@@ -792,14 +792,20 @@ def merge_dicts(*dicts):
792
792
add_docstr (
793
793
torch .all ,
794
794
r"""
795
- all(input: Tensor) -> Tensor
795
+ all(input: Tensor, *, out=None ) -> Tensor
796
796
797
797
Tests if all elements in :attr:`input` evaluate to `True`.
798
798
799
799
.. note:: This function matches the behaviour of NumPy in returning
800
800
output of dtype `bool` for all supported dtypes except `uint8`.
801
801
For `uint8` the dtype of output is `uint8` itself.
802
802
803
+ Args:
804
+ {input}
805
+
806
+ Keyword args:
807
+ {out}
808
+
803
809
Example::
804
810
805
811
>>> a = torch.rand(1, 2).bool()
@@ -855,6 +861,12 @@ def merge_dicts(*dicts):
855
861
output of dtype `bool` for all supported dtypes except `uint8`.
856
862
For `uint8` the dtype of output is `uint8` itself.
857
863
864
+ Args:
865
+ {input}
866
+
867
+ Keyword args:
868
+ {out}
869
+
858
870
Example::
859
871
860
872
>>> a = torch.rand(1, 2).bool()
@@ -6488,13 +6500,16 @@ def merge_dicts(*dicts):
6488
6500
add_docstr (
6489
6501
torch .max ,
6490
6502
r"""
6491
- max(input) -> Tensor
6503
+ max(input, *, out=None ) -> Tensor
6492
6504
6493
6505
Returns the maximum value of all elements in the ``input`` tensor.
6494
6506
6495
6507
Args:
6496
6508
{input}
6497
6509
6510
+ Keyword args:
6511
+ {out}
6512
+
6498
6513
Example::
6499
6514
6500
6515
>>> a = torch.randn(1, 3)
@@ -7103,13 +7118,16 @@ def merge_dicts(*dicts):
7103
7118
add_docstr (
7104
7119
torch .min ,
7105
7120
r"""
7106
- min(input) -> Tensor
7121
+ min(input, *, out=None ) -> Tensor
7107
7122
7108
7123
Returns the minimum value of all elements in the :attr:`input` tensor.
7109
7124
7110
7125
Args:
7111
7126
{input}
7112
7127
7128
+ Keyword args:
7129
+ {out}
7130
+
7113
7131
Example::
7114
7132
7115
7133
>>> a = torch.randn(1, 3)
0 commit comments