@@ -8505,7 +8505,13 @@ def merge_dicts(*dicts):
8505
8505
add_docstr (torch .fft , r"""
8506
8506
fft(input, signal_ndim, normalized=False) -> Tensor
8507
8507
8508
- Complex-to-complex Discrete Fourier Transform
8508
+ Complex-to-complex Discrete Fourier Transform.
8509
+
8510
+ .. warning::
8511
+ The function :func:`torch.fft` is deprecated and will be removed in
8512
+ PyTorch 1.8. Use the new :ref:`torch.fft <torch-fft-module>` module
8513
+ functions, instead, by importing :ref:`torch.fft <torch-fft-module>` and
8514
+ calling :func:`torch.fft.fft` or :func:`torch.fft.fftn`.
8509
8515
8510
8516
This method computes the complex-to-complex discrete Fourier transform.
8511
8517
Ignoring the batch dimensions, it computes the following expression:
@@ -8531,12 +8537,6 @@ def merge_dicts(*dicts):
8531
8537
8532
8538
The inverse of this function is :func:`~torch.ifft`.
8533
8539
8534
- .. deprecated:: 1.7.0
8535
- The function :func:`torch.fft` is deprecated and will be removed in
8536
- PyTorch 1.8. Use the new :ref:`torch.fft <torch-fft-module>` module
8537
- functions, instead, by importing :ref:`torch.fft <torch-fft-module>` and
8538
- calling :func:`torch.fft.fft` or :func:`torch.fft.fftn`.
8539
-
8540
8540
.. note::
8541
8541
For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
8542
8542
repeatedly running FFT methods on tensors of same geometry with same
@@ -8611,11 +8611,16 @@ def merge_dicts(*dicts):
8611
8611
8612
8612
""" )
8613
8613
8614
- add_docstr (torch .ifft ,
8615
- r"""
8614
+ add_docstr (torch .ifft , r"""
8616
8615
ifft(input, signal_ndim, normalized=False) -> Tensor
8617
8616
8618
- Complex-to-complex Inverse Discrete Fourier Transform
8617
+ Complex-to-complex Inverse Discrete Fourier Transform.
8618
+
8619
+ .. warning::
8620
57AE
+ The function :func:`torch.ifft` is deprecated and will be removed in a
8621
+ future PyTorch release. Use the new :ref:`torch.fft <torch-fft-module>`
8622
+ module functions, instead, by importing :ref:`torch.fft <torch-fft-module>`
8623
+ and calling :func:`torch.fft.ifft` or :func:`torch.fft.ifftn`.
8619
8624
8620
8625
This method computes the complex-to-complex inverse discrete Fourier
8621
8626
transform. Ignoring the batch dimensions, it computes the following
@@ -8640,12 +8645,6 @@ def merge_dicts(*dicts):
8640
8645
8641
8646
The inverse of this function is :func:`~torch.fft`.
8642
8647
8643
- .. deprecated:: 1.7.0
8644
- The function :func:`torch.ifft` is deprecated and will be removed in a
8645
- future PyTorch release. Use the new :ref:`torch.fft <torch-fft-module>`
8646
- module functions, instead, by importing :ref:`torch.fft <torch-fft-module>`
8647
- and calling :func:`torch.fft.ifft` or :func:`torch.fft.ifftn`.
8648
-
8649
8648
.. note::
8650
8649
For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
8651
8650
repeatedly running FFT methods on tensors of same geometry with same
@@ -8702,11 +8701,17 @@ def merge_dicts(*dicts):
8702
8701
8703
8702
""" )
8704
8703
8705
- add_docstr (torch .rfft ,
8706
- r"""
8704
+ add_docstr (torch .rfft , r"""
8707
8705
rfft(input, signal_ndim, normalized=False, onesided=True) -> Tensor
8708
8706
8709
- Real-to-complex Discrete Fourier Transform
8707
+ Real-to-complex Discrete Fourier Transform.
8708
+
8709
+ .. warning::
8710
+ The function :func:`torch.rfft` is deprecated and will be removed in a
8711
+ future PyTorch release. Use the new :ref:`torch.fft <torch-fft-module>`
8712
+ module functions, instead, by importing :ref:`torch.fft <torch-fft-module>`
8713
+ and calling :func:`torch.fft.rfft` for one-sided output, or
8714
+ :func:`torch.fft.fft` for two-sided output.
8710
8715
8711
8716
This method computes the real-to-complex discrete Fourier transform. It is
8712
8717
mathematically equivalent with :func:`~torch.fft` with differences only in
@@ -8734,13 +8739,6 @@ def merge_dicts(*dicts):
8734
8739
8735
8740
The inverse of this function is :func:`~torch.irfft`.
8736
8741
8737
- .. deprecated:: 1.7.0
8738
- The function :func:`torch.rfft` is deprecated and will be removed in a
8739
- future PyTorch release. Use the new :ref:`torch.fft <torch-fft-module>`
8740
- module functions, instead, by importing :ref:`torch.fft <torch-fft-module>`
8741
- and calling :func:`torch.fft.rfft` for one-sided output, or
8742
- :func:`torch.fft.fft` for two-sided output.
8743
-
8744
8742
.. note::
8745
8743
For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
8746
8744
repeatedly running FFT methods on tensors of same geometry with same
@@ -8778,11 +8776,17 @@ def merge_dicts(*dicts):
8778
8776
""" )
8779
8777
8780
8778
8781
- add_docstr (torch .irfft ,
8782
- r"""
8779
+ add_docstr (torch .irfft , r"""
8783
8780
irfft(input, signal_ndim, normalized=False, onesided=True, signal_sizes=None) -> Tensor
8784
8781
8785
- Complex-to-real Inverse Discrete Fourier Transform
8782
+ Complex-to-real Inverse Discrete Fourier Transform.
8783
+
8784
+ .. warning::
8785
+ The function :func:`torch.irfft` is deprecated and will be removed in a
8786
+ future PyTorch release. Use the new :ref:`torch.fft <torch-fft-module>`
8787
+ module functions, instead, by importing :ref:`torch.fft <torch-fft-module>`
8788
+ and calling :func:`torch.fft.irfft` for one-sided input, or
8789
+ :func:`torch.fft.ifft` for two-sided input.
8786
8790
8787
8791
This method computes the complex-to-real inverse discrete Fourier transform.
8788
8792
It is mathematically equivalent with :func:`ifft` with differences only in
@@ -8813,13 +8817,6 @@ def merge_dicts(*dicts):
8813
8817
8814
8818
The inverse of this function is :func:`~torch.rfft`.
8815
8819
8816
- .. deprecated:: 1.7.0
8817
- The function :func:`torch.irfft` is deprecated and will be removed in a
8818
- future PyTorch release. Use the new :ref:`torch.fft <torch-fft-module>`
8819
- module functions, instead, by importing :ref:`torch.fft <torch-fft-module>`
8820
- and calling :func:`torch.fft.irfft` for one-sided input, or
8821
- :func:`torch.fft.ifft` for two-sided input.
8822
-
8823
8820
.. warning::
8824
8821
Generally speaking, input to this function should contain values
8825
8822
following conjugate symmetry. Note that even if :attr:`onesided` is
0 commit comments