISkXgufrC7LWtO2C7WFAhERyjkZr8I6uqbkd94zeISUokVGyeO+aSlM3NY8eXdIuaq6urnn37j1WK7I/kkPPsjU0VkAOODw+ebQUCBGpzH1/aaQSCSszVkBjFNEoVssWP5Vf6saA0Im2M3RthbUV+2NPShUpOnwYiHFAZsfziw1P1h1crvjx+ze4cIRU09SWYb9l2N3RWU1rNEZCUxu2dzd4n8gxnuzDmUgIiXEYCDFjraS2gvN1i1XFinh2tqLfX9P3R548vmSQoISgqWuUpNCYc0KK0s0qENha8/b6Cr1Y4I4dWkhULQhBMk5lSW+rCpkzja2J44g1ioEjOYu5LolyoU6x4oYQmKbiRnj15iX7/YEnT5/x5NkHjJNjf9hjreH6/VsWqzVnq47D7j0+Bx4/e8rgA989v2S5WnF5ccFqsUSLTPSRlCTT4FkuazbrFu9KRVXwDqUlbVvz5OkT6qbhxz/5Cb/6a9/n2fNHGF0UubqqCL5k2wGkbuYDAYmQLYulIQEu3NJ2S65ujiQCh/5ADIEpeRaLjq4r1Ov+cCj3rVaItkLIsmiEEEikAoLL5aLv9u66HOScrQsBXCqCD+QsMKaaD1YMPnhslihlGIf9vNSUKrBS9+K4vbstgK+USRK0tShTlqK2a4k+0LTt10Rl54qtPyVkViitaHWLj5GmbU+d2EpJpOjwc+Sh70fMbMcN0TON5YABkZn6EZmL/XUaR5aLBTH4srx1HZXVDOPI3XYHc09rCgmpDUZplusNIsNnP/uMxWLBarVkHHvGYUTLFoRgvV6z3x9YLBbc3t5QVxXjODGOI8PQMwpBfWt5/eo1Yz+UPLc2xFSqm/qhx4iipicSyFK1dH9pLqQquWNjGceJEMv7qFJmVp5kgZSRkXNtV4qxALrmC/iYM6Q81zuZ05+7tkPkdMq9JjLK6Dm3H1FGU2uDNiUeIGZrPaIIYMFHpBJF7c652P7vfy8ojdbFHh9DIoRUCNk543xiGksm99498DAP8xdNDgH+pd7jNAzkafr6A+Ff3Yucj/1fyCtLh+PP7bFCKuRq+fOfJATC2n/lbftz/+5+gBvPo//rDTf/1UcgwT9qiEv7F37twzzMwzzML8P8wovtalUybVBqI7TWRSlrChG5UGA1KQeM1RhrqCqLc6XXsNjRCmxGaEU/9iQ/kWKkres581XUgRwjWgpUXbFctzNQJDMME9PkWLQN2+2OmCPRJ3bbLd2iYrVZlgsdUTKoZ+cbvPe8ffsWpODRoyekfmQYBi4uLxECXr16SQiBxbIlxkAmkkkgBF23pNaFlrterWjPL7DWcn13y9XtoVia3ci3n3zI93/nE754+ZpbB5tHzxkw7Hd3iKqmbjrWixVt09IuOu72I5cXF0hZLoYXWlBFh1cg5MSyq7k433B99Q4tNb/zO3+D58+f0rUNTW252Cx5++Y1/+yf/TPu7nZYY3h0uS6kXmNK9s4qpE00naGuBKG/JQ2OYXQkH/nW4ydMF2tSzuQBJptoZiq0NWe0C8nf+Js/4Aff/xUEir4f+elnn+OD54PnHxBj5OLygp/8iz8g7d9iw44Pn7Tkxw2VMRyPPRfLmjdf/JTHjx7RKEElYd013L1/S2U7UhwRoiIlj9aK169f8fjxI5ZGMPXXPHu0ZGs8fprQzRIhJZuzNcHX1G1NTB5JsbyPU097tgE3MTiPC562W3C3v6VbWDKO7dvPqLsGlCIniQiCSlXoFIlDYDwMSKFRUpOiYBwCZ2dLvPcnB0KpP9J89NHH7Pd7kIm6Mzx7fomtBDEmutbSti37fc3ucOTq+pqmSXxSGZ49eoyQmvVmgxSKTz/6qKhrYl4eVEMKju37LdoIlBIIkfB+nLPriefPL/nNv/mbfPbZ59imQleWGB1CSHwKc89ygCQRs/rQDweUkvgQGMYB01Q8efaYn37+M0LMoMDahhwNQiq0smgN1LH0AGcwKNCmZLjzXBMDiAkg4qdxPjDqSAjcbJE21rJer7G2OAO22y27w4R3AZIr8K/FghjLwmwrQ5ta2q4DJD4G6kVbqnhiRCnN/eampUJrw6QUu/2WED05gEwFEEcuWfkYAjF6MIocQcTE4PfFFu3KQVsYplPll9aayZf+4LZpUVqScijK9hR4/OiSaRgKDM5appCISRB9orYG30/oxZrdfoeUxT5dL5riUPGOpjmnbZoC7PKO9XrJOA5UxiLQjMPIbrvj7HxNzJ4sE3eHHf3kSNIgdMXNzY5KaZCSFx99yNs/+hcoq9BWgVIYoWd3g0KR0SqRiTBbtXOClL5xyIjCOc84ullpLQ4a5wNKKoQ2WD2/R8tMzpFqdrvs93vcVA4z5dzVrXOhK2cByFLLJE1hMqQYCcnPduRCnJdSzi6aOTOdBW4Ks6LsGae+POZanQ5ulHpQrh5mntmZBZCniTyOP/+fvQf/70Dh/5cW1EwkXl3//OdIgajrf63bJoH6S8/z//MPARg/XuAv6n/1F/05M3205PDbl/+zj2chyNVDdv1hHuZh/v2cX/iqIM5KZwiBen5DLopsycGVbJxgGkeMsShV8mx9PxJjoqpqptHhnGcKEzGXjJvWmpAKaCakyO54YLVYsloukVqw7/ezXTkRQgGZCJNpGkuMZSEytiwcBbSkZzuy4NGjR8UyOmd9tdYICc5PLBbdKd9b1zVSKDbnG7717W/jQ2JykeFwZHd7x9/49d/g2bNnnJ2fc7ff8Q/+u/+WdrXh008+4g//8A8JSfDsxUc8++hbIEru7+XLr9je3fLV55+xPx4Yh9Lbulot0VryrU8/QRvN9u4OJTNfffk5XdOBiFitef70kg+fP+LXf+1XicGRY2R/e8uXd9c8eXSOIPFrv/L90g9pKn73d/8WWmuurq4LnXW/52p3DRk2qwbLxOas44c//JL3t3c8vVzxt//2f04E/tk/+xeo737E65efo7XAaMFuu6Wpaq6v3mFNRV01fO+738LPwKa2axmHgS9++mO21+8LPElJHj16NOepM1dXb/i9/98/4O72lnGcWK86lMqITz6kahc0TYbc0zYQU+I73/mApslIOfLhi3POzizTsKapOsahZ5pGUo60bU3btkgBTVNxd3tLXVsQUDc1k5uom4YMrDfrkunORXFy0SFygXwtmyXGFOJwiJGuqahrS98fqSsLuWW5XGBtUYru7u64u9uxXK7o+wMQ8W5gGAd221uMKfbgqm7Yu4muqVBAmAaWyzXeR8ZxQqnE7m7LNI5oMt/++CPCNLBoW24PW7yLIO4v9gVClvsz58TddiCkG8iZmCK32zuW6xY39kiRi4U5C5TUaGU47IYCjQoT43ik7w8zJMhytllhlCCmkjdu6warFXVdFtBIKrZapck5EkbH5Pw3YgVfg9igWG6VLvbgLOdd5r5uqmkJoeS+z87OSx6eRE7upNYdjgPHfqCeD8pCzBRnbCb7QE6Fyj4NIwI5k8FLbj+liJKSlCUxBtzkAUfXdXPdV7E4H4878Jk4u0+MsWhtOBwOCFHUytKNHJGi0KmlLH3BwzBglGC1XLLoFgzHY8l8akAqZIxzpZmcq3YmhmFgtVpxt91ST0V9PxyODEOxU4cYcOPIer3E2pKhPx4Hpmlivd5wfn6GcyNaa4y1J8bA2cU5N9fv6eoOjcI2DXXT0HtHyonKVLh+QiqBUnM+UMiZglz+OZGnhZgfU0VVyVMuulRb3edaxUyUNtxnW4dhOHWYG2MYhgHnPZ21WFuTUiSFiJalziqE0tUs5zxvU1X0oVQZFd6Cm9/rp/m21OyO+3LYVhXrcVmki9NGaz2Dyh7ml28yqR8LSez+I+NInubnQ/6LdNW/4kmZPDc8/JtO/fmB+vPDX/rrFv/sivP/5+f/s4/HleXuv3j+536Nv6wZv7X+S3+vh3mYh3mYf1fzl6Iie+9LdcZqBTBn4kolzzi6UhNi7GxXzgzDyDgOKGVwkyMEz5s3X6Gtplt2OO9pZ2tntGGujwhz/vNA0zYIJci5ZHxD8LRtoScrLTF2idaa9XrD4XCkbW25QD4cOT+/4Pr6dq4gKjUuIXi221uWy0WxBI4TT548QSk905iXGF0zuoHVasPHH33CP/h7f5//x//r/82LDz7g13/zNxinkZvtriidAp5+8AKE4n/6w39Bs1hSN6XXN8bIP/8Xf0RwI5WSvLm+5u7uDmMM3/ve92jaqvT+HvdcXJ7xd/+3f4dHT59y6Htur685P7/g8aNLpBD89Mc/RpDYrJYIysWi0oK7uy2b9RnPnz/nq6++YpocV1fXMzRLYnKpqrm7fsW4q4kx0zUaJRf883/6P9A2km9//wcsW8M0jXz84jmff/FTvvzsFd/+9BOsrXj/7oq2btje3lJ3HdZWjP0BcuTt27fkmfBrtGSz2VBZU5YIP82Pe48xkhDg8vKCR+kM555gKkvImXEc+JUffDgvR5m6qdhut9xcX7NcSJ4/O+fd21uePrvk9atXPHt2SX/skQraRY0UULcVF2dn3N3e0TQNq9WKEDOmrubnY1EqlVZUdbGyehfJWZIiTKObacqOY39g9eicx5cbAC5nZf/6+oZlV1PNF/nbuzuatuHqqisgIiERUvLhB8+LxXZ0LJZLvvWtbxOcw/mBp8+f0nQdZ2fnXF9f8/79O9w0sjlbEiaDn0aMBWPVyWJbLPpmBmlBHWpGVxaiqrJ0TcP5ZkPfa4Z+z6JtqKoGayrIkuAikNBKcHa25vJyw9X1FUM/sFot6NqG1E8oitV6fzjgXLHnkgJNZUud1dxBK6U+wd5SijPR3HA8Hgv1PJbqIFvVX2e2g+f25poUUiHbplKlZY0khZl8K3XpoJWlNsiFiI55zsc6pmFiv9uxWCyoTc319TVOl+x17jq01tjKIGJR+qyVVHa2IJNOtWJ9H9FSU2qCy2FBjJ6mqcqyK8sB2H5/wLm5j9hoYvAkIWiahvPzi7LUhZJT9T4Qsz/Br6qqOrEFtC61R0KUyi1tDMG7khGfH9/9fodSgrZpkULQNJq7uzjX24D3keVyhRCa25stOWdubq5RWrNaLzne7vHezT/LnFMm0PdHlouO4HzpyZYKrdR8m2NRZmb4n0z5GwuwKAeNIZz6s0u1Wg+Uw4Bpmpim6QQHhAJ7u4cKloPGBKnkpL9Zk+W9Z5zVtPvHx9jy+HddQ4z5VNNmrSamSNXUKK1OVVNCSgY3MQz9v9EvwIf56zqZHL6GNuUYyfv9z3+G9w89xv8GIxII9z+38surkUf/95/+uV8TO42//PPV4cPfuGT43v+6S284r8lzLOhhHuZhHubPm194sU0p4r0raoibUErPCkPpjc0540PEWMXx2NM0zQxlAu9DsSMHRyaxWq9ACuI4ngBTVVWRU2acRpq2JUvJ6D1xKjAYYy3aaOqmYhiOSKUAxXq95vvf+wGvX77l88+/YBiGuY6lWKR3ux1QlvC2q3n27AnDOMx9vLaom7sjSmn2+7fstj1PPniONLF0rQrFiw8/5vnz50hlWKwafud3/xYpZ3a7WzbrFbZqeXt1w+QiCM/d3Z6mqbm4eMSiaVgtKtRpEUw8fvyEtq3Z73d4P9E0liePLwHPqjUsmycopfjsx39KVVXURnF+/ojlcll6P4c9kLm5ueHm5pZuseSji0e0bcc//If/kD/6ox/ya7/2K3z55ReMQ0+3WPK7v/27VFXN6zfv0LXl429/wn/8n/wuxta8fvkSLRI5RZ5cXGKlJAbPkw9e0Nmam9tburM1KEVlK8Zp4Pb2Cu88l48ucc5xtimHDH/0R/+CbtFydnaG1voE+glh4vb2CoC7uy3b7S3f+u63+eD507nqR5Ny5Hi4JUw9Lz64ZBwObIeJ1XLJxx99gNWC169f8Z3vfMrQHzFGs73bslRLqspirWYYRp4/f0bddshZifvqq5doa+lMS3/ck8KEtTWVrVHWoIhMrmfZtqwWZUGuK4PSmsPhjhQjSsFq3ZFT4uLigk8/ecE4TTx7esmPf/wjbFWhpGS1XNMfB9ww4PsjaeqpjOWPf/hnvH3zmrrtePb8OeM0ISU0lWGaBogeIRJS3dPCE1oX50M8Wdsk1tYgMstuwZfuS66v3rNYVEiR6drynF8uVuSUGfqRqjKkGBldUUQhkVKkqgwxBJQCrQQ5CkiFUJ21gtmJFmKiH3qUklR1zRTSKRcPAufCrHaKE4U8kXF+oj96jNazdVQw+omcKNTnnEucIEy0bUvTVHOGUzM6P//Mc0VQligkTdUgs2A49shcLHluHBBNw/nZhqQyUyiZXu/D7MgAIQv9/N4hkv3cyTzft/3Qk1LGmhloFTxdW50O3Zq6xjnB7m5L9/iSfiwWZG0rrt6+BWmYJsdqtTpVCoVQun3v34OU1tzc3GCrohBba8kpMfQD1lhevnzJB8+f0S4WVFWNEAXWlTPs90dyTlxcPKKpC7zM1hU5laW4spbtoSjxLz58galKtdfmbIN3jmIZLzlYKNlzNWeCQ4xzdZqfAWn6tMze/xze+1Nd0/3CboymquwMBiuOna5r5+V1BjwpWSjkudRJpRhJsXQdW2tmhT0xze8RZZmVhBDnfG+maZsSEcmlmmx7t0UIQVVVxQHwAIf9azj560qolErm9F/j78jH/q+/8vpLNuoYUMc/Xx3+11GN/7Kz/+1L4urfbp44NZq7/82zX4x2/dAf/DAP89d+fnEqsp+KDViUi8Sc0ynfdDz0LFeruXpF07ZdqSXJ0HUL6rrmcNijteHFixccjgcm76nrGqM1h8OB4zBwttlw8eiSs/NzxnGcrYPHuerBEmKpRlHGIGVmseiw1vCzz37Gpx99h6qq+b3f+z1WqxWff/4Fm80aMVuDnz9/zvnFBinhcDiilaGuG54/f8E0et6+fcfxWKBUm7MLNpcXvH/zFiEkbddxdn6OkIrd4YCQElMVlcpojQ9wdnZBPzpev31LSpFXr16y7Fq22x2HreNs1fHpp5/w+eef80//6T+hrkuPbIyRvj/yxRef0zYWawy2qrh6/54XLz6iMorPP/uCymqsUTx+/ITzyw3/6B/9I5TShJDICFbrDcMw8vjJU16/eYfzkYtHz9CmwLxevb+hXSx4t91xc7vlV9qOH/7pj/jyiy/Z395xtjnj008/ZTCay/Nz6qrib/zm3+BwOPD7/+j3+e73vsftdsdut+Np84SUEnd3d2itefz48Um5+dGP/pTdbou1hq5r2W7vePToEb/+67+GUooYI69evuJue8dv/dZvsdmsT8qZ8xPHw4H9oShzRS2rsbbls88+x7mJp08fY4zm5qbHmCUxR0xlGP3EYrmg70un6MXFOQm4vr7GB8+hL1ZmkSK7VGqrzs8vaFeWnAT9ceCYJqQAJRPGSBbLJTEE3l+9ZxhGPnzxgslN/OhHf8L5+TnGWrq20J13d7e8+OAFwU989eXnBOf5jd/4DRZtDTnzm7/6Kwyj44/++IecrdacXZyzXC+xWhCDR4mMMRohAmWr1KQ0Q85CUbuMqeb7UFBZi5aSrm1p6gopElppjocDfnIYbQg+Mo09UPKQRheV0BrN4XgkhBGtJcFPhKjnRVqRYmKMI9VcbTR5j5QgjUHpr+u4YswnNS+EcOq41loxuWJvVlIipUYpRde2hFBo5Hr+8zBCysyKogYJdV1ouuVjEqsNImXausE5h5SSdu6cJpfl1buJrIutOiVIMcGcGZ3rVYkxYIwl5oTVlsWyI5MZ+n6u9CiE9ONhV2zIWtA2C7TRjMORqrKMw1h6cuelz9iatluy3+8LTTsE+r4/0ZzvLbwxRUBhjKGuKuqqIqbynL9YrxnGHmMMb9++pWlqhmGkrmussWw2Z+x3O8jMSmdms1lxfXU9Vx4tePP+Pc+fP8euV+yGAaVLr68Ugnp2uQihcd7hxomqqmmbFuc9wziUGEdbKnaGYfg5mvV9DVvXdXRdV+qb3HTqAC/QPnBuOpGz1fw74ps29dJfHlGSU0ZWC4XRmv1+T7doiyOAQn8/HgeqqqZbdBz7PUILxvFINff5SqlOvcQP81c/+b5ey/tCEoa5UP0B8PUw/3Zm+U+u/q3/nVnC6vde/4WfF84q7v7ui5/72PDtFdk+5JEf5mH+Os0vvNgqVajBx0M/W9IghEJFzQXci5IakOVieCo2vrdv37JcLqkqw9OnjxjHicePH6FsUSlub28x1vLs2TM2Z5uS5yPTLRbklFmvN7x8+ZKUM3Xd0rQ11moOhx0JiVCaw/bIzc0d+/0RIRS73WG2S0u8D/zpn/6oXMi1LVpLrt5fU9cNOW/Z7Y5cX90wTZ7lcsVut+dmt+MTKbi9vSWEwGeffcZ+v59V54CLkcVqQWUUY9+jTc35oyc03RIlBIdjz/lmw7u3b/jspz/h6eMz3srMT3/607nOiJPCVXqBB66v3vHpxx/T1DX7w56z9YrVas3Z2TnWaP7gH/9jEIK/+3f+Lq/fvuH16zd85zvf5bd/53fZ3u34e3/vvykE0bk+6eNPP6Vd/Aa2rotiojVSKZ7d3vDf/nf/X376xSvWF0/48uVrpJ847vc8fvSIzeaMvu+pq4blcsOxH9gfDvzJj350qu7Y7XZ8+OGH1HXNn/zJnxRVua6x1vLRhx9xfnHGYb/ncDzyKz/4AUopbq6vTyr69777Xfp+ZDwGfvr+K4bhSNd1GKsZxtIPK3FUtoIcSbFn0bV8+cXnbLdbEMwXvAtiSsRp4snlJTkEnjx9QtM0XF+/JwvJ5EYWi46Luub8/Jyp73Fjz6NHl4TgGYeiNq6WzcluuegWmKZBiMxys8JazdXVFbe31+z3e+ra8tVXX2CM4Td/8zf5tV/9df7H3/8fiDGyWq34u3/nvyB6z93tHWEcgMzt+3fs90dUzkzjgJtG7m4cy65luWgQKeCmkSxAG43RlhgLoCnpcm3ofaA/jqA0Ugm8m4ihdNNO4xGlJFZrchWJOhYrsBYzCTwiZKbf7ec/C8apR8qE0RIhyoFKjgEpS662bixKCXLS5eAhBNKcgwQQohxUVFVdLLeHkhnrFh1SSHJKTOPAcrkqVuBUiMPBR1Rdl+xqBm0KQdmHWPpd6xpt9GkxjDHNPavF6hujwihBioGmrVgvV/jgcTGhbIWU0E8ToGiamnEa5vekASGhrYqlXihJ8CXisFmtUBJSDOxTZLnomCZfFtpUIQVUlSk/cwqFrqwNtqrpuvakbp6s+aZUQ91X2FzfXP9crZn3vkD4JLj55xyGkRDDTJUv+eDD4UjOsFptgGL3TSmW/7bfs1h0HI8H+v6A0Uuurt+j6rrcx0mQQyJMZbEOqVTo+BCpq4YU4omATOZ0f9d1fSIQ39ev3c+9cntvCb5fLAtxWs094vF0WAWZ4MOsmBdXTsn1FrW2uIAizpVcbV0L/H3dlaDkiydFSoFls+T8rJDpm7qeSdf/2r/7HubfZHIuS2yMpH1R6rJzD0vsw/x7NyKB3v3Ffdh653n6f/mTn/tY/701qTPc/FcfEVYGHg7aHuZh/srnF15scy4Xs4tlyzhMeB+L+hEjzPYxIQQ6gRSKRbfk8ZPHVJXh6uo9i8UCay1/+If/nGEcWa43haApC6zkt37rt3ChgGkOxyOff/EFOUastmw2m7ljtmbRrXBu4osvXvHJxx9zd3NkGicWiyXWVKxXGzZnGz7+6CNiTKWOSFu8C+z3B+q6ZrO5wLvAcrVkuVwRfOT9+/ccDnuO/Z7nFy8I08B2e8Pzp4+pbcWLFx8wuon94cD2uOfNm7dcrM5RQuDcRPaerqlo6wqrzzjstiTv+LVf+QHPnlyiZwvLzc01IFivV4zjyO3tXVnWkLx8+QajJIfDgaZrubq6pm7fIITg+Ycf4IOnWTS8/+EVzgf+9Ed/xvurG25ubmiajh/84BG77Y7HT55CFjiXccHx1etXfPX6FVnCr//Gr/Nf/u//Kz7/2Wf8k3/6P/Hx8+ectRY3jvz3v/d7bM4uefL4KT/92Zf8+KdfkEl88dUrXrx4QRYCNzmU1rx++56ua3n+4iPeX9/inWO333N7fcWrl1/x/Nkzckjs77b4WZ0Pk8MqTX84cnW95WeffcWjR49ZLpc4n/no449KxdPhwDAe+clPv+DZsydAWRjPz89pmoaf/OSn/OZv/k26xYLlesPxOKAkPH32rNBWQ+D65pb12Rmr1YLdbo/3E69evUIkePr0Mbd3O9pFzeu3r2iaiqqqQeVCbRWJ5XLJZ599zk9+8hPW6zVN0/D27VtevHhxUrOsrTj0IzFmzi8esz674KsvvmR3t+NstcI7x/G4p+taPv7oA4Z+4NvqU8aQ6Oqi2FXWklPJUZKLNTbkyNAfUVJTNx16Vub7fsK5AKpcVApRamj8VHqNJbl0f0qJVgoyDMcDPkxImUnJIUVCSTBaY8/WnK2X3N4eSh9ryqgZlATMMDY5K28RpTWkr61Y94qZUoq+7xmGgZQSVW0ZpwGlJd6FAv1KuWSd527S/X6LsYZ2PpzYHfoZ7ia5vduWaMKcd1UIUi4EZISksobKatxUFGcXS4WYsGa27wqMNShZ8tXTNFHXBXCEKIc86/Ozk1X2fLMmOMf7d28I3mG0JAXP8XCYq2wgOI+2htFNHPsjKYO1pcIopbIAjuN4+vmapgFgu93y7W9/m5gSo+upqoq7GLi9u+Py4pyqMtRNzbE/4L2jqWuEzLRdM1f+TIQQ+eSTT7DWMIzHGZwkOTvfMPUTu+0dl48u+dMvvuAYAy8+/RSlNdmVurPJOZCCENN8OFAhRVG3RYa2qqnrhsjXQKn7rK6ZO6TvP36v/ltbVPh7e3KMHikNTVOVDHYundFAgYnlTHDF0pxjxsVyIZlypOta6rqes7cTPjiULxVp94qx0pmmNkQ/lZ5roxmP8aHu569gcgjkvicdDg8Z14f5pZ72R1sAuj+85u7vfsDtf/nhX/EtepiHeZi/FBV5uVwyjo6maeg6Td9PHA49bdMhxP3J/dcWtNubG/xsX/Z+YhiO/Mqvfp/Xr18jpSWkRFVVvHjxgn7oCTGCFNRdy/psw5tXr2nbjpu7W4Zh4Oz8nBAz292RqlqCqJic5/Z2z9XVNednZ3z88cdzzk1hbcUwDPz2b/82t7e3bDab8nkX5zx5skErOVsPj3z18ks++ugjPqpe0C5KVvDR2Rk//clPWLUL7q7fl8zl2HN2fs5q0XLcbVkvl3z47Bnri0suLy642GwYp4mb62tevbT0hz394chi0fHmzVtK1k3y+7//j/m1X/tVvvud77HdbjHakKPnsN/hfKJtFizWS4SEyU988forlJb8N//d38cNnhjgT//0Jzx//oxvfevbnJ2d8fnnXyAQvHjxAmMsi6bFWEv0lxz2W54+f87FZsMPvv99vvfJJ1wul0gyZ6uWoR+4fPycm9s9T54843A8ll5KrXj09DmL9Rnb7ZaPP/02n3/+OePkWa0rnj57zn3QbZomhuORRWOJIZ4sjdbUs/p0IPjEOOxwPvD02fO55sUjgD/9sx+RSaQY2O127I8Hfvv5b2GVZHc48K1PPuXt+/fc3Gy5ud3y5t01Uiq+evkVmsjd43Oc8zNN9cChP3K33dL3I5uzMxaLlnHwKG25273h9btXbHc3NE2FmyZ+8Cu/yuOnT9ltD3z2s88w2nC23vD23Vs+/vhjlt2C/nAkxsizp08LXOt2R9MuePr8BXe3N2QhuN3uOB6PdE3D5eUl11fv+OxnP5o7iNegLO/evUUqQ9M2vHj+nMePLiEnJjfR9z1aVyil2W0PJ8u/c2UZEBkqaxEwL5aSHD0oSdvUuMlxjInlYklVG6RPaA0xCUxU31DiCm02xYAQxRqfU0bIAosTMhFSxFiNSGLufdYnle5etYuxZCSXy0L2hYxEYLVBIjFak3ImxWKDrusGUkZoxXK5YvIBxECm2HYzkjCTmqWU5JwZncfHyHLZUdWGnCJSK5CZMUyY2ZHQTwNKaqQs0Kb7r9/v97RtUYJ98Oz2e0JwdE3Dsm1YrZc0tcGNA9PYczwcipKNRCIK4MgYhDI0CW7v7ggxYU3Jmd6D9e4Vy6LADhyPR+7u7ubub1McKsacrPYX5xe8efkVu90d3/n2t9lub7i4OGO/PxJTmsF8B25vb/nOd76FtZqb2ysmNzJNIyF4Pv74I/75D39YDiFi4tgfUVnSaIMUco6FZKQ2CCkZY5ofS0kGpFIUxBgnAJaYSckF3lVgT03T0DT16bG/V2iNKQcK3ntynivdssAHNx9cKvqhhyho26Z8rTYoJXHez7EWibUlwnKfqb2HRZW/23HtR6q6YtHWTMOxRDkfJNt/p5NDIF7fQPh3UJvzMA/z78mImNn8/ZeETcX+P3r8V31zHuZhfqnnF15si+XtCJR+12n0J7WmZMsiUsnZbidRqqgvxQJcIyW8ePGCtm346KOPWHRr8qwEhBj58Y9/jDKazflZqbM4PwegtfVs8bung7ZsNoqmWZFi4vzsMf/R7/wtjrtb6rrmV3/1V6mqirZtCSFQVRWvX7/m888/5+zsgpwFw+C4vrqlqiw3N9dYq+e6ip62bRhnWA454oaeAbCmwIQenZ+xWC+5uDhjOOx4cnFZ7I8kLs43vHr1muAmdrc3LOqaT158MGfSPN//3g9o25bdbsdqteHTTz+dSaAFvNTv91hT0S2WjG5ksVzSjz2vvnzN2/dvOfZHHl1e8h/9zn/Gol3x3e99nxcfvsDamtubW2xV8/79FT/8kz8hhchZu2C5WnHx+JJN16Jz4O79W/7+5z9DC8nt1RWX5+e4SjFOjpcv3/L27Q3Gtiht8cHT2gplKt69L0vkj3/yM6QUfPXyNS9fvWG5XKKUmunTCas0frXgeCwX44Xqa1kuxxmoI3n//j3tcs1ivWGx6ogx8Md//Eccjke6rkWp+aLZKP7xH/wBtTGklFmsViyWK/7W3/qP2e4OvHrzlsk5tts9Ty83SKkYhh13d1v6ceT6pnz/blFy3k+fPuXuds/h0FPVDeuzJd2iYX+4w3lHPwy8fv2GnOD1q1csFmsqa7m+ukVQaL6ffPIJMUWG48jrV+/IxqLrjjh5trsD2lpevXzFl59/xn/8u7/Lze0tQio+/ugFTVMhlWU3eLZ3t3TLDU+ePKWuW4LPdF0HQnN7u2cYPMvFCmOqU9bRaMPybIVSmnfvr0/LRdM0xFAWXGsM0Uecc/THA5CQsihjUooZ0FNqu0CeLJ/TOKFNWWwQBQAkKH2nIRQr6TiO1HU320zzCRxUVcW6mmbGlXOOxaKj7wfquix6TVPysQJbehjrijF4Us4sFgtWqxWvXr8GCpRIpQKjmyYHWcwZY41UkmGa8G4EIkZJtFaMYUKJYtWNIdH3A1pZYgwnijMUAnA/DOz2R5raUtnyOcMQWXbFEj4NpWd1vVqVLlXvySkVJTNnbGVp244QA/3Qc3lxPmc+5am66J7GLoRgt9thq4rJj/Nz8Ibb21u0LDbxe6XbeTdD11TJrKdySDjO/d0ld2uo60Jdn9zEoi61W9baQvDuDzR1xWF7ILuAMZpGzocZaX7cJeSYsE2FvFddcyafaNfpZDe/5wAAJ2J9oS8XMnfOuajhVmOMJsy2Yi2LVZxUFH9yLgirmHCh0Gx98PTj/ftCqYFSssRHvPd0rUXZcojhp6mQ2euaR48esWzLQVl6WLD+nU2OkXjzsNQ+zMP8eSNCZvn77+h/5Yy4MH/VN+dhHuaXdn5xKzLlQmSxWBKCR0jBMPQoLdGmaBpKCYRILFdLpuBxfsJ5x7R3fPDsKf0wIBE0bUMSkWkq9sPdfs9q3fH02TNiSlzf3jD2RxpjcceeaV/UL6s1XVOzWi55/eYtotJcX93wD/+H/54ffOdbLFfPqKqqVG40Ne5wYHNxzvpsw/d/5QfYqkEqy8uvXvLHf/zDonLNnYgxeN69fsWHH33Ian1G0y3Y7Y+cP3rMJx9+RNd1CDIhRT7/4gsmN/H44oKfffY5u8ORdrHkH/+Tf4IxFU+ePObq7etCinYjwzgxDiPGmpMCUtcVV1dvcc7x8uVX7HZ7qqrlxYcveP/+HbbS6J1BKFguN0xjIDiQomLsR467I7vdjqqu0Erzs5/9lGlyBB/4gz/4p3z/u9/m1//Tb7Ferwk5o6sF3gdWqxXD/sCf/eTP+J3f/puFWiwUUSgunzzl0+/+gLdv32MlrM5WSKVwV47vfu+7vHnzhuPxSNt1DOPIV199yfur9zRtqdhRUtIfD2iVWS2XrM82/Nmf/RlfvnzJ8+fPaNuWr169BOCjxxdUTYetNVJaVpsVX736iv1hx2az4vLyssB6+okf/+wLVusVwloSkv7tO27vbtne7Ti/uOD73/kWVguO/YGYM91yyeWTp3SLxZxlLNnGrut49vQDlNIcj3tev3nJcrlgv18yDCNGVWy3e9arDd/97veKjdZNrFZLDoc9FxfnXD4653A8sFi0PHn6mNv9xHJ9xs31Fev1qtCtU+Rue8O762tut1s+/eRjnlxuEMDrt1c4X8BCo7umqmqUUtzOHbSIksGsmwafAkpKukWLm6Y5jyrmXs+aLCQ+JXwSSGVx3uHdiFWaqi0LQRKx1OCgCXECMWceKVCn2lTFvh1Lj6nUkuD9vLBWMNuAbW2xJmNtdbLeCpEI4esMZkxxrnYJc7dswpgK54ZSA5SAnEkxUBlDSpEYPFMfsZUlTCNyXpiVlOW1KSXaltshVVkE5aye1nVHfzyw3e4w1gCBmAJSKpq6KtbbVG5bXRfCsQ+lhoqcaOoOIRT748h6seD6Zs/dzVW5f5tlyexKiQuBQ3+kqmsWyxXHYSLnSNO0CCm5u7ujrqtZeVRkSp3R2fkZ2mqO/ZF+HKjalvfXt7hxLLbydWR/6JlCZHN+yZdfvuTR40uMKcRpHzwhRA7HPc8+eMputwWWaGUgZ7SUKK0YxwlTG7a7LUYJrIKz8wUiwXE/oGw5GPJTIJKpjMVUFcZWp9saJz/3iVeQv87SIgTalP5a7z3D2CPknPWNheAdYpwp9aL0FlcGCeSo52yzK7eZGTYmVTn8lAIlFTEmJudIPtE1HRLJFPz/n70/bZIsu888sd9Z7n59jS0j99oAkABINqlm93AZmWY0rZnW9AvJpJf6EjJ9L5nJZDYyzViPSdPdajabOwACKFTWklusvt79nkUvjmcAaACcIgkQ5DAes6zKjPBwv+F+r/t5zv9Z2G63OOcx40isBPP5MlRtbfe8evkmTOm/TJLpPX4u8F0H4z2pvcc9fhbSz/cc/d9fcPV/+eov+1DucY9/tPjSxHazDbU5/RC6Z4UTJFmo+9lVW5TSTCYlk8kMg6EbW/pxYDAjSRRzdXvLyeKISVailaIbKr7zl3+JMYZHjx4R6Yi3b16GIJHRUO1riiRj2NckSLrdnlgqNpFiupizXE6Ikpjj0wW79YaiLLi+ucYLgl/rEORyc3NDVVXEcUyalcRJwXQ64aOvfgWcoa1rri7ekhUFtixYlDN0lHJ9s2YwYIXmdrenHUcipej6ju1mi8dj5p7eOE7OHjCdTu+kiGWRk7/3nOrg0cuynKvxivXqlsePH2MihdICa3uePXtIkkDb9Tx88gFxmvLi5WeYqufRs4cUecaTR08ZO8dmveM3fuOf4H1P21S8erkGZ3nx4hMeP37MsyePmExKklgynU7JJjFojxsdw2ARQtM1I8/f+xCEYnp0zEmaMgyGxWnoptxutzhh2FUN00VJ33dkSczV9QXG9my2K5bLGadnS5IkePEWyyXr9Zq2bdjt1pRFypPlU7qu4/kH77M4WlI3DVXboOOY07NTtNZ88uIHlJMJ8/mcyWTK+++9T1mWnJwefLdDD0iev/8VLi8vmM0mlFnOiYCHD8/45OOPiSNFpAX9MDKZzikns1ALlWaUZYkQ4s772DUN03LC+nbN7eo21I84z9A5cApvBa9fvuHT4TOKvODs7IzZbIrWgidP3uN73/8e2ScJD87PDlNAixtGXn/6BZdXb9CxADew2d4ym8/45LNPSaIMHac0bUqaxuTlDDUY5kdnbDY7NrsNDx+fY+zI9c0VzkmyLKWwOXmWUxQ5/dhhzEBZlIxjB1IjI40XgjgtmB+dkMUR9X6H6Vu8GVHek01SkrxASPDOc3NzTZakeA3ehmTaWTlHyyiERAl/UFukh5RrhzOh2kV4TRwF4mLtSN8Pdx7Ld0m4ZVne9dlWdYNHgRdIEXpwhfdEShHHMUM/IAA39ozWYseIk8WUNE5o2hY7jngpwHukBicCofeH2hqlFEoEYqRUmBYbbJDBCnnXpf2O9zjvUTrGOIsSETICpROUSun6mtvVnrquQuWNUtTdgJCeJBHIOGK+mAc/bBIqpMahxx9Cl+o6VO2E2psIIQHh2dU7+qFndAYvJNI5JnkBQgZPtdDoOMVLxWg9Kk6ZzpcI6fHO0g8j5bRkOi84Op4jEdR1TZalCELlU5ql5GXOpg35AEmRoRjpjQmkNFh96eoei0dojcVjnEe70O+LIHQlE4jsMAz0Q4/z/iC/lgxmRCp52MRwCCkQKMSB/IYgMYcHjPVhYus8xliafjj02QY1T6Q0QoTOY+EVsdDoWAUZvPPMJlOMs9RNE2ra8iPwjrIsQ82SVsRJRte2dxaYe/xi8Tev7bnHPf5xIftkR/rpju696S/7UO5xj3+U+PITWyeI4xglNdZCWZZASLAc+oHdbkeaJFRNFeRtKsgH0yRlsVgQHRabwzCwrxxxrvnaV75CFEU8efyEN2/eolTEMPTsthXVZocZhjC9iTVFEnF8fISKI66vrkizjHm0YDopkd5TTiZkWcbFxQVSSn7la19jGEc++ugjrq6uUEpxc7vm5Oycxw8fMfQdQ9+xW685XsyZliVFHuqHVJJxtV4HWWHX0VQV8/mM/W4XknLLgqII09Vvf/s7TKdTJpPJXUroMIRF/3w+P0xoDQ8fnhNFmqOjJcaMbHdrtFakacr5+TmXl9f84JMfILXm7ds3HB+H6UQcx1y8vaDICr7xq7+GlJLVqub09JT9vmKxmHN+/oA0TXHOsVgs+N3f/R0uLi6YzWeY0eFxXF5f4Bxk5YRdteWLl1/QDW3wJVYNi3lIG91X1V135V/8yR9RlCXHx0ckSqGTlPPTU5bzOVVVkeiI169f09U1i+mUWCnUwfdW1/UPpbJ5Hia/w3AIzFrT9wOR0ph+AOvQQvL86TM2mw3b1Zqby6uQ3iskH3/ygqPFkjSN6dsGZwzGjAzDQN1UxDqiKMowFfSefbPHGUe9r+5qaK6vr3n27Bmb9Ybdbof3/m7jwblDyFgUUeQF5w/OcRa+9Rff4fTshOVygRCSB2eh624cDZvNBiEUx0ePmc0kx8dzPn/5Kd/97neJ44iHDx9RVy3bzY62bUnOF+ybig+/+qvcXm+YzRYcHZ/x+s2rIJeVgn7oefLkOZPJlHEc6NqWRbIgUpqb+hJjgocRBePQ4GxP11X0bYUzkq6vGLsW5R3WgWBktIKuD/217zqFvRcUWUmS5EznM5I0xRDqu96F8URRTN+bQCLiCO8dUgqMCYm/EKSpYUIbfuadNSFJJGa0pEkCQJHn2MNtpZRIpYiSmNFbxtHi8bhhJI0TEJJIR8xnoYN1s97Qdz0ofefpFMIHq4OQKBWRJMHf7axDIlBSYj0HqWyQ03KQEishD9Lq0J+92+9p6wqcI4nDFLnvh5C4Kxzr9YY8Tzk6OaHebrHWUtcVxlrGpqUfRrTiLlCsbmqiOKIfhuAXPVQWWW+JrUNrTbXfoyNFnMSHPm19uFY0kY7ohiZIiPOMNE44OjoijmN2h1Ct6+sbnjx+SNdbhJSM1mC9Q0Wa6XzGdDZlV1es1msinYJ3KCEYrUEKCTgsA601JGlCEschbMrL4OvNMrI0WECECn2/IblZkpc5zh0SRKVk7HuGtgMLYWIrsA4sQc4dxzFlWYaQs8EF64kJydveeTQK6yzWWfzBl9wPQ/D9HoLgjDH0bRMStY25q5fSUejCvccvHr5p7iXI97jHl4BqDOV/vKZ7Nrnvvb3HPX4J+NLENgQESeI4PVRbOKyF3XaHEJIsK8nygtF0TIqUOEkoyoL1esXm9obHDx/x4OyU3XpDlk0o85ymqdFCsN9uscNIWqR4qdmu1wxtx0CPFBHXt7ccn5xQTErOzs5YLpd44Fvf+TYfv37NRx99RFEUZFkWJJ5dR1EUKK2Jo4gsTQ9dug1XF8ED650F77l88waBDws8F9HuW8btlrQo0VrR7Hd0bc2Lm0ukFGRpymwS7lsQJho/+MEPWC6XdwmhRRF8iMOBmHdddzc13O/39H2L1oqnz57y4sVnd/5FKcPCbjKd8PTpU5zzvHl9wfp2zdCPfP/j7yGFRGCDDDlJubi4pChCNcl0OqWuW5bL4Pn7s7/4C6bTGXk+ZVKWLI9OeXt1RZYmfPjhByglMWZkmudEOpSez2cT0jShrmpWtys8nlgrvDF0fY/3nvVqxcXlJd45jo+OMMawur1luVxyfHR059HbbDYYY8iyIAO9vLxEa80wDOx2e/a7irOzM8Z+uAs0Go0hPhCn45Njun7g6ZPHFEXBfrvDu+DxmxQFZ+cP8NayWq2o64ZnT59hrbtLaLbGcH19zXw+x44mEOJxJMsykiSk5IZeUDg7OyNJkjCt6nuOj89YHp9QliVd1zKdlpw/fEw/dAxDj9IR42jIixyPwodMWb759W/yp3/2J3z/+i95+DAkWfdjx816S9/3/PmffYem7Tg+OjlMAROSNGa1usEaw3q95osvvkBrzaOHD0PN1IH8b7f7Q91Nh3cGnKXarlmvroMMVoRJWaw1eMM4DjSdxXuLsQPGjkSxJk4S2r5jV9XUbXuol3HEMYde2ogoihjH4eBtHxjHEaEUSElykKlaF4iKVCqQj2E4JO16vB3RIkFIgVSScbAh5EpC0zVh80trpHzn0TfUTUPbD0hgPFT8JGmOtA7rPdZY4igiiVKMNVjjkCgSLbGDRapArt+Rdy0lw8ET6r24q6FxwfJ5t/kiD/JcqSRj16KloixLtlVQgkwnJXEUM0QxWumDPNagdKi58nYEJDrSQdKOpO9HjAuVaFJCFMd478JjSkFdVQzTCfPphLOzM26vr0iThKZpGG1H34XNoSFOKIoCY8yhGqxh6HuGcaRuWqTWbHY7RuNIsxxjHavtjvVmQ1YUZElKs20RoSwYIUM3mznUNnljsPGAcY6+M4dU64T4sCnhBagowo4GpTVd27Kvtmit77IBBAKlJEKoH0lPdoyH8yPLMtI4pm5CCnXfdiFZOYrAhU0Q5zyOEMJlncN5j1DyID3eYobhbvMpy7I7L/N9eNQvHmFaW/2yD+Me9/gHg+I7K27/D+8F1dE97nGPv1N8aWIbphgJVVUznc5ompZxGEmS7CBbBDOORGmohyjynDhJGLuet2/fcC0107zg8vKC5XyK6UeEg2Zf8fKzL4jjFNMbqqrCDoZIafZNQ5RIJrMZKtJUTU33xRc0TYN3jg+evcfj84eMxrDf7+n6nvOHD3HOcX19zW4X0mmVlFhjidKE7XZH25xjxvHuz2675eb65s7fp+MIDpK5ruuYzyZkacLR0eIQIiNRUtJ1LTe3N/zBH/wHHjw457/8L/8LFkfLQy/jwPFsytHREVEUUR1kXN479tWePMvwuNAXmqYgBV6G31EpSVkWSKmZTmecHp+FXkqliKOYfmiRwvPi008x1pGkGQ/Pz5FSog/1HMcnp7x8/ZL1ZsvZ2SOyrGQ6neO8o2pqRjOwXt8yDD1dXZPE6V335tHRUZCUmgEpBd4MVE3Lvgm1SmY0vP/8Obe3K6yx2NGQpSlaKS7eviWKYyaTCQBd191Nsr/61a9S1zVXV1eMowmSz33F8fIo/G5xTFVX7HZ7ZrMZRVaQ5wVudYvEk6UJfd8xmy2wxnB5eYHWmuvbW24vb3hwcsaDswdhEmsd09mUIi+I45jTk5MwTbeG65sbjo6O7sjtZDJhuVxS1zW3t7cs5gsmkxnnDx/jned73/su+32DtQeprozQOiaOM5RWgCTPU5wxKKlYzBZopfj+97/HaCxt33Bze8V7773P0ckJ53GKt4cwJJmgDxswjx8/Ik6CX/kbX/866/Wai7eXjMPIJM8P1+FI3w00VUtTt2zWO9p2INIKHUcoqRhHg+kDcZBSBzIjRDhW4bB2RMcxDoFOIoSWZHkcjrULCbrGjXepx977MI1FIg8ecfeO1GqNOUwrhyGQJS0kWZJiDjVPgfwK2j4EogkhaLuOrCjRURKm+mnKbrsNBLnr2e33eBeCpeI0CZO7dmAcB5z94YRdH9J1pdSIw5RwHA0egXEWZx1KKpwPXk0ApdMfVhMlMcZa8iTFmhASlebFwR9vkEnwku52OyIp8QjiKGW1qYhRZHmBE2BdkOGGqW0TwqOkwPlDEJeUqEgjpUBrRVkWpGmMEKCUZL/fsVw8pW4qZvNp6Ci2lv1+z9FySVEU2NEcguemGGPRUehNbPvubmLb9T0OiNOUyXSCHSxpEuNMRxJFgEQIiTt0JI/DyDj0iLuvG8Y+nJtRFCbPHELCnBlROiPSGg7v90BIrxbyh/21zhNF6u74pZTkaco4DKRpgpSSrusQHsLwV+BcSOAWIiRjD4eU6fAaa5IoQktJlufMZzPmywWvXr1itVr9XD4I7/Gz4ZsG7H2t0j3ucY973OPvP740sX23S6518JgpFeRgURQzHPoJpdYoLei6ltlsSiQlDx+cgTUMXY81I0+ePgkSQRcxmwYPQp4VzKYzum64WzRV+z0A3TAwKcvDwlxTVTX77Y6H5+cMfc98NsPiQ1jVMGAOoTdFWVIUBVoptNIMXUc/jhwfH/P06VOaumJSlqxuV/zZn/wZcRyjD55BqSX7/R6tVEhv7VqsGfBu5PLyEnB454nzCU+fP+ODjz4MwVFJzHQ2Q8rw8+v1in4cUVodunZLtNa0XU8/hClY3/eUZQFCcbte4QiTSzsari6vEMB+u6Ouas7Pz3n8+BHOB7+aB5I0w1jHH//pn3J29oCrq0uOT07Is4zJdMa3v/Udzh8+Jj1sKiAgjjTWdERa8PTJM4amp6oqzs4ekCQJ+/2ehw9OaQ+T5uViTpamZLkhSTPquma72ZIebuucoyxKBIKiKJnNZ0RRhLWh8ufp0xC+ZW0g58fHx8xnc6pdmJjleU4URXz++ec8fvSYS31J0zQ4a0GAErDfbSkO5G4YBl5+8QWffPIJx8fHnJ+fs5wdsd3uyNKM65sbnHO0XYsxlt1ui1aaxXKBkopnz54RxzH7/f6QWD1weXl5N13e7yuEjNlsdmR5hpCSfVUhlSSOI4wZubleYb2lGx1d2+Gt5fb2liLLuHx7QTEpUFrx+NkTVus1OopYbW55+folT548Q3oYRzg5XbLfb0mSiMurS+qm57d/+59xu1phR4PWERKFMYEwfPzxD9hud9zebKl2AzfXe7747JIkiSnyPIQyDQPeWrIkwdqBKFYsT6bECYxjy2B6rB2xzodgoDii630ol5eSoe8QbRs2XIQAIYjTJOQkC4HWIQio74e7ftuu72m7jjiKiJOYSEjqpgnXugmhQUVRMAwDaZZSlAV1EyprhBAUeRae+92O8wcPuL6+om1avHeMQ08URxRFHpJwnaPrBrxLg0/z3QTZjPR2PJDMsFMuRQgp8kIyHqTcw9DfqQiMMRRZeieRjaKYJEkwZsQ5H5QUgMQj4hj6AY8nimOiKKYoSjbrm5D+ncTEaYLr+5D4LgWKMLEOycsNOBcIuAnvmf3Q0ZqR45NjpAzBSDqSTMqSo6Mj1odk7/V6zYsffEKapge5dwKHlOs8K9hVNcMw0vQdURIzWy5ZLJb0TYdIHJKKmg5rQiWb0gp3SMCWUoMXVFVD0wXCv9lumEynRHEUwvjikAqfpSlaB2JqTUhLfuezFoSqoFB5ZO46yt9ZKpI0JUlitJSMY489hFUJAimWPgSnhdfP36k4cJ6260iTmHEYuLq8JM1Dlda76ql7/OLgh+GXfQj3uMc97nGPe3wpfGliu1jM7wJj+r5HKREqb7qeuq6w1rHZrTh+sGA+n1Hvd0RC8PD8HAVsNxuUFDRNzTCokPwpAO8P3j/P9dUN4zgyDCH4xHuPs5aLt2+ZTKeBWCtFWzeM40CcJFhnkZGmtyb4uSYTxj6QxrHviXXEd7/7XY6PjphMJ6x3G+JI4ZzlsxcvqPZVWIgnMZHSNG2LGy1xlhDp0FGphObB+RlH8xmPnz4ljjVJHCOjDC81Smv+3b//91zdXCO14vXr12ityfMch+f1y5ckScx2v+Phw4fUbcNms2UYeoqi5MOPvop1jpMHJyRpSqQjrLH0fU8Sx7R1Q9s0FEXOYjHHuBD4cnu7ou878jzn2XvvMww90/mcp0+fEUWa0fQcn5xR1Q3d0GO9PTS5WNIkwvsMZ0bOzk6ZzwIZxXtmkwlJkmCtoa5Cz6SQIvQDK8V0NsWakIS6jKJQ43KQIOZFwdX1VUhNPUzxLi8vmU6nd0S3LEtevXpFW3dhutX3PyYjT9P0rgpJR5LJrKDvB/b7/R0RXiyX/NZiyWKxCJ5NKfHmkMqLDxLSw8YJQnBzfU2SZZSTkn4YWK/XrNdrmqbBGEOe5z8kDISFv3WeYlIglGA+hv7mpqm4uLxgOp8glGS+nNM2HRev35BnOa9fvubp4yf0Jmy6FGXB+eOH5EVKUzfs9xV1u2Noe64uLzk9PaEsciKt2G42GOt5+eoVkY6IoxiBZDk/okhzPv/8C/79v/8PfPH5a4ZB4hBs99/hO3/5KUkak+c5aRRjDn3C3lki7ZnNC/6P/6f/PccnZfCGHqp+um6kbVqGbqBpDUKGvlmEREURaZ7fVdi0bYfSCilCMrEQIgSoHTpbkzRIV42zDONInOcICaMdmU5CsFoUR8HDqTRZlpHnBW3f0bYtQ9+ExGQ3Ym3PYj5FizAp1lpRtxVSKvI8xllPGkcY4xB4rBnQcXLoafUYYwLxPaSdG+tIs+yOvFon7mwC7uDjHEXoVM2zd/ViIR8gzzK2uzVlloVNvX1F23TEUYL3HEh+8K8Kq4hVjPVgrQvFsAjiOALBwWMsGLqB6bRkt9vywfvvsd9uULGmLHO8C1J8rTVJktDWDQDb7fauVsuMI5vthsVyQb2vEVISRzGZ9xjrGAaDM47ddo8fDYtySp8N7Pd1CK4aerRO7nIQgn86VCnpSOGcpBt6hrEP9Updi3WWTOXheQu/2J1/3Xtw1pMk6eH1CscuZag6CnLvQICvrq6YFGWQ1I/BL9t3AwjI8xzvfdjArEOStFIKnCfPM5QXSCnJsoxJOaEsS45OTn4+n4T3uIM/TOIh9Nb6vv8lHs097nGPe9zjHl8eX5rY3q6uMMaymC8AG/oUs5j1ZkXb1SilQUKWZ9RVxWwyIUtS9ustRZIyJu+8uQalJXXX0o0DUgYJ3Ou3b9nudnRth3NhEdi1LWlacH72gJubG9Io5j/7/d/n7OyMy8tLyukUj+eTT1+w2m44OT0lqxPm0xlHR0fst1tOjo45OzlFIuiGhsk0Dx2Ko+PJ48dh0SUl63UIZhnNiAN0FCYVu92WardjMI5sMmPcbvFCkZcz2mG8kx/+q3/1rzg5OcF7z8nJyR1R0lrz4MHpYVGr0IegI3wI4Nrv94yjRUcKLxxd3yDI8Y4Q5mPDlDxNE/b7LePYY5zHeUiShNlscQhUiVhvtnzta19juVjw6vVLmnbPrtrRNj3z2Zw4Tdlv1igpKIqUIg/ks6qbkHY7/FBium8aNpsNfd+TFSX9YKi7kTTLg385EnepuG3fBRImJXES33mNu65jOp0SxzGz2QzvPZPJhCiKuLy8ohv6MNWKNPs6BDm9evOaBw8ewOHrcaIoy5xqX7PdrNBRTN2EjYHZbI4TgqurG7a3NzhrOD4+YrfbkxU5zRBI8tXVZaghSRMQgr7vubq64vHjx4cJbVAH7HY7xnHks88+4/TBQx4+ehwmkkrQ94bPPnvBanXLdrfBOcN8seDi+grvBH3VMClKMBYpFdW+Is9z4iQC5XByYNfekOY5TowMtkfHitvVDXWdMHQdy+XiINNsMCpiv9uTpQVFVoITfP75S6p9w2gcvQEhFF1v6cYa2XSUg0Mi8dbijAmLUgbW9Z6Xby+ZLDLAYcyIlhFYR6Iiiryk7eugJOiDBBbfgQ8kRUpJ23TkRY7Q/k5arnV4+6iqKkx3CefkvtqTFSlJmTF0PShIdAwuSFydsWAMk+kEISzejmRJxHQyRePwdqQsSk6Xc169eknb74mj4Nssy5L9rgKp6NqGopgQ6YTj4xPSNA61QcZyfbvi5uaGemxRMng/IyHxKnSwtm0bCHmSHIh7ewjKChs6AEIIXr95Q1lkxHFyUGIEgj0aB4fE7ShOaNrukHRs8Q7SLA8bdockYvBEUlEUGdNJTlNXRCrGmJF+6JhNSjyetmsop6dcXFwEb7gLxDuO44Plw5PlOUWWMS9nNPua169fk08KTDcwK6Zc3l5j+oGonFANDZ9+8RlpkqNjjbUCPxgG098lX4dkZEOUJYgohDkV06CSieIg1W6HHpRCqJBOraQCJYjziGEYsTJI360x7He7Qw1cILhaa3abDXESUVc1ZV4EmXPboUToxjXWMrwLh4oixsPfwwZDgm3DeZnmGWUe8hSklFxfXf38Pg3vAYC9uv5lH8I97vEPGvfe2nvc45eHL01sdSTRWpBkmrarqeodWZ6Q5wkwJYpiojRCa4m3giSJGfqW5ckpi/mCrmuwdiROIspJiU4iTo6PUUrx8uUr2rFjOp9j/Zq+DwRLa82js3NOz86YlVOQ0A8Du2rP/PgIT+j+XBwfIeMID2yrPavbW7zzTMuSMi8wwxB8W+uWssywxqEjSZ6l3Nzc8uLTz+hHw6tXb/now/f56Gtf4+rmhtubG6w1PHn8GJTmj//sL/DOhh7dyyuWxycYG4KSHj9+HCSDqxVpkhDFMVmWobVGR4pPXnyCFJK6bsNzFcXsLy6ZTKZkWfDbWd/TtDVt2+KdwBhHmRdopbm4vcXakddvXtN0PW3bM5vPOT4+DoTw1SvyLLsjGbPZlNXmhjzL+Pzzl4CgyAq26xUXb1+zmJecHC+pmpqLyw1lOT1UpQggyEYXiyXlRARZp1RkRczFxSWffPIJjx49YrEIXtLdfh96Z+OYP/3TP8UYQ5qmFEUBhEmM1pqLiwvevHnDOI5Udc16veXDDz6gmJQ8fPyIar+naVuMs3zy6Qtm0ylJrEnjCOsMs+kMj+B7H3/MYrng69/8NbSKePr0Oc6MbDcroijixSefUEzKO1m4F+KQrh0xnYVNjydPnrBer4MfvChwznF+fk7btrz49FPmixnd2FFf15RlETynGrx0fPPXv0GWh9f2v//X/5rFfMl2t+Xj73yf5XTOer3i+MExaZ5wfHLEdz/5S9pxHaSU6ZS62fP8yfuBzJXhGDerFc5ZZvMZq9UKgSRNMsoiSPT/4N/9If/hD/4wdBVbi3EOh8VakEKT6ojBW3AjdjQhhdjYcL6mCYPzDMYS6dBBOrYDwnliqcB6htEhVYyOBF4YusEitUWOIck4ijM84blEwHjwQ3oBqPB1aw2xABVpjAjBam4IXdbTcoLykEYxSkq8c0jveHC8RJweUVc1aSw5Wkzp2gbBiJYxz588YvAD+3pPUUywxnFyssQYj7We6WTGxcUlm81tkLD6Q1eqjg+kVTCMI90hoTg8dwIhQzBR3/cM3hFJxXJ5Rtc17He7EDZX10gpSZIUDwxDSAt3XqBVTJoVGGMxxuLwxFozjANNF5KOrfeHUCVx8PMmGGvQOqaqKh6df0Bd75nPZmRpjDpIdoG7TbE8ywMpPygj3m2eJVHMfr2hrWoyHcFocYPh5NERaZbRdi3NvqJpGnbVDqRGRaHuSCiJNY6uDdU5CIdzAu3BHby6Oo5DzzCWuqtJkpiq3eO8ocjzgxojeKiTJKaqmrsgtmEYKCcF5aS88zLP53OcMxyfhPf8cezDa9HXoQs5lOce6t5GOCgFhmHAGoM+hImZYWRvdlzdXFNMysOmwT3ucY97/P3B+n/3BK/vye097vHLwJcntloegjwkWRamHErBbD6hnOT0/Yj1YRLijKGrG7TzmLlhs16jlCJNYrpxoOs7xrZis92Q5Tn90FNMJoHQCpBagXOUkwlKCK4vLoOvVEDbBlltnCZkRY7SGqk1Dx8/Zr/boZVCOM/3//K7KCGDr9R5xmEEaSmnOUKFnvnLywvm8yW/8zu/w9XNLc+evceHH37AdL7g0bP3iLTm5uaavu/YbdaU0yllUfDg7Iy+75lMJ0HybExYQO527Pd7ttst1hpOT06ZLxYYM1BVFddX10yncyYTzTCMTCYTimJC23a8fv2a69VrPvjgPYp8wn5Xc/H2ipvrGzarG/7b//Zfcny8YLvbEiUZVd3wR3/0R5yennJ6esrjxyE5+M2b1/x3/93/i8m05L/5l/817733jOPjE77zne9yfJTz0Yfv8//8f7xkvV7x4QfP+PArHzKdn1PXLc6HBOfr6+tAVJMQsuPxLLOcXd2yHA3FZMLTp0+4uroiTVMePHpIkoSJ3Wq95vzBg7te03fTvdBVO+H5s2dhyu09Xkgmkwld2zGakavLK4oxhBYhYLqYEwnP7e0NeV6QpindMBBHYUr0rW99C+8FSZpirWG/37CYz0Errle3bKo9i8WCXbVnHEfK6YQXn31KokPAFh7Wm/XB41ng8YzjyPmDB8RxzM36lnEcePv2FTc3Vzx58phHjx9iXagbev36JS9efEKavMH1DkzYYBjHnk21IZ+l3FYrLm5eUy4UbSdom4Znj99HKWj7huurG+Io5vz0lO1+x3a7YbFckmclfTdwe3vLXu354z/+E25vV8Tx4dqLRAiCEiNeOJyMQEU4EZJlvXTEWczQj3TG4aXmerXCmwpsj+8dCo03EukhipKDjLUN4UveY43DS3XwOg5EXpPq+E6++26am+VZmOCNMIwjUisGOyK15Pj0BEw4piTJmBQlRZbTNQ2DH8J0Ni8xQwfOUBYp0odKof1uxziM5POcfmgQwlOWU/IiwVnYbPZsNrd0XYPzFq1Cbc5ut6dxfZAi2x96NQUCJSQy0ojD9HMcQ2CU0BFKK9abDUPX07YtRVkynQaifXJ8zHa1RgjFOAwkOsFDsE4cpoxxHNNXIeH7na9UKnlQNoTp7snxEjuOPHx4jvMOM45ICWkSiOfV1RVVXVPkOdvt9q4y6R25hVCf5L2n2u3pmw6lJUmaMowj1W6PsYZpGd6bGiFwhCTqSRmTFhnGe5wwpFGQZ+ND6rRzHqEUxju8GdGRDp3SXcv1zQ1VU4P3JFqTJCm9Hw42gpw0jmmaDjOOjGZk5y1JmtD3QQXgnSXPMwRBwlxVFc46tAzXorUWMxrGg/cYKcImCqGuSViPF45+HA7+5jDVbar9z/Hj8B73uMc9/nboHxU0X1sA98T2Hvf4ZeBLE9skKtFKgdNkaYn3ju1mF+R7SYwxLU3TMT86ITqENbVy5AcvXjCMA2maEiURznvOHjzgeHZMkiQh7ETHvHl7wW67p2kaEp2AceSTPHj7lKIoC5q+YxxGjs8WTKZTdBrjhSAZR64uLri9uaUsC4au4/TsONT19DUCQsqnihi7EaUUZVbSVh190+GN49HpGeJMcHl5ycXFJderFccnJ7z//gcsFwu2mzU3N1dcXV3xP/zr/4Gq2vH7v/f7RJEmTmJAkGaKBw+eMy0n3FxdMilKlFRYBw+Oj6kfP6Fpe9IsBD5leUGcJEwXM2QkODmZ8PDBCZFOEWeCD549p9rtwTvSLGFzu0bHmr4fQEh+7/d/P3jU+p48z7B25OnTx6SJ5vLNK/6//+N/z+31N/iVX/kmv/e7v0uW5FT7Df/0t38bLR0PH5ywr/bc3l7hHFRVjTzIE/dVxW6/J05itI64ublh6AciIRitZWw7lrMFgzFkeUFRTHj1+hVJVqB1xGw2Q2t1COFxdG3N9c01sY6Yz6ZESUqcpJjREGuJ8IIP33+Gc56XX3yB0ppIQt8NmNGhI09/6AeWMuLpk2csj46Zz+ch5Kpt2O03eOcPKbN7yrIkTRMW0ynOOabTKaurFV1riKKIxWyGHRxCwNHRAqkVxll0HDpTT8+OWCwW7Ksdfd/y2acvwAfSc/F2w3az4dmjBywXJzT7mq7pWa83rDYDQsPifMq+X6NzQZoVVFXFmzdfkBdTUIp+6Lne3YQKm4nkZnPLyckpv/L1r6BVzOdfvMSO8OKTz3h5+RrnPOPoMdISTRTOjHg/4qVCpQnvf+0h4zjy6ScvGPqepEjpewtIttsNjx4+QcQZTdWhM4UzgfAYaaiaNaN1dEOYukmp6YeOKEpIo+A7NdbS9V1ITgaKomQcelQUoYRAJgleCKTwbPc71tsdnEqePnrEfrMhShOiPKYbO4p5wTKeUjc7sCNprA4efsnR8ZztZsPRYhpqZtKIOD4HJFmWMw6GNE5JtKLa1+RJBGlCHMdM53NWqw1vL65Zb3YMhyoZpAjVQ1qHBPfDeem9Dx5YKdjXNc55VBzTdS2Js1gcKgpEfbqYwds3CCtAWLpuj7EO5+2dF9kfpPxKShCCoR/AgxAehGW72bJe3fLo0XkIL+t7To6XOCEYjcFLRVHOsSZMmc+OT9hvt0Ey7BxNU5PnObvtjlhH9M5QrWtKE8LAlBfoKMF1I240KKco8xmDNZSLGcZDkSiaumFoBrCQpwVKavZVjY5jRjPghEVHgtXmgsV8zvNnZ7x5NbJZrdE4+iGhalqSJMYJixKKSZnhbULfdRBrurFjMB1ox9i3yCiirWvKtGAxKRAO9lV/+AyISLRGHNKlx8GEdaEQjGbESkGkJcZZ7GDBKpTSxFH88/9UvMc97nGPvwG8gOqfHGOn9+9L97jHLwtfmtiOnUAkiqEfKMscofy7dUfYjc/S0EPa9mSzjAdPz8jz4m6a4r2766tUQpJHCUmS0XcDFxdXVFUduhTbHhHBJC+pdjuSKCWKI5rbluPT07v72Fd7jrITFssFu+2OLEo4Pzvj+HjJ27dvmJQFy2UgJRcXb1FOopzi23/6bbq249d+7dc4OzsLNRPWsFuvSZOEaZ6x7zueP3tMluYsZ1OctaRJysnxKe+/9x4ffPCM9fqWJI45PT1FKcl2t0XJCImhb3bkkcS1FVIopIrAeq5ev+G73/8+Dvj13/otrLMMG4P1nqPlklRENLs9STKipOS73/0eXdfzjW98k6HvMePIdrvjersjyTI++sqHIX/LOdI0Zr9v2ayumRQZigWb2yv++D/8AfvNnvfe/yq77Z7dbkuZx0QqJCtPipybdU1VtyRpys31JZ9//gXWe5ZHx1jnuLq+IhKKTCdBlikFsVKcPXyEMYaXX7yibls+/exzxq7jN775DeIoRkeKIs8RwvPm7Ru++OIz3nv+jFevPme5PGI6nVMUBVXVYvqWTV0hhODq4g2npyeMEjbrHYjgDVRaY62lLCZMygmRUqGqxDlMP1Cvd5RFiZawub4h05rejMRxhBDQ1zVpkpJMCgTgjCeJk0NdiaJpWtIiZRgGJpOCrh/Y7Ta8efMKISybzTXD2JOkEdvtNdYajuclUhh2+xXDOKILyUdPP6Cc5zRjxUm5QGnB2Auaumdx3JDPZ1RDw+dvPmc+mzIw8La+IF/kzM+m7Pot11c3vHlzyaSc8/LqFTZyDM4SK8Xx4xPyZYz1YWr69u1bRNySTzwnpw9Jcsu3v/1tdGaQyoROUO1ox5bN9pKhq4ijCGcFV9fX6KniPF5ydb2iHjq0ChtQvTOAYOzCFE1bSd+F60VFEVVXs6sbkiLnwfk5SBXSdNMcqTVt13F5c4P3jkcPHjCdTojiiOuLDcU8RymBco62qkCHhN7RDCyP5vRdGzpWxxGhNHb09H3D7dWKcTQcHx2jEHhniXUc+pZjQV1vubm9oq5r+mHAOYFQESqKcN4itEZ5jzceYyzjGM6PwYysNhtUFEjt6BxOOnZVCG3aNTXTsgQtiURIxg61RQ0OidIRygTPuRIyTD/xCA/2UIOUFQl9PzCZTum6njjWbLc70izl6PgYi8d6wb7uSSKNtZBnGbv1mkgJijwlSTPevn3DarNheXyMER4rwHjPZFIihKStW4Z+ZLVaEWUZxdGCsd5T1RWbZk+SpUR5HPqRB0cR52RxRp7kVE1NlAo60zIMNUWREGuDMwOLUqFtGqqtEIwG0lyTppr9tsKriOPFCdeXLYPpOFos2OxGrLecnRwhnMMagZIWaeUh+dyTZSlJFDMMA0oG736i9UFBYUBJhPKoRBPLFK0jxKHW6p23+x73uMc9fpnwWrD+r56w/b0Hv+xDucc9/lHjSxNbY0dSmdC2A8OgyfIQphJ6GTXgsMbStjuiOEJHJ1T1FmNGkiQsPJ23HB0v8M7TjyPGh37HLMsw1lJKzTQv2a23ZFmGNZa8yLHekccZbdfRdh1vLi9Yrdd889e+yZ/+8Q4hPFmSMJ1Oub68QiFo6gY8KK14+vh5SL5NMh6dP8GOQTpsXOiCjHUIlxmdxZiRP/+zP2OynPLhh1+laYIHTIgQfPXy5SvSLObs7CFffPYZfRcSYlebFVpLjhdLpkXO0WyOHw1NVWPGDqEjvvmNb/Crv/qrvL28YrqcM1qHiiJ0FIjE7eUFEs8sihDOkc+mEHVsmzokjZY5RkBpDQhJ17R8+uknaCV5cHZGtdtyfXPFf/57v8fpyTHCW9brLXFacnWzQauYr331a1jT8//5H//ffP7ZD8B71puWj77yIftt8B7+i3/xv8U5uLi8pm4b8iwEtnhjWCyWbHc7ZKR5e/GabhzphoHROkbT0bQV3/nOt/n44+/RdQ1JkjCdT8kPvr8/+/ZfkCQJ3/nB94mk5vHjJ+R5ftd5OZqRvMz44vUXVFXNV7/6K4yDpWq2bLdbnHWUZcHFxcuQaty2zA4T2aqqmM/nJEmMxbLer4liDbUDD8vlktv1NX1/QRLFWDNSVxVCwGKxICtzBjei44h2HHhz9YZXr4IMuetrnDMI4XlwfsroDVmRMi/mdG3P8emSV6/f8Or1Kxp7xLPyKd0woK3GeLA+Ytu0LJdHtMaELtPFgnW1C925izmPHz5iP3T84OVn3N7cBlIfR5DA1379q7x9e0VTN5w8XpJPQljbbrvl2XuPMOPIJ59+j9Xmivl8zvJ4gukGrB7QqebF60/oWONdT1Pv0VqTxhnrtqLzA/E05zg+IpkmOAdt02GM5/T0lN22wjlPnibstmvySYJznrYfENpT1Vu6YcaTp88wfgTnaIeOR08eY4eB9WbNJM9YzibEUUxZ5GzXG3bjyNC1OBlqq3SsKcqSoTeMxpLpBJVrRgHWCJKioO4HojQlKUusMURDhlYRXdexrxr2+z2b9QZBTBqldKMlTXPaoT9MnUOPr3MO59xdd/N+v6frQsK4VAopFd5LjPV0XUscVURRineCrhvxzjObTRmNZ3ThfWy0JqQjK4nzITk4SROstSRpSprFh83A0LsLEqk0m/WW3XyPlII8Kw5Bc6FCR0rNo0eP8M7Qj5btbk/TduTFhDhO2W5vSJKUNCvoe8t+aJFC0DYtRV5Q9yGx22k4fnDE8WLJvqmwpkcJgdCKq8sL0iRlcXxEmkZ0xhBHimHsqbYbxnrH+8+eoo3B7ntk3RLFMV5rJDD2HZNZQZYV7Oo9PhHMJ3NM3xFrTdu19E1LWRQMZmRsB6QJBFzokDeAcCgtcP2IPfTXJkmCigRD1SPQQFC/SC+IpMKaIVhM7nGPe9zjl4jxwZTuG2f0Xz8muwEvoVsC921k97jH3zm+PLE1wVcYxxFd17I8mtM0FmMGMpXS9R1SSTIdkecJNzdXeELiZjl5AAf/4jj2NHXLTX/LbDaj6YNPSwD1vgoe2Xe9oVrRmoG6rjk9PcV5x36346P3P8DYMIlKo5gsS1ASYiV58eIF8/mC6XRG3/TMZnNeff6GJEm4sbd477m8vCRNUpbLBZENvYtRFCEjjRl6nn/wlLar+f73vsXrly/Z75sgecwLPvroQ968fc0/+Y3f4J/+1j+n2ld0Q8/Dx0+RUhApibCeuq7RQpLlE9abFavbC6q6opyUnJ4eoyLNze2K3WYDSpIkGXGScHR8dAhuWnB0dsZ3vvMdqq6h63qkFGES1Q38xZ//BR988JzZbIYQEdVuixkHsjih3u1Rp2ccL495cPwQZMTJccvHHweJ6tFyzq/9+q/zH//w/4eSgl/9la/zm7/5WyAFbduBkKRZwWw2YxwtVVXx8cff58OvvI9SmuPzE6xzvHr7locnj5BKs93vOT0/5mRxhHRhQS+E4PPPP6PuGp6994zNds2Lzz7ler8hTRLiNKW3PaYJyai3m1uKPKcZ4NGzx1T7iqPTJbvdnkk5YdFMSeLQm7xYzHn2/mOapqFpGr744gveXH1Bayr+89//z5EK/uAP/iBIJa3h5vaWR48ekk8XnM2W9G3H0HV8+NX3SOKEt5cX7KuKduxZ77eU0xzrB15fvaYfOrSSFNMJVbWj6lpGLOvrS+IoweFYns55/P5T/vxb32Kz23K7WnG9vuZ4OGYyn/G9jz9GRxE3qzUPzh9g7MhysaAbB+bLI2bzGe0wcL1asd1ssDbUX31x8Zqj5THLBzNkCuNo6NqGcnIUJOrxjO1uS5bEJAlkiUCKga//yge8/OItQkU8f/aILNfs2y1KQ48BodjUe7wSZNMcGSlEolmePcQ5UCpiHCyL+RHXN7cMw0CsI2bLhChKaNuWNC8YrGG12WBdB2Lg6GhCtdszXUxAOooyYz7JSZPgzdUIEh2x3u5QCKI4JUpiVBzhBTgLkVYsFkcMbcduX2OkwEqJdY758VE4Nu/pR4NOM6RQFEnKdnVLV/dgBcjQj+0ZsKOj3teM1qCjd5tywU8+juNdN+47L+679GFrHN5D141UVUsSN0RJRtP0RJHGGE8a5/T1HrwPXlLvOTo6uuuotjZUUAHkWckw9MQH1Yl3DmcFy9MTTk/P+e53v8N+v+d4ecJqteJoNsMfcgusMdRNw3a3R0iF8JLl0Qlv3l5hbI+1Ox49fMT6dkUSJwgUZVnC+hbtRnQaIZ2j3mzZ7ra89/w5MtdcfPEWhKPpKsabPvTaRgqtBfOiwNkIN3RUqzVuHHm0OEIaya5tMMNIN/QQRyEscGgxYiSbp5RpQr3dkSUR5WLJ1c0l++2WxXyBGy3b9ZbGdLg+JFv3I6H6bWwBqLs9E1+SFwXOG8bBY5zAGotSIQxQCDCHBOt73OMe9/i7hks149MF9T97jk808ebwDQHxFvoluAjGgr+V5Ta7tEjjf+r3xkIyzH+cQUd7R7xzP/P+ftrP3OMe/0vBlya2s9kU8DgHQmqapqbve4wZGMaBsiyIdMRoDXVTs9ttyfMM8EgJt6sV6/WWPI9ZzJeMg8cD1nmyLGMcDdYavLGh07TrEUrSjT2DGzFYTk5O6PsegSc69OmaoeP9r31EVW+pqpqT4yMWiyXjYEP4iBeYwbK6uWBfV/zKN77G//q/+N+w2+/YbrZcXF6EkKPKEh9kqe998Iwsi7m5XvHq5QW/+Zu/gbMCYyzf+c53WCzmXFxcsr7d0LUDUkuKaUkIFHbgPDcXF3z+yQusGdnv18SJ5uvf+AYPHz1ENQ0IwXq7I4pj0jhj7DuiOKJrWv7tv/m3FEXOo0cPOT0+CnUbXUvXtiwenh98yL/ODz75mFdffM7v/Gf/nEhL6v07Hyg8ffqEze0GIRRJXqKE5OmzJ1RNhUfw4Qcf8bWvfgTeHxaLkqZpub66JE3zENpTTthuVpTlhOfvP6cdO3a3OybTaZiAMVI1W9qu4/p2FQKjihQxeqw3vHrzihefvaCcTnjzHy/wUtC0Df04kJY5Oo3YNRU3N9cMw0DbtiRJwvn5OVM749XFa4QWLBdz1rtr+n5gs7Pkec7Fdc3JySkoS5QpHj17wMXqNV/5lQ8YXENT1fzG/+qbVPs9aZZy++/+LS8vPifNbjnqzkiiiGkxYVutyLOCr3z1I3Z1xeevXtGve4Z9z/Xqgrc3b3HO8ez505AEHCuqviFNU0qlaE2HM4bBDRgsaR5zmp+wb2r2+4auf8sHaUFft1xtL4Pve7fn+XvPub28IY0SRORZXd0ihcAvHbc3NzR1g5CSPM8YhxopMqLIMQwNZaHY726YTqakqaJpYL2+ZTqZYm2PIKLIY56/95CvxBPAIYSl7yzGDmgZztNh6BkHw/J4iROOOE6ItArSZeEZh56qviVNHEWeAaBUqHWKshDcpkbPWbrEOo+1bVBwRILjkyXr6xvivMA4z/zslDSJqfY7dtstXd0yKUtUFJOkOQiBsRZnCRPbYURJzXS2oBo6IiWpqoo8y5hO59RVw77fM5lMsdZhhpE8y4iimCSGwYQwJGMs+6phNDb4JlzYvBEibLRFUXRHQiEk+mZZhveezbZCRxHegrGe3b6mbXpUlOK9xxgPh6nnYEZGZ8FDP4Ye7XcJ0nkZfOfDMJLEGf3QYcyA8J6+G3AueErTJKOpQlKxt4b3nj9DKcXNzS3jOCKkRukI6wWDsYyj5fz8EZvNBu8s1jmElDRtQ5omJGnEYjGjNx1vry/QWmDallmas7tdM7QjWkuSNKfpWgbTkiQR89mEtq7p9juEdygcth+YT6bsbtaMvQkbX2WJ3Vfsd1UIxxpDqF8eTRiaPXbsyLMYM47MigmDNWgV4WVEb1cYHFpLijKlamrqpmF0YQI7nU9ZLOZ4F25jevA2+JidCz3B49jfTcbvcY973OPnDikg+sllsi0i6t9+hk805qT8yZ8LkQqk14CAYXIguf+J9Vb1HvEjb2HptaV8ZX/i7tJbh7A/ndiaTDBOfpyk6sYTVT/7vfGn/czPwjgRbD8MwYVegE3vQ7Hu8fcbX95jO/YMw4CQkGch1KmqdoeeT0We5Th7kN8lMUdHS4oiPyR5Or7+9a+R52HBKIXm9ZtrJpMJ6/WWzWoNQJ5kh8nHGKoezEicxjyYn/HgwVl4nDzF+1A1Mp2URFpxc3tFmkYcHS+IIsVuv6WuGqSMcM7xq7/6q+RFSW96urGlahviNOXhkwlHJ8dUVcUf/uEf8pWvfpWzBw84PZ2hpCVPc6p9w9npKc5C1/X8/u/9HvPZjPl8hhSa3X6PcTb0riqJc4bZZIr0nj/5w//Ixx9/n69/86s8f+8JWV4wDAN1E6pHzh+c4jw0bQvO4o1AWMvQNIxtza//6q9wdHzEanXLyXKG1qE7NM0LrLX81urXgy80jgOZffKEo+WCN69f8+rVSx6ePmLoDbuXr0iLAicEy+MlVb1nNi34+Acf8/bNG548esxv//Zvk2UZzjvaruP161ccHZ/Q9R23q1uSImXb7NjstvzlJ9+nH0PSc5Ik1AdZdxRFrFZXdPsW5z2T6ZSr2yuqoUHFYSK+byuatmW32zBLc8ZxROtQbeKExwnP9eqam/UNbdvx9vI1x8s5m82GxWLJZDLh7OzsIP++Zr/fY4xBKJgvJ1xev+Hi+hVCghSSpqmZTEqafk/XtVyvb9jWGxSKVCfkaU6el3z3478EqWiGHq0jLm/esm+2HJ8dobVGReFDIJvMDqm30HeO69tLYqlZHh/j/IjSntvrW7zUzGdzrq6u6eqer3/wFfA+JMLWFamX3K73LM7PeHC6oB96zDDSNA3PHzxECIGOFOBRUmLswOmsxE0zkiRGRYKu60OVzDRnOS+pq5qb2xVpJOjaGCUjtrcXaK2YTQrKJEaImMbXjINhkiTUo4VhIE4kwntcb4ijGCkFVjm6ehNInJAgJCrSqEiTZRldP+A8RFLiEfR9IJBlUaJRFHnKOPRMZzOsHdFSIJMYJYLM1gtIrcVYh9LhPqWQKKmZLKcMfR/kwlnKZrsh1RFj20FmiIQgUYo8jui6AS8ExnmMtcRZgu8dwxj8wN3Q4/AgwPQGhyFkO4Uanr7vD+ehZhiGQz1VhMMzGoszlq4fg75MSLIspamqYHcQ4IRjOFSKSSlx3jOM4111T5wkdG1HnE0x1nJzc8tyOSfSCjtmlGXJ6pC4XJQleZ7jzIh1js1mw3BICo/iBOMF1kOW5lgH09nsIF0WvL14y2wyoetHXGvQkaScFMRWEMePkFLBMBLFCVGS0NGjtGZSTtk3ml3laZuK3caznE0xvUTYsKmxur0hEpryaMFnn3/B1nQoGWOMY5pmMFhE06LxJGnCyzdviZKMvg2beNZ7kiyjsx1n5+d4AZ9/9gUniyWzSYlQEGcxVduQxDFmDNd0XdVoLXCNxdoRa8Nrp5RAaYUS94usXyiUChtC5n4yfo//5cMvp3DYxAUgS+B48RO3G+cKnYQ1QXTzP2+HkAaS7U9+ffK5Qbc/Qlh/Onf9K6Fbj25/kgz/vH4mu4Lpi3D920Swe08zloL60X3V2j3+fuJLn5lKScChdUSSxlhrcM4xjiZUP/QDxliQgQAqJem6Du+DFw0fQkHwUDcdb96+Zeh7imKC6Do22x2RjknTlDRLcSLIn7Mk4fT0hEgroiiirmraug4JoW3LgwcPKGYZSZaQJDGPZ0HCWtUNu22F9QNvr14TRwmjt6R5Fvy7Nkhsq6pivV7jvGc+n2Os4eriAilckPNlGWfHx8RxyhdfvAo1J0qw226pqgqlImQk6cchhEENPW1bs5zPOHt0xvmjM07P5rx89RlvLl8zDIbpdIr1lqqpMKMhSRI606MlxFryT775dfqhY3VzyX63Au+odoJJGcj5vutxzlMUJa9fv+bTH7zgm9/4JmmSkGQJx2enfPsvvsX3vv8J+33NyzdvqNuWr339azx/9oxJUeDMwOXb10zKgtdvX/Ot73ybruvYbrcIpUBKPn/5Odv9niRNWcbHrOsdH7/4Abtqj5QSYy2qVcRxRJLFNG3Dyzefk8cZWsesd7dYwgK1aWp6O+IhTKTGkcH0h/sxOBweB8KHf7uQNjuYnm21Ic4idCLpxoY/+fM/OqQ1a4wxhy7aHKUk1zcX4TWK9GHBD9v9Cqk8RZmSeYnzBmNHdl1N3zc0bZB3egTh7VuglGM2zfEHiWqkBN4LhIckjsPXVcR8Nic6VFl5AbPpBKWCF/Dpkyc8f/qcaTlFGUOiQ/2LMQbvLU9PT5FS4L3jdDINqc2rFXjPMPZkWUZeZDR1zTgOAFhnkeLQKzybIQRMiuBRPjs54fnTpyACacMJJkmBGUa0kOAcAs8kzfBRmHpNk5wkS7BuCANN5zDGEilIixyXZIxmZBwNIx6vFToCLT2JDqm/QxfO4TKN8YBAMDQdQ1txsjxhOinY7TYsywneeUZriNOYum0YncV6F0LQfEiu9t5RNxVVVYeNMAlZErGcTxGHYCadRqSnx2y3W5q6wRrLer9lcCPOWiyC3hgGO+BlILWeg3TVW7SMEEKQJKGSRghx14HbtqH6Sil9ODcDUTXjSKRDn2xoewYpJUKE3tkojrHG3J2TURQxnU6pqipUNGlx6HW1WGvIs4RkMQ/+/nHgxYsf8Ju/+ZsoKemUYrvdYoaOcQwy5MlsifVQtx0OSdN1zOdTojiibVsmk5I40SAzcI6rm0vWG8FiOWM2mXG8PGaa5Lx6/Rrvg2vVOct2tyKb5BRkODsg8Zh+REvN7e01Yz9wtDyl7YIkf/HknK7pqTc1dd0QtQN5EqMGw2SiSKzh+aMHDEJye7vGWs9svsA4z3q1RuuI6XzG8/eeIU14LqSWHB+dkPUtbdPihMcL8Di6rkGq0JdrncQ7j1Q+pK7be4/tLxIiTQ+brvfE9h7/sOEnQRl0ByHg+UNQPzK5jKIf//fPQLK1wJcnk9nVX+NA/z7iQLhV51n85YhXgsV3DO2ZpH6oGEt5P8n9BwY5gjCQrEENP/t2/Rxs8rO/L3xQJoifsinjNHRH4NVPqhV+kfjSxLbtGspJgT1MZYUI/YzvFoRCSKI4YblcYKyhH3rGwdJ1O/b7irLM2W4znLOM1tMfakLatqWqKsa+RwlF27YhBdU5jo6WzCcTyiynKAq01mgpefv2giiO+ezlS/7pP/9nJKmm7St602Px7NuKy+tLbm5WlGVJ09Tstns+/PCrZHnG9dUVURQxmUyItGYxmyOAy4sL5rMZ3nbgRi4urjk9eUBd1Yyx4Wi54OLiLdvtinEc2Wy2nJ6eUvcDxhpuNyuur694+vQxV9evuLm8QnjPF28LlBZ873vfY73ZslwsKYqSOE6QUvHs6VNm8ynbzYbB9MR5xGevXvBnf/YnHB0tmUwLEJ7ZdEKaZ/QOFosj1rs1wziwq3f8m3//73j86BEfffgRJw/O+BdPn9D2I2/eXtD+u/+Jf/LsKR9+9CFaSj5/8YKz4xP+m3/5X9O3LderW/bNntvbFcVkwjAatusNWin+2e/8c0Zj+d4Pvs+nn39Bbx35ZErbNkgpQhKw0IzWIJVkNCPr7Zo0y8iynLzI2O02qCgiVppdVaG1Jk9itJKkaXpHBN69e/oDyTV2REWKrMwQUtAMDXVVYZ1jbEPPprUWKSRCeNI4xhmDt5a0yBjHnr7vsGOgIXEcEcURQmqEC2nSkVRopbAudHkqAYMZiSQkSYKQEmtsOMeVItIa4QXWQRYnCBUFuaSMsN4wyTPKPMdYD2iWkwVKKFzXIvFIpUBLrA21U1IJ8jxnHAaq7ZoiSw5SYIdWEoUgTRK0kjjnggc00jgJUkZEUYRVFudCT6u14VidD+FICJBaECcxAo8kEEjnHFJI7GHBqnWKVpp+6HG2D7203iOkQ8YRSRyBVgw+TEWdGRi7nlQr5kVB3/ekaai9UkRcbW+YFRllFrPbrDHDyBcvP+f06JQkT8jyFL3fgRAs5nPMMNA2NeBI05TRjGGDBRDSY91I3ZngH5UKMxour64RQlI3e65vbjF4Jss56/Weth+ouoHBGbxyKB3hhccZiT94lbIsbHK924CzNqgO6rrGC4hieSDEHqlC73HXBTVClqZkWQoC9u0+2CqsZTSHFGoR+pX7YaDre7TWjGPPOA5EsT5MHgWTPCOKFG+u3uK8pyxzXn76OZNJqFIahoHFcsn17Qon92x2e07Pztntd7Rdw9SV6Fizvdzw/ntPiSKFVjP6vmU6y8FZtAKFo9nvKKIIfdjQ0HmC1VB1DeP4rkpL0jYtphuZlVOytCArSnZNz76uWZQJxWLOOK7xokNHKYlULGZzpJiSJIKq2qPnBd0w4vzI+YOHVHWHHS3SC7y1COD4aMl+HXqDd1VFj2P0FgScPTzHdMNdBReMGNsihEDqsCa1LiS73+MXBzkpcbvdL/sw7vGPDQKQf3MPqM8SeHD8I/cn4Gj2t7rPe/wQwnqi2hO9cExfGPqlpHqsqZ4qvAQv70nu31s4SFcQVSD/CkL7Dn+bTRk5QNkEn7nJwBQHv/lP3PBv/hg/DcJ7/6XED7/3Gw84OTkBQOsIaw27XUUcx0gpw+J8HHHesVguDhMmR5KkGDvinKUoikAIdzsscDRfoIXi9uqGWEdEcUI3DKg44eTsLEyX4pj33ntOnKYM44DxjtEa/uMf/RFFUWCd4/n7T4kTTX2QxpZlwWeffc7V9SXf+Mav8uTxE25ubnn66H2cDR2OxphwvIfeybdv3/Ltb3+bDz54n2dPHoI3RDpmGCx11XJ8fMIXX3zBMHbBl5bELJZLjo+PuN1uUFqik4jVZk0Sx5RZhlaSN69e4WRIlVZSkh0CZLpuoMwnvH7zhu1mQ5ZlCK3weKwzWDsipGMceqJYUZQZVVUhAB2XKKmJ4wQ82NFSVQ3CC7SKeP78Odvdjuvthn1dhTTqoyXeW2Kp0R7OT08p45Su67har3j//Q9ou5bb1Zqnz5/TtC1KapTW/E//5t+wrWtknqJ0RNvWCDxZnrHbbymycD/OWyKlGNp36bIRaZay3WzxSISQ7HYVURSRpTHODiRJQpqm6EOVT5hm+sMUa8Q5Q16kSClJkuQuydZ7H0idDZUtkZAo8S6hG7IsIYqCF9w5h8dirUOoCCkjJCCcxTtPHMWhkkqAiIL0zltHpKODlD5MVfHgnKfvA1kRHqRQCCCONR6HDKIEPJK+MyiV4D24sUfrsBnknGUYB6QQGDMyjAPeuyB5jmOG0WCtOwRfOUbzw6mUs444SXDWHaT5OcaYMMmVh2mWDI8TRokSN9pQlWQMAkccxwhvDwFII8Y4pFAorRmHAWMMURwqbYIsOQQ3GTfSDd1hc0tirUUrTZZkB3+so6kbnAFnCPJy6+janrbucNaRpxlCKB4+fEg5KVFSUO/3SBemn1qq0FvqPSJSqCgC7anbCoQgjmKMMVxdXnN1dUOWZTRNw2q1QSqNjmJubjckyYRhBOthMBahwu/grUWEmGoePw7hY+v1+m5DQGtN13UordFJmEC3TUuaBv99lmY4a3HWopRGSMF2v/sxBVmSJBRFQRRFXFxcHKa6gjyOUEoSJxFFkbFczKl3O7IsoW1qyrJgOpkytgObzYrFdIKUAuc9ddux2dY0w0iSlVg38vj8BGNGFvMp1o7EkSKOJH3fEUea2WyC8JbV1TXNrmGez0ijnM16y+AtIovRZcrl+pLpcgmOkKA8OvzoOFkeEycpOkmp246b1Yo0VyyXU9p9y35Vs1/vOTs+4emzxySZ4geffZd+bImmKVGW4o3AG4kZHF0zst1XiEixOF6wOF6QJ+H94c31JaO3GClom4Yiz3n64CHSej5/8SlJklG3IVhKScUwmLtNsb/83tu/3afgPX4M/5X8P4e/xBHq6AgAd7vCD19iFXSPe/woBPjjRfCq/nVQ5HDykxLgL/+44q//mPf420GAV4LmVNKeqR/7lhdQP1J4df+a/LIQ7cOENl0RfN1/A9n73xoh9ugn0B8Fp5dNwP4VDX6f/N/+r1/qYb70xHY6Ke+ke4FYwHq1RabhBA6Jx5YojhEolAyko2lamqY+dImGqVOe56R5jrcOKcMiV0vNOBqOspSqaeiHnkQrdrstn/zgY4xzlLMp1juQkvc//IBu6EmzlLTIub29oh96rHCUuiQpYtyN4fPXn7FrNuGXVRHaZ2w2W4YhJDxLqciyjOV8zu/97u9ytFxgzcBqdUNtO05PHjCdLjDG8P4H7yEV7Pcb4iTCGsN2d8t6s6JpG6bzKcY72nZH28ZsV6tADvKc7W6Hc4402XJ8fMIHH31IUzdMmylt3wVynEWIWJKmMePoAEM0ScIk2jQYbREejOlIoozt6gaJoO8GsjTUhLR9z8tXL7HAKCyjDIvwXbuja2oSpZHG0ew3zLKSrusQScy3vvsthn4kL0pefPYpXdeDEPTDgPFhSmg82NGg44S2rfFty6ScoJREHBKbdRQxKfIwuV2vUeqI5WLBMBjG0fDg5IQ0SfHeYGx/R1j1YVrkDpMzrXXwWY89OlIYa0mz4H15R3yVUsFnpxTCORIZpKPeecww4q3DjhbnLVqrcFEd5MRahUmtswbvDEoJhAKLwXuIVHTox+0RiIMyIcjjvTFEIgTZaBlCFdq6IUoUfTeglKQfDMZ4tDaMo8Urh0aDBWNGvHf0fYfWirZrSJKYdhiIcPSH3lMrgxLCeE+kw5jK+BHhPGM/oqQjjoIn3VhDpMP5LIRkHB2jc1gJznsSBM55vD9IOyVEPngWhVBIFH4YsS6ErgkpIUlC3ZCUYC2xV0ynE6x1DP0YCLWxtHWohJKRxqie0YbHEIeNl65tkEqxWB5R7WvatuZ2s2ZbbYljTawUaRQTRxECaPsR4x3GOmKRImPFoC3eQ29NUCnYhvSoZBhHXCY5e+8hWip224qkSzBmJJsUWCeJvccjaLqGoXdEWpJlOR5P09QIKRA+/HHeBZl7pBmcCZtHMmyM6DjmwfkZt9fX3N7syLIMFWukOnjED7J1qcLGQtPUZFmGjjRmHBnGHuUkzo/keYwxI2kWU5Q5db0jy5OQ2Oxh6Ht2+/C+G6bBjtl8xkRobrd7irxgHAems5LRDHhv2Wx3LOdTlILZrGQ0PW4cmUxKZmlJHmWsLjd0dY2VQZI/9DXGjey2a24uVxRZSZnnFGlBFCVUVYvvLVfrFberNanyxNZhRkcsYqRXdIPhj//8Lzg6X9DhEEXM+bOwmdiPA1rEpElK14xopdjt9wymY1dtOTs+5fr6lrTIMUPYNIxTD0h0FOPtSJqkFJOMxfGULMvp2p7tdkddNQzjPdn6RUGmaXgfAESW3hPbf8xI4x+X8f4n8HEET39af6uAMv9bJQLf4x8IPAjjKd5Yijc/KdOefip/KqkBaM4VzfkPyfDkc8v+2Y+TY9145t8Nm/y7DyOG6V99UrlIYJP7E08aiLaB0P5SyOyPwv90yXJ6Hf7vdJjuQiC4w+zw/dtAyr8svjSxLZMCJTW2t0gridNQ+7HbVug4YhInlNMQ5rTfVyA85aRg7Abe++h9jk+OWG9WGGtI45T9tiEvM6pdhZOCzhs6NxB7xXW1ph8G3n/vGderK2ZyQl4U1PtLNtstcRIjtSaKI07yU3adoXU1oxvYrzdU/QapJOWy4PLmgm2zoZwUdGYkVgWbzTa8wC5Mr9IoodpXlGXJprpGSMH1zTVKabb9nkgHcfj19RUej/eW0Qy4cUQrGfycwrPe3RAnMcMwYMcRpTR93+LWgjTNwpR46Nnttrx+/QopJUM/sKsrhPI4P5LqFIGnyHNG0/8wWMnZ4Hk0lsjHCC9IpjPatqVIs0PvpmccJEJaFIIyjphPTsIkdOzJtUQiMN1A3TUoKRFKAoZ+GEmzlM60dPsueATjiCyPWPiSpuu4WN1ijGU2nSITiY4USSJx1iK0YD4rmU+mlHlxOK6CSMdIpchSESZcQuCsw9ge7wVSKpSUKK1IkuRQK2UOfkdIRIQIll8kHnXw1R6GkXgv0YlCeIdWCj+EpFp5SPclknjr8QcPpHOC0TgUgNKH08DgDpNvh0dIwegGnAlExTsONTAh9Ejr4M+UUuLcgLWOfuxxMkz4hmEAJF4KBtOj4pjejAyjwVl7N8ETWjM4i5MSoSMiqcBrkizBWUsUR3iCJFaIQLo84TkryhQzGrxQZPkkBCOZ0KksDg5QrTxSCoyzwf/uCQFCUh1ky2DsO3/rEJKBRZicjtaglaJuGuI4+Jm9DfcjD/aDKIlAeHxv6cY2TKOlo+4b6r6jajvKsiSblvT9gEwUi2zJxFqElKRphBQOLzwDw920u6ZBaImMI7bdFuM8re0Jk/OQ4t2rMfj9y5RUBElxJGOOn5ySvblkt69ZLJbUdYs1wSObdBF1PWLqgeXpMTc3F1RmT5KkaMSBmEIURSilMJ2jnJZBlhxpiqLgxRefYo2lXM5I0zBt1FoSRQrnBF3XEumEk9MF77/3m1R1BXj6tuPzzz6h6xq8gCSPiPKIobc0Y8vT959xc33N+fk5fdNSlCmTyeSQLC84eXBKnhdUbc978jGz2YS3r74AAZPpgpuba/puoJzOybOUqt4ympHt7YqT+RFHyyXXb6/CtaQlWVmQzSe8vL1gt684zU45OzpCq0BWr69XNHUHSKyHtu8RFibFFOkzskSzbjYQa3yk8S5G5wVn81N623F9XVNtRzbbPacnJ4zSM3uwoL1s0cB0HoLqPn35krYxFCZcQ3ESIawhKyJu3rxmOZ2SpYp1vWKeHTHJFZFQZCamKFN2u/2X/7S7xz3+PuCnrLX9tIT55Gf/zL5GrP8uJeEC/+j0h37T0yOI1F/9I/e4x1+BZP2zU5rTlWP57R/PS5h9/LPzE9L/0P/PPl4/l3QnP79z1ivYfKS/nMz67wOf9gfJ8TaQ238IkOaHx6rb4P/9m+DLh0ehEU4SKUVV1ZwWUxbLI16+fo01lqmOKGcztITJdMK+2dObnrRIkYnkcnXJ7fqaoiypuxotNOt9h/UOLRxGeLZmT3t9RZLnTI5mVNScvf+APM+wxtBVPZXZs1/vefToEZGWXK/ekuUJ1g5c3VwFL5ttqOqa5WLJg4chQbfve9b1mm64YrVa8ej8IaY33N42pHFCrGLoRrb7G5wHQ0h3Fj2MVZAsR2l0mGQSFt5ShclXonEukAjvLFpJ8EFyihBEUiOcp0gznPc47xnHMBFVkWJ5PEeKw27WYWJp2x7hPThPlmRYb8FAFhUI6w6+UsAEkhDp4EtOtMJ5FwKGhEfj6a1BiSCjNKMhLSPUbIoAjHOMLsikrQ8hTuMQiGXqE6y1xHHMJEqIkuOwMZGmd7LXEKAjDkFNkpD6ZXGjYVqWPHz4iOubG0Yz0nYhDTpMWgXeBV+tsSPGjofwTXM3sQUfkqCj0FlprcW7EN4VCJxnPFSriIMXUh2mZ+92ppwAc5iOCgR4eaiSOciCD9Nfay2hmkrdhQGFCWdIJRZxxGgtTilkHIXkW2Nw1mCNCa+dNYcJx0HF4ML3hDMhTVhIBNzJm0O9lSBLo5AuLDRKpWgdo7RECmiaBuMMSgXpr8CjZSDrCMloDEZwkG37AymTd9NZqRSxDBJ3BEilkO/emD1EUuO9xQlDHEd3nmVjDGYIdTgCEUi/C98brMG6EWkEzlmySQH44Bv1kmyakRQlzv1wsp7L4u68GQ4TaSMGBD+Ug2/NEOTgZfBV7qvboHTQkihLQjiTs1hnULEkyWKUUsRxzNAPeOlwBsplxuS4wBpLMSsRQtK3LVCghEIQsdvuaQwcPzynqVr6fkCIA4H3oXJokmREiSRzEcYa6naHigU60ZTznLzI0YlAes9us2UYWvI84umzU6bTlGKiaNoueGlPC+qq5ItXG4qypJhlDKZl1+yYz+a0pufh44fESYTzA0+fPw6hU8Kx2+05Oz8NqfIYur5Di5Q8T3DG8vrlK9brcL/VvuP2doMxPePYE8mIuu657FcoFbOtt0RZSpylXN7cUPc9iIh63/ArH3yEd4K66ulbR1mEDumu6yjTjCzPyNMcYwXdYNjWLSpWWOVJioyLqxvs5TVKC/abHfPpnDJfYLzCSRAxTM/mHMdH2KEnTTL6fkWSZjT1HtMPiGHk9PiI2aQgTSL22xVRJEmSnNq0ZEPKo0fnfN5/RhrFwI8kmN7jFwPv78Oj/rrQKoQV/adQCp6d/+T0U6m/OrTIBhvF3ymi6O/HAv0e9/gbINk4ks3Ptw5u8pn5UtdEc6qoH/4kqe5O5N+Z/zi75oe9yv/I8OXDowaLVJ5IyOC56js6M2JwKCHw0mOFJc9y9vttqNbpGpblgrZr6U2HjDRxmjCOA5tqS9O1ZHlOpC2jGUlmmliUSK3I8oRUx5h+oNoboiiiyHPOTk9ZLhaHyY1hMpkcCKViUkxCQFAUI1GkcYjyMsbS1h1N3yK1RlhDV9XkWYGLI4T31Ps9DaCEJE5TsjxjHAf6g+/OmBEZaaLDh0+WZWgl6NoGHWnGYTz4JsOkUxMmi0mSoKUO4VpRhPWhGkRqdffhZq3F+LBwUErd+UbfETRjDE3TBNnuPME6dzBbC1CHKZYPQUE6jmnbhjhNGPrgl3TOoaRECnkIaeJu4qiVDB7Tg4zSe0+SBN+x1pq+70mSA8FNQq3Qu3AiGSmctYdwnUCsjR1BRyglDjJKiyckCEaxxg8DzpkgSz/4Gt/9GYYhpCEfyK8/1KZYF4j2u+dHyh/+Hu8Clbz3OOsQGJQK54uQh2AzL1Fe3MlERRyH5+wdGT+8BuFx/SEUzYfwJYKUVxz+rpSi7cJE2/twWw6yaXH4WhzHh7qe6O4+RmPQSmMJUgylJJFKiHUUJqSjAQRKSMwwgFMIrVAClNJIJUIdj3PgQwdrIOHuQMIFSomDj1cezqFAGq0Nmw9pmhJF4fxw1t2ReiE8UngEIflcSYnwCiTkaXb3WngV5Nxaa7T4oV/4XZryMPRIKUhSjSCc31KG8+hdkq0UIRjMj6GnNlLhGvXegxPEUcQwDsH2EMccHR+xr+vQW9p2gZwjUAjcMGIZ8WMIbBq7jqIoaU0gzmkcY4eRSGsSrfDWonU4d/Ss5Hj5VfACISRN3f5IP+oYpPODRQjJ8dGSqqqo64o4Dn7w2SwnSVLKLHRqLxYhdyBOYhbznHKS0g8r0tyhI02kLScnC5AOB2R5TFkuSVJNpDRawWI5Y5IXPHx4jhkH0vQIKSWTSYmUMAw9QngePTzn9vaGuq+4eHtFU7fEKmY+X3BydMKLF5/QdS1pGlNkZQg5czC0PePoSNKEph24XW2RecpyccL29pa3b66IdIpSMft9Q5rmh8TxIvTh9j3VrqLrhiDrNiOZTNmugyJGOoh0yDrQSOw4Mp1OEErhnQMnSJOczWZFniVEOkVLQVtXuKHHjyNJWmDMyG63R86mtL2lnJTYfk+UpGz3NWYMahcEpOlfEdd4j58LvHf4pvnr/6AUgbD9dR8vjiBLENvqr/+Y/ymsBfcl9HdK/sxgIf/0Aei/ZrVJpGH601JS/oZQ8kul9d7jHvf4xUF1X07LO/ncMPn8JzcD2zOF+ylvibv3NOP0x69vL8DF9ztLfxN86Xfrq+0mhD9Ve4SWnE0ydps922aLjjXFkOM2hrqNadqWKNaMwnKzvmWplqR5giZitAanPD73pGUaJlMRJD66W0AXZck4Dng7hLAXGciM1po8z7HGMIwjjx494uTkhO1mQ1lkXF5cst1uQ/iJ8ayv15yennJ8fAzGU2Q5URrjl0coISmygj0SHESTKWU+CdUfMkxPQ1Kqw1pDEmnq/Y4oikLfZdci0hihBXEao2ONHjTOH1KjESRxkNaOvQlTsNbSDR1SKZI0RSp1R9SAO0L3LkRJykBQwuJ2cvc9i8c5exd8JaTAEkKDjLN0wwCHn1UorA8VLrbvAuETIpARH0ih8PxIunWYhg4HP1WWZQcSJfHWYcZDIY6UDH0XjvswYRUyBDjV9R6hJLerKy6u36J0+B2FUkgZuly9C52f72THdyFQ0TuiF7o7f3R37F3v6DAMd0E/7wi6QiEOO2FKhWqoQN5c8FCq0PdicRhCDzJwdx/vwqvekeZ3j/Xu/t89/jvi+o7YviPiwEGaHF5D+KGk1XsfJORRdCCC8u58NodJSHhsBSjGIUxopZJkcYTSkmHoIU7wvCO1AmMsfd+EDQdxmJz7EeEV3ofNhDQKqc3WWsa+xZkBd9js8M7fpU8KAUMfulhjFWF8SD7HOkYTZNg60oyH3up3U+VAai3jOKB1jBCgtQwS5btNIXOoYArXU5RAmiUIp5GE87HtOvI05dl7z7m4uqSq67BBIGUIiGrbMMmPQgjWu+tUAN46hA+Jz8KMxAIG77B9H7zU3oVzUAc/PSh6OVAUOeNoQqhVXITEasTBOxyqopxzB/+4RspluF6EuLuOhl7jvKWYJngXE0UaT8uu2h3OLaiaHu8EphU8fXqOA/Z1xTA2TGfBXpDGEVp7Xr56wdnyhEmZY62hqmoWiylNE2qCpFR88sn32Tc1SZFiMTRdQzxLqdua16/fUKQFQ9sjjKRrerzx5ElG249kxZSrmzX9aFBxijMSnObk+CH1vmY2Lfj+D14ghGLoLXVdszyaY4xhs10x9AYpFFmWQOuIlUIqyeb6lvlsRh7HPHjyHkPXsd5u2a029G5gJCSVx0kUwsrwuKHmw+fv8dnHn9L5CB8ffO+jxSJp+5EoyZBRSioFVVOBc1y+viDVmvMHp/chp78A+POQJuvTFJckYWLLCX9tg9akgOXsr38AIvznS+Za/tVYbWD/JUj56RKyn5Fach9CdI973OPngOzyp6su8rf2JybBLhZsPjpkuJxJxvKv92HXHodKH13/jQ71HzS+NLGthw4jPaMZOTo5QiaapEiYH08Z7MDIgCbUk3SmZUSyPF6GhbwSIMNC2VqD0AKJQuogZ22bBi0VIoopihxGgxjdgUhZdCwRzuGNRUtJ2w9hiuHh9Rcv2a7XFFmQ/eRRRtd3ZFFKUs7AgjeeST5BacFg+8NEShBLRZGmpEmKFGHCm8YRcZpQNaGjMY4UcTk5RN2GAJt36bYed+cLHcfxx0jPO2mu9x4icNbjcQglkEogtQgLZ+xdb+vQdUFaGcWHehEHIhAL8MQiLDLMQfLqCV2b1hqGYSCOgxdYJRqkx5vgiTTGHuTCFiEipBR3hMTaEYG8C2uyB7lTmMa5uyoUYwzScZjQBtJmDwQTAda9m3S+84TKEMSTJneBUMYEGUcUhwvUmx9J8IU7AmmM+aGkWHjUofsV+DGi+e421gSZtrCB5KuDh/RdQjI+yJQh9K9KM6K0PvQqB3LqD5VB/hCQ5fCHDlX5Y6/nuyn8OI539TDvbvPudu/wo19TMkxc1d2k85DQ60MFkBQCLTXOC2R0IPTekaYhCEkdSL44yJkTHfp/2xbyLDmQvIP3NY6DHHk0CBceczSG8TAtjyRhknKYlEN4TqMs1CpJAQ4Q3uFMIPdKK5RUeCF+WG0zDkgpsM4ezv9w277riXRQLighsAfSiXXYw4aFVBrvLP0QXmvvHH3f8+bVa+qupaorirzAjAYtJbOi/OEmQpSQRcnd8xtk2IfJsTcslvMwHTcWrRRD1+MOCdgaTxJrYgnOhIA6FcchBflwDbx7bcUh5cBaR56E82ocR4y1mHFkNCNKWJbLWeiD3e5QEoQELSVCepy15GmE1hEmFljb4oUgTsDYHiE083kJzvH97/8F02JK29fEadhAi6zmZn2Dc5ar62vSJGW73TBZzHDCkhYxeZ8xmZRsN1v4/7P3J72WpWt+H/Z73m6tvc+JyMybtyuyyCqqKIoEBLjhwIAHHmhiTw0IsGF9NU9s2IBguBt64A9gm7RBSrYMm6ZI1b0s1u0yMyLO2Wutt/Xged61T1THvKQkUqz9FKIyM+LEOXuvZt/1f/5dg/fXZ3pufPvhha9//DXOB/ZcSdcnfvFHv6B0cHHBhcjRCreXg5dayduGSGRZr/Smfb6XJwX833z3zRl2dey6WPni3TN9dD5++MB2e2UNgVEqZT9UHv7yyospe9wSeH56z4dvX2mtcmyaT8Ct8OXzlSMF3r1/T1wWSq18+PTCtmV8CHz1gx/jyg0JgXrs5HgjBkev+tn5mP+S52/8VUA/A875+i/wf/5XNX9BWNH3nh9+pb8e85jHPObf0BGt0vhs/D74+j9Vgqn+Y6FHoV6Eb/+2gt36LPTwF3xGOrj9FC6/0Gqfv0zzvYGtuwRGgB98/RU//p0fctteSNfAj65fc32+8Pzu2eTBndx2Tb/ysG039rKxFq3hgYGTwOIWBSBOyNUTRHiKV0IPtFyQpgxbDAkvnpoLznWcE94/PdNr5w//yT9V2a/TvzNQryFjkGKE1tm3nZrLKTPto6osDiHHRcHsutCq+jBba7xur9rLagBwMpPrutBa1ffgtJ67DfUeDhmIwJH1a2OMJk8+kOHoWHeoE/po1FoIMTJQuW0fnT4a0ge1CTTUgzmsT1UcpRzKcArQ1RfqqrGJDmqv58N/zh3p49x6D7z9LGNZDYCJc9DklOLOCqQJ0J1zpJQYXSXnzqp27E2Scyb4cDLP4obGdo9OcE6TqnszdlrMXwoM9a1260WewHG+/hCCSqC7Hu/z+xtrOoHulDF75wnufjmXXE7WewJnEXTJArRaFZwU9dsOtNd2srDFlgdn0q0xrADHcZwy5LdgfL6PuQxYluVcbiQfTiB5Ljzs9c9j0lpnSRdyVqAWY8B7YdtuICpFbU2re1zQ4C/noNRyD6QSYdgCZlkXpHbt2Q0L18t6Mt6TsZ7nXdliveZ6b3gnn71O7PptvTN4y+wXA3sFb1K5vGf89UIXYXvZTpazeXCint1yNE1FF085Mjihtsanj9pt64bcz/VecCL01mi96bn2DtpgtEbPVf9bYF1W+lE4uvayphDxKZ0VPaN16A1PP2XJrRVaLvzg/Q+1f3s/WENk2zNLWnl6ujDGUMDuHLkUKuiyIULedxDhsi7EmD5L7W5N73nvPM11cm3Wp6uy+Foz+XjVwKinhffvL9z2V+0Nf37myJnlEtm2ypdfvee7776jtMygUXtH3GC9RMQPfu/3fpfFL/zyj3/BsOvn/ft3vO43Xl5e+f2//jfIo7HVQkiOURsfX258+eVXHKPygx9+zXbbeX7/ntvrjR++eyYtieN4pR6V0gvllnn39EzwiWPfCM7xkx/9iHy8x4fAT378Y45954c//CFLSnz78QNEz+ux8/HbD3z38UWXl164Xp64poVr8Bwp8vu/93t89+mF/+LnP+fb7z7w05/+Di+3jT/+xS/55vaBr77+AV9+9czFBRbn2LZPtPrnB4w85jGPecxjHvPf9Ak3Rb7pA1z/WMmn20889UnB7sc/+BzKTR/v8LD9FOSf/+Vibr83sP3yR+9orfD05YpLnS+vT7Re6b2Sa2Y/Xnj//j29e3700x/CGPzgq6/o/7ywb7uybua5qrUSWyAQid7zvF7xQMCTJNJ9Yy87PnhwmgYrIqSkHZYMfaBd0kJK8fR5jt5xAkOUnRwAAr1VsICg1t4AN4FcMt99+FZ9mEFfTwwRyt3TpkykSlN98JScOY7K8EIrCsxOgGVgp42moBdj5ozBdF5Dp3I50AzeQS3VQMqUweoxP6XHrb6Rxt4B2GQb9diq3FmZ3gG9I147VsVk1b11Si72/UXlrgi11FP6OwHcBC4TdDnvFYgYSFRfrVdWzgcLJBItyHKdZsFZPnjtJBXRv2MAiuFwRMYkVQ1AzfMMyngO/HkO5tdNMDaPee8dOicongB5BiaNN6uweQzFmMdoEuQJRpxzOG/MXK+f+XmnbHoC5hACm3VrnuFZcHqSa63nsXwrc57+Xg3AUg/v6F0BbUNZUy/UVvn2u29xTvS68Y6YtFv44+vLZ+qA+TPme1AZuiDNmGqTvXtgWdfzNSuQHfa+CojHjTvIrUWPTamF2nckRJx3tFpx3jGGenXtctSFRHIEd0HwLDGSh4Lf0TCJ86B3obdqyc1av/Py+qLXodNr+Pb6qixxreA9lz8RPjWXBHH6rr2+XxGHOPAoe6wvjvP+2G4bICxL4siHnSdHzrv5tPUKX9NKrZ2P+4suQqrW/zjxPD9dzEcdyPWgWqLyXDAcJuuexW3eC3EVbvvOVg7tUw7KVO+3Dedh8YnWCjEuHDmTy86RD2II9FHpo/Kjn/yQL756Ty4Hy3VhiYFy7fzoBz+lHI2f/9Of8d0331Bz4ac/+THP7y8cHLyP7/hnv/g5n7aPtA4fPrzw/t2XrGui98ZxbPzkJz9g2zd+/s/+C7wP/PTpd+hDvfVrX3EefvD+Czzw7bffsu87756e+YM/+ANaa/yDf/APiCGyrgv/8D/5T7Q7eQx6Fo6a8THwV3/yY1qteOD1m+/4g3/vb1L2Gx+++Zb/x2/+7/zu7/113l2f+aM/+gV/+F/8jA+fXhnSCU+R0Rr+q6/4oz/8OX/td37KNV4oj3SbxzzmMY95zF+yuU5Zs8CX/+iuXBrAd38n0tL9a6VDfBHtrwXKs2f8W2zj+d7A9vosjBHxqVLaDR8TadV6koslyZa88el148svvyJ6T60H79+/4wdffoGTO/N3uTzhLp5WG6N3DdMxVsN1ARxBPE6chcU40rKoZLF1Bbd9kEJQYNaaJruOfnaOtnEHPuI8yEAYLEsy8GkP+hbsVGqjGZvbW1fg2RpdOrnlE0BpTYqB5u6wf1NWxmuaa3DToyp0xhkq1XvHDQXJtTeqBT6NMfBDVB5rLNUJ2OCUvC7LYt5I/TWBXKud6DwxpjeS4qqv7Y0XNHhPcstZXRNj1PCcVc6fNYH5WR1jKHuMgXhNdFNVrBhiVpN7M+nuaI3asoFYB060oiZ4Wqt32Sie4FQGO0HtZFfn6/Xesy7L6decYHa+rvmaxxjqdQ7GlvH56z49y6K1Qs5A7cmedg300SRpwYnw7t07DmODpk90MrYTVL2VR8+fNX855/jd3/1dvvvuO15fXxVEOw0AGb0jqCw/hEBHk7LxQhf1vs6gLxf1Oq01n9dKyXfAPKXE8+dP8C0iHNuOs2Pxdmki4s73qq/f/p+AC0EDtkSo1YPXgLBs7DZdgWPOWRUGwptKKmWDoyRaG+TjsI7XiHfqP8+5AGI+XKH3ineeq4Ht1pWRLqVo/RBweXo6JcLzvc3lx9tjX2ulmH84OMfROjEEZoJ3b02Tmp0e+303Kf3ouOA4/ugXp0TfOU/wq16vxqovy/qn2Pu5MhERSs6UqsnRDLUfCE4Z7gH7KAwG3UKmateFXIxe762mAVwhKJu75w3Qz69B48uv3gPC87MmAV+fLngXKLnz6cMr2/aJLpmvf/QFYzTef3HhV9/8M/ZaOXJFcPhV+O4331HrQG6C95Hr08oPf/gF3334NWkJvPviSvARkcHHT99Ra6G1whdfvOOv/JWfsr++8nS9cByF33zzG379za8ptTK8449++Qu9NofggsMH7eX+8voVv/nNr/lb/87v87N/+k+JwbM8P3F7eeH5ql7nDx8/su0Hr5suG45y43f/yu/wi1/+CjdAaqUfB3/1Jz+ll0b0kfFnJXE85jGPecxjHvOXYQa4/LmO+et/+Bd3jtfrX5zO3IOw/Sj++T8yyJ/bSfxvwnxvYLu+87RSuFyEEAaDTAirMaic7NPXP/iKXhvvvnjPb37zG56fnvDicOKRob2ZedtP1sw7T0rqU8zHQQVGH+R+4JrHD32wF+DYd47jOCWzoKBjuAGOEzwDnwGzGeLSSkFGx4U3slYZdBq5FcYQkveIcySfKFW9q8NAVqcrANAmGpzp22ut1DYo1S4mSdo5ag/juWSCC8YgDvqsrmlvuEQ5GHEhyJ259f4tgOsWCDSIXkOivHf4NGWsjRC0yqW1QZehuUBe6P0OHPXXBASabjzqnWmaKcrAeezA2FAG1cD0lKP2puDciRhgAhn6vkRE+3ac6PkXraDpXa+VYkz0nBkgdcqBSyHEYNLa8dmv+fpmmFcphb3sZyLxmEBb9D1K1PfiUQnmZOB678QYiSax1rAgh4R7/UIId6n1/OcEWPPPzgRl++eyLPzyl788Q4b2Yycb6EQ4vbmNgWNA0GUOQ+XhMUaC12XIbXs1wOfxUZOyR58yYf01uuAkIN6+hzhqr+DVk1trYwxNXraaW/Psam1SG1U93XB6fvX9qVzei+MSrhx7M5l0pDbsfN5B/pKSedgbwcPt9okxPx9Er7MYov67D3incu1t23h9edEkQAOPaVmYadlvz/Vk7Oe1MwG+c06TzvtQpUBWW4L2NatsmAH4cLLUzmEyam81SY1cDgWmNHADL4A0SmuM0WnDQxmn37zWQ9UPAkv0BB+ZCm4Rb9dFYzR/nsOOHrMlRjoKaju6XNvzfqo/QoiUVhAvbMfGGJ3L5UqvlTEqS1zwLvL1V+95vl54elpYloRzg+CFT7cbP3n3jpwL337zkS+/fs/v/t7v8u23HylHZTSAQhuN7fjAX/vrv8+Qzh//81/zclPGfNs3QtDAu2+//Ya67YTg+fbb7/jw8Tt++evfcH16oo7GCI7L+3dc4korqlr58qsvyTXzxbt3/PKPfs7f/oO/Qd43Pnz3LaM3fv7P/ogQIs/P7wgxUZt93rbBD7/8kndPV759+YYfffkFP/nhj9hfb/zxz37Or775cGYCPOYxj3nMYx7zmH/xhNu/uAZp+e7Pz684vgx/ZmJzefLUy79+Kvh7A9t37xIpPvH+3Xta7dxuN7bbJ56enpXhKxXvHDXvgHAcG8/XCx7RbfvoumV3ni6VgXkFPTQptA4SlbEZbhgYa9DGWeky03mddwSCMl9OtEbGDULwxJSUOWnlZP2GgTwxYFlrI0bRB1V7HeKE0RWcOi+UXti2Tdkz5xSQZ2VeT1axFZP6uvMhex4LdzJzyi4Fr4fae083eayIPXAbQByWOIyIJgz7O2vdjDVzIvzgqy94/fTCtu8whgFKZYlG62DMde9N/b29n4FMpVRivDOPGhzkjcl0KpE1SevboKZm30PkXhPjRcOaBho04gXE6TJCGXM5JdCtdur5PcCb3FRBzwTaonJYOwaT3XX+8xvorc/2XsmjUt+W74ylGIib/3QIwS8EifgQWO179dEJ/i4Z9iHoYsAWBd6HM0EaYL2syvJOJtx59Z4OBe4Ar6+vXK/XM9TLBWXlZsXRZN+PI0NrJrUeOLFQJwa1qdQ3LYkWjHkf4wz7UrCq53AuLyZzOj2eYiB1WHiSN0nyZP4RYYzOqJVm70kMsA2TV8+lh4aZeWJc9OeKSbl7Pe0CiOiCxzmen55w/nPpuPfqG+6tUarWXAW7/0IIXJ+eECcaXiXaPz0MzB7HcUrmSymqABn3wDNxniUlWsu02o0t1WCzeU8457isT+RS2bYNL9bx6xwDvRZ8WGit4IMQjJ3Ve6ORjwwMhjS6a9pLnO5e7DEa237o+RAhxfVNCJpWIKVlobZKMJn/8F3DtbqmRvug3nVvkngBxnC01knLRRcVpeDHINfOtn1HSiutD7pUXrYN7yGXnfV6RaThIzy9X8hHQ5zwu3/9p9A92+tG3g8uz4lc3/H8fOXp6cqPfvRDbq8HIUTykS2JvPHLX/yaxTnef/EF79490ei0Ac/v3rNcr4jTz5gPv/kAogn3+nnt+cEP3lOPDe86l8XzxV/9HX7z4YX3X3xpYXiDT59euO0bozZ+/MMvqXnnsi60cWX79BH5wVdsHz/ww69+wHfffsvt9V+ihuYxj3nMYx7zmMf8S82fB3pXX+l/4nkdgdtP4vfu722r+1eWSX9vYBsksMQV6Y7RG8EF3j+/R8SZty7iRLRj0nvqsZNiwkvHiUo526jUqumptRcFmUVZzjEGISqTUls1j6B6tKAj3YJ/gqOWTO6VED0haUXH6INaBqNXtu3g2NXjVlun5kNBIsMCaxzHVs4H8cFhD+6iklA3KE2TUWfqcTMZ40ADb7AuTQWUcjq9got3/ytCih633n2QIQRNCe7tZLLaDGZaLzhRMDUYWr9nAHOIso9twK+++6DpyHpkTvDRJgvnAi4IyWSMPnTSoj5LZcNm/+gERE5ZdeegN+ud1Afx2ppJlz0Xr+f69KQCPsTPWFQPyhh2wDzEwXl6HwQUJDpbBIx+Z151hnqqm3a1riFoT6+Yx9fY1JMx1b9sYVPTF3oHUfYd9XW5WeXSqMbWnTLWPk4gpYC4q0dz6PfCdaL3pODfhCk5+7krjHv4Vj4U0AQn5P12973KwLspgRZ61Xqc7p0em8nSO6/XWyl0kxH3oiBenCCiMlm/qDy1j2aNPUIMmnhdyiCIUGVQW6G98d96cdRWzmvKOSG4SPD393Z2A8/jaMe4dfVYd1EA7gTCkljCxdQJmVabApklUmh0AYLWMc2lVO/K8nsn5CNzHAr+ffCUVs441jOhuGr42CUtzCoq7wMxLcawKxMdxJGipzf9HBqifz++8YzPZPZyHJR84GRhSVpTpNJn/RzywStLmw9a1nRerY4KejyAjtVCDU15LrXa3xUw+0BKKl9utdHhtBGoWsGUEtj153T5ImOwpETJhV4awe6ZFBMpLrpwWHQhgfOsT9qjPeY10IQQvB1GzxhQc8UBy+JxLiAMaj54eudZLollSfzg8kwtDXfxfPXVMyVXtczb0i8fB/13v1Z/tXOkZeUHLy+83m6kZSEuCz54brcDx0rNjWUR3n+58PXXv8PLywe2V+FWXqn5YLTBen3m0/bCki4wBl/98B34zsePn1jXyLG/0urBj9+/4ze/+CX7L3/Ds1dbRvjyS9oX/xJ1Mo95zGMe85jHPOa/1JE28O1P17S9+8Pje3+P8s7/aXD8W873BrZREqMMjnbgxLGmFQb6AAint3HUol2VzimDh/aeh6AskROhNUh+OWW2U+6qVSNq2gxefXmtqmRVOazOtt8oNSNOOI6dW74RJDJsgRB8oLbKGIL3yujUVk/2aTStM2m9w+Cz9F9nlSlNurJrZ3WLEGMiog+TIso2igHbtx5G9eGCPrtrRYoPCihLKWxW6XN9utKqstC96APxcRREKs75z0KK3gYbKWir9u+DdadPKQAAcUdJREFU4EBax417eBLcQVqMnGFC2apVsIqh4A1whqRSVDiluSHdu2cjaECPeXd7H5+9Z+/vxyD4AK1/JhWdLOJkHOd1MEFKrdWYyDvIPQORHHTb9EwZurOv8QZYJvtY3wDuyc41Ox4xJgvV4vSWTsA2Rj+/TkTIJZPLDVAVQMnuM+m7TLmsaK3QvEZAlQYpJdYlkeKdPe00A3UaZKQVTOBSpHdsoaHsvI+RPgJjAnCn19lkDcUJpamyIMwk6VbJRznl4cM5rdlJiQEs1nXbTeY5Rj9rbYLzRH9P82Wor92bDHkMwCv4cjGeiw4q1NHp9kHWxlDps3i6OGpter6H+oZFhDCUnVU9/CCuC2Hca58GKmt3tkS5pqQLp3ZPp3bGOM/rasrBW860nLUaDF1yCJpWPkY3X736emN0xPjErEhqtdGKeZ6L9h/HxcPQe7dlU0xYR7I4wYXEsqzkqn7g2h016wIsxshRO0e93e+NEHAh4gR8Umbee4czuXWtRcPVhjAGpBiJIdJr49gz27ERvfqWj1rodC7XCyFG0vWinb3TUwyk42KJ1XoNrpeL9Ts39mPHRQ1Si6uGv3U6Mek1duSdMT3K4mi9siwQlwtD3PmZ79dnvpJ3bNum1/3lwvNz5EdfP3O5XMn54LvvvmM/PjAk89WPvuQ4NqpkvAvENfBUV/u807C9r3/0BV//6CvyYcc1FyRnfvTumQTs+43RCx8/feLydP2+/xP2mMc85jGPecxj/g2e+Olf3V70vYHtV198oWydyT8FTSF1YsEswx5IY9LwEzfZjCkdVS/erJOJKar0t1T8m69/658L/h4GFWNEvOBrYSGq5NgCnoKL0MRAmufiLm/Al7CwYmWmp/c2OZXuOq8hNoIyd81SXsUHgnlofUwmybW05QHMyhP7e90ANBio9E7lxDGy532Go3K0Qs87+LtEuPYKzWp73sia34LZ+WA8j83bEJs7o/w5qJ2S6cnWxRjvYH1wylfnzzlZV0tjnlJuBXtFC4PeBD0h6HuWcDLPY6jHFmN834Y0TRBax50x9V4rn0wwfPbQTjBUmX5hZciVOTQvLirZlumNHRrSU6tWP4WzjkfI2241T+70hHv/loG9hz/V2hAJCnibmBw5GQjWjl6hU2s/w45AO37FOfaXT3f5rr0nMLaz67Hro1OKyogZQjVP9vTeKp3HCQijeYepysbllhWo2dKii5z+bA0uaoymlUbiHA7O5co850zWewy6BbmFEC1UTBPDRx+nFxcGxSqxmlOw77w/A5qiu1cOYRJv54N6rp0d29aRrl7uWjU4SoR7LY7XEDTpw7y8yZYqpuqwnzV/zrQnxBBgWSj7ccrnp79ZLEm5d/3AbK0w7N4fQ69h5z1pCdoBbH+/j8ZIUVOfUe9ztmVAKx2KyvgH4wTYtarUf77WeR9NFnwGeDkR5mnuBjy9c/Q2qGiHd4xajdRbwyWPHxHx6uFtDm77je046NtGN4b4cr3oNeOcrVrUg90Z9JIptdB6p+Ss4DcllstKSgviTLZuAX0CLDGxbRt9H6zLoky1eao1IE/VFGnVz8jX2wshRC7PF7bbjev1wn/nD/7bXJ8u/P2///f4zXe/5t3zE7/37/werVY+fXhlva445/njP/5jLuuVEAPX6xP5KLR+xYmQmnaYl1YYu+N124jPiR7+9Hb4MY95zGMe85jH/OWc7w1sW+lnirCTcYKU3scbMIomCxtoGcZMja6AbT4E+hDwfkGNZZ4Qw52Fc92+1mEpOQQjeOaDGOZRXdeLkm9DkCZnIqxzckpTPwsdcoJEq1tBWRk33MnuiTemD33A7OOeiJuzJsDO9wzTJ3vv25wATo9XtQfZnTaapoYa2ysCn15vZ0gQA6r5DycD+Da4CfgM8HtjZubU1owlvvtAJwM2gQDcO1bn6511JKW8IuLOB/H5PebfrbWybxuOQTCge7KnbwDrW7nrZH7fSrBnZc8E1ymlE/xqZ6++pjFZR+7+akQUmHZlp12HPiptDHuQl1NO7YKdd0vOFie8vt4UuMV0Bvu8rQya18r99Yl6hLkvLmb10bDk7tYyCk0ne20Jxn1ozYmxjCoBb3jVlhtI1A5TUCZ2vo4JPN8C7nkM7zVGiY6mI2vGsHmFnYa0heBprnGJGmLmnCYbI8LzejFFAypnb+q9DRKoMxW86nlM4d5ZLKJJ414GXTTBO7jJ3HV6NSbdOUpr1JlEbdfH28qsz46xgWAc4JweOwNMtVZC1p5h1+/hZ29rlEophBAIIRCd05Cjy73OqNZK9I5lXc77YB7H1oyttzquGcA2r9faKpIdxYKxYkr4nFVgXysDVZPEGFnX9QSwKaWz63jeb29fO/bpIRYg1fLBsizK8LeBj4IEUVbWfPDihLgu5k0HGSBBmdsYgkqegaPqOZwBavrezN87LDNMYDih1ca27yahjojT9x59UFA94GiVuCj4raVSczZLBlyfns7lQWuN2+3G6+1GrYW0JP2sPhp/+PN/wvsv3nN5WhD/jpQirVdetxe6DJ6/eGZZVi7PV15fXimlggeXhF71BW/1YPGJ0hvrl0/87t/6fX79zW/4xS9/yWMe85jHPOYxj3kM/BbA9sPHj6dXrZr/LsR4Aqr58FqGyg+9Pei7EBgD9cTFhVb1IbJWq1pxjo4yuzCDXqp6O0tmSfGU6bbRTv+bcSgmPXV4p+bk1roGDhkI1dATA0iKsBU8GShL1rM6JbbqPQ14p+mzt+2gdwOVzIfFrkzZ0Dqgs5vUAAEiWrdjLJR4IS0RjHGMJlFV3am+d/WtilWSKAD25unUhFAFdbOD1AUFK928yVon1HDNG4AWgg+fVdRMVmmCjWW5P+zv+0EImsQM4NwEIvUMcFIvqslVvTK2pTVLplawBpy+XETDoOb1MJnx+c9934kxnqBH5M7kTdDsnSO6GfDjafOce1tWoGygs/AZL44UFaDXUZEBUTzvrk+qFkBOOfRbFm2m786lzMvLC2NounGMgdY6201Tl2dic0yJSmUv+QRXVFUkzL7i1prWuoxxgqhSp8RdlxwDrdkREVKK5zEQzFs8Bsdx0IzZq03TevsE5Qbia1EQuKQFQRcTDGUeEU0Nr828snYfTP9zjEnrfWwE7WgF7P4ZOJNBN2eLoC7Gtgqtqxc0xkBxDu8jTqwiSMS88oNZRQXWcdy6KS0CmiB8VwSkFE6ZeR+DXvsJZudnzgSKrTW2WonecxzHZ0B6Jl6r5zWpX52h9WJeF1viNAgrGNvqvMNLYHGOYGFazmladilFfejcq6RAgfhqXbvPz8/nIkQveaGUaqzxmOsrnHOsz+8sIGrgZhq3iG5vxKks3HvE8vVbbeA96/Pl/LxQibpTQBicLZEEbwqT3puG2jldpHQRwrro5xNC7YNeNEV65ziXJfN6GkNry2Rg50FTo4eYtJ3Bcklcnn6MiHU+owuyuASOsuOC4KOjU/nu0zds24Ybgdu20Vrj+fkd6RLPr3FBKEehtcoXX1y5XFZKr+zbzq3txOcF//rnVxI85jGPecxjHvOYv1zz/T22adHQEC/4oA/fzpJkg3PmA1TBKKidMcREb8N8XoPadn0o74J3kRgctTRuN623iOEOxGJI5v0T2/5HDbvxnjEabXRaKwYAHARl/TQpdlC3YoDaQmtM7hpTOsHCGEN9ZdG8mmNQq1Cz+b2MXQrGXOWc9UF0TYSo/sPaLU22NXJuGgMzhiUbq6SWNhBRNm/fd0q1UB5jcHtTH+NRsi4E7PW9rb45e2ZrPcFVs4f7ZVnsmN89p1on1N8wRHf/6mSkJqitreA0uhoxX7Q4Y5RsiRGjx8ndhzlf19vam/l7Ls7v742B1ORmmLUwKoOdgUWlzn5Sp+fCaRowAzwzkRf1PYZwAoa7tFNONvozKbux7erzNrZzdrgamJ0pwZNVm8fr6ekZEUcplVrv7PZxaFJza81YLpV8tjZwTqX1YwzCCG/erwLusES8j3gfzvc7JfPemzdy3IOvamuMWrlcLifbfb5fMGZb2VdBA4xGH9Rqy5aicuS5JLh7tPV9vwXydzCol++yLqQlnkqKqTRoTSWorTWGyem9E+s9hd4rTjxL0r/rnSo3znqtMWjNm2feemu9o9aCyDivmVm/E4LD4UnuHg42pfLOFA/BroneG/SO1EI15nT+fqmF0iq5FkIKFt421PM/j4lz6tvWN4y3UK3p5R4iRCKIcImB/dhZ3HIutOZ1ORc28zXORUirnfWy8nf/7n+X/+z/9Z/x8ukTl3Th6bJyu91oreJ9YK+Hneug+QJj4Jsy5IIuNpxVoA1BO3Et1bp1uyd6Jy0LIaxs20apBR/DZ8cMOH3WukSS0wevPmerWavl3g8sDtCu79La+fr09epioo9B8NphK6Khf4OhC75Vg7riGlkvC70Kx55P33RrBeeDLT8gJg+lcfRM3rJaPJKwtQ0fAj/66Y++7/+EPeYxj3nMYx7zmH/L53sD2y5CFQgz5GV0ioGP0arJ3LQPU71rA8mFWptKbZv6clUSN2iWhtxR6TDizvRbcaKeueHxMs6HQ/UIZnI+KE0zgRW4CqVW7YzNWeXJyPnAm2JUsCjqqzvTcA3cTlljrRqoVKRzu+2UUliWVatkxBGTMmCtVxa/aOdmhTGa+n+9gpn5ekMIbNuGOEcpjX3PlrzK+TOVxX2TDixCsF5fBWV3JnOGT5UzIdd+lXz34p4+S10UzO/71vM5gfLr6yulZHz4PFt7fv2UJTvnWJYFGea5te+VloXLZSbilrOKZXjPaI0g0Ojm0zTPbL3Xu3Rj8CaDCpoWi5gMumu4lHROhk0ZNwVyrTek30Gvj+aRnIsL017q+21cvEldW2eY3PptbdB8n1NuHmMysGeAW5yleltVkgMJyhSXUrQKyqnXevb7MhSISIBcCjlP8bAGWnkXLMjsULl2cKekfl7Hr7fXN9VMChTxd1ZunrPpD52LABgWWGVeXgYORzBGu1X9hShj3Gq7n//qyJ+UAZ7gN4ZADI4YPTF6+oi6gJg+UO/orfPyuqvHGq3Ucs6xxKCMZavQu8rGo0e8eoe3baPXik+OdVHwX2uhmZe6hfv9CnepfSnllDy3VnEiLCYLPj22krhcr+dyqrT2WT2THm9N/5VSsKIoRrvdZf+WaB1TonZj4dHPK+/uyooJcN8qRaavfwxNZf7w3SeOnE8ZdSmVZgu5LqboMKA9hvUSD0tgR19nikEVKEP9uJr2rtdHtNCvMoOXxuBpveC8p+RMyxpY573XNHbnbbHiTTkC7Twu6teNSf2+jIEM9dLPJUyp00agnzkOXdJR9Xzt+WBGXavUWz+Hl3VlTSu320ZvKpkX54gh0br6mHvvlFqpo1CHgnC9/zu95nOp95jHPOYxj3nMYx7zvYHtr779BkHZgdmH2o05mKyXc5pmWiwNNXj14u17NrDkFcCOQUzhZHmVEXFaFzIqbgh71gfg6AzAyGAIlFrZj4NhgNhbv8xAgUTr1YBIpI/OfuzkN1JR52dIkyUaW71Mt45KMaZ1vSR80MRf9TXeQ2ByzhbHIvRufsiBeRMhpZVcCktaCC7Q6QyBEAYhRGqp93Ck2k1uOYDOMTpHySfjM0HafICfD9DzwX4yeTNYatYaAUTuXs0JTv5kcvJkWSaYnUyZgm399TaleQDjTX/s/NmTXQ4haA/lGFwuFyNn35j7nHo1Hc6ktpaqbN/vlI1byJRDvbXKDHaOWqwqRtOmvXMmIe9aF2P1Lt7k5iFE69p1pBhJ4kz+emdGp0dw/mxl5jFZtrPjf6j3jzv7SL/XO0lQdcB1uVgwVNHrynWVkIp10FqY1ZSmNjfZbMilIlW936cE/c3r9P5edTSMTe52jJaU2I+DMJldswbgFLTO66QZy9Z7x4WAmyB3dAW6rdF6IxZNP5+gf1kSa0o46ef1p+FpotfLGEQfiSnwVXzPqINcCu+fvtKKpVpwTqhdKEM7oIfoNe+8JzoB8QrUqtVEiYZqzWqlCRDfJoWnlM73hR3f2hrHvrNtG8uiMtrW+ynPbmNQ3ygOTi/1sM5to6291zvpKJliAW1xUX8zqEz9OA6cWQymHUPP1f2ferw8wXd6g3/0j/5/lHycigCxsCevJn9yU9l5w94vTs/rsFRrJwTveFqvmhpcKyPGubs4k+onWJ6WjXpktWCIBkS12dFdK0ff8S7gfWBZEh53hmjNfuPOIARHcHd1Rjd5utoPqkqHayWmRAyRaextc3G1a80RAseReXWvdm97ZW2LfpaLOCQKi1+4+qupYzT4qtVKqZVj23CP7KjHPOYxj3nMYx5j872BrXj90jqEWjvVqmq874Q4iCJ4HK0elmy66Oa/ay1LCJOFqbSmATml5M+koxN4TVmrF2EMS191yu62bhUUwWug1MngCN4L0XyBznECwTGEMRq932WpM+xHPXUqH15SML+Yw3kFxiUrYHsrU10WlRyWbAwmVv+CyWPRPtdRG15E61AEDTKKiRZnOms72VhlGDXMZh6Hu7dSv34CivkwG0I4H+wn4wicHk23orpS7gzX25/rnCNEj0wJsggi6jOejGEI3sKzDpxEZsry25Cq+fNba8rCioLX3Op5Xifz1buCzzH9wVPmOe7Jsm9Dp2KMJ2h2BkDBcLLXSpvaG310mh3nJtDN49xnyjL2553P+nPnrwmAeu88Pz+fx3Xf9xPUz3OhAEv/fj3yCYqrQEqLSvKNsUxx4ZJWjpbB3eXOYhLr48jMsLR934nJk6JKzcU5yradTPs83n0MDmP7