-
Notifications
You must be signed in to change notification settings - Fork 24.8k
Description
🐛 Describe the bug
In a basic example of training ResNet18 on CIFAR10 you should get an error if you specify the wrong number of logits for the model. This happens as expected with the CPU backend, but not with mps
.
import torch
from torch import (
nn,
optim
)
from torchvision import (
datasets,
transforms,
models
)
def main():
# Get data
train_ds = datasets.CIFAR10(
root="./data",
train=True,
download=True,
transform=transforms.ToTensor()
)
train_loader = torch.utils.data.DataLoader(
train_ds,
batch_size=128,
shuffle=True
)
# device = torch.device("cpu") # Throws error correctly
device = torch.device("mps") # Runs to completion
model = models.resnet18(num_classes=5).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
batch_count = len(train_loader)
for epoch in range(2):
running_loss = 0.0
count = 0
for batch_x, batch_y in train_loader:
batch_x, batch_y = batch_x.to(device), batch_y.to(device)
optimizer.zero_grad()
out = model(batch_x)
loss = criterion(out, batch_y)
loss.backward()
optimizer.step()
running_loss += loss.item()
count +=1
print(f"{count}/{batch_count}")
print(f"Epoch {epoch}: {running_loss/count}")
if __name__ == "__main__":
main()
Expected Behavior
File "/opt/miniconda3/envs/elicit/lib/python3.11/site-packages/torch/nn/functional.py", line 3494, in cross_entropy
return torch._C._nn.cross_entropy_loss(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
IndexError: Target 7 is out of bounds.
Or similar when encountering the first label >= 5
Versions
Collecting environment information...
PyTorch version: 2.7.0
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A
OS: macOS 15.1 (arm64)
GCC version: Could not collect
Clang version: 16.0.0 (clang-1600.0.26.4)
CMake version: version 3.31.5
Libc version: N/A
Python version: 3.11.11 (main, Dec 11 2024, 10:25:04) [Clang 14.0.6 ] (64-bit runtime)
Python platform: macOS-15.1-arm64-arm-64bit
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Apple M4 Pro
Versions of relevant libraries:
[pip3] numpy==2.2.5
[pip3] torch==2.7.0
[pip3] torchvision==0.22.0
[conda] numpy 2.2.5 pypi_0 pypi
[conda] torch 2.7.0 pypi_0 pypi
[conda] torchvision 0.22.0 pypi_0 pypi