diff --git a/control/iosys.py b/control/iosys.py index ce717c0fb..1bd9bcb9a 100644 --- a/control/iosys.py +++ b/control/iosys.py @@ -2242,7 +2242,7 @@ def ss(*args, **kwargs): Convert a linear system into space system form. Always creates a new system, even if sys is already a state space system. - ``ss(updfcn, outfucn)``` + ``ss(updfcn, outfucn)`` Create a nonlinear input/output system with update function ``updfcn`` and output function ``outfcn``. See :class:`NonlinearIOSystem` for more information. @@ -2269,8 +2269,7 @@ def ss(*args, **kwargs): Everything that the constructor of :class:`numpy.matrix` accepts is permissible here too. - ``ss(args, inputs=['u1', ..., 'up'], outputs=['y1', ..., 'yq'], - states=['x1', ..., 'xn']) + ``ss(args, inputs=['u1', ..., 'up'], outputs=['y1', ..., 'yq'], states=['x1', ..., 'xn'])`` Create a system with named input, output, and state signals. Parameters diff --git a/control/passivity.py b/control/passivity.py index 2ec1a7683..3777b3d92 100644 --- a/control/passivity.py +++ b/control/passivity.py @@ -281,7 +281,7 @@ def ispassive(sys, ofp_index=0, ifp_index=0): guaranteed to have an output of True (the system might not be passive with both indices at the same time). - For more details, see [1]. + For more details, see [1]_. References ---------- diff --git a/control/sisotool.py b/control/sisotool.py index 52c061249..781fabf40 100644 --- a/control/sisotool.py +++ b/control/sisotool.py @@ -213,6 +213,8 @@ def rootlocus_pid_designer(plant, gain='P', sign=+1, input_signal='r', derivative terms are given instead by Kp, Ki*dt/2*(z+1)/(z-1), and Kd/dt*(z-1)/z, respectively. + :: + ------> C_ff ------ d | | | r | e V V u y diff --git a/doc/conventions.rst b/doc/conventions.rst index 1832b9525..476366714 100644 --- a/doc/conventions.rst +++ b/doc/conventions.rst @@ -29,7 +29,7 @@ of linear time-invariant (LTI) systems: where u is the input, y is the output, and x is the state. -To create a state space system, use the :fun:`ss` function: +To create a state space system, use the :func:`ss` function: sys = ct.ss(A, B, C, D)