LmYLEGcdyROgi5gsVZ3hzt/D1KYMPRj7HiyNaJ7XKekedMJy/4jIveB6o+33gDi4V2a93pQlTS4R8KQQWKLHr4vKgcu871VZ0dBzJ39C8XDkhuuV6/WKrAulDcD9KdVBKUV9ms7ZciWfoHeyuNn8uPN6Kq2xW7Bbs0XQuqzKJIsGg4nYIiGaxWIIfgxbTgWGEeK5VvJxsMZ0fg5NmbY3r+899GuwpAulVFKKhBi5rIve03PpZN7pxWkljyCEEKHrIkcTv98EibUOrZN8ICz+tGFMD7IuRwLX6/Uuh256HpoxwjEEUggWdKaLxlYKuVa7r+4LGe89dXQq90A+DWvzxPB5D7Ker6mmKfQuxLggvRFTOD9HcMO+JkPT5UKp2ZY9+v7X5UKbvnNbxrnheFqfSCH9i/6n6zGPecxjHvOYx/wlme8NbP2iD9C7MVda1eFoDBqD0jte9CHau4FzCv6Cv4cmjXFnHKEjTlmZPrQyqNnWfwxLYw0BN7zWcTixB8qhfk8flD0IKsdUGaw7wfMMTxJ3Z3t6VVYH56y2Qlm+YdU0T09PuAGFxgyycdGAfC8My3SppZBi4uJXDZmy99ctDTbnzGVduVyvfPr0CdPtke1BN4RA8MGCYB3RexAxH5wxtLngAyTU9DprYGqtrJeLPjxbwJPKr1XSrNJQAOF20yTgecwniMy5GLO8EKKzhUA8pZt/ktXVDtyCiEqxFaA2804rEFI/pFdGtnVC+LyLd/oOQYHNGtX/6OznTRkzqGR3huLcbjfqDKgy4LnOAK3ez/TdEAKHeaDrm1CoPR+fyUSdoRJ7Bj9B99sKmVwK+7EpA1UKl8tFpdhGD9VSz9ChvBequBNQ0JqBBg8yqMeh4CAoux+jM1ZswbmAD4f5bNXfiUzPabXQo5k8roFqfXQjvy04qQ+OfWesK9f1QveBJSnQ2rZXhihb5rouRhQUqyKg2+IieMdtv9F7I6TIU4rnomLWCdVq/nFnQW0Yu94auTVm7JQbgyPvyr72wLHdbEFiCyfv8QJLUoBY2x34KdjpPC2J1irH9qoJ5S6CzO5af35tjIEQ3gHacTw7lWt9mwzu2PeN6/WJL778gu+++8AlJsTpwmb0QUyR0NX7OauWZAwYthhwgo+BNMZZERRiYNt3lnfvkD4Tlu8LkzEGy7J8VsPV+8CJIx+ZnDN5PzTFOVq2wBgsi8qI1d8qpBC0fsqUEzORvpasn4VBFx1zsZePzOj1DO8bA/ZtO++vWR+UYmQMqLlo0JnZRHzUz0+9FoU8/bX23o7joPXC9MyfQXcnMz0VEQ0nnZQiWt3sEOcpJSNthsV5cB0VjTSTzwvOaeBgKYWSNRRrCQvlKGRbXsAghcjteP2+/xP2mMc85jGPecxj/i2f7w1slxjpTVNHZQycqMTMOYjB2QOf4H1k3zba2AkhkqUTfOTTp09nLcZoFZw+pIrTh7dWK655onhN7RyD3ga3rB7VJS7m6dKkYnGFlKJ5aBOjOYJoYnL34wyMyjkzZBBdZ7SKiEqWtdeyI+2eNPry8qKgO3jGvp0hThOcOedU0tg7joH3g5p3fQjsDXrDj8E1eWJwLG4Q313JTROZFdyDE2UyBslkddrFeQmLPRT3M8jFeU0xlSFaqdIE7wIpqjdxMPDJamaMSexjsG+7yvneALZa+1lDAlDrYF0TjMqxHSzrov68N6ye914rZHxSwIIGArXuGHiWJZ4eu9oKNdczeVrcwMtgjIpDPXMpJdJloZTGLe/KpvauvtQ+uFmAljixvtB29tTOOqJPnz4xxiBZt+v0Ko+h4H4eh1Im86x/LiLUcQcep5y6KusYQqCWyUYORte+z/omXAggOgUdozcuSyQ9P9N6Y9v2E6CEEOhDZc29dYZTSaszprp1zYx1AAaKktdu6N4qQicyiKsywEc+VFpqqoUhjm3byWMQXMAj1KIy3qNVPn16IUQHUvUaMa9w7wPEsZnsvnx6IUQNOavGAj9dnxAcwQmtVmgQcIh4Uoy03jn2XcFhG7juLDRukPvADagtI86Czlqn503vLVtkLMtiixD9vUFTdm69nF5sXW5oNVftO8KgN6GWpiDPJ0t4dlyXhS13rSxyHZ80vKgzWJ9Was/88te/oLWu9WAakWb3Ybvf31nDzmJSWXXJmSnl1WRg9cCOCjR9jaUcBBdwXpdcPiZy0c+XmCIhelqpUIZ6dcURV73XPQpGW9Fzu20bQ5pdbxZ85x3BgsFA2dvBULWFBUXlXumj0dygexgyLLFdF1o++TPI7LIsCnQdMAZ9NHoXBvo5nHPhKAVMVeCcJ/qA857ghN7dGYA2fdmlNHrtYNYOEa/nwq5t54SaG/VotLzd640KJrFIlvYtNFRVMUwO3UGXJynR0ITn3hq9zYTtxzzmMY95zGMe85jfJjyqFrz56UYXvES8V6DnRTtEMVZVmSHOJE2GdrlGibTRaC3TW6UT7OFOH1K0YsYZI+VNFtsNNN3lr60NTXttg5Ib2VfoQvCe1nZmVY6IaPVJ1HCaUiohqDR1SReWRU1pM3BnMtG9ZmqvCmz70CqTEMzPqQxaHgciBe88+cgsIeK8UHtlTSveC55OSp6RBzKc9uiK4CScLKhznnfP78i5aP9kB/CnTy7EYB7gDn1A7XSx1GKZpSHWazmUTQS4LKuxofMYKgB4uj4be6MVTAxOKWzJhXzk0zP7tqdW2Vz1eQJE70nJEqx7+Mx7PI+91tsoe/70dH3jZW3aQdvV26geZogWmtWnv3QMZTDnA75zZ1hVzvlkiLZto/eDEOL5dQAi/WSp5/tovVl/bmDfN15eXhSEHgNnabxjqI8vxsBA2PeNVoox/hbeE6Ixx+28R5wXxFn1TteQKB80bTaEoNBvSjD7/bV1A3vea4WUd+AtZbhZOndgkNK9busolS+eL8SYEDy1DhiO7hy9DtxQL6QLKuXvtdOc+cRHpdi9hDG/uR4E51V63zqeyWwPglNgpcsrvSdSuuq1MA6ipe0qIylatVULow9yvftYq/17793kxepjjTHOGltEPM7rtekQtQPUndLl9GoXpynO+SiaAC2OkBIxeVyX0xfce32jBGmm4tCaollnBTB6Y9tuer+ZvN+jygwR7XXVqp5BEIcbKkGXOghRf/a2Hbg2eH5+R66NWhp9aBqzK2iy+EhameaU9RW513DpMdKU6NYrMUW882wWNqeLgGA2g12VKJtVLCVVQkyrhAuBlJZTTj+aBkUtJJPTFw2N8vcucgWSCoRTiEhxjA6tqt897zdEHOti6cz2erX71iOjGYiOCjhHpzb1w9eiSdoTSCO6pOuuQ4fjKOTWwDvi4sB5fBC8eZ1LLeSmQBu03qzR6W8+Ax/zmMc85jGPecxjvjewZcA6EyhNjjo9m1POqR62TggKkmqrOFH2YI0RaOxbpveq6bFdQQ+HPugxxJ57HCFGgknOlJnkTAtW2a+CtSHqvfXBU3sjV0vVHfrajpJVNtk7TryC4gFpym5Hx7lgibTG4gmAdt6OoQ993RhXxjhTjI98kLsCwBY0kXV+z1GNzTjE5NrcpY7OE5M+fOaSud1uBrqUQZwsjRPBp4i0hkeIAj5HDpPXvq26UWlmPEOkAFKI0D9P/fXe0yzURbtfoQ2tWimlWv9us4TUeoZLHTlTmrJZWMfpYgnE5zUQImsIJ7OugT58xmbqg6h2D6c3ktf5Hk7ZZruzrd57LpfL+TVvr7e3MyXosw7pLgG9191476GjPu82dAHg3AnkozHUSCN5jwuDWkxi6vSclFY5thu5VV1AHJudMw/lDl6n75U+SNOTaPUxc1EymcAz3GuoX9Y50dClrqyXhp9ZQq71n+77xrYfLMuVZbnQarfdR+f988VYPYii7290kA7XZaU0XeKEpB7m6O5J2AF31jHFEBm2tJDS8Bd9P06EIJ7rsqgyQERZwq59y8EHhrtfe/M8AGcgmtoOLFHY0sGb2QXGUBgj4ohL4LKadLYWWjO2HnDOrtm6M6ouRejD/u5MHBc9p6ALJvuc0ftV+5gvF29efvV2breNUiuX6xUn48wUGGPw/PzM6NrH/e75Hcexc+yZMVSdknNjTRdu+yulHMSk1oNaG15Uxt/aTBi/1zTBwIfIaLCXwp7LaUOoQyujclW7wzqBfxe22wznE/PZVvLRgBsiAxnDFlKaKi8iXC7LGYznnMPHgLoYHMIg2meleEcA5NDPvdobrRcNqfKRGPT62Y+DEBNt3D36oN3JwXuc9S6fy5yuYWXCm/R1BvteKU2XSuuyqA9c1I4x67CmnUP7mR/A9jGPecxjHvOYx+h8/x7bN92Hs0rDG1joY9CsR3H0jheQ6An+Hgg1H7pwkGKitcJgmHy0MZNhNcDEwMEYmmTqHd2YYHHOWEx9OBQnypCNDgyW63oCNgww9G5VMCEgXdnfbGnEyuRk9dWhnbWXdbEAH2O1ghi7Yl5d9O+t60V9dhYe0/sg+kBrWL+oAgC8/hoD8wdm6xG9cRzZWFPPkJnO2jVwCqi32xmOo5VDmvJ7JiC/qeVp1jkL2PFBz5GBIe88o3Wi8wqim/mVUSZ9+j9hBmz5N525jUrXFFdRueleKuX1Zoyv+XRD1HJNVHId4zyvA4awrtrJeuSCt+TntwFa81rLOdNq5bKsJJNH11rvVT7jnhQNdxAzezqB03t8Z+bUCyn1fowEldlf4qK1IrnQARmDehRlwO2hurTCcB6xypImyuafEvMpH5d7N6qGAnW+fHpHPAO0+rnIeAvWR9f6ll76CY5rqVyul8+6ez0dQXh3vZr0elCPjZK7MbxYKvhAupBiVCYMBeW9NoIIISZLox30rom7MUTWZaFm9bVLH/TWWWPCOU+1AKKjVmqMWr/EfXEA6ultjPP35vs9l1LmqZ6eWlB5dzK5/bmUMO9765HUrXe5C9Gr1F9EuLrlvA5EInR/pkqPMVRazpTeV0ouKn+25UtM4Z5Ajpxe0TwVJ62RzaPfrEP69vp6vp9f/+rXLEtkXVbEKaPqRJAQ+PLLL03mq0sEon7vYVJ5rKaMwfma9WLWuh39V/1MaL2x5V2XgU7AOQKB1jol69IohkSXcl+oIKhmuppaQquZRIR9PwjV03p58xnS8S4QorLWE8yHGAl+ZT92XPB4pqzZQVCbhIsOCdCoDAuj02WFdfx6XWIFq6hqwxZOMogh4mNkiFB7saAqZWu7+YtLaSyL/lz16wdyzpjE5TGPecxjHvOYxzzm+wPblgvNEoJrrYzaTuZsgkIFNvZQiUoWx+jEdGFY0M+ZMGy1IlMCrCFTd6kvA2pR2SopMUY9WdO3HslZPQRCjInSu7KdJp+MKWp1RmvWpSu0Pk6v6Z9k/frgfMitVeWkb5lR7H2GmOjSWS+rpkM7jwQxqZ1iO5U8J45y0Jt+r9qGgYNOzsU8gnoMl6cnEDlrV6YXcVkWctHfizGyhEhHQav6eztDtL9zAr7hPX0vn4FfByoDbHff6tEqLmk69AQb80H/bY+tprd6atsNbHSKHcMQAiU3btuGE5XpzrCq6dWd52wmxdbacLUpK2jSw3mMo/O4mNhO/145k55nyNX0206f7b7vgNZC1ZoNJGi9kjJ0ViNUK2KyX4Ye4+2m39d7DVLqXeXPmK82pEhjsF4vdJPFS9BzpgnICtRyLXYVzQocTf6ma2fwxRQPs5N4hpoBJ+hLwZ9VPc4LdH24H06rYGRAComQtC6pNr1fvPPU0nVh4MJ5T+Zy4J2cPyegntXgI2lZOEpGvC5VQlK2XTq4gfrdnTNrqGiQVGkEccRkKdIG/AdCulxYrhfaaLzeXs9zPc/hZAdDCGcA2FsQexwHzYLA5hKttca2NUqdvzfwwZFCMECtrKWIZwlXZOhnSy2VWosukvSUkFwgLp6jNgWGdm0O+4IY0xlGF8Lgy2Wlm+xdJd+O3mb4nfp01/XK7faJEBLXS+L28op4XcR8+fQFR964Hbt+DvW7PcPZfZmsi9dzDyBrVRd9s+6pn3Jq/Tzw3tPbYImRljNLWCwIqnNZrufnsi7SMrXp52lKgVLk9KXqva0LMxccYZG7EiQIS1yQYGF3IZJy1NfS7+dTHBo8NVTZUWtVtt95QkiW0jZBdad3ZXpnXzRdP5PzaJqi7oQgGvrlvUOGSqmj93igDQXMtKH2D/d5B/djHvOYxzzmMY/5yzvf32Pb+wkiANZ1PRmZt/JQRB9Ub7cbToT9ODj2ncvlomDRZGrBe4LzyqB5ZQqd8zDEKoEapekDYMkqJy6lnHLBWQMTrAN3APuxnw9mb2WPE5gFF/BiMsgBzqkstJSikrYxyK3je6fnYh2dM3SnayKn1VDkUqmjIN6Ar6WYjtGVTxNHbZ2Ri3kyF2UQjbn0LnC9RFqdLLBwe32lD2WhYdai7PT+hPfBZMKVo99YlgQSbdkAr68fWZbVujcHraikc4LhyRS+XS7MdFWao4+q6avOkXNVdtc8dng9b7UZGxi8eu/a4HJZgSn57BxH4dgyl8tq/aWvXK9Pn1UNacKzp7fG7Tg+k0mDsrvX65Wnpydabcp6o4ms85xqVY4C633fEYFgCbGtVwMozjK79f+aSeNF+lnRo9eSyuqbsewxBnpVmXsbnV6LXodWlTIAH7WHeZgs/y3bPP+7tUbsUWtZTMaJhQrVQxUOwfp2R0WBtIgyxjJTZrWypRRN6NVk7Mbomp4syPmg7wQuS8SJJgcLcFmeqbWQhy4/Qgzms+2MVuhF1QpuCG4MXbbYOXpb66S1OcPAXzhZV10G3P/7DDx7E1o2wcesTpqKDwVter6dpeC2Whld2f4ZLKbXonBsmRB14XA0Ffg/PWnly2DQS2MUXXzRBsknxCp7Zp1OB8Q1hsm9GWiwE3qupyfXZBT6uWafcckA97xu1J+soPTYNvKeCXFhTYFcCh+/+0BpmW3fiEvEmRzZOUdK6e77NRA/ZfTncsqWTG9rvJxz59Lvlm+MNk6QXI5MdWoRaKWZ+R5qbbqsaZ7W6ynpnV3VIugx91qhpvep3veq1qhQO8ggxIgfgvPT0yvE5FnXZJ+Reg4XH4gS7mnMQ8i1431QDy/mTp/qE3EE5/GLP+0gNRfWtGhoVOma+Dw6MtCvD4HW7x73xzzmMY95zGMe85d7vjewdU4ZIm+g0pvcd/a4Fut0HAZSLnGltsb7p4VhD/D6AGMJvqdU16tMF3u4Nv+pfk3RhyruPanZKdCtR7ZEz8pRqgJLuUt03/oW5z+DV+YhxoSLwVi1QZdxMje1VcR5S7KB2hvHnk+vKaLBKIOhfmKnvsfX24ZjPggr6zbaXbo7esMHb740DVxReW4D5usF58PJ0KxJZZYvHz+dD8HLshCNpc3HgRNHWhLvnp+ppbLfNlJKLEvERW8Ppv1kB0/2FAUrx5HxDPN9JmPAp7TTo6E/CmpBSF57NXvrJB/xTI+kV0AT3WcgVUQZdf2lINz7Q6+VYSnJ1v062Z192yi5EM3HHY3dm2wVcHaigoLlEC1wqzXbUaivcIKzKTFN3uPFGeiuGtZzNJZlnL5xTeI1trg3GI0gEM1TPERBQB9d/eben0DwT/p5W2sQIHSVQs9O0JgS7y8XUyzoe+m14Yb+d+uaDt16pzZjmmcAVqvIuAPzGRQUQtCO46JJ3V4cry8fjVGFEON5D3NKQbVCq7eOT4mnpydyKXz15Zds+671QPlgtKr1PL0zjD1vrSnwxxKDa2FsAx/9Z/7NuWiabPtk2hV863vM22bvx5uXttNF64Saa+ciw3vHsiRSCqQl8vG7F5aUuF4vuBQhzj7VHWXsE/u+WdiY+pTbQGX/k8U3v2tvQ/ts0WthtHGeY+W/IR/lvBdjjHpOUKntQBgd9l0XLrfbQRsZ54UUEtmk9DEEgvcaFmdhYOKcpW4ru+lF66Km/SEEXbb02glR/dmRgATttfbO8fT0xKz/8l4/l45ynHVp+tkUSEsypruddgtVYGgCtJ6v476ccJyfH2Nkk7oHLut62kxALRTXp5VyHPSiCfHKpuuiYoxodUcHrXVSWsAWU53B8O7MRtAqKVtAtU4rzZjlSD6yfT65U8r+mMc85jGPecxjHvO9ge2XX3xxAoTJ4gBnD+kw8NRrx0dNtHUK9QBNap0SzegjKUTycffZtdoQ7+jmtZQQYXT7/k2BrMAaIsmYnPnQnKb01jy5MzV3sqgaEGXJv61SWyXEgGt3GZsgiNcH1FYrSLewHmHURq7KGnscDZNDM1CicuhDLaIM7NDj40UfVpeUEK+BNzlXnPXt9qa9oMG6MkPT9OhOJ5pUcizLnSFCfaMMraIZHXCdXh3ZZLrrsuCcgqMYrGd4hrl4d/pae+8M6+ectUafBzhZDdKbECfaYFTz6c3anMnCJPVbtt4orVIsyGlZ1pNlHxNMOUeMSX2O1sN6cGfX3wLwt55Z4GS6pkT6er0yxmBZFcxPUD47kVWmbkBFBq/bzRQDyr4FcSdz77wnLlpP00T90LSqxJeBs7f1QdGksTlnY+LEWMaGT3rtj67qBG+LoZlQLSLsx27HF+vJ1ftkplS7oNVaow9w/mTyxxDERWX/RWhdyKVx5GpBQBq0VCxdV0QUgI5OKRlni6VmwMo7jwt6Xx85c7lc+Olf+R2c9/zTn/0hdXQu0ZKBm0qx6+h0tNYF52iWgjyXSlOqen5O2PU8mVr1D1vh0Zjv2WTYTpcQXhwS4imDFguPGm1wbAW6QySSt8Hrpw8scSHEqIyuKQGiHQtxnlIrt22jdGM5jfE21bqlhA8m1SniqLWcapTeO0talJU0aTBt8PpyIy6JGBZdBqGM6NPTEz48o3lxDh/0nnDiiD6olLxUHCpppw9qyZSiSfMKMHWJJE4/e0YfSFM/9z2ISZd0zqmN4dh3S/62rl70bW3bTs6aYh2jplx7rwnyISyUOoPcBvue8cGp8qJpXY84D20QnOjnYC762YzmG+g5G0Qv1KqfUd7pucX5U5FzHOVUFIQQ6CmpmsGrjHzWU622xJPR2F93/Uyolk7tVanziI56zGMe85jHPOYxc34rxnYCrLcyw+mRCyGwpIVelG3Y9431cjl7IMV8jrVUCgXvNCgG9EGdPijlsHqdTvNFg3mkc1kXLstygqwlLSczIQjrslCGgT4Rem2UXM4Hv2EPq0O0s7G2RumFlJbPfI6z6mP0pr7EYf7S6JFw94lqqIz6FEdTqWwM+qDqvT+TXd0MC2rqOesVWukE74ytVfndTP1ckieXTSuU7HiDsikTsLsxyCUrC+KcMlu9Mbomno4xjNkMGqglMJw+qHvv6UAbQz3AKRJSPGXe8wF+Ss4nQJznPG8bro9TjikiZ+9tr406Dk1FdZydxTHG0x8LdzkxKVJztvqRZgBkfCZXnUzmlL1PgKtsrP8szExl2ro4CUG9rDlnliWdoKq1xhEctZQzmbg3ZdIHg9txow5dELio3sPFnpyDe8skaY/mrH9yCItJRr33+p5KPcO8hgWIhTchWGeomr1+seVGqVWXDXb+OyjT7xT8DAa0Rq39jSdUvbagIUQwFxKNNZp309KuQf3f1fp0U4yMWvESuFwu1N65HTv/8P/5nyLB42yRJeY17rlqIrDXAK06OvRGWlfOOqfWiDGR7LNjXgPTStBM0l1rR9Ck6ZlSjvl5teKrnpLfKUdXb7r2H3u32PVx4TgGRTohWW73TAG2uqlSy3ltxWXF+/tnw+gKME9bwxi0oonR87VoiJ0/+6+dhX313nj//r0pUgTdVXmqAdjR1WrhRLjERauVjky366PWqksVUTdEEPVSe7uWksm8vfcMH0+5fHCeFMyfK9BK5vby6bymS+5gr9/HRIzBAu90UXbkA29Me60VCYNSlH1d1oV37/Tacl7l1uqlV9VKcJrsvN1eCeHuVXYOmn2GOzStXgxsi2jVt+BZ00IKi35+laznMgQIjtILe8mMpv770RQ0X9b17De+LCvrckHEUdyjx/Yxj3nMYx7zmMfofG9gO9mzCTqmbPMts7bEFWnw8nIj+EQtjVrufkb1rAGWsustUVkQfViSwXBDUzaHY6ApmqM2QtQHxVIrtWVlco3Z605UZhkC274DcEnpZAhbrbRSGALDAyLkPJnI+3vsvVKKyoCD+csm2BXn9OHb6cO7ILjhceKU4av1TGgeVj/kjSWSpt0lrXcu1ytjCPu24yycR7FKJUQFtN65M9nUO69AvBRKyQTx+GVVZoo7A3q73RQcChz7zn4U4nI5v24yzM45gkm9JxBpM8QpKsidD9Vn8rId6xTjGYDUWtOH0WEpziJ4H/AyyMOqTBBeX15PkOycY0kLMURyOaA3Qrgy3nR66vJEVOprMszJVPbeLSRKwe6+72zbBgxKzby+dpOp3r3gi73e3jspJsR5Dn8Ya+6ovdNKUTDrgwUNufNYResC9egiRUNxnALXo+C8I4iyzLllUkpE560P2eqsWqd1raFpBiiXlCycSo9zyVmvZSZAVVlufJOijFOg1B2ID0gIYHLrejLBei0P806WYaE9xthPMLemBfHq9VQPsGi3rWgC7xDhuG0Uq3yaIXGjD33dPiDe0WrlyAel1tOzyugIeu1OEDt7epdlQQRbKmkqOsCwv+9EWdTeGjg9Bs6pPLda2JEulxovrxt/7Xf/OiFEfvGLXxPiYEi3c6mgHFQR4oPn6fkJEAafL+be3kdTlTI90vPPZnDZsiwnQJ/3ZErRvl496S4EZcxzYzs20qISaO9Ugjw9oiLK5DqEsme7XldiChbwppJ3sWuk1qJ5A2MgsXOYMgU4gWXvld4bITgY+ncQvU9rLSZJRllynIakyd0CIeh7iNFbH7MqCnxweK8VbIsxwW4M8+TO6ibtCa6jnguLgdBaRr28Fk7mlGHetp3RK8u66LKtj1PS3aoqJWbVmnrR76nnx7HjXGBWrz3mMY95zGMe85jHfG9ge3v9aCnHCpKK89ZoqpI9EcchB9KU/fBOfy8GR29Fey+Dp9Ri8jcFFqWo9M15BbMaJmW9qHiGq2hdRrOfMx/408nI1jHABXIbJAlWFzG9dvqaAVxyVGncbjf2VuhVU1sn0AjeUWumFnVYxpkU3JuyN15opbBeLvQ+WELAD6cMXtB0Z588SDA/ZVM5dRIaWgNS3aEeVaeSwxi1HmfQcTLpJiG4qDLu4UyS6RlNWC4e3PS7KcDoDNbL9WSq9n0nrYuy4uVQQBYCI8TTD3e9PhFTJDqvvkRjYl9fX2i9Ug5lQVNK9AHbtuG8MCScYH923dYi1N4pXRcOwXmCc5TXQ2OmgSSBH339YwVyrbH5G/miQNKJ49h3btsNn9QLrXVIhegjxVJuQ5hOx8Ht2M+U4Na7slSl8O7dO45cicGTYuLleGVdkvr4WmeIx/mIBM+RK707Rhu0Nui1U1qhhsblciEOoTU5A57K0UirMsBuXfR67hWccLvdPpPgTmA9ZfrSG1VUSi1jMKoGiZVSWZZ0AqaY7gncPugb9FFluCF5enfEi6OXRmvFGPiKS3ocQoxoT6qyqhWhD9GaInG2JHDUoeAxH8XY5wE4fPK4LpTSEB9IXmtjeteAp1nh0ns1k8FdOjyDozThWgH1FPs7Y/baKAzplHpQ7d4HTtZf0GPkg/pNL0uij8Ft24gWUJTs/hZxfNq/wznHD37y/mTu876ZdF9VBc47wqJLpNGhZu1V9t6f6bw5Z6uRiSegrb2xLMu50Nu27ZTKe1sEpRgR8yhjP997IfhIKY3n5cpMSiq50URZ8uMoXNYLed85it4nIaoNIvdy5hAwdCFQ6mHLomFe3E6rhRS9+dY9oMqO5oUQHEuKGqhm12MMUW0Y3uNTwoQE+ikug8u7Ve8plGVvvZ0M8WVdVd5N55hJ1uKtt3bQmke60LunNadS5drN6zvO+7zURoymopFOG/Dx5YazILZ0WZAhRNGe4l4bvTta1FC40TujCXjAa5DUYx7zmMc85jGPeQz8FsD2OJQpG53TAxgsjVTRWEfGIOLxot2z+rDlWVP6LFDHiT5I7fuOc4Wci/U/+jdpqV2Tc6mW1ulP1jfFRPDpZFydeVx9EBIqXZzBQXePZWR4ZSvePz/zdLmcUtFqYTDNulOv6wUQTdw0hjofB/nYwUEfKp09aiO5KcMTliWcctnpI+y9M6RZAM9g0JDhFJF561UZ+uvIh4YRBX+G+4SgQEWZK31PyQfSqsE1rXfzT6q8OJeMn8mtYyhoiuFN0qo+pB/bK8fGyYB47+ky8E4DqlQm6U4WNUVP6QVx5k106l0eAutlJaZ0ds/SNZXZ4bgsCSdaE7N9fLXEW8cxDnrS792deo6vl6tdBwoegg8Kcmsjo4nUIWiVTTNprcIxlcnGuNA77NvBWBZq2Tj2nbIu0LvK1Gd6bu/UUlliotdK98oieU1IorzuEBUsbzPkp1ZG7WddTW6N3AsYiw+cKbdvE56dKCMZrOs3Z60AiiHgRewBvuJFWBYNGZr9n50Bo5NrIfc3cmKT2OpyR39uOyrlsNTwoAsecQ7brxgbLcSQLNVaPaK1VMYoxJAQrwsp78U6iIXeBrOft9ei6cq2VJrTWlPJsNMearFOX70dp2XBXvvoWjN0+ljne9HO3+32AmA+/A3EGcvnuVyWUzUiAi5oGnaUYGFC7Qx36l3l2NHA/pFVJVFmjyydnDXoaS6xvJ8BXZo6PYaCVZXpy2ffV8SRUiR4z4cPH9i23T4XPa0VnAsmsVcvskijN2WQZQitVF2oidOFyFGoMhhRqFaVNuxzdVlWDUdDf985XdB478klU5v6qWewUgiemCK+e2Nr9fe+fv6ByqmHJj/HqEzoXg76DOobes2Byq9LKdxeb2dIlZ71udAU80Y79eZm7ZlN5o1ufZBNdh1jwntHLgchRJ7fPVFKp9r9NYPUZtDbDB1TdYgFYQ1NsI8xqnqAB7J9zGMe85jHPOYxOt8b2E4pqfeB4OMZBgTcH24Q7b8MKtmbktAZmJNzUVaiVXtIvRBCIoRsAVKdUquBu6CerWYPPU47JHuv9Dqllpry6T0atCPQ6l323FolWDeu9546Gs1eHyGpXNRkhiVnDguz8pi0NB/EFO0h0iEMlqt2xUYf2D/d6CESg1YVpRQNkGBe1XAyRjkfGjAkjnIUXQgYEOh90OksMZ7pqwiEGAje4byC5Vqg1kHJmWbS4hAjT09XDcjygdt24+l6pVX1wLkpbTYAFUKw95bZbjeAk3169/69ei7NUzjZqm5gYchi0uPBaLqIuCwXWhuIg3S9mv9WJYQiyjRut02rmbynVr0WSst4CwzqxTycBOgWNOQDw6lPz4XAGpdTithao4uDoJLF19dXPr58Q0yR6/WKA479UMDaKh5hSer57aK9p7VWZHRSVPZyDEtPFqfJraWRz+TlYdegnAuCbJ7k4Qe4N8nbtlSYQVMK7hyjNYYEvb7ffF2dclcLUBp7Nf+reW5b08TxWuwanx2lU0ou53WrLFvVsB+B6Bytqh9Y71XtXqUr0xWsKzWKo7ag7Peh6ddqztaFlbdrWAZgS6q373fKjefnxH7MTmGVlE9puyAmdff4ZHVSTRcFGrSlCoZgIU7BB12eDKfy3j7wLlhSsZzhT/rZUU5LBHCGhznB1A1aGyQIaQlcvtB7RBUkKnsfY8EHb+Fx0aTMnL7gCXiX5V6f1XvjdtxoVNIlqOdcLCAteUQGec/KGsdIc40x1B/da6YMwUVBRldg6Z0y8wPisuDe9Co77+ze0iVNaRXnHc/v3p22idfXV1YuWodWNfU8xIXWVeq718qes4VNTUa0c5RmSxTMTztT5fWzQt97V6aUfqpnAELQ62UywyklYJyhfSEFqKosWNJFZeW90ErDx8gaVkrRJOctb/hhknAsJZrGvmsPeIirqoOOev5vz2Me85jHPOYxj3kM/BbAdnoysb7JMTA2saPP7srEUjvL0qm9sed7ZQRwrwfpneAUOA0BRANLwPHx4ydNxFxXeq3aaznUdzv6gC4qHR1TwtwZvVnCpz83/yIqk0zhzgCHcA8cGn3gJCBB6C4y4srz+nR6GV+3myaWDk3+Lbngk0faIESPdGU1asn0pjLj1lS2OVlQBR+OnpX9iD6ofzMMXPKUXM6wHO+cvVbzJDat1jlK5RIuCpLc0IfEBiq0BBjU4+ByvVgIzUW9qQj+ej1Tgp0x5dnSYoNzXC+Xk0XXYzxMnnqcHsMZAuWd4H3kerkQQmA/MvueGbUp6zhgtE5tWYOprAZKQfSuzOFoHMeG+hw7Y+/quRweqlYtzRCfycjUety9kt26LO0hvliozRoTJa3q0e6D2rp6/wwcedGlSKsN7Hr0DOro1JppvZGipjo7tFYGY2i9MbmtqczTqXaTWjLROkd76ye7dHaNwgn+nPMM76m9Uy25OBe9ro/jON9va4PedlUX6K10MqEMh1ODOGKsu5Ngixe9poP3XC5yBoGtKZGPjeHQOi2nf7+VSiu6ROomFXXiLN17EIKz+iCvbCMaSjUQlkUriibYmdLcGNXvqEy71loB5/3IUCb9noodNeCsNO1NnqBUhCUl7a6dLPEQUyTof3sJ1KHM/hiDfBy2OAnqtRcFyTJ0AXbsO86JLZ66VWw1Ws/oj+zEpOesd5VJ6zWiSdnrJZ0sqTLuxxm6NEbk6hPXstr1Eu8LPxyI1vJ455Ag+K6MeAiCwxZ/reGCJ6wLOO2/dggxBVsc6OfXwCrWgvqby7FReiMMvTduLy/nuS+1mu850Kt6p3ur3L79ThORu5zLGieaeOwRU5k0s4h0Y1GbBdJp7oEumPqZYTDtJNPO4L1TEI4uvGIMSNUlSAiBum9mLdHv7breC3h4fv9EHyoN7+hC0jtHx1Nbp5hsXrwjl3KGij3mMY95zGMe85jH/FbAFpRhqUXZrZwLM3HYe3t4M9niZHFEhIv1daakLGlKieVqnq027qBZHO/fvz+ZkWYBKr1pr6j68Dq9FLq+HBz6YF6bspgzDOYtyAXloDwKNEfXblfG0MoW781YpqBgiPDF0xescVUGrFdu2yvSPa+fXnh+fqb1TgqRWjL50ACXftOfnVJiXVeGVW70DjEk63IcdjxUutdbw4kyqdqJqzLlWit9NPW10uhDA11676SwUI1F8sao3l5vyr6lSN4PZqVMnIDtDdiaDPbbgKhaK99+++15nuaxm+cxxci6BMoh9BbpuSF94NzAiyd3ZYBLrbjg7z9ziNYZKTziskT1H9qSQ/q9BsePYAsOzi7Pa3T0oezpEgJLUoYwhEDAmwzXscSFrWZSiLSqidjBq1Q0es/r6yfqURQIBn1AZ2gIWO+VbS/kfJBs8eHNw50MvCr4h1KyHRsNEgsxnQzsrJiZCdBwlyavxiTPa/Pl5YXjOD4LtxJxNDRYqJQCtdmywuHFEyw4iYYueqoy/aMpkjqO/Flqedk1XVZ9kqjP2zmCTyCDIY7otLe3V7Tf1GTEDpXme++I0WswUu8c+439OM5U6ql6mEw6dFNbyLk0CT5Q2535m6x39JElpjMZXIOLKiUXhrdkXRGayaFTShybgtjph40xnvLVWpsx38LsMS750KA6q8MJIeAi9F7oo+h9OsA74ciZEDzPzxdVNBw3RLTyRvuCI+uaSOneUdx7R1RowO1202PZNQfg2PX9rnElBI+4zhh635VcuF4UDN9uO8M14hKt0kaZSgS6DJOHa4VO79qDHFxguVzoo3NU7dkeTkjXlRgCOWfysSsrbynGCryF5XLl9fbKtr3qcnGoLP+yXJl92rrUmOFdwyp6OiEohypyP8djqL0Ar8d923eQznDDFgqLhu5R2bfd7k1Pa12XVqJago8vH88+5tLKeZ/rB/2whYT5awWkd8TdK9se85jHPOYxj3nMX+753sB2PsSqbG/Yg90wgJtxTit2ogWyxBgJMSjLVm2z7lRG2Xrj5XYz4KWps4cF54QQ1ONlcrtgvaW9aS+iC1BKo9bMul6oXQNnukmWMflntYRPsW5RTVIt+Bq03sXAQS7ajzulhaNrt6y4ThCHiCdEz3VZWdaF1+2VsldGV+CZUiSEeAJHfai1FNeqLI8XjxsKToazkCnfSSlw7E0f+kaD1jWMJgiXRR9avdcQpClrXcNCvm2UXhGHen57o+fMCOGs/NC6E01yrq3hEJ6vT9wQLuvFklNVdjy6/lwvTs8lGuA0xqAbi0vw5O2gZZMUN5V2Hq3hXSDGhefLVTt8vRjTpimn/rJyHJm8q68yWHXSvmdaU6ZNurJx0VvCbDkYNEIKpGis6+gGkAfJR67L5ayRceuF9+uXlHwog2gVKqN3em1c1qteI1jgjLFiwWnKdCkqDx+i6gOse7SL1g4ll0hLYogCWGdewXIo65xzppTCsixcLpcTvM1Kl+A8Q6Yv2WsFC5oCXFszL6eC2+3IJ7DoHZYl0euh/mSnTHiuWqtz7IcdU31dmgis6dNjQDCPbYga9tVbtwCezhoTIQZePr1Cd9AGpRUQqFV7TGvJPD3rYqq0Ru16XKDz6dMHZgWY1kKp0kKDtszre4mWIO6ILp5p09558lFMri74oN2qI4yz01WrobpK3UXI+06tleM42Pedm0mXr09PzDqeybSvl4suIRCu68UYda3aEekQPdF+NTv+0zogAjFdeffFM6039v1g0PHBceTNJP2OPiq1N5JLRO/x3tF7sftfu7Brq6zLhd4qAViS9UjXwsuL1mCFFFWBIlpxBN6UMI2UNERKcLYMK+zHwSID/ODl9UW959E+v3Lnxapyem988803vP/iS2U3HTifeNleKOUgLkl9x16R4p2h1YXl09OTqgtyvltR3ADqKc0Gsybov5zp420UmigQ3Y/dFhfCkQ9V49gCMol+3s+fPW0Sb6u9VDWgLDtjMLp2NQdvv/eYxzzmMY95zGMew29Z96PyUscI87/lTAoFiEnlo6VVmvmrRBxtdHJt5FZV0iYOejP5ZT+TUSf7dXt9PT2Z3msPog8BGUKv2qPoxJPzYR2Xg1bymWjqndOHqzegO6WIF6+Mr/k8Z7WNyjAhSACvaaijgccRvD00yiCI5xJX6vFRy0CbKGgICm5nF6eyrV1TnrNWkNRxIEcmRA8mWxXnrAbIHnBFAYOIsF4WLCL59DR2S1r2KXKx/lLH7AcuLMuqDMcYp49u1pLMsJ9ZWQL60JhzJq0r3nte3evJ+NVajc3Sn3u5rHhRhjuXwmiVkBYWv1KrShBd0vdTeiGGqAE9Q2jVACUq6R69AZ51vZ4LhenV1ColiPbfWoWkgTutac+m95GcNXRMa2jUa0ntXJcrNVRq0bCpNjqtaFCOAvJBPVR+7BDonDVAtVarJ+mAo7V8HvsZ0KOM1HY+iHtjDGeg1J25vEuRQdnUeR+JeFt6BFM3DKvUceqbDI4h2D0wyPtBqZnR/RlUVkshLYnrclF7QNVFR+9N5aIjAsqedeu9VTm6Ywz1vtZWzaet91MpWbuQsdoXq3qpdZhkVQOQNIhIPzrme9V7XUPmaqlEr/fyth3GlnpSWs5r7npZWRe7rs3n2YqpMtBLX1PBBcHupaoe6Oty1fPc1I+fvCboeq99qF6EIKJJ4l4lyOrRV/B21IPWOsehXbpPT9eTdZ5sr4hwuV7Zt511UeAN+lkUQqD1QbMebhG1PLx/fkfOhX0/WFPgyJlWtbJsuVxoNbMmVaoEC34SdAnhxGsQXC14p/U8S1xQ6TnUUlSy7T0pRnqr2sfMZNdVHbOkBS92PaaFpydVl5jKW7tpneDXhRADJWiBbpCADP1cen5+MolxNgbVsW2arL4uujCZ96raPNQfHvw9OC+mSDTQOvOdeu9cl4tmHKAW7vmZ760n+vX2yhC1ENQxQ7sSTjQRWX3Veq63Ns5Assc85jGPecxjHvOY34qxHVbt4LvK/kBrIS6XK6+vt/OB5q0EeDCotRmjo7218wfrv1VldLxn33dqmCmYHvGiD/RuUIaGhwwHORdSEuI10mqnG0Mzxjilac0Se33UNNUxvVgmk57+wPmQ1ZoyjTL9oqgUEm2lwAmUo+Cd45KU8SyuUUvj2HbG2LheLqzrRetneqc7lbl288iJ+fxcUBAQUjjZ2trVz9lHI3oFJc0e2lq/exW1kzOcrHlwXjtQCYgX1uuqXsvWeXlVP6tf/B049sbry+spr3VOGZpWGykm1mU9Pbe1Fj3Ps6aGhnj1ei6yEqJ6hqU1ZfpQD2qpGUFrTbz3uAFuXbgsK7fXV2pp5r8b7MemPt7LYkwoGrJlULiNRt7yyah6H7hcIsO8yK6p/y9E7RqupSpb1vWhN4aARziOXUGceGov9DosGGuwt0N7YO1ar63iXDUQrexZjIGYLvTebekA3gfSsqoE1s757Xb7zFd+AqWhnbi9NY4j03pnSfcAM5X2RrBKllo0GEgE9v2m8vYlqU8Ylc6WvCMkvA9gvdD6Y4elmHcDioNtu1FrexP+pkFjKSYulxW6dc3GuzxdzAt9lEbJOz46XBBjoZWRXZakigcfzsVScR4Z99AoTdAVvR5MWs0wVtMWMzNc3SGnlHa7bar+cNqJS9Dvv+/KAAbnEaf3aymVbp7lqSyZva2tahqvOAXgKS7WE62J0N99+5GBVn7FlMxz6vjnf/QLW4y5U5IuAk9Pz4ho0nHwDunCftsN5Ktser+9MCys68OnDywpscbEh9ePp+ddnNfQqCYElwhe8JLoFVzUJcbr7VW7fQWergvBjkGpleQDe6m0rqF8MQTKcSDOnV3KyXlG9GAy5xgjfWj/LqMRvPrFh9cFhvY7KyAdvbNtr3b96/H88GFT5tepImSGlnkftXO76pIO8/CuMbCkRUF7a3ZtziWPo+5F+6OdBa7VwbEftDh9vVpF1pqjV70Pcy1ApVYY/eGxfcxjHvOYxzzmMTq/lcdW5ZXH+WCrrFajd05GcIaqTCA7axvgXvsxN+8KIKzKByzwpJ0PrbUWQnIkpwwdoNLR5DUV1XnayLx7fs/ITesoDIg0Y9SaARYfvEmTHcFY1QkWZ4ry/Kd3nuBUSltr5dhVeqoaRMfTeqW2Qt8OhgjL9XJ6K7/55jtLFQ1n7YuY5NRbbZEMDYHy3oMb9KKMmHinnlo3uO23kxWcIFwZKa3laWNoqqlTn2UfjduWjc1QxqfVesqklZkWrvHCEY7PfMwM2Lbb6bttrbGuq4IrY5f3bWO9Jvbj4DiU8eqvKgUV8TgtH9ZeXAY57/RWiT4gaJiMw/P8/AQIMS68+/IrUlpY15UPHz/y85/97HzPQxT4eucJ6en0TE//dusaqpRLUSbSR7zA7VVZ58uysG03Rut4JzicPiCPjgynLF9Qhq9pPC8dq7UZgrhBiHrd5uPQPtmq1SeT1e6jcxwHIvfgoXn9neDwjae0D624GrbcuVlIWoiRPgYfX180RChqFUpwnmPbIEUN9qmV3hqXy6qS1NedchysqwKAZMngIFbpUslNWbe0rsShCgVVgWrSsI/BUp2ryvaDArU2A7HGrApSCX1wwnpZz77e3sfpnb1er3rves+omlAefLCApM4t387PgRQTxa497/S69qYK2baNYzfJalN/+QRNAOuifaulFPJx4EPg6elJl141n75mDbSqzH7bPpqeE+fuqdZDu4THUAY2mX1AmU3P9fp8+rhj1Peyrhf7LNPlSclV34MLM0gasR7X0TvRR6JLUKCXQa0qe45rovRO3uq9mmk4ai6kpODSi8c7YdgCIB+7+ecdDF0eObu3EUGCpiGXnLV3XKoyul27nmvUvltQv7gPzqqJnC7xvNB6ATriYF3SubDordNa0Z+bEhPYas1SPyXxKSWzAsi99ipn+jB2d6jSZ7ttIIFlvajMf0zQK+StIN1xvUaeLk98+vBKPRzOX/A94Z3jy/fXc4H0mMc85jGPecxjHvO9ge32up3+tRgSwQf1viXzZjlvIUqiaaAMfSB2KvU88qHSPQsKcc6b11Q7bXsvWsdhHbkKXgrDOQrlDCjpveKDZ9sO/uAP/h1+9atfUXet85j9qikl87hW1uuqALg19m1TyVwMlN4QPM3ADCJke3AebZxsrsApl7w+X61qBLwEvGgNS0dl1eJAwj24KueMdAUTM8WZMRBvoTC1KGNb2xncE2LEBw2XCVHlmz54SyIVrtcnSuv6YDmUcbpeLnz6+MmqltQLve874gRkcBwbrUVSWnh9fQXg3bt3J+DQ/txxgufWO8V8dVOKHJLnyCqZ7WOoJ1KcBYh1xrAArRYpebcAGg3E0vMd2F439Txer1phM9Tnm3Pm2A+G6M9Z15VjP9j2zeTGgVKUJfJWebMs6s2O9mDfWlGQidbS3G4bMga4cU80FsdxmEzzclHPaK3aQ1s7uRRCDCxpxXntHHbO8fykS4haii0pVF2g59kSiUM4lwAwvYHjTVhXONnElBIl6/Ha9x3OcCpNmhUJ5LxDjIToaaWqX71BbdpBuqyJQTP5dKf1ATJodSYJNwM/GuwW4z2Uq1b1RYeoXaO9V67vrmyvG7UXrtdnjiNTSmP0QVoWlvUKNPrIlEOXTNeLSslLKbTezF87GE097q0Vtm07ZcsnUyly1hyJaHpuqYWjNmbV0/XpSQPSakW8SmiDSZp1KaNVPhiLitVnKeiubNuNZUk8PT8DUGpG+6AVrC/Wi9ta4+kpnOdNQbCeh7SoCmDWYc0O4tYGpWRaa7oQcl0rihBdJOGIPuIYdv069i2TbLkSXMK5SD4qeS90IET17GrPs/qPvfesaWXbdFnTulk5vHDkorVQTcOr9qLX//PzM0/WBz3coPZq10On93JWqcUY8A6TYQ8ulydut8OUHIFWq3p7BWLwrEtSZUKLmjiNesPVX5/Uu41Qi36GlqPRq7K0syd8XVfytjFweFn44t2V69Mzx1G4XC785Cc/YVkWfvXrX/Hp4ydCjCxLYl2uuPrMJhq2lofWJ0n73v/z9ZjHPOYxj3nMY/5rHOfU1vbbzAD6n6HEkvz9bUff/8mgubP+JEgwRlQDW4ZXiXJYLlrfgMeNoimj4pDhoAq1aI9rSpFRHaU0mjPpmlUGpcUSeal4B7UpK9hqVSmkDMQ1fGv87B//YwuHCupzXZMxSeozdB76aPSqAU1hSbjgud029ryTe8Md+9n1KWjtUAzq2StNU1adaKro9roryItRA1vwvH96Ov3H4Xo9WdDL5XICmTKaVtrYSau50Y9CjEnlyD1Qt0GhUoqx2aWSS+b5+Zkv3n/BGPDp042BMlufbjeCV1akjUEKKkv2VuuTzPsZU2Lf1FsZgseL1srkmU4aA+8uF3K4M2JOHNEl3GUF0FCilEB04ZBkxVu4lAve2PlASpHb7RXvo8oMrR84pcTLx2/prfF0feLj60fCsiBlP1niIYN3X7xToCqO5ZJ46lc+ffzIsKVAWgI5V7ZN2by0Rmqpd58fgxTdyfpFu5ZiDByH9mR+eXlHqV3rdtAaHelwWVZkDC7rhcFgL0Vls0OPd3QB4kIuhT7g+foluapHtfdObXoDa/9sIAYDucbUt1JZozKv6n9MKvUdbztvIed8ysRBgXulQ1fmkhj4+PrCErQ3eonLyRiPAYtJzqPTBcUaPD1jlUGaDB5C1PsW/Zk+LTgZrFHPtxtwSYnratU0PpjnslAreJ/wXmuwaqvGSjoC6k8vh0lRT4ZU36MLjtrVn/uab8ZwKmvbeyfXjHeeNWhAmCRHXK+U/WCJEKOmjL++qA+zuk64aljWUbP65EfAReEpXlmWhSVFcimUrl2r4h2OQYoJ54TRAgOIfqHXrmFetdNG5/27d6es+TgORuunNLm2ZjVJAx8HQ7Jem3kg4gFHDAudzrEf1No5DFT2OnAGUofo/RPwljZfWVLSJeAQPnz3URUIlwu9QQ+RVjptODoVCULtFRysT1p5ddSDgdWIRVVQjAEpLuZ9F5wElsUT40WXNrmTJJl6AZawsgS9qMpeqOjnYyuDUeEohy3kVkbS9xxToraDv/kHf5O//tf+Bv/5P/5Dfvazn4HZUaQLa3rSa2x1xJishkqDAn/zTUakUGvEhy8ZA/YN9t0Af1rp4nGLKlKqOFuiPuYxj3nMYx7zmH9d83f+1q94fsqf/d5/9B/+Q3709e1Pfe0/+c+/4De/vvyZ3+dXv7jyH/+v//af/oP+/V/L9wa2YwxlEy151Dk5w3Yw1kfZJpW9EuJZG1Es5XKMbn7EwRiVVptWQogycWN0k88Gla467Xela2iURO18DKL+PQGWGC1ZWaXSKUXzeVk1hknVpse1Dwgp8hQDYnJdEaF77fFUcCcQEw59wKVrT2Q7mnZAaqaTgpFqP6MbIAwRGZCPTDP2IgV9YCxZ5agxREoe+OH1YZJGLYUyNDzHeUdvHe8C++1gu/3iBBf7tuNRiWBvnWg9q2MMS4ZV/+kYUHoltnYm1w5AvCM4Ry3KprnDs6So3mkXzuoU51V2u6REdZ18VKb0PCV9QP748RNjdC6XC6VUZDjePX+B0wYmbrcblUL0iXW52FIjWcpqo7d6SkzTkngemm778vpJfX0hcLksupwwtg0co3uQgRNY1gSISa05K6Y6C8uiHtYhAxdUSl5aRiTgA4yhstJmScDp3TtAv8d1vYCDgCN6z6ga9iURqtJqPF0uJ2s+Q5T6UKktA2obWCsV3geTjN4VCWnRRcx6uXC73ZT1RyWmrVSwLlaH0Hs7w5e8CIstP1RGa+wnnrA4BZ1jAFoXte87eT8swVtDjWSYRN07vKh0drKvE1ifx7LdlwdjKOhEnEl+HbVmXm8v5JK5XFau1wu9dFoMDOsf9ikgzuFsQaayb1V6AOqlrpnjOLi26wnsl5SIa+KgU1qm5Y6L1uOb9NwjENeIF1NEmHRfHBzGrM7wqwH46DVoyyqxgg+kuHArN0s8DoxS+PTp0xkeNpn2GZzlRLhtG8sSEekcx85xFPN8zkCwxugQQiIE7Phm8n4QvSPXzBjKrr+8vJBz5nJZKGWjj07rTpUDvdGH/vzeKtu+Ix4qlfWyWh+wMrh+CNG6pmfFj3qhVSbtnH7O5qyS/mrLpf01U49+dirPELvr9cp1fT7TknsH5wNrVItHsFT7UjtuBNZ05dPHxj/+R/+MX//6O2rR5Pvgtee2o/Lt1rn/N+CcnMn2YwhaJ3RXaNTWzAPvCFHT6jUt+wFsH/OYxzzmMY/5L3vevzsQGZ/93r/3B7/hf/gf/KM/9bX/rX//j3n/7vjs9z59SuTD87/4n//77Psdbv5//z9f8cs/vv4FP3n8BX/2L57vDWxLzffOwwkGR+PI9fSULsvC6+tOCJF1XTiyAjTnplwZxKn/cvTOuqzm1dKHzDE0xVfaQKTTO+y3wu/93u/hnONnP/8ZX3zxjpz386FcJcsHS7qcD6FhygYtWVks5Vecp7SO78oSMmBYCq8GnoyztsQHZYmbsWnawqpyR/2ZXXtFLRQlZ2Vs+tD0XecdKa2M0el0kgssl3hKHhcf1Rs6NPm1dVQ621EmCCGGyMvLC6UW1mWlj34CFCeO2+sr1/XC09MTry+viAjPT+qVy7UwnFY+1trY9oMYErUo0Ky1afUJwnbTvxNi1HTldQWaMVWVbcvEmCwUC2rtupho00caGKNSciMm4faqPkDvA+uiyxB/jbZkEIJf2PYbr9srYfX00pAA+XZQ98y2bYw+2EVYLwnxBsyHehZTipbMOvAOOyeFOjq56HV6uSZiinBoKpHz/qwR8R6Oo+uDvwH/KY8/jkwfg8XkrbUe5L0xigaazRqrbd+orfHF0xeatu0sLE3Uc6rBXgGHUHuj9k4Xfe0aWqVLChFh33Zl15wnhlk5I5+FUF2vKvt9eXmxa7NYR/FCMYDLEJPSzlRmS0N2gBiYqI0xmjLWJpVW/2g8pefTF/+2jxeMMY3hTP2eEWviHct6Udl7LhQaLSubzem7DJSqKgyJns6gFk05bopyiMHDiDgB57Ck3EHulVo6aVnYj51klTkT0E1Z+LtlwdFPP+xMWz+DuYDWJkBtVk8ziNFrpU8fSNB6m5eXF46S+fKrL8/6rttN07C//fY7np+fqbVZGrWjlAHDkpObBktdL0+0pmFIpWbSoonGT09XWuu8vLwwBnZNRQbBwtMO+7yB6/OTyqWvmpCsYWC6eMot0qoys0t6wlkOQiuVmtV7HvxFrRu3ndt2IwZdbiDQu8NJIIWV6/qe7gR5U9mUc6YeDulWZ9YXrcrqHjEWuORZE+QoTUHvt7856OMFoZPSap50PZfngsSujSGW/f4mcHBmMug1PHuBVT0gor25b1Uaj3nMYx7zmMc85vuP94P/0X/wj4jxz5b4Ojf4n/6P/1Ou1/L578sghD+bPu1d+D//n36ffVdi4v/wv/13+eY3F0px/6pY9bea3wrYKkumnrj5zxiiPSR1ct5ZlmjgoOK9Ozs+j6OwpMD1siizIJMJyXivfq/WhrJNNJpVSKyXCz/4+mteXl5orXHbtjPsRNmiakFSCmZnaE9KyfoZOcGkErEJjIkK3oOxoyJC9MHea6W2rmzC6GcdzbIup49S9GkM5wN9KGM7RHt0nQ/s+0GMK85H3l1Wasnao2t//+ydHIM1LVzXC37x9FE1/KUUlUHiWC/PxJjY9w1CYkkLpXRKaexkwJEPlUzmQ5NHex/0IOTWqa1xu20EX5EBB5qg60JgNNj3TAqJ3PQhvVWVDh77C9frFUegZJVIJwO4rcGSNESn1UHwGv5Sshqrext456hlWHeovAFSKgFewkKQgF8cXoJKW8ew2iWhlMzt5ZXc8+kLnJ5R7d+F0jWJdqBMdxuV0oTStHZoGLjRZp+maoZeQSppsdqRDiLKUIJ6CsV0D6NVeq2E4IlB65iCE1IKrJL0z8s9Ubm3huuD4EWvn9aox0EVLJjMUce9BzTGyKdPn4yNy0gxr7P1ObfWWC8XPn37Heu68v75mX3bGCYB731YYvKqjOG41wyJOHLeWFeVGGvom95voGqKeXAmmJj/nKB2SqWd0wqiRqf0ymh67e71UH+71RApw9sQN7gsC84H6xrWiqU+FNJoLZcnxUD3eo+tq4YClaKJ1CEoGD6KLQYO9Y3HlEiIKhuWREiayBvGwFkwV++cgEiXINP7LORc72x0bWgZtDLv+SjndRBiPAFvbarWKLmc+QC1Npa0Uhs4vCXAV3KuiHRy0s5dfW8rte3UBjEkjkMXVNfrE7U2C6RyhCD0caXVQuuDZdEQt2L9rut60QVUUyAdgqYhD6Cdy4qoPpUmdBLr8kR4fsdlbefnYQj+VLR4F8EHu6YGLZsqh4gMwUmyqjVT2dSBcwFn3mmx62bMeiYnRJ/woZ+hen3okkYD4bgraWwbPAPV4P5n97osXSjew/4AxmeLn8c85jGPecxj/rLMX/nJJ56eyr/4C4H/wX//n/B3/uav+Od/9Hz+nsjg9//adzj35yPOX//iAqhk+Bd/fOU//l/9nb/w54wBf/hP31Prv14l1fcGtl06ueWTSXLitLdT1G9WeoHhiEPDoFQO2SnloPdGCNYRScc7rc8B0Y5Me7hxjpNZ8d4TfCTvhb/39/4ex3Hw/v27szvxOA6iVWKIqAcu52wshScXBZETTDnnOGohRfWaquRXoDt9EBftAN33XZnelPDRk1w6q2biEk9AojUUnCm9b72Rs/91VpOMUqjWdRpj5DgOylFO5julhA+OSKQNlQ5e1ydlGF08H+C6b6xxRbznKJnr5T3BKmtivDB653bTIKi0LpTW2evOZV15en5Pb1rhse8Z3yGZVFTwXK96bGPUqpXeGq3BcdgSIGj6sfeRMaox1Pk8ttE6fGdtyxL1GNSiycxjqHS4j6F+6eCJi/qQg/kGu+cEUSkl1nRh+E7pGedm4FihtXrKYCdg8cET1wR+Sj6LXiujn+fl+nyFVs2n7WA0A3mO4BdaayyLyp2hko+N7fWeTv3+/XuCD1zWhC+iqb6iEldQsFaa1vQ01xl94JfAdQnUPpjP7rfbTc/Roj8zWOCXqhcao6k/PIRId55eKs/Pz+R8kPeD7fVG7eWsl/E+2H0jZzq5AoBG69oFrZJUswp4BQMxemPAFKjM1zFf07x39N7UZOtCYziw0lwD64EQvYW/CX503OianD4qSD9DpKbE2c8AMKeBZ9MbH+1emAnqIuBFWNcnBCEt6WQIHQ4XHKtXv3LZNw0rsL87mefe+r2OyjkQvf+DD+oJLgW6KNgMiZQWZa9b4/ZqUl1jhVXiO2AoGJ3fcx5jHxzXsFJqQeTeHzuGJsAHn3h+fk+tnefn9/pnXc/btu0cTa+TWnTZonF8ljHgLyzpvd5XDfqIxLgQzX6Rj2y+aTtn1lm83SZzrlVevRXoHgf01qndIcMTXcKrEh4RcCFQa9FAMqcBcGFZqK6enwma1qyKG+ejLQM1Gnr0Kb2Xey/xxKHDvs7ppfRWpTBD9sYb0DtwxtI264y+nguIxzzmMY95zGP+rZo3eHNdKv+z//A/IYZOMIb1v/d3f85Pf/zy5//1AaV4vv1m5X//v/lb/O/+r/8uf+//8tP/ql/1vxHzvYHtuly1Esce8rVqoyLiOA7rlfQq45sPxTNISSXMw1jdrA+dcq8Amlv32+12Pjy21tj7QWvgYuDdZUUEcim0bsmbrZnUtvC6HecD3UwwVaZIZbw+KKPyabwggoJyROXHJsG0kFWtHgnhrG25XC4nmJ3SaU1KHixpZVwHnz594sOHD3zxdGUIrJdVE0nN/9prI9dGK5V92z6vQUIYbZxJoLWWsy4oheU8Tl6q1qvUwm0/eLpc2LMycMNAqYCG6WyF2zhI68LLyw03hFq1NiX4gAzh9UWliSkoa7gY0JogZF3XE+zog349FwvTf3ccqqlvJukF9YSWsp1gd9u2zxKDl2Vh2L9LF1purOtCy3pe66h4CbioHajBJw1pqoPoF56uz8oElUJY1btZataArFUl6e+uT6e/0DnHy8uLgR1Hb5kYA7U0kycnRIYxjnoNt3Jwfb7irVM1hKj1QCmSW6X2hhOoAQ4LsBIvsGhnssRwpgE7BDkareq9wND6H2/nP4TAse/qLxdLeh6wv960Zgr4+M23yrguWZl1r8cRe+AXUR/v7baRUtLveRSTMHvzTSoTq353fQ2l7Kzr9QxJSinZsiGc9+r8fnFdkFHwwWk4maUrt67nvpu0vzMo+2ZSYr23np/en+9bhlMQjKdmrSRSr7D2mA4DPSKCQ0gSWc2tPPbCaA1nC6RemtWEaYpv600XRabWKFmTfXsbbNtOCJ60anDUYculkqs1zs46qU4tndIaYzicu6dKi9x7jXvH0ooLMIgpcI2zgmac1U+1FvXSdjj2zIf+wuXyDoYn58K6Xi0AD46jEuMTS4oaqOe91hAle/9dQTtW2XTsnWPXlGAnyswPUxs45xEc3aqAnGjt1RJV1iwiYMF/Dls2zkrhoR7oEJyGf41mlUID3T1qlRC2zHLiGGIhfJbC3EwtIeIsof1zdtUx8E6o7c6gx+jQhWe7K4OGerBViqysMpTzun/MYx7zmMc85r/pI6WdgNbtBTHipsng//i//Bv88Ecb/5P/6P/N1z/c/kxQu2+Bv/9/+yljwGHe1uMIvLzE/1qlwP+653sD2yNXC48ZLEtCXGDgTWYmxJA08bdqB6L3+iA3hj2kmHwsxgV7PnojT9V/f/fuC5PyZQuCSic40AfVQW3lzhR6ra1Z1pXbqzK2oCm+pRRSSgrWeqNlDZCZ53bbNhz6sHdsu/nYrgp4nacYg/buWZnTkotJmfX1l1IZ0vn46Vsu6wWRzo9//ENLyW2UdhgrFNlzMemyvu/L/7+9c8mtJSui6I44n8y0/aDeU4kJIObA9GgxNyQ6iEEAJQH1bN/MPL+gEXHy+kE1qkBAWRWrY8nf65u/s09E7P2oc3PRWkKZdSb3cc0AE6hMcd/Qh4rG3ppmPBIhryueHjNaLZCuztSzPZitzZc44Gl5wlkKaimIIVmW6kB82FDPihwXy7qUazYzpYR1Xe9Vablnsg50awMPIBKUcqK1ipyTLeK1IsxgBGLQnI8TYLR25VxKn7OwGXnZ0HpHG0AtWjknYpRnFXUxBY0Bshnu0Qae9xcwa3xIZN2ASCEh5XxVddABEgIJIVDAljeUciJGRhmCarPhy7Li6ekD9v1AShG32w0iwFefPmJdV9yOHbGocAg2p9v6sLirjr2dkMjI6wKy/FgQYQTN4mVrPw4NCEJYUgY/6NyzzohrRTmxZdCSXC3GFILF/KhxFseAkCK2nMCRrtlRZpsXF62eTRffZVkAe+8AmLgV3G47UpoCQatvi1VC13W9jr+IXCIYAPKacSs7SjnBFBBIK7Svr6edz8nOacEYKpzWxSKArGKX8wpIQTkLml0juuHBSDFjdEGp9YqfAgjcO1IOAOm1wMRIa8Lr35/17xHAIgjE2MsBgLAscyOFbOZ/06isWgEWG4M47ZxTAR1YM5dVjGo+97LoptbDplnB+3HozDKCZpmBrWMhWvVVncJ146Bfc8sxJGzrIyLr7HpeFhAYKQKtNghlPG6PWLIASDq/WxtkmLAbKrznnC0AsE5SAND231kFZbaqvX7XFT/25ew27H4+wCzQRuI+J18BwK5FVbsiGuczP2cN3xAC2hC75+hQv2bizoxbst9Fdq5/OZujHRcz7kqu90tfP13dFhj358UcD1F178rWcRzHeWcMi8JpA2wRilQHrta+NwiAz99mfP4247e/+TW++njil7/6279833lG/PEPX/+kROx38QNckW1GigAiXSC3NqxqobmM53kiWdSLDMLoYosZNcYBadvk6ANMZPO56vgqWiYAczRBrCJ4Vhp01T8QbNY1xoghXfNUU8b2wOakzFc0iToQRwRom/F5nuijXwv8kBICM/KS0CqhtYpaWcW3LSOP2w3EfOU4lvMAoOIL0Eza2/GKlBM6qhk3FZz11DlWVtfVIWLznrqorq2DOGDIQLP51XpUy+DtWv0SwRg69woOCClbG+JACAmQjmVZr/eKiMG2eI0ccZ4q3p+2J5RSsb/csKQVa17xuD1CrFpdy4nHhwcz2SoIMVz5pgC0dZV0ITlFrWb/dnUXhpowjTEgXSzSxlpGoRmdtXarHGp7Y2sVQipOYZWYvAR0aw1trSNCNxKYCcdecHt9QcoBS86oZ8HL81+xrto6SiRopaH3e3xUTEndu0PQKKmg1fZlecS2sS6cITpjDULOCUQaE5PzgjoG0rohPz3h8/MzBggSEwIRYkjg3rEGQsgJy7JopWpbr1gsFWZynUvoKhSjVfLGGKBMX7ROCwvOctoMeTLBqcdpfn7bNnAga4tXAaHt49qJMCvVrXU9RhapNGdO9WsDy7Ji2x4wxYFmpIarUjt/7xQ3x3nDUQ51EwargVpICEIgUrOs0fX/4pARU9JopcNykq26N4+PdDV0C9aqfh7VTLeyCS59n4LNHJ/neeUw8+srUkqo3C7TuG6zIrOdeooiIro6C9Q0Tquey7IiR8HLi+bEBtaNAt3IGYg5Yds27PthWcAROS9X18LckMtJTfWICCkuCDFhv+16DgbCkhes64ZWCYG0Rb2dQB8dBAbzCukJZ9N7KgegDwZRBtnmQbOMX6ZgRVL1E2a+CzutcOIaXbhvGn5xJ786J+ZHZj0/p+acz9W7sJ2ff7M7B9zvaTZiYj+FPtSY6zuez9/xXJkimq7XrK/pfo0wW/WZGGN0kAlfdeh2HMdxnB8/fLTrActn1RgN4AcL0b//bcHvf/fTaCv+d/gBCfcqdgBYVUMdVwGdjW1tqMtpsNY0BjSygcxISD8OEtTakNYHMCddPJnxCkTjUSTrvNoYOgdLtnAFEVJOyIsKiTF0AVtbBbHmKM5F7mwlbr2ZCFYnzpT0NU1354GGFCOYE2op6NYWF0MGiaC2hk+fPgIC7LddRYO9jgGtJO17QYgZ+76baZVmrsYYVdQIA10AVnfeMVRUc4yACYja1TCLY7SFIuyjVljEFtLqwpp1gWd5maWciBwgUhFYj1OMAdJVSHdRl9otbxht4NxPJM44jwMyOlrdAWjffkoJeXlE72p8w0z63omKeJF5XQpCmNE142o7x9B5OL4qSXOzQWdigY4xGkKKGABq0yrRrG62PlCbmgyRaKeA5vUmdCmoZWD0ilK0SkhoanjTGmIwYc8aXTPqQGn1zU3DalLhXmWLMaBWNfIRDKybGoS93G7gmNFgLsMhIuaMyEGPWVXBuLHKY8xqegygLgikVTAVWQOoao42uwrmnHjO+TI9izlh0FCDMwClFjQT6suy4NFyVdvoYNFYommE1FpD4IR9P3AcBz58+GDHSc29mMhaprvGE42BZWFz21XjrfM8rWKt3RKzgjarab1X1H5qZAx0E+MsFmmTMnptGL2j9oFBghgJACMvq73ehmK50TknCOl8+FnVnTvEgN4EvanATVsEQVBrwfO56/9JQEwRQoT4sOL5+RkpJmyPDyjH7RLxc369tXaZZ81Oj/VhVYMqIuSUdbzAzpHW+jXCkIMZ4Vk3Q4wRT09P15zwdPvtg3AcJpw5A501D3kwehdIJ5QjYPQBQKupTDpbCjNcqmVWYROG6KbXdH2HvTdT5GI2TpvT8FtROMcE5iakXNXNtxvBdBl96ewsQ7pgDLZWZLm3Q7HGZKnBGsxpWmyUXu9PxMHmbAEGXzO2c+D+rVD+5wrr3JiZRlbM4e1XTcwK+mj2vdqRwUFnyH/yW9OO4zjOjw5qQ70lWgefljAxhj+y/gd8b2EbQ3qzgx4RQkLvu82oVYQwrBWSrMUNXyxYWhtWSVIxJgJr9xvXYmwuIGe1aFTNIJ3tkMQwwTQXcNMBVa6Z1LmIm3O+b82IQmCrDqtQ662hm1LrvYPEzIuIkZNmTrZa8c1f/nwtZHPOYA5otSAuAYKObcso9cC2ZbTeQSSIicCsjsCJApb14ZprhC08W79HsxzHCaEB7MGqdfdMWRmM0zJxKUR7vzXLt/euFTxoVao1zcQNkRGzxmOcx4lyFHz48DPkoOY352239kBt0T7PA9u2IcaA202rYSDBMdu6l2x/47hmmGu9G2apkRcw2oDa0lglyBbXZPE5pRTU1rBsD2hDc0XHGDhut8tAKaSEXoo60cYFrakDMrO2Z5dyIKWAZVlM1AkiBZuZNkOcbjOjISNY27CKQl2h19ZRihpRxajV+pjMBGo0lAIERHz6xdf46tNH/Ombb/D55Rm1FKB18AAyB9AYgPQvTJeIGFJV0GprJRBCNqfecc1/zoro8/MzWmv42Vc/h4R75bRa3NQQbc8lZtxuN+z7jtF1Dps5IISIbdtw7AWt1at6DOjM5u31sI2gjt6HxQRltNpxux0IQTNf912DtGcr8zQGUwFd9NojQasnetP2YaKAGO3cOPRn8rahiUb/RA7IUc/ZbjO5IWp1tw4BEa4uA23NZcSgs9kxZNRRwTFBAgMykLIaZfXe8XLuaCQADfRjx+vzZ4ze1cl7ZgVnNX/b9/0Sf/u+W+xTsHOgI7J2mkTrAEkpIy8POM7zmhWf3RRvK9lEASIJKT7ova+LtSgHhJDVuXmIukhb94WaI00Haq18p6TOzk2q9hGQbhyRVWBr1fuKdkvc78vz3jkr8fO80utvRuN8aeev4nAaNenXpeu8+6zKzt8x24K1Oqr39iE2MgCCEEHMgRrEoBhBpOMYkPu9dvIvLsZD282/yBuf96VrHEKshVne/K9kr+17PsAcx3Ec578MHxXUhs7LDlex/w9I3q46HMdxHMdxHMdxHOed8f8NG3Icx3Ecx3Ecx3Gc/xAXto7jOI7jOI7jOM67xoWt4ziO4ziO4ziO865xYes4juM4juM4juO8a1zYOo7jOI7jOI7jOO8aF7aO4ziO4ziO4zjOu8aFreM4juM4juM4jvOucWHrOI7jOI7jOI7jvGtc2DqO4ziO4ziO4zjvmn8AopvDGfzFCMoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot results\n", + "plt.figure(figsize=(12, 6))\n", + "\n", + "plt.subplot(121)\n", + "plt.axis(\"off\")\n", + "plt.imshow(image)\n", + "plt.title(\"Input Image\")\n", + "\n", + "plt.subplot(122)\n", + "plt.axis(\"off\")\n", + "plt.imshow(mask)\n", + "plt.title(\"Output Mask\")\n", + "\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/licenses/LICENSES.md b/licenses/LICENSES.md index 670764a2..e51ad8d0 100644 --- a/licenses/LICENSES.md +++ b/licenses/LICENSES.md @@ -13,13 +13,20 @@ The majority of the code is licensed under the [MIT License](LICENSE). However, * [segmentation_models_pytorch/encoders/mix_transformer.py](https://github.com/qubvel/segmentation_models.pytorch/blob/main/segmentation_models_pytorch/encoders/mix_transformer.py) * [LICENSE_nvidia](LICENSE_nvidia.md) - - Apple License * Applies to the MobileOne encoder * [segmentation_models_pytorch/encoders/mobileone.py](https://github.com/qubvel/segmentation_models.pytorch/blob/main/segmentation_models_pytorch/encoders/mobileone.py) * [LICENSE_apple](LICENSE_apple.md) - BSD 3-Clause License - * Applies to the DeepLabV3 decoder + * Applies to several encoders and the DeepLabV3 decoder + * [segmentation_models_pytorch/encoders/_dpn.py](https://github.com/qubvel/segmentation_models.pytorch/blob/main/segmentation_models_pytorch/encoders/_dpn.py) + * [segmentation_models_pytorch/encoders/_inceptionresnetv2.py](https://github.com/qubvel/segmentation_models.pytorch/blob/main/segmentation_models_pytorch/encoders/_inceptionresnetv2.py) + * [segmentation_models_pytorch/encoders/_inceptionv4.py](https://github.com/qubvel/segmentation_models.pytorch/blob/main/segmentation_models_pytorch/encoders/_inceptionv4.py) + * [segmentation_models_pytorch/encoders/_senet.py](https://github.com/qubvel/segmentation_models.pytorch/blob/main/segmentation_models_pytorch/encoders/_senet.py) + * [segmentation_models_pytorch/encoders/_xception.py](https://github.com/qubvel/segmentation_models.pytorch/blob/main/segmentation_models_pytorch/encoders/_xception.py) * [segmentation_models_pytorch/decoders/deeplabv3/decoder.py](https://github.com/qubvel/segmentation_models.pytorch/blob/main/segmentation_models_pytorch/decoders/deeplabv3/decoder.py) +- Apache-2.0 License + * Applies to the EfficientNet encoder + * [segmentation_models_pytorch/encoders/_efficientnet.py](https://github.com/qubvel/segmentation_models.pytorch/blob/main/segmentation_models_pytorch/encoders/_efficientnet.py) diff --git a/licenses/LICENSE_apache.md b/licenses/LICENSE_apache.md new file mode 100644 index 00000000..d6456956 --- /dev/null +++ b/licenses/LICENSE_apache.md @@ -0,0 +1,202 @@ + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/misc/generate_table.py b/misc/generate_table.py index f14b1a3c..4e0efed5 100644 --- a/misc/generate_table.py +++ b/misc/generate_table.py @@ -1,10 +1,17 @@ +import os import segmentation_models_pytorch as smp +from tqdm import tqdm + encoders = smp.encoders.encoders WIDTH = 32 -COLUMNS = ["Encoder", "Weights", "Params, M"] +COLUMNS = ["Encoder", "Pretrained weights", "Params, M", "Script", "Compile", "Export"] +FILE = "encoders_table.md" + +if os.path.exists(FILE): + os.remove(FILE) def wrap_row(r): @@ -16,18 +23,23 @@ def wrap_row(r): ["-" * WIDTH] + [":" + "-" * (WIDTH - 2) + ":"] * (len(COLUMNS) - 1) ) -print(wrap_row(header)) -print(wrap_row(separator)) +print(wrap_row(header), file=open(FILE, "a")) +print(wrap_row(separator), file=open(FILE, "a")) -for encoder_name, encoder in encoders.items(): +for encoder_name, encoder in tqdm(encoders.items()): weights = "
".join(encoder["pretrained_settings"].keys()) - encoder_name = encoder_name.ljust(WIDTH, " ") - weights = weights.ljust(WIDTH, " ") model = encoder["encoder"](**encoder["params"], depth=5) + + script = "βœ…" if model._is_torch_scriptable else "❌" + compile = "βœ…" if model._is_torch_compilable else "❌" + export = "βœ…" if model._is_torch_exportable else "❌" + params = sum(p.numel() for p in model.parameters()) params = str(params // 1000000) + "M" - params = params.ljust(WIDTH, " ") - row = "|".join([encoder_name, weights, params]) - print(wrap_row(row)) + row = [encoder_name, weights, params, script, compile, export] + row = [str(r).ljust(WIDTH, " ") for r in row] + row = "|".join(row) + + print(wrap_row(row), file=open(FILE, "a")) diff --git a/misc/generate_table_timm.py b/misc/generate_table_timm.py index 6c2a1b24..8e875583 100644 --- a/misc/generate_table_timm.py +++ b/misc/generate_table_timm.py @@ -17,30 +17,68 @@ def has_dilation_support(name): return False +def valid_vit_encoder_for_dpt(name): + if "vit" not in name: + return False + encoder = timm.create_model(name) + feature_info = encoder.feature_info + feature_info_obj = timm.models.FeatureInfo( + feature_info=feature_info, out_indices=[0, 1, 2, 3] + ) + reduction_scales = list(feature_info_obj.reduction()) + + if len(set(reduction_scales)) > 1: + return False + + output_stride = reduction_scales[0] + if bin(output_stride).count("1") != 1: + return False + + return True + + def make_table(data): names = data.keys() max_len1 = max([len(x) for x in names]) + 2 max_len2 = len("support dilation") + 2 + max_len3 = len("Supported for DPT") + 2 - l1 = "+" + "-" * max_len1 + "+" + "-" * max_len2 + "+\n" - l2 = "+" + "=" * max_len1 + "+" + "=" * max_len2 + "+\n" + l1 = "+" + "-" * max_len1 + "+" + "-" * max_len2 + "+" + "-" * max_len3 + "+\n" + l2 = "+" + "=" * max_len1 + "+" + "=" * max_len2 + "+" + "-" * max_len3 + "+\n" top = ( "| " + "Encoder name".ljust(max_len1 - 2) + " | " + "Support dilation".center(max_len2 - 2) + + " | " + + "Supported for DPT".center(max_len3 - 2) + " |\n" ) table = l1 + top + l2 for k in sorted(data.keys()): - support = ( - "βœ…".center(max_len2 - 3) - if data[k]["has_dilation"] - else " ".center(max_len2 - 2) + if "has_dilation" in data[k] and data[k]["has_dilation"]: + support = "βœ…".center(max_len2 - 3) + + else: + support = " ".center(max_len2 - 2) + + if "supported_only_for_dpt" in data[k]: + supported_for_dpt = "βœ…".center(max_len3 - 3) + + else: + supported_for_dpt = " ".center(max_len3 - 2) + + table += ( + "| " + + k.ljust(max_len1 - 2) + + " | " + + support + + " | " + + supported_for_dpt + + " |\n" ) - table += "| " + k.ljust(max_len1 - 2) + " | " + support + " |\n" table += l1 return table @@ -55,8 +93,13 @@ def make_table(data): check_features_and_reduction(name) has_dilation = has_dilation_support(name) supported_models[name] = dict(has_dilation=has_dilation) + except Exception: - continue + try: + if valid_vit_encoder_for_dpt(name): + supported_models[name] = dict(supported_only_for_dpt=True) + except Exception: + continue table = make_table(supported_models) print(table) diff --git a/misc/generate_test_models.py b/misc/generate_test_models.py index 61d6bfd0..0422f230 100644 --- a/misc/generate_test_models.py +++ b/misc/generate_test_models.py @@ -9,33 +9,50 @@ api = huggingface_hub.HfApi(token=os.getenv("HF_TOKEN")) -for model_name, model_class in smp.MODEL_ARCHITECTURES_MAPPING.items(): - model = model_class(encoder_name=ENCODER_NAME) - model = model.eval() - - # generate test sample - torch.manual_seed(423553) - sample = torch.rand(1, 3, 256, 256) - - with torch.no_grad(): - output = model(sample) +def save_and_push(model, inputs, outputs, model_name, encoder_name): with tempfile.TemporaryDirectory() as tmpdir: # save model model.save_pretrained(f"{tmpdir}") # save input and output - torch.save(sample, f"{tmpdir}/input-tensor.pth") - torch.save(output, f"{tmpdir}/output-tensor.pth") + torch.save(inputs, f"{tmpdir}/input-tensor.pth") + torch.save(outputs, f"{tmpdir}/output-tensor.pth") # create repo - repo_id = f"{HUB_REPO}/{model_name}-{ENCODER_NAME}" + repo_id = f"{HUB_REPO}/{model_name}-{encoder_name}" if not api.repo_exists(repo_id=repo_id): api.create_repo(repo_id=repo_id, repo_type="model") # upload to hub api.upload_folder( folder_path=tmpdir, - repo_id=f"{HUB_REPO}/{model_name}-{ENCODER_NAME}", + repo_id=f"{HUB_REPO}/{model_name}-{encoder_name}", repo_type="model", ) + + +for model_name, model_class in smp.MODEL_ARCHITECTURES_MAPPING.items(): + if model_name == "dpt": + encoder_name = "tu-test_vit" + model = smp.DPT( + encoder_name=encoder_name, + decoder_readout="cat", + decoder_intermediate_channels=(16, 32, 64, 64), + decoder_fusion_channels=16, + dynamic_img_size=True, + ) + else: + encoder_name = ENCODER_NAME + model = model_class(encoder_name=encoder_name) + + model = model.eval() + + # generate test sample + torch.manual_seed(423553) + sample = torch.rand(1, 3, 256, 256) + + with torch.inference_mode(): + output = model(sample) + + save_and_push(model, sample, output, model_name, encoder_name) diff --git a/pyproject.toml b/pyproject.toml index 0e9310b5..f3e55a96 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -17,12 +17,10 @@ classifiers = [ 'Programming Language :: Python :: Implementation :: PyPy', ] dependencies = [ - 'efficientnet-pytorch>=0.6.1', 'huggingface-hub>=0.24', 'numpy>=1.19.3', 'pillow>=8', - 'pretrainedmodels>=0.7.1', - 'six>=1.5', + 'safetensors>=0.3.1', 'timm>=0.9', 'torch>=1.8', 'torchvision>=0.9', @@ -39,11 +37,13 @@ docs = [ 'sphinx-book-theme', ] test = [ + 'gitpython', 'packaging', 'pytest', 'pytest-cov', 'pytest-xdist', - 'ruff', + 'ruff>=0.9', + 'setuptools', ] [project.urls] @@ -61,18 +61,10 @@ include = ['segmentation_models_pytorch*'] [tool.pytest.ini_options] markers = [ - "deeplabv3", - "deeplabv3plus", - "fpn", - "linknet", - "manet", - "pan", - "psp", - "segformer", - "unet", - "unetplusplus", - "upernet", "logits_match", + "compile", + "torch_export", + "torch_script", ] [tool.coverage.run] diff --git a/requirements/docs.txt b/requirements/docs.txt index 072a7e16..b0c1d5cf 100644 --- a/requirements/docs.txt +++ b/requirements/docs.txt @@ -1,5 +1,5 @@ autodocsumm==0.2.14 -huggingface-hub==0.27.1 +huggingface-hub==0.32.4 six==1.17.0 -sphinx==8.1.3 -sphinx-book-theme==1.1.3 +sphinx==8.2.3 +sphinx-book-theme==1.1.4 diff --git a/requirements/minimum.old b/requirements/minimum.old index 1080bdb4..678f83f4 100644 --- a/requirements/minimum.old +++ b/requirements/minimum.old @@ -1,9 +1,7 @@ -efficientnet-pytorch==0.6.1 huggingface-hub==0.24.0 numpy==1.19.3 pillow==8.0.0 -pretrainedmodels==0.7.1 -six==1.5.0 +safetensors==0.3.1 timm==0.9.0 torch==1.9.0 torchvision==0.10.0 diff --git a/requirements/required.txt b/requirements/required.txt index e04033b5..72d32b16 100644 --- a/requirements/required.txt +++ b/requirements/required.txt @@ -1,10 +1,8 @@ -efficientnet-pytorch==0.7.1 -huggingface_hub==0.27.1 -numpy==2.2.1 -pillow==11.1.0 -pretrainedmodels==0.7.4 -six==1.17.0 -timm==1.0.12 -torch==2.5.1 -torchvision==0.20.1 +huggingface_hub==0.32.4 +numpy==2.2.4 +pillow==11.2.1 +safetensors==0.5.3 +timm==1.0.15 +torch==2.7.1 +torchvision==0.22.1 tqdm==4.67.1 diff --git a/requirements/test.txt b/requirements/test.txt index 5f27affd..ef6a935e 100644 --- a/requirements/test.txt +++ b/requirements/test.txt @@ -1,5 +1,7 @@ -packaging==24.2 -pytest==8.3.4 -pytest-xdist==3.6.1 -pytest-cov==6.0.0 -ruff==0.8.6 +gitpython==3.1.44 +packaging==25.0 +pytest==8.4.0 +pytest-xdist==3.7.0 +pytest-cov==6.1.1 +ruff==0.11.13 +setuptools==80.9.0 diff --git a/scripts/models-conversions/dpt-original-to-smp.py b/scripts/models-conversions/dpt-original-to-smp.py new file mode 100644 index 00000000..fab1705d --- /dev/null +++ b/scripts/models-conversions/dpt-original-to-smp.py @@ -0,0 +1,122 @@ +import cv2 +import torch +import albumentations as A +import segmentation_models_pytorch as smp + +MODEL_WEIGHTS_PATH = r"dpt_large-ade20k-b12dca68.pt" +HF_HUB_PATH = "qubvel-hf/dpt-large-ade20k" +PUSH_TO_HUB = False + + +def get_transform(): + return A.Compose( + [ + A.LongestMaxSize(max_size=480, interpolation=cv2.INTER_CUBIC), + A.Normalize( + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), max_pixel_value=255.0 + ), + # This is not correct transform, ideally image should resized without padding to multiple of 32, + # but we take there is no such transform in albumentations, here is closest one + A.PadIfNeeded( + min_height=None, + min_width=None, + pad_height_divisor=32, + pad_width_divisor=32, + border_mode=cv2.BORDER_CONSTANT, + value=0, + p=1, + ), + ] + ) + + +if __name__ == "__main__": + # fmt: off + smp_model = smp.DPT(encoder_name="tu-vit_large_patch16_384", classes=150, dynamic_img_size=True) + dpt_model_dict = torch.load(MODEL_WEIGHTS_PATH, weights_only=True) + + for layer_index in range(0, 4): + for param in ["running_mean", "running_var", "num_batches_tracked", "weight", "bias"]: + for block_index in [1, 2]: + for bn_index in [1, 2]: + # Assigning weights of 4th fusion layer of original model to 1st layer of SMP DPT model, + # Assigning weights of 3rd fusion layer of original model to 2nd layer of SMP DPT model ... + # and so on ... + # This is because order of calling fusion layers is reversed in original DPT implementation + dpt_model_dict[f"decoder.fusion_blocks.{layer_index}.residual_conv_block{block_index}.batch_norm_{bn_index}.{param}"] = \ + dpt_model_dict.pop(f"scratch.refinenet{4 - layer_index}.resConfUnit{block_index}.bn{bn_index}.{param}") + + if param in ["weight", "bias"]: + if param == "weight": + for block_index in [1, 2]: + for conv_index in [1, 2]: + dpt_model_dict[f"decoder.fusion_blocks.{layer_index}.residual_conv_block{block_index}.conv_{conv_index}.{param}"] = \ + dpt_model_dict.pop(f"scratch.refinenet{4 - layer_index}.resConfUnit{block_index}.conv{conv_index}.{param}") + + dpt_model_dict[f"decoder.reassemble_blocks.{layer_index}.project_to_feature_dim.{param}"] = \ + dpt_model_dict.pop(f"scratch.layer{layer_index + 1}_rn.{param}") + + dpt_model_dict[f"decoder.fusion_blocks.{layer_index}.project.{param}"] = \ + dpt_model_dict.pop(f"scratch.refinenet{4 - layer_index}.out_conv.{param}") + + dpt_model_dict[f"decoder.projection_blocks.{layer_index}.project.0.{param}"] = \ + dpt_model_dict.pop(f"pretrained.act_postprocess{layer_index + 1}.0.project.0.{param}") + + dpt_model_dict[f"decoder.reassemble_blocks.{layer_index}.project_to_out_channel.{param}"] = \ + dpt_model_dict.pop(f"pretrained.act_postprocess{layer_index + 1}.3.{param}") + + if layer_index != 2: + dpt_model_dict[f"decoder.reassemble_blocks.{layer_index}.upsample.{param}"] = \ + dpt_model_dict.pop(f"pretrained.act_postprocess{layer_index + 1}.4.{param}") + + # Changing state dict keys for segmentation head + dpt_model_dict = { + name.replace("scratch.output_conv", "segmentation_head.head"): parameter + for name, parameter in dpt_model_dict.items() + } + + # Changing state dict keys for encoder layers + dpt_model_dict = { + name.replace("pretrained.model", "encoder.model"): parameter + for name, parameter in dpt_model_dict.items() + } + + # Removing keys, value pairs associated with auxiliary head + dpt_model_dict = { + name: parameter + for name, parameter in dpt_model_dict.items() + if not name.startswith("auxlayer") + } + # fmt: on + + smp_model.load_state_dict(dpt_model_dict, strict=True) + + # ------- DO NOT touch this section ------- + smp_model.eval() + + input_tensor = torch.ones((1, 3, 384, 384)) + output = smp_model(input_tensor) + + print(output.shape) + print(output[0, 0, :3, :3]) + + expected_slice = torch.tensor( + [ + [3.4243, 3.4553, 3.4863], + [3.3332, 3.2876, 3.2419], + [3.2422, 3.1199, 2.9975], + ] + ) + + torch.testing.assert_close( + output[0, 0, :3, :3], expected_slice, atol=1e-4, rtol=1e-4 + ) + + # Saving + transform = get_transform() + + transform.save_pretrained(HF_HUB_PATH) + smp_model.save_pretrained(HF_HUB_PATH, push_to_hub=PUSH_TO_HUB) + + # Re-loading to make sure everything is saved correctly + smp_model = smp.from_pretrained(HF_HUB_PATH) diff --git a/scripts/models-conversions/segformer-original-decoder-to-smp.py b/scripts/models-conversions/segformer-original-decoder-to-smp.py index e433c256..a91c6fc9 100644 --- a/scripts/models-conversions/segformer-original-decoder-to-smp.py +++ b/scripts/models-conversions/segformer-original-decoder-to-smp.py @@ -107,7 +107,7 @@ def main(args): tensor = torch.tensor(normalized_image).permute(2, 0, 1).unsqueeze(0).float() # Forward pass - with torch.no_grad(): + with torch.inference_mode(): mask = model(tensor) # Postprocessing diff --git a/scripts/models-conversions/upernet-hf-to-smp.py b/scripts/models-conversions/upernet-hf-to-smp.py new file mode 100644 index 00000000..08f4c224 --- /dev/null +++ b/scripts/models-conversions/upernet-hf-to-smp.py @@ -0,0 +1,249 @@ +import re +import torch +import albumentations as A +import segmentation_models_pytorch as smp +from huggingface_hub import hf_hub_download, HfApi +from collections import defaultdict + +DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +# fmt: off +CONVNEXT_MAPPING = { + r"backbone.embeddings.patch_embeddings.(weight|bias)": r"encoder.model.stem_0.\1", + r"backbone.embeddings.layernorm.(weight|bias)": r"encoder.model.stem_1.\1", + r"backbone.encoder.stages.(\d+).layers.(\d+).layer_scale_parameter": r"encoder.model.stages_\1.blocks.\2.gamma", + r"backbone.encoder.stages.(\d+).layers.(\d+).dwconv.(weight|bias)": r"encoder.model.stages_\1.blocks.\2.conv_dw.\3", + r"backbone.encoder.stages.(\d+).layers.(\d+).layernorm.(weight|bias)": r"encoder.model.stages_\1.blocks.\2.norm.\3", + r"backbone.encoder.stages.(\d+).layers.(\d+).pwconv(\d+).(weight|bias)": r"encoder.model.stages_\1.blocks.\2.mlp.fc\3.\4", + r"backbone.encoder.stages.(\d+).downsampling_layer.(\d+).(weight|bias)": r"encoder.model.stages_\1.downsample.\2.\3", +} + +SWIN_MAPPING = { + r"backbone.embeddings.patch_embeddings.projection": r"encoder.model.patch_embed.proj", + r"backbone.embeddings.norm": r"encoder.model.patch_embed.norm", + r"backbone.encoder.layers.(\d+).blocks.(\d+).layernorm_before": r"encoder.model.layers_\1.blocks.\2.norm1", + r"backbone.encoder.layers.(\d+).blocks.(\d+).attention.self.relative_position_bias_table": r"encoder.model.layers_\1.blocks.\2.attn.relative_position_bias_table", + r"backbone.encoder.layers.(\d+).blocks.(\d+).attention.self.(query|key|value)": r"encoder.model.layers_\1.blocks.\2.attn.\3", + r"backbone.encoder.layers.(\d+).blocks.(\d+).attention.output.dense": r"encoder.model.layers_\1.blocks.\2.attn.proj", + r"backbone.encoder.layers.(\d+).blocks.(\d+).layernorm_after": r"encoder.model.layers_\1.blocks.\2.norm2", + r"backbone.encoder.layers.(\d+).blocks.(\d+).intermediate.dense": r"encoder.model.layers_\1.blocks.\2.mlp.fc1", + r"backbone.encoder.layers.(\d+).blocks.(\d+).output.dense": r"encoder.model.layers_\1.blocks.\2.mlp.fc2", + r"backbone.encoder.layers.(\d+).downsample.reduction": lambda x: f"encoder.model.layers_{1 + int(x.group(1))}.downsample.reduction", + r"backbone.encoder.layers.(\d+).downsample.norm": lambda x: f"encoder.model.layers_{1 + int(x.group(1))}.downsample.norm", +} + +DECODER_MAPPING = { + + # started from 1 in hf + r"backbone.hidden_states_norms.stage(\d+)": lambda x: f"decoder.feature_norms.{int(x.group(1)) - 1}", + + r"decode_head.psp_modules.(\d+).(\d+).conv.weight": r"decoder.psp.blocks.\1.\2.0.weight", + r"decode_head.psp_modules.(\d+).(\d+).batch_norm": r"decoder.psp.blocks.\1.\2.1", + r"decode_head.bottleneck.conv.weight": r"decoder.psp.out_conv.0.weight", + r"decode_head.bottleneck.batch_norm": r"decoder.psp.out_conv.1", + + # fpn blocks are in reverse order (3 blocks total, so 2 - i) + r"decode_head.lateral_convs.(\d+).conv.weight": lambda x: f"decoder.fpn_lateral_blocks.{2 - int(x.group(1))}.conv_norm_relu.0.weight", + r"decode_head.lateral_convs.(\d+).batch_norm": lambda x: f"decoder.fpn_lateral_blocks.{2 - int(x.group(1))}.conv_norm_relu.1", + r"decode_head.fpn_convs.(\d+).conv.weight": lambda x: f"decoder.fpn_conv_blocks.{2 - int(x.group(1))}.0.weight", + r"decode_head.fpn_convs.(\d+).batch_norm": lambda x: f"decoder.fpn_conv_blocks.{2 - int(x.group(1))}.1", + + r"decode_head.fpn_bottleneck.conv.weight": r"decoder.fusion_block.0.weight", + r"decode_head.fpn_bottleneck.batch_norm": r"decoder.fusion_block.1", + r"decode_head.classifier": r"segmentation_head.0", +} +# fmt: on + +PRETRAINED_CHECKPOINTS = { + "convnext-tiny": { + "repo_id": "openmmlab/upernet-convnext-tiny", + "encoder_name": "tu-convnext_tiny", + "decoder_channels": 512, + "classes": 150, + "mapping": {**CONVNEXT_MAPPING, **DECODER_MAPPING}, + }, + "convnext-small": { + "repo_id": "openmmlab/upernet-convnext-small", + "encoder_name": "tu-convnext_small", + "decoder_channels": 512, + "classes": 150, + "mapping": {**CONVNEXT_MAPPING, **DECODER_MAPPING}, + }, + "convnext-base": { + "repo_id": "openmmlab/upernet-convnext-base", + "encoder_name": "tu-convnext_base", + "decoder_channels": 512, + "classes": 150, + "mapping": {**CONVNEXT_MAPPING, **DECODER_MAPPING}, + }, + "convnext-large": { + "repo_id": "openmmlab/upernet-convnext-large", + "encoder_name": "tu-convnext_large", + "decoder_channels": 512, + "classes": 150, + "mapping": {**CONVNEXT_MAPPING, **DECODER_MAPPING}, + }, + "convnext-xlarge": { + "repo_id": "openmmlab/upernet-convnext-xlarge", + "encoder_name": "tu-convnext_xlarge", + "decoder_channels": 512, + "classes": 150, + "mapping": {**CONVNEXT_MAPPING, **DECODER_MAPPING}, + }, + "swin-tiny": { + "repo_id": "openmmlab/upernet-swin-tiny", + "encoder_name": "tu-swin_tiny_patch4_window7_224", + "decoder_channels": 512, + "classes": 150, + "extra_kwargs": {"img_size": 512}, + "mapping": {**SWIN_MAPPING, **DECODER_MAPPING}, + }, + "swin-small": { + "repo_id": "openmmlab/upernet-swin-small", + "encoder_name": "tu-swin_small_patch4_window7_224", + "decoder_channels": 512, + "classes": 150, + "extra_kwargs": {"img_size": 512}, + "mapping": {**SWIN_MAPPING, **DECODER_MAPPING}, + }, + "swin-large": { + "repo_id": "openmmlab/upernet-swin-large", + "encoder_name": "tu-swin_large_patch4_window12_384", + "decoder_channels": 512, + "classes": 150, + "extra_kwargs": {"img_size": 512}, + "mapping": {**SWIN_MAPPING, **DECODER_MAPPING}, + }, +} + + +def convert_old_keys_to_new_keys(state_dict_keys: dict, keys_mapping: dict): + """ + This function should be applied only once, on the concatenated keys to efficiently rename using + the key mappings. + """ + output_dict = {} + if state_dict_keys is not None: + old_text = "\n".join(state_dict_keys) + new_text = old_text + for pattern, replacement in keys_mapping.items(): + if replacement is None: + new_text = re.sub(pattern, "", new_text) # an empty line + continue + new_text = re.sub(pattern, replacement, new_text) + output_dict = dict(zip(old_text.split("\n"), new_text.split("\n"))) + return output_dict + + +def group_qkv_layers(state_dict: dict) -> dict: + """Find corresponding layer names for query, key and value layers and stack them in a single layer""" + + state_dict = state_dict.copy() # shallow copy + + result = defaultdict(dict) + layer_names = list(state_dict.keys()) + qkv_names = ["query", "key", "value"] + for layer_name in layer_names: + for pattern in qkv_names: + if pattern in layer_name: + new_key = layer_name.replace(pattern, "qkv") + result[new_key][pattern] = state_dict.pop(layer_name) + break + + # merge them all + for new_key, patterns in result.items(): + state_dict[new_key] = torch.cat( + [patterns[qkv_name] for qkv_name in qkv_names], dim=0 + ) + + return state_dict + + +def convert_model(model_name: str, push_to_hub: bool = False): + params = PRETRAINED_CHECKPOINTS[model_name] + + print(f"Converting model: {model_name}") + print(f"Downloading weights from: {params['repo_id']}") + + hf_weights_path = hf_hub_download( + repo_id=params["repo_id"], filename="pytorch_model.bin" + ) + hf_state_dict = torch.load(hf_weights_path, weights_only=True) + print(f"Loaded HuggingFace state dict with {len(hf_state_dict)} keys") + + # Rename keys + keys_mapping = convert_old_keys_to_new_keys(hf_state_dict.keys(), params["mapping"]) + + smp_state_dict = {} + for old_key, new_key in keys_mapping.items(): + smp_state_dict[new_key] = hf_state_dict[old_key] + + # remove aux head + smp_state_dict = { + k: v for k, v in smp_state_dict.items() if "auxiliary_head." not in k + } + + # [swin] group qkv layers and remove `relative_position_index` + smp_state_dict = group_qkv_layers(smp_state_dict) + smp_state_dict = { + k: v for k, v in smp_state_dict.items() if "relative_position_index" not in k + } + + # Create model + print(f"Creating SMP UPerNet model with encoder: {params['encoder_name']}") + extra_kwargs = params.get("extra_kwargs", {}) + smp_model = smp.UPerNet( + encoder_name=params["encoder_name"], + encoder_weights=None, + decoder_channels=params["decoder_channels"], + classes=params["classes"], + **extra_kwargs, + ) + + print("Loading weights into SMP model...") + smp_model.load_state_dict(smp_state_dict, strict=True) + + # Check we can run the model + print("Verifying model with test inference...") + smp_model.eval() + sample = torch.ones(1, 3, 512, 512) + with torch.inference_mode(): + output = smp_model(sample) + print(f"Test inference successful. Output shape: {output.shape}") + + # Save model with preprocessing + smp_repo_id = f"smp-hub/upernet-{model_name}" + print(f"Saving model to: {smp_repo_id}") + smp_model.save_pretrained(save_directory=smp_repo_id) + + transform = A.Compose( + [ + A.Resize(512, 512), + A.Normalize( + mean=(123.675, 116.28, 103.53), + std=(58.395, 57.12, 57.375), + max_pixel_value=1.0, + ), + ] + ) + transform.save_pretrained(save_directory=smp_repo_id) + + if push_to_hub: + print(f"Pushing model to HuggingFace Hub: {smp_repo_id}") + api = HfApi() + if not api.repo_exists(smp_repo_id): + api.create_repo(repo_id=smp_repo_id, repo_type="model") + api.upload_folder( + repo_id=smp_repo_id, + folder_path=smp_repo_id, + repo_type="model", + ) + + print(f"Conversion of {model_name} completed successfully!") + + +if __name__ == "__main__": + print(f"Starting conversion of {len(PRETRAINED_CHECKPOINTS)} UPerNet models") + for model_name in PRETRAINED_CHECKPOINTS.keys(): + convert_model(model_name, push_to_hub=True) + print("All conversions completed!") diff --git a/segmentation_models_pytorch/__init__.py b/segmentation_models_pytorch/__init__.py index f1807836..37c64ef6 100644 --- a/segmentation_models_pytorch/__init__.py +++ b/segmentation_models_pytorch/__init__.py @@ -1,5 +1,3 @@ -import warnings - from . import datasets from . import encoders from . import decoders @@ -16,6 +14,7 @@ from .decoders.pan import PAN from .decoders.upernet import UPerNet from .decoders.segformer import Segformer +from .decoders.dpt import DPT from .base.hub_mixin import from_pretrained from .__version__ import __version__ @@ -24,12 +23,6 @@ from typing import Optional as _Optional import torch as _torch -# Suppress the specific SyntaxWarning for `pretrainedmodels` -warnings.filterwarnings("ignore", message="is with a literal", category=SyntaxWarning) -warnings.filterwarnings( - "ignore", message=r'"is" with \'str\' literal.*', category=SyntaxWarning -) # for python >= 3.12 - _MODEL_ARCHITECTURES = [ Unet, UnetPlusPlus, @@ -42,6 +35,7 @@ PAN, UPerNet, Segformer, + DPT, ] MODEL_ARCHITECTURES_MAPPING = {a.__name__.lower(): a for a in _MODEL_ARCHITECTURES} @@ -92,6 +86,7 @@ def create_model( "PAN", "UPerNet", "Segformer", + "DPT", "from_pretrained", "create_model", "__version__", diff --git a/segmentation_models_pytorch/__version__.py b/segmentation_models_pytorch/__version__.py index b87975ee..3d187266 100644 --- a/segmentation_models_pytorch/__version__.py +++ b/segmentation_models_pytorch/__version__.py @@ -1,3 +1 @@ -VERSION = (0, 4, 0) - -__version__ = ".".join(map(str, VERSION)) +__version__ = "0.5.0" diff --git a/segmentation_models_pytorch/base/hub_mixin.py b/segmentation_models_pytorch/base/hub_mixin.py index 360aa521..a18380d1 100644 --- a/segmentation_models_pytorch/base/hub_mixin.py +++ b/segmentation_models_pytorch/base/hub_mixin.py @@ -1,3 +1,4 @@ +import torch import json from pathlib import Path from typing import Optional, Union @@ -114,12 +115,15 @@ def save_pretrained( return result @property + @torch.jit.unused def config(self) -> dict: return self._hub_mixin_config @wraps(PyTorchModelHubMixin.from_pretrained) -def from_pretrained(pretrained_model_name_or_path: str, *args, **kwargs): +def from_pretrained( + pretrained_model_name_or_path: str, *args, strict: bool = True, **kwargs +): config_path = Path(pretrained_model_name_or_path) / "config.json" if not config_path.exists(): config_path = hf_hub_download( @@ -135,7 +139,9 @@ def from_pretrained(pretrained_model_name_or_path: str, *args, **kwargs): import segmentation_models_pytorch as smp model_class = getattr(smp, model_class_name) - return model_class.from_pretrained(pretrained_model_name_or_path, *args, **kwargs) + return model_class.from_pretrained( + pretrained_model_name_or_path, *args, **kwargs, strict=strict + ) def supports_config_loading(func): diff --git a/segmentation_models_pytorch/base/initialization.py b/segmentation_models_pytorch/base/initialization.py index 4bea4aa6..cf518edd 100644 --- a/segmentation_models_pytorch/base/initialization.py +++ b/segmentation_models_pytorch/base/initialization.py @@ -8,7 +8,9 @@ def initialize_decoder(module): if m.bias is not None: nn.init.constant_(m.bias, 0) - elif isinstance(m, nn.BatchNorm2d): + elif isinstance( + m, (nn.BatchNorm2d, nn.LayerNorm, nn.GroupNorm, nn.InstanceNorm2d) + ): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) diff --git a/segmentation_models_pytorch/base/model.py b/segmentation_models_pytorch/base/model.py index 6d7bf643..71322cf0 100644 --- a/segmentation_models_pytorch/base/model.py +++ b/segmentation_models_pytorch/base/model.py @@ -1,16 +1,29 @@ import torch +import warnings +from typing import TypeVar, Type from . import initialization as init from .hub_mixin import SMPHubMixin +from .utils import is_torch_compiling + +T = TypeVar("T", bound="SegmentationModel") class SegmentationModel(torch.nn.Module, SMPHubMixin): """Base class for all segmentation models.""" - # if model supports shape not divisible by 2 ^ n - # set to False + _is_torch_scriptable = True + _is_torch_exportable = True + _is_torch_compilable = True + + # if model supports shape not divisible by 2 ^ n set to False requires_divisible_input_shape = True + # Fix type-hint for models, to avoid HubMixin signature + def __new__(cls: Type[T], *args, **kwargs) -> T: + instance = super().