@@ -8,7 +8,7 @@ msgstr ""
8
8
"Project-Id-Version : Python 3.7\n "
9
9
"Report-Msgid-Bugs-To : \n "
10
10
"POT-Creation-Date : 2018-06-26 18:54+0800\n "
11
- "PO-Revision-Date : 2016-11-19 00:37+0000 \n "
11
+ "PO-Revision-Date : 2018-10-13 20:21+0800 \n "
12
12
"Last-Translator : Liang-Bo Wang <me@liang2.tw>\n "
13
13
"Language-Team : Chinese - TAIWAN (https://github.com/python/python-docs-zh- "
14
14
"tw)\n "
@@ -17,28 +17,31 @@ msgstr ""
17
17
"Content-Type : text/plain; charset=UTF-8\n "
18
18
"Content-Transfer-Encoding : 8bit\n "
19
19
"Plural-Forms : nplurals=1; plural=0;\n "
20
+ "X-Generator : Poedit 2.2\n "
20
21
21
22
#: ../../tutorial/floatingpoint.rst:9
22
23
msgid "Floating Point Arithmetic: Issues and Limitations"
23
- msgstr ""
24
+ msgstr "浮點數運算:問題與限制 "
24
25
25
26
#: ../../tutorial/floatingpoint.rst:14
26
27
msgid ""
27
28
"Floating-point numbers are represented in computer hardware as base 2 "
28
29
"(binary) fractions. For example, the decimal fraction ::"
29
- msgstr ""
30
+ msgstr "在計算機架構中,浮點數透過二進位小數表示。 例如說,在十進位小數中 :: "
30
31
31
32
#: ../../tutorial/floatingpoint.rst:19
32
33
msgid ""
33
34
"has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction ::"
34
- msgstr ""
35
+ msgstr "可被分為 1/10 + 2/100 + 5/1000 ,同樣的道理,二進位小數 :: "
35
36
36
37
#: ../../tutorial/floatingpoint.rst:23
37
38
msgid ""
38
39
"has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the "
39
40
"only real difference being that the first is written in base 10 fractional "
40
41
"notation, and the second in base 2."
41
42
msgstr ""
43
+ "可被分為 0/2 + 0/4 + 1/8 。這兩個小數有相同的數值,而唯一真正的不同在於前者以"
44
+ "十進位表示,後者以二進位表示。"
42
45
43
46
#: ../../tutorial/floatingpoint.rst:27
44
47
msgid ""
@@ -47,30 +50,38 @@ msgid ""
47
50
"point numbers you enter are only approximated by the binary floating-point "
48
51
"numbers actually stored in the machine."
49
52
msgstr ""
53
+ "不幸的是,大多數十進位小數無法精準地以二進位小數表示。一般的結果為,您輸入的"
54
+ "十進位浮點數由實際存在計算機中的二進位浮點數近似。"
50
55
51
56
#: ../../tutorial/floatingpoint.rst:32
52
57
msgid ""
53
58
"The problem is easier to understand at first in base 10. Consider the "
54
59
"fraction 1/3. You can approximate that as a base 10 fraction::"
55
60
msgstr ""
61
+ "在十進位中,這個問題更容易首先被理解。考慮分數 1/3 ,您可以將其近似為十進位小"
62
+ "數 ::"
56
63
57
64
#: ../../tutorial/floatingpoint.rst:37 ../../tutorial/floatingpoint.rst:41
58
65
msgid "or, better, ::"
59
- msgstr ""
66
+ msgstr "或者,更好的近似:: "
60
67
61
68
#: ../../tutorial/floatingpoint.rst:45
62
69
msgid ""
63
70
"and so on. No matter how many digits you're willing to write down, the "
64
71
"result will never be exactly 1/3, but will be an increasingly better "
65
72
"approximation of 1/3."
66
73
msgstr ""
74
+ "依此類推,不論你願意以多少位數表示小數,最後的結果都無法精準地表示 1/3 ,但你"
75
+ "還是能越來越精準的表示 1/3 。"
67
76
68
77
#: ../../tutorial/floatingpoint.rst:49
69
78
msgid ""
70
79
"In the same way, no matter how many base 2 digits you're willing to use, the "
71
80
"decimal value 0.1 cannot be represented exactly as a base 2 fraction. In "
72
81
"base 2, 1/10 is the infinitely repeating fraction ::"
73
82
msgstr ""
83
+ "同樣的道理,不論你願意以多少位數表示二進位小數,十進位小數 0.1 都無法被二進位"
84
+ "小數精準的表達。在二進位小數中, 1/10 會是一個無限循環小數 ::"
74
85
75
86
#: ../../tutorial/floatingpoint.rst:55
76
87
msgid ""
0 commit comments