@@ -22,13 +22,13 @@ def test_reachable_form(self):
2222 D_true = 42.0
2323
2424 # Perform a coordinate transform with a random invertible matrix
25- T_true = np .matrix ([[- 0.27144004 , - 0.39933167 , 0.75634684 , 0.44135471 ],
25+ T_true = np .array ([[- 0.27144004 , - 0.39933167 , 0.75634684 , 0.44135471 ],
2626 [- 0.74855725 , - 0.39136285 , - 0.18142339 , - 0.50356997 ],
2727 [- 0.40688007 , 0.81416369 , 0.38002113 , - 0.16483334 ],
2828 [- 0.44769516 , 0.15654653 , - 0.50060858 , 0.72419146 ]])
29- A = np .linalg .solve (T_true , A_true )* T_true
29+ A = np .linalg .solve (T_true , A_true ). dot ( T_true )
3030 B = np .linalg .solve (T_true , B_true )
31- C = C_true * T_true
31+ C = C_true . dot ( T_true )
3232 D = D_true
3333
3434 # Create a state space system and convert it to the reachable canonical form
@@ -69,11 +69,11 @@ def test_modal_form(self):
6969 D_true = 42.0
7070
7171 # Perform a coordinate transform with a random invertible matrix
72- T_true = np .matrix ([[- 0.27144004 , - 0.39933167 , 0.75634684 , 0.44135471 ],
72+ T_true = np .array ([[- 0.27144004 , - 0.39933167 , 0.75634684 , 0.44135471 ],
7373 [- 0.74855725 , - 0.39136285 , - 0.18142339 , - 0.50356997 ],
7474 [- 0.40688007 , 0.81416369 , 0.38002113 , - 0.16483334 ],
7575 [- 0.44769516 , 0.15654653 , - 0.50060858 , 0.72419146 ]])
76- A = np .linalg .solve (T_true , A_true )* T_true
76+ A = np .linalg .solve (T_true , A_true ). dot ( T_true )
7777 B = np .linalg .solve (T_true , B_true )
7878 C = C_true * T_true
7979 D = D_true
@@ -98,9 +98,9 @@ def test_modal_form(self):
9898 C_true = np .array ([[1 , 0 , 0 , 1 ]])
9999 D_true = np .array ([[0 ]])
100100
101- A = np .linalg .solve (T_true , A_true ) * T_true
101+ A = np .linalg .solve (T_true , A_true ). dot ( T_true )
102102 B = np .linalg .solve (T_true , B_true )
103- C = C_true * T_true
103+ C = C_true . dot ( T_true )
104104 D = D_true
105105
106106 # Create state space system and convert to modal canonical form
@@ -132,9 +132,9 @@ def test_modal_form(self):
132132 C_true = np .array ([[0 , 1 , 0 , 1 ]])
133133 D_true = np .array ([[0 ]])
134134
135- A = np .linalg .solve (T_true , A_true ) * T_true
135+ A = np .linalg .solve (T_true , A_true ). dot ( T_true )
136136 B = np .linalg .solve (T_true , B_true )
137- C = C_true * T_true
137+ C = C_true . dot ( T_true )
138138 D = D_true
139139
140140 # Create state space system and convert to modal canonical form
@@ -173,13 +173,13 @@ def test_observable_form(self):
173173 D_true = 42.0
174174
175175 # Perform a coordinate transform with a random invertible matrix
176- T_true = np .matrix ([[- 0.27144004 , - 0.39933167 , 0.75634684 , 0.44135471 ],
176+ T_true = np .array ([[- 0.27144004 , - 0.39933167 , 0.75634684 , 0.44135471 ],
177177 [- 0.74855725 , - 0.39136285 , - 0.18142339 , - 0.50356997 ],
178178 [- 0.40688007 , 0.81416369 , 0.38002113 , - 0.16483334 ],
179179 [- 0.44769516 , 0.15654653 , - 0.50060858 , 0.72419146 ]])
180- A = np .linalg .solve (T_true , A_true )* T_true
180+ A = np .linalg .solve (T_true , A_true ). dot ( T_true )
181181 B = np .linalg .solve (T_true , B_true )
182- C = C_true * T_true
182+ C = C_true . dot ( T_true )
183183 D = D_true
184184
185185 # Create a state space system and convert it to the observable canonical form
0 commit comments