__new__(cls, *args, **kwargs) + return instance + def initialize(self): init.initialize_decoder(self.decoder) init.initialize_head(self.segmentation_head) @@ -21,6 +34,9 @@ def check_input_shape(self, x): """Check if the input shape is divisible by the output stride. If not, raise a RuntimeError. """ + if not self.requires_divisible_input_shape: + return + h, w = x.shape[-2:] output_stride = self.encoder.output_stride if h % output_stride != 0 or w % output_stride != 0: @@ -42,11 +58,13 @@ def check_input_shape(self, x): def forward(self, x): """Sequentially pass `x` trough model`s encoder, decoder and heads""" - if not torch.jit.is_tracing() or self.requires_divisible_input_shape: + if not ( + torch.jit.is_scripting() or torch.jit.is_tracing() or is_torch_compiling() + ): self.check_input_shape(x) features = self.encoder(x) - decoder_output = self.decoder(*features) + decoder_output = self.decoder(features) masks = self.segmentation_head(decoder_output) @@ -56,9 +74,9 @@ def forward(self, x): return masks - @torch.no_grad() + @torch.inference_mode() def predict(self, x): - """Inference method. Switch model to `eval` mode, call `.forward(x)` with `torch.no_grad()` + """Inference method. Switch model to `eval` mode, call `.forward(x)` with `torch.inference_mode()` Args: x: 4D torch tensor with shape (batch_size, channels, height, width) @@ -69,7 +87,53 @@ def predict(self, x): """ if self.training: self.eval() + x = self(x) + return x - x = self.forward(x) + def load_state_dict(self, state_dict, **kwargs): + # for compatibility of weights for + # timm- ported encoders with TimmUniversalEncoder + from segmentation_models_pytorch.encoders import TimmUniversalEncoder - return x + if isinstance(self.encoder, TimmUniversalEncoder): + patterns = ["regnet", "res2", "resnest", "mobilenetv3", "gernet"] + is_deprecated_encoder = any( + self.encoder.name.startswith(pattern) for pattern in patterns + ) + if is_deprecated_encoder: + keys = list(state_dict.keys()) + for key in keys: + new_key = key + if key.startswith("encoder.") and not key.startswith( + "encoder.model." + ): + new_key = "encoder.model." + key.removeprefix("encoder.") + if "gernet" in self.encoder.name: + new_key = new_key.replace(".stages.", ".stages_") + state_dict[new_key] = state_dict.pop(key) + + # To be able to load weight with mismatched sizes + # We are going to filter mismatched sizes as well if strict=False + strict = kwargs.get("strict", True) + if not strict: + mismatched_keys = [] + model_state_dict = self.state_dict() + common_keys = set(model_state_dict.keys()) & set(state_dict.keys()) + for key in common_keys: + if model_state_dict[key].shape != state_dict[key].shape: + mismatched_keys.append( + (key, model_state_dict[key].shape, state_dict[key].shape) + ) + state_dict.pop(key) + + if mismatched_keys: + str_keys = "\n".join( + [ + f" - {key}: {s} (weights) -> {m} (model)" + for key, m, s in mismatched_keys + ] + ) + text = f"\n\n !!!!!! Mismatched keys !!!!!!\n\nYou should TRAIN the model to use it:\n{str_keys}\n" + warnings.warn(text, stacklevel=-1) + + return super().load_state_dict(state_dict, **kwargs) diff --git a/segmentation_models_pytorch/base/modules.py b/segmentation_models_pytorch/base/modules.py index cbd643b6..15cfdb12 100644 --- a/segmentation_models_pytorch/base/modules.py +++ b/segmentation_models_pytorch/base/modules.py @@ -1,3 +1,5 @@ +from typing import Any, Dict, Union + import torch import torch.nn as nn @@ -7,43 +9,109 @@ InPlaceABN = None +def get_norm_layer( + use_norm: Union[bool, str, Dict[str, Any]], out_channels: int +) -> nn.Module: + supported_norms = ("inplace", "batchnorm", "identity", "layernorm", "instancenorm") + + # Step 1. Convert tot dict representation + + ## Check boolean + if use_norm is True: + norm_params = {"type": "batchnorm"} + elif use_norm is False: + norm_params = {"type": "identity"} + + ## Check string + elif isinstance(use_norm, str): + norm_str = use_norm.lower() + if norm_str == "inplace": + norm_params = { + "type": "inplace", + "activation": "leaky_relu", + "activation_param": 0.0, + } + elif norm_str in supported_norms: + norm_params = {"type": norm_str} + else: + raise ValueError( + f"Unrecognized normalization type string provided: {use_norm}. Should be in " + f"{supported_norms}" + ) + + ## Check dict + elif isinstance(use_norm, dict): + norm_params = use_norm + + else: + raise ValueError( + f"Invalid type for use_norm should either be a bool (batchnorm/identity), " + f"a string in {supported_norms}, or a dict like {{'type': 'batchnorm', **kwargs}}" + ) + + # Step 2. Check if the dict is valid + if "type" not in norm_params: + raise ValueError( + f"Malformed dictionary given in use_norm: {use_norm}. Should contain key 'type'." + ) + if norm_params["type"] not in supported_norms: + raise ValueError( + f"Unrecognized normalization type string provided: {use_norm}. Should be in {supported_norms}" + ) + if norm_params["type"] == "inplace" and InPlaceABN is None: + raise RuntimeError( + "In order to use `use_norm='inplace'` the inplace_abn package must be installed. Use:\n" + " $ pip install -U wheel setuptools\n" + " $ pip install inplace_abn --no-build-isolation\n" + "Also see: https://github.com/mapillary/inplace_abn" + ) + + # Step 3. Initialize the norm layer + norm_type = norm_params["type"] + norm_kwargs = {k: v for k, v in norm_params.items() if k != "type"} + + if norm_type == "inplace": + norm = InPlaceABN(out_channels, **norm_kwargs) + elif norm_type == "batchnorm": + norm = nn.BatchNorm2d(out_channels, **norm_kwargs) + elif norm_type == "identity": + norm = nn.Identity() + elif norm_type == "layernorm": + norm = nn.LayerNorm(out_channels, **norm_kwargs) + elif norm_type == "instancenorm": + norm = nn.InstanceNorm2d(out_channels, **norm_kwargs) + else: + raise ValueError(f"Unrecognized normalization type: {norm_type}") + + return norm + + class Conv2dReLU(nn.Sequential): def __init__( self, - in_channels, - out_channels, - kernel_size, - padding=0, - stride=1, - use_batchnorm=True, + in_channels: int, + out_channels: int, + kernel_size: int, + padding: int = 0, + stride: int = 1, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", ): - if use_batchnorm == "inplace" and InPlaceABN is None: - raise RuntimeError( - "In order to use `use_batchnorm='inplace'` inplace_abn package must be installed. " - + "To install see: https://github.com/mapillary/inplace_abn" - ) + norm = get_norm_layer(use_norm, out_channels) + is_identity = isinstance(norm, nn.Identity) conv = nn.Conv2d( in_channels, out_channels, kernel_size, stride=stride, padding=padding, - bias=not (use_batchnorm), + bias=is_identity, ) - relu = nn.ReLU(inplace=True) - - if use_batchnorm == "inplace": - bn = InPlaceABN(out_channels, activation="leaky_relu", activation_param=0.0) - relu = nn.Identity() - elif use_batchnorm and use_batchnorm != "inplace": - bn = nn.BatchNorm2d(out_channels) - - else: - bn = nn.Identity() + is_inplaceabn = InPlaceABN is not None and isinstance(norm, InPlaceABN) + activation = nn.Identity() if is_inplaceabn else nn.ReLU(inplace=True) - super(Conv2dReLU, self).__init__(conv, bn, relu) + super(Conv2dReLU, self).__init__(conv, norm, activation) class SCSEModule(nn.Module): diff --git a/segmentation_models_pytorch/base/utils.py b/segmentation_models_pytorch/base/utils.py new file mode 100644 index 00000000..a0d41943 --- /dev/null +++ b/segmentation_models_pytorch/base/utils.py @@ -0,0 +1,14 @@ +import torch + + +@torch.jit.unused +def is_torch_compiling(): + try: + return torch.compiler.is_compiling() + except Exception: + try: + import torch._dynamo as dynamo # noqa: F401 + + return dynamo.is_compiling() + except Exception: + return False diff --git a/segmentation_models_pytorch/decoders/deeplabv3/decoder.py b/segmentation_models_pytorch/decoders/deeplabv3/decoder.py index 3fd73786..6a801a70 100644 --- a/segmentation_models_pytorch/decoders/deeplabv3/decoder.py +++ b/segmentation_models_pytorch/decoders/deeplabv3/decoder.py @@ -31,7 +31,7 @@ """ from collections.abc import Iterable, Sequence -from typing import Literal +from typing import Literal, List import torch from torch import nn @@ -40,7 +40,7 @@ __all__ = ["DeepLabV3Decoder", "DeepLabV3PlusDecoder"] -class DeepLabV3Decoder(nn.Sequential): +class DeepLabV3Decoder(nn.Module): def __init__( self, in_channels: int, @@ -49,21 +49,25 @@ def __init__( aspp_separable: bool, aspp_dropout: float, ): - super().__init__( - ASPP( - in_channels, - out_channels, - atrous_rates, - separable=aspp_separable, - dropout=aspp_dropout, - ), - nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False), - nn.BatchNorm2d(out_channels), - nn.ReLU(), + super().__init__() + self.aspp = ASPP( + in_channels, + out_channels, + atrous_rates, + separable=aspp_separable, + dropout=aspp_dropout, ) + self.conv = nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False) + self.bn = nn.BatchNorm2d(out_channels) + self.relu = nn.ReLU() - def forward(self, *features): - return super().forward(features[-1]) + def forward(self, features: List[torch.Tensor]) -> torch.Tensor: + x = features[-1] + x = self.aspp(x) + x = self.conv(x) + x = self.bn(x) + x = self.relu(x) + return x class DeepLabV3PlusDecoder(nn.Module): @@ -124,7 +128,7 @@ def __init__( nn.ReLU(), ) - def forward(self, *features): + def forward(self, features: List[torch.Tensor]) -> torch.Tensor: aspp_features = self.aspp(features[-1]) aspp_features = self.up(aspp_features) high_res_features = self.block1(features[2]) @@ -174,7 +178,7 @@ def __init__(self, in_channels: int, out_channels: int): nn.ReLU(), ) - def forward(self, x): + def forward(self, x: torch.Tensor) -> torch.Tensor: size = x.shape[-2:] for mod in self: x = mod(x) @@ -216,7 +220,7 @@ def __init__( nn.Dropout(dropout), ) - def forward(self, x): + def forward(self, x: torch.Tensor) -> torch.Tensor: res = [] for conv in self.convs: res.append(conv(x)) diff --git a/segmentation_models_pytorch/decoders/deeplabv3/model.py b/segmentation_models_pytorch/decoders/deeplabv3/model.py index 654e38d4..38ca9e04 100644 --- a/segmentation_models_pytorch/decoders/deeplabv3/model.py +++ b/segmentation_models_pytorch/decoders/deeplabv3/model.py @@ -34,8 +34,7 @@ class DeepLabV3(SegmentationModel): classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, - **callable** and **None**. - Default is **None** + **callable** and **None**. Default is **None**. upsampling: Final upsampling factor. Default is **None** to preserve input-output spatial shape identity aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: @@ -121,6 +120,21 @@ def __init__( else: self.classification_head = None + def load_state_dict(self, state_dict, *args, **kwargs): + # For backward compatibility, previously Decoder module was Sequential + # and was not scriptable. + keys = list(state_dict.keys()) + for key in keys: + new_key = key + if key.startswith("decoder.0."): + new_key = key.replace("decoder.0.", "decoder.aspp.") + elif key.startswith("decoder.1."): + new_key = key.replace("decoder.1.", "decoder.conv.") + elif key.startswith("decoder.2."): + new_key = key.replace("decoder.2.", "decoder.bn.") + state_dict[new_key] = state_dict.pop(key) + return super().load_state_dict(state_dict, *args, **kwargs) + class DeepLabV3Plus(SegmentationModel): """DeepLabV3+ implementation from "Encoder-Decoder with Atrous Separable @@ -144,8 +158,7 @@ class DeepLabV3Plus(SegmentationModel): classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, - **callable** and **None**. - Default is **None** + **callable** and **None**. Default is **None**. upsampling: Final upsampling factor. Default is 4 to preserve input-output spatial shape identity. aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: diff --git a/segmentation_models_pytorch/decoders/dpt/__init__.py b/segmentation_models_pytorch/decoders/dpt/__init__.py new file mode 100644 index 00000000..c729fe90 --- /dev/null +++ b/segmentation_models_pytorch/decoders/dpt/__init__.py @@ -0,0 +1,3 @@ +from .model import DPT + +__all__ = ["DPT"] diff --git a/segmentation_models_pytorch/decoders/dpt/decoder.py b/segmentation_models_pytorch/decoders/dpt/decoder.py new file mode 100644 index 00000000..345ecca1 --- /dev/null +++ b/segmentation_models_pytorch/decoders/dpt/decoder.py @@ -0,0 +1,320 @@ +import torch +import torch.nn as nn +from segmentation_models_pytorch.base.modules import Activation +from typing import Optional, Sequence, Union, Callable, Literal + + +class ReadoutConcatBlock(nn.Module): + """ + Concatenates the cls tokens with the features to make use of the global information aggregated in the prefix (cls) tokens. + Projects the combined feature map to the original embedding dimension using a MLP. + + According to: + https://github.com/isl-org/DPT/blob/cd3fe90bb4c48577535cc4d51b602acca688a2ee/dpt/vit.py#L79-L90 + """ + + def __init__(self, embed_dim: int, has_prefix_tokens: bool): + super().__init__() + in_features = embed_dim * 2 if has_prefix_tokens else embed_dim + out_features = embed_dim + self.project = nn.Sequential( + nn.Linear(in_features, out_features), + nn.GELU(), + ) + + def forward( + self, features: torch.Tensor, prefix_tokens: Optional[torch.Tensor] = None + ) -> torch.Tensor: + batch_size, embed_dim, height, width = features.shape + + # Rearrange to (batch_size, height * width, embed_dim) + features = features.view(batch_size, embed_dim, -1) + features = features.transpose(1, 2).contiguous() + + if prefix_tokens is not None: + # (batch_size, num_prefix_tokens, embed_dim) -> (batch_size, 1, embed_dim) + prefix_tokens = prefix_tokens[:, :1].expand_as(features) + features = torch.cat([features, prefix_tokens], dim=2) + + # Project to embedding dimension + features = self.project(features) + + # Rearrange back to (batch_size, embed_dim, height, width) + features = features.transpose(1, 2) + features = features.view(batch_size, -1, height, width) + + return features + + +class ReadoutAddBlock(nn.Module): + """ + Adds the prefix tokens to the features to make use of the global information aggregated in the prefix (cls) tokens. + + According to: + https://github.com/isl-org/DPT/blob/cd3fe90bb4c48577535cc4d51b602acca688a2ee/dpt/vit.py#L71-L76 + """ + + def forward( + self, features: torch.Tensor, prefix_tokens: Optional[torch.Tensor] = None + ) -> torch.Tensor: + if prefix_tokens is not None: + batch_size, embed_dim, height, width = features.shape + prefix_tokens = prefix_tokens.mean(dim=1) + prefix_tokens = prefix_tokens.view(batch_size, embed_dim, 1, 1) + features = features + prefix_tokens + return features + + +class ReadoutIgnoreBlock(nn.Module): + """ + Ignores the prefix tokens and returns the features as is. + """ + + def forward(self, features: torch.Tensor, *args, **kwargs) -> torch.Tensor: + return features + + +class ReassembleBlock(nn.Module): + """ + Processes the features such that they have progressively increasing embedding size and progressively decreasing + spatial dimension + """ + + def __init__( + self, + in_channels: int, + mid_channels: int, + out_channels: int, + upsample_factor: int, + ): + super().__init__() + + self.project_to_out_channel = nn.Conv2d( + in_channels=in_channels, + out_channels=mid_channels, + kernel_size=1, + ) + + if upsample_factor > 1.0: + self.upsample = nn.ConvTranspose2d( + in_channels=mid_channels, + out_channels=mid_channels, + kernel_size=int(upsample_factor), + stride=int(upsample_factor), + ) + elif upsample_factor == 1.0: + self.upsample = nn.Identity() + else: + self.upsample = nn.Conv2d( + in_channels=mid_channels, + out_channels=mid_channels, + kernel_size=3, + stride=int(1 / upsample_factor), + padding=1, + ) + + self.project_to_feature_dim = nn.Conv2d( + in_channels=mid_channels, + out_channels=out_channels, + kernel_size=3, + padding=1, + bias=False, + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.project_to_out_channel(x) + x = self.upsample(x) + x = self.project_to_feature_dim(x) + return x + + +class ResidualConvBlock(nn.Module): + def __init__(self, feature_dim: int): + super().__init__() + + self.conv_1 = nn.Conv2d( + in_channels=feature_dim, + out_channels=feature_dim, + kernel_size=3, + padding=1, + bias=False, + ) + self.batch_norm_1 = nn.BatchNorm2d(num_features=feature_dim) + self.conv_2 = nn.Conv2d( + in_channels=feature_dim, + out_channels=feature_dim, + kernel_size=3, + padding=1, + bias=False, + ) + self.batch_norm_2 = nn.BatchNorm2d(num_features=feature_dim) + self.activation = nn.ReLU() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + residual = x + + # Block 1 + x = self.activation(x) + x = self.conv_1(x) + x = self.batch_norm_1(x) + + # Block 2 + x = self.activation(x) + x = self.conv_2(x) + x = self.batch_norm_2(x) + + # Add residual + x = x + residual + + return x + + +class FusionBlock(nn.Module): + """ + Fuses the processed encoder features in a residual manner and upsamples them + """ + + def __init__(self, feature_dim: int): + super().__init__() + self.residual_conv_block1 = ResidualConvBlock(feature_dim) + self.residual_conv_block2 = ResidualConvBlock(feature_dim) + self.project = nn.Conv2d(feature_dim, feature_dim, kernel_size=1) + self.activation = nn.ReLU() + + def forward( + self, + feature: torch.Tensor, + previous_feature: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + feature = self.residual_conv_block1(feature) + if previous_feature is not None: + feature = feature + previous_feature + feature = self.residual_conv_block2(feature) + feature = nn.functional.interpolate( + feature, scale_factor=2, align_corners=True, mode="bilinear" + ) + feature = self.project(feature) + return feature + + +class DPTDecoder(nn.Module): + """ + Decoder part for DPT + + Processes the encoder features and class tokens (if encoder has class_tokens) to have spatial downsampling ratios of + [1/4, 1/8, 1/16, 1/32, ...] relative to the input image spatial dimension. + + The decoder then fuses these features in a residual manner and progressively upsamples them by a factor of 2 so that the + output has a downsampling ratio of 1/2 relative to the input image spatial dimension + + """ + + def __init__( + self, + encoder_out_channels: Sequence[int] = (756, 756, 756, 756), + encoder_output_strides: Sequence[int] = (16, 16, 16, 16), + encoder_has_prefix_tokens: bool = True, + readout: Literal["cat", "add", "ignore"] = "cat", + intermediate_channels: Sequence[int] = (256, 512, 1024, 1024), + fusion_channels: int = 256, + ): + super().__init__() + + if not ( + len(encoder_out_channels) + == len(encoder_output_strides) + == len(intermediate_channels) + ): + raise ValueError( + "encoder_out_channels, encoder_output_strides and intermediate_channels must have the same length" + ) + + num_blocks = len(encoder_out_channels) + + # If encoder has prefix tokens (e.g. cls_token), then we can concat/add/ignore them + # according to the readout mode + if readout == "cat": + blocks = [ + ReadoutConcatBlock(in_channels, encoder_has_prefix_tokens) + for in_channels in encoder_out_channels + ] + elif readout == "add": + blocks = [ReadoutAddBlock() for _ in encoder_out_channels] + elif readout == "ignore": + blocks = [ReadoutIgnoreBlock() for _ in encoder_out_channels] + else: + raise ValueError( + f"Invalid readout mode: {readout}, should be one of: 'cat', 'add', 'ignore'" + ) + self.projection_blocks = nn.ModuleList(blocks) + + # Upsample factors to resize features to [1/4, 1/8, 1/16, 1/32, ...] scales + scale_factors = [ + stride / 2 ** (i + 2) for i, stride in enumerate(encoder_output_strides) + ] + self.reassemble_blocks = nn.ModuleList() + for i in range(num_blocks): + block = ReassembleBlock( + in_channels=encoder_out_channels[i], + mid_channels=intermediate_channels[i], + out_channels=fusion_channels, + upsample_factor=scale_factors[i], + ) + self.reassemble_blocks.append(block) + + # Fusion blocks to fuse the processed features in a sequential manner + fusion_blocks = [FusionBlock(fusion_channels) for _ in range(num_blocks)] + self.fusion_blocks = nn.ModuleList(fusion_blocks) + + def forward( + self, features: list[torch.Tensor], prefix_tokens: list[Optional[torch.Tensor]] + ) -> torch.Tensor: + # Process the encoder features to scale of [1/4, 1/8, 1/16, 1/32, ...] + processed_features = [] + for i, (feature, prefix_tokens_i) in enumerate(zip(features, prefix_tokens)): + projected_feature = self.projection_blocks[i](feature, prefix_tokens_i) + processed_feature = self.reassemble_blocks[i](projected_feature) + processed_features.append(processed_feature) + + # Fusion and progressive upsampling starting from the last processed feature + processed_features = processed_features[::-1] + fused_feature = None + for fusion_block, feature in zip(self.fusion_blocks, processed_features): + fused_feature = fusion_block(feature, fused_feature) + + return fused_feature + + +class DPTSegmentationHead(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + activation: Optional[Union[str, Callable]] = None, + kernel_size: int = 3, + upsampling: float = 2.0, + ): + super().__init__() + + self.head = nn.Sequential( + nn.Conv2d( + in_channels, in_channels, kernel_size=kernel_size, padding=1, bias=False + ), + nn.BatchNorm2d(in_channels), + nn.ReLU(inplace=True), + nn.Dropout(p=0.1, inplace=False), + nn.Conv2d(in_channels, out_channels, kernel_size=1), + ) + self.activation = Activation(activation) + self.upsampling_factor = upsampling + + def forward(self, x: torch.Tensor) -> torch.Tensor: + head_output = self.head(x) + resized_output = nn.functional.interpolate( + head_output, + scale_factor=self.upsampling_factor, + mode="bilinear", + align_corners=True, + ) + activation_output = self.activation(resized_output) + return activation_output diff --git a/segmentation_models_pytorch/decoders/dpt/model.py b/segmentation_models_pytorch/decoders/dpt/model.py new file mode 100644 index 00000000..1294dd4f --- /dev/null +++ b/segmentation_models_pytorch/decoders/dpt/model.py @@ -0,0 +1,167 @@ +import warnings +from typing import Any, Optional, Union, Callable, Sequence, Literal + +import torch + +from segmentation_models_pytorch.base import ( + ClassificationHead, + SegmentationModel, +) +from segmentation_models_pytorch.encoders.timm_vit import TimmViTEncoder +from segmentation_models_pytorch.base.utils import is_torch_compiling +from segmentation_models_pytorch.base.hub_mixin import supports_config_loading +from .decoder import DPTDecoder, DPTSegmentationHead + + +class DPT(SegmentationModel): + """ + DPT is a dense prediction architecture that leverages vision transformers in place of convolutional networks as + a backbone for dense prediction tasks + + It assembles tokens from various stages of the vision transformer into image-like representations at various resolutions + and progressively combines them into full-resolution predictions using a convolutional decoder. + + The transformer backbone processes representations at a constant and relatively high resolution and has a global receptive + field at every stage. These properties allow the dense vision transformer to provide finer-grained and more globally coherent + predictions when compared to fully-convolutional networks + + Note: + Since this model uses a Vision Transformer backbone, it typically requires a fixed input image size. + To handle variable input sizes, you can set `dynamic_img_size=True` in the model initialization + (if supported by the specific `timm` encoder). You can check if an encoder requires fixed size + using `model.encoder.is_fixed_input_size`, and get the required input dimensions from + `model.encoder.input_size`, however it's no guarantee that information is available. + + Args: + encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone) + to extract features of different spatial resolution. + encoder_depth: A number of stages used in encoder in range [1,4]. Each stage generate features + smaller by a factor equal to the ViT model patch_size in spatial dimensions. + Default is 4. + encoder_weights: One of **None** (random initialization), or not **None** (pretrained weights would be loaded + with respect to the encoder_name, e.g. for ``"tu-vit_base_patch16_224.augreg_in21k"`` - ``"augreg_in21k"`` + weights would be loaded). + encoder_output_indices: The indices of the encoder output features to use. If **None** will be sampled uniformly + across the number of blocks in encoder, e.g. if number of blocks is 4 and encoder has 20 blocks, then + encoder_output_indices will be (4, 9, 14, 19). If specified the number of indices should be equal to + encoder_depth. Default is **None**. + decoder_readout: The strategy to utilize the prefix tokens (e.g. cls_token) from the encoder. + Can be one of **"cat"**, **"add"**, or **"ignore"**. Default is **"cat"**. + decoder_intermediate_channels: The number of channels for the intermediate decoder layers. Reduce if you + want to reduce the number of parameters in the decoder. Default is (256, 512, 1024, 1024). + decoder_fusion_channels: The latent dimension to which the encoder features will be projected to before fusion. + Default is 256. + in_channels: Number of input channels for the model, default is 3 (RGB images) + classes: Number of classes for output mask (or you can think as a number of channels of output mask) + activation: An activation function to apply after the final convolution layer. + Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, + **callable** and **None**. Default is **None**. + aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build + on top of encoder if **aux_params** is not **None** (default). Supported params: + + - **classes** (*int*): A number of classes; + - **pooling** (*str*): One of "max", "avg". Default is "avg"; + - **dropout** (*float*): Dropout factor in [0, 1); + - **activation** (*str*): An activation function to apply "sigmoid"/"softmax" (could be **None** to return logits). + kwargs: Arguments passed to the encoder class ``__init__()`` function. Applies only to ``timm`` models. Keys with + ``None`` values are pruned before passing. Specify ``dynamic_img_size=True`` to allow the model to handle images of different sizes. + + Returns: + ``torch.nn.Module``: DPT + + """ + + # fails for encoders with prefix tokens + _is_torch_scriptable = False + _is_torch_compilable = True + requires_divisible_input_shape = True + + @supports_config_loading + def __init__( + self, + encoder_name: str = "tu-vit_base_patch16_224.augreg_in21k", + encoder_depth: int = 4, + encoder_weights: Optional[str] = "imagenet", + encoder_output_indices: Optional[list[int]] = None, + decoder_readout: Literal["ignore", "add", "cat"] = "cat", + decoder_intermediate_channels: Sequence[int] = (256, 512, 1024, 1024), + decoder_fusion_channels: int = 256, + in_channels: int = 3, + classes: int = 1, + activation: Optional[Union[str, Callable]] = None, + aux_params: Optional[dict] = None, + **kwargs: dict[str, Any], + ): + super().__init__() + if encoder_name.startswith("tu-"): + encoder_name = encoder_name[3:] + else: + raise ValueError( + f"Only Timm encoders are supported for DPT. Encoder name must start with 'tu-', got {encoder_name}" + ) + + if decoder_readout not in ["ignore", "add", "cat"]: + raise ValueError( + f"Invalid decoder readout mode. Must be one of: 'ignore', 'add', 'cat'. Got: {decoder_readout}" + ) + + self.encoder = TimmViTEncoder( + name=encoder_name, + in_channels=in_channels, + depth=encoder_depth, + pretrained=encoder_weights is not None, + output_indices=encoder_output_indices, + **kwargs, + ) + + if not self.encoder.has_prefix_tokens and decoder_readout != "ignore": + warnings.warn( + f"Encoder does not have prefix tokens (e.g. cls_token), but `decoder_readout` is set to '{decoder_readout}'. " + f"It's recommended to set `decoder_readout='ignore'` when using a encoder without prefix tokens.", + UserWarning, + ) + + self.decoder = DPTDecoder( + encoder_out_channels=self.encoder.out_channels, + encoder_output_strides=self.encoder.output_strides, + encoder_has_prefix_tokens=self.encoder.has_prefix_tokens, + readout=decoder_readout, + intermediate_channels=decoder_intermediate_channels, + fusion_channels=decoder_fusion_channels, + ) + + self.segmentation_head = DPTSegmentationHead( + in_channels=decoder_fusion_channels, + out_channels=classes, + activation=activation, + kernel_size=3, + upsampling=2, + ) + + if aux_params is not None: + self.classification_head = ClassificationHead( + in_channels=self.encoder.out_channels[-1], **aux_params + ) + else: + self.classification_head = None + + self.name = "dpt-{}".format(encoder_name) + self.initialize() + + def forward(self, x): + """Sequentially pass `x` trough model`s encoder, decoder and heads""" + + if not ( + torch.jit.is_scripting() or torch.jit.is_tracing() or is_torch_compiling() + ): + self.check_input_shape(x) + + features, prefix_tokens = self.encoder(x) + decoder_output = self.decoder(features, prefix_tokens) + masks = self.segmentation_head(decoder_output) + + if self.classification_head is not None: + labels = self.classification_head(features[-1]) + return masks, labels + + return masks diff --git a/segmentation_models_pytorch/decoders/fpn/decoder.py b/segmentation_models_pytorch/decoders/fpn/decoder.py index 766190f4..b111843a 100644 --- a/segmentation_models_pytorch/decoders/fpn/decoder.py +++ b/segmentation_models_pytorch/decoders/fpn/decoder.py @@ -2,9 +2,11 @@ import torch.nn as nn import torch.nn.functional as F +from typing import List, Literal + class Conv3x3GNReLU(nn.Module): - def __init__(self, in_channels, out_channels, upsample=False): + def __init__(self, in_channels: int, out_channels: int, upsample: bool = False): super().__init__() self.upsample = upsample self.block = nn.Sequential( @@ -15,27 +17,33 @@ def __init__(self, in_channels, out_channels, upsample=False): nn.ReLU(inplace=True), ) - def forward(self, x): + def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.block(x) if self.upsample: - x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True) + x = F.interpolate(x, scale_factor=2.0, mode="bilinear", align_corners=True) return x class FPNBlock(nn.Module): - def __init__(self, pyramid_channels, skip_channels): + def __init__( + self, + pyramid_channels: int, + skip_channels: int, + interpolation_mode: str = "nearest", + ): super().__init__() self.skip_conv = nn.Conv2d(skip_channels, pyramid_channels, kernel_size=1) + self.interpolation_mode = interpolation_mode - def forward(self, x, skip=None): - x = F.interpolate(x, scale_factor=2, mode="nearest") + def forward(self, x: torch.Tensor, skip: torch.Tensor) -> torch.Tensor: + x = F.interpolate(x, scale_factor=2.0, mode=self.interpolation_mode) skip = self.skip_conv(skip) x = x + skip return x class SegmentationBlock(nn.Module): - def __init__(self, in_channels, out_channels, n_upsamples=0): + def __init__(self, in_channels: int, out_channels: int, n_upsamples: int = 0): super().__init__() blocks = [Conv3x3GNReLU(in_channels, out_channels, upsample=bool(n_upsamples))] @@ -51,7 +59,7 @@ def forward(self, x): class MergeBlock(nn.Module): - def __init__(self, policy): + def __init__(self, policy: Literal["add", "cat"]): super().__init__() if policy not in ["add", "cat"]: raise ValueError( @@ -59,28 +67,30 @@ def __init__(self, policy): ) self.policy = policy - def forward(self, x): + def forward(self, x: List[torch.Tensor]) -> torch.Tensor: if self.policy == "add": - return sum(x) + output = torch.stack(x).sum(dim=0) elif self.policy == "cat": - return torch.cat(x, dim=1) + output = torch.cat(x, dim=1) else: raise ValueError( "`merge_policy` must be one of: ['add', 'cat'], got {}".format( self.policy ) ) + return output class FPNDecoder(nn.Module): def __init__( self, - encoder_channels, - encoder_depth=5, - pyramid_channels=256, - segmentation_channels=128, - dropout=0.2, - merge_policy="add", + encoder_channels: List[int], + encoder_depth: int = 5, + pyramid_channels: int = 256, + segmentation_channels: int = 128, + dropout: float = 0.2, + merge_policy: Literal["add", "cat"] = "add", + interpolation_mode: str = "nearest", ): super().__init__() @@ -100,9 +110,9 @@ def __init__( encoder_channels = encoder_channels[: encoder_depth + 1] self.p5 = nn.Conv2d(encoder_channels[0], pyramid_channels, kernel_size=1) - self.p4 = FPNBlock(pyramid_channels, encoder_channels[1]) - self.p3 = FPNBlock(pyramid_channels, encoder_channels[2]) - self.p2 = FPNBlock(pyramid_channels, encoder_channels[3]) + self.p4 = FPNBlock(pyramid_channels, encoder_channels[1], interpolation_mode) + self.p3 = FPNBlock(pyramid_channels, encoder_channels[2], interpolation_mode) + self.p2 = FPNBlock(pyramid_channels, encoder_channels[3], interpolation_mode) self.seg_blocks = nn.ModuleList( [ @@ -116,7 +126,7 @@ def __init__( self.merge = MergeBlock(merge_policy) self.dropout = nn.Dropout2d(p=dropout, inplace=True) - def forward(self, *features): + def forward(self, features: List[torch.Tensor]) -> torch.Tensor: c2, c3, c4, c5 = features[-4:] p5 = self.p5(c5) @@ -124,9 +134,12 @@ def forward(self, *features): p3 = self.p3(p4, c3) p2 = self.p2(p3, c2) - feature_pyramid = [ - seg_block(p) for seg_block, p in zip(self.seg_blocks, [p5, p4, p3, p2]) - ] + s5 = self.seg_blocks[0](p5) + s4 = self.seg_blocks[1](p4) + s3 = self.seg_blocks[2](p3) + s2 = self.seg_blocks[3](p2) + + feature_pyramid = [s5, s4, s3, s2] x = self.merge(feature_pyramid) x = self.dropout(x) diff --git a/segmentation_models_pytorch/decoders/fpn/model.py b/segmentation_models_pytorch/decoders/fpn/model.py index 7420b289..6e37109a 100644 --- a/segmentation_models_pytorch/decoders/fpn/model.py +++ b/segmentation_models_pytorch/decoders/fpn/model.py @@ -28,12 +28,13 @@ class FPN(SegmentationModel): decoder_merge_policy: Determines how to merge pyramid features inside FPN. Available options are **add** and **cat** decoder_dropout: Spatial dropout rate in range (0, 1) for feature pyramid in FPN_ + decoder_interpolation: Interpolation mode used in decoder of the model. Available options are + **"nearest"**, **"bilinear"**, **"bicubic"**, **"area"**, **"nearest-exact"**. Default is **"nearest"**. in_channels: A number of input channels for the model, default is 3 (RGB images) classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, - **callable** and **None**. - Default is **None** + **callable** and **None**. Default is **None**. upsampling: Final upsampling factor. Default is 4 to preserve input-output spatial shape identity aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: @@ -62,6 +63,7 @@ def __init__( decoder_segmentation_channels: int = 128, decoder_merge_policy: str = "add", decoder_dropout: float = 0.2, + decoder_interpolation: str = "nearest", in_channels: int = 3, classes: int = 1, activation: Optional[str] = None, @@ -92,6 +94,7 @@ def __init__( segmentation_channels=decoder_segmentation_channels, dropout=decoder_dropout, merge_policy=decoder_merge_policy, + interpolation_mode=decoder_interpolation, ) self.segmentation_head = SegmentationHead( diff --git a/segmentation_models_pytorch/decoders/linknet/decoder.py b/segmentation_models_pytorch/decoders/linknet/decoder.py index e16a32c8..95c7f9f6 100644 --- a/segmentation_models_pytorch/decoders/linknet/decoder.py +++ b/segmentation_models_pytorch/decoders/linknet/decoder.py @@ -1,26 +1,33 @@ +import torch import torch.nn as nn +from typing import Any, Dict, List, Optional, Union from segmentation_models_pytorch.base import modules class TransposeX2(nn.Sequential): - def __init__(self, in_channels, out_channels, use_batchnorm=True): + def __init__( + self, + in_channels: int, + out_channels: int, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + ): super().__init__() - layers = [ - nn.ConvTranspose2d( - in_channels, out_channels, kernel_size=4, stride=2, padding=1 - ), - nn.ReLU(inplace=True), - ] - - if use_batchnorm: - layers.insert(1, nn.BatchNorm2d(out_channels)) - - super().__init__(*layers) + conv = nn.ConvTranspose2d( + in_channels, out_channels, kernel_size=4, stride=2, padding=1 + ) + norm = modules.get_norm_layer(use_norm, out_channels) + activation = nn.ReLU(inplace=True) + super().__init__(conv, norm, activation) class DecoderBlock(nn.Module): - def __init__(self, in_channels, out_channels, use_batchnorm=True): + def __init__( + self, + in_channels: int, + out_channels: int, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + ): super().__init__() self.block = nn.Sequential( @@ -28,20 +35,20 @@ def __init__(self, in_channels, out_channels, use_batchnorm=True): in_channels, in_channels // 4, kernel_size=1, - use_batchnorm=use_batchnorm, - ), - TransposeX2( - in_channels // 4, in_channels // 4, use_batchnorm=use_batchnorm + use_norm=use_norm, ), + TransposeX2(in_channels // 4, in_channels // 4, use_norm=use_norm), modules.Conv2dReLU( in_channels // 4, out_channels, kernel_size=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ), ) - def forward(self, x, skip=None): + def forward( + self, x: torch.Tensor, skip: Optional[torch.Tensor] = None + ) -> torch.Tensor: x = self.block(x) if skip is not None: x = x + skip @@ -50,7 +57,11 @@ def forward(self, x, skip=None): class LinknetDecoder(nn.Module): def __init__( - self, encoder_channels, prefinal_channels=32, n_blocks=5, use_batchnorm=True + self, + encoder_channels: List[int], + prefinal_channels: int = 32, + n_blocks: int = 5, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", ): super().__init__() @@ -63,12 +74,16 @@ def __init__( self.blocks = nn.ModuleList( [ - DecoderBlock(channels[i], channels[i + 1], use_batchnorm=use_batchnorm) + DecoderBlock( + channels[i], + channels[i + 1], + use_norm=use_norm, + ) for i in range(n_blocks) ] ) - def forward(self, *features): + def forward(self, features: List[torch.Tensor]) -> torch.Tensor: features = features[1:] # remove first skip features = features[::-1] # reverse channels to start from head of encoder diff --git a/segmentation_models_pytorch/decoders/linknet/model.py b/segmentation_models_pytorch/decoders/linknet/model.py index 356468ed..38eac4c2 100644 --- a/segmentation_models_pytorch/decoders/linknet/model.py +++ b/segmentation_models_pytorch/decoders/linknet/model.py @@ -1,4 +1,5 @@ -from typing import Any, Optional, Union +import warnings +from typing import Any, Dict, Optional, Union, Callable from segmentation_models_pytorch.base import ( ClassificationHead, @@ -29,15 +30,27 @@ class Linknet(SegmentationModel): Default is 5 encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and other pretrained weights (see table with available weights for each encoder_name) - decoder_use_batchnorm: If **True**, BatchNorm2d layer between Conv2D and Activation layers - is used. If **"inplace"** InplaceABN will be used, allows to decrease memory consumption. - Available options are **True, False, "inplace"** + decoder_use_norm: Specifies normalization between Conv2D and activation. + Accepts the following types: + - **True**: Defaults to `"batchnorm"`. + - **False**: No normalization (`nn.Identity`). + - **str**: Specifies normalization type using default parameters. Available values: + `"batchnorm"`, `"identity"`, `"layernorm"`, `"instancenorm"`, `"inplace"`. + - **dict**: Fully customizable normalization settings. Structure: + ```python + {"type": , **kwargs} + ``` + where `norm_name` corresponds to normalization type (see above), and `kwargs` are passed directly to the normalization layer as defined in PyTorch documentation. + + **Example**: + ```python + decoder_use_norm={"type": "layernorm", "eps": 1e-2} + ``` in_channels: A number of input channels for the model, default is 3 (RGB images) classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, - **callable** and **None**. - Default is **None** + **callable** and **None**. Default is **None**. aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: - classes (int): A number of classes @@ -60,10 +73,10 @@ def __init__( encoder_name: str = "resnet34", encoder_depth: int = 5, encoder_weights: Optional[str] = "imagenet", - decoder_use_batchnorm: bool = True, + decoder_use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", in_channels: int = 3, classes: int = 1, - activation: Optional[Union[str, callable]] = None, + activation: Optional[Union[str, Callable]] = None, aux_params: Optional[dict] = None, **kwargs: dict[str, Any], ): @@ -74,6 +87,15 @@ def __init__( "Encoder `{}` is not supported for Linknet".format(encoder_name) ) + decoder_use_batchnorm = kwargs.pop("decoder_use_batchnorm", None) + if decoder_use_batchnorm is not None: + warnings.warn( + "The usage of decoder_use_batchnorm is deprecated. Please modify your code for decoder_use_norm", + DeprecationWarning, + stacklevel=2, + ) + decoder_use_norm = decoder_use_batchnorm + self.encoder = get_encoder( encoder_name, in_channels=in_channels, @@ -86,7 +108,7 @@ def __init__( encoder_channels=self.encoder.out_channels, n_blocks=encoder_depth, prefinal_channels=32, - use_batchnorm=decoder_use_batchnorm, + use_norm=decoder_use_norm, ) self.segmentation_head = SegmentationHead( diff --git a/segmentation_models_pytorch/decoders/manet/decoder.py b/segmentation_models_pytorch/decoders/manet/decoder.py index 0f6af18d..39e117bf 100644 --- a/segmentation_models_pytorch/decoders/manet/decoder.py +++ b/segmentation_models_pytorch/decoders/manet/decoder.py @@ -1,3 +1,5 @@ +from typing import Any, Dict, List, Optional, Union + import torch import torch.nn as nn import torch.nn.functional as F @@ -5,9 +7,10 @@ from segmentation_models_pytorch.base import modules as md -class PAB(nn.Module): - def __init__(self, in_channels, out_channels, pab_channels=64): - super(PAB, self).__init__() +class PABBlock(nn.Module): + def __init__(self, in_channels: int, pab_channels: int = 64): + super().__init__() + # Series of 1x1 conv to generate attention feature maps self.pab_channels = pab_channels self.in_channels = in_channels @@ -17,10 +20,9 @@ def __init__(self, in_channels, out_channels, pab_channels=64): self.map_softmax = nn.Softmax(dim=1) self.out_conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) - def forward(self, x): - bsize = x.size()[0] - h = x.size()[2] - w = x.size()[3] + def forward(self, x: torch.Tensor) -> torch.Tensor: + batch_size, _, height, width = x.shape + x_top = self.top_conv(x) x_center = self.center_conv(x) x_bottom = self.bottom_conv(x) @@ -30,30 +32,42 @@ def forward(self, x): x_bottom = x_bottom.flatten(2).transpose(1, 2) sp_map = torch.matmul(x_center, x_top) - sp_map = self.map_softmax(sp_map.view(bsize, -1)).view(bsize, h * w, h * w) + sp_map = self.map_softmax(sp_map.view(batch_size, -1)) + sp_map = sp_map.view(batch_size, height * width, height * width) + sp_map = torch.matmul(sp_map, x_bottom) - sp_map = sp_map.reshape(bsize, self.in_channels, h, w) + sp_map = sp_map.reshape(batch_size, self.in_channels, height, width) + x = x + sp_map x = self.out_conv(x) return x -class MFAB(nn.Module): +class MFABBlock(nn.Module): def __init__( - self, in_channels, skip_channels, out_channels, use_batchnorm=True, reduction=16 + self, + in_channels: int, + skip_channels: int, + out_channels: int, + interpolation_mode: str = "nearest", + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + reduction: int = 16, ): - # MFAB is just a modified version of SE-blocks, one for skip, one for input - super(MFAB, self).__init__() + # MFABBlock is just a modified version of SE-blocks, one for skip, one for input + super().__init__() self.hl_conv = nn.Sequential( md.Conv2dReLU( in_channels, in_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ), md.Conv2dReLU( - in_channels, skip_channels, kernel_size=1, use_batchnorm=use_batchnorm + in_channels, + skip_channels, + kernel_size=1, + use_norm=use_norm, ), ) reduced_channels = max(1, skip_channels // reduction) @@ -77,19 +91,22 @@ def __init__( out_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) self.conv2 = md.Conv2dReLU( out_channels, out_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) + self.interpolation_mode = interpolation_mode - def forward(self, x, skip=None): + def forward( + self, x: torch.Tensor, skip: Optional[torch.Tensor] = None + ) -> torch.Tensor: x = self.hl_conv(x) - x = F.interpolate(x, scale_factor=2, mode="nearest") + x = F.interpolate(x, scale_factor=2.0, mode=self.interpolation_mode) attention_hl = self.SE_hl(x) if skip is not None: attention_ll = self.SE_ll(skip) @@ -102,25 +119,35 @@ def forward(self, x, skip=None): class DecoderBlock(nn.Module): - def __init__(self, in_channels, skip_channels, out_channels, use_batchnorm=True): + def __init__( + self, + in_channels: int, + skip_channels: int, + out_channels: int, + interpolation_mode: str = "nearest", + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + ): super().__init__() self.conv1 = md.Conv2dReLU( in_channels + skip_channels, out_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) self.conv2 = md.Conv2dReLU( out_channels, out_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) + self.interpolation_mode = interpolation_mode - def forward(self, x, skip=None): - x = F.interpolate(x, scale_factor=2, mode="nearest") + def forward( + self, x: torch.Tensor, skip: Optional[torch.Tensor] = None + ) -> torch.Tensor: + x = F.interpolate(x, scale_factor=2.0, mode=self.interpolation_mode) if skip is not None: x = torch.cat([x, skip], dim=1) x = self.conv1(x) @@ -131,12 +158,13 @@ def forward(self, x, skip=None): class MAnetDecoder(nn.Module): def __init__( self, - encoder_channels, - decoder_channels, - n_blocks=5, - reduction=16, - use_batchnorm=True, - pab_channels=64, + encoder_channels: List[int], + decoder_channels: List[int], + n_blocks: int = 5, + reduction: int = 16, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + pab_channels: int = 64, + interpolation_mode: str = "nearest", ): super().__init__() @@ -159,12 +187,14 @@ def __init__( skip_channels = list(encoder_channels[1:]) + [0] out_channels = decoder_channels - self.center = PAB(head_channels, head_channels, pab_channels=pab_channels) + self.center = PABBlock(head_channels, pab_channels=pab_channels) # combine decoder keyword arguments - kwargs = dict(use_batchnorm=use_batchnorm) # no attention type here + kwargs = dict( + use_norm=use_norm, interpolation_mode=interpolation_mode + ) # no attention type here blocks = [ - MFAB(in_ch, skip_ch, out_ch, reduction=reduction, **kwargs) + MFABBlock(in_ch, skip_ch, out_ch, reduction=reduction, **kwargs) if skip_ch > 0 else DecoderBlock(in_ch, skip_ch, out_ch, **kwargs) for in_ch, skip_ch, out_ch in zip(in_channels, skip_channels, out_channels) @@ -172,7 +202,7 @@ def __init__( # for the last we dont have skip connection -> use simple decoder block self.blocks = nn.ModuleList(blocks) - def forward(self, *features): + def forward(self, features: List[torch.Tensor]) -> torch.Tensor: features = features[1:] # remove first skip with same spatial resolution features = features[::-1] # reverse channels to start from head of encoder diff --git a/segmentation_models_pytorch/decoders/manet/model.py b/segmentation_models_pytorch/decoders/manet/model.py index 6ed59207..568a7f58 100644 --- a/segmentation_models_pytorch/decoders/manet/model.py +++ b/segmentation_models_pytorch/decoders/manet/model.py @@ -1,4 +1,5 @@ -from typing import Any, List, Optional, Union +import warnings +from typing import Any, Dict, Optional, Union, Sequence, Callable from segmentation_models_pytorch.base import ( ClassificationHead, @@ -29,17 +30,31 @@ class MAnet(SegmentationModel): other pretrained weights (see table with available weights for each encoder_name) decoder_channels: List of integers which specify **in_channels** parameter for convolutions used in decoder. Length of the list should be the same as **encoder_depth** - decoder_use_batchnorm: If **True**, BatchNorm2d layer between Conv2D and Activation layers - is used. If **"inplace"** InplaceABN will be used, allows to decrease memory consumption. - Available options are **True, False, "inplace"** + decoder_use_norm: Specifies normalization between Conv2D and activation. + Accepts the following types: + - **True**: Defaults to `"batchnorm"`. + - **False**: No normalization (`nn.Identity`). + - **str**: Specifies normalization type using default parameters. Available values: + `"batchnorm"`, `"identity"`, `"layernorm"`, `"instancenorm"`, `"inplace"`. + - **dict**: Fully customizable normalization settings. Structure: + ```python + {"type": , **kwargs} + ``` + where `norm_name` corresponds to normalization type (see above), and `kwargs` are passed directly to the normalization layer as defined in PyTorch documentation. + + **Example**: + ```python + decoder_use_norm={"type": "layernorm", "eps": 1e-2} + ``` decoder_pab_channels: A number of channels for PAB module in decoder. Default is 64. + decoder_interpolation: Interpolation mode used in decoder of the model. Available options are + **"nearest"**, **"bilinear"**, **"bicubic"**, **"area"**, **"nearest-exact"**. Default is **"nearest"**. in_channels: A number of input channels for the model, default is 3 (RGB images) classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, - **callable** and **None**. - Default is **None** + **callable** and **None**. Default is **None**. aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: - classes (int): A number of classes @@ -63,17 +78,27 @@ def __init__( encoder_name: str = "resnet34", encoder_depth: int = 5, encoder_weights: Optional[str] = "imagenet", - decoder_use_batchnorm: bool = True, - decoder_channels: List[int] = (256, 128, 64, 32, 16), + decoder_use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + decoder_channels: Sequence[int] = (256, 128, 64, 32, 16), decoder_pab_channels: int = 64, + decoder_interpolation: str = "nearest", in_channels: int = 3, classes: int = 1, - activation: Optional[Union[str, callable]] = None, + activation: Optional[Union[str, Callable]] = None, aux_params: Optional[dict] = None, **kwargs: dict[str, Any], ): super().__init__() + decoder_use_batchnorm = kwargs.pop("decoder_use_batchnorm", None) + if decoder_use_batchnorm is not None: + warnings.warn( + "The usage of decoder_use_batchnorm is deprecated. Please modify your code for decoder_use_norm", + DeprecationWarning, + stacklevel=2, + ) + decoder_use_norm = decoder_use_batchnorm + self.encoder = get_encoder( encoder_name, in_channels=in_channels, @@ -86,8 +111,9 @@ def __init__( encoder_channels=self.encoder.out_channels, decoder_channels=decoder_channels, n_blocks=encoder_depth, - use_batchnorm=decoder_use_batchnorm, + use_norm=decoder_use_norm, pab_channels=decoder_pab_channels, + interpolation_mode=decoder_interpolation, ) self.segmentation_head = SegmentationHead( diff --git a/segmentation_models_pytorch/decoders/pan/decoder.py b/segmentation_models_pytorch/decoders/pan/decoder.py index fa0bb261..729c76ed 100644 --- a/segmentation_models_pytorch/decoders/pan/decoder.py +++ b/segmentation_models_pytorch/decoders/pan/decoder.py @@ -1,5 +1,5 @@ from collections.abc import Sequence -from typing import Literal +from typing import Literal, List import torch import torch.nn as nn @@ -31,18 +31,22 @@ def __init__( bias=bias, groups=groups, ) + self.activation = nn.ReLU(inplace=True) + self.bn = nn.BatchNorm2d(out_channels) + self.add_relu = add_relu self.interpolate = interpolate - self.bn = nn.BatchNorm2d(out_channels) - self.activation = nn.ReLU(inplace=True) - def forward(self, x): + def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.conv(x) x = self.bn(x) + if self.add_relu: x = self.activation(x) + if self.interpolate: - x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True) + x = F.interpolate(x, scale_factor=2.0, mode="bilinear", align_corners=True) + return x @@ -50,7 +54,7 @@ class FPABlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, upscale_mode: str = "bilinear" ): - super(FPABlock, self).__init__() + super().__init__() self.upscale_mode = upscale_mode if self.upscale_mode == "bilinear": @@ -70,7 +74,7 @@ def __init__( ), ) - # midddle branch + # middle branch self.mid = nn.Sequential( ConvBnRelu( in_channels=in_channels, @@ -112,41 +116,64 @@ def __init__( in_channels=1, out_channels=1, kernel_size=7, stride=1, padding=3 ) - def forward(self, x): - h, w = x.size(2), x.size(3) - b1 = self.branch1(x) - upscale_parameters = dict( - mode=self.upscale_mode, align_corners=self.align_corners + def forward(self, x: torch.Tensor) -> torch.Tensor: + _, _, height, width = x.shape + + branch1_output = self.branch1(x) + branch1_output = F.interpolate( + branch1_output, + size=(height, width), + mode=self.upscale_mode, + align_corners=self.align_corners, ) - b1 = F.interpolate(b1, size=(h, w), **upscale_parameters) - mid = self.mid(x) + middle_output = self.mid(x) + x1 = self.down1(x) x2 = self.down2(x1) x3 = self.down3(x2) - x3 = F.interpolate(x3, size=(h // 4, w // 4), **upscale_parameters) + x3 = F.interpolate( + x3, + size=(height // 4, width // 4), + mode=self.upscale_mode, + align_corners=self.align_corners, + ) x2 = self.conv2(x2) x = x2 + x3 - x = F.interpolate(x, size=(h // 2, w // 2), **upscale_parameters) + x = F.interpolate( + x, + size=(height // 2, width // 2), + mode=self.upscale_mode, + align_corners=self.align_corners, + ) x1 = self.conv1(x1) x = x + x1 - x = F.interpolate(x, size=(h, w), **upscale_parameters) + x = F.interpolate( + x, + size=(height, width), + mode=self.upscale_mode, + align_corners=self.align_corners, + ) + + x = torch.mul(x, middle_output) + x = x + branch1_output - x = torch.mul(x, mid) - x = x + b1 return x class GAUBlock(nn.Module): def __init__( - self, in_channels: int, out_channels: int, upscale_mode: str = "bilinear" + self, + in_channels: int, + out_channels: int, + interpolation_mode: str = "bilinear", ): super(GAUBlock, self).__init__() - self.upscale_mode = upscale_mode - self.align_corners = True if upscale_mode == "bilinear" else None + self.interpolation_mode = interpolation_mode + self.align_corners = True if interpolation_mode == "bilinear" else None self.conv1 = nn.Sequential( nn.AdaptiveAvgPool2d(1), @@ -162,15 +189,18 @@ def __init__( in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1 ) - def forward(self, x, y): + def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Args: x: low level feature y: high level feature """ - h, w = x.size(2), x.size(3) + height, width = x.shape[2:] y_up = F.interpolate( - y, size=(h, w), mode=self.upscale_mode, align_corners=self.align_corners + y, + size=(height, width), + mode=self.interpolation_mode, + align_corners=self.align_corners, ) x = self.conv2(x) y = self.conv1(y) @@ -184,7 +214,7 @@ def __init__( encoder_channels: Sequence[int], encoder_depth: Literal[3, 4, 5], decoder_channels: int, - upscale_mode: str = "bilinear", + interpolation_mode: str = "bilinear", ): super().__init__() @@ -205,22 +235,22 @@ def __init__( self.gau3 = GAUBlock( in_channels=encoder_channels[2], out_channels=decoder_channels, - upscale_mode=upscale_mode, + interpolation_mode=interpolation_mode, ) if encoder_depth >= 4: self.gau2 = GAUBlock( in_channels=encoder_channels[1], out_channels=decoder_channels, - upscale_mode=upscale_mode, + interpolation_mode=interpolation_mode, ) if encoder_depth >= 3: self.gau1 = GAUBlock( in_channels=encoder_channels[0], out_channels=decoder_channels, - upscale_mode=upscale_mode, + interpolation_mode=interpolation_mode, ) - def forward(self, *features): + def forward(self, features: List[torch.Tensor]) -> torch.Tensor: features = features[2:] # remove first and second skip out = self.fpa(features[-1]) # 1/16 or 1/32 diff --git a/segmentation_models_pytorch/decoders/pan/model.py b/segmentation_models_pytorch/decoders/pan/model.py index 6d5e78c2..0ea1dfbb 100644 --- a/segmentation_models_pytorch/decoders/pan/model.py +++ b/segmentation_models_pytorch/decoders/pan/model.py @@ -1,4 +1,5 @@ from typing import Any, Callable, Literal, Optional, Union +import warnings from segmentation_models_pytorch.base import ( ClassificationHead, @@ -30,12 +31,13 @@ class PAN(SegmentationModel): encoder_output_stride: 16 or 32, if 16 use dilation in encoder last layer. Doesn't work with ***ception***, **vgg***, **densenet*`** backbones.Default is 16. decoder_channels: A number of convolution layer filters in decoder blocks + decoder_interpolation: Interpolation mode used in decoder of the model. Available options are + **"nearest"**, **"bilinear"**, **"bicubic"**, **"area"**, **"nearest-exact"**. Default is **"bilinear"**. in_channels: A number of input channels for the model, default is 3 (RGB images) classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, - **callable** and **None**. - Default is **None** + **callable** and **None**. Default is **None**. upsampling: Final upsampling factor. Default is 4 to preserve input-output spatial shape identity aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: @@ -62,6 +64,7 @@ def __init__( encoder_weights: Optional[str] = "imagenet", encoder_output_stride: Literal[16, 32] = 16, decoder_channels: int = 32, + decoder_interpolation: str = "bilinear", in_channels: int = 3, classes: int = 1, activation: Optional[Union[str, Callable]] = None, @@ -78,6 +81,15 @@ def __init__( ) ) + upscale_mode = kwargs.pop("upscale_mode", None) + if upscale_mode is not None: + warnings.warn( + "The usage of upscale_mode is deprecated. Please modify your code for decoder_interpolation", + DeprecationWarning, + stacklevel=2, + ) + decoder_interpolation = upscale_mode + self.encoder = get_encoder( encoder_name, in_channels=in_channels, @@ -91,6 +103,7 @@ def __init__( encoder_channels=self.encoder.out_channels, encoder_depth=encoder_depth, decoder_channels=decoder_channels, + interpolation_mode=decoder_interpolation, ) self.segmentation_head = SegmentationHead( diff --git a/segmentation_models_pytorch/decoders/pspnet/decoder.py b/segmentation_models_pytorch/decoders/pspnet/decoder.py index 40d2e945..80ad289c 100644 --- a/segmentation_models_pytorch/decoders/pspnet/decoder.py +++ b/segmentation_models_pytorch/decoders/pspnet/decoder.py @@ -1,3 +1,5 @@ +from typing import Any, Dict, List, Tuple, Union + import torch import torch.nn as nn import torch.nn.functional as F @@ -6,26 +8,39 @@ class PSPBlock(nn.Module): - def __init__(self, in_channels, out_channels, pool_size, use_bathcnorm=True): + def __init__( + self, + in_channels: int, + out_channels: int, + pool_size: int, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + ): super().__init__() + if pool_size == 1: - use_bathcnorm = False # PyTorch does not support BatchNorm for 1x1 shape + use_norm = "identity" # PyTorch does not support BatchNorm for 1x1 shape + self.pool = nn.Sequential( nn.AdaptiveAvgPool2d(output_size=(pool_size, pool_size)), modules.Conv2dReLU( - in_channels, out_channels, (1, 1), use_batchnorm=use_bathcnorm + in_channels, out_channels, kernel_size=1, use_norm=use_norm ), ) - def forward(self, x): - h, w = x.size(2), x.size(3) + def forward(self, x: torch.Tensor) -> torch.Tensor: + height, width = x.shape[2:] x = self.pool(x) - x = F.interpolate(x, size=(h, w), mode="bilinear", align_corners=True) + x = F.interpolate(x, size=(height, width), mode="bilinear", align_corners=True) return x class PSPModule(nn.Module): - def __init__(self, in_channels, sizes=(1, 2, 3, 6), use_bathcnorm=True): + def __init__( + self, + in_channels: int, + sizes: Tuple[int, ...] = (1, 2, 3, 6), + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + ): super().__init__() self.blocks = nn.ModuleList( @@ -34,7 +49,7 @@ def __init__(self, in_channels, sizes=(1, 2, 3, 6), use_bathcnorm=True): in_channels, in_channels // len(sizes), size, - use_bathcnorm=use_bathcnorm, + use_norm=use_norm, ) for size in sizes ] @@ -48,26 +63,30 @@ def forward(self, x): class PSPDecoder(nn.Module): def __init__( - self, encoder_channels, use_batchnorm=True, out_channels=512, dropout=0.2 + self, + encoder_channels: List[int], + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + out_channels: int = 512, + dropout: float = 0.2, ): super().__init__() self.psp = PSPModule( in_channels=encoder_channels[-1], sizes=(1, 2, 3, 6), - use_bathcnorm=use_batchnorm, + use_norm=use_norm, ) self.conv = modules.Conv2dReLU( in_channels=encoder_channels[-1] * 2, out_channels=out_channels, kernel_size=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) self.dropout = nn.Dropout2d(p=dropout) - def forward(self, *features): + def forward(self, features: List[torch.Tensor]) -> torch.Tensor: x = features[-1] x = self.psp(x) x = self.conv(x) diff --git a/segmentation_models_pytorch/decoders/pspnet/model.py b/segmentation_models_pytorch/decoders/pspnet/model.py index 8b99b3da..f7740891 100644 --- a/segmentation_models_pytorch/decoders/pspnet/model.py +++ b/segmentation_models_pytorch/decoders/pspnet/model.py @@ -1,4 +1,5 @@ -from typing import Any, Optional, Union +import warnings +from typing import Any, Dict, Optional, Union, Callable from segmentation_models_pytorch.base import ( ClassificationHead, @@ -28,16 +29,28 @@ class PSPNet(SegmentationModel): encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and other pretrained weights (see table with available weights for each encoder_name) psp_out_channels: A number of filters in Spatial Pyramid - psp_use_batchnorm: If **True**, BatchNorm2d layer between Conv2D and Activation layers - is used. If **"inplace"** InplaceABN will be used, allows to decrease memory consumption. - Available options are **True, False, "inplace"** + decoder_use_norm: Specifies normalization between Conv2D and activation. + Accepts the following types: + - **True**: Defaults to `"batchnorm"`. + - **False**: No normalization (`nn.Identity`). + - **str**: Specifies normalization type using default parameters. Available values: + `"batchnorm"`, `"identity"`, `"layernorm"`, `"instancenorm"`, `"inplace"`. + - **dict**: Fully customizable normalization settings. Structure: + ```python + {"type": , **kwargs} + ``` + where `norm_name` corresponds to normalization type (see above), and `kwargs` are passed directly to the normalization layer as defined in PyTorch documentation. + + **Example**: + ```python + decoder_use_norm={"type": "layernorm", "eps": 1e-2} + ``` psp_dropout: Spatial dropout rate in [0, 1) used in Spatial Pyramid in_channels: A number of input channels for the model, default is 3 (RGB images) classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, - **callable** and **None**. - Default is **None** + **callable** and **None**. Default is **None**. upsampling: Final upsampling factor. Default is 8 to preserve input-output spatial shape identity aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: @@ -62,17 +75,26 @@ def __init__( encoder_weights: Optional[str] = "imagenet", encoder_depth: int = 3, psp_out_channels: int = 512, - psp_use_batchnorm: bool = True, + decoder_use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", psp_dropout: float = 0.2, in_channels: int = 3, classes: int = 1, - activation: Optional[Union[str, callable]] = None, + activation: Optional[Union[str, Callable]] = None, upsampling: int = 8, aux_params: Optional[dict] = None, **kwargs: dict[str, Any], ): super().