|
| 1 | +import queue |
| 2 | +from collections import namedtuple |
| 3 | + |
| 4 | +Edge = namedtuple('Edge', ['vertex', 'weight']) |
| 5 | + |
| 6 | + |
| 7 | +class GraphUndirectedWeighted(object): |
| 8 | + def __init__(self, vertex_count): |
| 9 | + self.vertex_count = vertex_count |
| 10 | + self.adjacency_list = [[] for _ in range(vertex_count)] |
| 11 | + |
| 12 | + def add_edge(self, source, dest, weight): |
| 13 | + assert source < self.vertex_count |
| 14 | + assert dest < self.vertex_count |
| 15 | + self.adjacency_list[source].append(Edge(dest, weight)) |
| 16 | + self.adjacency_list[dest].append(Edge(source, weight)) |
| 17 | + |
| 18 | + def get_neighbor(self, vertex): |
| 19 | + """ |
| 20 | + Returns the next neighbor to vertex |
| 21 | + :param vertex: |
| 22 | + :rtype: Edge |
| 23 | + """ |
| 24 | + for e in self.adjacency_list[vertex]: |
| 25 | + yield e |
| 26 | + |
| 27 | + def get_vertex(self): |
| 28 | + for v in range(self.vertex_count): |
| 29 | + yield v |
| 30 | + |
| 31 | + def dijkstra(self, source, dest): |
| 32 | + q = queue.PriorityQueue() |
| 33 | + parents = [] |
| 34 | + distances = [] |
| 35 <
8000
/td> | + start_weight = float("inf") |
| 36 | + |
| 37 | + for i in self.get_vertex(): |
| 38 | + weight = start_weight |
| 39 | + if source == i: |
| 40 | + weight = 0 |
| 41 | + distances.append(weight) |
| 42 | + parents.append(None) |
| 43 | + |
| 44 | + q.put(([0, source])) |
| 45 | + |
| 46 | + while not q.empty(): |
| 47 | + v_tuple = q.get() |
| 48 | + v = v_tuple[1] |
| 49 | + |
| 50 | + for e in self.get_neighbor(v): |
| 51 | + candidate_distance = distances[v] + e.weight |
| 52 | + if distances[e.vertex] > candidate_distance: |
| 53 | + distances[e.vertex] = candidate_distance |
| 54 | + parents[e.vertex] = v |
| 55 | + # primitive but effective negative cycle detection |
| 56 | + if candidate_distance < -1000: |
| 57 | + raise Exception("Negative cycle detected") |
| 58 | + q.put(([distances[e.vertex], e.vertex])) |
| 59 | + |
| 60 | + shortest_path = [] |
| 61 | + end = dest |
| 62 | + while end is not None: |
| 63 | + shortest_path.append(end) |
| 64 | + end = parents[end] |
| 65 | + |
| 66 | + shortest_path.reverse() |
| 67 | + |
| 68 | + return shortest_path, distances[dest] |
| 69 | + |
| 70 | + def prim(self): |
| 71 | + """ |
| 72 | + Returns a dictionary of parents of vertices in a minimum spanning tree |
| 73 | + :rtype: dict |
| 74 | + """ |
| 75 | + s = set() |
| 76 | + q = queue.PriorityQueue() |
| 77 | + parents = {} |
| 78 | + start_weight = float("inf") |
| 79 | + weights = {} # since we can't peek into queue |
| 80 | + |
| 81 | + for i in self.get_vertex(): |
| 82 | + weight = start_weight |
| 83 | + if i == 0: |
| 84 | + weight = 0 |
| 85 | + q.put(([weight, i])) |
| 86 | + weights[i] = weight |
| 87 | + parents[i] = None |
| 88 | + |
| 89 | + while not q.empty(): |
| 90 | + v_tuple = q.get() |
| 91 | + vertex = v_tuple[1] |
| 92 | + |
| 93 | + s.add(vertex) |
| 94 | + |
| 95 | + for u in self.get_neighbor(vertex): |
| 96 | + if u.vertex not in s: |
| 97 | + if u.weight < weights[u.vertex]: |
| 98 | + parents[u.vertex] = vertex |
| 99 | + weights[u.vertex] = u.weight |
| 100 | + q.put(([u.weight, u.vertex])) |
| 101 | + |
| 102 | + return parents |
| 103 | + |
| 104 | + |
| 105 | +def main(): |
| 106 | + g = GraphUndirectedWeighted(9) |
| 107 | + g.add_edge(0, 1, 4) |
| 108 | + g.add_edge(1, 7, 6) |
| 109 | + g.add_edge(1, 2, 1) |
| 110 | + g.add_edge(2, 3, 3) |
| 111 | + g.add_edge(3, 7, 1) |
| 112 | + g.add_edge(3, 4, 2) |
| 113 | + g.add_edge(3, 5, 1) |
| 114 | + g.add_edge(4, 5, 1) |
| 115 | + g.add_edge(5, 6, 1) |
| 116 | + g.add_edge(6, 7, 2) |
| 117 | + g.add_edge(6, 8, 2) |
| 118 | + g.add_edge(7, 8, 2) |
| 119 | + # for testing negative cycles |
| 120 | + # g.add_edge(1, 9, -5) |
| 121 | + # g.add_edge(9, 7, -4) |
| 122 | + |
| 123 | + shortest_path, distance = g.dijkstra(0, 1) |
| 124 | + assert shortest_path == [0, 1] and distance == 4 |
| 125 | + |
| 126 | + shortest_path, distance = g.dijkstra(0, 8) |
| 127 | + assert shortest_path == [0, 1, 2, 3, 7, 8] and distance == 11 |
| 128 | + |
| 129 | + shortest_path, distance = g.dijkstra(5, 0) |
| 130 | + assert shortest_path == [5, 3, 2, 1, 0] and distance == 9 |
| 131 | + |
| 132 | + shortest_path, distance = g.dijkstra(1, 1) |
| 133 | + assert shortest_path == [1] and distance == 0 |
| 134 | + |
| 135 | + msp = g.prim() |
| 136 | + print(msp) |
| 137 | + assert(msp == {0: None, 1: 0, 2: 1, 3: 2, 4: 5, 5: 3, 6: 5, 7: 3, 8: 6}) |
| 138 | + |
| 139 | + |
| 140 | +if __name__ == "__main__": |
| 141 | + main() |
0 commit comments