__init__() + psp_use_batchnorm = kwargs.pop("psp_use_batchnorm", None) + if psp_use_batchnorm is not None: + warnings.warn( + "The usage of psp_use_batchnorm is deprecated. Please modify your code for decoder_use_norm", + DeprecationWarning, + stacklevel=2, + ) + decoder_use_norm = psp_use_batchnorm + self.encoder = get_encoder( encoder_name, in_channels=in_channels, @@ -83,7 +105,7 @@ def __init__( self.decoder = PSPDecoder( encoder_channels=self.encoder.out_channels, - use_batchnorm=psp_use_batchnorm, + use_norm=decoder_use_norm, out_channels=psp_out_channels, dropout=psp_dropout, ) diff --git a/segmentation_models_pytorch/decoders/segformer/decoder.py b/segmentation_models_pytorch/decoders/segformer/decoder.py index daa78b37..2bfadfff 100644 --- a/segmentation_models_pytorch/decoders/segformer/decoder.py +++ b/segmentation_models_pytorch/decoders/segformer/decoder.py @@ -2,11 +2,12 @@ import torch.nn as nn import torch.nn.functional as F +from typing import List from segmentation_models_pytorch.base import modules as md class MLP(nn.Module): - def __init__(self, skip_channels, segmentation_channels): + def __init__(self, skip_channels: int, segmentation_channels: int): super().__init__() self.linear = nn.Linear(skip_channels, segmentation_channels) @@ -22,9 +23,9 @@ def forward(self, x: torch.Tensor): class SegformerDecoder(nn.Module): def __init__( self, - encoder_channels, - encoder_depth=5, - segmentation_channels=256, + encoder_channels: List[int], + encoder_depth: int = 5, + segmentation_channels: int = 256, ): super().__init__() @@ -36,9 +37,9 @@ def __init__( ) if encoder_channels[1] == 0: - encoder_channels = tuple( + encoder_channels = [ channel for index, channel in enumerate(encoder_channels) if index != 1 - ) + ] encoder_channels = encoder_channels[::-1] self.mlp_stage = nn.ModuleList( @@ -49,10 +50,10 @@ def __init__( in_channels=(len(encoder_channels) - 1) * segmentation_channels, out_channels=segmentation_channels, kernel_size=1, - use_batchnorm=True, + use_norm="batchnorm", ) - def forward(self, *features): + def forward(self, features: List[torch.Tensor]) -> torch.Tensor: # Resize all features to the size of the largest feature target_size = [dim // 4 for dim in features[0].shape[2:]] @@ -60,8 +61,8 @@ def forward(self, *features): features = features[::-1] # reverse channels to start from head of encoder resized_features = [] - for feature, stage in zip(features, self.mlp_stage): - feature = stage(feature) + for i, mlp_layer in enumerate(self.mlp_stage): + feature = mlp_layer(features[i]) resized_feature = F.interpolate( feature, size=target_size, mode="bilinear", align_corners=False ) diff --git a/segmentation_models_pytorch/decoders/segformer/model.py b/segmentation_models_pytorch/decoders/segformer/model.py index 45805de7..03deeeef 100644 --- a/segmentation_models_pytorch/decoders/segformer/model.py +++ b/segmentation_models_pytorch/decoders/segformer/model.py @@ -28,8 +28,8 @@ class Segformer(SegmentationModel): classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, - **callable** and **None**. - Default is **None** + **callable** and **None**. Default is **None**. + upsampling: A number to upsample the output of the model, default is 4 (same size as input) aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: - classes (int): A number of classes @@ -57,6 +57,7 @@ def __init__( in_channels: int = 3, classes: int = 1, activation: Optional[Union[str, Callable]] = None, + upsampling: int = 4, aux_params: Optional[dict] = None, **kwargs: dict[str, Any], ): @@ -81,7 +82,7 @@ def __init__( out_channels=classes, activation=activation, kernel_size=1, - upsampling=4, + upsampling=upsampling, ) if aux_params is not None: diff --git a/segmentation_models_pytorch/decoders/unet/decoder.py b/segmentation_models_pytorch/decoders/unet/decoder.py index 33061542..cfeb267e 100644 --- a/segmentation_models_pytorch/decoders/unet/decoder.py +++ b/segmentation_models_pytorch/decoders/unet/decoder.py @@ -1,3 +1,5 @@ +from typing import Any, Dict, List, Optional, Sequence, Union + import torch import torch.nn as nn import torch.nn.functional as F @@ -5,22 +7,26 @@ from segmentation_models_pytorch.base import modules as md -class DecoderBlock(nn.Module): +class UnetDecoderBlock(nn.Module): + """A decoder block in the U-Net architecture that performs upsampling and feature fusion.""" + def __init__( self, - in_channels, - skip_channels, - out_channels, - use_batchnorm=True, - attention_type=None, + in_channels: int, + skip_channels: int, + out_channels: int, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + attention_type: Optional[str] = None, + interpolation_mode: str = "nearest", ): super().__init__() + self.interpolation_mode = interpolation_mode self.conv1 = md.Conv2dReLU( in_channels + skip_channels, out_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) self.attention1 = md.Attention( attention_type, in_channels=in_channels + skip_channels @@ -30,49 +36,73 @@ def __init__( out_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) self.attention2 = md.Attention(attention_type, in_channels=out_channels) - def forward(self, x, skip=None): - x = F.interpolate(x, scale_factor=2, mode="nearest") - if skip is not None: - x = torch.cat([x, skip], dim=1) - x = self.attention1(x) - x = self.conv1(x) - x = self.conv2(x) - x = self.attention2(x) - return x + def forward( + self, + feature_map: torch.Tensor, + target_height: int, + target_width: int, + skip_connection: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + feature_map = F.interpolate( + feature_map, + size=(target_height, target_width), + mode=self.interpolation_mode, + ) + if skip_connection is not None: + feature_map = torch.cat([feature_map, skip_connection], dim=1) + feature_map = self.attention1(feature_map) + feature_map = self.conv1(feature_map) + feature_map = self.conv2(feature_map) + feature_map = self.attention2(feature_map) + return feature_map + +class UnetCenterBlock(nn.Sequential): + """Center block of the Unet decoder. Applied to the last feature map of the encoder.""" -class CenterBlock(nn.Sequential): - def __init__(self, in_channels, out_channels, use_batchnorm=True): + def __init__( + self, + in_channels: int, + out_channels: int, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + ): conv1 = md.Conv2dReLU( in_channels, out_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) conv2 = md.Conv2dReLU( out_channels, out_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) super().__init__(conv1, conv2) class UnetDecoder(nn.Module): + """The decoder part of the U-Net architecture. + + Takes encoded features from different stages of the encoder and progressively upsamples them while + combining with skip connections. This helps preserve fine-grained details in the final segmentation. + """ + def __init__( self, - encoder_channels, - decoder_channels, - n_blocks=5, - use_batchnorm=True, - attention_type=None, - center=False, + encoder_channels: Sequence[int], + decoder_channels: Sequence[int], + n_blocks: int = 5, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + attention_type: Optional[str] = None, + add_center_block: bool = False, + interpolation_mode: str = "nearest", ): super().__init__() @@ -94,31 +124,47 @@ def __init__( skip_channels = list(encoder_channels[1:]) + [0] out_channels = decoder_channels - if center: - self.center = CenterBlock( - head_channels, head_channels, use_batchnorm=use_batchnorm + if add_center_block: + self.center = UnetCenterBlock( + head_channels, + head_channels, + use_norm=use_norm, ) else: self.center = nn.Identity() # combine decoder keyword arguments - kwargs = dict(use_batchnorm=use_batchnorm, attention_type=attention_type) - blocks = [ - DecoderBlock(in_ch, skip_ch, out_ch, **kwargs) - for in_ch, skip_ch, out_ch in zip(in_channels, skip_channels, out_channels) - ] - self.blocks = nn.ModuleList(blocks) - - def forward(self, *features): + self.blocks = nn.ModuleList() + for block_in_channels, block_skip_channels, block_out_channels in zip( + in_channels, skip_channels, out_channels + ): + block = UnetDecoderBlock( + block_in_channels, + block_skip_channels, + block_out_channels, + use_norm=use_norm, + attention_type=attention_type, + interpolation_mode=interpolation_mode, + ) + self.blocks.append(block) + + def forward(self, features: List[torch.Tensor]) -> torch.Tensor: + # spatial shapes of features: [hw, hw/2, hw/4, hw/8, ...] + spatial_shapes = [feature.shape[2:] for feature in features] + spatial_shapes = spatial_shapes[::-1] + features = features[1:] # remove first skip with same spatial resolution features = features[::-1] # reverse channels to start from head of encoder head = features[0] - skips = features[1:] + skip_connections = features[1:] x = self.center(head) + for i, decoder_block in enumerate(self.blocks): - skip = skips[i] if i < len(skips) else None - x = decoder_block(x, skip) + # upsample to the next spatial shape + height, width = spatial_shapes[i + 1] + skip_connection = skip_connections[i] if i < len(skip_connections) else None + x = decoder_block(x, height, width, skip_connection=skip_connection) return x diff --git a/segmentation_models_pytorch/decoders/unet/model.py b/segmentation_models_pytorch/decoders/unet/model.py index 547581eb..3df36e32 100644 --- a/segmentation_models_pytorch/decoders/unet/model.py +++ b/segmentation_models_pytorch/decoders/unet/model.py @@ -1,4 +1,5 @@ -from typing import Any, Optional, Union, Tuple, Callable +import warnings +from typing import Any, Dict, Optional, Union, Callable, Sequence from segmentation_models_pytorch.base import ( ClassificationHead, @@ -12,10 +13,21 @@ class Unet(SegmentationModel): - """Unet_ is a fully convolution neural network for image semantic segmentation. Consist of *encoder* - and *decoder* parts connected with *skip connections*. Encoder extract features of different spatial - resolution (skip connections) which are used by decoder to define accurate segmentation mask. Use *concatenation* - for fusing decoder blocks with skip connections. + """ + U-Net is a fully convolutional neural network architecture designed for semantic image segmentation. + + It consists of two main parts: + + 1. An encoder (downsampling path) that extracts increasingly abstract features + 2. A decoder (upsampling path) that gradually recovers spatial details + + The key is the use of skip connections between corresponding encoder and decoder layers. + These connections allow the decoder to access fine-grained details from earlier encoder layers, + which helps produce more precise segmentation masks. + + The skip connections work by concatenating feature maps from the encoder directly into the decoder + at corresponding resolutions. This helps preserve important spatial information that would + otherwise be lost during the encoding process. Args: encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone) @@ -28,17 +40,31 @@ class Unet(SegmentationModel): other pretrained weights (see table with available weights for each encoder_name) decoder_channels: List of integers which specify **in_channels** parameter for convolutions used in decoder. Length of the list should be the same as **encoder_depth** - decoder_use_batchnorm: If **True**, BatchNorm2d layer between Conv2D and Activation layers - is used. If **"inplace"** InplaceABN will be used, allows to decrease memory consumption. - Available options are **True, False, "inplace"** + decoder_use_norm: Specifies normalization between Conv2D and activation. + Accepts the following types: + - **True**: Defaults to `"batchnorm"`. + - **False**: No normalization (`nn.Identity`). + - **str**: Specifies normalization type using default parameters. Available values: + `"batchnorm"`, `"identity"`, `"layernorm"`, `"instancenorm"`, `"inplace"`. + - **dict**: Fully customizable normalization settings. Structure: + ```python + {"type": , **kwargs} + ``` + where `norm_name` corresponds to normalization type (see above), and `kwargs` are passed directly to the normalization layer as defined in PyTorch documentation. + + **Example**: + ```python + decoder_use_norm={"type": "layernorm", "eps": 1e-2} + ``` decoder_attention_type: Attention module used in decoder of the model. Available options are **None** and **scse** (https://arxiv.org/abs/1808.08127). + decoder_interpolation: Interpolation mode used in decoder of the model. Available options are + **"nearest"**, **"bilinear"**, **"bicubic"**, **"area"**, **"nearest-exact"**. Default is **"nearest"**. in_channels: A number of input channels for the model, default is 3 (RGB images) classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, - **callable** and **None**. - Default is **None** + **callable** and **None**. Default is **None**. aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: - classes (int): A number of classes @@ -51,20 +77,41 @@ class Unet(SegmentationModel): Returns: ``torch.nn.Module``: Unet + Example: + .. code-block:: python + + import torch + import segmentation_models_pytorch as smp + + model = smp.Unet("resnet18", encoder_weights="imagenet", classes=5) + model.eval() + + # generate random images + images = torch.rand(2, 3, 256, 256) + + with torch.inference_mode(): + mask = model(images) + + print(mask.shape) + # torch.Size([2, 5, 256, 256]) + .. _Unet: https://arxiv.org/abs/1505.04597 """ + requires_divisible_input_shape = False + @supports_config_loading def __init__( self, encoder_name: str = "resnet34", encoder_depth: int = 5, encoder_weights: Optional[str] = "imagenet", - decoder_use_batchnorm: bool = True, - decoder_channels: Tuple[int, ...] = (256, 128, 64, 32, 16), + decoder_use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + decoder_channels: Sequence[int] = (256, 128, 64, 32, 16), decoder_attention_type: Optional[str] = None, + decoder_interpolation: str = "nearest", in_channels: int = 3, classes: int = 1, activation: Optional[Union[str, Callable]] = None, @@ -73,6 +120,15 @@ def __init__( ): super().__init__() + decoder_use_batchnorm = kwargs.pop("decoder_use_batchnorm", None) + if decoder_use_batchnorm is not None: + warnings.warn( + "The usage of decoder_use_batchnorm is deprecated. Please modify your code for decoder_use_norm", + DeprecationWarning, + stacklevel=2, + ) + decoder_use_norm = decoder_use_batchnorm + self.encoder = get_encoder( encoder_name, in_channels=in_channels, @@ -81,13 +137,16 @@ def __init__( **kwargs, ) + add_center_block = encoder_name.startswith("vgg") + self.decoder = UnetDecoder( encoder_channels=self.encoder.out_channels, decoder_channels=decoder_channels, n_blocks=encoder_depth, - use_batchnorm=decoder_use_batchnorm, - center=True if encoder_name.startswith("vgg") else False, + use_norm=decoder_use_norm, + add_center_block=add_center_block, attention_type=decoder_attention_type, + interpolation_mode=decoder_interpolation, ) self.segmentation_head = SegmentationHead( diff --git a/segmentation_models_pytorch/decoders/unetplusplus/decoder.py b/segmentation_models_pytorch/decoders/unetplusplus/decoder.py index 54ec7576..b42a73a9 100644 --- a/segmentation_models_pytorch/decoders/unetplusplus/decoder.py +++ b/segmentation_models_pytorch/decoders/unetplusplus/decoder.py @@ -2,17 +2,20 @@ import torch.nn as nn import torch.nn.functional as F +from typing import Any, Dict, List, Optional, Union, Sequence + from segmentation_models_pytorch.base import modules as md class DecoderBlock(nn.Module): def __init__( self, - in_channels, - skip_channels, - out_channels, - use_batchnorm=True, - attention_type=None, + in_channels: int, + skip_channels: int, + out_channels: int, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + attention_type: Optional[str] = None, + interpolation_mode: str = "nearest", ): super().__init__() self.conv1 = md.Conv2dReLU( @@ -20,7 +23,7 @@ def __init__( out_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) self.attention1 = md.Attention( attention_type, in_channels=in_channels + skip_channels @@ -30,12 +33,15 @@ def __init__( out_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) self.attention2 = md.Attention(attention_type, in_channels=out_channels) + self.interpolation_mode = interpolation_mode - def forward(self, x, skip=None): - x = F.interpolate(x, scale_factor=2, mode="nearest") + def forward( + self, x: torch.Tensor, skip: Optional[torch.Tensor] = None + ) -> torch.Tensor: + x = F.interpolate(x, scale_factor=2.0, mode=self.interpolation_mode) if skip is not None: x = torch.cat([x, skip], dim=1) x = self.attention1(x) @@ -46,20 +52,25 @@ def forward(self, x, skip=None): class CenterBlock(nn.Sequential): - def __init__(self, in_channels, out_channels, use_batchnorm=True): + def __init__( + self, + in_channels: int, + out_channels: int, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + ): conv1 = md.Conv2dReLU( in_channels, out_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) conv2 = md.Conv2dReLU( out_channels, out_channels, kernel_size=3, padding=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ) super().__init__(conv1, conv2) @@ -67,20 +78,19 @@ def __init__(self, in_channels, out_channels, use_batchnorm=True): class UnetPlusPlusDecoder(nn.Module): def __init__( self, - encoder_channels, - decoder_channels, - n_blocks=5, - use_batchnorm=True, - attention_type=None, - center=False, + encoder_channels: Sequence[int], + decoder_channels: Sequence[int], + n_blocks: int = 5, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + attention_type: Optional[str] = None, + interpolation_mode: str = "nearest", + center: bool = False, ): super().__init__() if n_blocks != len(decoder_channels): raise ValueError( - "Model depth is {}, but you provide `decoder_channels` for {} blocks.".format( - n_blocks, len(decoder_channels) - ) + f"Model depth is {n_blocks}, but you provide `decoder_channels` for {len(decoder_channels)} blocks." ) # remove first skip with same spatial resolution @@ -95,13 +105,19 @@ def __init__( self.out_channels = decoder_channels if center: self.center = CenterBlock( - head_channels, head_channels, use_batchnorm=use_batchnorm + head_channels, + head_channels, + use_norm=use_norm, ) else: self.center = nn.Identity() # combine decoder keyword arguments - kwargs = dict(use_batchnorm=use_batchnorm, attention_type=attention_type) + kwargs = dict( + use_norm=use_norm, + attention_type=attention_type, + interpolation_mode=interpolation_mode, + ) blocks = {} for layer_idx in range(len(self.in_channels) - 1): @@ -119,15 +135,16 @@ def __init__( blocks[f"x_{depth_idx}_{layer_idx}"] = DecoderBlock( in_ch, skip_ch, out_ch, **kwargs ) - blocks[f"x_{0}_{len(self.in_channels)-1}"] = DecoderBlock( + blocks[f"x_{0}_{len(self.in_channels) - 1}"] = DecoderBlock( self.in_channels[-1], 0, self.out_channels[-1], **kwargs ) self.blocks = nn.ModuleDict(blocks) self.depth = len(self.in_channels) - 1 - def forward(self, *features): + def forward(self, features: List[torch.Tensor]) -> torch.Tensor: features = features[1:] # remove first skip with same spatial resolution features = features[::-1] # reverse channels to start from head of encoder + # start building dense connections dense_x = {} for layer_idx in range(len(self.in_channels) - 1): @@ -148,8 +165,8 @@ def forward(self, *features): ) dense_x[f"x_{depth_idx}_{dense_l_i}"] = self.blocks[ f"x_{depth_idx}_{dense_l_i}" - ](dense_x[f"x_{depth_idx}_{dense_l_i-1}"], cat_features) + ](dense_x[f"x_{depth_idx}_{dense_l_i - 1}"], cat_features) dense_x[f"x_{0}_{self.depth}"] = self.blocks[f"x_{0}_{self.depth}"]( - dense_x[f"x_{0}_{self.depth-1}"] + dense_x[f"x_{0}_{self.depth - 1}"] ) return dense_x[f"x_{0}_{self.depth}"] diff --git a/segmentation_models_pytorch/decoders/unetplusplus/model.py b/segmentation_models_pytorch/decoders/unetplusplus/model.py index 9d4a1e35..5448abcb 100644 --- a/segmentation_models_pytorch/decoders/unetplusplus/model.py +++ b/segmentation_models_pytorch/decoders/unetplusplus/model.py @@ -1,4 +1,5 @@ -from typing import Any, List, Optional, Union +import warnings +from typing import Any, Dict, Sequence, Optional, Union, Callable from segmentation_models_pytorch.base import ( ClassificationHead, @@ -28,17 +29,31 @@ class UnetPlusPlus(SegmentationModel): other pretrained weights (see table with available weights for each encoder_name) decoder_channels: List of integers which specify **in_channels** parameter for convolutions used in decoder. Length of the list should be the same as **encoder_depth** - decoder_use_batchnorm: If **True**, BatchNorm2d layer between Conv2D and Activation layers - is used. If **"inplace"** InplaceABN will be used, allows to decrease memory consumption. - Available options are **True, False, "inplace"** + decoder_use_norm: Specifies normalization between Conv2D and activation. + Accepts the following types: + - **True**: Defaults to `"batchnorm"`. + - **False**: No normalization (`nn.Identity`). + - **str**: Specifies normalization type using default parameters. Available values: + `"batchnorm"`, `"identity"`, `"layernorm"`, `"instancenorm"`, `"inplace"`. + - **dict**: Fully customizable normalization settings. Structure: + ```python + {"type": , **kwargs} + ``` + where `norm_name` corresponds to normalization type (see above), and `kwargs` are passed directly to the normalization layer as defined in PyTorch documentation. + + **Example**: + ```python + decoder_use_norm={"type": "layernorm", "eps": 1e-2} + ``` decoder_attention_type: Attention module used in decoder of the model. Available options are **None** and **scse** (https://arxiv.org/abs/1808.08127). + decoder_interpolation: Interpolation mode used in decoder of the model. Available options are + **"nearest"**, **"bilinear"**, **"bicubic"**, **"area"**, **"nearest-exact"**. Default is **"nearest"**. in_channels: A number of input channels for the model, default is 3 (RGB images) classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, - **callable** and **None**. - Default is **None** + **callable** and **None**. Default is **None**. aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: - classes (int): A number of classes @@ -56,18 +71,21 @@ class UnetPlusPlus(SegmentationModel): """ + _is_torch_scriptable = False + @supports_config_loading def __init__( self, encoder_name: str = "resnet34", encoder_depth: int = 5, encoder_weights: Optional[str] = "imagenet", - decoder_use_batchnorm: bool = True, - decoder_channels: List[int] = (256, 128, 64, 32, 16), + decoder_use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + decoder_channels: Sequence[int] = (256, 128, 64, 32, 16), decoder_attention_type: Optional[str] = None, + decoder_interpolation: str = "nearest", in_channels: int = 3, classes: int = 1, - activation: Optional[Union[str, callable]] = None, + activation: Optional[Union[str, Callable]] = None, aux_params: Optional[dict] = None, **kwargs: dict[str, Any], ): @@ -78,6 +96,15 @@ def __init__( "UnetPlusPlus is not support encoder_name={}".format(encoder_name) ) + decoder_use_batchnorm = kwargs.pop("decoder_use_batchnorm", None) + if decoder_use_batchnorm is not None: + warnings.warn( + "The usage of decoder_use_batchnorm is deprecated. Please modify your code for decoder_use_norm", + DeprecationWarning, + stacklevel=2, + ) + decoder_use_norm = decoder_use_batchnorm + self.encoder = get_encoder( encoder_name, in_channels=in_channels, @@ -90,9 +117,10 @@ def __init__( encoder_channels=self.encoder.out_channels, decoder_channels=decoder_channels, n_blocks=encoder_depth, - use_batchnorm=decoder_use_batchnorm, + use_norm=decoder_use_norm, center=True if encoder_name.startswith("vgg") else False, attention_type=decoder_attention_type, + interpolation_mode=decoder_interpolation, ) self.segmentation_head = SegmentationHead( diff --git a/segmentation_models_pytorch/decoders/upernet/decoder.py b/segmentation_models_pytorch/decoders/upernet/decoder.py index 092de36a..435927df 100644 --- a/segmentation_models_pytorch/decoders/upernet/decoder.py +++ b/segmentation_models_pytorch/decoders/upernet/decoder.py @@ -1,3 +1,5 @@ +from typing import Any, Dict, Union, Sequence, List + import torch import torch.nn as nn import torch.nn.functional as F @@ -8,10 +10,10 @@ class PSPModule(nn.Module): def __init__( self, - in_channels, - out_channels, - sizes=(1, 2, 3, 6), - use_batchnorm=True, + in_channels: int, + out_channels: int, + sizes: Sequence[int] = (1, 2, 3, 6), + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", ): super().__init__() self.blocks = nn.ModuleList( @@ -20,63 +22,85 @@ def __init__( nn.AdaptiveAvgPool2d(size), md.Conv2dReLU( in_channels, - in_channels // len(sizes), + out_channels, kernel_size=1, - use_batchnorm=use_batchnorm, + use_norm=use_norm, ), ) for size in sizes ] ) self.out_conv = md.Conv2dReLU( - in_channels=in_channels * 2, + in_channels=in_channels + len(sizes) * out_channels, out_channels=out_channels, - kernel_size=1, - use_batchnorm=True, + kernel_size=3, + padding=1, + use_norm="batchnorm", ) - def forward(self, x): - _, _, height, width = x.shape - out = [x] + [ - F.interpolate( - block(x), size=(height, width), mode="bilinear", align_corners=False + def forward(self, feature: torch.Tensor) -> torch.Tensor: + _, _, height, width = feature.shape + pyramid_features = [feature] + for block in self.blocks: + pooled_feature = block(feature) + resized_feature = F.interpolate( + pooled_feature, + size=(height, width), + mode="bilinear", + align_corners=False, ) - for block in self.blocks - ] - out = self.out_conv(torch.cat(out, dim=1)) - return out + pyramid_features.append(resized_feature) + fused_feature = self.out_conv(torch.cat(pyramid_features, dim=1)) + return fused_feature -class FPNBlock(nn.Module): - def __init__(self, skip_channels, pyramid_channels, use_bathcnorm=True): +class LayerNorm2d(nn.LayerNorm): + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = x.permute(0, 2, 3, 1) # to channels_last + normed_x = nn.functional.layer_norm( + x, self.normalized_shape, self.weight, self.bias, self.eps + ) + normed_x = normed_x.permute(0, 3, 1, 2) # to channels_first + return normed_x + + +class FPNLateralBlock(nn.Module): + def __init__( + self, + lateral_channels: int, + out_channels: int, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", + ): super().__init__() - self.skip_conv = ( - md.Conv2dReLU( - skip_channels, - pyramid_channels, - kernel_size=1, - use_batchnorm=use_bathcnorm, - ) - if skip_channels != 0 - else nn.Identity() + self.conv_norm_relu = md.Conv2dReLU( + lateral_channels, + out_channels, + kernel_size=1, + use_norm=use_norm, ) - def forward(self, x, skip): - _, channels, height, width = skip.shape - x = F.interpolate(x, size=(height, width), mode="bilinear", align_corners=False) - if channels != 0: - skip = self.skip_conv(skip) - x = x + skip - return x + def forward( + self, state_feature: torch.Tensor, lateral_feature: torch.Tensor + ) -> torch.Tensor: + # 1. Apply block to encoder feature + lateral_feature = self.conv_norm_relu(lateral_feature) + # 2. Upsample encoder feature to the "state" feature resolution + _, _, height, width = lateral_feature.shape + state_feature = F.interpolate( + state_feature, size=(height, width), mode="bilinear", align_corners=False + ) + # 3. Sum state and encoder features + fused_feature = state_feature + lateral_feature + return fused_feature class UPerNetDecoder(nn.Module): def __init__( self, - encoder_channels, - encoder_depth=5, - pyramid_channels=256, - segmentation_channels=64, + encoder_channels: Sequence[int], + encoder_depth: int = 5, + decoder_channels: int = 256, + use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", ): super().__init__() @@ -87,51 +111,101 @@ def __init__( ) ) - encoder_channels = encoder_channels[::-1] + # Encoder channels for input features starting from the highest resolution + # [1, 1/2, 1/4, 1/8, 1/16, ...] for num_features = encoder_depth + 1, + # but we use only [1/4, 1/8, 1/16, ...] for UPerNet + encoder_channels = encoder_channels[2:] + + self.feature_norms = nn.ModuleList( + [LayerNorm2d(channels, eps=1e-6) for channels in encoder_channels] + ) # PSP Module + lowest_resolution_feature_channels = encoder_channels[-1] self.psp = PSPModule( - in_channels=encoder_channels[0], - out_channels=pyramid_channels, + in_channels=lowest_resolution_feature_channels, + out_channels=decoder_channels, sizes=(1, 2, 3, 6), - use_batchnorm=True, + use_norm=use_norm, ) # FPN Module - self.fpn_stages = nn.ModuleList( - [FPNBlock(ch, pyramid_channels) for ch in encoder_channels[1:]] - ) + # we skip lower resolution feature maps + reverse the order + # [1/4, 1/8, 1/16, 1/32] -> [1/16, 1/8, 1/4] + lateral_channels = encoder_channels[:-1][::-1] + self.fpn_lateral_blocks = nn.ModuleList([]) + self.fpn_conv_blocks = nn.ModuleList([]) + for channels in lateral_channels: + block = FPNLateralBlock( + lateral_channels=channels, + out_channels=decoder_channels, + use_norm=use_norm, + ) + self.fpn_lateral_blocks.append(block) + conv_block = md.Conv2dReLU( + in_channels=decoder_channels, + out_channels=decoder_channels, + kernel_size=3, + padding=1, + use_norm=use_norm, + ) + self.fpn_conv_blocks.append(conv_block) - self.fpn_bottleneck = md.Conv2dReLU( - in_channels=(len(encoder_channels) - 1) * pyramid_channels, - out_channels=segmentation_channels, + num_blocks_to_fuse = len(self.fpn_conv_blocks) + 1 # +1 for the PSP module + self.fusion_block = md.Conv2dReLU( + in_channels=num_blocks_to_fuse * decoder_channels, + out_channels=decoder_channels, kernel_size=3, padding=1, - use_batchnorm=True, + use_norm=use_norm, ) - def forward(self, *features): - output_size = features[0].shape[2:] - target_size = [size // 4 for size in output_size] + def forward(self, features: List[torch.Tensor]) -> torch.Tensor: + """ + Args: + features (List[torch.Tensor]): + features with: [1, 1/2, 1/4, 1/8, 1/16, ...] spatial resolutions, + where the first feature is the highest resolution and the number + of features is equal to encoder_depth + 1. + """ + + # skip 1/1 and 1/2 resolution features + features = features[2:] - features = features[1:] # remove first skip with same spatial resolution - features = features[::-1] # reverse channels to start from head of encoder + # normalize feature maps + for i, norm in enumerate(self.feature_norms): + features[i] = norm(features[i]) - psp_out = self.psp(features[0]) + # pass lowest resolution feature to PSP module + psp_out = self.psp(features[-1]) + # skip lowest features for FPN + reverse the order + # [1/4, 1/8, 1/16, 1/32] -> [1/16, 1/8, 1/4] + fpn_lateral_features = features[:-1][::-1] fpn_features = [psp_out] - for feature, stage in zip(features[1:], self.fpn_stages): - fpn_feature = stage(fpn_features[-1], feature) + for i, block in enumerate(self.fpn_lateral_blocks): + # 1. for each encoder (skip) feature we apply 1x1 ConvNormRelu, + # 2. upsample latest fpn feature to it's resolution + # 3. sum them together + lateral_feature = fpn_lateral_features[i] + state_feature = fpn_features[-1] + fpn_feature = block(state_feature, lateral_feature) fpn_features.append(fpn_feature) + # Apply FPN conv blocks, but skip PSP module + for i, conv_block in enumerate(self.fpn_conv_blocks, start=1): + fpn_features[i] = conv_block(fpn_features[i]) + # Resize all FPN features to 1/4 of the original resolution. resized_fpn_features = [] + target_size = fpn_features[-1].shape[2:] # 1/4 of the original resolution for feature in fpn_features: resized_feature = F.interpolate( feature, size=target_size, mode="bilinear", align_corners=False ) resized_fpn_features.append(resized_feature) - output = self.fpn_bottleneck(torch.cat(resized_fpn_features, dim=1)) - + # reverse and concatenate + stacked_features = torch.cat(resized_fpn_features[::-1], dim=1) + output = self.fusion_block(stacked_features) return output diff --git a/segmentation_models_pytorch/decoders/upernet/model.py b/segmentation_models_pytorch/decoders/upernet/model.py index 076ed2de..54f578b3 100644 --- a/segmentation_models_pytorch/decoders/upernet/model.py +++ b/segmentation_models_pytorch/decoders/upernet/model.py @@ -1,4 +1,4 @@ -from typing import Any, Optional, Union +from typing import Any, Dict, Optional, Union, Callable from segmentation_models_pytorch.base import ( ClassificationHead, @@ -25,12 +25,27 @@ class UPerNet(SegmentationModel): other pretrained weights (see table with available weights for each encoder_name) decoder_pyramid_channels: A number of convolution filters in Feature Pyramid, default is 256 decoder_segmentation_channels: A number of convolution filters in segmentation blocks, default is 64 + decoder_use_norm: Specifies normalization between Conv2D and activation. + Accepts the following types: + - **True**: Defaults to `"batchnorm"`. + - **False**: No normalization (`nn.Identity`). + - **str**: Specifies normalization type using default parameters. Available values: + `"batchnorm"`, `"identity"`, `"layernorm"`, `"instancenorm"`, `"inplace"`. + - **dict**: Fully customizable normalization settings. Structure: + ```python + {"type": , **kwargs} + ``` + where `norm_name` corresponds to normalization type (see above), and `kwargs` are passed directly to the normalization layer as defined in PyTorch documentation. + + **Example**: + ```python + use_norm={"type": "layernorm", "eps": 1e-2} + ``` in_channels: A number of input channels for the model, default is 3 (RGB images) classes: A number of classes for output mask (or you can think as a number of channels of output mask) activation: An activation function to apply after the final convolution layer. Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, - **callable** and **None**. - Default is **None** + **callable** and **None**. Default is **None**. aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build on top of encoder if **aux_params** is not **None** (default). Supported params: - classes (int): A number of classes @@ -54,11 +69,12 @@ def __init__( encoder_name: str = "resnet34", encoder_depth: int = 5, encoder_weights: Optional[str] = "imagenet", - decoder_pyramid_channels: int = 256, - decoder_segmentation_channels: int = 64, + decoder_channels: int = 256, + decoder_use_norm: Union[bool, str, Dict[str, Any]] = "batchnorm", in_channels: int = 3, classes: int = 1, - activation: Optional[Union[str, callable]] = None, + activation: Optional[Union[str, Callable]] = None, + upsampling: int = 4, aux_params: Optional[dict] = None, **kwargs: dict[str, Any], ): @@ -75,16 +91,16 @@ def __init__( self.decoder = UPerNetDecoder( encoder_channels=self.encoder.out_channels, encoder_depth=encoder_depth, - pyramid_channels=decoder_pyramid_channels, - segmentation_channels=decoder_segmentation_channels, + decoder_channels=decoder_channels, + use_norm=decoder_use_norm, ) self.segmentation_head = SegmentationHead( - in_channels=decoder_segmentation_channels, + in_channels=decoder_channels, out_channels=classes, activation=activation, kernel_size=1, - upsampling=4, + upsampling=upsampling, ) if aux_params is not None: diff --git a/segmentation_models_pytorch/encoders/__init__.py b/segmentation_models_pytorch/encoders/__init__.py index c4a4c037..287a921a 100644 --- a/segmentation_models_pytorch/encoders/__init__.py +++ b/segmentation_models_pytorch/encoders/__init__.py @@ -1,6 +1,12 @@ +import json import timm +import copy +import warnings import functools -import torch.utils.model_zoo as model_zoo +from torch.utils.model_zoo import load_url +from huggingface_hub import hf_hub_download +from safetensors.torch import load_file + from .resnet import resnet_encoders from .dpn import dpn_encoders @@ -13,18 +19,23 @@ from .mobilenet import mobilenet_encoders from .xception import xception_encoders from .timm_efficientnet import timm_efficientnet_encoders -from .timm_resnest import timm_resnest_encoders -from .timm_res2net import timm_res2net_encoders -from .timm_regnet import timm_regnet_encoders from .timm_sknet import timm_sknet_encoders -from .timm_mobilenetv3 import timm_mobilenetv3_encoders -from .timm_gernet import timm_gernet_encoders from .mix_transformer import mix_transformer_encoders from .mobileone import mobileone_encoders from .timm_universal import TimmUniversalEncoder +from .timm_vit import TimmViTEncoder # noqa F401 from ._preprocessing import preprocess_input +from ._legacy_pretrained_settings import pretrained_settings + +__all__ = [ + "encoders", + "get_encoder", + "get_encoder_names", + "get_preprocessing_params", + "get_preprocessing_fn", +] encoders = {} encoders.update(resnet_encoders) @@ -38,17 +49,39 @@ encoders.update(mobilenet_encoders) encoders.update(xception_encoders) encoders.update(timm_efficientnet_encoders) -encoders.update(timm_resnest_encoders) -encoders.update(timm_res2net_encoders) -encoders.update(timm_regnet_encoders) encoders.update(timm_sknet_encoders) -encoders.update(timm_mobilenetv3_encoders) -encoders.update(timm_gernet_encoders) encoders.update(mix_transformer_encoders) encoders.update(mobileone_encoders) +def is_equivalent_to_timm_universal(name): + patterns = [ + "timm-regnet", + "timm-res2", + "timm-resnest", + "timm-mobilenetv3", + "timm-gernet", + ] + for pattern in patterns: + if name.startswith(pattern): + return True + return False + + def get_encoder(name, in_channels=3, depth=5, weights=None, output_stride=32, **kwargs): + if name.startswith("timm-"): + warnings.warn( + "`timm-` encoders are deprecated and will be removed in the future. " + "Please use `tu-` equivalent encoders instead (see 'Timm encoders' section in the documentation).", + DeprecationWarning, + ) + + # convert timm- models to tu- models + if is_equivalent_to_timm_universal(name): + name = name.replace("timm-", "tu-") + if "mobilenetv3" in name: + name = name.replace("tu-", "tu-tf_") + if name.startswith("tu-"): name = name[3:] encoder = TimmUniversalEncoder( @@ -61,29 +94,56 @@ def get_encoder(name, in_channels=3, depth=5, weights=None, output_stride=32, ** ) return encoder - try: - Encoder = encoders[name]["encoder"] - except KeyError: + if name not in encoders: raise KeyError( - "Wrong encoder name `{}`, supported encoders: {}".format( - name, list(encoders.keys()) - ) + f"Wrong encoder name `{name}`, supported encoders: {list(encoders.keys())}" ) - params = encoders[name]["params"] - params.update(depth=depth) - encoder = Encoder(**params) + params = copy.deepcopy(encoders[name]["params"]) + params["depth"] = depth + params["output_stride"] = output_stride + + EncoderClass = encoders[name]["encoder"] + encoder = EncoderClass(**params) if weights is not None: - try: - settings = encoders[name]["pretrained_settings"][weights] - except KeyError: + if weights not in encoders[name]["pretrained_settings"]: + available_weights = list(encoders[name]["pretrained_settings"].keys()) raise KeyError( - "Wrong pretrained weights `{}` for encoder `{}`. Available options are: {}".format( - weights, name, list(encoders[name]["pretrained_settings"].keys()) - ) + f"Wrong pretrained weights `{weights}` for encoder `{name}`. " + f"Available options are: {available_weights}" ) - encoder.load_state_dict(model_zoo.load_url(settings["url"])) + + settings = encoders[name]["pretrained_settings"][weights] + repo_id = settings["repo_id"] + revision = settings["revision"] + + # First, try to load from HF-Hub, but as far as I know not all countries have + # access to the Hub (e.g. China), so we try to load from the original url if + # the first attempt fails. + weights_path = None + try: + hf_hub_download(repo_id, filename="config.json", revision=revision) + weights_path = hf_hub_download( + repo_id, filename="model.safetensors", revision=revision + ) + except Exception as e: + if name in pretrained_settings and weights in pretrained_settings[name]: + message = ( + f"Error loading {name} `{weights}` weights from Hugging Face Hub, " + "trying loading from original url..." + ) + warnings.warn(message, UserWarning) + url = pretrained_settings[name][weights]["url"] + state_dict = load_url(url, map_location="cpu") + else: + raise e + + if weights_path is not None: + state_dict = load_file(weights_path, device="cpu") + + # Load model weights + encoder.load_state_dict(state_dict) encoder.set_in_channels(in_channels, pretrained=weights is not None) if output_stride != 32: @@ -110,7 +170,25 @@ def get_preprocessing_params(encoder_name, pretrained="imagenet"): raise ValueError( "Available pretrained options {}".format(all_settings.keys()) ) - settings = all_settings[pretrained] + + repo_id = all_settings[pretrained]["repo_id"] + revision = all_settings[pretrained]["revision"] + + # Load config and model + try: + config_path = hf_hub_download( + repo_id, filename="config.json", revision=revision + ) + with open(config_path, "r") as f: + settings = json.load(f) + except Exception as e: + if ( + encoder_name in pretrained_settings + and pretrained in pretrained_settings[encoder_name] + ): + settings = pretrained_settings[encoder_name][pretrained] + else: + raise e formatted_settings = {} formatted_settings["input_space"] = settings.get("input_space", "RGB") diff --git a/segmentation_models_pytorch/encoders/_base.py b/segmentation_models_pytorch/encoders/_base.py index 3b877075..98c431fb 100644 --- a/segmentation_models_pytorch/encoders/_base.py +++ b/segmentation_models_pytorch/encoders/_base.py @@ -1,3 +1,6 @@ +import torch +from typing import Sequence, Dict + from . import _utils as utils @@ -7,7 +10,14 @@ class EncoderMixin: - patching first convolution for arbitrary input channels """ - _output_stride = 32 + _is_torch_scriptable = True + _is_torch_exportable = True + _is_torch_compilable = True + + def __init__(self): + self._depth = 5 + self._in_channels = 3 + self._output_stride = 32 @property def out_channels(self): @@ -25,34 +35,27 @@ def set_in_channels(self, in_channels, pretrained=True): self._in_channels = in_channels if self._out_channels[0] == 3: - self._out_channels = tuple([in_channels] + list(self._out_channels)[1:]) + self._out_channels = [in_channels] + self._out_channels[1:] utils.patch_first_conv( model=self, new_in_channels=in_channels, pretrained=pretrained ) - def get_stages(self): - """Override it in your implementation""" + def get_stages(self) -> Dict[int, Sequence[torch.nn.Module]]: + """Override it in your implementation, should return a dictionary with keys as + the output stride and values as the list of modules + """ raise NotImplementedError def make_dilated(self, output_stride): - if output_stride == 16: - stage_list = [5] - dilation_list = [2] - - elif output_stride == 8: - stage_list = [4, 5] - dilation_list = [2, 4] - - else: - raise ValueError( - "Output stride should be 16 or 8, got {}.".format(output_stride) - ) - - self._output_stride = output_stride + if output_stride not in [8, 16]: + raise ValueError(f"Output stride should be 16 or 8, got {output_stride}.") stages = self.get_stages() - for stage_indx, dilation_rate in zip(stage_list, dilation_list): - utils.replace_strides_with_dilation( - module=stages[stage_indx], dilation_rate=dilation_rate - ) + for stage_stride, stage_modules in stages.items(): + if stage_stride <= output_stride: + continue + + dilation_rate = stage_stride // output_stride + for module in stage_modules: + utils.replace_strides_with_dilation(module, dilation_rate) diff --git a/segmentation_models_pytorch/encoders/_dpn.py b/segmentation_models_pytorch/encoders/_dpn.py new file mode 100644 index 00000000..e7292615 --- /dev/null +++ b/segmentation_models_pytorch/encoders/_dpn.py @@ -0,0 +1,364 @@ +"""PyTorch implementation of DualPathNetworks +Ported to PyTorch by [Ross Wightman](https://github.com/rwightman/pytorch-dpn-pretrained) + +Based on original MXNet implementation https://github.com/cypw/DPNs with +many ideas from another PyTorch implementation https://github.com/oyam/pytorch-DPNs. + +This implementation is compatible with the pretrained weights +from cypw's MXNet implementation. +""" + +import torch +import torch.nn as nn +import torch.nn.functional as F +from collections import OrderedDict + + +class CatBnAct(nn.Module): + def __init__(self, in_chs, activation_fn=nn.ReLU(inplace=True)): + super(CatBnAct, self).__init__() + self.bn = nn.BatchNorm2d(in_chs, eps=0.001) + self.act = activation_fn + + def forward(self, x): + x = torch.cat(x, dim=1) if isinstance(x, tuple) else x + return self.act(self.bn(x)) + + +class BnActConv2d(nn.Module): + def __init__( + self, + in_chs, + out_chs, + kernel_size, + stride, + padding=0, + groups=1, + activation_fn=nn.ReLU(inplace=True), + ): + super(BnActConv2d, self).__init__() + self.bn = nn.BatchNorm2d(in_chs, eps=0.001) + self.act = activation_fn + self.conv = nn.Conv2d( + in_chs, out_chs, kernel_size, stride, padding, groups=groups, bias=False + ) + + def forward(self, x): + return self.conv(self.act(self.bn(x))) + + +class InputBlock(nn.Module): + def __init__( + self, + num_init_features, + kernel_size=7, + padding=3, + activation_fn=nn.ReLU(inplace=True), + ): + super(InputBlock, self).__init__() + self.conv = nn.Conv2d( + 3, + num_init_features, + kernel_size=kernel_size, + stride=2, + padding=padding, + bias=False, + ) + self.bn = nn.BatchNorm2d(num_init_features, eps=0.001) + self.act = activation_fn + self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + x = self.act(x) + x = self.pool(x) + return x + + +class DualPathBlock(nn.Module): + def __init__( + self, + in_chs, + num_1x1_a, + num_3x3_b, + num_1x1_c, + inc, + groups, + block_type="normal", + b=False, + ): + super(DualPathBlock, self).__init__() + self.num_1x1_c = num_1x1_c + self.inc = inc + self.b = b + if block_type == "proj": + self.key_stride = 1 + self.has_proj = True + elif block_type == "down": + self.key_stride = 2 + self.has_proj = True + else: + assert block_type == "normal" + self.key_stride = 1 + self.has_proj = False + + if self.has_proj: + # Using different member names here to allow easier parameter key matching for conversion + if self.key_stride == 2: + self.c1x1_w_s2 = BnActConv2d( + in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=2 + ) + else: + self.c1x1_w_s1 = BnActConv2d( + in_chs=in_chs, out_chs=num_1x1_c + 2 * inc, kernel_size=1, stride=1 + ) + self.c1x1_a = BnActConv2d( + in_chs=in_chs, out_chs=num_1x1_a, kernel_size=1, stride=1 + ) + self.c3x3_b = BnActConv2d( + in_chs=num_1x1_a, + out_chs=num_3x3_b, + kernel_size=3, + stride=self.key_stride, + padding=1, + groups=groups, + ) + if b: + self.c1x1_c = CatBnAct(in_chs=num_3x3_b) + self.c1x1_c1 = nn.Conv2d(num_3x3_b, num_1x1_c, kernel_size=1, bias=False) + self.c1x1_c2 = nn.Conv2d(num_3x3_b, inc, kernel_size=1, bias=False) + else: + self.c1x1_c = BnActConv2d( + in_chs=num_3x3_b, out_chs=num_1x1_c + inc, kernel_size=1, stride=1 + ) + + def forward(self, x): + x_in = torch.cat(x, dim=1) if isinstance(x, tuple) else x + if self.has_proj: + if self.key_stride == 2: + x_s = self.c1x1_w_s2(x_in) + else: + x_s = self.c1x1_w_s1(x_in) + x_s1 = x_s[:, : self.num_1x1_c, :, :] + x_s2 = x_s[:, self.num_1x1_c :, :, :] + else: + x_s1 = x[0] + x_s2 = x[1] + x_in = self.c1x1_a(x_in) + x_in = self.c3x3_b(x_in) + if self.b: + x_in = self.c1x1_c(x_in) + out1 = self.c1x1_c1(x_in) + out2 = self.c1x1_c2(x_in) + else: + x_in = self.c1x1_c(x_in) + out1 = x_in[:, : self.num_1x1_c, :, :] + out2 = x_in[:, self.num_1x1_c :, :, :] + resid = x_s1 + out1 + dense = torch.cat([x_s2, out2], dim=1) + return resid, dense + + +class DPN(nn.Module): + def __init__( + self, + small=False, + num_init_features=64, + k_r=96, + groups=32, + b=False, + k_sec=(3, 4, 20, 3), + inc_sec=(16, 32, 24, 128), + num_classes=1000, + test_time_pool=False, + ): + super(DPN, self).__init__() + self.test_time_pool = test_time_pool + self.b = b + bw_factor = 1 if small else 4 + + blocks = OrderedDict() + + # conv1 + if small: + blocks["conv1_1"] = InputBlock(num_init_features, kernel_size=3, padding=1) + else: + blocks["conv1_1"] = InputBlock(num_init_features, kernel_size=7, padding=3) + + # conv2 + bw = 64 * bw_factor + inc = inc_sec[0] + r = (k_r * bw) // (64 * bw_factor) + blocks["conv2_1"] = DualPathBlock( + num_init_features, r, r, bw, inc, groups, "proj", b + ) + in_chs = bw + 3 * inc + for i in range(2, k_sec[0] + 1): + blocks["conv2_" + str(i)] = DualPathBlock( + in_chs, r, r, bw, inc, groups, "normal", b + ) + in_chs += inc + + # conv3 + bw = 128 * bw_factor + inc = inc_sec[1] + r = (k_r * bw) // (64 * bw_factor) + blocks["conv3_1"] = DualPathBlock(in_chs, r, r, bw, inc, groups, "down", b) + in_chs = bw + 3 * inc + for i in range(2, k_sec[1] + 1): + blocks["conv3_" + str(i)] = DualPathBlock( + in_chs, r, r, bw, inc, groups, "normal", b + ) + in_chs += inc + + # conv4 + bw = 256 * bw_factor + inc = inc_sec[2] + r = (k_r * bw) // (64 * bw_factor) + blocks["conv4_1"] = DualPathBlock(in_chs, r, r, bw, inc, groups, "down", b) + in_chs = bw + 3 * inc + for i in range(2, k_sec[2] + 1): + blocks["conv4_" + str(i)] = DualPathBlock( + in_chs, r, r, bw, inc, groups, "normal", b + ) + in_chs += inc + + # conv5 + bw = 512 * bw_factor + inc = inc_sec[3] + r = (k_r * bw) // (64 * bw_factor) + blocks["conv5_1"] = DualPathBlock(in_chs, r, r, bw, inc, groups, "down", b) + in_chs = bw + 3 * inc + for i in range(2, k_sec[3] + 1): + blocks["conv5_" + str(i)] = DualPathBlock( + in_chs, r, r, bw, inc, groups, "normal", b + ) + in_chs += inc + blocks["conv5_bn_ac"] = CatBnAct(in_chs) + + self.features = nn.Sequential(blocks) + + # Using 1x1 conv for the FC layer to allow the extra pooling scheme + self.last_linear = nn.Conv2d(in_chs, num_classes, kernel_size=1, bias=True) + + def logits(self, features): + if not self.training and self.test_time_pool: + x = F.avg_pool2d(features, kernel_size=7, stride=1) + out = self.last_linear(x) + # The extra test time pool should be pooling an img_size//32 - 6 size patch + out = adaptive_avgmax_pool2d(out, pool_type="avgmax") + else: + x = adaptive_avgmax_pool2d(features, pool_type="avg") + out = self.last_linear(x) + return out.view(out.size(0), -1) + + def forward(self, input): + x = self.features(input) + x = self.logits(x) + return x + + +""" PyTorch selectable adaptive pooling +Adaptive pooling with the ability to select the type of pooling from: + * 'avg' - Average pooling + * 'max' - Max pooling + * 'avgmax' - Sum of average and max pooling re-scaled by 0.5 + * 'avgmaxc' - Concatenation of average and max pooling along feature dim, doubles feature dim + +Both a functional and a nn.Module version of the pooling is provided. + +Author: Ross Wightman (rwightman) +""" + + +def pooling_factor(pool_type="avg"): + return 2 if pool_type == "avgmaxc" else 1 + + +def adaptive_avgmax_pool2d(x, pool_type="avg", padding=0, count_include_pad=False): + """Selectable global pooling function with dynamic input kernel size""" + if pool_type == "avgmaxc": + x = torch.cat( + [ + F.avg_pool2d( + x, + kernel_size=(x.size(2), x.size(3)), + padding=padding, + count_include_pad=count_include_pad, + ), + F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding), + ], + dim=1, + ) + elif pool_type == "avgmax": + x_avg = F.avg_pool2d( + x, + kernel_size=(x.size(2), x.size(3)), + padding=padding, + count_include_pad=count_include_pad, + ) + x_max = F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding) + x = 0.5 * (x_avg + x_max) + elif pool_type == "max": + x = F.max_pool2d(x, kernel_size=(x.size(2), x.size(3)), padding=padding) + else: + if pool_type != "avg": + print( + "Invalid pool type %s specified. Defaulting to average pooling." + % pool_type + ) + x = F.avg_pool2d( + x, + kernel_size=(x.size(2), x.size(3)), + padding=padding, + count_include_pad=count_include_pad, + ) + return x + + +class AdaptiveAvgMaxPool2d(torch.nn.Module): + """Selectable global pooling layer with dynamic input kernel size""" + + def __init__(self, output_size=1, pool_type="avg"): + super(AdaptiveAvgMaxPool2d, self).__init__() + self.output_size = output_size + self.pool_type = pool_type + if pool_type == "avgmaxc" or pool_type == "avgmax": + self.pool = nn.ModuleList( + [nn.AdaptiveAvgPool2d(output_size), nn.AdaptiveMaxPool2d(output_size)] + ) + elif pool_type == "max": + self.pool = nn.AdaptiveMaxPool2d(output_size) + else: + if pool_type != "avg": + print( + "Invalid pool type %s specified. Defaulting to average pooling." + % pool_type + ) + self.pool = nn.AdaptiveAvgPool2d(output_size) + + def forward(self, x): + if self.pool_type == "avgmaxc": + x = torch.cat([p(x) for p in self.pool], dim=1) + elif self.pool_type == "avgmax": + x = 0.5 * torch.sum(torch.stack([p(x) for p in self.pool]), 0).squeeze( + dim=0 + ) + else: + x = self.pool(x) + return x + + def factor(self): + return pooling_factor(self.pool_type) + + def __repr__(self): + return ( + self.__class__.__name__ + + " (" + + "output_size=" + + str(self.output_size) + + ", pool_type=" + + self.pool_type + + ")" + ) diff --git a/segmentation_models_pytorch/encoders/_efficientnet.py b/segmentation_models_pytorch/encoders/_efficientnet.py new file mode 100644 index 00000000..b2847a56 --- /dev/null +++ b/segmentation_models_pytorch/encoders/_efficientnet.py @@ -0,0 +1,883 @@ +"""model.py - Model and module class for EfficientNet. +They are built to mirror those in the official TensorFlow implementation. +""" + +# Author: lukemelas (github username) +# Github repo: https://github.com/lukemelas/EfficientNet-PyTorch +# With adjustments and added comments by workingcoder (github username). + +import torch +from torch import nn +from torch.nn import functional as F +import re +import math +import collections +from functools import partial +from typing import List, Optional + +# Parameters for the entire model (stem, all blocks, and head) +GlobalParams = collections.namedtuple( + "GlobalParams", + [ + "width_coefficient", + "depth_coefficient", + "image_size", + "dropout_rate", + "num_classes", + "batch_norm_momentum", + "batch_norm_epsilon", + "drop_connect_rate", + "depth_divisor", + "min_depth", + "include_top", + ], +) + +# Parameters for an individual model block +BlockArgs = collections.namedtuple( + "BlockArgs", + [ + "num_repeat", + "kernel_size", + "stride", + "expand_ratio", + "input_filters", + "output_filters", + "se_ratio", + "id_skip", + ], +) + +# Set GlobalParams and BlockArgs's defaults +GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields) +BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields) + + +class MBConvBlock(nn.Module): + """Mobile Inverted Residual Bottleneck Block. + + Args: + block_args (namedtuple): BlockArgs, defined in utils.py. + global_params (namedtuple): GlobalParam, defined in utils.py. + image_size (tuple or list): [image_height, image_width]. + + References: + [1] https://arxiv.org/abs/1704.04861 (MobileNet v1) + [2] https://arxiv.org/abs/1801.04381 (MobileNet v2) + [3] https://arxiv.org/abs/1905.02244 (MobileNet v3) + """ + + def __init__( + self, block_args: BlockArgs, global_params: GlobalParams, image_size=None + ): + super().__init__() + + self._has_expansion = block_args.expand_ratio != 1 + self._has_se = block_args.se_ratio is not None and 0 < block_args.se_ratio <= 1 + self._has_drop_connect = ( + block_args.id_skip + and block_args.stride == 1 + and block_args.input_filters == block_args.output_filters + ) + + # Pytorch's difference from tensorflow + bn_momentum = 1 - global_params.batch_norm_momentum + bn_eps = global_params.batch_norm_epsilon + + # Expansion phase (Inverted Bottleneck) + input_channels = block_args.input_filters + expanded_channels = input_channels * block_args.expand_ratio + + if self._has_expansion: + Conv2d = get_same_padding_conv2d(image_size=image_size) + self._expand_conv = Conv2d( + input_channels, expanded_channels, kernel_size=1, bias=False + ) + self._bn0 = nn.BatchNorm2d( + expanded_channels, + momentum=bn_momentum, + eps=bn_eps, + ) + else: + # for torchscript compatibility + self._expand_conv = nn.Identity() + self._bn0 = nn.Identity() + + # Depthwise convolution phase + kernel_size = block_args.kernel_size + stride = block_args.stride + Conv2d = get_same_padding_conv2d(image_size=image_size) + self._depthwise_conv = Conv2d( + in_channels=expanded_channels, + out_channels=expanded_channels, + groups=expanded_channels, # groups makes it depthwise + kernel_size=kernel_size, + stride=stride, + bias=False, + ) + self._bn1 = nn.BatchNorm2d( + expanded_channels, + momentum=bn_momentum, + eps=bn_eps, + ) + image_size = calculate_output_image_size(image_size, stride) + + # Squeeze and Excitation layer, if desired + if self._has_se: + squeezed_channels = int(input_channels * block_args.se_ratio) + squeezed_channels = max(1, squeezed_channels) + Conv2d = get_same_padding_conv2d(image_size=(1, 1)) + self._se_reduce = Conv2d( + in_channels=expanded_channels, + out_channels=squeezed_channels, + kernel_size=1, + ) + self._se_expand = Conv2d( + in_channels=squeezed_channels, + out_channels=expanded_channels, + kernel_size=1, + ) + + # Pointwise convolution phase + output_channels = block_args.output_filters + Conv2d = get_same_padding_conv2d(image_size=image_size) + self._project_conv = Conv2d( + in_channels=expanded_channels, + out_channels=output_channels, + kernel_size=1, + bias=False, + ) + self._bn2 = nn.BatchNorm2d( + num_features=output_channels, + momentum=bn_momentum, + eps=bn_eps, + ) + self._swish = nn.SiLU() + + def forward(self, inputs: torch.Tensor, drop_connect_rate: Optional[float] = None): + """MBConvBlock's forward function. + + Args: + inputs (tensor): Input tensor. + drop_connect_rate (bool): Drop connect rate (float, between 0 and 1). + + Returns: + Output of this block after processing. + """ + + # Expansion and Depthwise Convolution + x = inputs + if self._has_expansion: + x = self._expand_conv(inputs) + x = self._bn0(x) + x = self._swish(x) + + x = self._depthwise_conv(x) + x = self._bn1(x) + x = self._swish(x) + + # Squeeze and Excitation + if self._has_se: + x_squeezed = F.adaptive_avg_pool2d(x, 1) + x_squeezed = self._se_reduce(x_squeezed) + x_squeezed = self._swish(x_squeezed) + x_squeezed = self._se_expand(x_squeezed) + x = torch.sigmoid(x_squeezed) * x + + # Pointwise Convolution + x = self._project_conv(x) + x = self._bn2(x) + + # Skip connection and drop connect + if self._has_drop_connect: + # The combination of skip connection and drop connect brings about stochastic depth. + if drop_connect_rate is not None and drop_connect_rate > 0: + x = drop_connect(x, p=drop_connect_rate, training=self.training) + x = x + inputs # skip connection + return x + + +class EfficientNet(nn.Module): + """EfficientNet model. + + Args: + blocks_args (list[namedtuple]): A list of BlockArgs to construct blocks. + global_params (namedtuple): A set of GlobalParams shared between blocks. + + References: + [1] https://arxiv.org/abs/1905.11946 (EfficientNet) + + Example: + >>> import torch + >>> from efficientnet.model import EfficientNet + >>> inputs = torch.rand(1, 3, 224, 224) + >>> model = EfficientNet.from_pretrained('efficientnet-b0') + >>> model.eval() + >>> outputs = model(inputs) + """ + + def __init__(self, blocks_args: List[BlockArgs], global_params: GlobalParams): + super().__init__() + + if not isinstance(blocks_args, list): + raise ValueError("blocks_args should be a list") + if len(blocks_args) == 0: + raise ValueError("block args must be greater than 0") + + self._global_params = global_params + self._blocks_args = blocks_args + + # Batch norm parameters + bn_mom = 1 - self._global_params.batch_norm_momentum + bn_eps = self._global_params.batch_norm_epsilon + + # Get stem static or dynamic convolution depending on image size + image_size = global_params.image_size + Conv2d = get_same_padding_conv2d(image_size=image_size) + + # Stem + in_channels = 3 # rgb + out_channels = round_filters(32, self._global_params) + self._conv_stem = Conv2d( + in_channels, out_channels, kernel_size=3, stride=2, bias=False + ) + self._bn0 = nn.BatchNorm2d(out_channels, momentum=bn_mom, eps=bn_eps) + image_size = calculate_output_image_size(image_size, 2) + + # Build blocks + self._blocks = nn.ModuleList([]) + for block_args in blocks_args: + # Update block input and output filters based on depth multiplier. + block_args = block_args._replace( + input_filters=round_filters( + block_args.input_filters, self._global_params + ), + output_filters=round_filters( + block_args.output_filters, self._global_params + ), + num_repeat=round_repeats(block_args.num_repeat, self._global_params), + ) + + # The first block needs to take care of stride and filter size increase. + self._blocks.append( + MBConvBlock(block_args, self._global_params, image_size=image_size) + ) + image_size = calculate_output_image_size(image_size, block_args.stride) + if block_args.num_repeat > 1: # modify block_args to keep same output size + block_args = block_args._replace( + input_filters=block_args.output_filters, stride=1 + ) + for _ in range(block_args.num_repeat - 1): + self._blocks.append( + MBConvBlock(block_args, self._global_params, image_size=image_size) + ) + # image_size = calculate_output_image_size(image_size, block_args.stride) # stride = 1 + + # Head + in_channels = block_args.output_filters # output of final block + out_channels = round_filters(1280, self._global_params) + Conv2d = get_same_padding_conv2d(image_size=image_size) + self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False) + self._bn1 = nn.BatchNorm2d( + num_features=out_channels, momentum=bn_mom, eps=bn_eps + ) + + # Final linear layer + self._avg_pooling = nn.AdaptiveAvgPool2d(1) + if self._global_params.include_top: + self._dropout = nn.Dropout(self._global_params.dropout_rate) + self._fc = nn.Linear(out_channels, self._global_params.num_classes) + + self._swish = nn.SiLU() + + def extract_features(self, inputs): + """Use convolution layer to extract feature. + + Args: + inputs (tensor): Input tensor. + + Returns: + Output of the final convolution + layer in the efficientnet model. + """ + # Stem + x = self._swish(self._bn0(self._conv_stem(inputs))) + + # Blocks + for idx, block in enumerate(self._blocks): + drop_connect_rate = self._global_params.drop_connect_rate + if drop_connect_rate: + # scale drop connect_rate + drop_connect_rate *= float(idx) / len(self._blocks) + x = block(x, drop_connect_rate=drop_connect_rate) + + # Head + x = self._swish(self._bn1(self._conv_head(x))) + + return x + + def forward(self, inputs): + """EfficientNet's forward function. + Calls extract_features to extract features, applies final linear layer, and returns logits. + + Args: + inputs (tensor): Input tensor. + + Returns: + Output of this model after processing. + """ + # Convolution layers + x = self.extract_features(inputs) + + # Pooling and final linear layer + x = self._avg_pooling(x) + if self._global_params.include_top: + x = x.flatten(start_dim=1) + x = self._dropout(x) + x = self._fc(x) + return x + + +################################################################################ +# Help functions for model architecture +################################################################################ + +# GlobalParams and BlockArgs: Two namedtuples +# round_filters and round_repeats: +# Functions to calculate params for scaling model width and depth ! ! ! +# get_width_and_height_from_size and calculate_output_image_size +# drop_connect: A structural design +# get_same_padding_conv2d: +# Conv2dDynamicSamePadding +# Conv2dStaticSamePadding +# get_same_padding_maxPool2d: +# MaxPool2dDynamicSamePadding +# MaxPool2dStaticSamePadding +# It's an additional function, not used in EfficientNet, +# but can be used in other model (such as EfficientDet). + + +def round_filters(filters, global_params): + """Calculate and round number of filters based on width multiplier. + Use width_coefficient, depth_divisor and min_depth of global_params. + + Args: + filters (int): Filters number to be calculated. + global_params (namedtuple): Global params of the model. + + Returns: + new_filters: New filters number after calculating. + """ + multiplier = global_params.width_coefficient + if not multiplier: + return filters + # TODO: modify the params names. + # maybe the names (width_divisor,min_width) + # are more suitable than (depth_divisor,min_depth). + divisor = global_params.depth_divisor + min_depth = global_params.min_depth + filters *= multiplier + min_depth = min_depth or divisor # pay attention to this line when using min_depth + # follow the formula transferred from official TensorFlow implementation + new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor) + if new_filters < 0.9 * filters: # prevent rounding by more than 10% + new_filters += divisor + return int(new_filters) + + +def round_repeats(repeats, global_params): + """Calculate module's repeat number of a block based on depth multiplier. + Use depth_coefficient of global_params. + + Args: + repeats (int): num_repeat to be calculated. + global_params (namedtuple): Global params of the model. + + Returns: + new repeat: New repeat number after calculating. + """ + multiplier = global_params.depth_coefficient + if not multiplier: + return repeats + # follow the formula transferred from official TensorFlow implementation + return int(math.ceil(multiplier * repeats)) + + +def drop_connect(inputs: torch.Tensor, p: float, training: bool) -> torch.Tensor: + """Drop connect. + + Args: + input (tensor: BCWH): Input of this structure. + p (float: 0.0~1.0): Probability of drop connection. + training (bool): The running mode. + + Returns: + output: Output after drop connection. + """ + assert 0 <= p <= 1, "p must be in range of [0,1]" + + if not training: + return inputs + + batch_size = inputs.shape[0] + keep_prob = 1 - p + + # generate binary_tensor mask according to probability (p for 0, 1-p for 1) + random_tensor = keep_prob + random_tensor += torch.rand( + [batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device + ) + binary_tensor = torch.floor(random_tensor) + + output = inputs / keep_prob * binary_tensor + return output + + +def get_width_and_height_from_size(x): + """Obtain height and width from x. + + Args: + x (int, tuple or list): Data size. + + Returns: + size: A tuple or list (H,W). + """ + if isinstance(x, int): + return x, x + if isinstance(x, list) or isinstance(x, tuple): + return x + else: + raise TypeError() + + +def calculate_output_image_size(input_image_size, stride): + """Calculates the output image size when using Conv2dSamePadding with a stride. + Necessary for static padding. Thanks to mannatsingh for pointing this out. + + Args: + input_image_size (int, tuple or list): Size of input image. + stride (int, tuple or list): Conv2d operation's stride. + + Returns: + output_image_size: A list [H,W]. + """ + if input_image_size is None: + return None + image_height, image_width = get_width_and_height_from_size(input_image_size) + stride = stride if isinstance(stride, int) else stride[0] + image_height = int(math.ceil(image_height / stride)) + image_width = int(math.ceil(image_width / stride)) + return [image_height, image_width] + + +# Note: +# The following 'SamePadding' functions make output size equal ceil(input size/stride). +# Only when stride equals 1, can the output size be the same as input size. +# Don't be confused by their function names ! ! ! + + +def get_same_padding_conv2d(image_size=None): + """Chooses static padding if you have specified an image size, and dynamic padding otherwise. + Static padding is necessary for ONNX exporting of models. + + Args: + image_size (int or tuple): Size of the image. + + Returns: + Conv2dDynamicSamePadding or Conv2dStaticSamePadding. + """ + if image_size is None: + return Conv2dDynamicSamePadding + else: + return partial(Conv2dStaticSamePadding, image_size=image_size) + + +class Conv2dDynamicSamePadding(nn.Conv2d): + """2D Convolutions like TensorFlow, for a dynamic image size. + The padding is operated in forward function by calculating dynamically. + """ + + # Tips for 'SAME' mode padding. + # Given the following: + # i: width or height + # s: stride + # k: kernel size + # d: dilation + # p: padding + # Output after Conv2d: + # o = floor((i+p-((k-1)*d+1))/s+1) + # If o equals i, i = floor((i+p-((k-1)*d+1))/s+1), + # => p = (i-1)*s+((k-1)*d+1)-i + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + dilation=1, + groups=1, + bias=True, + ): + super().__init__( + in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias + ) + self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 + + def forward(self, x): + ih, iw = x.size()[-2:] + kh, kw = self.weight.size()[-2:] + sh, sw = self.stride + oh, ow = ( + math.ceil(ih / sh), + math.ceil(iw / sw), + ) # change the output size according to stride ! ! ! + pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) + pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) + if pad_h > 0 or pad_w > 0: + x = F.pad( + x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2] + ) + return F.conv2d( + x, + self.weight, + self.bias, + self.stride, + self.padding, + self.dilation, + self.groups, + ) + + +class Conv2dStaticSamePadding(nn.Conv2d): + """2D Convolutions like TensorFlow's 'SAME' mode, with the given input image size. + The padding mudule is calculated in construction function, then used in forward. + """ + + # With the same calculation as Conv2dDynamicSamePadding + + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride=1, + image_size=None, + **kwargs, + ): + super().__init__(in_channels, out_channels, kernel_size, stride, **kwargs) + self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 + + # Calculate padding based on image size and save it + assert image_size is not None + ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size + kh, kw = self.weight.size()[-2:] + sh, sw = self.stride + oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) + pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) + pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) + if pad_h > 0 or pad_w > 0: + self.static_padding = nn.ZeroPad2d( + (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2) + ) + else: + self.static_padding = nn.Identity() + + def forward(self, x): + x = self.static_padding(x) + x = F.conv2d( + x, + self.weight, + self.bias, + self.stride, + self.padding, + self.dilation, + self.groups, + ) + return x + + +def get_same_padding_maxPool2d(image_size=None): + """Chooses static padding if you have specified an image size, and dynamic padding otherwise. + Static padding is necessary for ONNX exporting of models. + + Args: + image_size (int or tuple): Size of the image. + + Returns: + MaxPool2dDynamicSamePadding or MaxPool2dStaticSamePadding. + """ + if image_size is None: + return MaxPool2dDynamicSamePadding + else: + return partial(MaxPool2dStaticSamePadding, image_size=image_size) + + +class MaxPool2dDynamicSamePadding(nn.MaxPool2d): + """2D MaxPooling like TensorFlow's 'SAME' mode, with a dynamic image size. + The padding is operated in forward function by calculating dynamically. + """ + + def __init__( + self, + kernel_size, + stride, + padding=0, + dilation=1, + return_indices=False, + ceil_mode=False, + ): + super().__init__( + kernel_size, stride, padding, dilation, return_indices, ceil_mode + ) + self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride + self.kernel_size = ( + [self.kernel_size] * 2 + if isinstance(self.kernel_size, int) + else self.kernel_size + ) + self.dilation = ( + [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation + ) + + def forward(self, x): + ih, iw = x.size()[-2:] + kh, kw = self.kernel_size + sh, sw = self.stride + oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) + pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) + pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) + if pad_h > 0 or pad_w > 0: + x = F.pad( + x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2] + ) + return F.max_pool2d( + x, + self.kernel_size, + self.stride, + self.padding, + self.dilation, + self.ceil_mode, + self.return_indices, + ) + + +class MaxPool2dStaticSamePadding(nn.MaxPool2d): + """2D MaxPooling like TensorFlow's 'SAME' mode, with the given input image size. + The padding mudule is calculated in construction function, then used in forward. + """ + + def __init__(self, kernel_size, stride, image_size=None, **kwargs): + super().__init__(kernel_size, stride, **kwargs) + self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride + self.kernel_size = ( + [self.kernel_size] * 2 + if isinstance(self.kernel_size, int) + else self.kernel_size + ) + self.dilation = ( + [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation + ) + + # Calculate padding based on image size and save it + assert image_size is not None + ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size + kh, kw = self.kernel_size + sh, sw = self.stride + oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) + pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) + pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) + if pad_h > 0 or pad_w > 0: + self.static_padding = nn.ZeroPad2d( + (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2) + ) + else: + self.static_padding = nn.Identity() + + def forward(self, x): + x = self.static_padding(x) + x = F.max_pool2d( + x, + self.kernel_size, + self.stride, + self.padding, + self.dilation, + self.ceil_mode, + self.return_indices, + ) + return x + + +################################################################################ +# Helper functions for loading model params +################################################################################ + +# BlockDecoder: A Class for encoding and decoding BlockArgs +# efficientnet_params: A function to query compound coefficient +# get_model_params and efficientnet: +# Functions to get BlockArgs and GlobalParams for efficientnet + + +class BlockDecoder(object): + """Block Decoder for readability, + straight from the official TensorFlow repository. + """ + + @staticmethod + def _decode_block_string(block_string): + """Get a block through a string notation of arguments. + + Args: + block_string (str): A string notation of arguments. + Examples: 'r1_k3_s11_e1_i32_o16_se0.25_noskip'. + + Returns: + BlockArgs: The namedtuple defined at the top of this file. + """ + assert isinstance(block_string, str) + + ops = block_string.split("_") + options = {} + for op in ops: + splits = re.split(r"(\d.*)", op) + if len(splits) >= 2: + key, value = splits[:2] + options[key] = value + + # Check stride + assert ("s" in options and len(options["s"]) == 1) or ( + len(options["s"]) == 2 and options["s"][0] == options["s"][1] + ) + + return BlockArgs( + num_repeat=int(options["r"]), + kernel_size=int(options["k"]), + stride=[int(options["s"][0])], + expand_ratio=int(options["e"]), + input_filters=int(options["i"]), + output_filters=int(options["o"]), + se_ratio=float(options["se"]) if "se" in options else None, + id_skip=("noskip" not in block_string), + ) + + @staticmethod + def decode(string_list): + """Decode a list of string notations to specify blocks inside the network. + + Args: + string_list (list[str]): A list of strings, each string is a notation of block. + + Returns: + blocks_args: A list of BlockArgs namedtuples of block args. + """ + assert isinstance(string_list, list) + blocks_args = [] + for block_string in string_list: + blocks_args.append(BlockDecoder._decode_block_string(block_string)) + return blocks_args + + +def efficientnet_params(model_name): + """Map EfficientNet model name to parameter coefficients. + + Args: + model_name (str): Model name to be queried. + + Returns: + params_dict[model_name]: A (width,depth,res,dropout) tuple. + """ + params_dict = { + # Coefficients: width,depth,res,dropout + "efficientnet-b0": (1.0, 1.0, 224, 0.2), + "efficientnet-b1": (1.0, 1.1, 240, 0.2), + "efficientnet-b2": (1.1, 1.2, 260, 0.3), + "efficientnet-b3": (1.2, 1.4, 300, 0.3), + "efficientnet-b4": (1.4, 1.8, 380, 0.4), + "efficientnet-b5": (1.6, 2.2, 456, 0.4), + "efficientnet-b6": (1.8, 2.6, 528, 0.5), + "efficientnet-b7": (2.0, 3.1, 600, 0.5), + "efficientnet-b8": (2.2, 3.6, 672, 0.5), + "efficientnet-l2": (4.3, 5.3, 800, 0.5), + } + return params_dict[model_name] + + +def efficientnet( + width_coefficient=None, + depth_coefficient=None, + image_size=None, + dropout_rate=0.2, + drop_connect_rate=0.2, + num_classes=1000, + include_top=True, +): + """Create BlockArgs and GlobalParams for efficientnet model. + + Args: + width_coefficient (float) + depth_coefficient (float) + image_size (int) + dropout_rate (float) + drop_connect_rate (float) + num_classes (int) + + Meaning as the name suggests. + + Returns: + blocks_args, global_params. + """ + + # Blocks args for the whole model(efficientnet-b0 by default) + # It will be modified in the construction of EfficientNet Class according to model + blocks_args = [ + "r1_k3_s11_e1_i32_o16_se0.25", + "r2_k3_s22_e6_i16_o24_se0.25", + "r2_k5_s22_e6_i24_o40_se0.25", + "r3_k3_s22_e6_i40_o80_se0.25", + "r3_k5_s11_e6_i80_o112_se0.25", + "r4_k5_s22_e6_i112_o192_se0.25", + "r1_k3_s11_e6_i192_o320_se0.25", + ] + blocks_args = BlockDecoder.decode(blocks_args) + + global_params = GlobalParams( + width_coefficient=width_coefficient, + depth_coefficient=depth_coefficient, + image_size=image_size, + dropout_rate=dropout_rate, + num_classes=num_classes, + batch_norm_momentum=0.99, + batch_norm_epsilon=1e-3, + drop_connect_rate=drop_connect_rate, + depth_divisor=8, + min_depth=None, + include_top=include_top, + ) + + return blocks_args, global_params + + +def get_model_params(model_name, override_params): + """Get the block args and global params for a given model name. + + Args: + model_name (str): Model's name. + override_params (dict): A dict to modify global_params. + + Returns: + blocks_args, global_params + """ + if model_name.startswith("efficientnet"): + w, d, s, p = efficientnet_params(model_name) + # note: all models have drop connect rate = 0.2 + blocks_args, global_params = efficientnet( + width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s + ) + else: + raise NotImplementedError( + "model name is not pre-defined: {}".format(model_name) + ) + if override_params: + # ValueError will be raised here if override_params has fields not included in global_params. + global_params = global_params._replace(**override_params) + return blocks_args, global_params diff --git a/segmentation_models_pytorch/encoders/_inceptionresnetv2.py b/segmentation_models_pytorch/encoders/_inceptionresnetv2.py new file mode 100644 index 00000000..50b9b616 --- /dev/null +++ b/segmentation_models_pytorch/encoders/_inceptionresnetv2.py @@ -0,0 +1,301 @@ +import torch +import torch.nn as nn + + +class BasicConv2d(nn.Module): + def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0): + super(BasicConv2d, self).__init__() + self.conv = nn.Conv2d( + in_planes, + out_planes, + kernel_size=kernel_size, + stride=stride, + padding=padding, + bias=False, + ) # verify bias false + self.bn = nn.BatchNorm2d( + out_planes, + eps=0.001, # value found in tensorflow + momentum=0.1, # default pytorch value + affine=True, + ) + self.relu = nn.ReLU(inplace=False) + + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + x = self.relu(x) + return x + + +class Mixed_5b(nn.Module): + def __init__(self): + super(Mixed_5b, self).__init__() + + self.branch0 = BasicConv2d(192, 96, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(192, 48, kernel_size=1, stride=1), + BasicConv2d(48, 64, kernel_size=5, stride=1, padding=2), + ) + + self.branch2 = nn.Sequential( + BasicConv2d(192, 64, kernel_size=1, stride=1), + BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1), + BasicConv2d(96, 96, kernel_size=3, stride=1, padding=1), + ) + + self.branch3 = nn.Sequential( + nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), + BasicConv2d(192, 64, kernel_size=1, stride=1), + ) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class Block35(nn.Module): + def __init__(self, scale=1.0): + super(Block35, self).__init__() + + self.scale = scale + + self.branch0 = BasicConv2d(320, 32, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(320, 32, kernel_size=1, stride=1), + BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1), + ) + + self.branch2 = nn.Sequential( + BasicConv2d(320, 32, kernel_size=1, stride=1), + BasicConv2d(32, 48, kernel_size=3, stride=1, padding=1), + BasicConv2d(48, 64, kernel_size=3, stride=1, padding=1), + ) + + self.conv2d = nn.Conv2d(128, 320, kernel_size=1, stride=1) + self.relu = nn.ReLU(inplace=False) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + out = self.conv2d(out) + out = out * self.scale + x + out = self.relu(out) + return out + + +class Mixed_6a(nn.Module): + def __init__(self): + super(Mixed_6a, self).__init__() + + self.branch0 = BasicConv2d(320, 384, kernel_size=3, stride=2) + + self.branch1 = nn.Sequential( + BasicConv2d(320, 256, kernel_size=1, stride=1), + BasicConv2d(256, 256, kernel_size=3, stride=1, padding=1), + BasicConv2d(256, 384, kernel_size=3, stride=2), + ) + + self.branch2 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + return out + + +class Block17(nn.Module): + def __init__(self, scale=1.0): + super(Block17, self).__init__() + + self.scale = scale + + self.branch0 = BasicConv2d(1088, 192, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(1088, 128, kernel_size=1, stride=1), + BasicConv2d(128, 160, kernel_size=(1, 7), stride=1, padding=(0, 3)), + BasicConv2d(160, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)), + ) + + self.conv2d = nn.Conv2d(384, 1088, kernel_size=1, stride=1) + self.relu = nn.ReLU(inplace=False) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + out = self.conv2d(out) + out = out * self.scale + x + out = self.relu(out) + return out + + +class Mixed_7a(nn.Module): + def __init__(self): + super(Mixed_7a, self).__init__() + + self.branch0 = nn.Sequential( + BasicConv2d(1088, 256, kernel_size=1, stride=1), + BasicConv2d(256, 384, kernel_size=3, stride=2), + ) + + self.branch1 = nn.Sequential( + BasicConv2d(1088, 256, kernel_size=1, stride=1), + BasicConv2d(256, 288, kernel_size=3, stride=2), + ) + + self.branch2 = nn.Sequential( + BasicConv2d(1088, 256, kernel_size=1, stride=1), + BasicConv2d(256, 288, kernel_size=3, stride=1, padding=1), + BasicConv2d(288, 320, kernel_size=3, stride=2), + ) + + self.branch3 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class Block8(nn.Module): + def __init__(self, scale=1.0, noReLU=False): + super(Block8, self).__init__() + + self.scale = scale + self.noReLU = noReLU + + self.branch0 = BasicConv2d(2080, 192, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(2080, 192, kernel_size=1, stride=1), + BasicConv2d(192, 224, kernel_size=(1, 3), stride=1, padding=(0, 1)), + BasicConv2d(224, 256, kernel_size=(3, 1), stride=1, padding=(1, 0)), + ) + + self.conv2d = nn.Conv2d(448, 2080, kernel_size=1, stride=1) + if not self.noReLU: + self.relu = nn.ReLU(inplace=False) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + out = self.conv2d(out) + out = out * self.scale + x + if not self.noReLU: + out = self.relu(out) + return out + + +class InceptionResNetV2(nn.Module): + def __init__(self, num_classes=1001): + super(InceptionResNetV2, self).__init__() + # Special attributs + self.input_space = None + self.input_size = (299, 299, 3) + self.mean = None + self.std = None + # Modules + self.conv2d_1a = BasicConv2d(3, 32, kernel_size=3, stride=2) + self.conv2d_2a = BasicConv2d(32, 32, kernel_size=3, stride=1) + self.conv2d_2b = BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1) + self.maxpool_3a = nn.MaxPool2d(3, stride=2) + self.conv2d_3b = BasicConv2d(64, 80, kernel_size=1, stride=1) + self.conv2d_4a = BasicConv2d(80, 192, kernel_size=3, stride=1) + self.maxpool_5a = nn.MaxPool2d(3, stride=2) + self.mixed_5b = Mixed_5b() + self.repeat = nn.Sequential( + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + Block35(scale=0.17), + ) + self.mixed_6a = Mixed_6a() + self.repeat_1 = nn.Sequential( + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + Block17(scale=0.10), + ) + self.mixed_7a = Mixed_7a() + self.repeat_2 = nn.Sequential( + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + Block8(scale=0.20), + ) + self.block8 = Block8(noReLU=True) + self.conv2d_7b = BasicConv2d(2080, 1536, kernel_size=1, stride=1) + self.avgpool_1a = nn.AvgPool2d(8, count_include_pad=False) + self.last_linear = nn.Linear(1536, num_classes) + + def features(self, input): + x = self.conv2d_1a(input) + x = self.conv2d_2a(x) + x = self.conv2d_2b(x) + x = self.maxpool_3a(x) + x = self.conv2d_3b(x) + x = self.conv2d_4a(x) + x = self.maxpool_5a(x) + x = self.mixed_5b(x) + x = self.repeat(x) + x = self.mixed_6a(x) + x = self.repeat_1(x) + x = self.mixed_7a(x) + x = self.repeat_2(x) + x = self.block8(x) + x = self.conv2d_7b(x) + return x + + def logits(self, features): + x = self.avgpool_1a(features) + x = x.view(x.size(0), -1) + x = self.last_linear(x) + return x + + def forward(self, input): + x = self.features(input) + x = self.logits(x) + return x diff --git a/segmentation_models_pytorch/encoders/_inceptionv4.py b/segmentation_models_pytorch/encoders/_inceptionv4.py new file mode 100644 index 00000000..934f74cd --- /dev/null +++ b/segmentation_models_pytorch/encoders/_inceptionv4.py @@ -0,0 +1,291 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class BasicConv2d(nn.Module): + def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0): + super(BasicConv2d, self).__init__() + self.conv = nn.Conv2d( + in_planes, + out_planes, + kernel_size=kernel_size, + stride=stride, + padding=padding, + bias=False, + ) # verify bias false + self.bn = nn.BatchNorm2d( + out_planes, + eps=0.001, # value found in tensorflow + momentum=0.1, # default pytorch value + affine=True, + ) + self.relu = nn.ReLU(inplace=True) + + def forward(self, x): + x = self.conv(x) + x = self.bn(x) + x = self.relu(x) + return x + + +class Mixed_3a(nn.Module): + def __init__(self): + super(Mixed_3a, self).__init__() + self.maxpool = nn.MaxPool2d(3, stride=2) + self.conv = BasicConv2d(64, 96, kernel_size=3, stride=2) + + def forward(self, x): + x0 = self.maxpool(x) + x1 = self.conv(x) + out = torch.cat((x0, x1), 1) + return out + + +class Mixed_4a(nn.Module): + def __init__(self): + super(Mixed_4a, self).__init__() + + self.branch0 = nn.Sequential( + BasicConv2d(160, 64, kernel_size=1, stride=1), + BasicConv2d(64, 96, kernel_size=3, stride=1), + ) + + self.branch1 = nn.Sequential( + BasicConv2d(160, 64, kernel_size=1, stride=1), + BasicConv2d(64, 64, kernel_size=(1, 7), stride=1, padding=(0, 3)), + BasicConv2d(64, 64, kernel_size=(7, 1), stride=1, padding=(3, 0)), + BasicConv2d(64, 96, kernel_size=(3, 3), stride=1), + ) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + out = torch.cat((x0, x1), 1) + return out + + +class Mixed_5a(nn.Module): + def __init__(self): + super(Mixed_5a, self).__init__() + self.conv = BasicConv2d(192, 192, kernel_size=3, stride=2) + self.maxpool = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.conv(x) + x1 = self.maxpool(x) + out = torch.cat((x0, x1), 1) + return out + + +class Inception_A(nn.Module): + def __init__(self): + super(Inception_A, self).__init__() + self.branch0 = BasicConv2d(384, 96, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(384, 64, kernel_size=1, stride=1), + BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1), + ) + + self.branch2 = nn.Sequential( + BasicConv2d(384, 64, kernel_size=1, stride=1), + BasicConv2d(64, 96, kernel_size=3, stride=1, padding=1), + BasicConv2d(96, 96, kernel_size=3, stride=1, padding=1), + ) + + self.branch3 = nn.Sequential( + nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), + BasicConv2d(384, 96, kernel_size=1, stride=1), + ) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class Reduction_A(nn.Module): + def __init__(self): + super(Reduction_A, self).__init__() + self.branch0 = BasicConv2d(384, 384, kernel_size=3, stride=2) + + self.branch1 = nn.Sequential( + BasicConv2d(384, 192, kernel_size=1, stride=1), + BasicConv2d(192, 224, kernel_size=3, stride=1, padding=1), + BasicConv2d(224, 256, kernel_size=3, stride=2), + ) + + self.branch2 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + return out + + +class Inception_B(nn.Module): + def __init__(self): + super(Inception_B, self).__init__() + self.branch0 = BasicConv2d(1024, 384, kernel_size=1, stride=1) + + self.branch1 = nn.Sequential( + BasicConv2d(1024, 192, kernel_size=1, stride=1), + BasicConv2d(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)), + BasicConv2d(224, 256, kernel_size=(7, 1), stride=1, padding=(3, 0)), + ) + + self.branch2 = nn.Sequential( + BasicConv2d(1024, 192, kernel_size=1, stride=1), + BasicConv2d(192, 192, kernel_size=(7, 1), stride=1, padding=(3, 0)), + BasicConv2d(192, 224, kernel_size=(1, 7), stride=1, padding=(0, 3)), + BasicConv2d(224, 224, kernel_size=(7, 1), stride=1, padding=(3, 0)), + BasicConv2d(224, 256, kernel_size=(1, 7), stride=1, padding=(0, 3)), + ) + + self.branch3 = nn.Sequential( + nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), + BasicConv2d(1024, 128, kernel_size=1, stride=1), + ) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + x3 = self.branch3(x) + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class Reduction_B(nn.Module): + def __init__(self): + super(Reduction_B, self).__init__() + + self.branch0 = nn.Sequential( + BasicConv2d(1024, 192, kernel_size=1, stride=1), + BasicConv2d(192, 192, kernel_size=3, stride=2), + ) + + self.branch1 = nn.Sequential( + BasicConv2d(1024, 256, kernel_size=1, stride=1), + BasicConv2d(256, 256, kernel_size=(1, 7), stride=1, padding=(0, 3)), + BasicConv2d(256, 320, kernel_size=(7, 1), stride=1, padding=(3, 0)), + BasicConv2d(320, 320, kernel_size=3, stride=2), + ) + + self.branch2 = nn.MaxPool2d(3, stride=2) + + def forward(self, x): + x0 = self.branch0(x) + x1 = self.branch1(x) + x2 = self.branch2(x) + out = torch.cat((x0, x1, x2), 1) + return out + + +class Inception_C(nn.Module): + def __init__(self): + super(Inception_C, self).__init__() + + self.branch0 = BasicConv2d(1536, 256, kernel_size=1, stride=1) + + self.branch1_0 = BasicConv2d(1536, 384, kernel_size=1, stride=1) + self.branch1_1a = BasicConv2d( + 384, 256, kernel_size=(1, 3), stride=1, padding=(0, 1) + ) + self.branch1_1b = BasicConv2d( + 384, 256, kernel_size=(3, 1), stride=1, padding=(1, 0) + ) + + self.branch2_0 = BasicConv2d(1536, 384, kernel_size=1, stride=1) + self.branch2_1 = BasicConv2d( + 384, 448, kernel_size=(3, 1), stride=1, padding=(1, 0) + ) + self.branch2_2 = BasicConv2d( + 448, 512, kernel_size=(1, 3), stride=1, padding=(0, 1) + ) + self.branch2_3a = BasicConv2d( + 512, 256, kernel_size=(1, 3), stride=1, padding=(0, 1) + ) + self.branch2_3b = BasicConv2d( + 512, 256, kernel_size=(3, 1), stride=1, padding=(1, 0) + ) + + self.branch3 = nn.Sequential( + nn.AvgPool2d(3, stride=1, padding=1, count_include_pad=False), + BasicConv2d(1536, 256, kernel_size=1, stride=1), + ) + + def forward(self, x): + x0 = self.branch0(x) + + x1_0 = self.branch1_0(x) + x1_1a = self.branch1_1a(x1_0) + x1_1b = self.branch1_1b(x1_0) + x1 = torch.cat((x1_1a, x1_1b), 1) + + x2_0 = self.branch2_0(x) + x2_1 = self.branch2_1(x2_0) + x2_2 = self.branch2_2(x2_1) + x2_3a = self.branch2_3a(x2_2) + x2_3b = self.branch2_3b(x2_2) + x2 = torch.cat((x2_3a, x2_3b), 1) + + x3 = self.branch3(x) + + out = torch.cat((x0, x1, x2, x3), 1) + return out + + +class InceptionV4(nn.Module): + def __init__(self, num_classes=1001): + super(InceptionV4, self).__init__() + # Special attributs + self.input_space = None + self.input_size = (299, 299, 3) + self.mean = None + self.std = None + # Modules + self.features = nn.Sequential( + BasicConv2d(3, 32, kernel_size=3, stride=2), + BasicConv2d(32, 32, kernel_size=3, stride=1), + BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1), + Mixed_3a(), + Mixed_4a(), + Mixed_5a(), + Inception_A(), + Inception_A(), + Inception_A(), + Inception_A(), + Reduction_A(), # Mixed_6a + Inception_B(), + Inception_B(), + Inception_B(), + Inception_B(), + Inception_B(), + Inception_B(), + Inception_B(), + Reduction_B(), # Mixed_7a + Inception_C(), + Inception_C(), + Inception_C(), + ) + self.last_linear = nn.Linear(1536, num_classes) + + def logits(self, features): + # Allows image of any size to be processed + adaptiveAvgPoolWidth = features.shape[2] + x = F.avg_pool2d(features, kernel_size=adaptiveAvgPoolWidth) + x = x.view(x.size(0), -1) + x = self.last_linear(x) + return x + + def forward(self, input): + x = self.features(input) + x = self.logits(x) + return x diff --git a/segmentation_models_pytorch/encoders/_legacy_pretrained_settings.py b/segmentation_models_pytorch/encoders/_legacy_pretrained_settings.py new file mode 100644 index 00000000..21f5691e --- /dev/null +++ b/segmentation_models_pytorch/encoders/_legacy_pretrained_settings.py @@ -0,0 +1,1062 @@ +pretrained_settings = { + "resnet18": { + "imagenet": { + "url": "https://download.pytorch.org/models/resnet18-5c106cde.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + "ssl": { + "url": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + "swsl": { + "url": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + }, + "resnet34": { + "imagenet": { + "url": "https://download.pytorch.org/models/resnet34-333f7ec4.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "resnet50": { + "imagenet": { + "url": "https://download.pytorch.org/models/resnet50-19c8e357.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + "ssl": { + "url": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + "swsl": { + "url": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + }, + "resnet101": { + "imagenet": { + "url": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "resnet152": { + "imagenet": { + "url": "https://download.pytorch.org/models/resnet152-b121ed2d.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "resnext50_32x4d": { + "imagenet": { + "url": "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + "ssl": { + "url": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + "swsl": { + "url": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + }, + "resnext101_32x4d": { + "ssl": { + "url": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + "swsl": { + "url": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + }, + "resnext101_32x8d": { + "imagenet": { + "url": "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + "instagram": { + "url": "https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + "ssl": { + "url": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + "swsl": { + "url": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + }, + "resnext101_32x16d": { + "instagram": { + "url": "https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + "ssl": { + "url": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + "swsl": { + "url": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + }, + }, + "resnext101_32x32d": { + "instagram": { + "url": "https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "resnext101_32x48d": { + "instagram": { + "url": "https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "dpn68": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/dpn68-4af7d88d2.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.48627450980392156, 0.4588235294117647, 0.40784313725490196], + "std": [0.23482446870963955, 0.23482446870963955, 0.23482446870963955], + "num_classes": 1000, + } + }, + "dpn68b": { + "imagenet+5k": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/dpn68b_extra-363ab9c19.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.48627450980392156, 0.4588235294117647, 0.40784313725490196], + "std": [0.23482446870963955, 0.23482446870963955, 0.23482446870963955], + "num_classes": 1000, + } + }, + "dpn92": { + "imagenet+5k": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/dpn92_extra-fda993c95.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.48627450980392156, 0.4588235294117647, 0.40784313725490196], + "std": [0.23482446870963955, 0.23482446870963955, 0.23482446870963955], + "num_classes": 1000, + } + }, + "dpn98": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/dpn98-722954780.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.48627450980392156, 0.4588235294117647, 0.40784313725490196], + "std": [0.23482446870963955, 0.23482446870963955, 0.23482446870963955], + "num_classes": 1000, + } + }, + "dpn107": { + "imagenet+5k": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/dpn107_extra-b7f9f4cc9.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.48627450980392156, 0.4588235294117647, 0.40784313725490196], + "std": [0.23482446870963955, 0.23482446870963955, 0.23482446870963955], + "num_classes": 1000, + } + }, + "dpn131": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/dpn131-7af84be88.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.48627450980392156, 0.4588235294117647, 0.40784313725490196], + "std": [0.23482446870963955, 0.23482446870963955, 0.23482446870963955], + "num_classes": 1000, + } + }, + "vgg11": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg11-bbd30ac9.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg11_bn": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg11_bn-6002323d.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg13": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg13-c768596a.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg13_bn": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg13_bn-abd245e5.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg16": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg16-397923af.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg16_bn": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg19": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg19_bn": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg19_bn-c79401a0.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "senet154": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "se_resnet50": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/se_resnet50-ce0d4300.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "se_resnet101": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/se_resnet101-7e38fcc6.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "se_resnet152": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/se_resnet152-d17c99b7.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "se_resnext50_32x4d": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "se_resnext101_32x4d": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "densenet121": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/densenet121-fbdb23505.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "densenet169": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/densenet169-f470b90a4.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "densenet201": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/densenet201-5750cbb1e.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "densenet161": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/densenet161-347e6b360.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "inceptionresnetv2": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/inceptionresnetv2-520b38e4.pth", + "input_space": "RGB", + "input_size": [3, 299, 299], + "input_range": [0, 1], + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "num_classes": 1000, + }, + "imagenet+background": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/inceptionresnetv2-520b38e4.pth", + "input_space": "RGB", + "input_size": [3, 299, 299], + "input_range": [0, 1], + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "num_classes": 1001, + }, + }, + "inceptionv4": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/inceptionv4-8e4777a0.pth", + "input_space": "RGB", + "input_size": [3, 299, 299], + "input_range": [0, 1], + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "num_classes": 1000, + }, + "imagenet+background": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/inceptionv4-8e4777a0.pth", + "input_space": "RGB", + "input_size": [3, 299, 299], + "input_range": [0, 1], + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "num_classes": 1001, + }, + }, + "efficientnet-b0": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + "advprop": { + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b0-b64d5a18.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + }, + "efficientnet-b1": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + "advprop": { + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b1-0f3ce85a.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + }, + "efficientnet-b2": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + "advprop": { + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b2-6e9d97e5.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + }, + "efficientnet-b3": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + "advprop": { + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b3-cdd7c0f4.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + }, + "efficientnet-b4": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + "advprop": { + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b4-44fb3a87.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + }, + "efficientnet-b5": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + "advprop": { + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b5-86493f6b.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + }, + "efficientnet-b6": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + "advprop": { + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b6-ac80338e.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + }, + "efficientnet-b7": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + "advprop": { + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "url": "https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b7-4652b6dd.pth", + "input_space": "RGB", + "input_range": [0, 1], + }, + }, + "mobilenet_v2": { + "imagenet": { + "url": "https://download.pytorch.org/models/mobilenet_v2-b0353104.pth", + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "input_space": "RGB", + "input_range": [0, 1], + } + }, + "xception": { + "imagenet": { + "url": "http://data.lip6.fr/cadene/pretrainedmodels/xception-43020ad28.pth", + "input_space": "RGB", + "input_size": [3, 299, 299], + "input_range": [0, 1], + "mean": [0.5, 0.5, 0.5], + "std": [0.5, 0.5, 0.5], + "num_classes": 1000, + "scale": 0.8975, + } + }, + "timm-efficientnet-b0": { + "imagenet": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0-0af12548.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "advprop": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "noisy-student": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ns-c0e6a31c.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + }, + "timm-efficientnet-b1": { + "imagenet": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1-5c1377c4.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "advprop": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "noisy-student": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ns-99dd0c41.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + }, + "timm-efficientnet-b2": { + "imagenet": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2-e393ef04.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "advprop": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "noisy-student": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ns-00306e48.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + }, + "timm-efficientnet-b3": { + "imagenet": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3-e3bd6955.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "advprop": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "noisy-student": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ns-9d44bf68.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + }, + "timm-efficientnet-b4": { + "imagenet": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4-74ee3bed.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "advprop": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "noisy-student": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ns-d6313a46.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + }, + "timm-efficientnet-b5": { + "imagenet": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5-c6949ce9.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "advprop": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "noisy-student": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ns-6f26d0cf.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + }, + "timm-efficientnet-b6": { + "imagenet": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_aa-80ba17e4.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "advprop": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "noisy-student": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ns-51548356.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + }, + "timm-efficientnet-b7": { + "imagenet": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/huggingface/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_aa-076e3472.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "advprop": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "noisy-student": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ns-1dbc32de.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + }, + "timm-efficientnet-b8": { + "imagenet": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "advprop": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + }, + "timm-efficientnet-l2": { + "noisy-student": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns-df73bb44.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + "noisy-student-475": { + "mean": (0.485, 0.456, 0.406), + "std": (0.229, 0.224, 0.225), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns_475-bebbd00a.pth", + "input_range": (0, 1), + "input_space": "RGB", + }, + }, + "timm-tf_efficientnet_lite0": { + "imagenet": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite0-0aa007d2.pth", + "input_range": (0, 1), + "input_space": "RGB", + } + }, + "timm-tf_efficientnet_lite1": { + "imagenet": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite1-bde8b488.pth", + "input_range": (0, 1), + "input_space": "RGB", + } + }, + "timm-tf_efficientnet_lite2": { + "imagenet": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite2-dcccb7df.pth", + "input_range": (0, 1), + "input_space": "RGB", + } + }, + "timm-tf_efficientnet_lite3": { + "imagenet": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite3-b733e338.pth", + "input_range": (0, 1), + "input_space": "RGB", + } + }, + "timm-tf_efficientnet_lite4": { + "imagenet": { + "mean": (0.5, 0.5, 0.5), + "std": (0.5, 0.5, 0.5), + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite4-741542c3.pth", + "input_range": (0, 1), + "input_space": "RGB", + } + }, + "timm-skresnet18": { + "imagenet": { + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "timm-skresnet34": { + "imagenet": { + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "timm-skresnext50_32x4d": { + "imagenet": { + "url": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "mit_b0": { + "imagenet": { + "url": "https://github.com/qubvel/segmentation_models.pytorch/releases/download/v0.0.2/mit_b0.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + } + }, + "mit_b1": { + "imagenet": { + "url": "https://github.com/qubvel/segmentation_models.pytorch/releases/download/v0.0.2/mit_b1.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + } + }, + "mit_b2": { + "imagenet": { + "url": "https://github.com/qubvel/segmentation_models.pytorch/releases/download/v0.0.2/mit_b2.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + } + }, + "mit_b3": { + "imagenet": { + "url": "https://github.com/qubvel/segmentation_models.pytorch/releases/download/v0.0.2/mit_b3.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + } + }, + "mit_b4": { + "imagenet": { + "url": "https://github.com/qubvel/segmentation_models.pytorch/releases/download/v0.0.2/mit_b4.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + } + }, + "mit_b5": { + "imagenet": { + "url": "https://github.com/qubvel/segmentation_models.pytorch/releases/download/v0.0.2/mit_b5.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + } + }, + "mobileone_s0": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://docs-assets.developer.apple.com/ml-research/datasets/mobileone/mobileone_s0_unfused.pth.tar", + "input_space": "RGB", + "input_range": [0, 1], + } + }, + "mobileone_s1": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://docs-assets.developer.apple.com/ml-research/datasets/mobileone/mobileone_s1_unfused.pth.tar", + "input_space": "RGB", + "input_range": [0, 1], + } + }, + "mobileone_s2": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://docs-assets.developer.apple.com/ml-research/datasets/mobileone/mobileone_s2_unfused.pth.tar", + "input_space": "RGB", + "input_range": [0, 1], + } + }, + "mobileone_s3": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://docs-assets.developer.apple.com/ml-research/datasets/mobileone/mobileone_s3_unfused.pth.tar", + "input_space": "RGB", + "input_range": [0, 1], + } + }, + "mobileone_s4": { + "imagenet": { + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "url": "https://docs-assets.developer.apple.com/ml-research/datasets/mobileone/mobileone_s4_unfused.pth.tar", + "input_space": "RGB", + "input_range": [0, 1], + } + }, +} diff --git a/segmentation_models_pytorch/encoders/_senet.py b/segmentation_models_pytorch/encoders/_senet.py new file mode 100644 index 00000000..f56c776a --- /dev/null +++ b/segmentation_models_pytorch/encoders/_senet.py @@ -0,0 +1,337 @@ +""" +ResNet code gently borrowed from +https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py +""" + +from collections import OrderedDict +import math + +import torch.nn as nn + + +class SEModule(nn.Module): + def __init__(self, channels, reduction): + super(SEModule, self).__init__() + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0) + self.relu = nn.ReLU(inplace=True) + self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0) + self.sigmoid = nn.Sigmoid() + + def forward(self, x): + module_input = x + x = self.avg_pool(x) + x = self.fc1(x) + x = self.relu(x) + x = self.fc2(x) + x = self.sigmoid(x) + return module_input * x + + +class Bottleneck(nn.Module): + """ + Base class for bottlenecks that implements `forward()` method. + """ + + def forward(self, x): + residual = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + residual = self.downsample(x) + + out = self.se_module(out) + residual + out = self.relu(out) + + return out + + +class SEBottleneck(Bottleneck): + """ + Bottleneck for SENet154. + """ + + expansion = 4 + + def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): + super(SEBottleneck, self).__init__() + self.conv1 = nn.Conv2d(inplanes, planes * 2, kernel_size=1, bias=False) + self.bn1 = nn.BatchNorm2d(planes * 2) + self.conv2 = nn.Conv2d( + planes * 2, + planes * 4, + kernel_size=3, + stride=stride, + padding=1, + groups=groups, + bias=False, + ) + self.bn2 = nn.BatchNorm2d(planes * 4) + self.conv3 = nn.Conv2d(planes * 4, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.se_module = SEModule(planes * 4, reduction=reduction) + self.downsample = downsample + self.stride = stride + + +class SEResNetBottleneck(Bottleneck): + """ + ResNet bottleneck with a Squeeze-and-Excitation module. It follows Caffe + implementation and uses `stride=stride` in `conv1` and not in `conv2` + (the latter is used in the torchvision implementation of ResNet). + """ + + expansion = 4 + + def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None): + super(SEResNetBottleneck, self).__init__() + self.conv1 = nn.Conv2d( + inplanes, planes, kernel_size=1, bias=False, stride=stride + ) + self.bn1 = nn.BatchNorm2d(planes) + self.conv2 = nn.Conv2d( + planes, planes, kernel_size=3, padding=1, groups=groups, bias=False + ) + self.bn2 = nn.BatchNorm2d(planes) + self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.se_module = SEModule(planes * 4, reduction=reduction) + self.downsample = downsample + self.stride = stride + + +class SEResNeXtBottleneck(Bottleneck): + """ + ResNeXt bottleneck type C with a Squeeze-and-Excitation module. + """ + + expansion = 4 + + def __init__( + self, + inplanes, + planes, + groups, + reduction, + stride=1, + downsample=None, + base_width=4, + ): + super(SEResNeXtBottleneck, self).__init__() + width = math.floor(planes * (base_width / 64)) * groups + self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False, stride=1) + self.bn1 = nn.BatchNorm2d(width) + self.conv2 = nn.Conv2d( + width, + width, + kernel_size=3, + stride=stride, + padding=1, + groups=groups, + bias=False, + ) + self.bn2 = nn.BatchNorm2d(width) + self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * 4) + self.relu = nn.ReLU(inplace=True) + self.se_module = SEModule(planes * 4, reduction=reduction) + self.downsample = downsample + self.stride = stride + + +class SENet(nn.Module): + def __init__( + self, + block, + layers, + groups, + reduction, + dropout_p=0.2, + inplanes=128, + input_3x3=True, + downsample_kernel_size=3, + downsample_padding=1, + num_classes=1000, + ): + """ + Parameters + ---------- + block (nn.Module): Bottleneck class. + - For SENet154: SEBottleneck + - For SE-ResNet models: SEResNetBottleneck + - For SE-ResNeXt models: SEResNeXtBottleneck + layers (list of ints): Number of residual blocks for 4 layers of the + network (layer1...layer4). + groups (int): Number of groups for the 3x3 convolution in each + bottleneck block. + - For SENet154: 64 + - For SE-ResNet models: 1 + - For SE-ResNeXt models: 32 + reduction (int): Reduction ratio for Squeeze-and-Excitation modules. + - For all models: 16 + dropout_p (float or None): Drop probability for the Dropout layer. + If `None` the Dropout layer is not used. + - For SENet154: 0.2 + - For SE-ResNet models: None + - For SE-ResNeXt models: None + inplanes (int): Number of input channels for layer1. + - For SENet154: 128 + - For SE-ResNet models: 64 + - For SE-ResNeXt models: 64 + input_3x3 (bool): If `True`, use three 3x3 convolutions instead of + a single 7x7 convolution in layer0. + - For SENet154: True + - For SE-ResNet models: False + - For SE-ResNeXt models: False + downsample_kernel_size (int): Kernel size for downsampling convolutions + in layer2, layer3 and layer4. + - For SENet154: 3 + - For SE-ResNet models: 1 + - For SE-ResNeXt models: 1 + downsample_padding (int): Padding for downsampling convolutions in + layer2, layer3 and layer4. + - For SENet154: 1 + - For SE-ResNet models: 0 + - For SE-ResNeXt models: 0 + num_classes (int): Number of outputs in `last_linear` layer. + - For all models: 1000 + """ + super(SENet, self).__init__() + self.inplanes = inplanes + if input_3x3: + layer0_modules = [ + ("conv1", nn.Conv2d(3, 64, 3, stride=2, padding=1, bias=False)), + ("bn1", nn.BatchNorm2d(64)), + ("relu1", nn.ReLU(inplace=True)), + ("conv2", nn.Conv2d(64, 64, 3, stride=1, padding=1, bias=False)), + ("bn2", nn.BatchNorm2d(64)), + ("relu2", nn.ReLU(inplace=True)), + ("conv3", nn.Conv2d(64, inplanes, 3, stride=1, padding=1, bias=False)), + ("bn3", nn.BatchNorm2d(inplanes)), + ("relu3", nn.ReLU(inplace=True)), + ] + else: + layer0_modules = [ + ( + "conv1", + nn.Conv2d( + 3, inplanes, kernel_size=7, stride=2, padding=3, bias=False + ), + ), + ("bn1", nn.BatchNorm2d(inplanes)), + ("relu1", nn.ReLU(inplace=True)), + ] + # To preserve compatibility with Caffe weights `ceil_mode=True` + # is used instead of `padding=1`. + layer0_modules.append(("pool", nn.MaxPool2d(3, stride=2, ceil_mode=True))) + self.layer0 = nn.Sequential(OrderedDict(layer0_modules)) + self.layer1 = self._make_layer( + block, + planes=64, + blocks=layers[0], + groups=groups, + reduction=reduction, + downsample_kernel_size=1, + downsample_padding=0, + ) + self.layer2 = self._make_layer( + block, + planes=128, + blocks=layers[1], + stride=2, + groups=groups, + reduction=reduction, + downsample_kernel_size=downsample_kernel_size, + downsample_padding=downsample_padding, + ) + self.layer3 = self._make_layer( + block, + planes=256, + blocks=layers[2], + stride=2, + groups=groups, + reduction=reduction, + downsample_kernel_size=downsample_kernel_size, + downsample_padding=downsample_padding, + ) + self.layer4 = self._make_layer( + block, + planes=512, + blocks=layers[3], + stride=2, + groups=groups, + reduction=reduction, + downsample_kernel_size=downsample_kernel_size, + downsample_padding=downsample_padding, + ) + self.avg_pool = nn.AvgPool2d(7, stride=1) + self.dropout = nn.Dropout(dropout_p) if dropout_p is not None else None + self.last_linear = nn.Linear(512 * block.expansion, num_classes) + + def _make_layer( + self, + block, + planes, + blocks, + groups, + reduction, + stride=1, + downsample_kernel_size=1, + downsample_padding=0, + ): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d( + self.inplanes, + planes * block.expansion, + kernel_size=downsample_kernel_size, + stride=stride, + padding=downsample_padding, + bias=False, + ), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append( + block(self.inplanes, planes, groups, reduction, stride, downsample) + ) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes, groups, reduction)) + + return nn.Sequential(*layers) + + def features(self, x): + x = self.layer0(x) + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + return x + + def logits(self, x): + x = self.avg_pool(x) + if self.dropout is not None: + x = self.dropout(x) + x = x.view(x.size(0), -1) + x = self.last_linear(x) + return x + + def forward(self, x): + x = self.features(x) + x = self.logits(x) + return x diff --git a/segmentation_models_pytorch/encoders/_xception.py b/segmentation_models_pytorch/encoders/_xception.py new file mode 100644 index 00000000..4b6f308b --- /dev/null +++ b/segmentation_models_pytorch/encoders/_xception.py @@ -0,0 +1,231 @@ +""" +Ported to pytorch thanks to [tstandley](https://github.com/tstandley/Xception-PyTorch) + +@author: tstandley +Adapted by cadene + +Creates an Xception Model as defined in: + +Francois Chollet +Xception: Deep Learning with Depthwise Separable Convolutions +https://arxiv.org/pdf/1610.02357.pdf + +This weights ported from the Keras implementation. Achieves the following performance on the validation set: + +Loss:0.9173 Prec@1:78.892 Prec@5:94.292 + +REMEMBER to set your image size to 3x299x299 for both test and validation + +normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], + std=[0.5, 0.5, 0.5]) + +The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299 +""" + +import torch.nn as nn +import torch.nn.functional as F + + +class SeparableConv2d(nn.Module): + def __init__( + self, + in_channels, + out_channels, + kernel_size=1, + stride=1, + padding=0, + dilation=1, + bias=False, + ): + super(SeparableConv2d, self).__init__() + + self.conv1 = nn.Conv2d( + in_channels, + in_channels, + kernel_size, + stride, + padding, + dilation, + groups=in_channels, + bias=bias, + ) + self.pointwise = nn.Conv2d(in_channels, out_channels, 1, 1, 0, 1, 1, bias=bias) + + def forward(self, x): + x = self.conv1(x) + x = self.pointwise(x) + return x + + +class Block(nn.Module): + def __init__( + self, + in_filters, + out_filters, + reps, + strides=1, + start_with_relu=True, + grow_first=True, + ): + super(Block, self).__init__() + + if out_filters != in_filters or strides != 1: + self.skip = nn.Conv2d( + in_filters, out_filters, 1, stride=strides, bias=False + ) + self.skipbn = nn.BatchNorm2d(out_filters) + else: + self.skip = None + + rep = [] + + filters = in_filters + if grow_first: + rep.append(nn.ReLU(inplace=True)) + rep.append( + SeparableConv2d( + in_filters, out_filters, 3, stride=1, padding=1, bias=False + ) + ) + rep.append(nn.BatchNorm2d(out_filters)) + filters = out_filters + + for i in range(reps - 1): + rep.append(nn.ReLU(inplace=True)) + rep.append( + SeparableConv2d(filters, filters, 3, stride=1, padding=1, bias=False) + ) + rep.append(nn.BatchNorm2d(filters)) + + if not grow_first: + rep.append(nn.ReLU(inplace=True)) + rep.append( + SeparableConv2d( + in_filters, out_filters, 3, stride=1, padding=1, bias=False + ) + ) + rep.append(nn.BatchNorm2d(out_filters)) + + if not start_with_relu: + rep = rep[1:] + else: + rep[0] = nn.ReLU(inplace=False) + + if strides != 1: + rep.append(nn.MaxPool2d(3, strides, 1)) + self.rep = nn.Sequential(*rep) + + def forward(self, inp): + x = self.rep(inp) + + if self.skip is not None: + skip = self.skip(inp) + skip = self.skipbn(skip) + else: + skip = inp + + x += skip + return x + + +class Xception(nn.Module): + """ + Xception optimized for the ImageNet dataset, as specified in + https://arxiv.org/pdf/1610.02357.pdf + """ + + def __init__(self, num_classes=1000): + """Constructor + Args: + num_classes: number of classes + """ + super(Xception, self).__init__() + self.num_classes = num_classes + + self.conv1 = nn.Conv2d(3, 32, 3, 2, 0, bias=False) + self.bn1 = nn.BatchNorm2d(32) + self.relu1 = nn.ReLU(inplace=True) + + self.conv2 = nn.Conv2d(32, 64, 3, bias=False) + self.bn2 = nn.BatchNorm2d(64) + self.relu2 = nn.ReLU(inplace=True) + # do relu here + + self.block1 = Block(64, 128, 2, 2, start_with_relu=False, grow_first=True) + self.block2 = Block(128, 256, 2, 2, start_with_relu=True, grow_first=True) + self.block3 = Block(256, 728, 2, 2, start_with_relu=True, grow_first=True) + + self.block4 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) + self.block5 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) + self.block6 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) + self.block7 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) + + self.block8 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) + self.block9 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) + self.block10 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) + self.block11 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True) + + self.block12 = Block(728, 1024, 2, 2, start_with_relu=True, grow_first=False) + + self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1) + self.bn3 = nn.BatchNorm2d(1536) + self.relu3 = nn.ReLU(inplace=True) + + # do relu here + self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1) + self.bn4 = nn.BatchNorm2d(2048) + + self.fc = nn.Linear(2048, num_classes) + + # #------- init weights -------- + # for m in self.modules(): + # if isinstance(m, nn.Conv2d): + # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + # m.weight.data.normal_(0, math.sqrt(2. / n)) + # elif isinstance(m, nn.BatchNorm2d): + # m.weight.data.fill_(1) + # m.bias.data.zero_() + # #----------------------------- + + def features(self, input): + x = self.conv1(input) + x = self.bn1(x) + x = self.relu1(x) + + x = self.conv2(x) + x = self.bn2(x) + x = self.relu2(x) + + x = self.block1(x) + x = self.block2(x) + x = self.block3(x) + x = self.block4(x) + x = self.block5(x) + x = self.block6(x) + x = self.block7(x) + x = self.block8(x) + x = self.block9(x) + x = self.block10(x) + x = self.block11(x) + x = self.block12(x) + + x = self.conv3(x) + x = self.bn3(x) + x = self.relu3(x) + + x = self.conv4(x) + x = self.bn4(x) + return x + + def logits(self, features): + x = nn.ReLU(inplace=True)(features) + + x = F.adaptive_avg_pool2d(x, (1, 1)) + x = x.view(x.size(0), -1) + x = self.last_linear(x) + return x + + def forward(self, input): + x = self.features(input) + x = self.logits(x) + return x diff --git a/segmentation_models_pytorch/encoders/densenet.py b/segmentation_models_pytorch/encoders/densenet.py index c4bd0ce2..ad0e0c25 100644 --- a/segmentation_models_pytorch/encoders/densenet.py +++ b/segmentation_models_pytorch/encoders/densenet.py @@ -24,33 +24,25 @@ """ import re -import torch.nn as nn -from pretrainedmodels.models.torchvision_models import pretrained_settings from torchvision.models.densenet import DenseNet from ._base import EncoderMixin -class TransitionWithSkip(nn.Module): - def __init__(self, module): - super().__init__() - self.module = module - - def forward(self, x): - for module in self.module: - x = module(x) - if isinstance(module, nn.ReLU): - skip = x - return x, skip - - class DenseNetEncoder(DenseNet, EncoderMixin): - def __init__(self, out_channels, depth=5, **kwargs): + def __init__(self, out_channels, depth=5, output_stride=32, **kwargs): + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) + super().__init__(**kwargs) - self._out_channels = out_channels + self._depth = depth self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride del self.classifier def make_dilated(self, *args, **kwargs): @@ -59,37 +51,44 @@ def make_dilated(self, *args, **kwargs): "due to pooling operation for downsampling!" ) - def get_stages(self): - return [ - nn.Identity(), - nn.Sequential( - self.features.conv0, self.features.norm0, self.features.relu0 - ), - nn.Sequential( - self.features.pool0, - self.features.denseblock1, - TransitionWithSkip(self.features.transition1), - ), - nn.Sequential( - self.features.denseblock2, TransitionWithSkip(self.features.transition2) - ), - nn.Sequential( - self.features.denseblock3, TransitionWithSkip(self.features.transition3) - ), - nn.Sequential(self.features.denseblock4, self.features.norm5), - ] - def forward(self, x): - stages = self.get_stages() - - features = [] - for i in range(self._depth + 1): - x = stages[i](x) - if isinstance(x, (list, tuple)): - x, skip = x - features.append(skip) - else: - features.append(x) + features = [x] + + if self._depth >= 1: + x = self.features.conv0(x) + x = self.features.norm0(x) + x = self.features.relu0(x) + features.append(x) + + if self._depth >= 2: + x = self.features.pool0(x) + x = self.features.denseblock1(x) + x = self.features.transition1.norm(x) + x = self.features.transition1.relu(x) + features.append(x) + + if self._depth >= 3: + x = self.features.transition1.conv(x) + x = self.features.transition1.pool(x) + x = self.features.denseblock2(x) + x = self.features.transition2.norm(x) + x = self.features.transition2.relu(x) + features.append(x) + + if self._depth >= 4: + x = self.features.transition2.conv(x) + x = self.features.transition2.pool(x) + x = self.features.denseblock3(x) + x = self.features.transition3.norm(x) + x = self.features.transition3.relu(x) + features.append(x) + + if self._depth >= 5: + x = self.features.transition3.conv(x) + x = self.features.transition3.pool(x) + x = self.features.denseblock4(x) + x = self.features.norm5(x) + features.append(x) return features @@ -114,42 +113,62 @@ def load_state_dict(self, state_dict): densenet_encoders = { "densenet121": { "encoder": DenseNetEncoder, - "pretrained_settings": pretrained_settings["densenet121"], "params": { - "out_channels": (3, 64, 256, 512, 1024, 1024), + "out_channels": [3, 64, 256, 512, 1024, 1024], "num_init_features": 64, "growth_rate": 32, "block_config": (6, 12, 24, 16), }, + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/densenet121.imagenet", + "revision": "a17c96896a265b61338f66f61d3887b24f61995a", + } + }, }, "densenet169": { "encoder": DenseNetEncoder, - "pretrained_settings": pretrained_settings["densenet169"], "params": { - "out_channels": (3, 64, 256, 512, 1280, 1664), + "out_channels": [3, 64, 256, 512, 1280, 1664], "num_init_features": 64, "growth_rate": 32, "block_config": (6, 12, 32, 32), }, + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/densenet169.imagenet", + "revision": "8facfba9fc72f7750879dac9ac6ceb3ab990de8d", + } + }, }, "densenet201": { "encoder": DenseNetEncoder, - "pretrained_settings": pretrained_settings["densenet201"], "params": { - "out_channels": (3, 64, 256, 512, 1792, 1920), + "out_channels": [3, 64, 256, 512, 1792, 1920], "num_init_features": 64, "growth_rate": 32, "block_config": (6, 12, 48, 32), }, + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/densenet201.imagenet", + "revision": "ed5deb355d71659391d46fae5e7587460fbb5f84", + } + }, }, "densenet161": { "encoder": DenseNetEncoder, - "pretrained_settings": pretrained_settings["densenet161"], "params": { - "out_channels": (3, 96, 384, 768, 2112, 2208), + "out_channels": [3, 96, 384, 768, 2112, 2208], "num_init_features": 96, "growth_rate": 48, "block_config": (6, 12, 36, 24), }, + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/densenet161.imagenet", + "revision": "9afe0fec51ab2a627141769d97d6f83756d78446", + } + }, }, } diff --git a/segmentation_models_pytorch/encoders/dpn.py b/segmentation_models_pytorch/encoders/dpn.py index 220c66de..527bbc02 100644 --- a/segmentation_models_pytorch/encoders/dpn.py +++ b/segmentation_models_pytorch/encoders/dpn.py @@ -24,49 +24,73 @@ """ import torch -import torch.nn as nn import torch.nn.functional as F - -from pretrainedmodels.models.dpn import DPN -from pretrainedmodels.models.dpn import pretrained_settings +from typing import List, Dict, Sequence from ._base import EncoderMixin +from ._dpn import DPN class DPNEncoder(DPN, EncoderMixin): - def __init__(self, stage_idxs, out_channels, depth=5, **kwargs): + _is_torch_scriptable = False + _is_torch_exportable = True # since torch 2.6.0 + + def __init__( + self, + stage_idxs: List[int], + out_channels: List[int], + depth: int = 5, + output_stride: int = 32, + **kwargs, + ): + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) + super().__init__(**kwargs) self._stage_idxs = stage_idxs self._depth = depth - self._out_channels = out_channels self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride del self.last_linear - def get_stages(self): - return [ - nn.Identity(), - nn.Sequential( - self.features[0].conv, self.features[0].bn, self.features[0].act - ), - nn.Sequential( - self.features[0].pool, self.features[1 : self._stage_idxs[0]] - ), - self.features[self._stage_idxs[0] : self._stage_idxs[1]], - self.features[self._stage_idxs[1] : self._stage_idxs[2]], - self.features[self._stage_idxs[2] : self._stage_idxs[3]], - ] - - def forward(self, x): - stages = self.get_stages() - - features = [] - for i in range(self._depth + 1): - x = stages[i](x) - if isinstance(x, (list, tuple)): - features.append(F.relu(torch.cat(x, dim=1), inplace=True)) - else: - features.append(x) + def get_stages(self) -> Dict[int, Sequence[torch.nn.Module]]: + return { + 16: [self.features[self._stage_idxs[1] : self._stage_idxs[2]]], + 32: [self.features[self._stage_idxs[2] : self._stage_idxs[3]]], + } + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + features = [x] + + if self._depth >= 1: + x = self.features[0].conv(x) + x = self.features[0].bn(x) + x = self.features[0].act(x) + features.append(x) + + if self._depth >= 2: + x = self.features[0].pool(x) + x = self.features[1 : self._stage_idxs[0]](x) + skip = F.relu(torch.cat(x, dim=1), inplace=True) + features.append(skip) + + if self._depth >= 3: + x = self.features[self._stage_idxs[0] : self._stage_idxs[1]](x) + skip = F.relu(torch.cat(x, dim=1), inplace=True) + features.append(skip) + + if self._depth >= 4: + x = self.features[self._stage_idxs[1] : self._stage_idxs[2]](x) + skip = F.relu(torch.cat(x, dim=1), inplace=True) + features.append(skip) + + if self._depth >= 5: + x = self.features[self._stage_idxs[2] : self._stage_idxs[3]](x) + features.append(x) return features @@ -79,10 +103,15 @@ def load_state_dict(self, state_dict, **kwargs): dpn_encoders = { "dpn68": { "encoder": DPNEncoder, - "pretrained_settings": pretrained_settings["dpn68"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/dpn68.imagenet", + "revision": "c209aefdeae6bc93937556629e974b44d4e58535", + } + }, "params": { - "stage_idxs": (4, 8, 20, 24), - "out_channels": (3, 10, 144, 320, 704, 832), + "stage_idxs": [4, 8, 20, 24], + "out_channels": [3, 10, 144, 320, 704, 832], "groups": 32, "inc_sec": (16, 32, 32, 64), "k_r": 128, @@ -95,10 +124,15 @@ def load_state_dict(self, state_dict, **kwargs): }, "dpn68b": { "encoder": DPNEncoder, - "pretrained_settings": pretrained_settings["dpn68b"], + "pretrained_settings": { + "imagenet+5k": { + "repo_id": "smp-hub/dpn68b.imagenet-5k", + "revision": "6c6615e77688e390ae0eaa81e26821fbd83cee4b", + } + }, "params": { - "stage_idxs": (4, 8, 20, 24), - "out_channels": (3, 10, 144, 320, 704, 832), + "stage_idxs": [4, 8, 20, 24], + "out_channels": [3, 10, 144, 320, 704, 832], "b": True, "groups": 32, "inc_sec": (16, 32, 32, 64), @@ -112,10 +146,15 @@ def load_state_dict(self, state_dict, **kwargs): }, "dpn92": { "encoder": DPNEncoder, - "pretrained_settings": pretrained_settings["dpn92"], + "pretrained_settings": { + "imagenet+5k": { + "repo_id": "smp-hub/dpn92.imagenet-5k", + "revision": "d231f51ce4ad2c84ed5fcaf4ef0cfece6814a526", + } + }, "params": { - "stage_idxs": (4, 8, 28, 32), - "out_channels": (3, 64, 336, 704, 1552, 2688), + "stage_idxs": [4, 8, 28, 32], + "out_channels": [3, 64, 336, 704, 1552, 2688], "groups": 32, "inc_sec": (16, 32, 24, 128), "k_r": 96, @@ -127,10 +166,15 @@ def load_state_dict(self, state_dict, **kwargs): }, "dpn98": { "encoder": DPNEncoder, - "pretrained_settings": pretrained_settings["dpn98"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/dpn98.imagenet", + "revision": "b2836c86216c1ddce980d832f7deaa4ca22babd3", + } + }, "params": { - "stage_idxs": (4, 10, 30, 34), - "out_channels": (3, 96, 336, 768, 1728, 2688), + "stage_idxs": [4, 10, 30, 34], + "out_channels": [3, 96, 336, 768, 1728, 2688], "groups": 40, "inc_sec": (16, 32, 32, 128), "k_r": 160, @@ -142,10 +186,15 @@ def load_state_dict(self, state_dict, **kwargs): }, "dpn107": { "encoder": DPNEncoder, - "pretrained_settings": pretrained_settings["dpn107"], + "pretrained_settings": { + "imagenet+5k": { + "repo_id": "smp-hub/dpn107.imagenet-5k", + "revision": "dab4cd6b8b79de3db970f2dbff85359a8847db05", + } + }, "params": { - "stage_idxs": (5, 13, 33, 37), - "out_channels": (3, 128, 376, 1152, 2432, 2688), + "stage_idxs": [5, 13, 33, 37], + "out_channels": [3, 128, 376, 1152, 2432, 2688], "groups": 50, "inc_sec": (20, 64, 64, 128), "k_r": 200, @@ -157,10 +206,15 @@ def load_state_dict(self, state_dict, **kwargs): }, "dpn131": { "encoder": DPNEncoder, - "pretrained_settings": pretrained_settings["dpn131"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/dpn131.imagenet", + "revision": "04bbb9f415ca2bb59f3d8227857967b74698515e", + } + }, "params": { - "stage_idxs": (5, 13, 41, 45), - "out_channels": (3, 128, 352, 832, 1984, 2688), + "stage_idxs": [5, 13, 41, 45], + "out_channels": [3, 128, 352, 832, 1984, 2688], "groups": 40, "inc_sec": (16, 32, 32, 128), "k_r": 160, diff --git a/segmentation_models_pytorch/encoders/efficientnet.py b/segmentation_models_pytorch/encoders/efficientnet.py index 4a7af6b4..70046e44 100644 --- a/segmentation_models_pytorch/encoders/efficientnet.py +++ b/segmentation_models_pytorch/encoders/efficientnet.py @@ -23,56 +23,68 @@ depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). """ -import torch.nn as nn -from efficientnet_pytorch import EfficientNet -from efficientnet_pytorch.utils import url_map, url_map_advprop, get_model_params +import torch +from typing import List, Dict, Sequence from ._base import EncoderMixin +from ._efficientnet import EfficientNet, get_model_params class EfficientNetEncoder(EfficientNet, EncoderMixin): - def __init__(self, stage_idxs, out_channels, model_name, depth=5): + def __init__( + self, + out_indexes: List[int], + out_channels: List[int], + model_name: str, + depth: int = 5, + output_stride: int = 32, + ): + if depth > 5 or depth < 2: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) + blocks_args, global_params = get_model_params(model_name, override_params=None) super().__init__(blocks_args, global_params) - self._stage_idxs = stage_idxs - self._out_channels = out_channels + self._out_indexes = out_indexes self._depth = depth self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride + self._drop_connect_rate = self._global_params.drop_connect_rate del self._fc - def get_stages(self): - return [ - nn.Identity(), - nn.Sequential(self._conv_stem, self._bn0, self._swish), - self._blocks[: self._stage_idxs[0]], - self._blocks[self._stage_idxs[0] : self._stage_idxs[1]], - self._blocks[self._stage_idxs[1] : self._stage_idxs[2]], - self._blocks[self._stage_idxs[2] :], - ] - - def forward(self, x): - stages = self.get_stages() - - block_number = 0.0 - drop_connect_rate = self._global_params.drop_connect_rate - - features = [] - for i in range(self._depth + 1): - # Identity and Sequential stages - if i < 2: - x = stages[i](x) - - # Block stages need drop_connect rate - else: - for module in stages[i]: - drop_connect = drop_connect_rate * block_number / len(self._blocks) - block_number += 1.0 - x = module(x, drop_connect) + def get_stages(self) -> Dict[int, Sequence[torch.nn.Module]]: + return { + 16: [self._blocks[self._out_indexes[1] + 1 : self._out_indexes[2] + 1]], + 32: [self._blocks[self._out_indexes[2] + 1 :]], + } + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + features = [x] + + if self._depth >= 1: + x = self._conv_stem(x) + x = self._bn0(x) + x = self._swish(x) features.append(x) + depth = 1 + for i, block in enumerate(self._blocks): + drop_connect_prob = self._drop_connect_rate * i / len(self._blocks) + x = block(x, drop_connect_prob) + + if i in self._out_indexes: + features.append(x) + depth += 1 + + if not torch.jit.is_scripting() and depth > self._depth: + break + + features = features[: self._depth + 1] + return features def load_state_dict(self, state_dict, **kwargs): @@ -81,96 +93,148 @@ def load_state_dict(self, state_dict, **kwargs): super().load_state_dict(state_dict, **kwargs) -def _get_pretrained_settings(encoder): - pretrained_settings = { - "imagenet": { - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "url": url_map[encoder], - "input_space": "RGB", - "input_range": [0, 1], - }, - "advprop": { - "mean": [0.5, 0.5, 0.5], - "std": [0.5, 0.5, 0.5], - "url": url_map_advprop[encoder], - "input_space": "RGB", - "input_range": [0, 1], - }, - } - return pretrained_settings - - efficient_net_encoders = { "efficientnet-b0": { "encoder": EfficientNetEncoder, - "pretrained_settings": _get_pretrained_settings("efficientnet-b0"), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/efficientnet-b0.imagenet", + "revision": "1bbe7ecc1d5ea1d2058de1a2db063b8701aff314", + }, + "advprop": { + "repo_id": "smp-hub/efficientnet-b0.advprop", + "revision": "29043c08140d9c6ee7de1468d55923f2b06bcec2", + }, + }, "params": { - "out_channels": (3, 32, 24, 40, 112, 320), - "stage_idxs": (3, 5, 9, 16), + "out_channels": [3, 32, 24, 40, 112, 320], + "out_indexes": [2, 4, 8, 15], "model_name": "efficientnet-b0", }, }, "efficientnet-b1": { "encoder": EfficientNetEncoder, - "pretrained_settings": _get_pretrained_settings("efficientnet-b1"), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/efficientnet-b1.imagenet", + "revision": "5d637466a5215de300a8ccb13a39357df2df2bf4", + }, + "advprop": { + "repo_id": "smp-hub/efficientnet-b1.advprop", + "revision": "2e518b8b0955bbab467f50525578dab6b6086afc", + }, + }, "params": { - "out_channels": (3, 32, 24, 40, 112, 320), - "stage_idxs": (5, 8, 16, 23), + "out_channels": [3, 32, 24, 40, 112, 320], + "out_indexes": [4, 7, 15, 22], "model_name": "efficientnet-b1", }, }, "efficientnet-b2": { "encoder": EfficientNetEncoder, - "pretrained_settings": _get_pretrained_settings("efficientnet-b2"), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/efficientnet-b2.imagenet", + "revision": "a96d4f0295ffbae18ebba173bf7f3c0c8f21990e", + }, + "advprop": { + "repo_id": "smp-hub/efficientnet-b2.advprop", + "revision": "be788c20dfb0bbe83b4c439f9cfe0dd937c0783e", + }, + }, "params": { - "out_channels": (3, 32, 24, 48, 120, 352), - "stage_idxs": (5, 8, 16, 23), + "out_channels": [3, 32, 24, 48, 120, 352], + "out_indexes": [4, 7, 15, 22], "model_name": "efficientnet-b2", }, }, "efficientnet-b3": { "encoder": EfficientNetEncoder, - "pretrained_settings": _get_pretrained_settings("efficientnet-b3"), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/efficientnet-b3.imagenet", + "revision": "074c54a6c473e0d294690d49cedb6cf463e7127d", + }, + "advprop": { + "repo_id": "smp-hub/efficientnet-b3.advprop", + "revision": "9ccc166d87bd9c08d6bed4477638c7f4bb3eec78", + }, + }, "params": { - "out_channels": (3, 40, 32, 48, 136, 384), - "stage_idxs": (5, 8, 18, 26), + "out_channels": [3, 40, 32, 48, 136, 384], + "out_indexes": [4, 7, 17, 25], "model_name": "efficientnet-b3", }, }, "efficientnet-b4": { "encoder": EfficientNetEncoder, - "pretrained_settings": _get_pretrained_settings("efficientnet-b4"), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/efficientnet-b4.imagenet", + "revision": "05cd5dde5dab658f00c463f9b9aa0ced76784f40", + }, + "advprop": { + "repo_id": "smp-hub/efficientnet-b4.advprop", + "revision": "f04caa809ea4eb08ee9e7fd555f5514ebe2a9ef5", + }, + }, "params": { - "out_channels": (3, 48, 32, 56, 160, 448), - "stage_idxs": (6, 10, 22, 32), + "out_channels": [3, 48, 32, 56, 160, 448], + "out_indexes": [5, 9, 21, 31], "model_name": "efficientnet-b4", }, }, "efficientnet-b5": { "encoder": EfficientNetEncoder, - "pretrained_settings": _get_pretrained_settings("efficientnet-b5"), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/efficientnet-b5.imagenet", + "revision": "69f4d28460a4e421b7860bc26ee7d832e03e01ca", + }, + "advprop": { + "repo_id": "smp-hub/efficientnet-b5.advprop", + "revision": "dabe78fc8ab7ce93ddc2bb156b01db227caede88", + }, + }, "params": { - "out_channels": (3, 48, 40, 64, 176, 512), - "stage_idxs": (8, 13, 27, 39), + "out_channels": [3, 48, 40, 64, 176, 512], + "out_indexes": [7, 12, 26, 38], "model_name": "efficientnet-b5", }, }, "efficientnet-b6": { "encoder": EfficientNetEncoder, - "pretrained_settings": _get_pretrained_settings("efficientnet-b6"), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/efficientnet-b6.imagenet", + "revision": "8570752016f7c62ae149cffa058550fe44e21c8b", + }, + "advprop": { + "repo_id": "smp-hub/efficientnet-b6.advprop", + "revision": "c2dbb4d1359151165ec7b96cfe54a9cac2142a31", + }, + }, "params": { - "out_channels": (3, 56, 40, 72, 200, 576), - "stage_idxs": (9, 15, 31, 45), + "out_channels": [3, 56, 40, 72, 200, 576], + "out_indexes": [8, 14, 30, 44], "model_name": "efficientnet-b6", }, }, "efficientnet-b7": { "encoder": EfficientNetEncoder, - "pretrained_settings": _get_pretrained_settings("efficientnet-b7"), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/efficientnet-b7.imagenet", + "revision": "5a5dbe687d612ebc3dca248274fd1191111deda6", + }, + "advprop": { + "repo_id": "smp-hub/efficientnet-b7.advprop", + "revision": "ce33edb4e80c0cde268f098ae2299e23f615577d", + }, + }, "params": { - "out_channels": (3, 64, 48, 80, 224, 640), - "stage_idxs": (11, 18, 38, 55), + "out_channels": [3, 64, 48, 80, 224, 640], + "out_indexes": [10, 17, 37, 54], "model_name": "efficientnet-b7", }, }, diff --git a/segmentation_models_pytorch/encoders/inceptionresnetv2.py b/segmentation_models_pytorch/encoders/inceptionresnetv2.py index 5d90c7f4..d7f83f9d 100644 --- a/segmentation_models_pytorch/encoders/inceptionresnetv2.py +++ b/segmentation_models_pytorch/encoders/inceptionresnetv2.py @@ -23,20 +23,33 @@ depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). """ +import torch import torch.nn as nn -from pretrainedmodels.models.inceptionresnetv2 import InceptionResNetV2 -from pretrainedmodels.models.inceptionresnetv2 import pretrained_settings +from typing import List from ._base import EncoderMixin +from ._inceptionresnetv2 import InceptionResNetV2 class InceptionResNetV2Encoder(InceptionResNetV2, EncoderMixin): - def __init__(self, out_channels, depth=5, **kwargs): + def __init__( + self, + out_channels: List[int], + depth: int = 5, + output_stride: int = 32, + **kwargs, + ): + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) + super().__init__(**kwargs) - self._out_channels = out_channels self._depth = depth self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride # correct paddings for m in self.modules(): @@ -46,6 +59,9 @@ def __init__(self, out_channels, depth=5, **kwargs): if isinstance(m, nn.MaxPool2d): m.padding = (1, 1) + # for torchscript, block8 does not have relu defined + self.block8.relu = nn.Identity() + # remove linear layers del self.avgpool_1a del self.last_linear @@ -56,22 +72,37 @@ def make_dilated(self, *args, **kwargs): "due to pooling operation for downsampling!" ) - def get_stages(self): - return [ - nn.Identity(), - nn.Sequential(self.conv2d_1a, self.conv2d_2a, self.conv2d_2b), - nn.Sequential(self.maxpool_3a, self.conv2d_3b, self.conv2d_4a), - nn.Sequential(self.maxpool_5a, self.mixed_5b, self.repeat), - nn.Sequential(self.mixed_6a, self.repeat_1), - nn.Sequential(self.mixed_7a, self.repeat_2, self.block8, self.conv2d_7b), - ] - - def forward(self, x): - stages = self.get_stages() - - features = [] - for i in range(self._depth + 1): - x = stages[i](x) + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + features = [x] + + if self._depth >= 1: + x = self.conv2d_1a(x) + x = self.conv2d_2a(x) + x = self.conv2d_2b(x) + features.append(x) + + if self._depth >= 2: + x = self.maxpool_3a(x) + x = self.conv2d_3b(x) + x = self.conv2d_4a(x) + features.append(x) + + if self._depth >= 3: + x = self.maxpool_5a(x) + x = self.mixed_5b(x) + x = self.repeat(x) + features.append(x) + + if self._depth >= 4: + x = self.mixed_6a(x) + x = self.repeat_1(x) + features.append(x) + + if self._depth >= 5: + x = self.mixed_7a(x) + x = self.repeat_2(x) + x = self.block8(x) + x = self.conv2d_7b(x) features.append(x) return features @@ -85,7 +116,16 @@ def load_state_dict(self, state_dict, **kwargs): inceptionresnetv2_encoders = { "inceptionresnetv2": { "encoder": InceptionResNetV2Encoder, - "pretrained_settings": pretrained_settings["inceptionresnetv2"], - "params": {"out_channels": (3, 64, 192, 320, 1088, 1536), "num_classes": 1000}, + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/inceptionresnetv2.imagenet", + "revision": "120c5afdbb80a1c989db0a7423ebb7a9db9b1e6c", + }, + "imagenet+background": { + "repo_id": "smp-hub/inceptionresnetv2.imagenet-background", + "revision": "3ecf3491658dc0f6a76d69c9d1cb36511b1ee56c", + }, + }, + "params": {"out_channels": [3, 64, 192, 320, 1088, 1536], "num_classes": 1000}, } } diff --git a/segmentation_models_pytorch/encoders/inceptionv4.py b/segmentation_models_pytorch/encoders/inceptionv4.py index 96540f9a..3c335042 100644 --- a/segmentation_models_pytorch/encoders/inceptionv4.py +++ b/segmentation_models_pytorch/encoders/inceptionv4.py @@ -23,20 +23,34 @@ depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). """ +import torch import torch.nn as nn -from pretrainedmodels.models.inceptionv4 import InceptionV4 -from pretrainedmodels.models.inceptionv4 import pretrained_settings + +from typing import List from ._base import EncoderMixin +from ._inceptionv4 import InceptionV4 class InceptionV4Encoder(InceptionV4, EncoderMixin): - def __init__(self, stage_idxs, out_channels, depth=5, **kwargs): + def __init__( + self, + out_channels: List[int], + depth: int = 5, + output_stride: int = 32, + **kwargs, + ): + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) super().__init__(**kwargs) - self._stage_idxs = stage_idxs - self._out_channels = out_channels + self._depth = depth self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride + self._out_indexes = [2, 4, 8, 14, len(self.features) - 1] # correct paddings for m in self.modules(): @@ -55,24 +69,23 @@ def make_dilated(self, *args, **kwargs): "due to pooling operation for downsampling!" ) - def get_stages(self): - return [ - nn.Identity(), - self.features[: self._stage_idxs[0]], - self.features[self._stage_idxs[0] : self._stage_idxs[1]], - self.features[self._stage_idxs[1] : self._stage_idxs[2]], - self.features[self._stage_idxs[2] : self._stage_idxs[3]], - self.features[self._stage_idxs[3] :], - ] + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + depth = 0 + features = [x] + + for i, module in enumerate(self.features): + x = module(x) - def forward(self, x): - stages = self.get_stages() + if i in self._out_indexes: + features.append(x) + depth += 1 - features = [] - for i in range(self._depth + 1): - x = stages[i](x) - features.append(x) + # torchscript does not support break in cycle, so we just + # go over all modules and then slice number of features + if not torch.jit.is_scripting() and depth > self._depth: + break + features = features[: self._depth + 1] return features def load_state_dict(self, state_dict, **kwargs): @@ -84,10 +97,18 @@ def load_state_dict(self, state_dict, **kwargs): inceptionv4_encoders = { "inceptionv4": { "encoder": InceptionV4Encoder, - "pretrained_settings": pretrained_settings["inceptionv4"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/inceptionv4.imagenet", + "revision": "918fb54f07811d82a4ecde3a51156041d0facba9", + }, + "imagenet+background": { + "repo_id": "smp-hub/inceptionv4.imagenet-background", + "revision": "8c2a48e20d2709ee64f8421c61be309f05bfa536", + }, + }, "params": { - "stage_idxs": (3, 5, 9, 15), - "out_channels": (3, 64, 192, 384, 1024, 1536), + "out_channels": [3, 64, 192, 384, 1024, 1536], "num_classes": 1001, }, } diff --git a/segmentation_models_pytorch/encoders/mix_transformer.py b/segmentation_models_pytorch/encoders/mix_transformer.py index 0cc3fb21..d5dca7fd 100644 --- a/segmentation_models_pytorch/encoders/mix_transformer.py +++ b/segmentation_models_pytorch/encoders/mix_transformer.py @@ -11,20 +11,22 @@ import math import torch import torch.nn as nn +import torch.nn.functional as F from functools import partial +from typing import Dict, Sequence, List from timm.layers import DropPath, to_2tuple, trunc_normal_ class LayerNorm(nn.LayerNorm): - def forward(self, x): + def forward(self, x: torch.Tensor) -> torch.Tensor: if x.ndim == 4: - B, C, H, W = x.shape - x = x.view(B, C, -1).transpose(1, 2) - x = super().forward(x) - x = x.transpose(1, 2).view(B, C, H, W) + batch_size, channels, height, width = x.shape + x = x.view(batch_size, channels, -1).transpose(1, 2) + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + x = x.transpose(1, 2).view(batch_size, channels, height, width) else: - x = super().forward(x) + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) return x @@ -60,9 +62,9 @@ def _init_weights(self, m): if m.bias is not None: m.bias.data.zero_() - def forward(self, x, H, W): + def forward(self, x: torch.Tensor, height: int, width: int) -> torch.Tensor: x = self.fc1(x) - x = self.dwconv(x, H, W) + x = self.dwconv(x, height, width) x = self.act(x) x = self.drop(x) x = self.fc2(x) @@ -82,9 +84,9 @@ def __init__( sr_ratio=1, ): super().__init__() - assert ( - dim % num_heads == 0 - ), f"dim {dim} should be divided by num_heads {num_heads}." + assert dim % num_heads == 0, ( + f"dim {dim} should be divided by num_heads {num_heads}." + ) self.dim = dim self.num_heads = num_heads @@ -101,6 +103,10 @@ def __init__( if sr_ratio > 1: self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) self.norm = LayerNorm(dim) + else: + # for torchscript compatibility + self.sr = nn.Identity() + self.norm = nn.Identity() self.apply(self._init_weights) @@ -119,27 +125,27 @@ def _init_weights(self, m): if m.bias is not None: m.bias.data.zero_() - def forward(self, x, H, W): - B, N, C = x.shape + def forward(self, x: torch.Tensor, height: int, width: int) -> torch.Tensor: + batch_size, N, C = x.shape q = ( self.q(x) - .reshape(B, N, self.num_heads, C // self.num_heads) + .reshape(batch_size, N, self.num_heads, C // self.num_heads) .permute(0, 2, 1, 3) ) if self.sr_ratio > 1: - x_ = x.permute(0, 2, 1).reshape(B, C, H, W) - x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) + x_ = x.permute(0, 2, 1).reshape(batch_size, C, height, width) + x_ = self.sr(x_).reshape(batch_size, C, -1).permute(0, 2, 1) x_ = self.norm(x_) kv = ( self.kv(x_) - .reshape(B, -1, 2, self.num_heads, C // self.num_heads) + .reshape(batch_size, -1, 2, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) else: kv = ( self.kv(x) - .reshape(B, -1, 2, self.num_heads, C // self.num_heads) + .reshape(batch_size, -1, 2, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) k, v = kv[0], kv[1] @@ -148,7 +154,7 @@ def forward(self, x, H, W): attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) - x = (attn @ v).transpose(1, 2).reshape(B, N, C) + x = (attn @ v).transpose(1, 2).reshape(batch_size, N, C) x = self.proj(x) x = self.proj_drop(x) @@ -209,12 +215,12 @@ def _init_weights(self, m): if m.bias is not None: m.bias.data.zero_() - def forward(self, x): - B, _, H, W = x.shape + def forward(self, x: torch.Tensor) -> torch.Tensor: + batch_size, _, height, width = x.shape x = x.flatten(2).transpose(1, 2) - x = x + self.drop_path(self.attn(self.norm1(x), H, W)) - x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) - x = x.transpose(1, 2).view(B, -1, H, W) + x = x + self.drop_path(self.attn(self.norm1(x), height, width)) + x = x + self.drop_path(self.mlp(self.norm2(x), height, width)) + x = x.transpose(1, 2).view(batch_size, -1, height, width) return x @@ -256,7 +262,7 @@ def _init_weights(self, m): if m.bias is not None: m.bias.data.zero_() - def forward(self, x): + def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) x = self.norm(x) return x @@ -462,7 +468,7 @@ def reset_classifier(self, num_classes, global_pool=""): nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() ) - def forward_features(self, x): + def forward_features(self, x: torch.Tensor) -> List[torch.Tensor]: outs = [] # stage 1 @@ -491,11 +497,11 @@ def forward_features(self, x): return outs - def forward(self, x): - x = self.forward_features(x) + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + features = self.forward_features(x) # x = self.head(x) - return x + return features class DWConv(nn.Module): @@ -503,9 +509,9 @@ def __init__(self, dim=768): super(DWConv, self).__init__() self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) - def forward(self, x, H, W): - B, _, C = x.shape - x = x.transpose(1, 2).view(B, C, H, W) + def forward(self, x: torch.Tensor, height: int, width: int) -> torch.Tensor: + batch_size, _, channels = x.shape + x = x.transpose(1, 2).view(batch_size, channels, height, width) x = self.dwconv(x) x = x.flatten(2).transpose(1, 2) @@ -520,36 +526,63 @@ def forward(self, x, H, W): class MixVisionTransformerEncoder(MixVisionTransformer, EncoderMixin): - def __init__(self, out_channels, depth=5, **kwargs): + def __init__( + self, out_channels: List[int], depth: int = 5, output_stride: int = 32, **kwargs + ): + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) super().__init__(**kwargs) - self._out_channels = out_channels + self._depth = depth self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride - def get_stages(self): - return [ - nn.Identity(), - nn.Identity(), - nn.Sequential(self.patch_embed1, self.block1, self.norm1), - nn.Sequential(self.patch_embed2, self.block2, self.norm2), - nn.Sequential(self.patch_embed3, self.block3, self.norm3), - nn.Sequential(self.patch_embed4, self.block4, self.norm4), - ] - - def forward(self, x): - stages = self.get_stages() + def get_stages(self) -> Dict[int, Sequence[torch.nn.Module]]: + return { + 16: [self.patch_embed3, self.block3, self.norm3], + 32: [self.patch_embed4, self.block4, self.norm4], + } + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: # create dummy output for the first block - B, _, H, W = x.shape - dummy = torch.empty([B, 0, H // 2, W // 2], dtype=x.dtype, device=x.device) - - features = [] - for i in range(self._depth + 1): - if i == 1: - features.append(dummy) - else: - x = stages[i](x).contiguous() - features.append(x) + batch_size, _, height, width = x.shape + dummy = torch.empty( + [batch_size, 0, height // 2, width // 2], dtype=x.dtype, device=x.device + ) + + features = [x, dummy] + + if self._depth >= 2: + x = self.patch_embed1(x) + x = self.block1(x) + x = self.norm1(x) + x = x.contiguous() + features.append(x) + + if self._depth >= 3: + x = self.patch_embed2(x) + x = self.block2(x) + x = self.norm2(x) + x = x.contiguous() + features.append(x) + + if self._depth >= 4: + x = self.patch_embed3(x) + x = self.block3(x) + x = self.norm3(x) + x = x.contiguous() + features.append(x) + + if self._depth >= 5: + x = self.patch_embed4(x) + x = self.block4(x) + x = self.norm4(x) + x = x.contiguous() + features.append(x) + return features def load_state_dict(self, state_dict): @@ -558,120 +591,137 @@ def load_state_dict(self, state_dict): return super().load_state_dict(state_dict) -def get_pretrained_cfg(name): - return { - "url": "https://github.com/qubvel/segmentation_models.pytorch/releases/download/v0.0.2/{}.pth".format( - name - ), - "input_space": "RGB", - "input_size": [3, 224, 224], - "input_range": [0, 1], - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - } - - mix_transformer_encoders = { "mit_b0": { "encoder": MixVisionTransformerEncoder, - "pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b0")}, - "params": dict( - out_channels=(3, 0, 32, 64, 160, 256), - patch_size=4, - embed_dims=[32, 64, 160, 256], - num_heads=[1, 2, 5, 8], - mlp_ratios=[4, 4, 4, 4], - qkv_bias=True, - norm_layer=partial(LayerNorm, eps=1e-6), - depths=[2, 2, 2, 2], - sr_ratios=[8, 4, 2, 1], - drop_rate=0.0, - drop_path_rate=0.1, - ), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/mit_b0.imagenet", + "revision": "9ce53d104d92d75aabb00aae70677aaab67e7c84", + } + }, + "params": { + "out_channels": [3, 0, 32, 64, 160, 256], + "patch_size": 4, + "embed_dims": [32, 64, 160, 256], + "num_heads": [1, 2, 5, 8], + "mlp_ratios": [4, 4, 4, 4], + "qkv_bias": True, + "norm_layer": partial(LayerNorm, eps=1e-6), + "depths": [2, 2, 2, 2], + "sr_ratios": [8, 4, 2, 1], + "drop_rate": 0.0, + "drop_path_rate": 0.1, + }, }, "mit_b1": { "encoder": MixVisionTransformerEncoder, - "pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b1")}, - "params": dict( - out_channels=(3, 0, 64, 128, 320, 512), - patch_size=4, - embed_dims=[64, 128, 320, 512], - num_heads=[1, 2, 5, 8], - mlp_ratios=[4, 4, 4, 4], - qkv_bias=True, - norm_layer=partial(LayerNorm, eps=1e-6), - depths=[2, 2, 2, 2], - sr_ratios=[8, 4, 2, 1], - drop_rate=0.0, - drop_path_rate=0.1, - ), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/mit_b1.imagenet", + "revision": "a04bf4f13a549bce677cf79b04852e7510782817", + } + }, + "params": { + "out_channels": [3, 0, 64, 128, 320, 512], + "patch_size": 4, + "embed_dims": [64, 128, 320, 512], + "num_heads": [1, 2, 5, 8], + "mlp_ratios": [4, 4, 4, 4], + "qkv_bias": True, + "norm_layer": partial(LayerNorm, eps=1e-6), + "depths": [2, 2, 2, 2], + "sr_ratios": [8, 4, 2, 1], + "drop_rate": 0.0, + "drop_path_rate": 0.1, + }, }, "mit_b2": { "encoder": MixVisionTransformerEncoder, - "pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b2")}, - "params": dict( - out_channels=(3, 0, 64, 128, 320, 512), - patch_size=4, - embed_dims=[64, 128, 320, 512], - num_heads=[1, 2, 5, 8], - mlp_ratios=[4, 4, 4, 4], - qkv_bias=True, - norm_layer=partial(LayerNorm, eps=1e-6), - depths=[3, 4, 6, 3], - sr_ratios=[8, 4, 2, 1], - drop_rate=0.0, - drop_path_rate=0.1, - ), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/mit_b2.imagenet", + "revision": "868ab6f13871dcf8c3d9f90ee4519403475b65ef", + } + }, + "params": { + "out_channels": [3, 0, 64, 128, 320, 512], + "patch_size": 4, + "embed_dims": [64, 128, 320, 512], + "num_heads": [1, 2, 5, 8], + "mlp_ratios": [4, 4, 4, 4], + "qkv_bias": True, + "norm_layer": partial(LayerNorm, eps=1e-6), + "depths": [3, 4, 6, 3], + "sr_ratios": [8, 4, 2, 1], + "drop_rate": 0.0, + "drop_path_rate": 0.1, + }, }, "mit_b3": { "encoder": MixVisionTransformerEncoder, - "pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b3")}, - "params": dict( - out_channels=(3, 0, 64, 128, 320, 512), - patch_size=4, - embed_dims=[64, 128, 320, 512], - num_heads=[1, 2, 5, 8], - mlp_ratios=[4, 4, 4, 4], - qkv_bias=True, - norm_layer=partial(LayerNorm, eps=1e-6), - depths=[3, 4, 18, 3], - sr_ratios=[8, 4, 2, 1], - drop_rate=0.0, - drop_path_rate=0.1, - ), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/mit_b3.imagenet", + "revision": "32558d12a65f1daa0ebcf4f4053c4285e2c1cbda", + } + }, + "params": { + "out_channels": [3, 0, 64, 128, 320, 512], + "patch_size": 4, + "embed_dims": [64, 128, 320, 512], + "num_heads": [1, 2, 5, 8], + "mlp_ratios": [4, 4, 4, 4], + "qkv_bias": True, + "norm_layer": partial(LayerNorm, eps=1e-6), + "depths": [3, 4, 18, 3], + "sr_ratios": [8, 4, 2, 1], + "drop_rate": 0.0, + "drop_path_rate": 0.1, + }, }, "mit_b4": { "encoder": MixVisionTransformerEncoder, - "pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b4")}, - "params": dict( - out_channels=(3, 0, 64, 128, 320, 512), - patch_size=4, - embed_dims=[64, 128, 320, 512], - num_heads=[1, 2, 5, 8], - mlp_ratios=[4, 4, 4, 4], - qkv_bias=True, - norm_layer=partial(LayerNorm, eps=1e-6), - depths=[3, 8, 27, 3], - sr_ratios=[8, 4, 2, 1], - drop_rate=0.0, - drop_path_rate=0.1, - ), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/mit_b4.imagenet", + "revision": "3a3454e900a4b4f11dd60eeb59101a9a1a36b017", + } + }, + "params": { + "out_channels": [3, 0, 64, 128, 320, 512], + "patch_size": 4, + "embed_dims": [64, 128, 320, 512], + "num_heads": [1, 2, 5, 8], + "mlp_ratios": [4, 4, 4, 4], + "qkv_bias": True, + "norm_layer": partial(LayerNorm, eps=1e-6), + "depths": [3, 8, 27, 3], + "sr_ratios": [8, 4, 2, 1], + "drop_rate": 0.0, + "drop_path_rate": 0.1, + }, }, "mit_b5": { "encoder": MixVisionTransformerEncoder, - "pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b5")}, - "params": dict( - out_channels=(3, 0, 64, 128, 320, 512), - patch_size=4, - embed_dims=[64, 128, 320, 512], - num_heads=[1, 2, 5, 8], - mlp_ratios=[4, 4, 4, 4], - qkv_bias=True, - norm_layer=partial(LayerNorm, eps=1e-6), - depths=[3, 6, 40, 3], - sr_ratios=[8, 4, 2, 1], - drop_rate=0.0, - drop_path_rate=0.1, - ), + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/mit_b5.imagenet", + "revision": "ced04d96c586b6297fd59a7a1e244fc78fdb6531", + } + }, + "params": { + "out_channels": [3, 0, 64, 128, 320, 512], + "patch_size": 4, + "embed_dims": [64, 128, 320, 512], + "num_heads": [1, 2, 5, 8], + "mlp_ratios": [4, 4, 4, 4], + "qkv_bias": True, + "norm_layer": partial(LayerNorm, eps=1e-6), + "depths": [3, 6, 40, 3], + "sr_ratios": [8, 4, 2, 1], + "drop_rate": 0.0, + "drop_path_rate": 0.1, + }, }, } diff --git a/segmentation_models_pytorch/encoders/mobilenet.py b/segmentation_models_pytorch/encoders/mobilenet.py index dd30f142..793a9be2 100644 --- a/segmentation_models_pytorch/encoders/mobilenet.py +++ b/segmentation_models_pytorch/encoders/mobilenet.py @@ -23,37 +23,54 @@ depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). """ +import torch import torchvision -import torch.nn as nn +from typing import Dict, Sequence, List from ._base import EncoderMixin class MobileNetV2Encoder(torchvision.models.MobileNetV2, EncoderMixin): - def __init__(self, out_channels, depth=5, **kwargs): + def __init__( + self, out_channels: List[int], depth: int = 5, output_stride: int = 32, **kwargs + ): + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) super().__init__(**kwargs) + self._depth = depth - self._out_channels = out_channels self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride + self._out_indexes = [1, 3, 6, 13, len(self.features) - 1] + del self.classifier - def get_stages(self): - return [ - nn.Identity(), - self.features[:2], - self.features[2:4], - self.features[4:7], - self.features[7:14], - self.features[14:], - ] + def get_stages(self) -> Dict[int, Sequence[torch.nn.Module]]: + return { + 16: [self.features[7:14]], + 32: [self.features[14:]], + } + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + features = [x] + + depth = 0 + for i, module in enumerate(self.features): + x = module(x) + + if i in self._out_indexes: + features.append(x) + depth += 1 - def forward(self, x): - stages = self.get_stages() + # torchscript does not support break in cycle, so we just + # go over all modules and then slice number of features + if not torch.jit.is_scripting() and depth > self._depth: + break - features = [] - for i in range(self._depth + 1): - x = stages[i](x) - features.append(x) + features = features[: self._depth + 1] return features @@ -68,13 +85,10 @@ def load_state_dict(self, state_dict, **kwargs): "encoder": MobileNetV2Encoder, "pretrained_settings": { "imagenet": { - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "url": "https://download.pytorch.org/models/mobilenet_v2-b0353104.pth", - "input_space": "RGB", - "input_range": [0, 1], + "repo_id": "smp-hub/mobilenet_v2.imagenet", + "revision": "e67aa804e17f7b404b629127eabbd224c4e0690b", } }, - "params": {"out_channels": (3, 16, 24, 32, 96, 1280)}, + "params": {"out_channels": [3, 16, 24, 32, 96, 1280]}, } } diff --git a/segmentation_models_pytorch/encoders/mobileone.py b/segmentation_models_pytorch/encoders/mobileone.py index 76f50053..ba2947d0 100644 --- a/segmentation_models_pytorch/encoders/mobileone.py +++ b/segmentation_models_pytorch/encoders/mobileone.py @@ -3,7 +3,7 @@ # Copyright (C) 2022 Apple Inc. All Rights Reserved. # import copy -from typing import List, Optional, Tuple +from typing import List, Optional, Tuple, Dict, Sequence import torch import torch.nn as nn @@ -120,6 +120,8 @@ def __init__( bias=True, ) else: + self.reparam_conv = nn.Identity() + # Re-parameterizable skip connection self.rbr_skip = ( nn.BatchNorm2d(num_features=in_channels) @@ -157,8 +159,8 @@ def forward(self, x: torch.Tensor) -> torch.Tensor: # Other branches out = scale_out + identity_out - for ix in range(self.num_conv_branches): - out += self.rbr_conv[ix](x) + for module in self.rbr_conv: + out += module(x) return self.activation(self.se(out)) @@ -298,13 +300,14 @@ class MobileOne(nn.Module, EncoderMixin): def __init__( self, - out_channels, + out_channels: List[int], num_blocks_per_stage: List[int] = [2, 8, 10, 1], width_multipliers: Optional[List[float]] = None, inference_mode: bool = False, use_se: bool = False, depth=5, in_channels=3, + output_stride=32, num_conv_branches: int = 1, ) -> None: """Construct MobileOne model. @@ -316,17 +319,23 @@ def __init__( :param use_se: Whether to use SE-ReLU activations. :param num_conv_branches: Number of linear conv branches. """ + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) + super().__init__() assert len(width_multipliers) == 4 self.inference_mode = inference_mode - self._out_channels = out_channels self.in_planes = min(64, int(64 * width_multipliers[0])) self.use_se = use_se self.num_conv_branches = num_conv_branches + self._depth = depth self._in_channels = in_channels - self.set_in_channels(self._in_channels) + self._out_channels = out_channels + self._output_stride = output_stride # Build stages self.stage0 = MobileOneBlock( @@ -355,15 +364,11 @@ def __init__( num_se_blocks=num_blocks_per_stage[3] if use_se else 0, ) - def get_stages(self): - return [ - nn.Identity(), - self.stage0, - self.stage1, - self.stage2, - self.stage3, - self.stage4, - ] + def get_stages(self) -> Dict[int, Sequence[torch.nn.Module]]: + return { + 16: [self.stage3], + 32: [self.stage4], + } def _make_stage( self, planes: int, num_blocks: int, num_se_blocks: int @@ -381,9 +386,7 @@ def _make_stage( for ix, stride in enumerate(strides): use_se = False if num_se_blocks > num_blocks: - raise ValueError( - "Number of SE blocks cannot " "exceed number of layers." - ) + raise ValueError("Number of SE blocks cannot exceed number of layers.") if ix >= (num_blocks - num_se_blocks): use_se = True @@ -419,13 +422,30 @@ def _make_stage( self.cur_layer_idx += 1 return nn.Sequential(*blocks) - def forward(self, x: torch.Tensor) -> torch.Tensor: + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: """Apply forward pass.""" - stages = self.get_stages() - features = [] - for i in range(self._depth + 1): - x = stages[i](x) + features = [x] + + if self._depth >= 1: + x = self.stage0(x) features.append(x) + + if self._depth >= 2: + x = self.stage1(x) + features.append(x) + + if self._depth >= 3: + x = self.stage2(x) + features.append(x) + + if self._depth >= 4: + x = self.stage3(x) + features.append(x) + + if self._depth >= 5: + x = self.stage4(x) + features.append(x) + return features def load_state_dict(self, state_dict, **kwargs): @@ -473,15 +493,12 @@ def reparameterize_model(model: torch.nn.Module) -> nn.Module: "encoder": MobileOne, "pretrained_settings": { "imagenet": { - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "url": "https://docs-assets.developer.apple.com/ml-research/datasets/mobileone/mobileone_s0_unfused.pth.tar", # noqa - "input_space": "RGB", - "input_range": [0, 1], + "repo_id": "smp-hub/mobileone_s0.imagenet", + "revision": "f52815cf0ad29278a9860c9cd5fabf19f904bedf", } }, "params": { - "out_channels": (3, 48, 48, 128, 256, 1024), + "out_channels": [3, 48, 48, 128, 256, 1024], "width_multipliers": (0.75, 1.0, 1.0, 2.0), "num_conv_branches": 4, "inference_mode": False, @@ -491,15 +508,12 @@ def reparameterize_model(model: torch.nn.Module) -> nn.Module: "encoder": MobileOne, "pretrained_settings": { "imagenet": { - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "url": "https://docs-assets.developer.apple.com/ml-research/datasets/mobileone/mobileone_s1_unfused.pth.tar", # noqa - "input_space": "RGB", - "input_range": [0, 1], + "repo_id": "smp-hub/mobileone_s1.imagenet", + "revision": "5707a98852b762cd8e0c43b5c8c729cd28496677", } }, "params": { - "out_channels": (3, 64, 96, 192, 512, 1280), + "out_channels": [3, 64, 96, 192, 512, 1280], "width_multipliers": (1.5, 1.5, 2.0, 2.5), "inference_mode": False, }, @@ -508,15 +522,12 @@ def reparameterize_model(model: torch.nn.Module) -> nn.Module: "encoder": MobileOne, "pretrained_settings": { "imagenet": { - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "url": "https://docs-assets.developer.apple.com/ml-research/datasets/mobileone/mobileone_s2_unfused.pth.tar", # noqa - "input_space": "RGB", - "input_range": [0, 1], + "repo_id": "smp-hub/mobileone_s2.imagenet", + "revision": "ddc3db8fa40d271902c7a8c95cee6691f617d551", } }, "params": { - "out_channels": (3, 64, 96, 256, 640, 2048), + "out_channels": [3, 64, 96, 256, 640, 2048], "width_multipliers": (1.5, 2.0, 2.5, 4.0), "inference_mode": False, }, @@ -525,15 +536,12 @@ def reparameterize_model(model: torch.nn.Module) -> nn.Module: "encoder": MobileOne, "pretrained_settings": { "imagenet": { - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "url": "https://docs-assets.developer.apple.com/ml-research/datasets/mobileone/mobileone_s3_unfused.pth.tar", # noqa - "input_space": "RGB", - "input_range": [0, 1], + "repo_id": "smp-hub/mobileone_s3.imagenet", + "revision": "da89b84a91b7400c366c358bfbf8dd0b2fa4dde2", } }, "params": { - "out_channels": (3, 64, 128, 320, 768, 2048), + "out_channels": [3, 64, 128, 320, 768, 2048], "width_multipliers": (2.0, 2.5, 3.0, 4.0), "inference_mode": False, }, @@ -542,15 +550,12 @@ def reparameterize_model(model: torch.nn.Module) -> nn.Module: "encoder": MobileOne, "pretrained_settings": { "imagenet": { - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "url": "https://docs-assets.developer.apple.com/ml-research/datasets/mobileone/mobileone_s4_unfused.pth.tar", # noqa - "input_space": "RGB", - "input_range": [0, 1], + "repo_id": "smp-hub/mobileone_s4.imagenet", + "revision": "16197c55d599076b6aae67a83d3b3f70c31b097c", } }, "params": { - "out_channels": (3, 64, 192, 448, 896, 2048), + "out_channels": [3, 64, 192, 448, 896, 2048], "width_multipliers": (3.0, 3.5, 3.5, 4.0), "use_se": True, "inference_mode": False, diff --git a/segmentation_models_pytorch/encoders/resnet.py b/segmentation_models_pytorch/encoders/resnet.py index 2040a42c..d4f2db4e 100644 --- a/segmentation_models_pytorch/encoders/resnet.py +++ b/segmentation_models_pytorch/encoders/resnet.py @@ -23,44 +23,65 @@ depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). """ -from copy import deepcopy - -import torch.nn as nn - +import torch +from typing import Dict, Sequence, List from torchvision.models.resnet import ResNet from torchvision.models.resnet import BasicBlock from torchvision.models.resnet import Bottleneck -from pretrainedmodels.models.torchvision_models import pretrained_settings from ._base import EncoderMixin class ResNetEncoder(ResNet, EncoderMixin): - def __init__(self, out_channels, depth=5, **kwargs): + """ResNet encoder implementation.""" + + def __init__( + self, out_channels: List[int], depth: int = 5, output_stride: int = 32, **kwargs + ): + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) super().__init__(**kwargs) + self._depth = depth - self._out_channels = out_channels self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride del self.fc del self.avgpool - def get_stages(self): - return [ - nn.Identity(), - nn.Sequential(self.conv1, self.bn1, self.relu), - nn.Sequential(self.maxpool, self.layer1), - self.layer2, - self.layer3, - self.layer4, - ] - - def forward(self, x): - stages = self.get_stages() - - features = [] - for i in range(self._depth + 1): - x = stages[i](x) + def get_stages(self) -> Dict[int, Sequence[torch.nn.Module]]: + return { + 16: [self.layer3], + 32: [self.layer4], + } + + def forward(self, x: torch.Tensor) -> list[torch.Tensor]: + features = [x] + + if self._depth >= 1: + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + features.append(x) + + if self._depth >= 2: + x = self.maxpool(x) + x = self.layer1(x) + features.append(x) + + if self._depth >= 3: + x = self.layer2(x) + features.append(x) + + if self._depth >= 4: + x = self.layer3(x) + features.append(x) + + if self._depth >= 5: + x = self.layer4(x) features.append(x) return features @@ -71,110 +92,111 @@ def load_state_dict(self, state_dict, **kwargs): super().load_state_dict(state_dict, **kwargs) -new_settings = { - "resnet18": { - "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth", # noqa - "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth", # noqa - }, - "resnet50": { - "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth", # noqa - "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth", # noqa - }, - "resnext50_32x4d": { - "imagenet": "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth", - "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth", # noqa - "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth", # noqa - }, - "resnext101_32x4d": { - "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth", # noqa - "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth", # noqa - }, - "resnext101_32x8d": { - "imagenet": "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth", - "instagram": "https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth", - "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth", # noqa - "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth", # noqa - }, - "resnext101_32x16d": { - "instagram": "https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth", - "ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth", # noqa - "swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth", # noqa - }, - "resnext101_32x32d": { - "instagram": "https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth" - }, - "resnext101_32x48d": { - "instagram": "https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth" - }, -} - -pretrained_settings = deepcopy(pretrained_settings) -for model_name, sources in new_settings.items(): - if model_name not in pretrained_settings: - pretrained_settings[model_name] = {} - - for source_name, source_url in sources.items(): - pretrained_settings[model_name][source_name] = { - "url": source_url, - "input_size": [3, 224, 224], - "input_range": [0, 1], - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "num_classes": 1000, - } - - resnet_encoders = { "resnet18": { "encoder": ResNetEncoder, - "pretrained_settings": pretrained_settings["resnet18"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/resnet18.imagenet", + "revision": "3f2325ff978283d47aa6a1d6878ca20565622683", + }, + "ssl": { + "repo_id": "smp-hub/resnet18.ssl", + "revision": "d600d5116aac2e6e595f99f40612074c723c00b2", + }, + "swsl": { + "repo_id": "smp-hub/resnet18.swsl", + "revision": "0e3a35d4d8e344088c14a96eee502a88ac70eae1", + }, + }, "params": { - "out_channels": (3, 64, 64, 128, 256, 512), + "out_channels": [3, 64, 64, 128, 256, 512], "block": BasicBlock, "layers": [2, 2, 2, 2], }, }, "resnet34": { "encoder": ResNetEncoder, - "pretrained_settings": pretrained_settings["resnet34"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/resnet34.imagenet", + "revision": "7a57b34f723329ff020b3f8bc41771163c519d0c", + }, + }, "params": { - "out_channels": (3, 64, 64, 128, 256, 512), + "out_channels": [3, 64, 64, 128, 256, 512], "block": BasicBlock, "layers": [3, 4, 6, 3], }, }, "resnet50": { "encoder": ResNetEncoder, - "pretrained_settings": pretrained_settings["resnet50"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/resnet50.imagenet", + "revision": "00cb74e366966d59cd9a35af57e618af9f88efe9", + }, + "ssl": { + "repo_id": "smp-hub/resnet50.ssl", + "revision": "d07daf5b4377f3700c6ac61906b0aafbc4eca46b", + }, + "swsl": { + "repo_id": "smp-hub/resnet50.swsl", + "revision": "b9520cce124f91c6fe7eee45721a2c7954f0d8c0", + }, + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": Bottleneck, "layers": [3, 4, 6, 3], }, }, "resnet101": { "encoder": ResNetEncoder, - "pretrained_settings": pretrained_settings["resnet101"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/resnet101.imagenet", + "revision": "cd7c15e8c51da86ae6a084515fdb962d0c94e7d1", + }, + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": Bottleneck, "layers": [3, 4, 23, 3], }, }, "resnet152": { "encoder": ResNetEncoder, - "pretrained_settings": pretrained_settings["resnet152"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/resnet152.imagenet", + "revision": "951dd835e9d086628e447b484584c8983f9e1dd0", + }, + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": Bottleneck, "layers": [3, 8, 36, 3], }, }, "resnext50_32x4d": { "encoder": ResNetEncoder, - "pretrained_settings": pretrained_settings["resnext50_32x4d"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/resnext50_32x4d.imagenet", + "revision": "329793c85d62fd340ae42ae39fb905a63df872e7", + }, + "ssl": { + "repo_id": "smp-hub/resnext50_32x4d.ssl", + "revision": "9b67cff77d060c7044493a58c24d1007c1eb06c3", + }, + "swsl": { + "repo_id": "smp-hub/resnext50_32x4d.swsl", + "revision": "52e6e49da61b8e26ca691e1aef2cbb952884057d", + }, + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": Bottleneck, "layers": [3, 4, 6, 3], "groups": 32, @@ -183,9 +205,18 @@ def load_state_dict(self, state_dict, **kwargs): }, "resnext101_32x4d": { "encoder": ResNetEncoder, - "pretrained_settings": pretrained_settings["resnext101_32x4d"], + "pretrained_settings": { + "ssl": { + "repo_id": "smp-hub/resnext101_32x4d.ssl", + "revision": "b39796c8459084d13523b7016c3ef13a2e9e472b", + }, + "swsl": { + "repo_id": "smp-hub/resnext101_32x4d.swsl", + "revision": "3f8355b4892a31f001a832b49b2b01484d48516a", + }, + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": Bottleneck, "layers": [3, 4, 23, 3], "groups": 32, @@ -194,9 +225,26 @@ def load_state_dict(self, state_dict, **kwargs): }, "resnext101_32x8d": { "encoder": ResNetEncoder, - "pretrained_settings": pretrained_settings["resnext101_32x8d"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/resnext101_32x8d.imagenet", + "revision": "221af6198d03a4ee88992f78a1ee81b46a52d339", + }, + "instagram": { + "repo_id": "smp-hub/resnext101_32x8d.instagram", + "revision": "44cd927aa6e64673ffe9d31230bad44abc18b823", + }, + "ssl": { + "repo_id": "smp-hub/resnext101_32x8d.ssl", + "revision": "723a95ddeed335c9488c37c6cbef13d779ac8f97", + }, + "swsl": { + "repo_id": "smp-hub/resnext101_32x8d.swsl", + "revision": "58cf0bb65f91365470398080d9588b187d1777c4", + }, + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": Bottleneck, "layers": [3, 4, 23, 3], "groups": 32, @@ -205,9 +253,22 @@ def load_state_dict(self, state_dict, **kwargs): }, "resnext101_32x16d": { "encoder": ResNetEncoder, - "pretrained_settings": pretrained_settings["resnext101_32x16d"], + "pretrained_settings": { + "instagram": { + "repo_id": "smp-hub/resnext101_32x16d.instagram", + "revision": "64e8e320eeae6501185b0627b2429a68e52d050c", + }, + "ssl": { + "repo_id": "smp-hub/resnext101_32x16d.ssl", + "revision": "1283fe03fbb6aa2599b2df24095255acb93c3d5c", + }, + "swsl": { + "repo_id": "smp-hub/resnext101_32x16d.swsl", + "revision": "30ba61bbd4d6af0d955c513dbb4f557b84eb094f", + }, + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": Bottleneck, "layers": [3, 4, 23, 3], "groups": 32, @@ -216,9 +277,14 @@ def load_state_dict(self, state_dict, **kwargs): }, "resnext101_32x32d": { "encoder": ResNetEncoder, - "pretrained_settings": pretrained_settings["resnext101_32x32d"], + "pretrained_settings": { + "instagram": { + "repo_id": "smp-hub/resnext101_32x32d.instagram", + "revision": "c9405de121fdaa275a89de470fb19409e3eeaa86", + }, + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": Bottleneck, "layers": [3, 4, 23, 3], "groups": 32, @@ -227,9 +293,14 @@ def load_state_dict(self, state_dict, **kwargs): }, "resnext101_32x48d": { "encoder": ResNetEncoder, - "pretrained_settings": pretrained_settings["resnext101_32x48d"], + "pretrained_settings": { + "instagram": { + "repo_id": "smp-hub/resnext101_32x48d.instagram", + "revision": "53e61a962b824ad7027409821f9ac3e3336dd024", + }, + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": Bottleneck, "layers": [3, 4, 23, 3], "groups": 32, diff --git a/segmentation_models_pytorch/encoders/senet.py b/segmentation_models_pytorch/encoders/senet.py index 8e0f6fd8..da509f5a 100644 --- a/segmentation_models_pytorch/encoders/senet.py +++ b/segmentation_models_pytorch/encoders/senet.py @@ -23,45 +23,72 @@ depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). """ -import torch.nn as nn +import torch +from typing import List, Dict, Sequence -from pretrainedmodels.models.senet import ( +from ._base import EncoderMixin +from ._senet import ( SENet, SEBottleneck, SEResNetBottleneck, SEResNeXtBottleneck, - pretrained_settings, ) -from ._base import EncoderMixin class SENetEncoder(SENet, EncoderMixin): - def __init__(self, out_channels, depth=5, **kwargs): + def __init__( + self, + out_channels: List[int], + depth: int = 5, + output_stride: int = 32, + **kwargs, + ): + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) super().__init__(**kwargs) - self._out_channels = out_channels self._depth = depth self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride + + # for compatibility with torchscript + self.layer0_pool = self.layer0.pool + self.layer0.pool = torch.nn.Identity() del self.last_linear del self.avg_pool - def get_stages(self): - return [ - nn.Identity(), - self.layer0[:-1], - nn.Sequential(self.layer0[-1], self.layer1), - self.layer2, - self.layer3, - self.layer4, - ] - - def forward(self, x): - stages = self.get_stages() - - features = [] - for i in range(self._depth + 1): - x = stages[i](x) + def get_stages(self) -> Dict[int, Sequence[torch.nn.Module]]: + return { + 16: [self.layer3], + 32: [self.layer4], + } + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + features = [x] + + if self._depth >= 1: + x = self.layer0(x) + features.append(x) + + if self._depth >= 2: + x = self.layer0_pool(x) + x = self.layer1(x) + features.append(x) + + if self._depth >= 3: + x = self.layer2(x) + features.append(x) + + if self._depth >= 4: + x = self.layer3(x) + features.append(x) + + if self._depth >= 5: + x = self.layer4(x) features.append(x) return features @@ -75,9 +102,14 @@ def load_state_dict(self, state_dict, **kwargs): senet_encoders = { "senet154": { "encoder": SENetEncoder, - "pretrained_settings": pretrained_settings["senet154"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/senet154.imagenet", + "revision": "249f45efc9881ba560a0c480128edbc34ab87e40", + } + }, "params": { - "out_channels": (3, 128, 256, 512, 1024, 2048), + "out_channels": [3, 128, 256, 512, 1024, 2048], "block": SEBottleneck, "dropout_p": 0.2, "groups": 64, @@ -88,9 +120,14 @@ def load_state_dict(self, state_dict, **kwargs): }, "se_resnet50": { "encoder": SENetEncoder, - "pretrained_settings": pretrained_settings["se_resnet50"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/se_resnet50.imagenet", + "revision": "e6b4bc2dc85226c3d3474544410724a485455459", + } + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": SEResNetBottleneck, "layers": [3, 4, 6, 3], "downsample_kernel_size": 1, @@ -105,9 +142,14 @@ def load_state_dict(self, state_dict, **kwargs): }, "se_resnet101": { "encoder": SENetEncoder, - "pretrained_settings": pretrained_settings["se_resnet101"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/se_resnet101.imagenet", + "revision": "71fe95cc0a27f444cf83671f354de02dc741b18b", + } + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": SEResNetBottleneck, "layers": [3, 4, 23, 3], "downsample_kernel_size": 1, @@ -122,9 +164,14 @@ def load_state_dict(self, state_dict, **kwargs): }, "se_resnet152": { "encoder": SENetEncoder, - "pretrained_settings": pretrained_settings["se_resnet152"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/se_resnet152.imagenet", + "revision": "e79fc3d9d76f197bd76a2593c2054edf1083fe32", + } + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": SEResNetBottleneck, "layers": [3, 8, 36, 3], "downsample_kernel_size": 1, @@ -139,9 +186,14 @@ def load_state_dict(self, state_dict, **kwargs): }, "se_resnext50_32x4d": { "encoder": SENetEncoder, - "pretrained_settings": pretrained_settings["se_resnext50_32x4d"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/se_resnext50_32x4d.imagenet", + "revision": "73246406d879a2b0e3fdfe6fddd56347d38f38ae", + } + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": SEResNeXtBottleneck, "layers": [3, 4, 6, 3], "downsample_kernel_size": 1, @@ -156,9 +208,14 @@ def load_state_dict(self, state_dict, **kwargs): }, "se_resnext101_32x4d": { "encoder": SENetEncoder, - "pretrained_settings": pretrained_settings["se_resnext101_32x4d"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/se_resnext101_32x4d.imagenet", + "revision": "18808a4276f46421d358a9de554e0b93c2795df4", + } + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": SEResNeXtBottleneck, "layers": [3, 4, 23, 3], "downsample_kernel_size": 1, diff --git a/segmentation_models_pytorch/encoders/timm_efficientnet.py b/segmentation_models_pytorch/encoders/timm_efficientnet.py index fc248575..a1c36491 100644 --- a/segmentation_models_pytorch/encoders/timm_efficientnet.py +++ b/segmentation_models_pytorch/encoders/timm_efficientnet.py @@ -1,9 +1,11 @@ -from functools import partial - +import torch import torch.nn as nn +from typing import List, Dict, Sequence +from functools import partial + from timm.models.efficientnet import EfficientNet -from timm.models.efficientnet import decode_arch_def, round_channels, default_cfgs +from timm.models.efficientnet import decode_arch_def, round_channels from timm.layers.activations import Swish from ._base import EncoderMixin @@ -95,32 +97,59 @@ def gen_efficientnet_lite_kwargs( class EfficientNetBaseEncoder(EfficientNet, EncoderMixin): - def __init__(self, stage_idxs, out_channels, depth=5, **kwargs): + def __init__( + self, + stage_idxs: List[int], + out_channels: List[int], + depth: int = 5, + output_stride: int = 32, + **kwargs, + ): + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) super().__init__(**kwargs) self._stage_idxs = stage_idxs - self._out_channels = out_channels self._depth = depth self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride del self.classifier - def get_stages(self): - return [ - nn.Identity(), - nn.Sequential(self.conv_stem, self.bn1), - self.blocks[: self._stage_idxs[0]], - self.blocks[self._stage_idxs[0] : self._stage_idxs[1]], - self.blocks[self._stage_idxs[1] : self._stage_idxs[2]], - self.blocks[self._stage_idxs[2] :], - ] + def get_stages(self) -> Dict[int, Sequence[torch.nn.Module]]: + return { + 16: [self.blocks[self._stage_idxs[1] : self._stage_idxs[2]]], + 32: [self.blocks[self._stage_idxs[2] :]], + } - def forward(self, x): - stages = self.get_stages() + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + features = [x] - features = [] - for i in range(self._depth + 1): - x = stages[i](x) + if self._depth >= 1: + x = self.conv_stem(x) + x = self.bn1(x) + features.append(x) + + if self._depth >= 2: + x = self.blocks[0](x) + x = self.blocks[1](x) + features.append(x) + + if self._depth >= 3: + x = self.blocks[2](x) + features.append(x) + + if self._depth >= 4: + x = self.blocks[3](x) + x = self.blocks[4](x) + features.append(x) + + if self._depth >= 5: + x = self.blocks[5](x) + x = self.blocks[6](x) features.append(x) return features @@ -134,33 +163,47 @@ def load_state_dict(self, state_dict, **kwargs): class EfficientNetEncoder(EfficientNetBaseEncoder): def __init__( self, - stage_idxs, - out_channels, - depth=5, - channel_multiplier=1.0, - depth_multiplier=1.0, - drop_rate=0.2, + stage_idxs: List[int], + out_channels: List[int], + depth: int = 5, + channel_multiplier: float = 1.0, + depth_multiplier: float = 1.0, + drop_rate: float = 0.2, + output_stride: int = 32, ): kwargs = get_efficientnet_kwargs( channel_multiplier, depth_multiplier, drop_rate ) - super().__init__(stage_idxs, out_channels, depth, **kwargs) + super().__init__( + stage_idxs=stage_idxs, + depth=depth, + out_channels=out_channels, + output_stride=output_stride, + **kwargs, + ) class EfficientNetLiteEncoder(EfficientNetBaseEncoder): def __init__( self, - stage_idxs, - out_channels, - depth=5, - channel_multiplier=1.0, - depth_multiplier=1.0, - drop_rate=0.2, + stage_idxs: List[int], + out_channels: List[int], + depth: int = 5, + channel_multiplier: float = 1.0, + depth_multiplier: float = 1.0, + drop_rate: float = 0.2, + output_stride: int = 32, ): kwargs = gen_efficientnet_lite_kwargs( channel_multiplier, depth_multiplier, drop_rate ) - super().__init__(stage_idxs, out_channels, depth, **kwargs) + super().__init__( + stage_idxs=stage_idxs, + depth=depth, + out_channels=out_channels, + output_stride=output_stride, + **kwargs, + ) def prepare_settings(settings): @@ -177,19 +220,22 @@ def prepare_settings(settings): "timm-efficientnet-b0": { "encoder": EfficientNetEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_b0"].cfgs["in1k"] - ), - "advprop": prepare_settings( - default_cfgs["tf_efficientnet_b0"].cfgs["ap_in1k"] - ), - "noisy-student": prepare_settings( - default_cfgs["tf_efficientnet_b0"].cfgs["ns_jft_in1k"] - ), + "imagenet": { + "repo_id": "smp-hub/timm-efficientnet-b0.imagenet", + "revision": "8419e9cc19da0b68dcd7bb12f19b7c92407ad7c4", + }, + "advprop": { + "repo_id": "smp-hub/timm-efficientnet-b0.advprop", + "revision": "a5870af2d24ce79e0cc7fae2bbd8e0a21fcfa6d8", + }, + "noisy-student": { + "repo_id": "smp-hub/timm-efficientnet-b0.noisy-student", + "revision": "bea8b0ff726a50e48774d2d360c5fb1ac4815836", + }, }, "params": { - "out_channels": (3, 32, 24, 40, 112, 320), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 32, 24, 40, 112, 320], + "stage_idxs": [2, 3, 5], "channel_multiplier": 1.0, "depth_multiplier": 1.0, "drop_rate": 0.2, @@ -198,19 +244,22 @@ def prepare_settings(settings): "timm-efficientnet-b1": { "encoder": EfficientNetEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_b1"].cfgs["in1k"] - ), - "advprop": prepare_settings( - default_cfgs["tf_efficientnet_b1"].cfgs["ap_in1k"] - ), - "noisy-student": prepare_settings( - default_cfgs["tf_efficientnet_b1"].cfgs["ns_jft_in1k"] - ), + "imagenet": { + "repo_id": "smp-hub/timm-efficientnet-b1.imagenet", + "revision": "63bdd65ef6596ef24f1cadc7dd4f46b624442349", + }, + "advprop": { + "repo_id": "smp-hub/timm-efficientnet-b1.advprop", + "revision": "79b3d102080ef679b16c2748e608a871112233d0", + }, + "noisy-student": { + "repo_id": "smp-hub/timm-efficientnet-b1.noisy-student", + "revision": "36856124a699f6032574ceeefab02040daa90a9a", + }, }, "params": { - "out_channels": (3, 32, 24, 40, 112, 320), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 32, 24, 40, 112, 320], + "stage_idxs": [2, 3, 5], "channel_multiplier": 1.0, "depth_multiplier": 1.1, "drop_rate": 0.2, @@ -219,19 +268,22 @@ def prepare_settings(settings): "timm-efficientnet-b2": { "encoder": EfficientNetEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_b2"].cfgs["in1k"] - ), - "advprop": prepare_settings( - default_cfgs["tf_efficientnet_b2"].cfgs["ap_in1k"] - ), - "noisy-student": prepare_settings( - default_cfgs["tf_efficientnet_b2"].cfgs["ns_jft_in1k"] - ), + "imagenet": { + "repo_id": "smp-hub/timm-efficientnet-b2.imagenet", + "revision": "e693adb39d3cb3847e71e3700a0c2aa58072cff1", + }, + "advprop": { + "repo_id": "smp-hub/timm-efficientnet-b2.advprop", + "revision": "b58479bf78007cfbb365091d64eeee369bddfa21", + }, + "noisy-student": { + "repo_id": "smp-hub/timm-efficientnet-b2.noisy-student", + "revision": "67c558827c6d3e0975ff9b4bce8557bc2ca80931", + }, }, "params": { - "out_channels": (3, 32, 24, 48, 120, 352), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 32, 24, 48, 120, 352], + "stage_idxs": [2, 3, 5], "channel_multiplier": 1.1, "depth_multiplier": 1.2, "drop_rate": 0.3, @@ -240,19 +292,22 @@ def prepare_settings(settings): "timm-efficientnet-b3": { "encoder": EfficientNetEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_b3"].cfgs["in1k"] - ), - "advprop": prepare_settings( - default_cfgs["tf_efficientnet_b3"].cfgs["ap_in1k"] - ), - "noisy-student": prepare_settings( - default_cfgs["tf_efficientnet_b3"].cfgs["ns_jft_in1k"] - ), + "imagenet": { + "repo_id": "smp-hub/timm-efficientnet-b3.imagenet", + "revision": "1666b835b5151d6bb2067c7cd67e67ada6c39edf", + }, + "advprop": { + "repo_id": "smp-hub/timm-efficientnet-b3.advprop", + "revision": "70474cdb9f1ff4fcbd7434e66560ead1ab8e506b", + }, + "noisy-student": { + "repo_id": "smp-hub/timm-efficientnet-b3.noisy-student", + "revision": "2367bc9f61e79ee97684169a71a87db280bcf4db", + }, }, "params": { - "out_channels": (3, 40, 32, 48, 136, 384), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 40, 32, 48, 136, 384], + "stage_idxs": [2, 3, 5], "channel_multiplier": 1.2, "depth_multiplier": 1.4, "drop_rate": 0.3, @@ -261,19 +316,22 @@ def prepare_settings(settings): "timm-efficientnet-b4": { "encoder": EfficientNetEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_b4"].cfgs["in1k"] - ), - "advprop": prepare_settings( - default_cfgs["tf_efficientnet_b4"].cfgs["ap_in1k"] - ), - "noisy-student": prepare_settings( - default_cfgs["tf_efficientnet_b4"].cfgs["ns_jft_in1k"] - ), + "imagenet": { + "repo_id": "smp-hub/timm-efficientnet-b4.imagenet", + "revision": "07868c28ab308f4de4cf1e7ec54b33b8b002ccdb", + }, + "advprop": { + "repo_id": "smp-hub/timm-efficientnet-b4.advprop", + "revision": "8ea1772ee9a2a0d18c1b56dce0dfac8dd33d537d", + }, + "noisy-student": { + "repo_id": "smp-hub/timm-efficientnet-b4.noisy-student", + "revision": "faeb77b6e8292a700380c840d39442d7ce4d6443", + }, }, "params": { - "out_channels": (3, 48, 32, 56, 160, 448), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 48, 32, 56, 160, 448], + "stage_idxs": [2, 3, 5], "channel_multiplier": 1.4, "depth_multiplier": 1.8, "drop_rate": 0.4, @@ -282,19 +340,22 @@ def prepare_settings(settings): "timm-efficientnet-b5": { "encoder": EfficientNetEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_b5"].cfgs["in1k"] - ), - "advprop": prepare_settings( - default_cfgs["tf_efficientnet_b5"].cfgs["ap_in1k"] - ), - "noisy-student": prepare_settings( - default_cfgs["tf_efficientnet_b5"].cfgs["ns_jft_in1k"] - ), + "imagenet": { + "repo_id": "smp-hub/timm-efficientnet-b5.imagenet", + "revision": "004153b4ddd93d30afd9bbf34329d7f57396d413", + }, + "advprop": { + "repo_id": "smp-hub/timm-efficientnet-b5.advprop", + "revision": "1d1c5f05aab5ed9a1d5052847ddd4024c06a464d", + }, + "noisy-student": { + "repo_id": "smp-hub/timm-efficientnet-b5.noisy-student", + "revision": "9bc3a1e5490de92b1af061d5c2c474ab3129e38c", + }, }, "params": { - "out_channels": (3, 48, 40, 64, 176, 512), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 48, 40, 64, 176, 512], + "stage_idxs": [2, 3, 5], "channel_multiplier": 1.6, "depth_multiplier": 2.2, "drop_rate": 0.4, @@ -303,19 +364,22 @@ def prepare_settings(settings): "timm-efficientnet-b6": { "encoder": EfficientNetEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_b6"].cfgs["aa_in1k"] - ), - "advprop": prepare_settings( - default_cfgs["tf_efficientnet_b6"].cfgs["ap_in1k"] - ), - "noisy-student": prepare_settings( - default_cfgs["tf_efficientnet_b6"].cfgs["ns_jft_in1k"] - ), + "imagenet": { + "repo_id": "smp-hub/timm-efficientnet-b6.imagenet", + "revision": "dbbf28a5c33f021486db4070de693caad6b56c3d", + }, + "advprop": { + "repo_id": "smp-hub/timm-efficientnet-b6.advprop", + "revision": "3b5d3412047f7711c56ffde997911cfefe79f835", + }, + "noisy-student": { + "repo_id": "smp-hub/timm-efficientnet-b6.noisy-student", + "revision": "9b899ea9e8e0ce2ccada0f34a8cb8b5028e9bb36", + }, }, "params": { - "out_channels": (3, 56, 40, 72, 200, 576), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 56, 40, 72, 200, 576], + "stage_idxs": [2, 3, 5], "channel_multiplier": 1.8, "depth_multiplier": 2.6, "drop_rate": 0.5, @@ -324,19 +388,22 @@ def prepare_settings(settings): "timm-efficientnet-b7": { "encoder": EfficientNetEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_b7"].cfgs["aa_in1k"] - ), - "advprop": prepare_settings( - default_cfgs["tf_efficientnet_b7"].cfgs["ap_in1k"] - ), - "noisy-student": prepare_settings( - default_cfgs["tf_efficientnet_b7"].cfgs["ns_jft_in1k"] - ), + "imagenet": { + "repo_id": "smp-hub/timm-efficientnet-b7.imagenet", + "revision": "8ef7ffccf54dad9baceb21d05b7ef86b6b70f4cc", + }, + "advprop": { + "repo_id": "smp-hub/timm-efficientnet-b7.advprop", + "revision": "fcbc576ffb939c12d5cd8dad523fdae6eb0177ca", + }, + "noisy-student": { + "repo_id": "smp-hub/timm-efficientnet-b7.noisy-student", + "revision": "6b1dd73e61bf934d485d7bd4381dc3e2ab374664", + }, }, "params": { - "out_channels": (3, 64, 48, 80, 224, 640), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 64, 48, 80, 224, 640], + "stage_idxs": [2, 3, 5], "channel_multiplier": 2.0, "depth_multiplier": 3.1, "drop_rate": 0.5, @@ -345,16 +412,18 @@ def prepare_settings(settings): "timm-efficientnet-b8": { "encoder": EfficientNetEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_b8"].cfgs["ra_in1k"] - ), - "advprop": prepare_settings( - default_cfgs["tf_efficientnet_b8"].cfgs["ap_in1k"] - ), + "imagenet": { + "repo_id": "smp-hub/timm-efficientnet-b8.imagenet", + "revision": "b5e9dde35605a3a6d17ea2a727382625f9066a37", + }, + "advprop": { + "repo_id": "smp-hub/timm-efficientnet-b8.advprop", + "revision": "e43f381de72e7467383c2c80bacbb7fcb9572866", + }, }, "params": { - "out_channels": (3, 72, 56, 88, 248, 704), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 72, 56, 88, 248, 704], + "stage_idxs": [2, 3, 5], "channel_multiplier": 2.2, "depth_multiplier": 3.6, "drop_rate": 0.5, @@ -363,16 +432,18 @@ def prepare_settings(settings): "timm-efficientnet-l2": { "encoder": EfficientNetEncoder, "pretrained_settings": { - "noisy-student": prepare_settings( - default_cfgs["tf_efficientnet_l2"].cfgs["ns_jft_in1k"] - ), - "noisy-student-475": prepare_settings( - default_cfgs["tf_efficientnet_l2"].cfgs["ns_jft_in1k_475"] - ), + "noisy-student": { + "repo_id": "smp-hub/timm-efficientnet-l2.noisy-student", + "revision": "cdc711e76d1becdd9197169f1a8bb1b2094e980c", + }, + "noisy-student-475": { + "repo_id": "smp-hub/timm-efficientnet-l2.noisy-student-475", + "revision": "35f5ba667a64bf4f3f0689daf84fc6d0f8e1311b", + }, }, "params": { - "out_channels": (3, 136, 104, 176, 480, 1376), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 136, 104, 176, 480, 1376], + "stage_idxs": [2, 3, 5], "channel_multiplier": 4.3, "depth_multiplier": 5.3, "drop_rate": 0.5, @@ -381,13 +452,14 @@ def prepare_settings(settings): "timm-tf_efficientnet_lite0": { "encoder": EfficientNetLiteEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_lite0"].cfgs["in1k"] - ) + "imagenet": { + "repo_id": "smp-hub/timm-tf_efficientnet_lite0.imagenet", + "revision": "f5729249af07e5d923fb8b16922256ce2865d108", + }, }, "params": { - "out_channels": (3, 32, 24, 40, 112, 320), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 32, 24, 40, 112, 320], + "stage_idxs": [2, 3, 5], "channel_multiplier": 1.0, "depth_multiplier": 1.0, "drop_rate": 0.2, @@ -396,13 +468,14 @@ def prepare_settings(settings): "timm-tf_efficientnet_lite1": { "encoder": EfficientNetLiteEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_lite1"].cfgs["in1k"] - ) + "imagenet": { + "repo_id": "smp-hub/timm-tf_efficientnet_lite1.imagenet", + "revision": "7b5e3f8dbb0c13b74101773584bba7523721be72", + }, }, "params": { - "out_channels": (3, 32, 24, 40, 112, 320), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 32, 24, 40, 112, 320], + "stage_idxs": [2, 3, 5], "channel_multiplier": 1.0, "depth_multiplier": 1.1, "drop_rate": 0.2, @@ -411,13 +484,14 @@ def prepare_settings(settings): "timm-tf_efficientnet_lite2": { "encoder": EfficientNetLiteEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_lite2"].cfgs["in1k"] - ) + "imagenet": { + "repo_id": "smp-hub/timm-tf_efficientnet_lite2.imagenet", + "revision": "cc5f6cd4c7409ebacc13292f09d369ae88547f6a", + }, }, "params": { - "out_channels": (3, 32, 24, 48, 120, 352), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 32, 24, 48, 120, 352], + "stage_idxs": [2, 3, 5], "channel_multiplier": 1.1, "depth_multiplier": 1.2, "drop_rate": 0.3, @@ -426,13 +500,14 @@ def prepare_settings(settings): "timm-tf_efficientnet_lite3": { "encoder": EfficientNetLiteEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_lite3"].cfgs["in1k"] - ) + "imagenet": { + "repo_id": "smp-hub/timm-tf_efficientnet_lite3.imagenet", + "revision": "ab29c8402991591d66f813bbb1f061565d9b0cd0", + }, }, "params": { - "out_channels": (3, 32, 32, 48, 136, 384), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 32, 32, 48, 136, 384], + "stage_idxs": [2, 3, 5], "channel_multiplier": 1.2, "depth_multiplier": 1.4, "drop_rate": 0.3, @@ -441,13 +516,14 @@ def prepare_settings(settings): "timm-tf_efficientnet_lite4": { "encoder": EfficientNetLiteEncoder, "pretrained_settings": { - "imagenet": prepare_settings( - default_cfgs["tf_efficientnet_lite4"].cfgs["in1k"] - ) + "imagenet": { + "repo_id": "smp-hub/timm-tf_efficientnet_lite4.imagenet", + "revision": "91a822e0f03c255b34dfb7846d3858397e50ba39", + }, }, "params": { - "out_channels": (3, 32, 32, 56, 160, 448), - "stage_idxs": (2, 3, 5), + "out_channels": [3, 32, 32, 56, 160, 448], + "stage_idxs": [2, 3, 5], "channel_multiplier": 1.4, "depth_multiplier": 1.8, "drop_rate": 0.4, diff --git a/segmentation_models_pytorch/encoders/timm_gernet.py b/segmentation_models_pytorch/encoders/timm_gernet.py deleted file mode 100644 index e0c3354d..00000000 --- a/segmentation_models_pytorch/encoders/timm_gernet.py +++ /dev/null @@ -1,124 +0,0 @@ -from timm.models import ByoModelCfg, ByoBlockCfg, ByobNet - -from ._base import EncoderMixin -import torch.nn as nn - - -class GERNetEncoder(ByobNet, EncoderMixin): - def __init__(self, out_channels, depth=5, **kwargs): - super().__init__(**kwargs) - self._depth = depth - self._out_channels = out_channels - self._in_channels = 3 - - del self.head - - def get_stages(self): - return [ - nn.Identity(), - self.stem, - self.stages[0], - self.stages[1], - self.stages[2], - nn.Sequential(self.stages[3], self.stages[4], self.final_conv), - ] - - def forward(self, x): - stages = self.get_stages() - - features = [] - for i in range(self._depth + 1): - x = stages[i](x) - features.append(x) - - return features - - def load_state_dict(self, state_dict, **kwargs): - state_dict.pop("head.fc.weight", None) - state_dict.pop("head.fc.bias", None) - super().load_state_dict(state_dict, **kwargs) - - -regnet_weights = { - "timm-gernet_s": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_s-756b4751.pth" # noqa - }, - "timm-gernet_m": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_m-0873c53a.pth" # noqa - }, - "timm-gernet_l": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-ger-weights/gernet_l-f31e2e8d.pth" # noqa - }, -} - -pretrained_settings = {} -for model_name, sources in regnet_weights.items(): - pretrained_settings[model_name] = {} - for source_name, source_url in sources.items(): - pretrained_settings[model_name][source_name] = { - "url": source_url, - "input_range": [0, 1], - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "num_classes": 1000, - } - -timm_gernet_encoders = { - "timm-gernet_s": { - "encoder": GERNetEncoder, - "pretrained_settings": pretrained_settings["timm-gernet_s"], - "params": { - "out_channels": (3, 13, 48, 48, 384, 1920), - "cfg": ByoModelCfg( - blocks=( - ByoBlockCfg(type="basic", d=1, c=48, s=2, gs=0, br=1.0), - ByoBlockCfg(type="basic", d=3, c=48, s=2, gs=0, br=1.0), - ByoBlockCfg(type="bottle", d=7, c=384, s=2, gs=0, br=1 / 4), - ByoBlockCfg(type="bottle", d=2, c=560, s=2, gs=1, br=3.0), - ByoBlockCfg(type="bottle", d=1, c=256, s=1, gs=1, br=3.0), - ), - stem_chs=13, - stem_pool=None, - num_features=1920, - ), - }, - }, - "timm-gernet_m": { - "encoder": GERNetEncoder, - "pretrained_settings": pretrained_settings["timm-gernet_m"], - "params": { - "out_channels": (3, 32, 128, 192, 640, 2560), - "cfg": ByoModelCfg( - blocks=( - ByoBlockCfg(type="basic", d=1, c=128, s=2, gs=0, br=1.0), - ByoBlockCfg(type="basic", d=2, c=192, s=2, gs=0, br=1.0), - ByoBlockCfg(type="bottle", d=6, c=640, s=2, gs=0, br=1 / 4), - ByoBlockCfg(type="bottle", d=4, c=640, s=2, gs=1, br=3.0), - ByoBlockCfg(type="bottle", d=1, c=640, s=1, gs=1, br=3.0), - ), - stem_chs=32, - stem_pool=None, - num_features=2560, - ), - }, - }, - "timm-gernet_l": { - "encoder": GERNetEncoder, - "pretrained_settings": pretrained_settings["timm-gernet_l"], - "params": { - "out_channels": (3, 32, 128, 192, 640, 2560), - "cfg": ByoModelCfg( - blocks=( - ByoBlockCfg(type="basic", d=1, c=128, s=2, gs=0, br=1.0), - ByoBlockCfg(type="basic", d=2, c=192, s=2, gs=0, br=1.0), - ByoBlockCfg(type="bottle", d=6, c=640, s=2, gs=0, br=1 / 4), - ByoBlockCfg(type="bottle", d=5, c=640, s=2, gs=1, br=3.0), - ByoBlockCfg(type="bottle", d=4, c=640, s=1, gs=1, br=3.0), - ), - stem_chs=32, - stem_pool=None, - num_features=2560, - ), - }, - }, -} diff --git a/segmentation_models_pytorch/encoders/timm_mobilenetv3.py b/segmentation_models_pytorch/encoders/timm_mobilenetv3.py deleted file mode 100644 index ff733ab9..00000000 --- a/segmentation_models_pytorch/encoders/timm_mobilenetv3.py +++ /dev/null @@ -1,151 +0,0 @@ -import timm -import numpy as np -import torch.nn as nn - -from ._base import EncoderMixin - - -def _make_divisible(x, divisible_by=8): - return int(np.ceil(x * 1.0 / divisible_by) * divisible_by) - - -class MobileNetV3Encoder(nn.Module, EncoderMixin): - def __init__(self, model_name, width_mult, depth=5, **kwargs): - super().__init__() - if "large" not in model_name and "small" not in model_name: - raise ValueError("MobileNetV3 wrong model name {}".format(model_name)) - - self._mode = "small" if "small" in model_name else "large" - self._depth = depth - self._out_channels = self._get_channels(self._mode, width_mult) - self._in_channels = 3 - - # minimal models replace hardswish with relu - self.model = timm.create_model( - model_name=model_name, - scriptable=True, # torch.jit scriptable - exportable=True, # onnx export - features_only=True, - ) - - def _get_channels(self, mode, width_mult): - if mode == "small": - channels = [16, 16, 24, 48, 576] - else: - channels = [16, 24, 40, 112, 960] - channels = [3] + [_make_divisible(x * width_mult) for x in channels] - return tuple(channels) - - def get_stages(self): - if self._mode == "small": - return [ - nn.Identity(), - nn.Sequential(self.model.conv_stem, self.model.bn1, self.model.act1), - self.model.blocks[0], - self.model.blocks[1], - self.model.blocks[2:4], - self.model.blocks[4:], - ] - elif self._mode == "large": - return [ - nn.Identity(), - nn.Sequential( - self.model.conv_stem, - self.model.bn1, - self.model.act1, - self.model.blocks[0], - ), - self.model.blocks[1], - self.model.blocks[2], - self.model.blocks[3:5], - self.model.blocks[5:], - ] - else: - ValueError( - "MobileNetV3 mode should be small or large, got {}".format(self._mode) - ) - - def forward(self, x): - stages = self.get_stages() - - features = [] - for i in range(self._depth + 1): - x = stages[i](x) - features.append(x) - - return features - - def load_state_dict(self, state_dict, **kwargs): - state_dict.pop("conv_head.weight", None) - state_dict.pop("conv_head.bias", None) - state_dict.pop("classifier.weight", None) - state_dict.pop("classifier.bias", None) - self.model.load_state_dict(state_dict, **kwargs) - - -mobilenetv3_weights = { - "tf_mobilenetv3_large_075": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth" # noqa - }, - "tf_mobilenetv3_large_100": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth" # noqa - }, - "tf_mobilenetv3_large_minimal_100": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth" # noqa - }, - "tf_mobilenetv3_small_075": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth" # noqa - }, - "tf_mobilenetv3_small_100": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth" # noqa - }, - "tf_mobilenetv3_small_minimal_100": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth" # noqa - }, -} - -pretrained_settings = {} -for model_name, sources in mobilenetv3_weights.items(): - pretrained_settings[model_name] = {} - for source_name, source_url in sources.items(): - pretrained_settings[model_name][source_name] = { - "url": source_url, - "input_range": [0, 1], - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "input_space": "RGB", - } - - -timm_mobilenetv3_encoders = { - "timm-mobilenetv3_large_075": { - "encoder": MobileNetV3Encoder, - "pretrained_settings": pretrained_settings["tf_mobilenetv3_large_075"], - "params": {"model_name": "tf_mobilenetv3_large_075", "width_mult": 0.75}, - }, - "timm-mobilenetv3_large_100": { - "encoder": MobileNetV3Encoder, - "pretrained_settings": pretrained_settings["tf_mobilenetv3_large_100"], - "params": {"model_name": "tf_mobilenetv3_large_100", "width_mult": 1.0}, - }, - "timm-mobilenetv3_large_minimal_100": { - "encoder": MobileNetV3Encoder, - "pretrained_settings": pretrained_settings["tf_mobilenetv3_large_minimal_100"], - "params": {"model_name": "tf_mobilenetv3_large_minimal_100", "width_mult": 1.0}, - }, - "timm-mobilenetv3_small_075": { - "encoder": MobileNetV3Encoder, - "pretrained_settings": pretrained_settings["tf_mobilenetv3_small_075"], - "params": {"model_name": "tf_mobilenetv3_small_075", "width_mult": 0.75}, - }, - "timm-mobilenetv3_small_100": { - "encoder": MobileNetV3Encoder, - "pretrained_settings": pretrained_settings["tf_mobilenetv3_small_100"], - "params": {"model_name": "tf_mobilenetv3_small_100", "width_mult": 1.0}, - }, - "timm-mobilenetv3_small_minimal_100": { - "encoder": MobileNetV3Encoder, - "pretrained_settings": pretrained_settings["tf_mobilenetv3_small_minimal_100"], - "params": {"model_name": "tf_mobilenetv3_small_minimal_100", "width_mult": 1.0}, - }, -} diff --git a/segmentation_models_pytorch/encoders/timm_regnet.py b/segmentation_models_pytorch/encoders/timm_regnet.py deleted file mode 100644 index cc60b8ba..00000000 --- a/segmentation_models_pytorch/encoders/timm_regnet.py +++ /dev/null @@ -1,350 +0,0 @@ -from ._base import EncoderMixin -from timm.models.regnet import RegNet, RegNetCfg -import torch.nn as nn - - -class RegNetEncoder(RegNet, EncoderMixin): - def __init__(self, out_channels, depth=5, **kwargs): - kwargs["cfg"] = RegNetCfg(**kwargs["cfg"]) - super().__init__(**kwargs) - self._depth = depth - self._out_channels = out_channels - self._in_channels = 3 - - del self.head - - def get_stages(self): - return [nn.Identity(), self.stem, self.s1, self.s2, self.s3, self.s4] - - def forward(self, x): - stages = self.get_stages() - - features = [] - for i in range(self._depth + 1): - x = stages[i](x) - features.append(x) - - return features - - def load_state_dict(self, state_dict, **kwargs): - state_dict.pop("head.fc.weight", None) - state_dict.pop("head.fc.bias", None) - super().load_state_dict(state_dict, **kwargs) - - -regnet_weights = { - "timm-regnetx_002": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_002-e7e85e5c.pth" # noqa - }, - "timm-regnetx_004": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_004-7d0e9424.pth" # noqa - }, - "timm-regnetx_006": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_006-85ec1baa.pth" # noqa - }, - "timm-regnetx_008": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_008-d8b470eb.pth" # noqa - }, - "timm-regnetx_016": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_016-65ca972a.pth" # noqa - }, - "timm-regnetx_032": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_032-ed0c7f7e.pth" # noqa - }, - "timm-regnetx_040": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_040-73c2a654.pth" # noqa - }, - "timm-regnetx_064": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_064-29278baa.pth" # noqa - }, - "timm-regnetx_080": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_080-7c7fcab1.pth" # noqa - }, - "timm-regnetx_120": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_120-65d5521e.pth" # noqa - }, - "timm-regnetx_160": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_160-c98c4112.pth" # noqa - }, - "timm-regnetx_320": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_320-8ea38b93.pth" # noqa - }, - "timm-regnety_002": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_002-e68ca334.pth" # noqa - }, - "timm-regnety_004": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_004-0db870e6.pth" # noqa - }, - "timm-regnety_006": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_006-c67e57ec.pth" # noqa - }, - "timm-regnety_008": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_008-dc900dbe.pth" # noqa - }, - "timm-regnety_016": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_016-54367f74.pth" # noqa - }, - "timm-regnety_032": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth" # noqa - }, - "timm-regnety_040": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_040-f0d569f9.pth" # noqa - }, - "timm-regnety_064": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_064-0a48325c.pth" # noqa - }, - "timm-regnety_080": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_080-e7f3eb93.pth" # noqa - }, - "timm-regnety_120": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_120-721ba79a.pth" # noqa - }, - "timm-regnety_160": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_160-d64013cd.pth" # noqa - }, - "timm-regnety_320": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth" # noqa - }, -} - -pretrained_settings = {} -for model_name, sources in regnet_weights.items(): - pretrained_settings[model_name] = {} - for source_name, source_url in sources.items(): - pretrained_settings[model_name][source_name] = { - "url": source_url, - "input_size": [3, 224, 224], - "input_range": [0, 1], - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "num_classes": 1000, - } - -# at this point I am too lazy to copy configs, so I just used the same configs from timm's repo - - -def _mcfg(**kwargs): - cfg = dict(se_ratio=0.0, bottle_ratio=1.0, stem_width=32) - cfg.update(**kwargs) - return cfg - - -timm_regnet_encoders = { - "timm-regnetx_002": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnetx_002"], - "params": { - "out_channels": (3, 32, 24, 56, 152, 368), - "cfg": _mcfg(w0=24, wa=36.44, wm=2.49, group_size=8, depth=13), - }, - }, - "timm-regnetx_004": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnetx_004"], - "params": { - "out_channels": (3, 32, 32, 64, 160, 384), - "cfg": _mcfg(w0=24, wa=24.48, wm=2.54, group_size=16, depth=22), - }, - }, - "timm-regnetx_006": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnetx_006"], - "params": { - "out_channels": (3, 32, 48, 96, 240, 528), - "cfg": _mcfg(w0=48, wa=36.97, wm=2.24, group_size=24, depth=16), - }, - }, - "timm-regnetx_008": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnetx_008"], - "params": { - "out_channels": (3, 32, 64, 128, 288, 672), - "cfg": _mcfg(w0=56, wa=35.73, wm=2.28, group_size=16, depth=16), - }, - }, - "timm-regnetx_016": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnetx_016"], - "params": { - "out_channels": (3, 32, 72, 168, 408, 912), - "cfg": _mcfg(w0=80, wa=34.01, wm=2.25, group_size=24, depth=18), - }, - }, - "timm-regnetx_032": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnetx_032"], - "params": { - "out_channels": (3, 32, 96, 192, 432, 1008), - "cfg": _mcfg(w0=88, wa=26.31, wm=2.25, group_size=48, depth=25), - }, - }, - "timm-regnetx_040": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnetx_040"], - "params": { - "out_channels": (3, 32, 80, 240, 560, 1360), - "cfg": _mcfg(w0=96, wa=38.65, wm=2.43, group_size=40, depth=23), - }, - }, - "timm-regnetx_064": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnetx_064"], - "params": { - "out_channels": (3, 32, 168, 392, 784, 1624), - "cfg": _mcfg(w0=184, wa=60.83, wm=2.07, group_size=56, depth=17), - }, - }, - "timm-regnetx_080": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnetx_080"], - "params": { - "out_channels": (3, 32, 80, 240, 720, 1920), - "cfg": _mcfg(w0=80, wa=49.56, wm=2.88, group_size=120, depth=23), - }, - }, - "timm-regnetx_120": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnetx_120"], - "params": { - "out_channels": (3, 32, 224, 448, 896, 2240), - "cfg": _mcfg(w0=168, wa=73.36, wm=2.37, group_size=112, depth=19), - }, - }, - "timm-regnetx_160": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnetx_160"], - "params": { - "out_channels": (3, 32, 256, 512, 896, 2048), - "cfg": _mcfg(w0=216, wa=55.59, wm=2.1, group_size=128, depth=22), - }, - }, - "timm-regnetx_320": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnetx_320"], - "params": { - "out_channels": (3, 32, 336, 672, 1344, 2520), - "cfg": _mcfg(w0=320, wa=69.86, wm=2.0, group_size=168, depth=23), - }, - }, - # regnety - "timm-regnety_002": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnety_002"], - "params": { - "out_channels": (3, 32, 24, 56, 152, 368), - "cfg": _mcfg( - w0=24, wa=36.44, wm=2.49, group_size=8, depth=13, se_ratio=0.25 - ), - }, - }, - "timm-regnety_004": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnety_004"], - "params": { - "out_channels": (3, 32, 48, 104, 208, 440), - "cfg": _mcfg( - w0=48, wa=27.89, wm=2.09, group_size=8, depth=16, se_ratio=0.25 - ), - }, - }, - "timm-regnety_006": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnety_006"], - "params": { - "out_channels": (3, 32, 48, 112, 256, 608), - "cfg": _mcfg( - w0=48, wa=32.54, wm=2.32, group_size=16, depth=15, se_ratio=0.25 - ), - }, - }, - "timm-regnety_008": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnety_008"], - "params": { - "out_channels": (3, 32, 64, 128, 320, 768), - "cfg": _mcfg( - w0=56, wa=38.84, wm=2.4, group_size=16, depth=14, se_ratio=0.25 - ), - }, - }, - "timm-regnety_016": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnety_016"], - "params": { - "out_channels": (3, 32, 48, 120, 336, 888), - "cfg": _mcfg( - w0=48, wa=20.71, wm=2.65, group_size=24, depth=27, se_ratio=0.25 - ), - }, - }, - "timm-regnety_032": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnety_032"], - "params": { - "out_channels": (3, 32, 72, 216, 576, 1512), - "cfg": _mcfg( - w0=80, wa=42.63, wm=2.66, group_size=24, depth=21, se_ratio=0.25 - ), - }, - }, - "timm-regnety_040": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnety_040"], - "params": { - "out_channels": (3, 32, 128, 192, 512, 1088), - "cfg": _mcfg( - w0=96, wa=31.41, wm=2.24, group_size=64, depth=22, se_ratio=0.25 - ), - }, - }, - "timm-regnety_064": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnety_064"], - "params": { - "out_channels": (3, 32, 144, 288, 576, 1296), - "cfg": _mcfg( - w0=112, wa=33.22, wm=2.27, group_size=72, depth=25, se_ratio=0.25 - ), - }, - }, - "timm-regnety_080": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnety_080"], - "params": { - "out_channels": (3, 32, 168, 448, 896, 2016), - "cfg": _mcfg( - w0=192, wa=76.82, wm=2.19, group_size=56, depth=17, se_ratio=0.25 - ), - }, - }, - "timm-regnety_120": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnety_120"], - "params": { - "out_channels": (3, 32, 224, 448, 896, 2240), - "cfg": _mcfg( - w0=168, wa=73.36, wm=2.37, group_size=112, depth=19, se_ratio=0.25 - ), - }, - }, - "timm-regnety_160": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnety_160"], - "params": { - "out_channels": (3, 32, 224, 448, 1232, 3024), - "cfg": _mcfg( - w0=200, wa=106.23, wm=2.48, group_size=112, depth=18, se_ratio=0.25 - ), - }, - }, - "timm-regnety_320": { - "encoder": RegNetEncoder, - "pretrained_settings": pretrained_settings["timm-regnety_320"], - "params": { - "out_channels": (3, 32, 232, 696, 1392, 3712), - "cfg": _mcfg( - w0=232, wa=115.89, wm=2.53, group_size=232, depth=20, se_ratio=0.25 - ), - }, - }, -} diff --git a/segmentation_models_pytorch/encoders/timm_res2net.py b/segmentation_models_pytorch/encoders/timm_res2net.py deleted file mode 100644 index e97043e3..00000000 --- a/segmentation_models_pytorch/encoders/timm_res2net.py +++ /dev/null @@ -1,163 +0,0 @@ -from ._base import EncoderMixin -from timm.models.resnet import ResNet -from timm.models.res2net import Bottle2neck -import torch.nn as nn - - -class Res2NetEncoder(ResNet, EncoderMixin): - def __init__(self, out_channels, depth=5, **kwargs): - super().__init__(**kwargs) - self._depth = depth - self._out_channels = out_channels - self._in_channels = 3 - - del self.fc - del self.global_pool - - def get_stages(self): - return [ - nn.Identity(), - nn.Sequential(self.conv1, self.bn1, self.act1), - nn.Sequential(self.maxpool, self.layer1), - self.layer2, - self.layer3, - self.layer4, - ] - - def make_dilated(self, *args, **kwargs): - raise ValueError("Res2Net encoders do not support dilated mode") - - def forward(self, x): - stages = self.get_stages() - - features = [] - for i in range(self._depth + 1): - x = stages[i](x) - features.append(x) - - return features - - def load_state_dict(self, state_dict, **kwargs): - state_dict.pop("fc.bias", None) - state_dict.pop("fc.weight", None) - super().load_state_dict(state_dict, **kwargs) - - -res2net_weights = { - "timm-res2net50_26w_4s": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_4s-06e79181.pth" # noqa - }, - "timm-res2net50_48w_2s": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_48w_2s-afed724a.pth" # noqa - }, - "timm-res2net50_14w_8s": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_14w_8s-6527dddc.pth" # noqa - }, - "timm-res2net50_26w_6s": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_6s-19041792.pth" # noqa - }, - "timm-res2net50_26w_8s": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_8s-2c7c9f12.pth" # noqa - }, - "timm-res2net101_26w_4s": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net101_26w_4s-02a759a1.pth" # noqa - }, - "timm-res2next50": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next50_4s-6ef7e7bf.pth" # noqa - }, -} - -pretrained_settings = {} -for model_name, sources in res2net_weights.items(): - pretrained_settings[model_name] = {} - for source_name, source_url in sources.items(): - pretrained_settings[model_name][source_name] = { - "url": source_url, - "input_size": [3, 224, 224], - "input_range": [0, 1], - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "num_classes": 1000, - } - - -timm_res2net_encoders = { - "timm-res2net50_26w_4s": { - "encoder": Res2NetEncoder, - "pretrained_settings": pretrained_settings["timm-res2net50_26w_4s"], - "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), - "block": Bottle2neck, - "layers": [3, 4, 6, 3], - "base_width": 26, - "block_args": {"scale": 4}, - }, - }, - "timm-res2net101_26w_4s": { - "encoder": Res2NetEncoder, - "pretrained_settings": pretrained_settings["timm-res2net101_26w_4s"], - "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), - "block": Bottle2neck, - "layers": [3, 4, 23, 3], - "base_width": 26, - "block_args": {"scale": 4}, - }, - }, - "timm-res2net50_26w_6s": { - "encoder": Res2NetEncoder, - "pretrained_settings": pretrained_settings["timm-res2net50_26w_6s"], - "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), - "block": Bottle2neck, - "layers": [3, 4, 6, 3], - "base_width": 26, - "block_args": {"scale": 6}, - }, - }, - "timm-res2net50_26w_8s": { - "encoder": Res2NetEncoder, - "pretrained_settings": pretrained_settings["timm-res2net50_26w_8s"], - "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), - "block": Bottle2neck, - "layers": [3, 4, 6, 3], - "base_width": 26, - "block_args": {"scale": 8}, - }, - }, - "timm-res2net50_48w_2s": { - "encoder": Res2NetEncoder, - "pretrained_settings": pretrained_settings["timm-res2net50_48w_2s"], - "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), - "block": Bottle2neck, - "layers": [3, 4, 6, 3], - "base_width": 48, - "block_args": {"scale": 2}, - }, - }, - "timm-res2net50_14w_8s": { - "encoder": Res2NetEncoder, - "pretrained_settings": pretrained_settings["timm-res2net50_14w_8s"], - "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), - "block": Bottle2neck, - "layers": [3, 4, 6, 3], - "base_width": 14, - "block_args": {"scale": 8}, - }, - }, - "timm-res2next50": { - "encoder": Res2NetEncoder, - "pretrained_settings": pretrained_settings["timm-res2next50"], - "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), - "block": Bottle2neck, - "layers": [3, 4, 6, 3], - "base_width": 4, - "cardinality": 8, - "block_args": {"scale": 4}, - }, - }, -} diff --git a/segmentation_models_pytorch/encoders/timm_resnest.py b/segmentation_models_pytorch/encoders/timm_resnest.py deleted file mode 100644 index 1599b6c8..00000000 --- a/segmentation_models_pytorch/encoders/timm_resnest.py +++ /dev/null @@ -1,208 +0,0 @@ -from ._base import EncoderMixin -from timm.models.resnet import ResNet -from timm.models.resnest import ResNestBottleneck -import torch.nn as nn - - -class ResNestEncoder(ResNet, EncoderMixin): - def __init__(self, out_channels, depth=5, **kwargs): - super().__init__(**kwargs) - self._depth = depth - self._out_channels = out_channels - self._in_channels = 3 - - del self.fc - del self.global_pool - - def get_stages(self): - return [ - nn.Identity(), - nn.Sequential(self.conv1, self.bn1, self.act1), - nn.Sequential(self.maxpool, self.layer1), - self.layer2, - self.layer3, - self.layer4, - ] - - def make_dilated(self, *args, **kwargs): - raise ValueError("ResNest encoders do not support dilated mode") - - def forward(self, x): - stages = self.get_stages() - - features = [] - for i in range(self._depth + 1): - x = stages[i](x) - features.append(x) - - return features - - def load_state_dict(self, state_dict, **kwargs): - state_dict.pop("fc.bias", None) - state_dict.pop("fc.weight", None) - super().load_state_dict(state_dict, **kwargs) - - -resnest_weights = { - "timm-resnest14d": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth" # noqa - }, - "timm-resnest26d": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth" # noqa - }, - "timm-resnest50d": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth" # noqa - }, - "timm-resnest101e": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth" # noqa - }, - "timm-resnest200e": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest200-75117900.pth" # noqa - }, - "timm-resnest269e": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth" # noqa - }, - "timm-resnest50d_4s2x40d": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth" # noqa - }, - "timm-resnest50d_1s4x24d": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth" # noqa - }, -} - -pretrained_settings = {} -for model_name, sources in resnest_weights.items(): - pretrained_settings[model_name] = {} - for source_name, source_url in sources.items(): - pretrained_settings[model_name][source_name] = { - "url": source_url, - "input_size": [3, 224, 224], - "input_range": [0, 1], - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "num_classes": 1000, - } - - -timm_resnest_encoders = { - "timm-resnest14d": { - "encoder": ResNestEncoder, - "pretrained_settings": pretrained_settings["timm-resnest14d"], - "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), - "block": ResNestBottleneck, - "layers": [1, 1, 1, 1], - "stem_type": "deep", - "stem_width": 32, - "avg_down": True, - "base_width": 64, - "cardinality": 1, - "block_args": {"radix": 2, "avd": True, "avd_first": False}, - }, - }, - "timm-resnest26d": { - "encoder": ResNestEncoder, - "pretrained_settings": pretrained_settings["timm-resnest26d"], - "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), - "block": ResNestBottleneck, - "layers": [2, 2, 2, 2], - "stem_type": "deep", - "stem_width": 32, - "avg_down": True, - "base_width": 64, - "cardinality": 1, - "block_args": {"radix": 2, "avd": True, "avd_first": False}, - }, - }, - "timm-resnest50d": { - "encoder": ResNestEncoder, - "pretrained_settings": pretrained_settings["timm-resnest50d"], - "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), - "block": ResNestBottleneck, - "layers": [3, 4, 6, 3], - "stem_type": "deep", - "stem_width": 32, - "avg_down": True, - "base_width": 64, - "cardinality": 1, - "block_args": {"radix": 2, "avd": True, "avd_first": False}, - }, - }, - "timm-resnest101e": { - "encoder": ResNestEncoder, - "pretrained_settings": pretrained_settings["timm-resnest101e"], - "params": { - "out_channels": (3, 128, 256, 512, 1024, 2048), - "block": ResNestBottleneck, - "layers": [3, 4, 23, 3], - "stem_type": "deep", - "stem_width": 64, - "avg_down": True, - "base_width": 64, - "cardinality": 1, - "block_args": {"radix": 2, "avd": True, "avd_first": False}, - }, - }, - "timm-resnest200e": { - "encoder": ResNestEncoder, - "pretrained_settings": pretrained_settings["timm-resnest200e"], - "params": { - "out_channels": (3, 128, 256, 512, 1024, 2048), - "block": ResNestBottleneck, - "layers": [3, 24, 36, 3], - "stem_type": "deep", - "stem_width": 64, - "avg_down": True, - "base_width": 64, - "cardinality": 1, - "block_args": {"radix": 2, "avd": True, "avd_first": False}, - }, - }, - "timm-resnest269e": { - "encoder": ResNestEncoder, - "pretrained_settings": pretrained_settings["timm-resnest269e"], - "params": { - "out_channels": (3, 128, 256, 512, 1024, 2048), - "block": ResNestBottleneck, - "layers": [3, 30, 48, 8], - "stem_type": "deep", - "stem_width": 64, - "avg_down": True, - "base_width": 64, - "cardinality": 1, - "block_args": {"radix": 2, "avd": True, "avd_first": False}, - }, - }, - "timm-resnest50d_4s2x40d": { - "encoder": ResNestEncoder, - "pretrained_settings": pretrained_settings["timm-resnest50d_4s2x40d"], - "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), - "block": ResNestBottleneck, - "layers": [3, 4, 6, 3], - "stem_type": "deep", - "stem_width": 32, - "avg_down": True, - "base_width": 40, - "cardinality": 2, - "block_args": {"radix": 4, "avd": True, "avd_first": True}, - }, - }, - "timm-resnest50d_1s4x24d": { - "encoder": ResNestEncoder, - "pretrained_settings": pretrained_settings["timm-resnest50d_1s4x24d"], - "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), - "block": ResNestBottleneck, - "layers": [3, 4, 6, 3], - "stem_type": "deep", - "stem_width": 32, - "avg_down": True, - "base_width": 24, - "cardinality": 4, - "block_args": {"radix": 1, "avd": True, "avd_first": True}, - }, - }, -} diff --git a/segmentation_models_pytorch/encoders/timm_sknet.py b/segmentation_models_pytorch/encoders/timm_sknet.py index 14d6d2b0..49fda0e8 100644 --- a/segmentation_models_pytorch/encoders/timm_sknet.py +++ b/segmentation_models_pytorch/encoders/timm_sknet.py @@ -1,35 +1,63 @@ -from ._base import EncoderMixin +import torch +from typing import Dict, List, Sequence from timm.models.resnet import ResNet from timm.models.sknet import SelectiveKernelBottleneck, SelectiveKernelBasic -import torch.nn as nn + +from ._base import EncoderMixin class SkNetEncoder(ResNet, EncoderMixin): - def __init__(self, out_channels, depth=5, **kwargs): + def __init__( + self, + out_channels: List[int], + depth: int = 5, + output_stride: int = 32, + **kwargs, + ): + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) super().__init__(**kwargs) + self._depth = depth - self._out_channels = out_channels self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride del self.fc del self.global_pool - def get_stages(self): - return [ - nn.Identity(), - nn.Sequential(self.conv1, self.bn1, self.act1), - nn.Sequential(self.maxpool, self.layer1), - self.layer2, - self.layer3, - self.layer4, - ] - - def forward(self, x): - stages = self.get_stages() - - features = [] - for i in range(self._depth + 1): - x = stages[i](x) + def get_stages(self) -> Dict[int, Sequence[torch.nn.Module]]: + return { + 16: [self.layer3], + 32: [self.layer4], + } + + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + features = [x] + + if self._depth >= 1: + x = self.conv1(x) + x = self.bn1(x) + x = self.act1(x) + features.append(x) + + if self._depth >= 2: + x = self.maxpool(x) + x = self.layer1(x) + features.append(x) + + if self._depth >= 3: + x = self.layer2(x) + features.append(x) + + if self._depth >= 4: + x = self.layer3(x) + features.append(x) + + if self._depth >= 5: + x = self.layer4(x) features.append(x) return features @@ -40,37 +68,17 @@ def load_state_dict(self, state_dict, **kwargs): super().load_state_dict(state_dict, **kwargs) -sknet_weights = { - "timm-skresnet18": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth" # noqa - }, - "timm-skresnet34": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth" # noqa - }, - "timm-skresnext50_32x4d": { - "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth" # noqa - }, -} - -pretrained_settings = {} -for model_name, sources in sknet_weights.items(): - pretrained_settings[model_name] = {} - for source_name, source_url in sources.items(): - pretrained_settings[model_name][source_name] = { - "url": source_url, - "input_size": [3, 224, 224], - "input_range": [0, 1], - "mean": [0.485, 0.456, 0.406], - "std": [0.229, 0.224, 0.225], - "num_classes": 1000, - } - timm_sknet_encoders = { "timm-skresnet18": { "encoder": SkNetEncoder, - "pretrained_settings": pretrained_settings["timm-skresnet18"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/timm-skresnet18.imagenet", + "revision": "6c97652bb744d89177b68274d2fda3923a7d1f95", + }, + }, "params": { - "out_channels": (3, 64, 64, 128, 256, 512), + "out_channels": [3, 64, 64, 128, 256, 512], "block": SelectiveKernelBasic, "layers": [2, 2, 2, 2], "zero_init_last": False, @@ -79,9 +87,14 @@ def load_state_dict(self, state_dict, **kwargs): }, "timm-skresnet34": { "encoder": SkNetEncoder, - "pretrained_settings": pretrained_settings["timm-skresnet34"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/timm-skresnet34.imagenet", + "revision": "2367796924a8182cc835ef6b5dc303917f923f99", + }, + }, "params": { - "out_channels": (3, 64, 64, 128, 256, 512), + "out_channels": [3, 64, 64, 128, 256, 512], "block": SelectiveKernelBasic, "layers": [3, 4, 6, 3], "zero_init_last": False, @@ -90,9 +103,14 @@ def load_state_dict(self, state_dict, **kwargs): }, "timm-skresnext50_32x4d": { "encoder": SkNetEncoder, - "pretrained_settings": pretrained_settings["timm-skresnext50_32x4d"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/timm-skresnext50_32x4d.imagenet", + "revision": "50207e407cc4c6ea9e6872963db6844ca7b7b9de", + }, + }, "params": { - "out_channels": (3, 64, 256, 512, 1024, 2048), + "out_channels": [3, 64, 256, 512, 1024, 2048], "block": SelectiveKernelBottleneck, "layers": [3, 4, 6, 3], "zero_init_last": False, diff --git a/segmentation_models_pytorch/encoders/timm_universal.py b/segmentation_models_pytorch/encoders/timm_universal.py index 9bdcb188..138b2ef8 100644 --- a/segmentation_models_pytorch/encoders/timm_universal.py +++ b/segmentation_models_pytorch/encoders/timm_universal.py @@ -44,6 +44,10 @@ class TimmUniversalEncoder(nn.Module): - Compatible with convolutional and transformer-like backbones. """ + _is_torch_scriptable = True + _is_torch_exportable = True + _is_torch_compilable = True + def __init__( self, name: str, @@ -64,7 +68,15 @@ def __init__( output_stride (int): Desired output stride (default: 32). **kwargs: Additional arguments passed to `timm.create_model`. """ + # At the moment we do not support models with more than 5 stages, + # but can be reconfigured in the future. + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) + super().__init__() + self.name = name # Default model configuration for feature extraction common_kwargs = dict( @@ -118,9 +130,9 @@ def __init__( # Most transformer-like models use out_indices=(0, 1, 2, 3) for depth=5. common_kwargs["out_indices"] = tuple(range(depth - 1)) - self.model = timm.create_model( - name, **_merge_kwargs_no_duplicates(common_kwargs, kwargs) - ) + timm_model_kwargs = _merge_kwargs_no_duplicates(common_kwargs, kwargs) + self.model = timm.create_model(name, **timm_model_kwargs) + # Add a dummy output channel (0) to align with traditional encoder structures. self._out_channels = ( [in_channels] + [0] + self.model.feature_info.channels() @@ -193,7 +205,28 @@ def output_stride(self) -> int: Returns: int: The effective output stride. """ - return min(self._output_stride, 2**self._depth) + return int(min(self._output_stride, 2**self._depth)) + + def load_state_dict(self, state_dict, **kwargs): + # for compatibility of weights for + # timm- ported encoders with TimmUniversalEncoder + patterns = ["regnet", "res2", "resnest", "mobilenetv3", "gernet"] + + is_deprecated_encoder = any( + self.name.startswith(pattern) for pattern in patterns + ) + + if is_deprecated_encoder: + keys = list(state_dict.keys()) + for key in keys: + new_key = key + if not key.startswith("model."): + new_key = "model." + key + if "gernet" in self.name: + new_key = new_key.replace(".stages.", ".stages_") + state_dict[new_key] = state_dict.pop(key) + + return super().load_state_dict(state_dict, **kwargs) def _merge_kwargs_no_duplicates(a: dict[str, Any], b: dict[str, Any]) -> dict[str, Any]: diff --git a/segmentation_models_pytorch/encoders/timm_vit.py b/segmentation_models_pytorch/encoders/timm_vit.py new file mode 100644 index 00000000..5519d897 --- /dev/null +++ b/segmentation_models_pytorch/encoders/timm_vit.py @@ -0,0 +1,191 @@ +from typing import Any, Optional + +import timm +import torch +import torch.nn as nn + +from .timm_universal import _merge_kwargs_no_duplicates + + +def sample_block_indices_uniformly(n: int, total_num_blocks: int) -> list[int]: + """ + Sample N block indices uniformly from the total number of blocks. + """ + return [ + int(total_num_blocks / n * block_depth) - 1 for block_depth in range(1, n + 1) + ] + + +def validate_output_indices( + output_indices: list[int], model_num_blocks: int, depth: int +): + """ + Validate the output indices are within the valid range of the model and the + length of the output indices is equal to the depth of the encoder. + """ + for output_index in output_indices: + if output_index < -model_num_blocks or output_index >= model_num_blocks: + raise ValueError( + f"Output indices for feature extraction should be in range " + f"[-{model_num_blocks}, {model_num_blocks}), because the model has {model_num_blocks} blocks, " + f"got index = {output_index}." + ) + + +def preprocess_output_indices( + output_indices: Optional[list[int]], model_num_blocks: int, depth: int +) -> list[int]: + """ + Preprocess the output indices for the encoder. + """ + + # Refine encoder output indices + if output_indices is None: + output_indices = sample_block_indices_uniformly(depth, model_num_blocks) + elif not isinstance(output_indices, (list, tuple)): + raise ValueError( + f"`output_indices` for encoder should be a list/tuple/None, got {type(output_indices)}" + ) + validate_output_indices(output_indices, model_num_blocks, depth) + + return output_indices + + +class TimmViTEncoder(nn.Module): + """ + A universal encoder leveraging the `timm` library for feature extraction from + ViT style models + + Features: + - Supports configurable depth. + - Ensures consistent multi-level feature extraction across all ViT models. + """ + + # prefix tokens are not supported for scripting + _is_torch_scriptable = False + _is_torch_exportable = True + _is_torch_compilable = True + + def __init__( + self, + name: str, + pretrained: bool = True, + in_channels: int = 3, + depth: int = 4, + output_indices: Optional[list[int]] = None, + **kwargs: dict[str, Any], + ): + """ + Initialize the encoder. + + Args: + name (str): ViT model name to load from `timm`. + pretrained (bool): Load pretrained weights (default: True). + in_channels (int): Number of input channels (default: 3 for RGB). + depth (int): Number of feature stages to extract (default: 4). + output_indices (Optional[list[int] | int]): Indices of blocks in the model to be used for feature extraction. + **kwargs: Additional arguments passed to `timm.create_model`. + """ + super().__init__() + + if depth < 1: + raise ValueError(f"`encoder_depth` should be greater than 1, got {depth}.") + + # Output stride validation needed for smp encoder test consistency + output_stride = kwargs.pop("output_stride", None) + if output_stride is not None: + raise ValueError("Dilated mode not supported, set output stride to None") + + if isinstance(output_indices, (list, tuple)) and len(output_indices) != depth: + raise ValueError( + f"Length of output indices for feature extraction should be equal to the depth of the encoder " + f"architecture, got output indices length - {len(output_indices)}, encoder depth - {depth}" + ) + + self.name = name + + # Load a timm model + encoder_kwargs = dict(in_chans=in_channels, pretrained=pretrained) + encoder_kwargs = _merge_kwargs_no_duplicates(encoder_kwargs, kwargs) + self.model = timm.create_model(name, **encoder_kwargs) + + if not hasattr(self.model, "forward_intermediates"): + raise ValueError( + f"Encoder `{name}` does not support `forward_intermediates` for feature extraction. " + f"Please update `timm` or use another encoder." + ) + + # Get all the necessary information about the model + feature_info = self.model.feature_info + + # Additional checks + model_num_blocks = len(feature_info) + if depth > model_num_blocks: + raise ValueError( + f"Depth of the encoder cannot exceed the number of blocks in the model " + f"got {depth} depth, model has {model_num_blocks} blocks" + ) + + # Preprocess the output indices, uniformly sample from model_num_blocks if None + output_indices = preprocess_output_indices( + output_indices, model_num_blocks, depth + ) + + # Private attributes for model forward + self._num_prefix_tokens = getattr(self.model, "num_prefix_tokens", 0) + self._has_cls_token = getattr(self.model, "has_cls_token", False) + self._output_indices = output_indices + + # Public attributes + self.output_strides = [feature_info[i]["reduction"] for i in output_indices] + self.output_stride = self.output_strides[-1] + self.out_channels = [feature_info[i]["num_chs"] for i in output_indices] + self.has_prefix_tokens = self._num_prefix_tokens > 0 + self.input_size = self.model.pretrained_cfg.get("input_size", None) + self.is_fixed_input_size = self.model.pretrained_cfg.get( + "fixed_input_size", False + ) + + def _forward_with_prefix_tokens( + self, x: torch.Tensor + ) -> tuple[list[torch.Tensor], list[torch.Tensor]]: + intermediate_outputs = self.model.forward_intermediates( + x, + indices=self._output_indices, + intermediates_only=True, + return_prefix_tokens=True, + ) + + features = [output[0] for output in intermediate_outputs] + prefix_tokens = [output[1] for output in intermediate_outputs] + + return features, prefix_tokens + + def _forward_without_prefix_tokens(self, x: torch.Tensor) -> list[torch.Tensor]: + features = self.model.forward_intermediates( + x, + indices=self._output_indices, + intermediates_only=True, + ) + return features + + def forward( + self, x: torch.Tensor + ) -> tuple[list[torch.Tensor], list[Optional[torch.Tensor]]]: + """ + Forward pass to extract multi-stage features. + + Args: + x (torch.Tensor): Input tensor of shape (B, C, H, W). + + Returns: + tuple[list[torch.Tensor], list[torch.Tensor]]: Tuple of feature maps and cls tokens (if supported) at different scales. + """ + + if self.has_prefix_tokens: + features, prefix_tokens = self._forward_with_prefix_tokens(x) + else: + features = self._forward_without_prefix_tokens(x) + prefix_tokens = [None] * len(features) + + return features, prefix_tokens diff --git a/segmentation_models_pytorch/encoders/vgg.py b/segmentation_models_pytorch/encoders/vgg.py index cbc602c8..1bb577fe 100644 --- a/segmentation_models_pytorch/encoders/vgg.py +++ b/segmentation_models_pytorch/encoders/vgg.py @@ -23,29 +23,53 @@ depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). """ +import torch import torch.nn as nn + from torchvision.models.vgg import VGG from torchvision.models.vgg import make_layers -from pretrainedmodels.models.torchvision_models import pretrained_settings + +from typing import List, Union from ._base import EncoderMixin # fmt: off cfg = { - 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], - 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], - 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], - 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], + "A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"], + "B": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512, "M"], + "D": [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512, "M"], + "E": [64, 64, "M", 128, 128, "M", 256, 256, 256, 256, "M", 512, 512, 512, 512, "M", 512, 512, 512, 512, "M"], } # fmt: on class VGGEncoder(VGG, EncoderMixin): - def __init__(self, out_channels, config, batch_norm=False, depth=5, **kwargs): + def __init__( + self, + out_channels: List[int], + config: List[Union[int, str]], + batch_norm: bool = False, + depth: int = 5, + output_stride: int = 32, + **kwargs, + ): + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) super().__init__(make_layers(config, batch_norm=batch_norm), **kwargs) - self._out_channels = out_channels + self._depth = depth self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride + self._out_indexes = [ + i - 1 + for i, module in enumerate(self.features) + if isinstance(module, nn.MaxPool2d) + ] + self._out_indexes.append(len(self.features) - 1) + del self.classifier def make_dilated(self, *args, **kwargs): @@ -54,24 +78,23 @@ def make_dilated(self, *args, **kwargs): " operations for downsampling!" ) - def get_stages(self): - stages = [] - stage_modules = [] - for module in self.features: - if isinstance(module, nn.MaxPool2d): - stages.append(nn.Sequential(*stage_modules)) - stage_modules = [] - stage_modules.append(module) - stages.append(nn.Sequential(*stage_modules)) - return stages + def forward(self, x: torch.Tensor) -> List[torch.Tensor]: + features = [] + depth = 0 + + for i, module in enumerate(self.features): + x = module(x) - def forward(self, x): - stages = self.get_stages() + if i in self._out_indexes: + features.append(x) + depth += 1 - features = [] - for i in range(self._depth + 1): - x = stages[i](x) - features.append(x) + # torchscript does not support break in cycle, so we just + # go over all modules and then slice number of features + if not torch.jit.is_scripting() and depth > self._depth: + break + + features = features[: self._depth + 1] return features @@ -83,75 +106,206 @@ def load_state_dict(self, state_dict, **kwargs): super().load_state_dict(state_dict, **kwargs) +pretrained_settings = { + "vgg11": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg11-bbd30ac9.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg11_bn": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg11_bn-6002323d.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg13": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg13-c768596a.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg13_bn": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg13_bn-abd245e5.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg16": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg16-397923af.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg16_bn": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg19": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, + "vgg19_bn": { + "imagenet": { + "url": "https://download.pytorch.org/models/vgg19_bn-c79401a0.pth", + "input_space": "RGB", + "input_size": [3, 224, 224], + "input_range": [0, 1], + "mean": [0.485, 0.456, 0.406], + "std": [0.229, 0.224, 0.225], + "num_classes": 1000, + } + }, +} + vgg_encoders = { "vgg11": { "encoder": VGGEncoder, - "pretrained_settings": pretrained_settings["vgg11"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/vgg11.imagenet", + "revision": "ad8b90e1051c38fdbf399cf5016886a1be357390", + }, + }, "params": { - "out_channels": (64, 128, 256, 512, 512, 512), + "out_channels": [64, 128, 256, 512, 512, 512], "config": cfg["A"], "batch_norm": False, }, }, "vgg11_bn": { "encoder": VGGEncoder, - "pretrained_settings": pretrained_settings["vgg11_bn"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/vgg11_bn.imagenet", + "revision": "59757f9215032c9f092977092d57d26a9df7fd9c", + }, + }, "params": { - "out_channels": (64, 128, 256, 512, 512, 512), + "out_channels": [64, 128, 256, 512, 512, 512], "config": cfg["A"], "batch_norm": True, }, }, "vgg13": { "encoder": VGGEncoder, - "pretrained_settings": pretrained_settings["vgg13"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/vgg13.imagenet", + "revision": "1b70ff2580f101a8007a48b51e2b5d1e5925dc42", + }, + }, "params": { - "out_channels": (64, 128, 256, 512, 512, 512), + "out_channels": [64, 128, 256, 512, 512, 512], "config": cfg["B"], "batch_norm": False, }, }, "vgg13_bn": { "encoder": VGGEncoder, - "pretrained_settings": pretrained_settings["vgg13_bn"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/vgg13_bn.imagenet", + "revision": "9be454515193af6612261b7614fe90607e27b143", + }, + }, "params": { - "out_channels": (64, 128, 256, 512, 512, 512), + "out_channels": [64, 128, 256, 512, 512, 512], "config": cfg["B"], "batch_norm": True, }, }, "vgg16": { "encoder": VGGEncoder, - "pretrained_settings": pretrained_settings["vgg16"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/vgg16.imagenet", + "revision": "49d74b799006ee252b86e25acd6f1fd8ac9a99c1", + }, + }, "params": { - "out_channels": (64, 128, 256, 512, 512, 512), + "out_channels": [64, 128, 256, 512, 512, 512], "config": cfg["D"], "batch_norm": False, }, }, "vgg16_bn": { "encoder": VGGEncoder, - "pretrained_settings": pretrained_settings["vgg16_bn"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/vgg16_bn.imagenet", + "revision": "2c186d02fb519e93219a99a1c2af6295aef0bf0d", + }, + }, "params": { - "out_channels": (64, 128, 256, 512, 512, 512), + "out_channels": [64, 128, 256, 512, 512, 512], "config": cfg["D"], "batch_norm": True, }, }, "vgg19": { "encoder": VGGEncoder, - "pretrained_settings": pretrained_settings["vgg19"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/vgg19.imagenet", + "revision": "2853d00d7bca364dbb98be4d6afa347e5aeec1f6", + }, + }, "params": { - "out_channels": (64, 128, 256, 512, 512, 512), + "out_channels": [64, 128, 256, 512, 512, 512], "config": cfg["E"], "batch_norm": False, }, }, "vgg19_bn": { "encoder": VGGEncoder, - "pretrained_settings": pretrained_settings["vgg19_bn"], + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/vgg19_bn.imagenet", + "revision": "f09a924cb0d201ea6f61601df9559141382271d7", + }, + }, "params": { - "out_channels": (64, 128, 256, 512, 512, 512), + "out_channels": [64, 128, 256, 512, 512, 512], "config": cfg["E"], "batch_norm": True, }, diff --git a/segmentation_models_pytorch/encoders/xception.py b/segmentation_models_pytorch/encoders/xception.py index c8c476ce..af3a26d4 100644 --- a/segmentation_models_pytorch/encoders/xception.py +++ b/segmentation_models_pytorch/encoders/xception.py @@ -1,18 +1,28 @@ -import torch.nn as nn - -from pretrainedmodels.models.xception import pretrained_settings -from pretrainedmodels.models.xception import Xception +from typing import List from ._base import EncoderMixin +from ._xception import Xception class XceptionEncoder(Xception, EncoderMixin): - def __init__(self, out_channels, *args, depth=5, **kwargs): + def __init__( + self, + out_channels: List[int], + *args, + depth: int = 5, + output_stride: int = 32, + **kwargs, + ): + if depth > 5 or depth < 1: + raise ValueError( + f"{self.__class__.__name__} depth should be in range [1, 5], got {depth}" + ) super().__init__(*args, **kwargs) - self._out_channels = out_channels self._depth = depth self._in_channels = 3 + self._out_channels = out_channels + self._output_stride = output_stride # modify padding to maintain output shape self.conv1.padding = (1, 1) @@ -26,36 +36,45 @@ def make_dilated(self, *args, **kwargs): "due to pooling operation for downsampling!" ) - def get_stages(self): - return [ - nn.Identity(), - nn.Sequential( - self.conv1, self.bn1, self.relu, self.conv2, self.bn2, self.relu - ), - self.block1, - self.block2, - nn.Sequential( - self.block3, - self.block4, - self.block5, - self.block6, - self.block7, - self.block8, - self.block9, - self.block10, - self.block11, - ), - nn.Sequential( - self.block12, self.conv3, self.bn3, self.relu, self.conv4, self.bn4 - ), - ] - def forward(self, x): - stages = self.get_stages() + features = [x] + + if self._depth >= 1: + x = self.conv1(x) + x = self.bn1(x) + x = self.relu1(x) + x = self.conv2(x) + x = self.bn2(x) + x = self.relu2(x) + features.append(x) + + if self._depth >= 2: + x = self.block1(x) + features.append(x) + + if self._depth >= 3: + x = self.block2(x) + features.append(x) + + if self._depth >= 4: + x = self.block3(x) + x = self.block4(x) + x = self.block5(x) + x = self.block6(x) + x = self.block7(x) + x = self.block8(x) + x = self.block9(x) + x = self.block10(x) + x = self.block11(x) + features.append(x) - features = [] - for i in range(self._depth + 1): - x = stages[i](x) + if self._depth >= 5: + x = self.block12(x) + x = self.conv3(x) + x = self.bn3(x) + x = self.relu3(x) + x = self.conv4(x) + x = self.bn4(x) features.append(x) return features @@ -71,7 +90,12 @@ def load_state_dict(self, state_dict): xception_encoders = { "xception": { "encoder": XceptionEncoder, - "pretrained_settings": pretrained_settings["xception"], - "params": {"out_channels": (3, 64, 128, 256, 728, 2048)}, + "pretrained_settings": { + "imagenet": { + "repo_id": "smp-hub/xception.imagenet", + "revision": "01cfaf27c11353b1f0c578e7e26d2c000ea91049", + }, + }, + "params": {"out_channels": [3, 64, 128, 256, 728, 2048]}, } } diff --git a/segmentation_models_pytorch/losses/dice.py b/segmentation_models_pytorch/losses/dice.py index d9283161..e660b740 100644 --- a/segmentation_models_pytorch/losses/dice.py +++ b/segmentation_models_pytorch/losses/dice.py @@ -44,9 +44,9 @@ def __init__( super(DiceLoss, self).__init__() self.mode = mode if classes is not None: - assert ( - mode != BINARY_MODE - ), "Masking classes is not supported with mode=binary" + assert mode != BINARY_MODE, ( + "Masking classes is not supported with mode=binary" + ) classes = to_tensor(classes, dtype=torch.long) self.classes = classes @@ -73,8 +73,8 @@ def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: dims = (0, 2) if self.mode == BINARY_MODE: - y_true = y_true.view(bs, 1, -1) - y_pred = y_pred.view(bs, 1, -1) + y_true = y_true.reshape(bs, 1, -1) + y_pred = y_pred.reshape(bs, 1, -1) if self.ignore_index is not None: mask = y_true != self.ignore_index @@ -82,8 +82,8 @@ def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: y_true = y_true * mask if self.mode == MULTICLASS_MODE: - y_true = y_true.view(bs, -1) - y_pred = y_pred.view(bs, num_classes, -1) + y_true = y_true.reshape(bs, -1) + y_pred = y_pred.reshape(bs, num_classes, -1) if self.ignore_index is not None: mask = y_true != self.ignore_index @@ -98,8 +98,8 @@ def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: y_true = y_true.permute(0, 2, 1) # N, C, H*W if self.mode == MULTILABEL_MODE: - y_true = y_true.view(bs, num_classes, -1) - y_pred = y_pred.view(bs, num_classes, -1) + y_true = y_true.reshape(bs, num_classes, -1) + y_pred = y_pred.reshape(bs, num_classes, -1) if self.ignore_index is not None: mask = y_true != self.ignore_index diff --git a/segmentation_models_pytorch/losses/focal.py b/segmentation_models_pytorch/losses/focal.py index 0e055162..3beb9f34 100644 --- a/segmentation_models_pytorch/losses/focal.py +++ b/segmentation_models_pytorch/losses/focal.py @@ -45,6 +45,7 @@ def __init__( self.mode = mode self.ignore_index = ignore_index + self.reduction = reduction self.focal_loss_fn = partial( focal_loss_with_logits, alpha=alpha, @@ -56,8 +57,8 @@ def __init__( def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: if self.mode in {BINARY_MODE, MULTILABEL_MODE}: - y_true = y_true.view(-1) - y_pred = y_pred.view(-1) + y_true = y_true.reshape(-1) + y_pred = y_pred.reshape(-1) if self.ignore_index is not None: # Filter predictions with ignore label from loss computation diff --git a/segmentation_models_pytorch/losses/jaccard.py b/segmentation_models_pytorch/losses/jaccard.py index d6aba280..0b7748f0 100644 --- a/segmentation_models_pytorch/losses/jaccard.py +++ b/segmentation_models_pytorch/losses/jaccard.py @@ -17,6 +17,7 @@ def __init__( log_loss: bool = False, from_logits: bool = True, smooth: float = 0.0, + ignore_index: Optional[int] = None, eps: float = 1e-7, ): """Jaccard loss for image segmentation task. @@ -43,14 +44,15 @@ def __init__( self.mode = mode if classes is not None: - assert ( - mode != BINARY_MODE - ), "Masking classes is not supported with mode=binary" + assert mode != BINARY_MODE, ( + "Masking classes is not supported with mode=binary" + ) classes = to_tensor(classes, dtype=torch.long) self.classes = classes self.from_logits = from_logits self.smooth = smooth + self.ignore_index = ignore_index self.eps = eps self.log_loss = log_loss @@ -71,19 +73,38 @@ def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: dims = (0, 2) if self.mode == BINARY_MODE: - y_true = y_true.view(bs, 1, -1) - y_pred = y_pred.view(bs, 1, -1) + y_true = y_true.reshape(bs, 1, -1) + y_pred = y_pred.reshape(bs, 1, -1) + + if self.ignore_index is not None: + mask = y_true != self.ignore_index + y_pred = y_pred * mask + y_true = y_true * mask if self.mode == MULTICLASS_MODE: - y_true = y_true.view(bs, -1) - y_pred = y_pred.view(bs, num_classes, -1) + y_true = y_true.reshape(bs, -1) + y_pred = y_pred.reshape(bs, num_classes, -1) + + if self.ignore_index is not None: + mask = y_true != self.ignore_index + y_pred = y_pred * mask.unsqueeze(1) - y_true = F.one_hot(y_true, num_classes) # N,H*W -> N,H*W, C - y_true = y_true.permute(0, 2, 1) # H, C, H*W + y_true = F.one_hot( + (y_true * mask).to(torch.long), num_classes + ) # N,H*W -> N,H*W, C + y_true = y_true.permute(0, 2, 1) * mask.unsqueeze(1) # N, C, H*W + else: + y_true = F.one_hot(y_true, num_classes) # N,H*W -> N,H*W, C + y_true = y_true.permute(0, 2, 1) # N, C, H*W if self.mode == MULTILABEL_MODE: - y_true = y_true.view(bs, num_classes, -1) - y_pred = y_pred.view(bs, num_classes, -1) + y_true = y_true.reshape(bs, num_classes, -1) + y_pred = y_pred.reshape(bs, num_classes, -1) + + if self.ignore_index is not None: + mask = y_true != self.ignore_index + y_pred = y_pred * mask + y_true = y_true * mask scores = soft_jaccard_score( y_pred, diff --git a/segmentation_models_pytorch/losses/lovasz.py b/segmentation_models_pytorch/losses/lovasz.py index 8bc35967..6dff5858 100644 --- a/segmentation_models_pytorch/losses/lovasz.py +++ b/segmentation_models_pytorch/losses/lovasz.py @@ -77,8 +77,8 @@ def _flatten_binary_scores(scores, labels, ignore=None): """Flattens predictions in the batch (binary case) Remove labels equal to 'ignore' """ - scores = scores.view(-1) - labels = labels.view(-1) + scores = scores.reshape(-1) + labels = labels.reshape(-1) if ignore is None: return scores, labels valid = labels != ignore @@ -151,13 +151,13 @@ def _flatten_probas(probas, labels, ignore=None): if probas.dim() == 3: # assumes output of a sigmoid layer B, H, W = probas.size() - probas = probas.view(B, 1, H, W) + probas = probas.reshape(B, 1, H, W) C = probas.size(1) probas = torch.movedim(probas, 1, -1) # [B, C, Di, Dj, ...] -> [B, Di, Dj, ..., C] - probas = probas.contiguous().view(-1, C) # [P, C] + probas = probas.reshape(-1, C) # [P, C] - labels = labels.view(-1) + labels = labels.reshape(-1) if ignore is None: return probas, labels valid = labels != ignore diff --git a/segmentation_models_pytorch/losses/mcc.py b/segmentation_models_pytorch/losses/mcc.py index ebd7d669..65e47352 100644 --- a/segmentation_models_pytorch/losses/mcc.py +++ b/segmentation_models_pytorch/losses/mcc.py @@ -29,8 +29,8 @@ def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: bs = y_true.shape[0] - y_true = y_true.view(bs, 1, -1) - y_pred = y_pred.view(bs, 1, -1) + y_true = y_true.reshape(bs, 1, -1) + y_pred = y_pred.reshape(bs, 1, -1) tp = torch.sum(torch.mul(y_pred, y_true)) + self.eps tn = torch.sum(torch.mul((1 - y_pred), (1 - y_true))) + self.eps diff --git a/segmentation_models_pytorch/metrics/functional.py b/segmentation_models_pytorch/metrics/functional.py index c0755787..5fd75cad 100644 --- a/segmentation_models_pytorch/metrics/functional.py +++ b/segmentation_models_pytorch/metrics/functional.py @@ -175,7 +175,7 @@ def get_stats( return tp, fp, fn, tn -@torch.no_grad() +@torch.inference_mode() def _get_stats_multiclass( output: torch.LongTensor, target: torch.LongTensor, @@ -221,7 +221,7 @@ def _get_stats_multiclass( return tp_count, fp_count, fn_count, tn_count -@torch.no_grad() +@torch.inference_mode() def _get_stats_multilabel( output: torch.LongTensor, target: torch.LongTensor ) -> Tuple[torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor]: diff --git a/segmentation_models_pytorch/utils/train.py b/segmentation_models_pytorch/utils/train.py index 8c087c6b..a7b8e63b 100644 --- a/segmentation_models_pytorch/utils/train.py +++ b/segmentation_models_pytorch/utils/train.py @@ -110,7 +110,7 @@ def on_epoch_start(self): self.model.eval() def batch_update(self, x, y): - with torch.no_grad(): + with torch.inference_mode(): prediction = self.model.forward(x) loss = self.loss(prediction, y) return loss, prediction diff --git a/tests/base/test_modules.py b/tests/base/test_modules.py new file mode 100644 index 00000000..5afa8e4f --- /dev/null +++ b/tests/base/test_modules.py @@ -0,0 +1,64 @@ +import pytest +from torch import nn +from segmentation_models_pytorch.base.modules import Conv2dReLU + + +def test_conv2drelu_batchnorm(): + module = Conv2dReLU(3, 16, kernel_size=3, padding=1, use_norm="batchnorm") + + assert isinstance(module[0], nn.Conv2d) + assert isinstance(module[1], nn.BatchNorm2d) + assert isinstance(module[2], nn.ReLU) + + +def test_conv2drelu_batchnorm_with_keywords(): + module = Conv2dReLU( + 3, + 16, + kernel_size=3, + padding=1, + use_norm={"type": "batchnorm", "momentum": 1e-4, "affine": False}, + ) + + assert isinstance(module[0], nn.Conv2d) + assert isinstance(module[1], nn.BatchNorm2d) + assert module[1].momentum == 1e-4 and module[1].affine is False + assert isinstance(module[2], nn.ReLU) + + +def test_conv2drelu_identity(): + module = Conv2dReLU(3, 16, kernel_size=3, padding=1, use_norm="identity") + + assert isinstance(module[0], nn.Conv2d) + assert isinstance(module[1], nn.Identity) + assert isinstance(module[2], nn.ReLU) + + +def test_conv2drelu_layernorm(): + module = Conv2dReLU(3, 16, kernel_size=3, padding=1, use_norm="layernorm") + + assert isinstance(module[0], nn.Conv2d) + assert isinstance(module[1], nn.LayerNorm) + assert isinstance(module[2], nn.ReLU) + + +def test_conv2drelu_instancenorm(): + module = Conv2dReLU(3, 16, kernel_size=3, padding=1, use_norm="instancenorm") + + assert isinstance(module[0], nn.Conv2d) + assert isinstance(module[1], nn.InstanceNorm2d) + assert isinstance(module[2], nn.ReLU) + + +def test_conv2drelu_inplace(): + try: + from inplace_abn import InPlaceABN + except ImportError: + pytest.skip("InPlaceABN is not installed") + + module = Conv2dReLU(3, 16, kernel_size=3, padding=1, use_norm="inplace") + + assert len(module) == 3 + assert isinstance(module[0], nn.Conv2d) + assert isinstance(module[1], InPlaceABN) + assert isinstance(module[2], nn.Identity) diff --git a/tests/conftest.py b/tests/conftest.py new file mode 100644 index 00000000..688fd00b --- /dev/null +++ b/tests/conftest.py @@ -0,0 +1,16 @@ +def pytest_addoption(parser): + parser.addoption( + "--non-marked-only", action="store_true", help="Run only non-marked tests" + ) + + +def pytest_collection_modifyitems(config, items): + if config.getoption("--non-marked-only"): + non_marked_items = [] + for item in items: + # Check if the test has no marks + if not item.own_markers: + non_marked_items.append(item) + + # Update the test collection to only include non-marked tests + items[:] = non_marked_items diff --git a/tests/encoders/base.py b/tests/encoders/base.py index 39cd4164..b18be2a9 100644 --- a/tests/encoders/base.py +++ b/tests/encoders/base.py @@ -1,14 +1,22 @@ +import pytest import unittest import torch import segmentation_models_pytorch as smp from functools import lru_cache -from tests.utils import default_device +from tests.utils import ( + default_device, + check_run_test_on_diff_or_main, + requires_torch_greater_or_equal, +) class BaseEncoderTester(unittest.TestCase): encoder_names = [] + # some tests might be slow, running them only on diff + files_for_diff = [] + # standard encoder configuration num_output_features = 6 output_strides = [1, 2, 4, 8, 16, 32] @@ -25,8 +33,15 @@ class BaseEncoderTester(unittest.TestCase): depth_to_test = [3, 4, 5] strides_to_test = [8, 16] # 32 is a default one + def get_tiny_encoder(self): + return smp.encoders.get_encoder(self.encoder_names[0], encoder_weights=None) + @lru_cache - def _get_sample(self, batch_size=1, num_channels=3, height=32, width=32): + def _get_sample(self, batch_size=None, num_channels=None, height=None, width=None): + batch_size = batch_size or self.default_batch_size + num_channels = num_channels or self.default_num_channels + height = height or self.default_height + width = width or self.default_width return torch.rand(batch_size, num_channels, height, width) def get_features_output_strides(self, sample, features): @@ -36,12 +51,7 @@ def get_features_output_strides(self, sample, features): return height_strides, width_strides def test_forward_backward(self): - sample = self._get_sample( - batch_size=self.default_batch_size, - num_channels=self.default_num_channels, - height=self.default_height, - width=self.default_width, - ).to(default_device) + sample = self._get_sample().to(default_device) for encoder_name in self.encoder_names: with self.subTest(encoder_name=encoder_name): # init encoder @@ -68,12 +78,7 @@ def test_in_channels(self): ] for encoder_name, in_channels in cases: - sample = self._get_sample( - batch_size=self.default_batch_size, - num_channels=in_channels, - height=self.default_height, - width=self.default_width, - ).to(default_device) + sample = self._get_sample(num_channels=in_channels).to(default_device) with self.subTest(encoder_name=encoder_name, in_channels=in_channels): encoder = smp.encoders.get_encoder( @@ -82,16 +87,11 @@ def test_in_channels(self): encoder.eval() # forward - with torch.no_grad(): + with torch.inference_mode(): encoder.forward(sample) def test_depth(self): - sample = self._get_sample( - batch_size=self.default_batch_size, - num_channels=self.default_num_channels, - height=self.default_height, - width=self.default_width, - ).to(default_device) + sample = self._get_sample().to(default_device) cases = [ (encoder_name, depth) @@ -110,7 +110,7 @@ def test_depth(self): encoder.eval() # forward - with torch.no_grad(): + with torch.inference_mode(): features = encoder.forward(sample) # check number of features @@ -127,12 +127,12 @@ def test_depth(self): self.assertEqual( height_strides, self.output_strides[: depth + 1], - f"Encoder `{encoder_name}` should have output strides {self.output_strides[:depth + 1]}, but has {height_strides}", + f"Encoder `{encoder_name}` should have output strides {self.output_strides[: depth + 1]}, but has {height_strides}", ) self.assertEqual( width_strides, self.output_strides[: depth + 1], - f"Encoder `{encoder_name}` should have output strides {self.output_strides[:depth + 1]}, but has {width_strides}", + f"Encoder `{encoder_name}` should have output strides {self.output_strides[: depth + 1]}, but has {width_strides}", ) # check encoder output stride property @@ -149,13 +149,14 @@ def test_depth(self): f"Encoder `{encoder_name}` should have {depth + 1} out_channels, but has {len(encoder.out_channels)}", ) + def test_invalid_depth(self): + with self.assertRaises(ValueError): + smp.encoders.get_encoder(self.encoder_names[0], depth=6) + with self.assertRaises(ValueError): + smp.encoders.get_encoder(self.encoder_names[0], depth=0) + def test_dilated(self): - sample = self._get_sample( - batch_size=self.default_batch_size, - num_channels=self.default_num_channels, - height=self.default_height, - width=self.default_width, - ).to(default_device) + sample = self._get_sample().to(default_device) cases = [ (encoder_name, stride) @@ -187,7 +188,7 @@ def test_dilated(self): encoder.eval() # forward - with torch.no_grad(): + with torch.inference_mode(): features = encoder.forward(sample) height_strides, width_strides = self.get_features_output_strides( @@ -206,3 +207,78 @@ def test_dilated(self): expected_width_strides, f"Encoder `{encoder_name}` should have width output strides {expected_width_strides}, but has {width_strides}", ) + + @pytest.mark.compile + def test_compile(self): + if not check_run_test_on_diff_or_main(self.files_for_diff): + self.skipTest("No diff and not on `main`.") + + sample = self._get_sample().to(default_device) + + encoder = self.get_tiny_encoder() + encoder = encoder.eval().to(default_device) + + torch.compiler.reset() + compiled_encoder = torch.compile( + encoder, fullgraph=True, dynamic=True, backend="eager" + ) + + if encoder._is_torch_compilable: + compiled_encoder(sample) + else: + with self.assertRaises(Exception): + compiled_encoder(sample) + + @pytest.mark.torch_export + @requires_torch_greater_or_equal("2.4.0") + def test_torch_export(self): + if not check_run_test_on_diff_or_main(self.files_for_diff): + self.skipTest("No diff and not on `main`.") + + sample = self._get_sample().to(default_device) + + encoder = self.get_tiny_encoder() + encoder = encoder.eval().to(default_device) + + if not encoder._is_torch_exportable: + with self.assertRaises(Exception): + exported_encoder = torch.export.export( + encoder, + args=(sample,), + strict=True, + ) + return + + exported_encoder = torch.export.export( + encoder, + args=(sample,), + strict=True, + ) + + with torch.inference_mode(): + eager_output = encoder(sample) + exported_output = exported_encoder.module().forward(sample) + + for eager_feature, exported_feature in zip(eager_output, exported_output): + torch.testing.assert_close(eager_feature, exported_feature) + + @pytest.mark.torch_script + def test_torch_script(self): + sample = self._get_sample().to(default_device) + + encoder = self.get_tiny_encoder() + encoder = encoder.eval().to(default_device) + + if not encoder._is_torch_scriptable: + with self.assertRaises(RuntimeError, msg="not torch scriptable"): + scripted_encoder = torch.jit.script(encoder) + return + + scripted_encoder = torch.jit.script(encoder) + + with torch.inference_mode(): + eager_output = encoder(sample) + scripted_output = scripted_encoder(sample) + + for eager_feature, scripted_feature in zip(eager_output, scripted_output): + torch.testing.assert_close(eager_feature, scripted_feature) diff --git a/tests/encoders/test_batchnorm_deprecation.py b/tests/encoders/test_batchnorm_deprecation.py new file mode 100644 index 00000000..ff53563f --- /dev/null +++ b/tests/encoders/test_batchnorm_deprecation.py @@ -0,0 +1,54 @@ +import pytest + +import torch + +import segmentation_models_pytorch as smp +from tests.utils import check_two_models_strictly_equal + + +@pytest.mark.parametrize("model_name", ["unet", "unetplusplus", "linknet", "manet"]) +@pytest.mark.parametrize("decoder_option", [True, False, "inplace"]) +def test_seg_models_before_after_use_norm(model_name, decoder_option): + torch.manual_seed(42) + with pytest.warns(DeprecationWarning): + model_decoder_batchnorm = smp.create_model( + model_name, + "mobilenet_v2", + encoder_weights=None, + decoder_use_batchnorm=decoder_option, + ) + model_decoder_norm = smp.create_model( + model_name, + "mobilenet_v2", + encoder_weights=None, + decoder_use_norm=decoder_option, + ) + + model_decoder_norm.load_state_dict(model_decoder_batchnorm.state_dict()) + + check_two_models_strictly_equal( + model_decoder_batchnorm, model_decoder_norm, torch.rand(1, 3, 224, 224) + ) + + +@pytest.mark.parametrize("decoder_option", [True, False, "inplace"]) +def test_pspnet_before_after_use_norm(decoder_option): + torch.manual_seed(42) + with pytest.warns(DeprecationWarning): + model_decoder_batchnorm = smp.create_model( + "pspnet", + "mobilenet_v2", + encoder_weights=None, + psp_use_batchnorm=decoder_option, + ) + model_decoder_norm = smp.create_model( + "pspnet", + "mobilenet_v2", + encoder_weights=None, + decoder_use_norm=decoder_option, + ) + model_decoder_norm.load_state_dict(model_decoder_batchnorm.state_dict()) + + check_two_models_strictly_equal( + model_decoder_batchnorm, model_decoder_norm, torch.rand(1, 3, 224, 224) + ) diff --git a/tests/encoders/test_common.py b/tests/encoders/test_common.py new file mode 100644 index 00000000..f94fd303 --- /dev/null +++ b/tests/encoders/test_common.py @@ -0,0 +1,15 @@ +import pytest +import segmentation_models_pytorch as smp +from tests.utils import slow_test + + +@pytest.mark.parametrize( + "encoder_name_and_weights", + [ + ("resnet18", "imagenet"), + ], +) +@slow_test +def test_load_encoder_from_hub(encoder_name_and_weights): + encoder_name, weights = encoder_name_and_weights + smp.encoders.get_encoder(encoder_name, weights=weights) diff --git a/tests/encoders/test_pretrainedmodels_encoders.py b/tests/encoders/test_pretrainedmodels_encoders.py index bbde576c..2dcc7a52 100644 --- a/tests/encoders/test_pretrainedmodels_encoders.py +++ b/tests/encoders/test_pretrainedmodels_encoders.py @@ -1,54 +1,45 @@ +import segmentation_models_pytorch as smp + from tests.encoders import base from tests.utils import RUN_ALL_ENCODERS -class TestDenseNetEncoder(base.BaseEncoderTester): - supports_dilated = False - encoder_names = ( - ["densenet121"] - if not RUN_ALL_ENCODERS - else ["densenet121", "densenet169", "densenet161"] - ) - - class TestDPNEncoder(base.BaseEncoderTester): encoder_names = ( ["dpn68"] if not RUN_ALL_ENCODERS else ["dpn68", "dpn68b", "dpn92", "dpn98", "dpn107", "dpn131"] ) + files_for_diff = ["encoders/dpn.py"] + + def get_tiny_encoder(self): + params = { + "stage_idxs": [2, 3, 4, 6], + "out_channels": [3, 2, 70, 134, 262, 518], + "groups": 2, + "inc_sec": (2, 2, 2, 2), + "k_r": 2, + "k_sec": (1, 1, 1, 1), + "num_classes": 1000, + "num_init_features": 2, + "small": True, + "test_time_pool": True, + } + return smp.encoders.dpn.DPNEncoder(**params) class TestInceptionResNetV2Encoder(base.BaseEncoderTester): - supports_dilated = False encoder_names = ( ["inceptionresnetv2"] if not RUN_ALL_ENCODERS else ["inceptionresnetv2"] ) + files_for_diff = ["encoders/inceptionresnetv2.py"] + supports_dilated = False class TestInceptionV4Encoder(base.BaseEncoderTester): - supports_dilated = False encoder_names = ["inceptionv4"] if not RUN_ALL_ENCODERS else ["inceptionv4"] - - -class TestResNetEncoder(base.BaseEncoderTester): - encoder_names = ( - ["resnet18"] - if not RUN_ALL_ENCODERS - else [ - "resnet18", - "resnet34", - "resnet50", - "resnet101", - "resnet152", - "resnext50_32x4d", - "resnext101_32x4d", - "resnext101_32x8d", - "resnext101_32x16d", - "resnext101_32x32d", - "resnext101_32x48d", - ] - ) + files_for_diff = ["encoders/inceptionv4.py"] + supports_dilated = False class TestSeNetEncoder(base.BaseEncoderTester): @@ -64,8 +55,26 @@ class TestSeNetEncoder(base.BaseEncoderTester): # "senet154", # extra large model ] ) + files_for_diff = ["encoders/senet.py"] + + def get_tiny_encoder(self): + params = { + "out_channels": [3, 2, 256, 512, 1024, 2048], + "block": smp.encoders.senet.SEResNetBottleneck, + "layers": [1, 1, 1, 1], + "downsample_kernel_size": 1, + "downsample_padding": 0, + "dropout_p": None, + "groups": 1, + "inplanes": 2, + "input_3x3": False, + "num_classes": 1000, + "reduction": 2, + } + return smp.encoders.senet.SENetEncoder(**params) class TestXceptionEncoder(base.BaseEncoderTester): supports_dilated = False encoder_names = ["xception"] if not RUN_ALL_ENCODERS else ["xception"] + files_for_diff = ["encoders/xception.py"] diff --git a/tests/encoders/test_smp_encoders.py b/tests/encoders/test_smp_encoders.py index 863537bf..29e2f416 100644 --- a/tests/encoders/test_smp_encoders.py +++ b/tests/encoders/test_smp_encoders.py @@ -1,3 +1,6 @@ +import segmentation_models_pytorch as smp +from functools import partial + from tests.encoders import base from tests.utils import RUN_ALL_ENCODERS @@ -14,6 +17,7 @@ class TestMobileoneEncoder(base.BaseEncoderTester): "mobileone_s4", ] ) + files_for_diff = ["encoders/mobileone.py"] class TestMixTransformerEncoder(base.BaseEncoderTester): @@ -22,6 +26,24 @@ class TestMixTransformerEncoder(base.BaseEncoderTester): if not RUN_ALL_ENCODERS else ["mit_b0", "mit_b1", "mit_b2", "mit_b3", "mit_b4", "mit_b5"] ) + files_for_diff = ["encoders/mix_transformer.py"] + + def get_tiny_encoder(self): + params = { + "out_channels": [3, 0, 4, 4, 4, 4], + "patch_size": 4, + "embed_dims": [4, 4, 4, 4], + "num_heads": [1, 1, 1, 1], + "mlp_ratios": [1, 1, 1, 1], + "qkv_bias": True, + "norm_layer": partial(smp.encoders.mix_transformer.LayerNorm, eps=1e-6), + "depths": [1, 1, 1, 1], + "sr_ratios": [8, 4, 2, 1], + "drop_rate": 0.0, + "drop_path_rate": 0.1, + } + + return smp.encoders.mix_transformer.MixVisionTransformerEncoder(**params) class TestEfficientNetEncoder(base.BaseEncoderTester): @@ -39,3 +61,4 @@ class TestEfficientNetEncoder(base.BaseEncoderTester): # "efficientnet-b7", # extra large model ] ) + files_for_diff = ["encoders/efficientnet.py"] diff --git a/tests/encoders/test_timm_ported_encoders.py b/tests/encoders/test_timm_ported_encoders.py index b467c968..3793606e 100644 --- a/tests/encoders/test_timm_ported_encoders.py +++ b/tests/encoders/test_timm_ported_encoders.py @@ -24,6 +24,7 @@ class TestTimmEfficientNetEncoder(base.BaseEncoderTester): "timm-tf_efficientnet_lite4", ] ) + files_for_diff = ["encoders/timm_efficientnet.py"] class TestTimmGERNetEncoder(base.BaseEncoderTester): @@ -33,6 +34,9 @@ class TestTimmGERNetEncoder(base.BaseEncoderTester): else ["timm-gernet_s", "timm-gernet_m", "timm-gernet_l"] ) + def test_compile(self): + self.skipTest("Test to be removed") + class TestTimmMobileNetV3Encoder(base.BaseEncoderTester): encoder_names = ( @@ -48,6 +52,9 @@ class TestTimmMobileNetV3Encoder(base.BaseEncoderTester): ] ) + def test_compile(self): + self.skipTest("Test to be removed") + class TestTimmRegNetEncoder(base.BaseEncoderTester): encoder_names = ( @@ -81,9 +88,11 @@ class TestTimmRegNetEncoder(base.BaseEncoderTester): ] ) + def test_compile(self): + self.skipTest("Test to be removed") + class TestTimmRes2NetEncoder(base.BaseEncoderTester): - supports_dilated = False encoder_names = ( ["timm-res2net50_26w_4s"] if not RUN_ALL_ENCODERS @@ -98,10 +107,12 @@ class TestTimmRes2NetEncoder(base.BaseEncoderTester): ] ) + def test_compile(self): + self.skipTest("Test to be removed") + class TestTimmResnestEncoder(base.BaseEncoderTester): default_batch_size = 2 - supports_dilated = False encoder_names = ( ["timm-resnest14d"] if not RUN_ALL_ENCODERS @@ -117,6 +128,9 @@ class TestTimmResnestEncoder(base.BaseEncoderTester): ] ) + def test_compile(self): + self.skipTest("Test to be removed") + class TestTimmSkNetEncoder(base.BaseEncoderTester): default_batch_size = 2 @@ -129,3 +143,4 @@ class TestTimmSkNetEncoder(base.BaseEncoderTester): "timm-skresnext50_32x4d", ] ) + files_for_diff = ["encoders/timm_sknet.py"] diff --git a/tests/encoders/test_timm_universal.py b/tests/encoders/test_timm_universal.py index 753ee4de..99f8990f 100644 --- a/tests/encoders/test_timm_universal.py +++ b/tests/encoders/test_timm_universal.py @@ -9,8 +9,9 @@ ] if has_timm_test_models: - timm_encoders.append("tu-test_resnet.r160_in1k") + timm_encoders.insert(0, "tu-test_resnet.r160_in1k") class TestTimmUniversalEncoder(base.BaseEncoderTester): encoder_names = timm_encoders + files_for_diff = ["encoders/timm_universal.py"] diff --git a/tests/encoders/test_timm_vit_encoders.py b/tests/encoders/test_timm_vit_encoders.py new file mode 100644 index 00000000..260d926f --- /dev/null +++ b/tests/encoders/test_timm_vit_encoders.py @@ -0,0 +1,236 @@ +import timm +import torch +import pytest + +from segmentation_models_pytorch.encoders import TimmViTEncoder +from segmentation_models_pytorch.encoders.timm_vit import sample_block_indices_uniformly + +from tests.encoders import base +from tests.utils import ( + default_device, + check_run_test_on_diff_or_main, + requires_torch_greater_or_equal, + requires_timm_greater_or_equal, +) + +timm_vit_encoders = ["vit_tiny_patch16_224"] + + +@requires_timm_greater_or_equal("1.0.0") +class TestTimmViTEncoders(base.BaseEncoderTester): + encoder_names = timm_vit_encoders + tiny_encoder_patch_size = 224 + default_height = 224 + default_width = 224 + + files_for_diff = ["encoders/dpt.py"] + + num_output_features = 4 + default_depth = 4 + output_strides = None + supports_dilated = False + + depth_to_test = [2, 3, 4] + + def get_tiny_encoder(self) -> TimmViTEncoder: + return TimmViTEncoder( + name=self.encoder_names[0], + pretrained=False, + depth=self.default_depth, + in_channels=3, + ) + + def get_encoder(self, encoder_name: str, **kwargs) -> TimmViTEncoder: + default_kwargs = { + "name": encoder_name, + "pretrained": False, + "depth": self.default_depth, + "in_channels": 3, + } + default_kwargs.update(kwargs) + return TimmViTEncoder(**default_kwargs) + + def test_forward_backward(self): + for encoder_name in self.encoder_names: + sample = self._get_sample().to(default_device) + with self.subTest(encoder_name=encoder_name): + # init encoder + encoder = self.get_encoder(encoder_name).to(default_device) + + # forward + features, prefix_tokens = encoder.forward(sample) + self.assertEqual( + len(features), + self.num_output_features, + f"Encoder `{encoder_name}` should have {self.num_output_features} output feature maps, but has {len(features)}", + ) + if encoder.has_prefix_tokens: + self.assertEqual( + len(prefix_tokens), + self.num_output_features, + f"Encoder `{encoder_name}` should have {self.num_output_features} prefix tokens, but has {len(prefix_tokens)}", + ) + + # backward + features[-1].mean().backward() + + def test_in_channels(self): + cases = [ + (encoder_name, in_channels) + for encoder_name in self.encoder_names + for in_channels in self.in_channels_to_test + ] + + for encoder_name, in_channels in cases: + sample = self._get_sample(num_channels=in_channels).to(default_device) + + with self.subTest(encoder_name=encoder_name, in_channels=in_channels): + encoder = self.get_encoder(encoder_name, in_channels=in_channels).to( + default_device + ) + encoder.eval() + + # forward + with torch.inference_mode(): + encoder.forward(sample) + + def test_depth(self): + cases = [ + (encoder_name, depth) + for encoder_name in self.encoder_names + for depth in self.depth_to_test + ] + + for encoder_name, depth in cases: + sample = self._get_sample().to(default_device) + with self.subTest(encoder_name=encoder_name, depth=depth): + encoder = self.get_encoder(encoder_name, depth=depth).to(default_device) + encoder.eval() + + # forward + with torch.inference_mode(): + features, _ = encoder.forward(sample) + + # check number of features + self.assertEqual( + len(features), + depth, + f"Encoder `{encoder_name}` should have {depth} output feature maps, but has {len(features)}", + ) + + # check feature strides + height_strides, width_strides = self.get_features_output_strides( + sample, features + ) + + encoder_out_indices = sample_block_indices_uniformly(depth, 12) + feature_info = timm.create_model(model_name=encoder_name).feature_info + output_strides = [ + feature_info[i]["reduction"] for i in encoder_out_indices + ] + + self.assertEqual( + height_strides, + output_strides, + f"Encoder `{encoder_name}` should have output strides {output_strides}, but has {height_strides}", + ) + self.assertEqual( + width_strides, + output_strides, + f"Encoder `{encoder_name}` should have output strides {output_strides}, but has {width_strides}", + ) + + # check encoder output stride property + self.assertEqual( + encoder.output_strides, + output_strides, + f"Encoder `{encoder_name}` last feature map should have output stride {output_strides[depth - 1]}, but has {encoder.output_stride}", + ) + + # check out channels also have proper length + self.assertEqual( + len(encoder.out_channels), + depth, + f"Encoder `{encoder_name}` should have {depth} out_channels, but has {len(encoder.out_channels)}", + ) + + def test_invalid_depth(self): + with self.assertRaises(ValueError): + self.get_encoder(self.encoder_names[0], depth=0) + with self.assertRaises(ValueError): + self.get_encoder(self.encoder_names[0], depth=25) + + def test_invalid_out_indices(self): + # out of range + with self.assertRaises(ValueError): + self.get_encoder(self.encoder_names[0], depth=1, output_indices=-25) + with self.assertRaises(ValueError): + self.get_encoder(self.encoder_names[0], depth=3, output_indices=[1, 2, 25]) + + # invalid length + with self.assertRaises(ValueError): + self.get_encoder( + self.encoder_names[0], + depth=2, + output_indices=[ + 2, + ], + ) + + def test_dilated(self): + pytest.skip("Dilation is not supported for ViT encoders") + + @pytest.mark.compile + def test_compile(self): + if not check_run_test_on_diff_or_main(self.files_for_diff): + self.skipTest("No diff and not on `main`.") + + encoder = self.get_tiny_encoder() + encoder = encoder.eval().to(default_device) + + sample = self._get_sample( + height=self.tiny_encoder_patch_size, width=self.tiny_encoder_patch_size + ).to(default_device) + + torch.compiler.reset() + compiled_encoder = torch.compile( + encoder, fullgraph=True, dynamic=True, backend="eager" + ) + + if encoder._is_torch_compilable: + compiled_encoder(sample) + else: + with self.assertRaises(Exception): + compiled_encoder(sample) + + @pytest.mark.torch_export + @requires_torch_greater_or_equal("2.4.0") + def test_torch_export(self): + if not check_run_test_on_diff_or_main(self.files_for_diff): + self.skipTest("No diff and not on `main`.") + + sample = self._get_sample( + height=self.tiny_encoder_patch_size, width=self.tiny_encoder_patch_size + ).to(default_device) + + encoder = self.get_tiny_encoder() + encoder = encoder.eval().to(default_device) + + exported_encoder = torch.export.export( + encoder, + args=(sample,), + strict=True, + ) + + with torch.inference_mode(): + eager_output = encoder(sample) + exported_output = exported_encoder.module().forward(sample) + + for eager_feature, exported_feature in zip(eager_output, exported_output): + torch.testing.assert_close(eager_feature, exported_feature) + + @pytest.mark.torch_script + def test_torch_script(self): + pytest.skip( + "Encoder with prefix tokens are not supported for scripting, due to poor type handling" + ) diff --git a/tests/encoders/test_torchvision_encoders.py b/tests/encoders/test_torchvision_encoders.py index 99b8b9d5..c0d7c64f 100644 --- a/tests/encoders/test_torchvision_encoders.py +++ b/tests/encoders/test_torchvision_encoders.py @@ -1,9 +1,60 @@ +import segmentation_models_pytorch as smp + from tests.encoders import base from tests.utils import RUN_ALL_ENCODERS -class TestMobileoneEncoder(base.BaseEncoderTester): +class TestResNetEncoder(base.BaseEncoderTester): + encoder_names = ( + ["resnet18"] + if not RUN_ALL_ENCODERS + else [ + "resnet18", + "resnet34", + "resnet50", + "resnet101", + "resnet152", + "resnext50_32x4d", + "resnext101_32x4d", + "resnext101_32x8d", + "resnext101_32x16d", + "resnext101_32x32d", + "resnext101_32x48d", + ] + ) + files_for_diff = ["encoders/resnet.py"] + + def get_tiny_encoder(self): + params = { + "out_channels": [3, 64, 64, 128, 256, 512], + "block": smp.encoders.resnet.BasicBlock, + "layers": [1, 1, 1, 1], + } + return smp.encoders.resnet.ResNetEncoder(**params) + + +class TestDenseNetEncoder(base.BaseEncoderTester): + supports_dilated = False + encoder_names = ( + ["densenet121"] + if not RUN_ALL_ENCODERS + else ["densenet121", "densenet169", "densenet161"] + ) + files_for_diff = ["encoders/densenet.py"] + + def get_tiny_encoder(self): + params = { + "out_channels": [3, 2, 3, 2, 2, 2], + "num_init_features": 2, + "growth_rate": 1, + "block_config": (1, 1, 1, 1), + } + return smp.encoders.densenet.DenseNetEncoder(**params) + + +class TestMobileNetEncoder(base.BaseEncoderTester): encoder_names = ["mobilenet_v2"] if not RUN_ALL_ENCODERS else ["mobilenet_v2"] + files_for_diff = ["encoders/mobilenet.py"] class TestVggEncoder(base.BaseEncoderTester): @@ -22,3 +73,12 @@ class TestVggEncoder(base.BaseEncoderTester): "vgg19_bn", ] ) + files_for_diff = ["encoders/vgg.py"] + + def get_tiny_encoder(self): + params = { + "out_channels": [4, 4, 4, 4, 4, 4], + "config": [4, "M", 4, "M", 4, "M", 4, "M", 4, "M"], + "batch_norm": False, + } + return smp.encoders.vgg.VGGEncoder(**params) diff --git a/tests/models/base.py b/tests/models/base.py index 02e17303..2f317348 100644 --- a/tests/models/base.py +++ b/tests/models/base.py @@ -14,6 +14,7 @@ default_device, slow_test, requires_torch_greater_or_equal, + check_run_test_on_diff_or_main, ) @@ -21,6 +22,7 @@ class BaseModelTester(unittest.TestCase): test_encoder_name = ( "tu-test_resnet.r160_in1k" if has_timm_test_models else "resnet18" ) + files_for_diff = [r".*"] # should be overriden test_model_type = None @@ -31,6 +33,8 @@ class BaseModelTester(unittest.TestCase): default_height = 64 default_width = 64 + compile_dynamic = True + @property def model_type(self): if self.test_model_type is None: @@ -54,19 +58,23 @@ def decoder_channels(self): return None @lru_cache - def _get_sample(self, batch_size=1, num_channels=3, height=32, width=32): + def _get_sample(self, batch_size=None, num_channels=None, height=None, width=None): + batch_size = batch_size or self.default_batch_size + num_channels = num_channels or self.default_num_channels + height = height or self.default_height + width = width or self.default_width return torch.rand(batch_size, num_channels, height, width) + @lru_cache + def get_default_model(self): + model = smp.create_model(self.model_type, self.test_encoder_name) + model = model.to(default_device) + return model + def test_forward_backward(self): - sample = self._get_sample( - batch_size=self.default_batch_size, - num_channels=self.default_num_channels, - height=self.default_height, - width=self.default_width, - ).to(default_device) - model = smp.create_model( - arch=self.model_type, encoder_name=self.test_encoder_name - ).to(default_device) + sample = self._get_sample().to(default_device) + + model = self.get_default_model() # check default in_channels=3 output = model(sample) @@ -91,23 +99,26 @@ def test_in_channels_and_depth_and_out_classes( if self.model_type in ["unet", "unetplusplus", "manet"]: kwargs = {"decoder_channels": self.decoder_channels[:depth]} - model = smp.create_model( - arch=self.model_type, - encoder_name=self.test_encoder_name, - encoder_depth=depth, - in_channels=in_channels, - classes=classes, - **kwargs, - ).to(default_device) - sample = self._get_sample( - batch_size=self.default_batch_size, - num_channels=in_channels, - height=self.default_height, - width=self.default_width, - ).to(default_device) + if self.model_type == "dpt": + kwargs = {"decoder_intermediate_channels": self.decoder_channels[:depth]} + + model = ( + smp.create_model( + arch=self.model_type, + encoder_name=self.test_encoder_name, + encoder_depth=depth, + in_channels=in_channels, + classes=classes, + **kwargs, + ) + .to(default_device) + .eval() + ) + + sample = self._get_sample(num_channels=in_channels).to(default_device) # check in channels correctly set - with torch.no_grad(): + with torch.inference_mode(): output = model(sample) self.assertEqual(output.shape[1], classes) @@ -122,7 +133,8 @@ def test_classification_head(self): "dropout": 0.5, "activation": "sigmoid", }, - ).to(default_device) + ) + model = model.to(default_device).eval() self.assertIsNotNone(model.classification_head) self.assertIsInstance(model.classification_head[0], torch.nn.AdaptiveAvgPool2d) @@ -132,24 +144,37 @@ def test_classification_head(self): self.assertIsInstance(model.classification_head[3], torch.nn.Linear) self.assertIsInstance(model.classification_head[4].activation, torch.nn.Sigmoid) - sample = self._get_sample( - batch_size=self.default_batch_size, - num_channels=self.default_num_channels, - height=self.default_height, - width=self.default_width, - ).to(default_device) + sample = self._get_sample().to(default_device) - with torch.no_grad(): + with torch.inference_mode(): _, cls_probs = model(sample) self.assertEqual(cls_probs.shape[1], 10) + def test_any_resolution(self): + model = self.get_default_model() + + sample = self._get_sample( + height=self.default_height + 3, + width=self.default_width + 7, + ).to(default_device) + + if model.requires_divisible_input_shape: + with self.assertRaises(RuntimeError, msg="Wrong input shape"): + output = model(sample) + return + + with torch.inference_mode(): + output = model(sample) + + self.assertEqual(output.shape[2], self.default_height + 3) + self.assertEqual(output.shape[3], self.default_width + 7) + @requires_torch_greater_or_equal("2.0.1") def test_save_load_with_hub_mixin(self): # instantiate model - model = smp.create_model( - arch=self.model_type, encoder_name=self.test_encoder_name - ).to(default_device) + model = self.get_default_model() + model.eval() # save model with tempfile.TemporaryDirectory() as tmpdir: @@ -157,18 +182,15 @@ def test_save_load_with_hub_mixin(self): tmpdir, dataset="test_dataset", metrics={"my_awesome_metric": 0.99} ) restored_model = smp.from_pretrained(tmpdir).to(default_device) + restored_model.eval() + with open(os.path.join(tmpdir, "README.md"), "r") as f: readme = f.read() # check inference is correct - sample = self._get_sample( - batch_size=self.default_batch_size, - num_channels=self.default_num_channels, - height=self.default_height, - width=self.default_width, - ).to(default_device) + sample = self._get_sample().to(default_device) - with torch.no_grad(): + with torch.inference_mode(): output = model(sample) restored_output = restored_model(sample) @@ -197,10 +219,80 @@ def test_preserve_forward_output(self): output_tensor = torch.load(output_tensor_path, weights_only=True) output_tensor = output_tensor.to(default_device) - with torch.no_grad(): + with torch.inference_mode(): output = model(input_tensor) self.assertEqual(output.shape, output_tensor.shape) is_close = torch.allclose(output, output_tensor, atol=5e-2) max_diff = torch.max(torch.abs(output - output_tensor)) self.assertTrue(is_close, f"Max diff: {max_diff}") + + @pytest.mark.compile + def test_compile(self): + if not check_run_test_on_diff_or_main(self.files_for_diff): + self.skipTest("No diff and not on `main`.") + + sample = self._get_sample().to(default_device) + model = self.get_default_model() + model = model.eval().to(default_device) + + if not model._is_torch_compilable: + with self.assertRaises((RuntimeError)): + torch.compiler.reset() + compiled_model = torch.compile( + model, fullgraph=True, dynamic=self.compile_dynamic, backend="eager" + ) + return + + torch.compiler.reset() + compiled_model = torch.compile( + model, fullgraph=True, dynamic=self.compile_dynamic, backend="eager" + ) + with torch.inference_mode(): + compiled_model(sample) + + @pytest.mark.torch_export + def test_torch_export(self, eps=1e-5): + if not check_run_test_on_diff_or_main(self.files_for_diff): + self.skipTest("No diff and not on `main`.") + + torch.manual_seed(42) + sample = self._get_sample().to(default_device) + model = self.get_default_model() + model.eval() + + exported_model = torch.export.export( + model, + args=(sample,), + strict=True, + ) + + with torch.inference_mode(): + eager_output = model(sample) + exported_output = exported_model.module().forward(sample) + + self.assertEqual(eager_output.shape, exported_output.shape) + torch.testing.assert_close(eager_output, exported_output, rtol=eps, atol=eps) + + @pytest.mark.torch_script + def test_torch_script(self): + if not check_run_test_on_diff_or_main(self.files_for_diff): + self.skipTest("No diff and not on `main`.") + + sample = self._get_sample().to(default_device) + model = self.get_default_model() + model.eval() + + if not model._is_torch_scriptable: + with self.assertRaises(RuntimeError): + scripted_model = torch.jit.script(model) + return + + scripted_model = torch.jit.script(model) + + with torch.inference_mode(): + scripted_output = scripted_model(sample) + eager_output = model(sample) + + self.assertEqual(scripted_output.shape, eager_output.shape) + torch.testing.assert_close(scripted_output, eager_output, rtol=1e-3, atol=1e-3) diff --git a/tests/models/test_deeplab.py b/tests/models/test_deeplab.py index d3d350e9..de112633 100644 --- a/tests/models/test_deeplab.py +++ b/tests/models/test_deeplab.py @@ -1,16 +1,15 @@ -import pytest from tests.models import base -@pytest.mark.deeplabv3 class TestDeeplabV3Model(base.BaseModelTester): test_model_type = "deeplabv3" + files_for_diff = [r"decoders/deeplabv3/", r"base/"] default_batch_size = 2 -@pytest.mark.deeplabv3plus class TestDeeplabV3PlusModel(base.BaseModelTester): test_model_type = "deeplabv3plus" + files_for_diff = [r"decoders/deeplabv3plus/", r"base/"] default_batch_size = 2 diff --git a/tests/models/test_dpt.py b/tests/models/test_dpt.py new file mode 100644 index 00000000..40df1e38 --- /dev/null +++ b/tests/models/test_dpt.py @@ -0,0 +1,60 @@ +import pytest +import inspect +import torch +import segmentation_models_pytorch as smp + +from tests.models import base +from tests.utils import ( + slow_test, + default_device, + requires_torch_greater_or_equal, +) + + +class TestDPTModel(base.BaseModelTester): + test_encoder_name = "tu-vit_tiny_patch16_224" + files_for_diff = [r"decoders/dpt/", r"base/"] + + default_height = 224 + default_width = 224 + + # should be overriden + test_model_type = "dpt" + + compile_dynamic = False + + @property + def decoder_channels(self): + signature = inspect.signature(self.model_class) + return signature.parameters["decoder_intermediate_channels"].default + + @property + def hub_checkpoint(self): + return "smp-test-models/dpt-tu-test_vit" + + @slow_test + @requires_torch_greater_or_equal("2.0.1") + @pytest.mark.logits_match + def test_load_pretrained(self): + hub_checkpoint = "smp-hub/dpt-large-ade20k" + + model = smp.from_pretrained(hub_checkpoint) + model = model.eval().to(default_device) + + input_tensor = torch.ones((1, 3, 384, 384)) + input_tensor = input_tensor.to(default_device) + + expected_logits_slice = torch.tensor( + [3.4166, 3.4422, 3.4677, 3.2784, 3.0880, 2.9497] + ) + with torch.inference_mode(): + output = model(input_tensor) + + resulted_logits_slice = output[0, 0, 0, 0:6].cpu() + + self.assertEqual(expected_logits_slice.shape, resulted_logits_slice.shape) + is_close = torch.allclose( + expected_logits_slice, resulted_logits_slice, atol=5e-2 + ) + max_diff = torch.max(torch.abs(expected_logits_slice - resulted_logits_slice)) + self.assertTrue(is_close, f"Max diff: {max_diff}") diff --git a/tests/models/test_fpn.py b/tests/models/test_fpn.py index 15ae1f6a..e0db74bc 100644 --- a/tests/models/test_fpn.py +++ b/tests/models/test_fpn.py @@ -1,7 +1,29 @@ -import pytest +import segmentation_models_pytorch as smp + from tests.models import base -@pytest.mark.fpn class TestFpnModel(base.BaseModelTester): test_model_type = "fpn" + files_for_diff = [r"decoders/fpn/", r"base/"] + + def test_interpolation(self): + # test bilinear + model_1 = smp.create_model( + self.test_model_type, + self.test_encoder_name, + decoder_interpolation="bilinear", + ) + assert model_1.decoder.p2.interpolation_mode == "bilinear" + assert model_1.decoder.p3.interpolation_mode == "bilinear" + assert model_1.decoder.p4.interpolation_mode == "bilinear" + + # test bicubic + model_2 = smp.create_model( + self.test_model_type, + self.test_encoder_name, + decoder_interpolation="bicubic", + ) + assert model_2.decoder.p2.interpolation_mode == "bicubic" + assert model_2.decoder.p3.interpolation_mode == "bicubic" + assert model_2.decoder.p4.interpolation_mode == "bicubic" diff --git a/tests/models/test_linknet.py b/tests/models/test_linknet.py index 1ab5eb4e..6f9490d9 100644 --- a/tests/models/test_linknet.py +++ b/tests/models/test_linknet.py @@ -1,7 +1,6 @@ -import pytest from tests.models import base -@pytest.mark.linknet class TestLinknetModel(base.BaseModelTester): test_model_type = "linknet" + files_for_diff = [r"decoders/linknet/", r"base/"] diff --git a/tests/models/test_manet.py b/tests/models/test_manet.py index 33a8ae3b..0e2dbf9b 100644 --- a/tests/models/test_manet.py +++ b/tests/models/test_manet.py @@ -1,7 +1,27 @@ -import pytest +import segmentation_models_pytorch as smp + from tests.models import base -@pytest.mark.manet class TestManetModel(base.BaseModelTester): test_model_type = "manet" + files_for_diff = [r"decoders/manet/", r"base/"] + + def test_interpolation(self): + # test bilinear + model_1 = smp.create_model( + self.test_model_type, + self.test_encoder_name, + decoder_interpolation="bilinear", + ) + for block in model_1.decoder.blocks: + assert block.interpolation_mode == "bilinear" + + # test bicubic + model_2 = smp.create_model( + self.test_model_type, + self.test_encoder_name, + decoder_interpolation="bicubic", + ) + for block in model_2.decoder.blocks: + assert block.interpolation_mode == "bicubic" diff --git a/tests/models/test_pan.py b/tests/models/test_pan.py index d66fefe0..8edb833a 100644 --- a/tests/models/test_pan.py +++ b/tests/models/test_pan.py @@ -1,11 +1,48 @@ import pytest +import segmentation_models_pytorch as smp + from tests.models import base -@pytest.mark.pan class TestPanModel(base.BaseModelTester): test_model_type = "pan" + files_for_diff = [r"decoders/pan/", r"base/"] default_batch_size = 2 default_height = 128 default_width = 128 + + def test_interpolation(self): + # test bilinear + model_1 = smp.create_model( + self.test_model_type, + self.test_encoder_name, + decoder_interpolation="bilinear", + ) + assert model_1.decoder.gau1.interpolation_mode == "bilinear" + assert model_1.decoder.gau1.align_corners is True + assert model_1.decoder.gau2.interpolation_mode == "bilinear" + assert model_1.decoder.gau2.align_corners is True + assert model_1.decoder.gau3.interpolation_mode == "bilinear" + assert model_1.decoder.gau3.align_corners is True + + # test bicubic + model_2 = smp.create_model( + self.test_model_type, + self.test_encoder_name, + decoder_interpolation="bicubic", + ) + assert model_2.decoder.gau1.interpolation_mode == "bicubic" + assert model_2.decoder.gau1.align_corners is None + assert model_2.decoder.gau2.interpolation_mode == "bicubic" + assert model_2.decoder.gau2.align_corners is None + assert model_2.decoder.gau3.interpolation_mode == "bicubic" + assert model_2.decoder.gau3.align_corners is None + + with pytest.warns(DeprecationWarning): + smp.create_model( + self.test_model_type, + self.test_encoder_name, + upscale_mode="bicubic", + ) + assert model_2.decoder.gau1.interpolation_mode == "bicubic" diff --git a/tests/models/test_psp.py b/tests/models/test_psp.py index 2603cdda..c29b5e99 100644 --- a/tests/models/test_psp.py +++ b/tests/models/test_psp.py @@ -1,9 +1,8 @@ -import pytest from tests.models import base -@pytest.mark.psp class TestPspModel(base.BaseModelTester): test_model_type = "pspnet" + files_for_diff = [r"decoders/pspnet/", r"base/"] default_batch_size = 2 diff --git a/tests/models/test_segformer.py b/tests/models/test_segformer.py index 3ca5016c..b0f288ef 100644 --- a/tests/models/test_segformer.py +++ b/tests/models/test_segformer.py @@ -6,9 +6,9 @@ from tests.utils import slow_test, default_device, requires_torch_greater_or_equal -@pytest.mark.segformer class TestSegformerModel(base.BaseModelTester): test_model_type = "segformer" + files_for_diff = [r"decoders/segformer/", r"base/"] @slow_test @requires_torch_greater_or_equal("2.0.1") @@ -21,7 +21,7 @@ def test_load_pretrained(self): sample = torch.ones([1, 3, 512, 512]).to(default_device) - with torch.no_grad(): + with torch.inference_mode(): output = model(sample) self.assertEqual(output.shape, (1, 150, 512, 512)) diff --git a/tests/models/test_unet.py b/tests/models/test_unet.py index 54c69bf0..98e37206 100644 --- a/tests/models/test_unet.py +++ b/tests/models/test_unet.py @@ -1,7 +1,26 @@ -import pytest +import segmentation_models_pytorch as smp from tests.models import base -@pytest.mark.unet class TestUnetModel(base.BaseModelTester): test_model_type = "unet" + files_for_diff = [r"decoders/unet/", r"base/"] + + def test_interpolation(self): + # test bilinear + model_1 = smp.create_model( + self.test_model_type, + self.test_encoder_name, + decoder_interpolation="bilinear", + ) + for block in model_1.decoder.blocks: + assert block.interpolation_mode == "bilinear" + + # test bicubic + model_2 = smp.create_model( + self.test_model_type, + self.test_encoder_name, + decoder_interpolation="bicubic", + ) + for block in model_2.decoder.blocks: + assert block.interpolation_mode == "bicubic" diff --git a/tests/models/test_unetplusplus.py b/tests/models/test_unetplusplus.py index 9e67f2ed..1d958ae3 100644 --- a/tests/models/test_unetplusplus.py +++ b/tests/models/test_unetplusplus.py @@ -1,7 +1,35 @@ -import pytest +import segmentation_models_pytorch as smp + from tests.models import base -@pytest.mark.unetplusplus class TestUnetPlusPlusModel(base.BaseModelTester): test_model_type = "unetplusplus" + files_for_diff = [r"decoders/unetplusplus/", r"base/"] + + def test_interpolation(self): + # test bilinear + model_1 = smp.create_model( + self.test_model_type, + self.test_encoder_name, + decoder_interpolation="bilinear", + ) + is_tested = False + for module in model_1.decoder.modules(): + if module.__class__.__name__ == "DecoderBlock": + assert module.interpolation_mode == "bilinear" + is_tested = True + assert is_tested + + # test bicubic + model_2 = smp.create_model( + self.test_model_type, + self.test_encoder_name, + decoder_interpolation="bicubic", + ) + is_tested = False + for module in model_2.decoder.modules(): + if module.__class__.__name__ == "DecoderBlock": + assert module.interpolation_mode == "bicubic" + is_tested = True + assert is_tested diff --git a/tests/models/test_upernet.py b/tests/models/test_upernet.py index 71d703f9..a69062ae 100644 --- a/tests/models/test_upernet.py +++ b/tests/models/test_upernet.py @@ -1,8 +1,14 @@ import pytest + from tests.models import base -@pytest.mark.upernet class TestUnetModel(base.BaseModelTester): test_model_type = "upernet" + files_for_diff = [r"decoders/upernet/", r"base/"] + default_batch_size = 2 + + @pytest.mark.torch_export + def test_torch_export(self): + super().test_torch_export(eps=1e-3) diff --git a/tests/test_base.py b/tests/test_base.py new file mode 100644 index 00000000..1078c493 --- /dev/null +++ b/tests/test_base.py @@ -0,0 +1,36 @@ +import torch +import tempfile +import segmentation_models_pytorch as smp + +import pytest + + +def test_from_pretrained_with_mismatched_keys(): + original_model = smp.Unet(classes=1) + + with tempfile.TemporaryDirectory() as temp_dir: + original_model.save_pretrained(temp_dir) + + # we should catch warning here and check if there specific keys there + with pytest.warns(UserWarning): + restored_model = smp.from_pretrained(temp_dir, classes=2, strict=False) + + assert restored_model.segmentation_head[0].out_channels == 2 + + # verify all the weight are the same expect mismatched ones + original_state_dict = original_model.state_dict() + restored_state_dict = restored_model.state_dict() + + expected_mismatched_keys = [ + "segmentation_head.0.weight", + "segmentation_head.0.bias", + ] + mismatched_keys = [] + for key in original_state_dict: + if key not in expected_mismatched_keys: + assert torch.allclose(original_state_dict[key], restored_state_dict[key]) + else: + mismatched_keys.append(key) + + assert len(mismatched_keys) == 2 + assert sorted(mismatched_keys) == sorted(expected_mismatched_keys) diff --git a/tests/test_losses.py b/tests/test_losses.py index 5c3ad75a..94d85d5c 100644 --- a/tests/test_losses.py +++ b/tests/test_losses.py @@ -93,7 +93,7 @@ def test_soft_tversky_score(y_true, y_pred, expected, eps, alpha, beta): assert float(actual) == pytest.approx(expected, eps) -@torch.no_grad() +@torch.inference_mode() def test_dice_loss_binary(): eps = 1e-5 criterion = DiceLoss(mode=smp.losses.BINARY_MODE, from_logits=False) @@ -131,7 +131,7 @@ def test_dice_loss_binary(): assert float(loss) == pytest.approx(1.0, abs=eps) -@torch.no_grad() +@torch.inference_mode() def test_tversky_loss_binary(): eps = 1e-5 # with alpha=0.5; beta=0.5 it is equal to DiceLoss @@ -172,7 +172,7 @@ def test_tversky_loss_binary(): assert float(loss) == pytest.approx(1.0, abs=eps) -@torch.no_grad() +@torch.inference_mode() def test_binary_jaccard_loss(): eps = 1e-5 criterion = JaccardLoss(mode=smp.losses.BINARY_MODE, from_logits=False) @@ -210,7 +210,7 @@ def test_binary_jaccard_loss(): assert float(loss) == pytest.approx(1.0, eps) -@torch.no_grad() +@torch.inference_mode() def test_multiclass_jaccard_loss(): eps = 1e-5 criterion = JaccardLoss(mode=smp.losses.MULTICLASS_MODE, from_logits=False) @@ -237,7 +237,7 @@ def test_multiclass_jaccard_loss(): assert float(loss) == pytest.approx(1.0 - 1.0 / 3.0, abs=eps) -@torch.no_grad() +@torch.inference_mode() def test_multilabel_jaccard_loss(): eps = 1e-5 criterion = JaccardLoss(mode=smp.losses.MULTILABEL_MODE, from_logits=False) @@ -263,7 +263,7 @@ def test_multilabel_jaccard_loss(): assert float(loss) == pytest.approx(1.0 - 1.0 / 3.0, abs=eps) -@torch.no_grad() +@torch.inference_mode() def test_soft_ce_loss(): criterion = SoftCrossEntropyLoss(smooth_factor=0.1, ignore_index=-100) @@ -276,7 +276,7 @@ def test_soft_ce_loss(): assert float(loss) == pytest.approx(1.0125, abs=0.0001) -@torch.no_grad() +@torch.inference_mode() def test_soft_bce_loss(): criterion = SoftBCEWithLogitsLoss(smooth_factor=0.1, ignore_index=-100) @@ -287,7 +287,7 @@ def test_soft_bce_loss(): assert float(loss) == pytest.approx(0.7201, abs=0.0001) -@torch.no_grad() +@torch.inference_mode() def test_binary_mcc_loss(): eps = 1e-5 criterion = MCCLoss(eps=eps) diff --git a/tests/utils.py b/tests/utils.py index e8bce88e..f9e50fc2 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -1,31 +1,21 @@ import os +import re import timm import torch import unittest +from git import Repo +from typing import List from packaging.version import Version has_timm_test_models = Version(timm.__version__) >= Version("1.0.12") default_device = "cuda" if torch.cuda.is_available() else "cpu" - -def get_commit_message(): - commit_msg = os.getenv("COMMIT_MESSAGE", "") - return commit_msg.lower() - - -# Check both environment variables and commit message -commit_message = get_commit_message() -RUN_ALL_ENCODERS = ( - os.getenv("RUN_ALL_ENCODERS", "false").lower() in ["true", "1", "y", "yes"] - or "run-all-encoders" in commit_message -) - -RUN_SLOW = ( - os.getenv("RUN_SLOW", "false").lower() in ["true", "1", "y", "yes"] - or "run-slow" in commit_message -) +YES_LIST = ["true", "1", "y", "yes"] +RUN_ALL_ENCODERS = os.getenv("RUN_ALL_ENCODERS", "false").lower() in YES_LIST +RUN_SLOW = os.getenv("RUN_SLOW", "false").lower() in YES_LIST +RUN_ALL = os.getenv("RUN_ALL", "false").lower() in YES_LIST def slow_test(test_case): @@ -38,6 +28,15 @@ def slow_test(test_case): return unittest.skipUnless(RUN_SLOW, "test is slow")(test_case) +def requires_timm_greater_or_equal(version: str): + timm_version = Version(timm.__version__) + provided_version = Version(version) + return unittest.skipUnless( + timm_version >= provided_version, + f"timm version {timm_version} is less than {provided_version}", + ) + + def requires_torch_greater_or_equal(version: str): torch_version = Version(torch.__version__) provided_version = Version(version) @@ -45,3 +44,46 @@ def requires_torch_greater_or_equal(version: str): torch_version >= provided_version, f"torch version {torch_version} is less than {provided_version}", ) + + +def check_run_test_on_diff_or_main(filepath_patterns: List[str]): + if RUN_ALL: + return True + + try: + repo = Repo(".") + current_branch = repo.active_branch.name + diff_files = repo.git.diff("main", name_only=True).splitlines() + + except Exception: + return True + + if current_branch == "main": + return True + + for pattern in filepath_patterns: + for file_path in diff_files: + if re.search(pattern, file_path): + return True + + return False + + +def check_two_models_strictly_equal( + model_a: torch.nn.Module, model_b: torch.nn.Module, input_data: torch.Tensor +) -> None: + for (k1, v1), (k2, v2) in zip( + model_a.state_dict().items(), model_b.state_dict().items() + ): + assert k1 == k2, f"Key mismatch: {k1} != {k2}" + torch.testing.assert_close( + v1, v2, msg=f"Tensor mismatch at key '{k1}':\n{v1} !=\n{v2}" + ) + + model_a.eval() + model_b.eval() + with torch.inference_mode(): + output_a = model_a(input_data) + output_b = model_b(input_data) + + torch.testing.assert_close(output_a, output_b)